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Abstract	
The	 novelty	 of	 my	 thesis	 is	 to	 add	 to	 the	 academic	 debate	 introduced	 by	 DeMiguel,	

Garlappi,	 and	 Uppal	 (2009)	 an	 attempt	 to	 answer	 the	 question	 whether	 optimized	

portfolio	 strategies	 consistently	 outperform	 the	 naïve-diversification	 strategy.	 	 Earlier	

academic	 studies	 that	 have	 tried	 to	 defend	 the	 optimized	portfolios	 strategies	 against	

the	naïve-diversification	strategy	are	Kritzman,	Page	&	Turkington	(2010)	and	C.Kirby	

and	B.	 Ostdiek	 (2010).	 But	 there	 are	 also	 some	weaknesses	 by	 these	 studies	 that	 the	

datasets	provided	by	Kenneth	French	and	the	performance	is	measured	by	means	of	the	

Sharpe	 Ratio.	 The	 study	 by	 Zakamulin	 (2017)	 aims	 to	 provide	 a	 cautionary	 note	

regarding	 the	 use	 of	 Kenneth	 French	 datasets	 in	 portfolio	 optimization,	 without	

controlling	 whether	 the	 superior	 performance	 appears	 due	 to	 better	 mean-variance	

efficiency	or	due	to	exposures	to	established	factor	premiums.	Also,	almost	all	datasets	

in	 the	 Kenneth	 French	 online	 data	 library	 contains	 the	 low	 volatility	 anomaly.	 In	 this	

thesis	I	want	to	do	a	research	and	find	out	the	answer	of	the	thesis	by	using	16	datasets	

provided	by	Kenneth	French	(2018),	to	find	out	if	the	optimized	portfolio	strategies	can	

consistently	 outperform	 the	 naïve-diversification	 strategy.	 Optimized	 strategies	 are	

simulated	 over	 a	 period	 from	 January	 1963	 to	 December	 2018.	 The	 performance	 is	

measured	by	means	of	Sharpe	ratio	and	Alpha,	the	Capital	Asset	Pricing	Model	and	the	

Fama-French	 3-factor	 model.	 I	 will	 focus	 especially	 on	 the	 Fama-French	 3-factor.	

Additionally	to	the	naïve-benchmark	strategy,	this	thesis	covers	a	study	of	4	optimized	

strategies.	The	results	 show	that	 the	optimized	portfolio	strategies	cannot	outperform	

the	 naïve-diversification,	 either	 can	 the	 naïve-diversification	 beat	 the	 optimized	

portfolio	 strategies.	 By	 the	 95%	 significance	we	 cannot	 reject	 the	 hypothesis	 and	 the	

hypothesis	will	be	equal	like	the	paper	of	DeMiguel	et	al	(2009).	But	with	that	choosing	a	

specific	optimization	portfolio	 strategy	does	not	guarantee	a	poorly	performance	 than	

the	Naïve-diversification	strategy	when	the	set	of	portfolios	are	chosen	arbitrarily.	
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1	Introduction	
	

The	 Modern	 Portfolio	 Theory	 (MPT)	 was	 proposed	 by	 Harry	 Markowitz	 during	 the	

decade	of	1960´s,	 the	MPT	was	further	extended	to	the	Capital	Asset	Pricing	Model	by	

William	Sharpe	and	others.	 Subsequently,	 even	 though	 the	early	empirical	 tests	of	 the	

CAPM	cast	doubt	on	the	validity	of	this	theory,	both	the	MPT	and	CAPM	were	accepted	

by	 academics	 during	 1970s.	 Only	 by	 the	 end	 of	 1990s	 some	 academics	 raised	 the	

concerns	 that	 the	popular	 investment	advice	 contradicts	 the	MPT	because	 in	 the	MPT	

the	composition	of	the	optimal	portfolio	does	not	depend	on	the	invertors	risk	aversion.	

Also	in	MPT	the	composition	of	the	optimal	portfolio	does	not	depend	on	the	investment	

horizon	length	(Time	Diversification	Puzzle).		

	

Later,	DeMiguel	et	al.	(2009)	and	Duchin	and	Levy	(2009),	raised	the	concerns	that	there	

is	 no	 scientific	 evidence	 that	 optimized	 (in	 accordance	 with	 the	 MPT)	 portfolios	

outperform	the	naïve	diversification	strategy.		There	are	lots	of	academic	studies	related	

to	 this	 topic.	 I	 will	 mention	 these	 in	 literature	 review	 like	 Kritzman,	 Page	 and	

Turkington	 (2010),	 Tu	 and	 Zhou	 (2011),	 Kirby	 and	Ostdiek	 (2012),	 and	many	 others.	

Kritzman	 et	 al	 (2010)	 argue	 that	 optimized	 portfolios	 (mean-variance	 and	minimum-

variance)	 are	 better	 than	 the	 naïve	 portfolio.	 However,	 Kritzman	 et	 al	 (2010)	 do	 not	

present	 any	 scientific	 evidence.	 They	 compute	 the	 Sharpe	 ratios,	 but	 do	 not	 test	 the	

hypothesis	of	equal	Sharpe	ratios.	When	it	comes	to	deficiencies	of	studies	that	defend	

the	 optimization	 strategies,	 it	 is	 that	 all	 of	 them	have	 some	 common.	 All	 the	 datasets	

from	Kenneth	French	contains	low-volatility.		

	

The	 problem	 for	 the	 thesis	 is	 optimized	 portfolios	 can	 consistently	 beat	 the	 naïve	

diversification	strategy.	The	problem	is	related	to	the	academic	debate	initiated	by	the	

study	by	DeMiguel,	Garlappi,	 and	Uppal	 (2009).	Kenneth	French	provides	 the	data	 for	

the	 thesis.	 All	 datasets	 represent	 value-weighted	 portfolios	 formed	 using	 different	

criteria.	 In	 this	 thesis	 I	want	 to	do	a	research	and	 find	out	 the	answer	of	 the	thesis	by	

using	 16	 datasets	 provided	 by	 Kenneth	 French	 to	 find	 out	 if	 the	 optimized	 portfolio	

strategies	 can	 consistently	 outperform	 the	 naïve-diversification	 strategy,	 even	 when	

low-volatility	are	in	all	datasets.		
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Almost	all	of	the	datasets	have	return	on	10	stock	portfolios,	and	only	one	with	returns	

on	25	stock	portfolios.	The	data	 for	all	datasets	is	at	a	monthly	 frequency.	As	the	start	

date	 use	 January	 1963	 and	 end	 at	 December	 2018.	 	 In	 addition	 to	 the	 naïve	

diversification	 strategy,	 the	 following	 of	 optimized	 portfolios	 are	 minimum-variance,	

maximum-diversification	and	 risk	parity.	Figures	 that	are	explained	 in	 the	 thesis	have	

been	placed	in	the	appendix	out	of	respect	to	the	text	space	and	flow.		

	

The	methodology	of	out-of-Sample	testing	is	where	I	am	using	5-year	rolling	window	to	

estimate	 the	 variance-covariance	matrix	 and	 the	 vector	 of	 expected	 return.	 Then	 the	

composition	 of	 the	 optimized	 portfolios	 each	 month	 is	 rebalanced.	 There	 are	 no	

transaction	costs.		

	

The	 outcome	 of	 the	 empirical	 study	 contains	 the	 out-of-sample	 Sharpe	 Ratios,	 alpha	

CAPM	and	3-factor	Fama-French	of	each	portfolio	as	well	as	the	p-values	of	the	tests	of	

Sharpe	Ratio,	alpha	CAPM	and	3-factor	Fama-French.	This	problem	is	of	interest	because	

I	wanted	to	find	out	if	any	datasets	could	reach	to	beat	the	naïve	diversification	with	the	

optimized	 portfolios,	 by	 picking	 more	 and	 different	 datasets	 from	 earlier	 research,	

especially	with	the	Fama-French	3-factor	model.	Also,	to	test	with	the	portfolios	strategy	

that	I	just	mentioned.				

	

In	 Modern	 Portfolio	 Theory	 (MTP)	 managing	 when	 trying	 to	 calculate	 the	 correct	

expected	 return	 on	 a	 portfolio,	 it	 is	 essential	 that	 the	optimal	 volatility	 return	will	 be	

calculated	 correctly	 (Markowitz	 [1952]).	 	 The	 Capital	 Asset	 Pricing	Model	 (CAPM)	 by	

Sharpe	(1964),	and	others,	contributed	to	the	modern	portfolio	theory	and	built	further	

on	 the	 assumption	 that	 the	 individual	 investor´s	 desire	 and	preference	 for	 a	 portfolio	

can	be	explained	by	a	utility	function	of	the	two	parameters,	expected	return	and	risk.		

	

By	 using	 16	 datasets	 all	 provided	 by	 Kenneth	 French	 and	 three	 different	 optimized	

strategies,	 I	 did	 research	 into	 this	 interesting	 topic	 by	 testing	 for	 the	 equality	 of	

performance	of	the	optimized	strategies	and	naïve	rule	using	the	Sharpe	Ratio	and	also	

CAPM	alpha	and	Fama-French	3	factor-model.	My	goal	is	to	find	if	these	16	datasets	can	

beat	 the	 naïve	 diversification	 strategy	 by	 the	 optimized	 strategies,	 and	 if	 there	 is	 any	
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results	and	conclusion	instead	of	the	papers	from	earlier	research.	The	biggest	goal	is	to	

find	if	there	are	some	different	result	with	Fama-French	3	factor	model.			

	

The	novelty	of	my	thesis	is	structured	as	follows.	I	will	start	with	the	literature	review	

where	I	will	tell	about	the	Modern	Portfolio	Theory	(MTP)	and	some	others	research	on	

the	 topic.	 Then	 I	will	 provide	 the	 descriptive	 statistics	 for	 the	 data	 that	 are	 used,	 the	

methodology	 following	 the	 strategies	 and	 then	 the	 empirical	 results	 and	 finally	

discussion	 of	 the	 assumed	 results	 and	 conclusion.	 The	 literature	 review	 is	 to	 give	 a	

background	 to	 the	 research	 and	 to	 defend	 the	 paper	 as	 contribute	 to	 the	 debate.	 The	

section	of	data	describes	and	presents	the	datasets	that	I	have	chosen	to	download	and	

used	in	the	research	of	the	paper.	The	methodology	has	the	different	optimized	portfolio	

strategies,	 that	are	briefly	derived	and	referenced	 to	relevant	 literature.	The	empirical	

results	there	are	tables	of	the	tests	that	are	presented	and	analyzed.	Some	of	the	figures	

that	come	from	the	empirical	results	have	been	placed	in	the	appendix,	because	of	the	

space	in	the	paper.	Then,	the	last	section	I	will	give	a	discussion	of	the	findings	and	the	

research,	with	a	conclusion.	

	

Further,	 I	 can	 conclude	 that	 the	 optimized	 strategies	 either	 outperform	 naïve	

diversification	 frequently	 or	 consistently	 for	 the	 data	 at	 hand	 in	 the	 period	 that	 is	

chosen,	and	the	other	way	around.		

	

The	returns	of	the	strategies	are	constructed	using	the	datasets	and	the	methodology.	As	

follow,	 the	 estimated	 measures	 of	 performance	 are	 presented	 and	 analyzed.	 The	

findings	of	the	empirical	result	and	the	approach	of	the	research	are	later	discussed.	

The	cumulative	returns	of	the	strategies	of	the	dataset	are	represented	in	time	series	in	

the	figures.	
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2	Literature	review	
	

2.1	Modern	portfolio	theory	and	capital	asset	pricing	theory		
MTP.	In	this	chapter	of	the	thesis	I	will	describe	some	research	studies	that	previously	

has	 been	 completed	 on	 related	 topics	 that	 I	 cover	 in	 this	 thesis.	 Many	 studies	 claim	

defend	the	value	of	portfolio	optimization	since	the	publication	of	the	paper	by	DeMiguel	

et	al.	 (2009).	 	But	 first	we	can	take	a	 look	back	to	the	theoretical	 framework	that	past	

into	 the	 history	 of	 the	 Modern	 Portfolio	 Theory	 (MTP),	 to	 get	 it	 from	 a	 historical	

perspective.	 It	 starts	 with	 Markowitz	 (1952),	 where	 he	 wrote	 “Portfolio	 Selection”,	

introduced	as	fundamental	concepts	of	MTP.	

	

CAPM.	The	Sharpe	Ratio	was	derived	in	1966	by	William	Sharpe,	where	he	introduced	

the	performance	in	“Mutual	Fund	Performance”	(Sharpe,	1966,	p.123)	and	has	been	one	

of	the	most	referenced	risk/return	measures	used	in	finance,	and	this	popularity	can	be	

attributed	 to	 its	 simplicity.	 Some	 years	 earlier	 Sharpe	 (1964)	 formed	 on	 MTP	 with	

“Capital	Asset	Prices:	A	theory	of	market	equilibrium	under	conditions	of	risk”	where	he	

introduced	 an	 important	 concept	 for	 that	 later,	 and	 with	 others	 (Treynor	 (1961),	

Lintner	 (1965)	 and	 Mossin	 (1966)),	 that	 creates	 what	 is	 known	 as	 the	 Capital	 Asset	

Pricing	Model	(CAPM).	The	CAPM	have	a	relationship	with	Jensen´s	Alpha,	which	was	a	

performance	introduced	by	M.	Jensen.	The	CAPM	relationship	uses	to	estimate	abnormal	

returns	(Jensen,	1968,	p.394).	 	W.	Sharpe	also	mentioned	this	in	his	model	a	few	years	

earlier	(Sharpe,	1963,	p.283).	

	

2.2	Anomalies	within	CAPM	
The	low-volatility	portfolios	and	the	minimum-variance	portfolio	are	often	essential	 in	

these	 studies,	 and	 therefor	 interesting	 for	 this	 thesis.	 Low-volatility	 strategies	 are	

portfolios	 of	 less	 risky	 assets,	 with	 the	 function	 of	 lowering	 the	 portfolios	 volatility.	

Based	 on	 traditional	 assumptions	 about	 the	 risk-reward	 connection,	 such	 strategies	

would	 expect	 to	 deliver	 lower	 risk-adjusted	 returns.	 This	 is	 based	when	 taking	more	

risk,	one	would	expect	to	be	compensated	by	earning	higher	return.	There	is	expected	to	

hold	 for	another	 important	 factor	 in	 low-volatility	 investing,	which	 is	 low-beta.	This	 is	

according	 to	 CAPM,	 portfolios	with	 high	 beta	 that	 have	 higher	 expected	 returns	 than	
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portfolios	with	low	beta.	By	testing		the	low-beta	strategies	out-of-sample,	they	find	such	

portfolios	 frequently	 deliver	 equal	 or	 better	 risk-adjusted	 returns	 than	 high-beta	

strategies.		

	

The	prediction	of	the	risk-award	relationship	and	the	debate	that	concerning	the	CAPM	

is	not	new.	In	the	studies	of	Black,	Jensen	and	Scholes	(1972)	they	criticized	the	CAPM,	

where	 they	 discovered	 that	 low-beta	 stocks	 deliver	 better	 risk-adjusted	 returns	 than	

high-beta	stocks.	In	more	recent	times,	the	topic	of	low-volatility	strategies	has	become	

more	regularly	mentioned	and	several	papers	got	the	same	conclusions.		

	

The	 literature	proposes	some	different	explanations	as	 for	why	the	minimum-variance	

portfolio	outperforms	the	market.	One	has	to	implement	factor	models	in	an	attempt	to	

explain	 the	 returns	 by	 their	 exposure	 to	 different	 sources	 of	 risk.	 	 Blitz	 and	 van	Vliet	

(2007)	 found	that	 it	was	still	significant	alpha	present	 in	their	 low-volatility	portfolios	

after	 controlling	 for	 size,	 value	 and	 momentum	 effects.	 They	 also	 concluded	 that	

regression	analysis	with	classical	risk	factors	could	not	explain	the	volatility	effect	in	full	

and	that	low-volatility	stocks	had	low	betas.		

	

A	recently	popularized	 low-volatility	asset-allocation	that	mentioning	 is	 the	risk	parity	

strategy.	 There	 are	 several	 approaches	 to	 constructing	 a	 risk-parity	 portfolio,	 the	

general	objective	is	to	weight	each	asset	 in	proportion	to	their	risk	so	that	every	asset	

will	 have	 an	 equal	 risk	 contribution	 to	 the	 total	 risk	 of	 the	 portfolio.	 The	 portfolio	

overweighs	 less	 volatile	 assets	 and	 underweights	 assets	 with	 higher	 volatility.	 An	

advantage	of	the	risk-parity	portfolio,	similar	to	that	of	the	minimum-variance	portfolio,	

is	that	it	only	requires	the	covariance	matrix	in	its	construction.		

	

Chow,	 Hsu,	 Kuo	 and	 Li	 (2013)	 provide	 a	 comprehensive	 survey	 of	 low-volatility	

strategies.	The	paper	points	out	that	since	global	financial	crisis,	low	volatility	portfolios	

based	 on	 U.S	 assets	 have	 outperformed	 the	 market	 by	 delivering	 higher	 returns	 and	

Sharpe	 Ratios,	 with	 only	 two/thirds	 the	 volatility	 risk.	 They	 also	 found	 that	 low-

volatility	 portfolios	 generally	 deliver	 superior	 returns	 in	 the	 long	 term	 across	 several	

countries.	The	different	low-volatility	strategies,	they	do	not	find	that	one	construction	

method	is	better	than	another	from	a	return	perspective.		
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2.3	Research	on	the	performance	of	optimized	portfolios		
The	 topic	 of	 naïve	diversification	being	 able	 to	 consistently	 outperform	 the	optimized	

strategies	 has	 been	 a	 discussion	 in	 modern	 time,	 where	 the	 paper	 considered	 by	 V.	

DeMiguel,	 L.	 Garlappi	 and	 R.	 Uppal	 have	 found	 that	 none	 of	 the	 optimized	 portfolio	

strategies	 consistently	 perform	 out-of-sample	 in	 standings	 of	 Sharpe	 Ratio	 related	 to	

naïve-diversification.	Further,	a	paper	by	R.	Duchin	and	H.	Levy	(2009)	concluded	that	

naïve	diversification,	while	having	similar	risk	as	measured	by	standard	deviation	with	

the	mean-variance	optimized	strategy,	had	a	greater	average	expected	return	when	the	

assets	in	the	portfolio	was	small.		

	

Some	academic	studies	backing	the	idea	of	optimized	portfolio	strategies	being	able	to	

consistently	outperform	the	naïve	diversification	as	well.	In	a	study	by	Turkington,	Page	

and	Kritzman	the	confidence	that	naïve	diversification	may	be	superior	to	optimization,	

where	DeMiguel	 et.	 al.	 did	not	 claim	 this,	was	 rejecting	 from	 improbable	 assumptions	

and	 presenting	 the	 opinion	 that	 optimized	 portfolio	 strategies	 outperform	 the	 naïve	

rule.	 	 (Kritzman,	 Page	 &	 Turkingston,	 2010,	 p.	 37).	 Further,	 J.Tu	 and	 G.	 Zhou	 (2011)	

recommended	 a	 combination	 of	 the	 naïve	 diversification	 rule	 and	 one	 of	 the	 four	

sophisticated	strategies.	Most	of	the	cases	they	outperform	the	naïve	diversification,	but	

they	 also	 found	 a	 combination	with	 the	 sophisticated	 strategies.	 Then,	 C.Kirby	 and	 B.	

Ostdiek	 (2012)	 introduce	 two	optimization	strategies:	volatility	 timing	and	reward-to-

risk	 timing.	 And	 both	 the	 strategies	 outperform	 the	 naïve	 diversification,	 even	 when	

there	were	high	transaction	costs.	

	

Mostly	of	these	academic	studies	we	can	see,	they	tried	to	defend	the	optimized	portfolio	

that	 can	 beat	 the	 naïve-diversification	 strategy.	 The	weakness	 to	 these	 studies	 is	 that	

different	 portfolio	 optimization	 methods	 are	 implemented,	 using	 the	 datasets	

generously	provided	by	Kenneth	French	and	the	performance	is	measured	by	means	of	

the	Sharpe	Ratio.	Zakamulin	(2017)	aims	to	provide	a	cautionary	note	regarding	to	the	

use	 of	 Kenneth	 French	 datasets	 in	 portfolio	 optimization	without	 controlling	whether	

the	 superior	 performance	 appears,	 due	 to	 better	 mean-variance	 efficiency	 or	 due	 to	

exposures	 to	 established	 factor	 premiums.	 And	 the	 low-volatility	 effect	 is	 present	 in	

virtually	all	datasets	in	the	Kenneth	French	online	data	library.	Further,	when	there	are	

used	a	few	simple	portfolio	optimization	models	that	are	said	to	outperform	the	naïve-



	 14	

diversification,	 it	 shows	 that	 these	 portfolios	 are	 tilted	 towards	 assets	 with	 lowest	

volatilities,	and	when	the	 low-volatility	effect	have	been	controlled,	 there	 is	absolutely	

no	evidence	of	superior	performance.		

	

3	DATA	
	

The	 data	 used	 in	 the	 research	 are	 16	 arbitrary	 chosen	 datasets	 provided	 by	 Kenneth	

French	(2018)	and	are	listed	in	Table	1.	They	have	constructed	the	first	dataset	by	get	

each	stock	from	NYSE,	AMEX	and	NASDAQ	into	book-to-market	portfolios.	The	datasets	

represent	value-weighted	portfolios	formed	using	deciles	of	the	variables	in	the	table.	

	

The	datasets	originally	beginning	in	July	1927	with	exception	of	some	dataset	 like	E/P	

and	CFP	 that	starts	 in	 July	1951.	But	 the	starting	period	 in	 this	 thesis	 is	 January	1963	

excluding	a	5-year	in	sample.	This	is	called	training	period	prior	to	this.	This	is	to	show	

the	understanding	of	the	out-of-sample	or	testing	period.	The	frequency	in	the	datasets	

is	monthly	rate	of	returns	from	July	1963	to	December	2018,	for	a	total	of	672	monthly	

observations.		In	addition,	the	Fama-French	factors	provide	the	risk-free	rate	of	return,	

the	market	premium	rate	of	return	and	two	other	market	factors	that	will	be	presented	

in	the	methodology.	In	the	robustness	tests,	we	also	consider	the	set	of	portfolios	from	

the	Fama-French	3-factor	model.	

	

Table	 1	 shows	 the	 name	 and	 number	 of	 portfolios	 for	 all	 the	 datasets.	 For	 all	 these	

datasets	there	are	one	more	dataset	containing	the	Fama-French	factors	that	was	used.	

There	is	also	a	table	of	the	summary	statistics	for	the	risk-free	rate	in	the	testing	period	

that	are	handed	in	appendix.	This	was	to	extract	the	risk-free	rate	to	compute	the	excess	

return,	as	a	restriction	in	one	of	the	strategies	and	to	perform	the	equality	of	alphas	test.	
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3.1	Data	

Table	1:	Kenneth	French	datasets	
	

#	 Dataset	 No.	

	 	 	

1	 Book-to-market	 10	

2	 Size	 10	

3	 EP	 10	

4	 Industry	 10	

5	 Size	and	BM	 25	

6	 Investment	 10	

7	 Momentum	 10	

8	 Profit	 10	

9	 Accruals	 10	

10	 Cashflow	Price	 10	

11	 Dividend	Yield	 10	

12	 Short	Term	Reversal	 10	

13	 Long	Term	Reversal	 10	

14	 Market	Beta	 10	

15	 Net	Share	Issues	 10	

16	 Residual	Variance	 10	

	

#	denotes	the	dataset	number,	whereas	No.		denotes	the	number	of	portfolios	in	each	

dataset.	
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4	METHODOLOGY	
In	 this	 section	 the	 techniques	 that	 are	 implemented	 to	 relevant	 portfolios	 will	 be	

presented.	The	CAPM	and	Fama/French	3	 factor-model	will	 be	presented,	 to	 estimate	

alpha.	 The	 statistical	 software	 R	 is	 the	 source	 that	 is	 used	 for	 all	 estimation	 and	

computational	 resolutions.	 The	 resolutions	 for	 R	 code	 will	 be	 in	 the	 appendix.		

	

4.1	Strategies	
This	 thesis	 applies	 five	 portfolio	 optimization	 strategies.	 All	 portfolio	 optimization	

strategies	 have	 the	 advantage	 of	 utilizing	 information	 of	 the	 parameters	 of	 portfolio	

returns.	

Table	2:	List	of	strategies	used	in	this	thesis.	
	

Strategy	 	 	 	 Abbreviation	

1	 Naïve-diversification	 	 Naïve.div.	

2	 Minimum-variance	 	 	 Min.-var	

3		 Maximum-diversification	 	 Max.-div.	

4	 Risk-parity	 	 	 	 R.port	

4.1.1	Naïve-diversification		
The	 naive-diversification	 strategy	 is	 independent	 of	 the	 statistical	 properties	 of	

historical	 returns	 and	 is	 completely	 dependent	 on	 the	 number	 of	 assets.	 The	 Naïve-

diversification	strategy	is	often	credited	to	the	Babylonian	Talmud,	where	it	was	stated	

that	one´s	money	should	always	be	equally	divided	into	three;	land,	merchandise	and	for	

keeping	 ready	 at	 hand,	 which	 can	 be	 interpreted	 as	 a	 Naïve-diversification	 of	 three	

assets.	The	weights	of	assets	in	the	Naïve-diversification	strategy	are	given	by	the	

	

	 	 	 	 	 	 !!! 
!
!  > 0 		 	 	 	 	 (1)	

Where	N	is	the	total	number	assets.	

	

	

	



	 17	

4.1.2	Minimum-variance	portfolio	
Traditional	 portfolio	 construction	 depends	 on	 estimates	 of	 future	 returns.	 The	

estimations	 are	 not	 very	 precise	 and	 exceptionally	 to	 estimation	 error,	which	 in	 turn	

leads	 to	 suboptimal	 performance.	When	we	 hypothesis	 a	minimum	variance	 portfolio	

we	 only	 need	 the	 covariance	 between	 historical	 returns.	 This	 reduces	 the	 risk	 as	 the	

covariance	matrix	 can	be	estimated	more	precisely	 (Kempf	and	Memmel	 (2002)).	The	

concept	 of	 minimum	 variance	 dates	 back	 to	 the	 effort	 of	 Markowitz	 (1952),	 which	

shaped	modern	portfolio	theory,	as	we	know	it.	

	

By	 the	 fact	 that	 the	 variance-covariance	 matrix,	Σ,	of	 stock	 returns	 can	 be	 estimated	
much	 more	 precisely	 than	 the	 mean	 returns,	 Clarke,	 de	 Silva,	 and	 Thorley	 (2006)	

proposed	to	implement	the	minimum-variance	portfolio	(the	goal	is	to	minimize	the	risk	

of	 the	 diversification).	 It	 turns	 out	 that	 this	 strategy	 not	 only	 has	 low	 risk,	 but	 also	 a	

quite	high	Sharpe	ratio.	

	

The	return	on	the	on	the	investors	portfolio	is	given	as	

!! = Σ!!!!  , !"#$%&' !" Σ !! = 1  	 	 	 	 (2)	

	

Where	xp	is	the	return	on	the	portfolio,	wi	is	the	weight	invested	in	asset	i,	and	xi	is	the	

return	 from	 asset	 i.	 Now	 the	 relevant	weights	 of	 the	minimum	 variance	 portfolio	 are	

computed	so	that	the	resulting	portfolio	has	the	lowest	return	variance,	σp2,	for	a	given	

covariance	matrix	Σ.	The	covariance	matrix	will	consist	of	variances	and	covariances	of	
the	returns.		While	the	variance	of	the	portfolio	returns	can	be	expressed	as		

	

!!! =  !´Σw 	 	 	 	 	 	 (3)	

	

The	 minimum-variance	 portfolio	 can	 further	 solve	 the	 weights	 for	 the	 following	

minimization	problem,	according	to	

	

 !!!!"#  !´Σw, subject to !!!
!!! = 1 	 	 	 (4)	
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Where	1	 is	 a	 column	vector	of	 one	and	w	 is	 a	 column	vector	of	 the	portfolio	weights.	

Solving	 the	 minimization	 problem	 we	 get	 relevant	 weights	 for	 constructing	 the	

minimum	variance	portfolio,	and	assume	that	all	mean	returns	are	alike.	

	

In	theory,	the	MVP	can	be	constructed	with	weights	taking	both	long	and	short	positions.	

However,	in	practice	one	often	imposes	long	positions	constraint.	The	reasoning	for	this	

is	based	on	many	factors.	In	reality	short	sales	are	not	possible	for	every	asset	and	can	

also	 be	 a	 very	 risky	 strategy,	 so	 a	 long/short	 portfolio	might	 be	 unwanted	 for	many	

investors	in	real	life.		

	

4.1.3	Maximum-diversification	
The	weights	of	Maximum-diversification	strategy	is	to	find	the	solution	of	the	maximum	

diversification	portfolio	and	then	we	use	

max! !´!
!´!! 

, !"#$%&' !" !!!
!!! = 1 		 	 	 (6)	

	

where	σ	=	[σ1,	σ2,	…	,	σn]		is	the	vector	of	standard	deviations.	

	

The	ratio	
!!!

√!!!"	is	called	the	diversification	ratio.	

	

Choueifaty	 and	 Coignard	 (2008)	 defined	 the	 diversification	 ratio	 as	 the	 ratio	 of	 the	

weighted	average	of	 standard	deviations	devided	by	 the	 standard	of	 the	 strategy.	The	

Maximum-diversification	 strategy	 provides	 similar	 results	 to	 other	 strategies	 under	

certain	 conditions.	 The	maximization	 problem	 in	 the	 formula,	 is	 to	 constraint	 stating	

that	the	sum	of	weights	must	equal	100%	if	the	expected	excess	return	of	portfolios	is	

proportional	 to	 their	 standard	 deviation.	 The	 maximum-strategy	 is	 similar	 to	 the	

Minimum-variance	 strategy,	 only	 if	 all	 portfolios	 have	 the	 same	 standard	 deviation.	 If	

the	 correlation	 matrix	 is	 invertible	 and	 some	 other	 conditions	 are	 fulfilled,	 then	 the	

Maximum-diversification	 strategy	 provides	 similar	 results	 to	 the	 Risk-Parity	 strategy	

(Choueifaty	&	Coignard,	2008,	p.	41-43)	

The	portfolio	 that	has	 the	minimum	variance	 is	heavily	concentrated	 in	 the	asset	with	

the	 lowest	 standard	 deviations.	 The	maximization	 of	 the	 diversification	 ratio	 helps	 to	

mitigate	this	problem	and	invest	more	in	the	other	assets.	
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4.1.4	Risk	parity	
The	Risk-Parity	 strategy	 allocates	 risk	 equally	 between	 all	 portfolios.	 The	weights	 are	

computed	by	the	formula	and	you	can	also	see	the	normalization	factor	calculated	by	the	

formula.	Relative	 to	 the	Tangency	strategy,	 the	Risk-parity	overweighs	safer	portfolios	

(Asness,	Frazzini	&	Pedersen,	2012)	

The	 weights	 of	 the	 asset	 i	 is	 inversely	 proportional	 to	 its	 standard	 deviation	 and	 is	

determined	by	

	

!!,! = !
!!,!
!! ,	 	 	 	 	 (7)	

	

where	!!	is	the	normalization	factor	(that	makes	the	sum	of	all	weights	to	equal	to	one)	
	

!! =  !
!
!!,!

!
!!!

		 	 	 	 	 (8)	

	

4.2	Performance	measures		

4.2.1	Sharpe	Ratio	
The	Sharpe	Ratio	was	developed	in	1966	by	William	Sharpe.	The	Sharpe-Ratio	is	a	single	

measure	of	risk	and	returns	and	is	always	defined	against	the	risk-free	rate	of	return.	It	

is	given	an	indication	to	evaluate	the	performance	of	the	portfolios,	also	procedures	the	

relationship	 between	 risk	 and	 return.	 This	 is	 one	 of	 the	 most	 famous	 and	 well-used	

ratios.	 The	 ratio	 can	 explain	 a	 lot	 suitable	 to	 the	 performance	 and	 it	 is	 simple	 to	

implement,	because	it	only	consists	of	three	components.	It	is	given	by	

	

SRp	= ! (!!!!!)
!!

		 	 	 	 	 (9)	

	

Where		 	 		!!	=	Return	from	portfolio	p	
	rf	=	risk	free	rate	

!!	=	standard	deviation	of	!!	
E	(!! − !!)=	expected	excess	return	
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The	 higher	 Sharpe	 Ratio,	 the	 more	 excess	 return	 portfolios	 can	 expect	 to	 deliver	 for	

extra	volatility	 that	 they	are	exposed	 to	by	holding	a	 riskier	 asset,	 that	mean	 the	best	

performing	portfolio	would	be	the	one	with	the	highest	Sharpe	Ratio.		

	

The	 Sharpe	 Ratio	 is	 derived	 as	 the	 slope	 of	 the	 CAL.	 The	 Sharpe	 Ratio	 measures	 a	

portfolios	performance	by	its	expected	excess	return	divided	by	expected	risk.	

It	is	expected	that	different	portfolios	would	have	different	Sharpe	Ratios.	Test	given	by	

Jobson	 and	 Korkie	 (1981)	 could	 enquire	 whether	 the	 Sharpe	 Ratios	 are	 significantly	

different	or	not.	The	null	hypotheses	are	as	follows:		

H0:	SR1/N	=	SRopt.		 ^	 H1:	SR1/N	≠	SRopt	
	

To	 measure	 the	 performance	 of	 strategies,	 the	 Sharpe	 ratio	 by	 W.	 Sharpe	 (1994)	 is	

estimated.	The	Sharpe	Ratio	test	have	the	null-hypothesis	H0	:	SR1	–	SR2	=	0.	The	Sharpe	

Ratio	are	the	test	statistic	divided	by	its	asymptotic	standard	deviation,	estimated	by	the	

formula	 where	 SR1	 and	 SR2	 is	 the	 Sharpe	 Ratio	 of	 strategy	 1	 and	 2	 and	!	is	 the	
correlation	coefficient	between	the	excess	return	of	the	two	strategies		

	

Z	=	 !"!!!"!
!
![! !!! !!!(!"!

!!!"!!!!!"!!"!!!)]
	 	 	 	 (10)	

	

Where		 	 T	=	number	of	observations	

	 	 	 p	=	correlation	coefficient	between	the	levels	of	SR1	and	SR2		

	

Which	is	asymptotically	distributed	as	a	standard	normal.	When	the	p-value	of	the	test	is	

below	than	the	predetermined	significance	level	(usually	0.05),	then	one	rejects	the	null	

hypothesis.		
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4.2.2	Alpha	CAPM	
Usually	 the	 single	 factor	 model	 is	 motivated	 by	 the	 CAPM.	 In	 the	 CAPM,	 the	 Capital	

Allocation	 Line	 (CAL)	 is	 derived	 as	 possible	 combinations	 between	 a	 portfolio	 and	 a	

risk-free	asset.	The	Capital	Market	Line	(CML)	is	explained	as	the	specific	CAL,	which	is	

tangent	to	the	efficient	frontier,	at	the	point	of	which	the	Sharpe	Ratio	is	the	highest.		

	

Alpha	 estimates	 are	 also	 a	 performance.	 The	 Alphas	 are	 estimated	 by	 Ordinary	 Least	

Squares	 (OLS)	of	 factor	models,	which	also	called	 intercepts	of	 linear	regressions.	The	

single-factor	model	is	estimated	by	the	OLS	to	abtain	the	Alpha	estimate	

	

!! =  ! +  ! !!"#,! +  !!		 	 	 	 (11)	

	

where	 the	 factor	 model	 Rt	 explain	 the	 excess	 return	 of	 a	 strategy,	 by	 factors	 of	 the	

market.	Rmkt,t	are	the	single-factor	model	that	are	explained	by	CAPM	where	the	factor	of	

the	model	is	the	excess	market	return.			

	

If	the	market	return	fully	explains	the	return	on	the	risky	asset,	then	the	model	predicts	

and	the	model	is	estimated	by	running	OLS	and	then	testing	the	hypothesis	

	

!!: !!/!!"#$ =  !!"#.!"#$  ∧  !!: !!/!!"#$ ≠  !!"#.!"#$	

	

4.2.3	Fama-French	3-factor	
The	Fama-French	3-factor	model	by	Fama	and	French	is	a	multiple	factor	model	(1993).	

Also	 to	 the	 excess	 market	 return,	 the	 Fama-French	 3-factor	 model	 includes	 factors	

related	 to	 firm	 size	 and	 book-to-market	 equity	 (BE/ME).	 The	 factors	 that	 are	 used	 is	

High-Minus-Low	(HML)	and	Small-Minus-Big	(SMB).	The	HML-factor	is	meant	to	capture	

the	risk	in	returns	related	to	BE/ME	and	is	measured	by	monthly	difference	between	the	

average	of	returns	on	two	high-BE/ME	portfolios	and	the	average	of	returns	on	two	low-

BE/ME	portfolios.	 The	 SMB-factor	 are	meant	 to	 capture	 the	 risk	 in	 returns	 related	 to	

size	and	is	measured	by	the	monthly	difference	between	the	average	of	return	on	three	

small-stock	portfolios.	The	multiple	factor	model	that	the	formula	show	is	estimated	by	

the	OLS	to	find	an	Alpha	estimate	(Fama	&	French,	1993,	p.	9)	
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!! = ! + !!!!"#,! + !!!"#! + !!!"#! + !! 		 	 	 (12)	

Where	SMB	(Small-minus-Big)	is	the	risk	factor	related	to	size	and	HML	(High-minus-

Low)	is	the	risk	factor	related	to	value.		

	

	

The	alphas	are	tested	with	tested	with	the	hypothesis			

	

Test	!!: !!/!!!! =  !!"#.!!!  ∧  !!: !!/!!!! ≠  !!"#.!!!	

	

It	is	interest	to	test	the	equity	of	Alphas	between	strategies.	The	Alpha	is	presented	with	

a	t-test	to	the	test	statistic,	where	!	is	the	standard	error	of	the	Alpha	estimate,	and	it	is	
calculated	 by	 the	 standard	 deviation	 of	 the	 residuals,	 where	 the	!	is	 the	 correlation	
between	the	residuals		

	

Z	=	 !!! !!
!
!(!!

!!!!!!!!!!!!)
		 	 	 	 	 (13)	

	

4.3	Back-testing	
	

Back-testing,	 also	 called	 out-of-sample	 simulation,	 is	 a	method	 for	 empirically	 testing	

strategies	based	on	historical	data,	and	to	also	measure	the	performance	of	strategies	in	

practice.	 Back-testing	 is	 useful	 because	 there	 are	 many	 possible	 strategies,	 and	 a	

portfolio	 manager	 wants	 to	 find	 out	 which	 strategy	 performs	 best.	 	 The	 back-testing	

requires	the	look-back	period,	the	testing	period	and	the	training	period	to	be	defined.	

The	training	period	is	the	sample	that	is	the	data	that	is	known	and	utilized	at	the	first	

investment.	The	testing	period	is	the	out-of-sample,	where	the	returns	of	the	strategies	

are	 simulated.	 The	 look-back	 period	 is	 the	 rolling	 window,	 which	 is	 a	 constant	 time	

length	 in	 the	 past	 that	 the	 investment	 is	 based	 on.	 The	 training	 period	 has	 the	 same	

length	 as	 the	 look-back	 period.	 In	 back-testing	 the	 portfolios	 are	 functional,	 which	

means	 that	 the	weights	 in	 the	strategies	are	re-balanced	each	month.	The	weights	are	

re-computed	by	the	optimization	of	the	strategies	with	the	data	in	the	look-back	period.	
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Back-testing	 must	 be	 considered	 in	 any	 market	 frictions	 such	 as	 transaction	 costs.	

Therefore	the	re-estimation	may	be	done	in	some	other	frequency	than	monthly.		

	

The	length	of	the	rolling	window	is	5	years	that	is	the	same	length	as	the	training	period.	

For	all	other	estimations,	the	illustrative	statistics	that	are	shown	for	the	period	is	from	

July	 1968	 to	 the	 end	 of	 available	 data,	 December	 2018.	 This	 is	 to	 show	 the	

understanding	of	the	out-of-sample	or	testing	period.	

	

In	the	back-testing,	the	historical	mean	and	covariance	are	estimated	by	Shrinkage.	The	

Shrinkage	 intention	 is	 to	decrease	 estimation	 error.	The	 Shrinkage	 estimation	has	 the	

historical	mean	 that	 applies	 the	method	of	 James	 and	Stein	 (1961)	 and	 the	 Shrinkage	

estimation	of	the	covariance	matrix	applies	the	method	of	Ledoit	and	Wolf	(2003).	The	

Shrinkage	estimator	of	covariance	and	mean	are	estimated	by	the	formulas.	

	

!!!!!"#$ = 1−  !! !!!"#$ +  !!!!"#$%&		 	 	 (14)	
	

∑!!!!"#$ = 1−  !! ∑!!"#$ +  !!∑!"#$%&		 	 	 (15)	

	

where	∑!!!!"#$ 	is	 the	 shrink	estimated	 covariance	matrix,	 the	!t	 is	 called	 the	Shrinkage	
constant.	The	shrinkage	constant	takes	on	a	value	between	0	and	1	and	determines	the	

combining	ratio	between	the	rolling	historical	estimate	and	the	Shrinkage	target	in	the	

Shrinkage	estimate.	The	optimal	value	!!	is	the	one	that	minimizes	the	expected	value	of	
the	 quadratic	 loss	 function	 between	 the	 shrinkage	 estimator	 and	 the	 true	 covariance	

matrix.	This	constant	is	an	estimate	that	is	why	it	is	denoted	with	a	hat	on	Equation.		The	

optimal	 Shrinkage	 constant	 minimizes	 the	 expected	 distance	 between	 the	 Shrinkage	

estimator	and	the	true	covariance	matrix	(Ledoit	&	Wolf,	2003,	p.7)	

	

The	 estimation	 is	 a	 weighted	 convex	 linear	 combination	 of	 the	 rolling	 historical	

estimate,	 and	 the	 sample	 estimate	 based	 on	 the	 look-back	 period,	 and	 the	 Shrinkage	

target.	The	rolling	historical	mean	and	covariance	are	estimated	by	the	 formulas.	Both	

are	calculated	on	the	data	in	the	rolling	window.	(Ledoit	&	Wolf,	2003,	p.	5-6)	

	



	 24	

!!!"#$ =
1
! !!

!!!

!!!!!
	

	

∑!!"#$ =
1
! !!!´!

!!!

!!!!!
	

	

Here	is	L	the	length	of	the	look-back	period	

	

The	Shrinkage	target	to	the	rolling	historical	mean	is	the	expected	return	to	the	Naïve-

diversification	 strategy	 in	 the	 look-back	 period.	 The	 Shrinkage	 target	 to	 the	 rolling	

historical	covariance	is	the	covariance	matrix	of	the	Constant	Correlation	Model	(CCM).	

In	the	model	the	correlations	are	assumed	to	be	identical	for	all	portfolios	return	(Ledoit	

&	Wolf,	2003,	p.	6-11)	
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5	Empirical	results		
	

Annualized	 Sharpe	 Ratios	 with	 the	 p-values	 of	 the	 Sharp	 Ratio	 test	 in	 parentheses.	

Sharpe	 Ratios	 that	 are	 significantly	 different	 from	 the	 Sharpe	 Ratio	 of	 the	 naïve-

diversification	strategy	at	a	5%-significance	level	are	bolded.	

Table	3	shows	Sharpe	Ratio	with	p-values	of	the	Sharpe	ratio	test	and	the	p-values	of	the	

significance	test	are	in	parentheses	of	each	optimized	strategies.	Further,	Table	4	shows	

Alpha	estimates	from	the	OLS	estimation	of	the	CAPM	motivated	Single-factor	model.	P-

values	of	the	Alpha	test	are	in	parentheses	of	each	optimized	strategies.	After	that,	Table	

5	 show	 that	we	have	Alpha	estimates	 from	 the	OLS	estimation	of	 the	Fama-French	3-

factor	model.	The	p-values	of	the	significance	test	are	in	parentheses	of	each	optimized	

strategies.	

Table	3:	SR:	Sharpe	Ratio	
	 Strategy	

#	 Dataset	 Naive	 Min.var	 Max.div	 R.P.	

	 	 	 	 	 	

1	 BEME	 0.53	 0.51	(0.75)	 0.48	(0.07)	 0.53	(0.24)	

2	 Size	 0.47	 0.42	(0.37)	 0.46	(0.66)	 0.47	(0.81)	

3	 EP	 0.56	 0.50	(0.30)	 0.53	(0.76)	 0.54	(0.75)	

4	 Ind	 0.48	 0.51	(0.69)		 0.49	(0.88)	 0.50	(0.02)	

5	 BEME25	 0.50		 0.49	(0.92)	 0.44	(0.12)		 0.52	(0.06)	

6	 Inv	 0.54	 0.58	(0.28)	 0.54	(0.00)	 0.56	(0.00)	

7	 Mom	 0.38	 0.44	(0.11)	 0.42	(0.23)	 0.40	(0.006)	

8	 Profit	 0.47	 0.59	(0.01)	 0.44	(0.00)	 0.49	(0.00)	

9	 Acc	 0.50	 0.61	(0.01)	 0.51	(0.00)	 0.51	(0.00)	

10	 CFP	 0.54	 0.51(0.42)	 0.52	(0.49)	 0.54	(0.58)	

11	 DY	 0.48	 0.52	(0.43)	 0.47	(0.80)	 0.49	(0.02)	

12	 STR	 0.44	 0.44	(0.91)	 0.38	(0.14)	 0.44	(0.18)	

13	 LTR	 0.48	 0.53	(0.18)	 0.46	(0.35)	 0.49	(0.15)	

14	 MaBe	 0.49	 0.65	(0.05)	 0.55	(0.13)	 0.53	(0.00)	

15	 NSI	 0.44	 0.48	(0.30)	 0.49	(0.01)	 0.45	(0.00)	

16	 ResVar	 0.43	 0.62	(0.01)	 0.36	(0.02)	 0.47	(0.00)	
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P-value	of	SR-test.	Annualized	Sharpe	Ratios	with	the	p-values	of	the	Sharp	Ratio	test	in	

parentheses.	Sharpe	Ratios	that	are	significantly	different	from	the	Sharpe	Ratio	of	the	

naïve-diversification	strategy	at	a	5%-significance	level	are	bolded.		

	

Table	4:	Alpha	CAPM	
	 Strategy	

#	 Dataset	 Naive	 Min.var	 Max.div	 R.P.	

	 	 	 	 	 	

1	 BEME	 0.13	 0.16	(0.95)	 0.14	(0.08)	 0.15	(0.41)	

2	 Size	 0.08	 -0.00	(0.20)	 0.09	(0.36)	 0.10	(0.43)	

3	 EP	 0.11	 0.12	(0.47)	 0.12	(0.95)	 0.13	(0.57)	

4	 Ind	 0.09	 0.17	(0.20)	 0.12	(0.52)	 0.11	(0.01)	

5	 BEME25	 0.16	 0.12	(0.65)	 0.44	(1.34)	 0.18	(0.07)	

6	 Inv	 0.00	 0.01	(0.25)	 0.10	(0.01)	 0.10	(0.00)	

7	 Mom	 0.01	 0.01	(0.46)	 0.01	(1.13)	 0.01	(0.35)	

8	 Profit	 0.02	 0.13	(0.05)	 0.08	(0.00)	 0.06	(0.05)	

9	 Acc	 0.01	 0.10	(0.02)	 0.01	(0.00)	 0.05	(0.03)	

10	 CFP	 0.05		 0.06	(0.20)	 0.10	(0.32)	 0.08	(0.42)	

11	 DY	 0.15	 0.20	(0.05)	 0.17	(0.01)	 0.16	(0.04)	

12	 STR	 0.00	 0.02	(0.68)	 -0.07	(0.02)	 0.01	(0.22)	

13	 LTR	 0.01		 0.01	(0.48)	 0.01	(5.88)	 0.01	(0.90)	

14	 MaBe	 0.02	 0.15	(0.04)	 0.03	(0.40)	 0.05	(0.02)	

15	 NSI	 0.01	 0.01	(0.09)	 0.03	(0.02)	 0.00	(0.01)	

16	 ResVar	 0.01		 0.10	(0.02)	 0.01	(0.27)	 -0.01	(0.00)	

	

P-value	 for	 testing	equality	of	 two	alphas.	Alpha	estimates	 from	the	OLS	estimation	of	

the	 CAPM	motivated	 by	 single-factor	model.	 The	 p-values	 of	 the	Alpha	 test	 are	 in	 the	

parentheses.		Alpha	estimates	that	are	significantly	different	from	the	Alpha	estimate	of	

the	Naïve-diversification	strategy	at	a	5%	significance	level	are	bolded.	
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Table	5:	FF3	
	 Strategy	

#	 Dataset	 Naive	 Min.var	 Max.div	 R.P.	

	 	 	 	 	 	

1	 BEME	 -0.00	 0.03	(0.31)	 0.00	(0.03)	 0.01	(0.03)	

2	 Size	 -0.02	 0.04	(0.22)	 0.00	(0.05)	 -0.02	(0.08)	

3	 EP	 0.05		 0.01	(0.13)	 0.05	(0.44)	 0.05	(0.37)	

4	 Ind	 0.04	 0.11	(0.29)	 0.46	(0.95)	 0.06	(0.03)	

5	 BEME25	 0.00	 0.00	(0.31)	 0.03	(0.43)	 0.08	(0.17)	

6	 Inv	 0.01	 0.03	(0.62)	 0.10	(0.01)	 0.07	(0.21)	

7	 Mom	 0.01	 0.01	(0.66)	 0.01	(2.28)	 0.01	(0.68)	

8	 Profit	 0.15	 0.07	(0.05)	 0.01	(0.02)	 0.06	(0.05)	

9	 Acc	 0.03	 0.10	(0.01)	 0.07	(0.01)	 0.06	(0.03)	

10	 CFP	 0.08	 0.05	(0.36)	 0.01	(0.59)	 0.08	(0.53)	

11	 DY	 0.10		 0.15	(0.74)	 0.16	(0.14)	 0.05	(0.24)	

12	 STR	 0.01		 0.01	(0.62)	 0.01	(0.08)	 0.01	(0.25)	

13	 LTR	 0.01		 0.01	(0.40)	 0.01	(0.39)	 0.01	(0.97)	

14	 MaBe	 -0.02	 0.10	(0.04)	 0.01	(0.00)	 0.03	(0.01)	

15	 NSI	 -0.01		 -0.00	(0.20)	 -0.01	(0.08)	 0.15	(0.08)	

16	 ResVar	 0.02	 0.11	(0.01)	 0.04	(0.05)	 0.05	(0.03)	

	

P-value	 for	 testing	equality	of	 two	alphas.	Alpha	estimates	 from	the	OLS	estimation	of	

the	 Fama-French	 3-factor	 model.	 The	 p-values	 of	 the	 Alpha	 test	 are	 in	 parentheses.	

Alpha	estimates	that	are	significant	at	a	5%-significance	level	are	bolded	and	Alpha.		

	

If	 the	 P-values	 of	 the	 alphas	 are	 below	 0.05,	 then	 we	 can	 say	 that	 the	 portfolio	 is	

significant.	We	are	95%	sure	that	the	optimized	strategy	has	higher	optimized	portfolios	

than	 that	 of	 the	 naïve-diversification	 strategy.	 That	means	 that	 if	 the	 null	 hypothesis	

were	rejected	at	the	5%	level,	the	result	of	the	test	would	be	statistically	significant.	 	If	

the	 null	 hypothesis	 were	 not	 rejected,	 it	 would	 be	 said	 that	 the	 results	 of	 the	 test	 is	

insignificant.	
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5.1	Sharpe	ratio		
The	null	 hypothesis	of	 the	Sharpe	Ratios	being	 insignificantly	different	 from	zero	was	

rejected	 of	 the	 test.	 Sixteen	 datasets	 and	 three	 optimization	 strategies	 were	 used	 in	

addition	 to	 naïve	 diversification.	 This	 grants	 us	 a	 total	 of	 48	 p-values,	were	 18	which	

below	the	chosen	significant	level	of	5%.	Some	of	the	SR	of	the	optimized	portfolio	was	

actually	 smaller	 than	 the	 naïve	 strategy.	 This	 result	 uses	 the	 Sharpe	 Ratio	 as	 the	

performance	 measure	 and	 is	 only	 statistically	 valid	 given	 the	 chosen	 period.	 These	

results	 cast	 some	 doubt	 on	 the	 ability	 of	 optimized	 portfolios	 to	 outperform	 naïve	

diversification.		

	

From	 the	 output	 of	 Sharpe	 Ratios	 represented	 in	 Table	 3,	 it	 is	 of	 interest	 to	 infer	 if	

optimized	 portfolio	 strategies	 outperform	 the	 Naïve-diversification	 strategy.	 A	

significantly	 different	 and	 higher	 Sharpe	 Ratio	 would	 imply	 that	 the	 strategy	

outperforms	the	Naïve-diversification	strategy.	However,	 the	 frequency	of	significantly	

different	Sharpe	ratios	for	different	datasets	provides	an	indication	as	to	if	the	strategy	

can	 consistently	 outperform	 the	 Naïve-diversification	 strategy.	 In	 Table	 3,	 there	 are	

significant	and	higher	Sharpe	ratios	for	optimized	portfolio	strategies	in	9	of	16	datasets.	

This	implies	that	in	9	out	of	16	cases,	depending	on	the	variable	on	which	the	portfolios	

are	 formed	 on,	 the	 Naïve-diversification	 strategy	 is	 outperformed	 by	 an	 optimized	

portfolio	 strategy.	 Some	 variables	 have	 more	 strategies	 that	 outperform	 the	 Naïve-

diversification	 strategy	 than	 other	 variables.	 Further,	 portfolios	 formed	 on	 Operating	

Profitability	and	Accruals	have	the	most	optimized	portfolio	strategies	that	outperform	

the	 Naïve-diversification	 strategy,	 which	will	 say	 in	 all	 three	 strategies.	 There	 is	 also	

Market	Beta	that	has	the	highest	significant	Sharpe	Ratio	with	0.65.		As	for	the	strategies,	

the	Risk-Parity	strategy	outperforms	the	Naïve-diversification	strategy	in	9	of	16	cases.	

Even	 though	 the	Sharpe	 ratios	of	 the	Risk-parity	are	 significantly	different	and	higher	

than	 the	 Sharpe	 Ratios	 of	 the	 Naïve-diversification	 strategy,	 the	 differences	 are	 quite	

small.	 The	 Max-diversification	 strategy	 performs	 poorly	 with	 no	 higher	 significantly	

Sharpe	Ratios	than	the	naïve-diversification.		
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5.2	Alpha	CAPM		
From	 the	 estimates	 of	 Alphas	 CAPM	 that	 is	 represented	 in	 Table	 4,	 it	 is	 possible	 to	

conclude	 whether	 there	 is	 significant	 expected	 excess	 return,	 unexplained	 by	 the	

market,	 of	 a	 specific	 strategy	 and	 whether	 the	 expected	 excess	 return	 is	 significant	

higher	than	the	Alpha	estimate	of	the	Naïve-diversification	strategy.	If	an	Alpha	estimate	

were	 significantly	 different	 and	 higher	 than	 the	 Alpha	 estimate	 of	 the	 Naïve-

diversification	 strategy,	 then	 it	 would	 imply	 that	 the	 strategy	 of	 the	 Alpha	 estimate	

outperforms	the	Naïve-diversification	strategy.		

	

From	the	output	of	Alpha	represented	in	Table	4,	it	is	possible	to	infer	whether	there	is	

significant	expected	excess	return,	unexplained	by	the	market,	of	a	specific	strategy	and	

whether	 the	 expected	 excess	 return	 is	 significantly	 higher	 than	 that	 of	 the	 Naïve-

diversification	strategy.	If	an	Alpha	estimate	is	significantly	different	and	higher	than	the	

Alpha	 estimate	 of	 the	 Naïve-diversification	 strategy,	 then	 it	 would	 imply	 that	 the	

strategy	of	the	Alpha	estimate	outperforms	the	naïve-diversification	strategy.	 	In	Table	

4,	 there	 is	 significant	 and	 higher	 Alpha	 for	 optimized	 portfolio	 strategies	 in	 8	 of	 16	

datasets.	This	implies	that	in	8	out	of	16	cases,	depending	on	the	variable	on	which	the	

portfolios	are	formed	on,	the	Naïve-diversification	strategy	is	equally	weighted	with	the	

optimized	portfolio	strategy.	Some	variables	have	more	strategies	 that	outperform	the	

Naïve-diversification	 strategy	 than	 other	 variables.	 Further,	 datasets	 formed	 on	

Operating	Profitability,	Accruals	and	Dividend	Yield	have	 the	most	optimized	portfolio	

strategies	that	outperform	the	Naïve-diversification	strategy,	which	will	say	in	all	three	

strategies.	 Dividend	 Yield	 has	 also	 the	 highest	 significant	 alpha	with	 0.20.	 	 As	 for	 the	

strategies,	the	Risk-Parity	strategy	outperforms	the	Naïve-diversification	strategy	in	8	of	

16	cases.	Even	though	the	Alpha	of	the	Risk-parity	are	significantly	different	and	higher	

than	the	Alpha	of	the	Naïve-diversification	strategy,	the	differences	are	quite	small.	None	

of	 the	 strategies	 performs	 poorly	 with	 lower	 significantly	 Alpha	 than	 the	 naïve-

diversification.	There	were	several	significant	estimates	of	alpha	in	the	results,	yet	few	

of	the	estimated	alphas	for	the	optimized	strategies	were	concluded	to	be	significantly	

larger	than	the	estimate	alphas	for	the	naïve	strategy.		
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5.3	Alpha	FF3	
	

In	 the	 analytical	 interpretation	 it	 is	 applied	 to	 the	 Alpha	 estimates	 estimated	 in	 the	

Fama-French	 3-factor	 model.	 From	 the	 output	 of	 Alpha	 represented	 in	 Table	 5,	 it	 is	

possible	to	infer	whether	there	is	significant	expected	excess	return,	unexplained	by	the	

market,	 of	 a	 specific	 strategy	 and	whether	 the	 expected	 excess	 return	 is	 significantly	

higher	 than	 that	 of	 the	 Naïve-diversification	 strategy.	 If	 an	 Alpha	 FF3	 estimate	 is	

significantly	 different	 and	 higher	 than	 the	 Alpha	 FF3	 estimate	 of	 the	 Naïve-

diversification	strategy,	then	it	would	imply	that	the	strategy	of	the	Alpha	FF3	estimate	

outperforms	the	naïve-diversification	strategy.		In	Table	5,	there	is	significant	and	higher	

Alpha	for	optimized	portfolio	strategies	in	8	of	16	datasets.	This	implies	that	in	8	out	of	

16	cases,	depending	on	the	variable	on	which	the	portfolios	are	 formed	on,	 the	Naïve-

diversification	strategy	is	equally-weighted	with	the	optimized	portfolio	strategy.	Some	

variables	have	more	strategies	 that	outperform	the	Naïve-diversification	strategy	 than	

other	 variables.	 Further,	 datasets	 formed	 on	 Operating	 Profitability,	 Accruals	 and	

Market	 Beta	 and	 Residual	 Variance	 have	 the	most	 optimized	 portfolio	 strategies	 that	

outperform	 the	 Naïve-diversification	 strategy,	 which	 will	 say	 in	 all	 three	 strategies.	

Residual	Variance	has	also	the	highest	significant	alpha	with	0.11.		As	for	the	strategies,	

the	Maximum-diversification	strategy	outperforms	the	Naïve-diversification	strategy	in	

8	 of	 16	 cases.	 Even	 though	 the	 Alpha	 FF3	 of	 the	 maximum-diversification	 are	

significantly	 different	 and	 higher	 than	 the	 Alpha	 FF3	 of	 the	 Naïve-diversification	

strategy,	 the	 differences	 are	 quite	 small.	 None	 of	 the	 strategies	 performs	 poorly	with	

lower	significantly	Alpha	FF3	than	the	naïve-diversification.			

	

	

	

	

	

	

	

	

	



	 31	

Table	6:	Growth	period	
	 Naïve	 Risk	

Parity	

MaxDiv	 Minvar	 Average	

Book-to-market	 550.19	 551.90	 405.17	 431.10	 484.59	

Size	 549.96	 524.98	 350.51	 198.30	 405.94	

EP	 458.35	 451.98	 510.51	 301.22	 430.52	

Industry	 333.60	 356.64	 281.81	 266.76	 309.70	

Size	and	BM	 684.11	 741.17	 320.26	 352.03	 524.39	

Investment	 180.23	 194.31	 190.39	 181.07	 186.5	

Momentum	 191.85	 218.86	 310.83	 275.92	 128.47	

Profit	 107.57	 117.14	 83.81	 205.34	 128.47	

Accruals	 130.78	 139.78	 144.95	 206.04	 155.39	

Cashflow	Price	 427.58	 425.65	 413.34	 316.29	 395.72	

Dividend	Yield	 328.36	 346.21	 291.14	 354.79	 330.13	

Short	Term	Reversal	 250.74	 252.71	 153.82	 217.65	 218.73	

Long	Term	Reversal	 452.24	 457.60	 462.64	 558.35	 482.71	

Market	Beta	 145.33	 163.34	 152.95	 172.94	 158.64	

Net	Share	Issues	 87.30	 95.29	 122.52	 102.74	 101.96	

Residual	Variance	 101.63	 129.42	 40.60	 157.83	 107.37	

Average	 311.24	 322.93	 264.70	 268.65	 -	

	

1$	growth	for	the	period	(1963,1)	–	(2018,12)	

	

Table	 6	 shows	 the	 performance	 of	 datasets	 and	 strategies	 in	 terms	 of	 financial	 value,	

ignoring	any	market	 resistances	 like	 transaction	 costs.	The	 table	 shows	 the	answer	of	

how	much	one	would	have	 in	 the	end	of	 the	year	2018	 if	 they	had	 invested	$1	 in	 the	

beginning	 of	 the	 testing	 period.	 The	 largest	 amount	 is	 highlighted	 in	 bold	 and	 the	

smallest	 inn	 cursive	 for	 each	 dataset.	 Risk	 Parity	 has	 the	 largest	 average,	 and	 an	 end	

return	 for	 five	 out	 of	 16	 datasets.	 Minimum-variance	 ends	 up	 with	 quite	 impressive	

return	that	had	the	 largest	datasets	 in	six	out	of	16,	but	has	also	three	of	 the	smallest.	

Maximum-diversification	 ends	 up	 with	 the	 smallest	 end	 amount	 in	 six	 out	 of	 the	 16	

datasets,	 but	has	 also	 three	of	 the	biggest	 return.	Naïve-diversification	has	 the	 largest	

return	for	two	out	of	the	16	datasets,	but	has	like	minimum-variance	six	of	the	smallest	
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returns.	As	 for	the	strategy	averages,	 the	Risk-parity	has	the	highest	average	out	of	all	

the	strategies	and	the	maximum-diversification	the	 lowest.	The	naïve-diversification	 is	

not	 far	 away	 to	 have	 the	 highest	 average,	 and	 so	 do	 the	 minimum-variance	 to	 the	

smallest	average.	Still,	 the	transactions	costs	and	other	market	 frictions	have	not	been	

accounted	for.	It	should	be	before	taking	any	conclusions	based	on	the	observation	from	

the	table.	

	

The	 Sharpe	 Ratio	 favors	 the	 Risk-parity	 strategy.	 The	 Risk-parity	 strategy	 has	mostly	

higher	 Sharpe	 Ratios	 than	 the	 Naive-diversification	 strategy	 that	 are	 significantly	

different.	Minimum-variance	has	a	 lot	of	Sharpe	Ratios	that	are	higher	than	the	Naïve-

diversification	strategy.	The	output	of	OLS	estimation	of	the	Single-factor	model	CAPM	

favors	 the	 maximum-diversification	 strategy.	 The	 maximum-diversification	 has	 the	

highest	and	most	significant	Alpha	estimations	that	are	also	significantly	different	to	the	

Naïve-diversification	strategy.	And	in	the	Alpha	estimates	estimated	by	OLS	of	the	Fama-

Franch	 3-factor	 model,	 there	 are	 the	 maximum-diversification	 the	 highest	 and	 most	

significant	estimations	compared	to	the	naïve-diversification.	

Some	datasets	 perform	 a	 lot	 greater	 for	many	 of	 the	 strategies,	while	 others	 perform	

weakly	for	the	strategies.	

	

By	 the	empirical	 results	 implementing	 the	out-of-sample	 test	period,	 it	 shows	 that	 the	

minimum-variance	 has	 fewest	 significant	 Sharpe	 Ratios	 and	 Alphas	 that	 implement	

worst	of	the	strategies	portfolios.	These	results	accord	with	what	DeMiguel	et	al.	(2009)	

found,	that	it	is	the	equally	weighted	is	the	best	performing	strategies.	By	my	research	of	

statistical	significance	of	 the	difference	between	the	Sharpe	Ratios,	 I	reached	the	same	

conclusions	 as	 DeMiguel	 et	 al.	 (2009)	 that	 nobody	 of	 the	 optimized	 portfolios	

statistically	outperforms	the	naïve-diversification	strategy.	However,	this	also	holds	the	

other	way	around,	 in	that	naïve-diversification	strategy	do	not	statistically	outperform	

the	optimized	portfolios.	That	means	 it	 is	 equally-weighted.	 In	DeMiguel	 et	 al.	 (2009),	

the	 Sharpe	 Ratios	 estimated	 are	 higher	 for	 the	 naïve-diversification	 than	 the	 Mean-

variance	strategy.	In	Kritzman	et	al	(2010),	the	Sharpe	Ratios	of	the	minimum-variance	

strategy	are	higher	than	the	Mean-variance.	Even	though	data	from	my	thesis	is	different	

to	what	they	implemented	in	the	academic	studies,	I	still	find	similar	results.		
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Despite	of	that	how	well	the	Sharpe	Ratios	and	Alphas	reflect	on	the	performance	of	the	

strategies	 are	 often	 debated.	 The	 Sharpe	 Ratio	 as	 a	 measure	 of	 performance	 in	

incomplete	in	the	sense	of	explaining	the	source	of	performance	gains.	By	the	interest	it	

would	be	 to	consider	different	performance	measures,	and	to	measure	 their	quality	 in	

explaining	the	performance	of	strategies.		

	

Based	on	 the	Sharpe	alone,	 the	minimum-variance	strategy	 is	 the	worse	strategy.	This	

would	 be	 the	 strategy	 that	 delivers	 lowest	 risk-adjusted	 return	 of	 all	 the	 portfolio	

models	considered	in	the	academic	study.		

Kritzman	 et	 al.	 (2010)	 show	 that	 the	 minimum-variance	 strategy	 is	 superior	 to	 the	

naïve-diversification.		

	

From	the	results	by	 the	Sharpe	Ratio	 I	got	 that	 if	 the	P-values	of	 the	Sharpe	Ratio	are	

below	0.05,	then	we	can	say	that	the	portfolio	 is	significant.	We	are	95%	sure	that	the	

optimized	strategy	has	higher	optimized	portfolios	than	that	of	the	naïve-diversification	

strategy.	The	P-values	of	Sharpe	Ratio	were	18	significant	portfolios	with	a	total	of	48	p-

values.	That	means	the	optimized	does	not	beat	the	naïve-diversification.	But	this	means	

also	 that	 the	naïve-diversification	do	not	 statistically	outperform	optimized	portfolios.	

With	the	hypothesis	testing	we	will	reject	the	H1	and	hold	the	H0.	Further,	the	p-values	

of	Alpha	CAPM	single-factor	were	18	 significant	portfolios	of	48	p-values.	That	means	

the	optimized	portfolios	foes	not	beat	the	naïve-diversification.	In	the	hypothesis	testing	

we	will	 also	 reject	 the	H1	and	hold	H0.	Then	we	have	 the	Alpha	Fama-French	3-factor	

model	that	had	16	significant	portfolios	of	those	48	p-values.	And	there	is	no	evidence	to	

prove	that	the	optimized	portfolios	do	not	outperform	the	naïve-diversification	strategy	

in	the	Fama-French	3-factor	model	by	these	16	datasets	that	are	chosen.		

	

In	 the	 minimum-variance,	 maximum-diversification	 strategy	 and	 the	 Risk-parity	

strategy	 have	 often	 the	 same	 expected	 return	 and	 risk.	 This	 could	 be	 because	 of	 the	

Shrinkage	estimation,	as	the	covariance	matrix	becomes	more	structured	in	a	way	that	

makes	the	risk	allocation	and	diversification	similar.		

	

Then	 we	 have	 the	 back-testing	 that	 usually	 is	 to	 fulfill	 market	 frictions	 and	 the	

avoidance	of	the	look-ahead	bias.	The	look-ahead	bias	has	been	avoided	to	the	best	for	
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the	capabilities	and	the	accounting	for	market	frictions,	such	as	transaction	costs	has	not	

been	 included	which	 could	have	affect	 the	 results	 in	 this	 thesis.	 In	practice	 this	 is	not	

true	that	there	are	no	transaction	costs.	

	

6	CONCLUSION	
	

When	looking	at	the	literature	at	empirical	performance	of	different	strategies,	there	is	

little	 question	 on	 whether	 or	 not	 optimization	 leads	 to	 performance.	 Can	 optimized	

portfolio	 strategies	 consistently	 outperform	 the	 naïve-diversification	 strategy?	 Of	 the	

research	I	have	pointed	out	two	academic	papers	with	different	conclusions.	DeMiguel	

et	 al.	 (2009)	 raised	 the	 concerns	 that	 there	 is	 no	 scientific	 evidence	 that	 optimized	

portfolios	outperform	the	naïve-diversification	strategy.	The	other	paper	with	Kritzman	

et	al.	(2010)	claimed	that	optimized	portfolios	are	better	than	the	naïve-diversification	

strategy.		

The	goal	of	this	thesis	has	been	to	compare	the	out-of-sample	performance	of	optimized	

portfolios	and	naively	diversified	portfolios.	By	studying	 the	empirical	performance	of	

the	minimum-variance,	max-diversification	and	risk-parity	in	order	to	control	if	some	of	

the	portfolio	strategies	deliver	better	performance.	To	measure	the	performance	it	was	

used	the	out-of-sample	Sharpe	Ratio,	and	also	the	Alphas	CAPM	single-factor	and	Fama-

French	3-factor	model.	Although	a	strategy	could	outperform	one	of	the	strategies		of	the	

Sharpe	Ratio,	Alpha	CAPM	and	FF3,	the	results	of	data	shows	that	the	ratios	are	equal	to	

each	other.	 I	conclude	that	 the	performance	of	 the	optimized	portfolios	and	the	naïve-

diversification	do	not	outperform	each	other.	Further,	I	find	that	the	difference	between	

the	 Sharpe	 Ratios	 of	 the	 optimized	 portfolios	 were	 not	 consistently	 statistically	

significant.	 That	 means	 the	 optimized	 portfolio	 do	 not	 outperform	 the	 naïve-

diversification	strategy,	but	also	the	other	way	around.	The	results	also	suggest	that	the	

choice	of	datasets	does	not	affect	the	performance	of	portfolios	when	compared	to	each	

other.		

	

The	 research	 problem	 is	 which	 is	 whether	 optimized	 portfolio	 strategy	 consistently	

outperform	 the	naïve-diversification	 strategy	 cannot	be	 answered	by	 a	 yes	or	no.	The	

estimates	 to	answer	 the	 research	problem	have	been	estimated.	The	empirical	 results	
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presented	 in	 the	 thesis,	 it	 can	 be	 specified	 that	 optimized	 portfolio	 strategy	 does	 not	

outperform	 the	 naïve-diversification	 strategy,	 either	 the	 naïve-diversification	

outperform	 the	 optimized	 strategy.	 There	 is	 no	 evidence	 to	 prove	 that	 the	 optimized	

portfolio	does	outperform	the	naïve-diversification	or	the	other	way	around	where	we	

do	 not	 reject	 the	 significance	 at	 least	 95%.	 A	 finish	 to	 this	 thesis	 is	 inspire	 the	

development	and	 testing	of	optimized	portfolio	 strategies	and	 to	not	 reject	 the	Naïve-

diversification	as	a	well-meaning	performance	benchmark.	
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APPENDIX	
	

The	16	datasets	have	all	 each	graph	with	 four	portfolios	with	 four	different	 strategies	

that	 are	 starting	 in	 year	 1963	 and	 ends	 in	 year	 2018.	 All	 graphs	 show	 a	 cumulative	

growth	through	time/years.	All	the	portfolios	in	each	graph	have	a	minor	downfall	about	

year	1975.	After	that	we	can	see	that	the	portfolios	have	a	trend	upwards,	before	it	is	a	

new	downfall	in	year	2008.	Mostly	of	the	portfolios	we	can	clearly	see	that	all	portfolios	

in	each	graph	are	following	the	same	path	and	behaves	the	same	way	against	time.		

	

Figure	1:	Book-to-market	
The	naïve-diversification	strategy	and	risk	parity	are	always	near	each	other.	They	are	

also	 the	highest	 portfolios,	 especially	 after	 the	downward	 fall	 around	1975.	Minimum	

variance	are	 lowest	of	 the	portfolios	 in	the	beginning,	but	 from	1983	and	to	2018	it	 is	

maximum	diversification.		

	



	 39	

Figure	2:	Size		
Also	here	it	is	naïve-diversification	strategy	that	is	highest	portfolios,	and	risk	parity	is	

very	near.	Minimum	variance	is	the	lowest	all	the	time.		

	

	

Figure	3:	Earning	Price		
Very	close	between	MaxDiv,	Naïve	and	RP.	MaxDiv	highest,	Minvar	lowest.		

	

Figure	4:	Industry	
All	four	very	close	1995,	then	Naive	and	Risk	parity	highest	and	maxdiv	and	minvar	
lowest.		
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Figure	5:	Size	and	BM		
	

	

Figure	6:	Investment		
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Figure	7:	Momentum	
	

	

Figure	8:	Profit	
	

	

Figure	9:	Accruals		
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Figure	10:	Cashflow	Price		
	

	
Figure	11:	Dividend	Yield		

	

Figure	12:	Short	Term	Reversal	
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Figure	13:	Long	Term	Reversal		
	

	

Figure	14:	Market	Beta		
	

	

Figure	15:	Net	Share	Issues		

	

Figure	16:	Residual	Variance		
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Each	portfolio	has	10	different	decile	portfolios	and	consists	a	return	by	market	equity,	

where	 the	 first	 column	 starts	 at	 the	 lowest	 and	 upwards	 to	 the	 highest.	 The	 means,	

median,	standard	deviations,	minimum	and	maximum	values	and	the	range	of	the	decile	

portfolios	sorted.	(1963,1	–	2018,12)	

Table	7:	Book-to-market	decile	portfolios		
BE-ME	 Lo10	 Dec2	 Dec3	 Dec4	 Dec5	 Dec6	 Dec7	 Dec8	 Dec9	 Hi10	

Mean	 0.87	 0.97	 1.00	 0.94	 0.957	 1.067	 0.997	 1.115	 1.25	 1.30	

Median	 0.96	 1.17	 1.17	 1.10	 1.21	 1.25	 1.17	 1.285	 1.665	 1.64	

Std.dev	 5.02	 4.57	 4.51	 4.58	 4.37	 4.30	 4.53	 4.585	 4.88	 6.06	

Min	 -22.72	 -24.8	 -25.72	 -23.59	 -23.50	 -23.08	 -24.32	 -24.88	 -19.35	 -26.36	

Max	 23.03	 19.55	 17.08	 18.51	 17.57	 18.44	 22.19	 22.70	 22.28	 34.84	

Range	 45.75	 44.35	 42.80	 42.10	 41.07	 41.52	 46.51	 47.58	 41.63	 61.20	

	

Table	8:	Size	decile	portfolios		
ME	 Lo10	 Dec2	 Dec3	 Dec4	 Dec5	 Dec6	 Dec7	 Dec8	 Dec9	 Hi10	

Mean	 1.16	 1.12	 1.20	 1.13	 1.15	 1.09	 1.10	 1.08	 1.00	 0.88	

Median	 1.3	 1.365	 1.60	 1.45	 1.63	 1.32	 1.28	 1.3	 1.32	 1.10	

Std.dev	 6.22	 6.27	 5.96	 5.73	 5.51	 5.18	 5.08	 4.94	 4.52	 4.16	

Min	 -28.92	 -30.48	 -28.93	 -29.45	 -28.12	 -26.15	 -26.23	 -24.32	 -22.27	 -19.72	

Max	 29.54	 28.40	 25.74	 24.33	 24.80	 20.90	 22.41	 19.11	 18.14	 18.12	

Range	 58.46	 58.88	 54.67	 53.78	 52.92	 47.05	 48.64	 43.43	 40.41	 37.84	

	

Table	9:	Earnings	Price	decile	portfolios		
E/P	 Lo10	 Dec2	 Dec3	 Dec4	 Dec5	 Dec6	 Dec7	 Dec8	 Dec9	 Hi10	

Mean	 0.91	 0.82	 0.93	 0.88	 0.91	 1.02	 1.10	 1.10	 1.18	 1.23	

Median	 1.10	 0.97	 1.13	 0.93	 1.09	 1.25	 1.16	 1.34	 1.38	 1.6	

Std.dev	 5.61	 4.67	 4.47	 4.34	 4.39	 4.24	 4.34	 4.48	 4.74	 5.19	

Min	 -25.89	 -23.85	 -22.52	 -23.35	 -22.53	 -23.86	 -19.83	 -19.07	 -18.95	 -22.26	

Max	 22.69	 21.52	 17.53	 15.31	 18.61	 21.3	 19.37	 23.64	 26.25	 26.07	

Range	 48.58	 45.37	 40.05	 38.66	 41.14	 45.16	 39.2	 42.71	 45.2	 48.33	

	



	 45	

Table	10:	Industry	decile	portfolios		
Ind	 Lo10	 Dec2	 Dec3	 Dec4	 Dec5	 Dec6	 Dec7	 Dec8	 Dec9	 Hi10	

Mean	 1.04	 0.83	 0.96	 0.97	 1.01	 0.85	 1.04	 1.07	 0.83	 0.94	

Median	 1.04	 0.75	 1.24	 0.91	 1.03	 1.02	 1.00	 1.15	 0.91	 1.36	

Std.dev	 4.21	 6.20	 4.85	 5.43	 6.34	 4.58	 5.09	 4.81	 3.96	 5.21	

Min	 -21.03	 -32.63	 -27.33	 -18.41	 -25.96	 -16.36	 -28.23	 -20.46	 -12.65	 -23.58	

Max	 18.88	 42.63	 17.5	 24.56	 20.76	 21.36	 25.86	 29.52	 18.84	 20.22	

Range	 39.91	 75.26	 44.83	 42.97	 46.72	 37.72	 54.09	 49.98	 31.49	 43.8	

	

	

Table	11:	Size	and	BM	decile	portfolios		
BM&ME	 Lo10	 Dec2	 Dec3	 Dec4	 Dec5	 Dec6	 Dec7	 Dec8	 Dec9	 Hi10	

Mean	 0.70	 1.17	 1.18	 1.39	 1.50	 0.90	 1.16	 1.25	 1.31	 1.38	

Median	 1.09	 1.41	 1.23	 1.44	 1.51	 1.32	 1.45	 1.44	 1.52	 1.77	

Std.dev	 7.84	 6.86	 5.92	 5.64	 5.93	 7.08	 5.92	 5.37	 5.20	 5.97	

Min	 -34.22	 -30.95	 -28.77	 -28.89	 -28.87	 -32.72	 -31.66	 -28.40	 -25.03	 -28.83	

Max	 38.90	 41.05	 28.16	 27.84	 33.88	 28.18	 26.12	 26.33	 27.58	 29.71	

Range	 73.12	 72.00	 56.93	 56.73	 62.75	 60.90	 57.77	 54.73	 52.62	 58.55	

	

Table	12:	Investment	decile	portfolios		
INV	 Lo10	 Dec2	 Dec3	 Dec4	 Dec5	 Dec6	 Dec7	 Dec8	 Dec9	 Hi10	

Mean	 1.11	 1.14	 1.04	 0.99	 0.96	 0.92	 0.95	 0.89	 0.90	 0.63	

Median	 1.23	 1.23	 1.19	 1.12	 1.20	 1.11	 1.12	 0.96	 1.16	 0.86	

Std.dev	 5.41	 4.78	 4.36	 4.12	 4.21	 4.37	 4.44	 4.78	 5.46	 6.17	

Min	 -26.96	 -21.40	 -21.00	 -18.04	 -18.49	 -21.47	 -23.79	 -23.06	 -24.31	 -28.56	

Max	 20.51	 17.65	 16.63	 17.46	 14.72	 15.83	 15.16	 22.50	 20.30	 19.73	

Range	 47.47	 39.05	 37.63	 35.50	 33.21	 37.30	 38.95	 45.56	 44.61	 48.29	

	

Table	13:	Momentum	decile	portfolios		
MOM	 Lo10	 Dec2	 Dec3	 Dec4	 Dec5	 Dec6	 Dec7	 Dec8	 Dec9	 Hi10	

Mean	 0.20	 0.69	 0.85	 0.89	 0.83	 0.90	 0.90	 1.07	 1.12	 1.48	

Median	 0.20	 0.67	 0.83	 0.91	 1.18	 1.16	 1.13	 1.27	 1.54	 1.71	
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Std.dev	 7.92	 6.10	 5.22	 4.70	 4.38	 4.43	 4.27	 4.38	 4.73	 6.09	

Min	 -26.12	 -24.85	 -23.31	 -18.65	 -21.48	 -23.77	 -24.28	 -20.53	 -26.27	 -26.74	

Max	 45.46	 35.50	 33.78	 21.66	 20.81	 16.68	 17.49	 19.75	 21.83	 23.07	

Range	 71.58	 60.35	 57.09	 40.31	 42.29	 40.45	 41.77	 40.28	 48.10	 49.81	

	

Table	14:	Profit	decile	portfolios		
Profit	 Lo10	 Dec2	 Dec3	 Dec4	 Dec5	 Dec6	 Dec7	 Dec8	 Dec9	 Hi10	

Mean	 0.25	 0.39	 0.53	 0.60	 0.75	 0.48	 0.57	 0.74	 0.74	 0.63	

Median	 0.92	 1.12	 0.91	 0.86	 0.95	 1.29	 0.96	 1.15	 0.98	 0.89	

Std.dev	 7.19	 5.73	 5.02	 4.70	 5.11	 4.46	 4.19	 4.13	 4.08	 3.90	

Min	 -25.57	 -24.51	 -16.73	 -23.68	 -19.79	 -14.56	 -16.51	 -13.90	 -16.29	 -15.47	

Max	 15.98	 15.21	 15.86	 12.45	 15.68	 11.34	 11.25	 11.73	 11.71	 10.23	

Range	 41.55	 39.72	 32.59	 36.13	 35.47	 25.90	 27.76	 25.63	 28.00	 25.70	

	

Table	15:	Accruals	decile	portfolios		
ACC	 Lo10	 Dec2	 Dec3	 Dec4	 Dec5	 Dec6	 Dec7	 Dec8	 Dec9	 Hi10	

Mean	 1.07	 0.99	 0.96	 0.93	 0.95	 0.86	 0.89	 0.96	 0.81	 0.62	

Median	 1.25	 1.26	 1.10	 1.14	 1.12	 1.09	 1.09	 0.99	 1.15	 0.98	

Std.dev	 5.70	 5.21	 4.60	 4.32	 4.06	 4.43	 4.55	 4.96	 5.32	 6.03	

Min	 -25.08	 -22.57	 -25.04	 -18.80	 -19.07	 -20.78	 -19.25	 -23.98	 -29.28	 -28.90	

Max	 20.40	 19.83	 16.39	 16.67	 14.34	 21.68	 16.72	 16.73	 24.61	 19.20	

Range	 45.48	 42-40	 41.43	 35.47	 33.41	 42.46	 35.97	 40.71	 53.89	 48.10	

	

Table	16:	Cashflow	Price	decile	portfolios		
CFP	 Lo10	 Dec2	 Dec3	 Dec4	 Dec5	 Dec6	 Dec7	 Dec8	 Dec9	 Hi10	

Mean	 0.86	 0.91	 0.93	 0.92	 0.98	 0.89	 1.03	 1.08	 1.14	 1.23	

Median	 1.14	 0.94	 1.04	 1.20	 1.17	 1.14	 1.09	 1.37	 1.38	 1.52	

Std.dev	 5.47	 4.63	 4.47	 4.46	 4.47	 4.43	 4.31	 4.37	 4.42	 5.17	

Min	 -26.02	 -23.44	 -22.11	 -22.97	 -25.85	 -23.01	 -23.68	 -20.02	 -20.27	 -22.80	

Max	 23.09	 22.65	 15.75	 15.77	 20.03	 14.79	 18.47	 22.70	 24.98	 26.14	

Range	 49.11	 46.09	 37.86	 38.74	 45.88	 37.80	 42.15	 42.72	 45.25	 48.94	
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Table	17:	Dividend	Yield	decile	portfolios		
DY	 Lo10	 Dec2	 Dec3	 Dec4	 Dec5	 Dec6	 Dec7	 Dec8	 Dec9	 Hi10	

Mean	 0.88	 0.87	 0.92	 0.96	 0.86	 0.98	 0.99	 1.05	 1.00	 0.96	

Median	 1.15	 1.12	 1.07	 1.21	 1.01	 1.09	 1.17	 1.68	 1.10	 0.98	

Std.dev	 5.60	 4.98	 4.88	 4.60	 4.67	 4.33	 4.29	 4.10	 4.09	 4.41	

Min	 -26.88	 -26.01	 -23.36	 -24.01	 -25.13	 -22.61	 -21.97	 -20.06	 -18.38	 -29.14	

Max	 22.97	 21.09	 20.25	 26.59	 21.46	 18.69	 13.96	 19.38	 18.48	 28.33	

Range	 49.85	 47.10	 43.61	 40.60	 46.59	 41.30	 35.93	 39.44	 36.86	 57.47	

	

Table	18:	Short	Term	Reversal	decile	portfolios		
STR	 Lo10	 Dec2	 Dec3	 Dec4	 Dec5	 Dec6	 Dec7	 Dec8	 Dec9	 Hi10	

Mean	 0.98	 1.11	 1.14	 1.02	 0.98	 0.88	 0.89	 0.87	 0.73	 0.64	

Median	 1.09	 1.18	 1.37	 1.33	 1.16	 1.23	 1.13	 1.18	 0.84	 0.79	

Std.dev	 7.14	 5.65	 5.03	 4.66	 4.41	 4.27	 4.23	 4.36	 4.66	 5.39	

Min	 -29.14	 -25.56	 -24.07	 -21.09	 -21.39	 -18.47	 -20.70	 -20.47	 -26.84	 -27.10	

Max	 34.93	 27.27	 22.21	 20.69	 19.07	 13.96	 15.34	 16.45	 20.11	 24.41	

Range	 64.39	 52.83	 46.28	 41.78	 40.46	 32.63	 36.04	 36.92	 46.95	 51.51	

	

Table	19:	Long	Term	Reversal	decile	portfolios		
LTR	 Lo10	 Dec2	 Dec3	 Dec4	 Dec5	 Dec6	 Dec7	 Dec8	 Dec9	 Hi10	

Mean	 1.22	 1.07	 1.08	 1.01	 1.02	 1.00	 0.99	 0.98	 0.88	 0.87	

Median	 1.04	 1.13	 1.23	 1.21	 1.37	 1.22	 1.21	 1.34	 1.04	 1.14	

Std.dev	 6.65	 5.20	 4.73	 4.43	 4.33	 4.21	 4.28	 4.32	 4.68	 5.80	

Min	 -29.92	 -28.59	 -25.75	 -25.35	 -20.86	 -22.49	 -20.40	 -17.16	 -23.11	 -24.41	

Max	 39.08	 30.86	 23.66	 22.96	 21.33	 17.66	 21.73	 15.69	 16.75	 25.58	

Range	 69.00	 59.45	 49.41	 48.31	 42.19	 40.15	 42.13	 32.85	 39.86	 49.99	

	

Table	20:	Market	Beta	decile	portfolios		
MaBe	 Lo10	 Dec2	 Dec3	 Dec4	 Dec5	 Dec6	 Dec7	 Dec8	 Dec9	 Hi10	

Mean	 0.93	 0.91	 0.95	 1.06	 0.90	 0.99	 0.84	 0.97	 0.92	 0.85	

Median	 1.10	 0.94	 1.01	 1.12	 1.15	 1.29	 1.21	 1.11	 1.23	 0.92	

Std.dev	 3.49	 3.85	 4.09	 4.65	 4.82	 5.51	 5.50	 6.11	 6.74	 7.95	
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Min	 -13.05	 -15.12	 -20.32	 -23.99	 -24.36	 -24.78	 -27.16	 -26.26	 -29.69	 -33.14	

Max	 18.66	 18.71	 15.46	 18.76	 18.25	 20.08	 18.24	 26.66	 31.92	 33.5	

Range	 31.71	 33.83	 35.78	 42.75	 42.61	 44.86	 45.50	 52.92	 61.61	 66.66	

	

Table	21:	Net	Share	Issues	decile	portfolios		
NSI	 Lo10	 Dec2	 Dec3	 Dec4	 Dec5	 Dec6	 Dec7	 Dec8	 Dec9	 Hi10	

Mean	 0.95	 0.85	 0.87	 1.00	 1.02	 1.02	 0.92	 0.75	 0.65	 0.40	

Median	 1.02	 1.04	 1.04	 1.10	 1.15	 1.48	 1.24	 1.06	 1.05	 0.71	

Std.dev	 4.45	 4.50	 4.71	 4.89	 4.88	 5.45	 5.58	 5.57	 5.40	 5.70	

Min	 -20.58	 -20.50	 -23.68	 -25.59	 -26.17	 -25.93	 -21.03	 -23.31	 -24.93	 -25.99	

Max	 16.83	 18.87	 18.26	 21.26	 16.53	 18.72	 23.46	 18.93	 18.74	 21.63	

Range	 37.41	 39.37	 41.94	 46.85	 42.70	 44.65	 44.49	 42.24	 43.57	 47.62	

	

Table	22:	Residual	Variance	decile	portfolios		
ResVar	 Lo10	 Dec2	 Dec3	 Dec4	 Dec5	 Dec6	 Dec7	 Dec8	 Dec9	 Hi10	

Mean	 0.94	 0.97	 0.90	 0.99	 0.98	 1.13	 0.90	 1.09	 0.83	 0.78	

Median	 1.04	 1.20	 1.09	 1.28	 1.16	 1.35	 1.07	 1.33	 1.04	 0.66	

Std.dev	 3.60	 4.61	 4.51	 4.85	 5.12	 5.56	 6.04	 6.66	 7.46	 8.55	

Min	 -14.32	 -20.93	 -20.36	 -24.51	 -24.71	 -26.90	 -29.73	 -30.27	 -31.42	 -32.66	

Max	 13.91	 17.81	 17.88	 20.70	 16.40	 21.98	 21.19	 30.86	 31.23	 33.03	

Range	 28.23	 38.74	 38.24	 45.21	 41.10	 48.88	 50.92	 61.13	 62.65	 65.59	

	

Table	23:	Risk-free	rate		
	 Mean	 Sd	 Min	 Max	 Range	

RF	 0.38	 0.26	 0.00	 1.35	 1.35	

MKTMRF	 0.67	 0.586	 -29.13	 38.85	 67.98	

HML	 0.49	 0.391	 -13.28	 35.46	 48.74	

SMB	 0.40	 0.333	 -9.88	 36.7	 46.58	

The	mean,	standard	deviation,	minimum	and	maximum	value	and	the	range	of	the	

risk-free	rate	for	(1963,1	–	2018,	12)	
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Implemented	R	code	for	achieving	the	empirical	results			
rm(list=ls(all=TRUE))	
	
library(tseries)	
library(quadprog)	
library(Rsolnp)	
library(xtable)	
library(psych)	
library(zoo)	
source("markowitz.r")	
source("performance.r")	
source("maxdivport.R")	
source("ols.r")	
	
#*********************************************#	
#	Read	data	
data	=	read.table("BE-ME.txt",	header=TRUE)	
data	<-	ts(data[,11:ncol(data)],	start=c(1927,1),	frequency	=	12)	
	
#	Read	the	factor	data	
factors	=	read.table("FF-data.txt",	header=TRUE)	
factors	=	ts(factors[,2:ncol(factors)],	start=c(1926,7),	frequency	=	12)	
factors	<-	as.data.frame(factors)/100	
	
#	find	the	time	index	of	portfolio	start	
year.start	<-	1963	
ind.start	<-	which(time(data)	==	year.start)	
assets	<-	as.matrix(data)/100	#	transform	ts	to	a	matrix	
nobs	<-	nrow(assets)	
nAssets	<-	ncol(assets)	
r.tbill=factors$RF	
	
#*********************************************	
#	Portfolio	management	part	of	the	program	
#*********************************************	
	
lookback.period	=	5*12				#	length	of	lookback	period	in	a	number	of	months	
n	<-	nobs	-	ind.start	+	1	#	number	of	monthly	portfolio	returns		
r.port	<-	rep(0,n)								#	reserve	the	space	for	portfolio	returns	
r.minvar	<-	rep(0,n)	
r.maxdiv	<-	rep(0,n)	
r.naive	<-	rep(0,n)	
	
ws=rep(0,n)	
w.naive	<-	rep(1/nAssets,	nAssets)	#	weights	of	assets	in	1/N	portfolio	
	
for	(i	in	1:n)	{	
		#	find	the	indices	of	the	lookback	period	
		period.end	<-	ind.start	+	i	-	2	
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		period.start	<-	period.end	-	lookback.period	+	1	
		if	(period.start	<	1)	period.start	<-	1	#	index	cannot	be	less	than	1	
		#	estimate	the	standard	deviations	in	the	lookback	period	
		covmat	<-	cov(assets[period.start:period.end,])	
		std	<-	sqrt(diag(covmat))	#	vector	of	standard	deviations	
		#Risk	parity	
		w	<-	1/std				#	initial	vector	of	weights	
		w	<-	w/sum(w)	#	normalized	vector	of	weights		
		ws[i]	<-	w[1]	#	keep	the	weight	of	stocks	
		r.port[i]	<-	sum(w*assets[period.end+1,])	
		#gmv	(minvar)	
		w=gmvportfolio(covmat,	shorts	=	FALSE)	
		ws[i]	<-	w[1]	
		r.minvar[i]	<-	sum(w*assets[period.end+1,])	
		#Naive	
		r.naive[i]	<-	sum(w.naive*assets[period.end+1,])	
		#Maxdiv	port	
		w=maxdivport(covmat)	
		r.maxdiv[i]	<-	sum(w*assets[period.end+1,])	
}	
	
factors	<-	factors[ind.start:nobs,]	
mktmrf	<-	factors$MKTMRF	#	market	factor	
r.tbill=factors$RF	
smb	<-	factors$SMB		
hml	<-	factors$HML	
	
X	<-	cbind(mktmrf,	smb,	hml)	
	
#	Computes	the	Sharpe	ratio	
Sharpe.port	=	SR(r.port-r.tbill)	
Sharpe.port	
Sharpe.naive	=	SR(r.naive-r.tbill)	
Sharpe.naive	
	
Sharpe.minvar	=	SR(r.minvar-r.tbill)	
Sharpe.minvar	
Sharpe.maxdiv	=	SR(r.maxdiv-r.tbill)	
Sharpe.maxdiv	
	
#	perform	the	test	of	equality	two	Sharpe	ratios	
pvalport	=	SharpeTest(r.port-r.tbill,	r.naive-r.tbill)	
pvalminvar	=	SharpeTest(r.minvar-r.tbill,	r.naive-r.tbill)	
pvalmaxdiv	=	SharpeTest(r.maxdiv-r.tbill,	r.naive-r.tbill)	
	
#	illustrate	the	growth	of	wealth		
wealth.port	=	cumprod(c(100,1+r.port))	#	from	portfolio	of	stocks	and	bonds	
wealth.naive	=	cumprod(c(100,1+r.naive))	#	from	stocks	
wealth.minvar	=	cumprod(c(100,1+r.minvar))	#from	mean	variance	
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wealth.maxdiv	=	cumprod(c(100,1+r.maxdiv))	#from	maximum	div	
	
#	the	final	wealth	
Wealth.Final.port	=	round(wealth.port[n+1],	digits=2)	
Wealth.Final.naive	=	round(wealth.naive[n+1],	digits=2)	
Wealth.Final.minvar	=	round(wealth.minvar[n+1],	digits=2)	
Wealth.Final.maxdiv	=	round(wealth.maxdiv[n+1],	digits=2)	
	
#	construct	a	ts	object	and	plot	the	growth	of	wealth	
wealth	=	ts(cbind(wealth.port,wealth.naive,wealth.minvar,wealth.maxdiv),	
start=c(year.start,1),	
												frequency	=	12)	
log.wealth=log(wealth)	
	
plot(log.wealth,	plot.type	=	"single",	col=c("red","blue","yellow","green"))	
	
legend(x="topleft",	legend=c("Risk	parity","Naive","MinVar","MaxDiv"),		
							col=c("red","blue","yellow","green"),	lty=1)	
	
my.summary	<-	function(r)	{	
		cat("\n****************************************	\n")	
		cat("	SUMMARY	STATISTICS	\n")	
		cat("****************************************	\n")	
		cat("Number	of	observations	=	",	length(r),	"\n")	
		cat("Mean	=	",	mean(r),	"\n")	
		cat("Median	=	",	median(r),	"\n")	
		cat("Variance	=	",	var(r),	"\n")	
		cat("Standard	deviation	=	",	sd(r),	"\n")	
		cat("Min	=	",	min(r),	"\n")	
		cat("Max	=	",	max(r),	"\n")	
		cat("Range	=	",	max(r)-min(r),	"\n")	
}	
	
my.summary(assets[(1110-677):1110,10])	
	
my.summary(r.naive)	
my.summary(r.port)	
my.summary(r.minvar)	
my.summary(r.maxdiv)	
	
#*************************************************	
#	Compute	the	performance	measures	
#*************************************************	
	
#	***********	ALPHA	ESTIMATION	AND	TESTING	***********	
	
#	first	portfolio	
r.naivemrf	<-	r.naive	-	r.tbill	
r.portmrf	<-	r.port	-	r.tbill	
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r.minvarmrf	<-	r.minvar	-	r.tbill	
r.maxdivmrf	<-	r.maxdiv	-	r.tbill	
	
#	estimate	the	single-factor	model	for	asset	1	
res1	<-	regstats(r.naivemrf,	mktmrf)	
alpha.naive	<-	res1$beta[1]	
resid.naive	<-	res1$resid	
	
#	estimate	the	single-factor	model	for	asset	2	
res2	<-	regstats(r.portmrf,	mktmrf)	
alpha.rport	<-	res2$beta[1]	
resid.rport	<-	res2$resid	
	
#	estimate	the	single-factor	model	for	asset	3	
res3	<-	regstats(r.minvarmrf,	mktmrf)	
alpha.rminvar	<-	res3$beta[1]	
resid.rminvar	<-	res3$resid	
	
#	estimate	the	single-factor	model	for	asset	4	
res4	<-	regstats(r.maxdiv,	mktmrf)	
alpha.rmaxdiv	<-	res4$beta[1]	
resid.rmaxdiv	<-	res4$resid	
	
#	conduct	the	test	about	equality	of	alphas	
a1	<-	alpha.naive	+	resid.naive	
a2	<-	alpha.rport	+	resid.rport	
a3	<-	alpha.rminvar	+	resid.rminvar	
a4	<-	alpha.rmaxdiv	+	resid.rmaxdiv	
	
res	<-	t.test(a1,	a2,	paired	=	TRUE)	
pval.rport	<-	res$p.value	#	access	the	p-value	of	the	test	
pval.rport	
	
res	<-	t.test(a1,	a3,	paired	=	TRUE)	
pval.rminvar	<-	res$p.value	#	access	the	p-value	of	the	test	
pval.rminvar	
	
res	<-	t.test(a1,	a4,	paired	=	TRUE)	
pval.rmaxdiv	<-	res$p.value	#	access	the	p-value	of	the	test	
pval.rmaxdiv	
	
a1eq0	=	res1$pval[1]	
a2eq0	=	res2$pval[1]	
a3eq0	=	res3$pval[1]	
a4eq0	=	res4$pval[1]	
	
alpha.naive	=	alpha.naive*12*100	
alpha.rport	=	alpha.rport*12*100	
alpha.rminvar	=	alpha.rminvar*12*100	
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alpha.rmaxdiv	=	alpha.rmaxdiv*12*100	
	
#	estimate	the	CAPM	(single-factor	model)	
result	<-	lm(r.naivemrf	~	mktmrf)	
summary(result)	
	
	
#	estimate	the	FF3	model	for	asset	1	
res1	<-	regstats(r.naivemrf,	X)	
alphaFF3.naive	<-	res1$beta[1]	
resid.naive	<-	res1$resid	
	
#	estimate	the	FF3	model	for	asset	2	
res2	<-	regstats(r.portmrf,	X)	
alphaFF3.rport	<-	res2$beta[1]	
resid.rport	<-	res2$resid	
	
#	estimate	the	FF3	model	for	asset	3	
res3	<-	regstats(r.minvarmrf,	X)	
alphaFF3.rminvar	<-	res3$beta[1]	
resid.rminvar	<-	res3$resid	
	
#	estimate	the	FF3	model	for	asset	4	
res4	<-	regstats(r.maxdiv,	X)	
alphaFF3.rmaxdiv	<-	res4$beta[1]	
resid.rmaxdiv	<-	res4$resid	
	
#	conduct	the	test	about	equality	of	FF3	
a1FF3	<-	alphaFF3.naive	+	resid.naive	
a2FF3	<-	alphaFF3.rport	+	resid.rport	
a3FF3	<-	alphaFF3.rminvar	+	resid.rminvar	
a4FF3	<-	alphaFF3.rmaxdiv	+	resid.rmaxdiv	
	
res	<-	t.test(a1FF3,	a2FF3,	paired	=	TRUE)	
pval.rportFF3	<-	res$p.value	#	access	the	p-value	of	the	test	
pval.rportFF3	
	
res	<-	t.test(a1FF3,	a3FF3,	paired	=	TRUE)	
pval.rminvarFF3	<-	res$p.value	#	access	the	p-value	of	the	test	
pval.rminvarFF3	
	
res	<-	t.test(a1FF3,	a4FF3,	paired	=	TRUE)	
pval.rmaxdivFF3	<-	res$p.value	#	access	the	p-value	of	the	test	
pval.rmaxdivFF3	
	
a1FF3eq0	=	res1$pval[1]	
a2FF3eq0	=	res2$pval[1]	
a3FF3eq0	=	res3$pval[1]	
a4FF3eq0	=	res4$pval[1]	
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alphaFF3.naive	=	alpha.naive*12*100	
alphaFF3.rport	=	alpha.rport*12*100	
alphaFF3.rminvar	=	alpha.rminvar*12*100	
alphaFF3.rmaxdiv	=	alpha.rmaxdiv*12*100	
	
#	estimate	the	FF3	(3-factor	model)	
result	<-	lm(assetmrf	~	mktmrf	+	smb	+	hml)	
summary(result)	
	
	
-----	
#	now	the	backward	conversion	to	data	frames	
port	<-	as.data.frame(port)	
factors	<-	as.data.frame(factors)	
	
#	select	the	portfolio	(next	to	smallest	and	most	valued)	
asset	<-	port$S2BM5	
#	compute	the	excess	return	
assetmrf	<-	asset-rf	
	
#	estimate	the	CAPM	(single-factor	model)	
result	<-	lm(r.naivemrf	~	mktmrf)	
summary(result)	
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Reflection	notes		
	

In	my	master	thesis	my	main	topic	is	portfolio	management	in	finance	theory.		

I	wanted	to	write	about	this	thesis	because	the	empirical	study	was	interesting	were	I	

could	learn	about	programming	and	statistical	tools	used	in	the	real	world	analysis	and	

modelling	of	fincancial	data	in	modern	finance.				

	

I	used	the	software	program	R	to	find	the	results	by	historical	financial	data	from	

Kenneth	French	data.	The	strategies	I	used	in	the	program	was	minimum-variance	

portfolio	(MVP),	maximum-diversification	portfolio	(MDP)	and	risk-parity	portfolio	

(RPP)	to	test	against	the	naive-diversification	strategy.	Further	the	optimized	portfolios	

I	used	was	Sharpe	Ratio,	Alpha	CAPM	and	Fama-French	3-Factor	model.	The	main	goal	

was	to	find	if	the	optimized	portfolio	strategy	could	outperform	the	naive-diversification	

strategy.	By	my	main	findings	were	i	used	the	software	program	R,	I	tested	the	

hypothesis	if	the	significance	could	hold	or	be	rejected.	First	when	i	picked	out	the	

datasets,	i	thought	the	optimized	portfolios	would	beat	the	naive-diversification	

strategy.	In	the	end	after	findings	the	results,	I	found	that	the	optimized	portfolio	

strategy	could	not	outperform	the	naive-diversification	strategy.	Either	could	the	naive-

diversification	not	outperform	the	optimized	strategy.		

	

To	start	with	what	the	thesis	should	have	to	get	better	results,	it	is	unfortunately	that	it	

should	 be	 added	 more	 portfolio	 optimization	 strategies.	 Mean-variance	 (Utility)	 and	

Minimum-variance	(S)	are	the	portfolio	optimization	strategies.	

Further,	 the	 thesis	 could	 have	 better	 or	 another	 results	 if	 it	was	 picked	 other	 dataset	

instead	of	those	16	dataset	from	Kenneth	French	that	was	picked.	That	would	have	given	

another	conclusion.	Also,	the	datasets	only	have	one	with	25	portfolios,	and	the	rest	are	

with	10	portfolios.	That	could	have	given	another	conclusion.	

	

This	reflection	note	is	written	as	a	part	of	a	master´s	in	Business	Administration	at	the	

University	of	Agder.	The	purpose	of	the	reflection	note	is	to	draw	on	the	knowledge	

generated	from	across	the	whole	master	program	and	discuss	how	the	thesis	topic	

relates	to	three	broad	terms:	International	trends,	innovation	and	responsibility.		
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International	

There	are	a	lot	of	academic	paper	about	these	findings	and	many	debates	where	the	

conclusion	is	not	the	same.	With	these	datasets	in	the	website	to	Kenneth	French,	

everybody	in	the	world	can	download	them.	All	they	need	is	to	learn	to	use	the	software	

program	R,	or	maybe	there	are	other	programs	that	can	be	used,	to	test	and	find	out	the	

results	of	the	portfolios	in	the	datasets.	The	weaknesses	with	the	research	is	that	all	the	

datasets	have	in	common	that	each	of	them	have	low-volatility.	The	portfolio	

management	is	very	interesting,	but	doing	with	that	you	should	know	a	bit	about	the	

economic	and	finance.		

	

Innovation		

The	fundamental	innovation	capability	to	portfolio	management	is	dynamically	plan	and	

optimize	investments.	It	serves	the	providing	corporate	and	business	unit	leaders	with	

insight	and	analytics.	It	also	optimizes	projects	to	maximum	value	creation	and	gives	

alternative	scenarios	to	investment	within	different	areas.	Today	in	the	21.century	the	

technology	do	it	easier	to	analyze	portfolios	by	different	programs,	and	with	that	it	can	

be	easier	to	do	investments.	But	what	I	think	that	none	of	the	portfolios	will	in	the	long-

run	beat	the	market	portfolio.		

	

Responsibility		

Investment	is	essential	individual	for	everyone.	Therefore	it	plays	a	role	in	deciding	the	

best	 investment	 for	 an	 individual	 as	 per	 his	 income,	 age	 and	 ability	 to	 take	 risks.	 If	 a	

person	are	 interest	 in	portfolio	management	 it	 is	essential	 to	do	a	analyze	of	different	

portfolios	and	know	the	risks	that	are	involved.	Most	people	in	the	world	wants	to	earn	

fast	money	with	minimum	risks	 involved	and	maximum	returns,	but	 they	also	have	to	

know	the	capacity	to	invest.		

	

There	are	some	questions	that	are	introduced	and	unexplained	that	are	out	of	scope	in	

this	thesis.	It	can	be	interesting	topics	for	future	research	to	follow	up	this	project.	One	

could	 pick	 another	 datasets	 that	 are	 applied	 and	 try	 with	 other	 datasets	 to	 test	 for	

similar	results.	The	same	 if	one	could	 try	 to	change	the	start	of	 the	 testing	period	and	

length	of	training	period.	One	could	also	try	to	account	the	market	friction,	and	see	what	

the	difference	is.	But	the	transactions	costs	are	in	practice,	and	maybe	it	will	be	different	
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to	 in	 the	 thesis.	 One	 could	 also	 present	 other	 optimized	 strategies	 and	 other	

performance	 measures	 to	 add	 more	 deepness	 in	 the	 analysis.	 There	 are	 some	

possibilities	here	that	have	not	been	completed	by	this	project.	

	


