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Abstract
We consider convection in a horizontal porous layer of uniform thickness which is heated
from below and which is composed of two anisotropic sublayers with principal axes lying in
the three coordinate directions. The aim is to determine criteria for the onset of convection
by finding the critical Rayleigh number, wavenumber and roll orientation relative to the
coordinate axes. The full set of nondimensional parameters has at least six members even
when the sublayers are considered to be thermally isotropic, and therefore, we select some
special cases in order to illuminate the type of qualitative behaviour which may be expected.
One such case is where the anisotropic sublayers are identical except that one sublayer is
rotated by an angle of 90◦ to the other. In this situation, the most unstable roll is found to
lie at an angle of ± 45◦ to the principal axes. It is also found that fluid particles exhibit a
mean longitudinal flow as they circulate about the vortex axis. This drift along the vortex is
balanced by an equal and opposite drift in the two neighbouring vortices. Convection in each
sublayer is shown to be two dimensional even though the full flow field is three dimensional.
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Ra Darcy–Rayleigh number
T Nondimensional temperature
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w Vertical velocity
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x, y Horizontal coordinates
z Vertical coordinate

Greek Symbols
α Thermal diffusivity
β Coefficient of thermal expansion
γ Coefficient of anisotropy
δ Height of sublayer 1 relative to d
θ Dimensional temperature
� Nondimensional temperature
λ Heat capacity ratio
μ Dynamic viscosity
ξ Permeability ratio
σ Ratio of heat capacity ratios
φ Roll angle

Subscripts, Superscripts, and Other Symbols
1, 2 Denoting the sublayer
b Basic state
c Cold/critical
h Hot
i Sublayer i
x Value corresponding to the x-direction
y Value corresponding to the y-direction
z Value corresponding to the z-direction
′ Ordinary derivative with respect to z
˜ Disturbance quantity
ˆ Derivative with respect to k
¯ Derivative with respect to φ

1 Introduction

The great majority of published theoretical and experimental investigations on convective
instabilities in porous media has considered isotropic media. However, it is often the case
that porous media, especially those which arise in geothermally active zones, are not only
anisotropic, but layered.Many authors have considered the effect on the onset and subsequent
development of these naturally occurring properties, but the combination of the two has not
yet been considered.Our aimhere is to provide somefirst steps in this direction, and especially
to uncover new phenomena which arise only when both of these effects are present.

With regard to layering, there is now a modest presence in the literature of works which
have considered the onset of convection when the layer is heated from below. A very early
example is that of Donaldson (1962), who used a finite-difference method to compute the
nonlinear flow and temperature fields in a two-layer system, the lower layer of which was
impermeable (i.e. solid), but finitely conducting. Later, papers have studied the onset problem
in more detail. For example, Mojtabi and Rees (2011) undertook a comprehensive study of
the effect of conducting boundaries above and below the porous layer and their work showed
that the solid boundaries may be used in practice to mimic a very wide range of boundary
conditions for the porous layer itself when considered in isolation—this is a very useful
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practical result. Weakly nonlinear studies by Riahi (1983) and Rees and Mojtabi (2011) give
detailed criteria for whether the convection pattern which is selected takes the form of a roll
pattern or has a square planform.

Masuoka et al. (1979) derived criteria for the onset of convection in a porous system
with two sublayers, and they also computed two-dimensional nonlinear flows. Rana et al.
(1979) also modelled the Pahoa reservoir using a three-layer model of porous strata. A
comprehensive analysis of the onset of convection and the post-critical heat transfer were
then presented in two papers by (McKibbin and O’Sullivan 1980, 1981). This was extended
to include the effects of thin, highly impermeable ‘sheets’ (McKibbin and Tyvand 1983),
and thin highly permeable cracks (McKibbin and Tyvand 1983) within the layer. A three-
dimensional weakly nonlinear stability analysis of convection in a layered porous medium
was performed by Rees and Riley (1990). They found that, in some circumstances, three-
dimensional convection with the form of cells of square planform is sometimes favoured over
rolls. In some restricted ranges of parameter values, the neutral curve has a double minimum.

In many practical situations, the porous materials are anisotropic in their mechanical
and thermal properties. Anisotropy is generally a consequence of preferential orientation
or asymmetric geometry of grain or fibres. An important example is geological systems
with anisotropic sediments and rocks. Another example of such a medium is loft insulation
which usually has lower permeability across the insulating layer than it has in the perpen-
dicular directions. Convection in anisotropic porous media has attracted the interest of many
researchers over the last 40 years. In the pioneering works by Castinel and Combarnous
(1974) and Epherre (1975), it was shown that anisotropy in the mechanical and thermal prop-
erties affects the marginal stability condition as well as the preferred width of the convection
cells. On the other hand, Kvernvold and Tyvand (1979) showed that even three-dimensional
anisotropy does not lead to any new mathematical difficulties or essential new flow patterns
at convection onset compared with isotropy. This is true only as far as one of the principal
axes of the anisotropic medium is vertical. This requirement was maintained in almost all
former works in the field, see the review articles byMcKibbin (1984) and Storesletten (1998),
well as McKibbin (1986) and Nilsen and Storesletten (1990). The first papers, where none
of the principal axes is vertical, seem to be Tyvand and Storesletten (1991) and Storesletten
(1993). They considered a horizontal porous layer with anisotropy in the permeability or in
the diffusivity. This was sufficient to achieve qualitative new flow patterns with a tilted plane
of motion or tilted lateral cell walls. Other earlier papers considering onset of convection in
anisotropic porous media are: Trew and McKibbin (1994), Rees and Storesletten (1995) and
Rees et al. (2006), to mention a few, while recent research has gravitated towards determining
how the combination of anisotropy with other effects modifies onset criteria; see Hill and
Morad (2014) Gaikwad and Dhanraj (2016) and Raghunatha et al. (2018).

The configuration considered in the present paper combines anisotropy with layering, and
this appears to be the first time where these have been considered. Such a combination also
has competing mechanisms for deciding on the favoured orientation of the convection rolls
in a fairly obvious way. When the layer consists of two sublayers with different anisotropies,
then the individual sublayers may favour different roll orientations. However, such a system
could, in principle, be governed by 17 nondimensional parameters: five permeability ratios,
five diffusivity ratios, six rotation angles for the principle axes of the two permeability
tensors (assuming that the principle axes of the diffusivity tensors coincidewith the respective
permeability tensor) and the height of sublayer 1 relative to that of the layer. This unwieldy
generality shall be stripped down to having only two parameters in order to simplify the
analysis and the presentation of results, but this will nevertheless reveal a novel aspect to
the flow which arises from the simultaneous presence of anisotropy and layering. Thus,
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the principle axes for the permeability will coincide with coordinate axes, the diffusivity
is assumed to be isotropic and the two layers will have identical properties where the two
principal permeabilities in the horizontal directions are different. In addition, the principle
axes for sublayer 2 are obtained by rotating those for sublayer 1 by 90◦ about the vertical
axis. The two parameters which are retained are a permeability ratio, γ , and the relative depth
of sublayer 1, δ.

2 Governing Equations

We consider a horizontal fluid-saturated porous layer of uniform vertical thickness which is
heated from below and cooled from above. The layer consists of two anisotropic sublayers
not necessarily of the same thickness and not necessarily with the same principal axes. The
anisotropy is manifest in terms of the permeability of the sublayers but not in terms of the
thermal diffusivity. We choose the x and y axes to be horizontal and the z-axis to be vertical.
The lower sublayer is designated layer 1, and the upper sublayer is layer 2. The permeabilities
in the three coordinate directions of layer i are given by Ki,x , Ki,y , Ki,z where i = 1, 2.
Subject to the Oberbeck–Boussinesq approximation and on assuming that Darcy’s law is
valid, the governing equations in layer i may be written in the form,

∂ui
∂x

+ ∂vi

∂ y
+ ∂wi

∂z
= 0, (1)

ui = −Ki,x

μ

∂ pi
∂x

, (2)

vi = −Ki,y

μ

∂ pi
∂ y

, (3)

wi = −Ki,z

μ

[∂ pi
∂z

− ρ0gβ(Ti − Tc)
]
, (4)

λi
∂Ti
∂t

+ ui .∇Ti = α∇2Ti . (5)

In these equations, the coefficients take their usual meanings: p is the pressure, ρ the
density, μ the dynamic viscosity, g gravity, α thermal diffusivity, T the temperature. The
temperature of the lower and upper surfaces is Th and Tc, respectively, where Th > Tc. The
velocities in the x , y and z directions are given by u, v and w, respectively. The values λi are
the heat capacity ratios for the fluid relative to that of each saturated sublayer.

Aswe are considering three-dimensional flows, wemay eliminate all three velocities using
Eqs. 2 to 4. Therefore, we obtain the pair of governing equations,

Ki,x
∂2 pi
∂x2

+ Ki,y
∂2 pi
∂ y2

+ Ki,z
∂2 pi
∂z2

= ρ0gβKi,z
∂Ti,z
∂z

, (6)

λi
∂Ti
∂t

+ Ki,zρ0gβ

μ
(Ti − Tc)

∂Ti
∂z

− Ki,x

μ

∂ pi
∂x

∂Ti
∂x

−Ki,y

μ

∂ pi
∂ y

∂Ti
∂ y

− Ki,z

μ

∂ pi
∂z

∂Ti
∂z

= α∇2Ti . (7)

The boundary conditions at the lower surface are that the temperature is Th and that the
vertical velocity is zero; in terms of pressure and temperature, these become
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T1 = Th,
∂ p1
∂z

= ρ0gβ(Th − Tc) at z = 0, (8)

while the equivalent conditions on the upper surface are

T2 = Tc,
∂ p2
∂z

= 0 at z = d. (9)

The specification of the problem is completed by the conditions at the interface which is
located at z = δ d . Here, we require the continuity of temperature, heat flux, pressure and
vertical velocity, and therefore, the following four quantities

Ti ,
∂Ti
∂z

, pi , Ki,z

[∂ pi
∂z

− ρ0gβ(Ti − Tc)
]
, (10)

need to be continuous at the interface. We note that the continuity of the vertical velocity
and the temperature causes the heat flux condition to be identical to that of a conduction
condition.

Equations (6) and (7) and the boundary and interface conditions (8) to (10) may be
nondimensionalised using the physical properties of layer 1 using the following substitutions,

(x, y, z) = d(x, y, z), T = Tc + (Th − Tc)θ, p = μα

K1,z
p, t = λ1d2

α
t . (11)

On dropping the overbars, we obtain

ξi,x
∂2 pi
∂x2

+ ξi,y
∂2 pi
∂ y2

+ ξi,z
∂2 pi
∂z2

= ξi,z Ra
∂θi

∂z
, (12)

σi
∂θi

∂t
+ ξi,z Ra θi

∂θi

∂z
− ξi,x

∂ pi
∂x

∂θi

∂x
− ξi,y

∂ pi
∂ y

∂θi

∂ y
− ξi,z

∂ pi
∂z

∂θi

∂z
= ∇2θi , (13)

where the permeability ratios are given by

(ξi,x , ξi,y, ξi,z) = (Ki,x , Ki,y, Ki,z)/K1,z, (14)

and where

σi = λi/λ1. (15)

Therefore, we have the following fixed values,

ξ1,z = σ1 = 1. (16)

Equations 12 and 13 are to be solved subject to the following boundary and interface condi-
tions,

θ1 = 1,
∂ p1
∂z

= Ra on z = 0, (17)

θ1 = θ2,
∂θ1

∂z
= ∂θ2

∂z
, p1 = p2, ξ1,z

[∂ p1
∂z

− Ra θ1

]

= ξ2,z

[∂ p2
∂z

− Ra θ2

]
on z = δ, (18)

θ2 = 0,
∂ p2
∂z

= 0 on z = 1. (19)
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The basic conducting state is given by

p1,b = p0 − 1
2Ra (1 − z2), θ1,b = 1 − z, (0 ≤ z ≤ δ)

p2,b = p0 − 1
2Ra (1 − z2),

θ2,b = 1 − z, (δ ≤ z ≤ 1) (20)

where p0 is the pressure at the upper boundary, and where the subscript, b, denotes the basic
state. In Eqs. (12) and (13), the Rayleigh number is based upon the vertical permeability of
layer 1, and is, therefore,

Ra = ρ0gβ(Th − Tc)K1,zd

μα
. (21)

3 Linear Stability Analysis

The equations governing the evolution of small-amplitude disturbances to the basic conduct-
ing state are obtained by subtracting out the conducting state and by linearising the resulting
equations. Specifically, we set

pi = pi,b + p̃i , θi = θi,b + θ̃i , (22)

where i = 1, 2, and neglect all nonlinear terms in p̃i and θ̃i . In this manner, we obtain the
following disturbance equations

ξi,x
∂2 p̃i
∂x2

+ ξi,y
∂2 p̃i
∂ y2

+ ξi,z
∂2 p̃i
∂z2

= ξi,z Ra
∂θ̃i

∂z
. (23)

∇2θ̃i − ξi,z

[∂ p̃i
∂z

− Ra θ̃i

]
= σi

∂θ̃i

∂t
, (24)

The principle of the exchange of stabilities applies here, and therefore, the criterion for the
onset of convection corresponds to a zero exponential growth rate which is equivalent to
neglecting the time-derivative term in (24).

We may now introduce roll solutions using the following substitution,
(
p̃i
θ̃i

)
=

(
Pi (z)
�i (z)

)
exp

[
ik(x cosφ − y sin φ)

]
, (25)

into Eqs. (23) and (24) where φ is the angle between the roll axis and the y-axis in the
horizontal plane. Thus, φ = 0 corresponds to a roll with its axis pointing in the y-direction.
These equations then reduce to the ordinary differential eigenvalue form,

ξi,z P
′′
i − k2[ξi,x cos2 φ + ξi,y sin

2 φ]Pi − ξi,zRa�
′
i = 0, (26)

�′′
i − k2�i − ξi,z[P ′

i − Ra�i ] = 0, (27)

where the boundary and interface conditions are identical to those given in (17) to (19),
and where the primes denote ordinary derivatives with respect to z. We regard the Rayleigh
number as the eigenvalue, and it depends on the values of the five independent ξ -values,
the wavenumber k, the roll angle φ and the thickness of layer 1, δ. In general, the neutral
curve, i.e. the variation of Ra with k, exhibits a single well-defined minimum value which
is termed the critical Rayleigh number and is denoted by Rac. The corresponding value of
the wavenumber is denoted by kc. In some cases, such as those exemplified by the layered

123



The Onset of Convection in a Two-Layered Porous Medium with... 351

configurations ofMcKibbin andO’Sullivan (1980) andRees andRiley (1990), it is possible to
have a neutral curve which consists of two minima; given that their configurations consisted
of isotropic sublayers, we would expect by continuity that double minima are generally
possible for anisotropic sublayers. However, the simplification of the general problem which
was mentioned in the Introduction serves to eliminate that possibility in the present work.

Numerically, the most convenient manner in which critical Rayleigh number and
wavenumber might be determined is to solve Eqs. (26) and (27) together with the following
system,

ξi,z P̂
′′
i − k2[ξi,x cos2 φ + ξi,y sin

2 φ]P̂i − ξi,zRa �̂′
i = 2k[ξi,x cos2 φ + ξi,y sin

2 φ]Pi ,
(28)

�̂′′
i − k2�̂i − ξi,z[P̂ ′

i − Ra �̂i ] = 2k�i . (29)

This latter pair of equations was obtained by differentiating (26) and 27 with respect to k,
where P̂ and �̂ are the respective k-derivatives of P and �. We have set

∂Ra

∂k
= 0 (30)

because it is equivalent to the condition that the value of k corresponds to a minimum (or
maximum) in the neutral curve. Equations (26) to (29) form a double eigenvalue problem
with Ra and k as the eigenvalues; as far as we are aware, this type of extended system was
first used in Rees and Bassom (2000) in such contexts.

In the present configuration, the critical Rayleigh number also depends on the roll angle,
φ, and therefore, it is essential to minimise Rac with respect to φ. On defining P̄ and �̄ as
the respective φ-derivatives of P and �, the result of taking the φ-derivative of Eqs. (26) and
(27) is to yield the system,

ξi,z P̄
′′
i − k2[ξi,x cos2 φ + ξi,y sin

2 φ]P̄i − ξi,zRa �̄′
i = k2(ξi,y − ξi,x ) sin 2φ Pi , (31)

�̄′′
i − k2�̄i − ξi,z[P̄ ′

i − Ra �̄i ] = 0, (32)

where

∂Ra

∂φ
= 0 (33)

has been imposed. This triple eigenvalue problem has eigenvalues, Ra, k and φ.

4 Numerical Method

Equations (26) and (27) (termed System 1), the systems (26) to (30) (System 2) and the sys-
tems (26) to (33) (System 3) were each solved using the classical fourth-order Runge–Kutta
scheme embedded within a shooting method algorithm. For System 1, it proved convenient
to define the extra equation,

Ra′ = 0, (34)

in order to obtain a fifth-order system of first-order ODEs. The reason is straightforward:
Eqs. (26), 27 and the boundary conditions are homogeneous and the only manner in which an
initial value problem solver such as the Runge–Kutta method might find nonzero solutions
is to impose a normalisation condition such as

�′(0) = 1. (35)
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This brings the total number of boundary conditions to five, and therefore, the full system
may now be solved numerically. We note that any nonzero value of �′(0) may be used as
the computed value of Ra is independent of this choice.

For System 2, a similar idea was used and the equation

k′ = 0, (36)

supplemented the equations already quoted. The extra boundary condition needed was taken
to be

�̂′(0) = 0, (37)

although any value may be used. For System 3, we used

φ′ = 0 (38)

as the extra equation and

�̄′(0) = 0 (39)

as the extra boundary condition.
For each case, the codes were organised so that any of the parameters might be changed

slowly in order to determine how the critical Rayleigh number varies with the chosen param-
eter. We chose to use 100 intervals with 50 intervals in each of the ranges 0 ≤ z ≤ δ and
δ ≤ z ≤ 1, i.e. in each sublayer. Given the order of accuracy of the method, the computed
Rayleigh numbers were found to have more than five significant figures of accuracy when
compared with analytical solutions or published data for layered systems. For example, Rees
and Riley (1990), using an eigenfunction expansion technique, quotes the critical Rayleigh
number Rac = 6.917323× 4π2 for the isotropic layer with δ = 0.323889, kc = 1.540927π ,
ξ1 = 1 and ξ2 = 0.0657659 (a special case where the minimum of the neutral curve is
a quartic minimum rather than the usual parabolic minimum), and this critical value was
realised to the given number of figures.

We have restricted severely our choice of governing parameters in order not to overload
the paper with merely numerical information. Here, we shall concentrate on cases where the
two sublayers are identical in properties except that the principle axes of the permeability
tensor for the upper layer are rotated by 90◦ compared with those of the lower layer. Thus,
we take the following set of permeability ratios:

ξ1,x = γ, ξ1,y = 1, ξ1,z = 1,
ξ2,x = 1, ξ2,y = γ, ξ2,z = 1,

(40)

where γ will take various values.

5 Some Analytical Results and Axial Drift

We begin by noting that there is one instance when it is possible to write down relatively
easily the solution to the perturbation equations given in Eqs. (26) and (27). When the roll
angle is 45◦, the perturbation equations are identical in the two sublayers. In such an instance,
both reduce to the form

P ′′ − 1
2k

2(γ + 1)P − Ra�′ = 0, (41)

�′′ − k2� − P ′ + Ra� = 0. (42)
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The solution may then be written as,

P1 = π2 + k2 − Ra

π
cosπ z, �1 = sin π z, (43)

where

Ra =
(π2 + k2)

(
π2 + k2

2 (γ + 1)
)

k2
2 (γ + 1)

. (44)

The Rayleigh number is minimised when

k = kc =
( 2

γ + 1

)1/4
π, (45)

and hence,

Rac = 2π2

γ + 1

[
1 +

√
γ + 1

2

]
. (46)

The expressions given in Eqs. (45) and (46) reduce to π and 4π2 in the isotropic case, γ = 1.
In the extreme case when γ = 0, all the fluid which occupies sublayer 1 is constrained to

move within the y–z plane, given that the permeability in the x-direction is zero. Likewise,
in sublayer 2, fluid may only move in the x–z plane. This observation provides a mechanism
for the fluid to undergo an overall drift in the direction of the axis of a convective roll. This
may be demonstrated as follows. Given that we have taken the roll direction to be φ = 45◦,
we may use the solutions given in (43) to write down the three velocity components in the
form,

ui = ξi,x kc√
2

sin
( kc√

2
(x − y)

)
cosπ z

vi = −ξi,ykc√
2

sin
( kc√

2(x − y)

)
cosπ z

wi = π

√
γ + 1

2
cos

( kc√
2(x − y)

)
sin π z.

(47)

The fact that u and v are proportional to one another (which is true in general) means that
the direction of the horizontal component of the velocity of a fluid particle is determined
solely by the ratio, ξi,x/ξi,y , and the sign of cosπ z. Once the fluid particle passes through the
interface, then the direction of the horizontal component changes suddenly. This is illustrated
in Fig. 1 where the depiction corresponds to γ = 3 and δ = 0.5, and it shows a particle
which is moving along the top and bottom surfaces, as opposed to one within the interior
of the roll. Blue arrows indicate the particle travelling along the cold upper surface. When
it reaches the grey line, which is the roll boundary, it descends to the hot lower surface and
then travels along a red arrow. From the above, the particle describes a simple zigzag pattern
with the mean motion of the particle being in the direction of the roll axis. This means that
there is a fluid drift along that axis. However, this is not a mechanism for causing an overall
horizontal movement of fluid because the two neighbouring rolls are subject to an equal and
opposite drift. The situation is likely to be very considerably different were the fluid to be
contained within a cuboidal cavity, but with the same anisotropy and layering profiles.
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Fig. 1 Depicting the manner in which longitudinal drift takes place along the roll axes (for γ = 0.3 and
δ = 0.5). Red arrows depict the motion of fluid particles at z = 0, while blue arrows correspond to motion at
z = 1. The circles show where fluid ascends and black disks to where it descends. Thin grey lines depict the
edges of rolls, i.e. the loci where fluid motion is purely in the vertical direction

Figures 2 and 3 have been presented to show that the scenario painted in the above
paragraph does not represent the full range of behaviours of the movement of a fluid particle.
Figure 2 is designed to show that the speed of drift depends on how close the fluid particle
gets to the upper and lower surfaces. Particle paths have been determined numerically using
a simple fourth-order Runge–Kutta scheme to solve

(
∂x

∂t
,
∂ y

∂t
,
∂z

∂t

)
=

{
(u1, v1, w1) (z < δ),

(u2, v2, w2) (z > δ),
(48)

where u, v and w are given in Eq. (47). The initial conditions correspond to x and y being
located precisely equidistant between the cell boundaries, but with y = 0. The initial values
of z are indicated in the figure. In this figure, the sublayers have equal width, so δ = 0.5. For
each of the four values of z(0), two subfigures are displayed; the left-hand one shows how
x , y and z vary in time, while the one on the right displays the plan view.

When z(0) = 0.01, the particle spends most of its time close to either the upper or the
lower surface with a brief transition when it is either ascending or descending very close to a
vertical boundary of the roll; during this time, its horizontal velocity is small. The associated
plan view looks very much like Fig. 1, and the particle resides close to the corners of the
zigzag for a substantial period of time. As z(0) increases, the particle becomes more confined
to a region surrounding the central core of the roll. Initially, this means that the residence time
near the corners of the roll reduces, and this allows the particle to drift more rapidly along the
roll axis, although the time taken to execute one circuit about the axis decreases. Eventually,
as z(0) approaches the interface at δ = 0.5, the overall speed of movement decreases. In this
region, u and v, which are proportional to cosπ z, take small values, and this also has the
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Fig. 2 Depicting themotion of a fluid particle at onset with δ = 0.5. The left-hand frames show the variation of
x(t) (dashed), y(t) (dotted) and z(t) (continuous) with time with x(0) corresponding to the midcell, y(0) = 0
and z(0) as indicated. The right-hand frames show the plan view of the motion of the particle; c.f. Fig. 1
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Fig. 3 Depicting the motion of a fluid particle at onset with z(0) = 0.19. The left- and right-hand frames, the
values of x(0) and y(0) and the type of line follow the same conventions/values as in Fig. 2. The values of δ

are as shown
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effect of decreasing the drift velocity. Therefore, the drift velocity of a particle increases at
first as z(0) increases from zero, reaches a maximum, and then decreases towards zero when
z(0) = 0.5.

Figure 3 shows the analogous situation where z(0) = 0.19 has been chosen, but where δ

takes four different values. When δ = 0.1, the interface is below where the chosen particle
is closest to the lower boundary. Therefore, the particle will always reside in sublayer 2, and
its path will always be in exactly the same horizontal direction. This particle will not drift,
as may be seen in the right-hand subfigure. In the second case, δ = 0.2, the interface is
just above where the particle is closest to the lower surface. Therefore, it spends little time
in layer 1 where its direction of movement could be described as being ESE (East South
East). Very quickly, the particle enters layer 2 and switches direction to SSE. After a while,
it reverses direction, NNW, continuing to rise to its maximum height. Thereafter, it sinks,
reverses direction to SSE, and then briefly enters layer 1 once more, travelling in the ESE
direction. Thus, the particle executes most of a closed loop such as one would have in an
isotropic layer. As δ increases towards 0.5, the distance over which the particle passes in
opposite directions decreases until we obtain no reversal when δ = 0.

6 Critical Values

It is important to note that restricted set of parameters which we have chosen for this study
are such that the neutral curves will always have a single minimum value for all choices of
γ , δ and φ. Therefore, we shall present only those values which have been minimised over k.

Figures 4 and 5 show how Rac and kc vary with the roll angle for various choices of γ .
In addition, the two sublayers have the same depth, and therefore, δ = 0.5. In each case, the
vertical axes have been scaled with respect to the critical values for the isotropic single layer
(i.e. for γ = 1), namely 4π2 and π , respectively. When γ = 1, the sublayers are identical

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5
0 . 0

0 . 5

1 . 0

1 . 5

2 . 0

2 . 5

3 . 0

3 . 5
Rac/4π2

φ

γ = 10

γ = 0.1

γ = 0

Fig. 4 The variation with φ of the critical Rayleigh number, Rac, for the case δ = 0.5 where γ = 0 (dotted),
0.1, 0.2, 13 , 0.5, 1 (dashed), 2, 3, 5 and 10.
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Fig. 5 The variation with φ of the critical wavenumber, kc, for the case δ = 0.5 where γ = 0 (dotted), 0.1,
0.2, 13 , 0.5, 1 (dashed), 2, 3, 5 and 10

and isotropic, the stability problem reduces to that of the classical Darcy–Bénard problem,
and therefore, we see that Rac = 4π2 and kc = π independently of the roll angle, φ.

For other values of γ , the sublayers are anisotropic, and therefore, Rac varies with φ. We
present the curves for the range 0 ≤ φ ≤ 45◦ since the curves are even about both φ = 0◦
and φ = 45◦. It is readily seen that φ = 45◦ represents the smallest value of Rac for all values
of γ . In the lower sublayer, the x–z plane (i.e. φ = 0) is the preferred plane of motion given
the permeability tensor, while the y–z plane (φ = 90◦) is preferred in the upper layer. Our
results suggest that the compromise direction, φ = 45◦, is preferred within the composite
layer. Of course, φ = −45◦ also minimises the Rayleigh number, by symmetry.

When γ > 1, we obtain the familiar qualitative result that the critical Rayleigh number is
reduced compared with the isotropic case and that the critical wavenumber is also smaller.
Of interest is the extreme case where γ = 0. This case represents porous sublayers where
convection can only take place in the x–z plane in the lower layer and the y–z plane in
the upper sublayer. Clearly, then, a fluid particle will trace out a path along one convection
roll where its horizontal direction of movement alternates between the y-direction and the x-
direction, and it will therefore undertake a spiral-like drift along the roll, unlike what happens
in isotropic media where the particle paths form closed loops. It is to be noted that while drift
takes place in one direction along any chosen roll, the drift will be in the opposite direction
for the neighbouring rolls. Although we do not prove the point here, the drift of particles and
their two-dimensional motion in each sublayer also apply in general since the properties of
each sublayer are homogeneous.

Figures 4 and 5 represent a symmetrical case where the sublayers have equal depth. We
now relax that assumption by allowing δ to vary, and we illustrate the effect of that variation
for the case γ = 2, which is representative. Figure 6 shows how Rac varies with φ for a
variety of values of δ. Now that the layer is no longer symmetric, it is essential to allow φ

to vary between 0◦ and 90◦. We present curves for which δ ≥ 0.5 and for which, therefore,
the anisotropy of layer 1 is increasingly dominant as δ increases. Indeed, this increasing
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Fig. 6 The variation with φ of the critical Rayleigh number, Rac, when γ = 2. The curves correspond to
values of δ lying between 0.5 and 0.8 in steps of 0.01. The corresponding curves for δ lying between 0.5 and
0.2 are given by reflection in the line, φ = 45◦

dominance is seen easily by virtue of the fact that the value of φ at which Rac is minimised
reduces towards φ = 0◦ as δ increases. We find that the minimising value of φ reaches 0◦
when δ � 0.770308 (obtained using an extended version of System 2 where it is insisted that
∂2Ra/∂φ2 = 0). By symmetry, then, we can predict that the critical value of φ lies between
0◦ and 90◦ when 0.229692 < δ < 0.770308.

Concentrating now on the these values of φ which minimise the critical value of Rac,
Figure 7 shows how φc varies with δ for a variety of values of γ . We see that the transition
range for φc becomes smaller as γ approaches unity, for when γ = 1 all roll directions
are equally likely. We find numerically that when γ = 1.001, then φ lies between 0◦ and
90◦ for 0.460522 < δ < 0.539478. Figure 7 shows the situation for positive values of γ ,
but Figure 8 summarises the full behaviour of the stability characteristics by displaying the
regions in γ –δ space where φc takes the values 0◦ or 90◦ or else is transitional. It is interesting
to note that γ = 1 marks the boundary where φc changes suddenly from 0◦ to 90◦ or vice
versa. The reason for such a changemay be traced to the preferred roll orientation for uniform
anisotropic layers. Thus, when γ > 1, and when δ = 1, sublayer 1 occupies the whole layer
and φc = 0 is the preferred roll orientation. At the opposite extreme where δ = 0, sublayer 2
occupies the whole layer, and then, φc = 90◦. In both cases, there is a range of values of
δ (i.e. greater than 0 and less than 1, respectively) within which the preferred roll direction
does not change, but there is also an intermediate range of values of δ where the preferred roll
direction varies smoothly from φc = 90◦ to φc = 0◦ as δ increases. Precisely, the opposite
behaviour in terms of φc is found when γ < 1. We also note that φc = 45◦ for all values of
γ when δ = 0.5, i.e. the sublayers have equal heights.
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Fig. 7 The variation with δ of the critical roll angle, φc, for γ = 0.5 (dashed), 1.01, 1.1, 1.5, 2, 3, 4 and 10

7 Conclusions

We have studied the onset of convection in a porous layer consisting of two sublayers with
anisotropic permeability. The principal axes for both sublayers lie in the three coordinate
directions of which one is vertical. The permeability coefficients in the x , y, and z directions
of the lower layer are (γ, 1, 1) and of the upper layer are (1, γ, 1). This means that the
sublayers are identical in terms of their anisotropy, but the principal axes are rotated through
90◦ relative to one other. The thicknesses are different in general, where d1 and d2 are the
thicknesses of the lower and upper layers, respectively, and δ = d1/(d1 +d2) is the thickness
ratio.

The following is a summary of our conclusions.

• When the thicknesses are identical (δ = 0.5), the preferred roll at convection onset
occurs at an angle 45◦ to the horizontal principal axes. This means that the critical
Rayleigh number Rac obtains its smallest value at this angle; the resulting values of Rac
are illustrated in Fig. 4, while the corresponding wavenumbers are shown in Fig. 5.

• When the thicknesses of the sublayers are different (δ 	= 0.5 ), the variation in the value
of φ at which Rac is minimised is not straightforward. This is illustrated in Fig. 6 where
the variation with φ of Rac (minimised with respect to the wavenumber only) is shown
for values of δ varying between 0.5 and 0.8 and for γ = 2. For this value of γ , the critical
roll orientation is 90◦ when 0 ≤ δ ≤ 0.229692, is 0◦ when 0.770308 ≤ δ ≤ 1, and
makes its transition between these two extremes in the intermediate range of values of δ.
The transitions for this value of γ and others are depicted in Fig. 7.

• Figure 8 summarises the full behaviour of the stability characteristics by displaying
the region in γ –δ space where φc takes the values 0◦ or 90◦, or else is transitional. It
is interesting to note that γ = 1, i.e. the isotropic case, marks the boundary where φc

changes suddenly from 0◦ to 90◦ or vice versa.
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Fig. 8 Showing the regions in (γ, δ)-space where the favoured roll direction is 0◦, 90◦ or else it is in transition
between these two extremes. Note that φc = 45◦ along the line δ = 0.5 (not shown)

• It has also been found that the projection of the particle paths onto the x–y plane yields
straight lines within each sublayer with a discontinuous change in direction at the inter-
face. In addition, we have determined that individual particles may exhibit a mean drift
along the roll axes, although there is a zero mean flow in general; this local drift, which
is caused by the combination of anisotropy and layering, is a novel phenomenon.

Finally, it is important to consider what the consequences would be of lifting some of the
restrictions on the layer which we have imposed. Specifically, we could retain the fact that
the sublayers are identical in their properties, but they could each be allowed to have three
different principal permeabilities, three different principal diffusivities, and that the rotation
angle (about the vertical axis) between the sublayers may be different from 90◦. In such a
case, we believe that the qualitative nature of the stability problem described here would be
retained, given that the preferred roll direction for the porous medium which forms the upper
sublayer will be different from that in the lower sublayer. Thus, the sole difference would be
quantitative in nature given that this case will still display the drifting phenomenon. Further
lifting of the restrictions would then involve the sublayers being completely different in their
properties, and while exactly the same arguments still apply it then becomes possible to have
neutral curves with multiple minima; see McKibbin and O’Sullivan (1980) and Rees and
Riley (1990).

OpenAccess This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/),which permits unrestricted use, distribution, and repro-
duction in any medium, provided you give appropriate credit to the original author(s) and the source, provide
a link to the Creative Commons license, and indicate if changes were made.
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