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Abstract

An uncontrolled or unobserved influx or kick during drilling has the potential to induce a
well blowout, one of the most harmful incidences during drilling both in regards to economic
and environmental cost. Since kicks during drilling are serious risks, it is important both to
improve kick detection performance and capabilities, and to develop automatic flux detection
methodology. There are clear patterns during an influx incident. However, due to complex
processes and sparse instrumentation, it is difficult to predict the behavior of kicks or losses
based on sensor data combined with physical models alone. Emerging technologies within Deep
Learning are however quite adept at picking up on and quantifying, subtle patterns in time
series given enough data.

In this paper, new models for kick detection is developed by using Long Short-Term Memory
(LSTM) and Bidirectional LSTM (BiLSTM), two types of Deep Recurrent Neural Network, for
kick detection and influx size estimation during drilling operations. The proposed detection
methodology is based on simulated drilling data and involves detecting and quantifying the
influx of fluids between fractured formations and the wellbore in a large range of dynamic
drilling simulations.

The results show that the proposed methods are effective both to detect and estimate the influx
size during drilling operations so that corrective actions can be taken before any major problem
occurs. The results further indicate that these methods can be used on readily available sensor
data on the drill rig. Making it a suitable technology for both modern and older drilling rigs.
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1. INTRODUCTION

1 Introduction

Oil and gas drilling is a large and prosperous industry with a history stretching back as far
as to 347 AD [2]. Despite the need for a reduction in our hydrocarbon footprint, there is no
sign hydrocarbon extraction will be obsolete in the near future [3], furthermore, the global
production keeps increasing each year [4]. The number of active wells today is in the millions,
daily production of oil exceeding 90 million barrels and the daily production of natural gas
exceeding 30 trillion cubic meters. With this unprecedented production scale, even minor risks
become likely, and despite technological advancements in safe drilling the majority of wells still
rely on older and simpler technology.

During any drilling adventure, many risks can happen quickly and have large consequences.
One common risk for all wells is an uncontrolled blowout, which can be caused by an influx of
formation fluids (water, gas, oil or a combination of the three) into the wellbore, often termed
a "Kick". If it is not detected and counteracted in an early phase, the unstable effect can
cause severe financial loss, environmental contamination, and loss of human lives. As such [5]
concludes that; "Their prevention is undoubtedly the most important task in any drilling
venture".

Perhaps one of the most renowned kick related incidents is the Deepwater Horizon (DWH) oil
spill in the Gulf of Mexico in 2010. In this incident, a sequence of safety mechanisms failed,
but this sequence of damaging events was initialized by an undetected gas influx in the well [6].
As concluded by the incident report on the DWH accident, the undetected influx in the well is
one of six direct causes for the accident. The accident cost 11 human lives, 4.9 million barrels
of oil spill into the ocean and an estimated total cost to BP at around $65 billion (USD).

To achieve risk reduction, the industry should not only try to reduce kick occurrences but also
improve detection as countermeasures applied in early stages can severely limit the risk of an
uncontrolled blowout by regaining control the well. And in the worst case give the crew of the
rig ample time to plan and prepare for the blowout. Towards this goal, this project aims to
explore early prediction and detection systems for kick incidences while drilling by the use of
emerging techniques within artificial intelligence. Such a system will significantly reduce non-
productive time in a drilling process and is the natural first step towards achieving autonomous
automatic well control. The methods will be developed and tested on a high fidelity drilling
simulator, OpenLab Drilling, developed by NORCE.
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2. THEORETICAL BACKGROUND

2 Theoretical Background

2.1 Drilling

Relative to the modern technological era drilling is well-established engineering filed. But
while the history of extracting oil stretches back as far as to 347 AD, the history of offshore
drilling finds it’s origin in 1897 [7]. While these first offshore oil rigs were land rigs placed on
wooden poles in shallow water, the first on-water drilling rigs were produced in the 1930s. From
the start of these shallow offshore wells, there has been an increasing demand for petroleum
products, in combination with the high prices the production has had a nearly exponential
increase. This has pushed production to both deeper wells and more difficult environments.
Increasing the complexity and risk associated with the drilling adventure. While there have
been substantial technological advancements, especially the last three decades [5], with some
rigs already being designed with this cutting edge technology today, most of the established
drilling rigs and prospected rigs still rely on older technology. There are several reasons behind
this, one of which is the difficult and expensive process in getting new technology approved
for use in the industry, hampering the competition in the market. Another worth mentioning
is that the drilling operation is performed partly by the oil company, the drilling contractor
and the service company. This means that the overall process overview is not fully understood
by each of the companies involved in the drilling operation. This applies specifically to the
service companies since they typically deliver equipment and personnel trained to operate their
equipment. Additionally, applying automation to some of the emerging fields would mean
less personnel involved, therefore this would lead to reduced revenue for the service companies.
However, with the competitive market, fluctuations in oil prices and the potential advancements
in improving Health, Safety, and Environment (HSE), there is currently a renewed interest for
innovation in the drilling industry.

Figure 1: Illustration of well

Today’s platforms, also called rigs, are large structures carrying
both drilling equipment, living quarters and anything needed
for personnel to stay for an extended period. Depending on
the water depth the platform can either be mounted straight on
the seabed or a floating structure, both can also have extensive
subsea structures connected to the facility. So-called ’Rotary
Drilling’ is done by applying force on a rotating a drill string
with a drill bit at the end. The drill string is fed through the
top deck of the platform while drilling and extended with a new
drill pipe when needed. A drill pipe is approximately 9m and is
stored pre-assembled on the drill rig in sets of three, therefore an
extension need to be added or removed for approximately every
27th meter when drilling or tripping. The cuttings released by
the drill bit are carried up to the platform by mud cycled down
through the inner drill string and up again in the annulus of the
well. The mud serves several purposes as it also lubricates and
cools the well.
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2. THEORETICAL BACKGROUND

Perhaps the most important safety function of the drilling fluid (mud) is controlling the well
pressure to stay within the limits of the formations pore- and fracture- pressure as not to induce
a kick, see fig 2. When the well pressure is reduced below the pore pressure of the formation
can occur [5], this influx can consist of water, gas, oil or a combination off all. This can happen
either because it is drilled into a formation with unexpected high pressure, or from the well
pressure dropping below the pore pressure limit. Another troublesome factor is if the well
pressure exceeds the fracture pressure of the formation, in this case, the mud can permeate the
formation, this is termed mud loss. In the case of
a total mud loss, the formation can be fractured
in a way that larger quantities of mud are lost to
the formation, potentially decreasing the hydrostatic
wellhead, I.e the mud level will be below the top of
the well. This can, in turn, reduce the pressure in the
well below the pore pressure and induce a kick.

As illustrated in figure 2, these pressure limits do not
conform to any predefined patterns but rather depend
on the formation, as such it can be impossible for the
hydrostatic pressure gradient to fit between the upper
and lower formation limit for an extended depth range.
To extend drilling depth casings, fig 6, are used as a

Pressure
D

e
p
th

Pore pressure

Fracture pressure

Well pressure

Casing

Figure 2: Formation pressure limits
and hydro-static well pressure

barrier between the well flow and the formation, greatly increasing the pressure range of the
well.

Besides functioning as a formation barrier the casing is also used as an installation point for
specialized equipment like the blowout preventer (BOP). The BOP is a multi-layer safety barrier
mounted at the end the well casing on the seabed. As such it can cut off the well even if the
pipeline between the seabed and the platform is damaged. Towards this purpose the BOP stack
has a multi-tier redundancy system that allows for flow and pressure control as well as flow
cutoff, this is to help regain control of a well where a kick has occurred. As a last resort, the
BOP has pipe rams and shear rams designed to cut off both annular flow and cut a potential
pipeline going through the BOP.

Keeping control of the well pressure is paramount to safe drilling. The well pressure gradient is
controlled through the mud density, choke opening and the flow rate. While the mud density
decides the wells hydrostatic pressure at rest, also affected by any cuttings or influx masses, it
is slow to respond on new changes, as such the choke is used for more responsive adjustments.
Controlling the pressure by the choke does however require there to be active flow through
the well. Due to friction in the well, the flow-rate through the well also impacts the pressure.
As such, there is always an increased chance of influx when adding or removing drill pipes, a
process that requires the mud pump to be turned off. Due to the friction coefficients of the
well, especially in the open hole, being unknown, making models of the well response has so far
been beyond the reach of science. This is further complicated by the fact that there is often no
live readout of the actual bottom hole pressure (BHP). Making fine control over the pressure
in the well a difficult task.

The most common way to read bottom hole pressure today is a signal sent by pressure modu-
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2. THEORETICAL BACKGROUND

lation in the mud, typically giving a readout at 0.5 Hz when the mud pump is connected. The
readouts are unavailable during tripping and other procedures where the hydrostatic head is
not reaching the top deck of the rig. While newer technology, like drill by wire [8], offers much
better bandwidth downhole and are emerging in the market. This is much more expensive and
still not common among the rigs in operation.

While there are uncertainties in the well pressure throughout the wellbore, estimated lower and
upper bounds do give a reasonable knowledge of the well pressure. To know what pressure
to keep in the well formation, surveys are done. While there are no exact procedures for
determining the formation pressure limits, it is generally done by a combination of seismic
data, logged drilling data and/or live drilling data. All of which are prone to uncertainties in
their results [5,9]. As such, the estimated formation pressure limits inherit these uncertainties,
and one can not be sure that all abnormalities, like fractures or different pressure pockets, are
detected in a planned well path.

What is done when a kick occurs [10] The consequences of these uncertainties and others are
that kicks do happen in the well. When an influx does occur it can, as previously mentioned,
consist of multiple of substances like water, oil or gas, but also combination off them all. The
result is different characteristics and risks involved in the incidents. While an oil or liquid
influx will displace some volume during its influx, it will have a relatively stable ascent among
the mud in the well. In general, the density of the influx fluid will, however, be lower than
that of the mud, as such the casing pressure will increase. This risk is even higher when a gas
kick occurs, this is due to the increased expansion in the gas volume when it rises towards the
surface and decreasing pressure. A gas kick is especially dangerous when it reaches the riser,
where it can do a rapid expansion and blow out through the top deck of the platform. The
severity of these consequences is, therefore, dependant on both the influx type and volume.

While less severe kicks might be handled with uninterrupted operation, especially by modern
MPD drilling rigs, larger kicks need to be bleed out of the well in a slow controlled manner
to reduce risk. While there are several methods for controlling a kick, [5] breaks these down
to two fundamental elements; firstly by displacing the mud with a heavier mud to stop the
influx and secondly to safely circle out the kick fluid and/or gas from the well. On conventional
drilling rigs this procedure, called well control, is a manual operation including sensor readings,
calculations, and control performed by several members of the drilling crew. It involves control
of the blow-out preventer (BOP), the rig pump and the well control choke, all located at
different locations at the rig. The well control choke is adjusted manually to maintain a certain
pressure in the well. This may be a difficult task due to large time-delays in the drilling process
and the complex behavior of the multiphase flow. To ensure alertness in the crew and that
proper measures are taken, early detection with few false alarms are important. Methods for
kick detection will be presented in chapter 3.

In summary drilling for petroleum products offer great economic reward and valuable resources
for society. The act of drilling is, however, a complex multidisciplinary task requiring consid-
erable control of the well. As the demand pushes production to harder to reach reservoirs,
and our awareness of the lasting environmental damages done by severe accidents increases, it
is more important than ever to ensure safe drilling and increase our capacity to monitor and
control downhole events.
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2. THEORETICAL BACKGROUND

2.2 Artificial intelligence

In the broadest terms, artificial intelligence is a family of
tools, digital or not, that in some way solves complex tasks.
While its a thriving field in research and development today,
it is also a field with a history that can be traced back to an-
cient Greece. Due to its long history and popularity, there are
many definitions of the word depending on which perspective
it is interpreted from. For this paper, AI is defined as the
superfamily of all tools that in some way solve complex tasks.

While much of the backbone of modern deep learning and
neural networks where written in the 1900s [11], the required
computational power and ability to both gather and handle the big data needed for training
sufficiently complex models has not been readily available until fairly recently.

2.2.1 Machine learning

Machine learning is a field of computer science for pattern recognition and statistics. It is the
scientific study of algorithms and statistical models that computer systems use to effectively
perform a specific task without using explicit instructions, relying on models and inference
instead. Machine learning algorithms build a mathematical model of sample data, known as
“training data”, to make predictions or decisions without being explicitly programmed to per-
form the task [12]. Machine learning algorithms are used in the applications of email filtering,
detection of network intruders, and computer vision, where it is unfeasible to develop an al-
gorithm of specific instructions for performing the task. Machine learning is closely related to
computational statistics, which focuses on making predictions using computers. As the com-
plexity of the models have increased in recent times, it has become evident that the quality of
the input data to machine learning models plays a significant impact on their performance [11]

2.2.2 Neural Networks

Neural networks are a type of machine learning that was
devised to mimic the way a brain works. While there are
devised many types of networks and nodes, it is in its
simplest form a collection of simpler functions working
together to achieve complex tasks as depicted in figure
3. The network is generally built with a set of input
features, depicted in green, some hidden layers, in grey,
and outputs. An input value is termed a feature and
can contain a single value or a multidimensional array
of data. The only limit to the number of features and
the array size of each feature is Figure 3: Neural network structure
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the computational power needed. The hidden layers of a neural network are often referred to
as the ’black box’, and is where the neural network calculates the response of the features.

With zero hidden layers, the network can essentially just do linear regression. By adding hidden
layers, the network can adapt to increasingly complex non-linear functions. The complexity of
the function it can predict is further impacted by the number of nodes, also called neurons, in
each layer. There seems to be no general agreement on the number of layers and neurons to
use in a network as of yet, especially when there is more than one input feature. With only
one input feature there are no apparent reasons for using more than one layer.

While there are many types of nodes that can be used in a neural network, each layer generally
only consists of one type of node. One of the simplest types of nodes to be used is a fully
connected node, eq 1. The fully connected node takes the value of each node or feature in the
previous layer, X, and multiply it with an individual weight for each, W , and add a bias, b.
It is also common to use some kind of activation function to keep the resulting value within a
predefined range.

Z = W ·X + b (1)

2.2.3 Deep learning

Deep learning is a subset of machine learning methods. Deep learning architectures such as
deep neural networks, recurrent neural networks, and deep belief networks can have hundreds
of millions of parameters [11,13], allowing them to model complex functions such as nonlinear
dynamics. Unlike many machine learning methods, they do not require a human expert to hand-
engineer feature vectors from sensor data. Some deep learning models can, however, present
particular challenges in physical robotic systems, where generating training data is generally
expensive, and sub-optimal performance in training poses a danger in some applications. Yet,
despite such challenges, researchers are finding creative alternatives, such as leveraging training
data via digital manipulation, simulation and automating training to improve the performance
of deep learning models and reduce the training time.

Compared with traditional neural networks, recurrent neural networks (RNNs) are known for
making decisions by reasoning about previous events. The looping nature of RNNs allows
information to persist so that not only the information from the previous time step and current
time step model the prediction but also the information from more than one previous time steps.
Some of the applications that can be successfully solved with RNN are language modeling,
speech recognition, image captioning, and translation.

Depending on the application, it varies how much of the historical data is needed to be taken
into account. Standard RNNs do not perform well when much context is needed. This is
dubbed the long-term dependency problem.

LSTM: Considering the above issue with the standard RNNs, in this research, we utilize a
special kind of RNN i.e. Long Short Term Memory (LSTM) networks. The selected approach
is capable of learning long-term dependencies. Instead of the chain of repeating simple modules

7



2. THEORETICAL BACKGROUND

having a single neural network layer in standard RNNs, modules in LSTM have a more advanced
structure having four neural network layers.

f g i o

c(t-1) c(t)

h(t-1) h(t)

X(t)

Forget OutputUpdate

Figure 4: LSTM module [1]

These four layers in an LSTM module perform different tasks during the training phase. Three
of them act as gates that optionally let information through and are made of a sigmoid neural
net layer. Therefore the output of these gates is a value between 0 and 1 i.e. value 0 let nothing
through and value 1 let everything through. First, the forget gate layer, f in Fig. 1, decides
which information should be removed by looking at the current input, x(t) to the module and
the output from the previous module, h(t-1). Then, the input gate layer (g) and the tanh layer
(i) collectively decide which new information should be added to the existing knowledge, c(t).
Once we are done with the updating of information within the module, the output gate layer
(o) decides what to output, basically a filtered version of the existing information.

BiLSTM: A Bidirectional Long Short-Term Memory is a version of LSTM module that is
used to predict a full sequence of responses by looking both forward and backwards in the
sequence for any given point. A BiLSTM layer is generally more accurate than a LSTM layer
but does not perform as well at the end of the sequence as an LSTM. This generally makes it
unsuitable for real-time predictions, however, the increased accuracy away from the edges of
the series can make it a suitable tool if a short delay is not an issue.

2.2.4 Generalization and overfitting

When training a neural network of any kind the goal is often to create a model that generalizes
to the value or event that is intended to be detected. As described in section 2.2.2, the number
of layers and nodes in a network determines the capacity of the network, and thus its ability to
find a good fit. If the network is too simple it will underfit to the training data, essentially this
can be seen as the equivalent of trying to describe a polynomial function with a linear function,
while you might align with a point or two on the line, most of the polynomial function will
not be described by the linear function. In contrast, if the network is too complex the network
can overfit to the training data. By overfitting, the network generates a function that describes
the data points seen in the training set with an accuracy excluding similar values/events from
previously unseen data [11]. This can again be seen as describing the points along a low-
resolution sinus curve with a high-frequency sinus function, aligning perfectly to the points
seen, but not with the function itself.

While it is possible to calculate the capacity of the network, this is a non-trivial task to match

8



2. THEORETICAL BACKGROUND

up with the needed capacity for data-set. As such the conventional method is to use trial and
error to determine a suitable capacity for the data seen in conjunction with suitable training
time, as it is not uncommon to use a network with a higher than needed capacity and stop
training when overfitting starts to occur. This is termed early stopping, and is a well-established
method for generalizing the resulting model. Early stopping is done by using a validation set
alongside the training set during training. For set intervals, during training, the prediction error
is calculated by using the validation set. While both the training error and validation error are
decreasing, the network is trained towards a generalized model. However, if the training error
continues to be reduced while the validation error starts increasing this is a sign that the model
is overfitting. As such the early stopping algorithm will stop training when this occurs.

While early stopping can counteract overfitting on a network with a given data-set, it cannot
improve on the achievable generalization with a given model and data set. To further increase
the network capacity and/or the generalization of the network a larger training set can be used.
When using DNN’s which inherently has a large capacity even more simple setups need large
data sets to not overfit. Increasing the size of the training data is often referred to as the most
efficient way to achieve a more generalized model [11].

2.2.5 Optimization algorithms

With the number of parameters to tune in a NN range from just a few to hundreds of millions,
sophisticated methods of optimizing these parameters are essential for achieving the desired
result. The applied optimization algorithm and its initial parameters can greatly affect both
the end result and the training time. As such it is a field of active research with several
promising methods. For this paper two well-established methods [11] have been evaluated.

SGD: Stochastic Gradient Descent (SGD) was introduced in the early ages of deep learning
(cybernetics) [14, 15], and is probably one of the most used optimization algorithms. While
gradient descent is a method of following the gradient of an entire training set downhill, SGD
makes a significant time improvement by calculating the gradient by only a random selection of
the training set, termed a mini-batch. Critical initial values for an SGD algorithm includes it’s
learning rate, learning rate reduction over time and in some variants the momentum [16]. [17]
concludes on the effectiveness of SGD in training on large data sets. While [18] discusses the
issues with setting the correct optimization parameters and the negative effect this can have
on the resulting model.

Adam: Adam was introduced in 2015 as an adaptive learning rate optimization algorithm [19].
It is presented as a method that is robust to noise, computationally efficient and requires little
tuning. By adaptive optimization of the parameters, it greatly reduces the need for trial and
error in determining training parameters. While it comes with a default learning rate, this can
be changed where needed. As with SGD, Adam uses mini-batches to increase training efficiency
but does not offer early stopping.
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2.2.6 Mini-Batch

Computing the error on a single model over the whole data-set is a computationally heavy
task. In practice, the training set is therefore divided up in mini-batches with a predetermined
size. There are no generally agreed upon rules for the mini-batch size most efficient for training.
Several papers [11,20,21] do however argue for a relatively small mini-batch size. The definition
of a small mini-batch size differs depending on the authors but ranges between 32-512 in most
suggestions.

Both [20] and [21] attribute this improved performance to a larger mini-batch size optimizing
to a sharper minima, which leads to a poorer generalization. Moreover, the finding in [21]
supports a commonly held belief that the inherent noise in the results of a smaller mini-batch
size is beneficial in the gradient estimation of the optimization algorithm.

2.2.7 Augmented learning

While increasing the training set often is the best way to generalize your model, acquiring
enough data to do so is not always possible. This is especially true for drilling data. A
well-known method for increasing the size of the data set already available is using data aug-
mentation. This is a method where the already available data is in some way modified and
augmented in one way or another while making sure the augmentation itself does not interfere
with a realistic model, i.e rotating the number 6 180 degrees in a handwriting data sample set.
A further example of this can be seen in image augmentation where the pictures are modified
with random color adjustments, rotations, scaling and more. With a physics-based simulation,
one needs to be especially careful that the augmentation does not interfere with the realistic
results. However realistic drilling data is prone to noise and augmenting a training set with
different noise and disturbance filters have been known to give better results [22]. With this
method, the noiseless simulated data set could easily be doubled or tripled in size, while also
being trained to filter realistic noise on the sensor data.

2.2.8 Combined learning on real and synthetic data

ML methods are often used to detect and evaluate uncommon occurrences in the real world.
This does, however, pose a problem as the available training data might be spares, as is the
case when evaluating kick. While real data exists, it is unlikely that the available recorded data
can be combined in such a way as to present a full generalized description of the incidents.
Towards this end, [23] makes a convincing argument for combined learning with both real and
synthetic data to improve the accuracy and robustness of a machine learning model, especially
in the cases where ML methods are used as a tool with high-risk scenarios, like a kick. During
the development of automatic power line inspection drones, [24] explained that using combined
learning was an essential tool for achieving good results correctly identifying power lines in
difficult conditions. He further explains that they, in general, expected a 25 % performance
loss when moving from only synthetic data to real.
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3 State of the Art

The conventional kick and loss indications are summarized in [5] as follows: abnormal varia-
tions of active pit volume, the difference between flow in and flow out, variations of standpipe
pressure and annular discharge pressure, etc. It is widely accepted in the literature that flow
measurements give the most rapid indication of a kick [25]. The flow-rate measurements are
often quite noisy and subject to calibration problems. Several filtering methods have been
used to extract more reliable parameters including low-pass filter [25] and a method based on
Bayesian probability calculations [26].

3.1 Return Flow

Monitoring the return flow out of the well may also provide indications of both reservoir influx
and lost circulation. In a stable well, the flow in and out of the well should be approximately
the same over shorter time ranges when flow rates are unchanged and a change from this will
indicate unstable conditions.

3.2 Detection of Wellbore Anomalies through Pressures

Another proposed method of detection of kick and loss, as well as other wellbore anomalies, is
the use of standpipe pressure (SPP) and annulus discharge pressure (ADP). [27] The behavior
of these pressures by themselves and in comparison to each other can help identify downhole
problems. Pressure sensors are smaller and easier to install than Coriolis flow meters. For kicks
and losses, the alarms are based on pressure change equivalents for total flow or a continuous
total change in volume. Washout and plugging are detected based on changes in pressure. To
reduce noise and make interpretation easier, the variance is normalized.

The method seems to compare well with the use of a Coriolis flow meter, with comparable
results for the time used for detection, as well as the flow and volumes. The method also allows
for the detection of anomalies with a shut-in well, which is not possible with a flow meter. Also,
the method is not prone to problems due to plugging or proximity to vibration sources in the
same way as the flow meters.

3.3 Downhole Pressure Measurements

Measurements of downhole pressures may also be used for kick detection. These measurements
can be transmitted to surface by traditional mud pulse telemetry, but real-time measurements
would then be limited to whenever the pumps are running. Data rate capabilities are limited,
due to low bandwidth by mud pulse telemetry itself, and because other downhole data measure-
ments are transmitted in the same way. A faster alternative is the wired drill pipe [8], which
would also give measurements when not circulating. It is however also a lot more expensive.
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3.4 Connection Flow-backs

Connected to the mud pit volumes are the flow-backs experienced during connections. During
circulation, a certain amount of mud will be occupying the surface circulation system. When
the pumps are shut off during a connection, this mud will flow back into the pits, increasing
the pit level. Depending on the flow rate, the amount of flow-back should be more or less the
same at each connection, and any changes may indicate changes downhole.

3.5 Gass kick detection

A gas kick alarm system is presented in [28] where the principle is to measure the propagation
time of a pressure pulse through the well by using a sonic technique. A new drilling method
was developed in [29,30] by using the concept of micro-flux control, which is based on detecting
a loss or influx of fluids, and instantly adjusting the return flow and the bottom hole pressure
to regain control of the well.

3.6 Automated Monitoring of Traditional Parameters

The simplest approach to automated kick detection is to monitor the pit level or mud flow rate
in and out of the well, and raise an alarm when threshold values are exceeded. Automated
systems for monitoring variables such as pit levels and flow out would be able to spot reservoir
influx in the same way as humans do today. However, one of the challenges with computer-
assisted decision making in drilling is that the active circulation system is a highly dynamic
and complex system, and having alarms on simple rules would raise false alarms. The system
needs to be able to understand what is going on and adapt to this information.

Recent experience indicates that to optimize the drilling operation the entire drilling system, not
just the mechanics or software, needs to be designed from a control system point of view [31–36].
A difficult and expensive task for drilling rigs already in operation. Furthermore, model-based
detection in a well can be challenging, both due to the very complex dynamics of the multiphase
flow consisting of drilling mud, cuttings, reservoir fluids and modeling of subsurface conditions
e.g pressure limits and formation friction.

3.7 Detection Algorithms for MPD

While MDP detection will not be evaluated directly in this study, several drilling operations
have been performed successfully using Managed Pressure Drilling (MPD) techniques. As
such it is of interest to evaluate the detection methods for this paper. MPD is relatively a
new drilling process that allows greater, more precise control of the bottom hole pressure in
a wellbore in [37]. The detection of kick and loss in MPD has received a lot of attention
in [27, 38, 39], where the method of monitoring the variations of the standpipe and annular
discharge pressures was developed to identify influx and loss during MPD.

In [40], the detection of gains and losses was based on the deviations of measured and the
expected flow-rate out which depends on accurate hydraulic models. Model-based gain and loss
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detection method were developed in [41] where a transient hydraulic model is used for downhole
and surface equipment effects on the pit volume variations. A low-order model was developed
for MPD in [34, 42]based on the conservation of mass and momentum balance.Research on
kick detection and control based on the low-order model has been recently in the articles
[33,35,43–45] during MPD.

3.8 AI in kick detection

Machine learning methods have been investigated for kick detection recently [46,47]. They also
provide a good overview of the role of machine learning and a summary of state-of-the-art,
i.e. artificial intelligence, for drilling applications. In [48], machine learning algorithms were
applied for the detection of well control events for a case study. This study explored the use
of using machine learning to create an adaptive alarm threshold on flow out and pit volume
with the flow in, bit depth and well depth as features with promising results in reducing false
alarms. In [49], a case study in Iranian oil fields was conducted for early kick detection using
real-time data analysis with a dynamic neural network trained with a range of different sensors
as features. This study also explored different data frequencies, concluding that 15Hz gave the
best result for their NN. Inconsistencies and missing tables in the publication make it hard to
conclude on the network model and feature sets used to achieve these results.

Companies like Shell and Equinor are also currently working with artificial intelligence for early
kick detection [50]. In this method, ML is used to train a model to predict the expected Flow
Out, SPP, and mud pit gain/loss. A kick or loss alarm is then raised for the human controller
if there is too large of a deviation from the expected value and the measured value. A benefit
of this solution is that it is human-centered, meaning it tells the human control which values
it expected a different result. This allows the controller to recheck and evaluate the model’s
prediction.
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4 Drilling Simulation

4.1 Simulator

The drilling data for this paper was generated by the OpenLab Drilling [51] simulator delivered
by NORCE. OpenLab Drilling is a high fidelity simulator that simulates the response of a well
with great accuracy through differential equations. The simulator is based on the following
published methods [52–57] and offers some generic well and ring templates to use for simulations.
For this paper, all work is based on the supplied "Generic offshore" rig and the "InclinedWell
2500m" template, with modification applied as specified through this chapter. As this simulator
is built as a versatile tool for training and research within drilling it offers support for modifying
a large variety of parameters. Many of which have direct or indirect effects on the influx or
loss in the well. This chapter will give an overview of the simulators key parameters and basic
functionality in regards to drilling and influx simulation.

4.1.1 Rig, drill string, and wellpath

Rig parameters: The rig parameters in the simulation define the operational limits and
characteristics of the simulations. For this study, the predefined "Generic offshore" rig was
used for all simulations. The seen in table 1 are the rig parameters setup with this rig. For this
rig, a few simplifications are done on the system. These simplifications include a main mud
tank with infinite capacity and a shaker with zero loss, neither of which is of interest when
simulating for the proposed methods in detecting kick.

Main Pump1 MPD pump2

- Flow rate acceleration 200 l
mins - Flow rate acceleration 200 l

mins

MPD Choke3 BOP Choke4
- Change rate 20 %/s - Change rate 20 %/s
Travelling block5 Top drive6
- Weight 20 ton - Rotation acceleration 6 rpm/s
Drawworks7 Main Tank8

-Top string acceleration 0.05 m/s2 - Tank Volume ∞ m3

Shaker9 Reserve Tank
- Mud loss proportion 0 % - Tank Volume 0 m3

Table 1: Generic offshore drill rig setup. Illustration: NORCE

Drillstring: The simulator includes a library of different drill pipes and bottom hole assembly
components. Of interest for this study is the capability to variate the drill pipe inner and outer
parameters to change the volumetric displacement when tripping.

Figure 5: Generic drillpipe. Illustrations: NORCE
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Wellpath: The well path can be completely customized on a meter by meter basis. Changes in
the well path will affect the difference between the measured depth (MD) and true vertical depth
(TVD). Furthermore, the difference in the well inclination will create a nonlinear relationship
between the MD and the well pressure. As the models in this paper have been trained on MD,
the single predefined well path seen in figure 6 has been used.

Figure 6: Well path of InclinedWell 2500m. Illustrations: NORCE

4.1.2 Geology & Casing

As described in chapter 2.1, the occurrence of kicks is highly reliant on the pressure and
strength characteristics of the formation. To simulate the full geological profile Openlab uses
a combination of formation pressure profiles, thermal profiles, and formation strength profiles.
The pressure profile describes the pore pressure and the fracture pressure of the formation as
seen in figure 7a. As the temperature is important for several aspects of the well dynamic
including the well pressure a full thermal profile of the well is defined as seen in figure 7b. In
addition, the formation strength, I.e, the pressure difference needed for a fracture, can also be
defined, figure 7c. To create different influxes characteristics in the geological profile anyone
can be modified. For this paper only the pressure profile has been modified, with this alone
one can create a great variety of cases and limit the number of cases to select from. Towards
that end the default thermal- and formation strength- profile where used.

(a) Pressure (b) Thermal (c) Formation strength

Figure 7: Default geological profiles used by OpenLab. Illustrations: NORCE
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Just as with a real drilling operation casings are used to shield the well from the formation
pressure. Each casing segments depth, diameter, and thickness can be specified. In these
simulations, no attempts at influx due to casing defects have been done, as such the open hole
has been the deciding factor for where the influx can occur. Simulations have been done with
a 300m MD open-hole, ranging from 2200m MD to 2500m MD. This segment is outlined in
figure 7a measured in TVD.

4.1.3 Drilling fluid (mud)

The drilling fluids in OpenLab can be changed with a high degree of freedom, both in terms
of fluid mix and density as seen in figure 8. Editing the fluid allows for even more specific
changes as gel strength over time, the oil density at different pressures and temperature zones
and the fluid rheology. A reserve fluid can also be designed for the simulations, this can among
others be used as a heavy mud when simulating and controlling influx scenarios. As control
has not been studied the reserve fluid has not been used in this study. All fluid densities used
are based on OpenLab’s predefined ’Generic obm 1’ fluid, where mass and volume fractions are
automatically adjusted to conform to a desired drilling fluid density.

Figure 8: Drilling fluid interface. Illustration: NORCE

4.1.4 Influx & mud loss

OpenLab can simulate well operations with both artificial and pressure based influx. It is
however limited to simulate the influx only with methane gas. While this reduces some of the
complexity one would see in a real well, it is a worst case scenario of particular interest. During
simulations, the amount of influx is measured by the total mass (kg) which has been injected
or penetrated the well at every time step.

During the artificial influx simulations, a pre-defined influx is injected into the well at a prede-
termined depth, rate, and total influx mass. Being independent of the drilling operations these
cases should only be detectable from the well response and not as a consequence of how the
well is operated.
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Figure 9: Influx injection example

Figure 9 shows an example of a artificial influx, and the flow and pressure responses of the
well. In this case both flow and pressure where at a steady state when the influx occurred, the
resulting effect on all measurements are easily observable.

Geopressure based influx or loss is based on a near-well formation flow model that calculates
the flux between the well and the formation. The influx or mud loss is determined by the
pressure difference between well and formation (see 4.2.2), the permeability, the porosity, and
the density of the drilling fluid. This makes it difficult to reliably simulate a given realistic
influx without introducing clear engineered operation patterns for a network to pick up on. To
counteract this several different formation models, initial mud density and flow patterns were
used and run dynamically using randomized patterns. With the large sample size, geopressure
based influx inevitably occurred. Figure 10 shows an example of a geopressure based influx

Figure 10: Geopressure based influx example

that occurred during a flow shutdown in the well. As with the injected influx in figure 9 the
difference in flow rate is easily detectable. However, due to compressible in the drilling fluid, it
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is difficult to conclude on an influx or its size based on the difference in flow in and out during
the mud pump shutdown. While the SPP and ADP pressures both are too stable to make any
visual observations of an influx the BHP can be perceived with an inverted correlation to the
influx rate chart when the y-axis is scaled down.

4.1.5 Limitations

As the simulated responses are calculated there is no noise or other data artifacts that can be
expected in a real drilling environment. Noise filtering is, however, an advanced field of study,
most of which comes at the cost of lag or data frequency.

The simulations where controlled and the resulting data gathered by an algorithm written in
MATLAB described later in this chapter. On average the simulations could run successfully
at ∼ 5× real time at 1Hz, with up to 10 simulations running in parallel. Even with the up
to ∼ 50× time improvement, simulating enough data for a DNN to be trained was a time-
consuming process, especially if the data step frequency were increased. To allow for enough
training data to be generated, and to mitigate the simplification of noiseless data a frequency
of 1Hz was decided upon. While this is much lower than the data rate of top deck sensors it is
still faster than the data rate from most downhole sensors. The conventional data rate here is
0.5Hz when there is an active flow.

As discussed in chapter 2 NN can be sensitive to overfitting. Two key factors in generalizing
the network are ensuring a good distribution of the data, and to use data sets for the training
of sufficient size, while still allowing for a representative size to be reserved for testing. Using a
versatile simulator allows for making a variety of cases. When designing simulation setups one
should, however, be wary of introducing engineered patterns, as these can be easier for the ML
model to pick up on than the real pattern. This was a key design question when designing the
simulation algorithms described below.

With the influx consisting of methane gas, the loss being composed of drilling fluid and both
being measures in the mass gained or lost. There is a nonlinear relationship between influx and
loss in the volumetric measurement of the event due to their different densities. At the current
build of OpenLab, it is a non-trivial task to acquire the volumetric change or parameters needed
to calculate this value. As such this data has been unavailable for this paper and rather the
change in mass has been calculated. With the use of different mud densities when simulating
loss this will greatly increase the mass rate estimation complexity.

4.2 Simulation setup

4.2.1 Influx simulation

When generating artificial influx simulations the parameters were set by use of non-uniform
distributions of random numbers to generate a variety of cases favoring characteristics leading
to a lower influx rate and mass at a deeper depth as seen in eq 2-4. The increased chance
of smaller and slower artificial influxes was done to supplement the data sets as geothermal
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influxes tended to be both larger and faster.

IRate = U2 ∗ Imax (2)
MTotalMass = U2 ∗Mmax (3)

DInflux = DWellDepth − (DWellDepth −DOpenHole) ∗ U2 (4)

Where:

IRate: Influx rate in kg/s
MTotalMass: Total influx mass in kg
D: Measured depth of in meters

To generalize the model, both artificial and geopressure based influx were included in the data
sets. Furthermore, each simulation had a probability of being unable to produce influx or
loss regardless of the operation. This was done to increase the probability of the ML models
to register an actual influx and not just the patterns potentially leading to an influx in the
simulated cases. Each simulation was initialized with a probability of either manual influx,
blocked or geopressure based influx, with the probabilities seen in table 2. Note, even though
geopressure based influx is allowed, the simulated response decides if an influx or loss occurs.

Table 2: Influx type probability

Influx Probability
Geopressure 64 %
Artificial 16 %
Blocked 20 %

4.2.2 Geology and mud density

The geological profile determines the location of the kick and the influx- / loss- rate in the
simulation. To help generalize the model five different pressure profiles were designed. The
geopressure properties of the profiles were not changed. Fig. 11 represents an example of the
profiles used. Variations here included peaks in the fracture area to decrease the exposed areas
and shifts in the Specific gravity (SG) range.

To initialize the well in different pressure zones of the geological profile, each profile was used
in several cases with a different initial mud density in the well. With these variations, a total
of 26 different initial wells were used, and the simulation algorithm randomly selected one at
the start of each simulation. To increase the chance of influx based on lower annulus pressure
than the geopressure profile, profiles with an increased chance of influx were represented more
often. 14 of the 26 profiles produced geopressure based influx in the final data set. All were
represented with artificial influx.

4.2.3 Flow Rate

The mud pump (flow in) rate was varied through the simulations both to teach the network
the response of a well during operations and to induce geopressure based influx/mud loss from
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Figure 11: Example of geological profile

the resulting pressure changes in the well. The initial maximum flow rate of each simulation
was randomly selected for each simulation, favoring a higher flow rate, by eq 5. This was done
to increase the pool of actively driven wells in the data set. Furthermore, a variety of flow
patterns were designed as a scalar on Qflow to operate the flow during a simulation, Fig. 12.
The design parameters of each pattern were seeded by a random value, ex number of periods
and amplitude in the sin curve.

Qflow = (1− U)2 ·Qmax (5)

Figure 12: Examples of randomly seeded flow profiles

4.2.4 Choke opening

The choke opening is the exit valve of the main well line and has a direct effect on the amplitude
of the ADP response of the well and is used to control both the annulus discharge rate and well
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pressure. As active well control is outside the scope of this paper, a static choke opening has
been used during simulations. The choke opening does, however, have an effect on the ADP and
with the increased well pressure it can help induce mud loss. For the algorithm to understand
the different ADP responses and to include loss cases the choke opening was changed between
simulation. To opening, the value was randomly initialized by eq 6. Heavily favoring a large
opening but allowing for some simulations to be run with a restricted choke to induce mud loss
and further vary the data set.

Copening = 0.98 · (1− U5) (6)

4.2.5 Tripping & Drilling

Both tripping and drilling pose an increased risk of influx or loss. As such an option for
generation data-sets with this increased complexity was designed to test and train models.
During these scenarios, the drilling control needs to be run manually in OpenLab. To generate
larger data sets with these scenarios the simulation script has to operate the controllers. This
includes setting the desired ROP, Surface RPM and top of string velocity. When running
operation along with the depth, OpenLab automatically simulates connection-/disconnecting
pipe sets.

The simulation script first chose which scenario to run, this was done independently of the
choices done in section 4.2.1, with a 30% chance of tripping and 40% chance of drilling. The
increased chance of drilling scenarios compared to tripping was to compensate for the lower
string velocity in these cases and allow for more of the sets to include pipe connections.

4.2.6 Top of string position, string velocity ROP and Surface RPM

Top of string position, string velocity ROP and Surface RPM where set according to the scenario
simulated. If neither drilling nor tripping was simulated, string velocity, ROP and surface RPM
was set to zero, while Top of string position was set to a random valid position.

When simulating tripping the top of the string position would be set by favoring a short distance
to travel before the disconnection of pipes needed to be done. To prevent this from happening
at the same time in every simulation a random number seeded a function making a nonuniform
distribution favoring a large top of sting position, as seen in eq 7.

LTopOfString =


Lmin + U3 · (Lmax − Lmin), ¬tipping ∧ drilling
Lmin + (1− U3) · (Lmax − Lmin), tipping ∧ ¬drilling
Lmin + U · (Lmax − Lmin), ¬tipping ∧ ¬drilling

(7)

Furthermore, depending on if it is either drilling, tripping or keeping the bit at rest, the top of
string velocity is set according to eq 8. While the ROP will override the top of string velocity
while drilling it still needs to be initialized at a positive velocity (moving it further into the
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hole) for the bit to achieve contact with the ground, even if its initialized at bottom of the hole.
While moving upwards the velocity gets a negative value, favoring higher speed to increase the
pressure below the bit and as such the chance of an influx.

VTopOfString =


U3 · VMax, ¬tipping ∧ drilling
(1− U2 · VMax, tipping ∧ ¬drilling
0, ¬tipping ∧ ¬drilling

(8)

During drilling scenarios the desired rate of penetration (ROP) where set by eq 9. With
a uniform distribution slightly favoring a higher ROP to increase the chance of drill pipe
occurrence during drilling

ROP =

{
ROPmax · (1− U2), drilling

0, ¬drilling
(9)

For drilling simulations, the RPM of the string at the surface had to be manually set. If this
was set to low the desired ROP would not be reached as the actual ROP is the full simulated
response of the drilling scenario. As the mechanics of the drilling were not of interest in this
study, and the simulator offered no way to automatically control this value to reach the desired
ROP, the surface RPM would decide the lower ROP bound and the desired ROP would decide
the upper bound. To allow for a reasonable chance of a high drilling speed but still keep some
variation in the surface RPM this speed was set by a two-thirds contribution from the ROP
and the rest by uniform distribution, as seen in eq 10.

ωsurface =

{
ωmax·2

3
· (ROP ) + ωmax

3
· U, drilling

0, ¬drilling
(10)

4.2.7 Drill bit depth

For initializing the drill bit depth the nonuniform distribution was designed to favor maximum
depth. When a drilling scenario was initialized the drill bit was always placed at maximum
depth.

MDDrillbit =

{
MDWellDepth − U4 · (MDWellDepth −MDOpenhole), ¬drilling
MDWellDepth, drilling

(11)
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5 Data handling and prepossessing

This chapter will discuss the method used for storing, labeling and prepossessing the data for
use with the Artificial Intelligence training methods and to ensure all models are trained and
tested on equal grounds for a fair comparison between them. It will also discuss the method
applied to ensure data consistency to reliably follow the simulation source of each generated
data-point both as a tool to debug models and simulations but also to ensure consistency in
this thesis.

5.1 Data storage system

5.1.1 Selection criteria

To find a suitable method for storing and handling the data for this project a few key parameters
were identified to be:

Capacity:
For training, the more advanced model’s large quantities of data were used. The storage method
thus needed to store by an efficient and easily scalable method.

Relationships:
Through the development and production process, multiple methods and several different sim-
ulations conditions will be tested, many of which are generated automatically. For different
reasons, specific types of simulations will at times be needed based on their setup conditions
or run time results. These reasons are hard, if not impossible to predict beforehand, however,
while a simulation is a time consuming to run, storage capacity is not a realistic limit with
this type of data. To best design, a system with minimum loss of simulation data as many
relational data points as reasonably possible will be stored with each simulation.

Speed:
The data generated will throughout the entire thesis be frequently accessed and searched both
for result generation and for model training. For this, the data should be easily accessible and
searchable at a reasonable speed.

Cross-platform compatibility:
To be able to run multiple simulations in parallel over an extended time Linux servers with
a high CPU-core count where utilized, most designs were done on a windows machine and
training of the more advanced models was done on specialized AI Research servers running
Linux with a high GPU core count (NVIDIA DGX-1). Due to the use of several computers and
servers in this process, a cross-platform compatible, centralized and redundant storage system
was preferred.

Results*:
To increase the efficiency of result gathering and model comparisons, a system that could
simultaneously store simulation data, relational data, resulting models, their reliability’s and
predictions was also seen as a bonus.
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5.1.2 System selection

Data storage systems are a large industry, with active research and specialized file-types and
software for a wide variety of purposes. As an optimized storage solution for AI research on
drilling data is not within the scope of this paper, a widely supported and openly available
solution was desired. The requirements described chapter 5.1.1 equals some of the key design
parameters of a web database. As such, a well established relational database management
system (RDBMS), MySQL, for web platforms was selected and deployed on the simulation
server.

The deployed MySQL solution is robust and easily scale the number of data rows (in this case
number of simulations). It also supports backups and connections from other computers through
Java Database Connectivity (JDBC), making it well suited for cross-platform development.
Compared to other database solutions this system is not flexible in the number of columns in
each table (in this case the number of data headers and sensors being stored). As such the
database design needed to be done in a way that does not exclude data points that might be
usable at a later point. Moreover, to properly optimize search and storage size, the database
has strongly defined data types for each column in the tables, decided upon on design time.

5.2 Database Design

The design goal of the database schema was a system where each data point from a simulation
or model prediction could be traced back with all relevant data to the original code that created
it, to ease development of simulation algorithms that could run unsupervised for hours, an event
and error log was also included in the design. For reference, the full ER diagram can be found
in Appendix A.1

5.2.1 Log

The log in the database was used to track all simulation batch
runs and the individual simulations for debugging. To account for
unplanned needs it was also designed to be usable with other er-
ror messages during development. By automatic increment, each
entry was given an integer as the primary key, called idLog. By
this value, each entry is uniquely identifiable and the error table
can be joined with other tables through this relationship, see Sim
and Run (5.2.2). Due to the database being accessed simultane-
ously by a multiple of parallel processes while running simulations
a predefined Universal Unique ID (UUID) was used to help locate
the auto-generated

Log
¤idLog INT(11)

event VARCHAR(45)

startTime DATETIME

endTime DATETIME

msg TEXT

errors INT(11)

errorMsg MEDIUMTEXT

UUID VARCHAR(14)

idLog. While the UUID is possible to use as the relationship between the two entries, it is more
efficient to only keep one index and search an integer number instead of a 14 character string
of number. The event field was implemented to easily sort out the desired event to examine,
start- and end-time (where applicable) helped to evaluate code and simulation efficiency. The
msg field where used in both simulations and simulation batch runs to keep track of initializing
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settings to help debug should any error occur that did not allow the code to complete. Errors
and error message where used to count the number of occurred errors and the relating message
respectfully.

5.2.2 Run - A batch of simulations

As described in chapter 4, the simulations were run in batches of different sizes. To allow the
database to account for these variations in batch settings and the reproduction of the batch
run a table was designed to hold the information of each run and its key MATLAB scripts and
function, as read at run time. Each run was automatically given a unique key, ’idRun’, by the
same procedure as described in section 5.2.1, and connected to a
corresponding log entry to track the event. ’name’ and ’date’ was
given to each simulation to easily distinguish tests and different
runs from the table alone. ’simulations’ contains the goal count of
simulations, but do not account for unfinished or crashed simula-
tions, as such this has to be seen in accordance with the error log.
As step time and amount of steps in each simulation is a key pa-
rameter that is not trivial to mix up in different NN models these
were also clearly labeled on each run. To easily sort out run’s based
on drilling, tripping and/or active-flow has been allowed these were
stored in a TINYINT(4-bit) value as a 0 or 1 boolean value. The
script running the batch of parallel simulations and the simulation
function itself was stored respectfully in ’minerFile’ and ’simula-
tionFile’ as plain text. The field description allowed for additional
information to be registered on each run.

Run
¤idRun INT(11)

®idLog INT(11)

name VARCHAR(45)

date DATETIME

simulations INT(11)

steps INT(11)

stepTime DOUBLE

tripping TINYINT(4)

drilling TINYINT(4)

activeFlow TINYINT(4)

minerFile TEXT

simulationFile TEXT

description TEXT

5.2.3 Sim - Simulation settings table

Key information and initial-
ization settings for each sim-
ulation were stored in the
’Sim’ table. With initial-
ization settings represented
on the right side in the ta-
ble and other meta-data rep-
resented on the left. Like
with the above mention ta-
bles, each simulation entry
was given a unique id to
be uniquely referenced and
joined with the correspond-
ing simulation data. Fur-
thermore each simulation

Sim
¤idSim INT(10) ConfigurationName VARCHAR(45)

®idRun INT(11) SimulationName VARCHAR(45)

runNr INT(11) InitialBitDepth DOUBLE

®idLog INT(11) UseReservoirModel TINYINT(4)

®idCase INT(11) ManualReservoirMode TINYINT(4)

totalInflux DOUBLE ManualInfluxLossMassRate DOUBLE

totalLoss DOUBLE ManualInfluxLossTotalMass DOUBLE

flowFun VARCHAR(45) ManualInfluxLossMD DOUBLE

tripping TINYINT(4) TopOfStringPosition INT(4)

drilling TINYINT(4) ManualInfluxLossMD DOUBLE

fileName VARCHAR(45) UseTransientMechanicalModel TINYINT(4)

stepTime DOUBLE

was defined by being part of a batch by its ’idRun’ and have a corresponding log entry, con-
nected by ’idLog’. As described in section 4 several different geological profiles and initial
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densities where used for the simulations. Each of these cases where represented in the database
Case table (sec 5.2.5) and is joined by the unique id in ’idLog’. ’totalInflux’ and ’totalLoss’ was
stored on each simulation to easily query simulations based on these values. By design these
where only filled inn at the end of a successfully simulation where no errors occurred, as such
a NULL in one or both of these where used to separate unsuccessful simulations without the
need for joining the log entry. The fileName was used for redundant storage to .cvs file in case
the database connection should drop during simulation.

5.2.4 Data - Simulated drilling data

All the simulated drilling data were stored
together in the Data table, connected to
the individual simulations through the ’id-
Sim’ field. Although ’idSim’ and ’step’
would create a unique addressable loca-
tion for each entry, multiple primary keys
proved problematic in the deployment of
this database, therefore each data entry
was given a unique key. To increase search
performance in this table indexing was also
done on ’idSim’ and ’step’. As storage ca-
pacity was abundant all data points were
stored for each simulation, this allowed for
increased flexibility in later model design

Data
¤idData INT(10) step INT(10)

®idSim INT(10) flowIn DOUBLE

flowOut DOUBLE flowBack DOUBLE

pressureSPP DOUBLE pressureBHP DOUBLE

pressureBit DOUBLE pressureADP DOUBLE

chokeOpening DOUBLE depth DOUBLE

depthBit DOUBLE surfaceRPM DOUBLE

stringVelocity DOUBLE ROP DOUBLE

densityIn DOUBLE influxMass DOUBLE

influxRate DOUBLE mudLoss DOUBLE

lossRate DOUBLE changeRate DOUBLE

based on the same simulation sets. As influx-, loss- and change rate where not provided by the
simulator these where calculated from total influx- and mud-Mass at run-time.

5.2.5 Case list and Fracture profiles

For dynamic selection during batch simulations,
a database copy of all cases generated on the
OpenLab Drilling simulator was made, with key
parameters stored for easy sorting. As several
cases used the same fracture profiles these where
also represented in a separate table connected
by the ’idFractureProfile’ variable.

Case FractureProfile
¤idCase INT(10) ¤idFP INT(10)

®idFP INT(10) name VARCHAR(45)

name VARCHAR(45) description TINYTEXT

depth INT(11) maxDepth INT(11)

openHole INT(11)

density DOUBLE

description TEXT

*FP: FractureProfile
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5.2.6 TrainingSet, SimUse and Use

To ensure consistent
use of simulations
when training, vali-
dating and testing ML
models, the training
set structures were
made as database
relationships. This

TrainingSet SimUse Use
¤idTrainingSet INT(10) ¤idSimUse INT(10) ¤idUse INT(10)

name VARCHAR(45) ®idSim INT(10) name VARCHAR(45)

pTrain DOUBLE ®idSet INT(10) description VARCHAR(45)

pVal DOUBLE ®idUse INT(10)

pTest DOUBLE

description TEXT

allowed several sets to be generated based on different parameters, furthermore the use of each
simulation is specified by a database relationship and does not duplicate sets being stored in
different files or folders, saving storage space and increasing the data integrity. The training
set parameters where stored in the table ’TrainingSet’, where the fractional size of Training,
Validation and Test data where stored to ’pTrain’, ’pVal’ and ’pTest’ respectfully. Furthermore
it was given a unique id, name and description. To distinguish Training, Validation and Testing
data these where given a numerical value and optional description in the ’Use’ table by its id.
This was done as a integer value is preferable to use while programming, both in terms of
storing the relation and being more efficient to check for equality when handling long lists of
simulations. With this design, each simulation can be part of many training sets, in each set
its part of it can only be connected to one ’Use’. This describes a many to many relationships,
which is unsupported by the MySQL database being used. To circumvent this a joining table is
used, this can hold a one to many relationships with the ’TrainingSet’, ’Use’ and ’Sim’ tables,
thus in practice allowing for a many to many relationships to be described in the database.

5.2.7 Network and SensorSets

The trained networks and ML models were
kept track of in the ’Network’ table. This
ensured a readily available overview of the
networks tested, their performance and key
training parameters. To reflect the use
of different models, training sets and sen-
sors used these where identified by rela-
tionships to joining tables. Furthermore,
the loss (RMSE for regression networks)
were stored both from the final validation
in training and for the total test set. To
keep track of different training parameters
of varying types the ’description’ files were
used, while the resulting model

Network SensorSets
¤idNetwork INT(10) ¤idSensorSet INT(10)

name VARCHAR(45) name VARCHAR(45)

®idSet INT(10) Sensors TEXT

®idSensor INT(10)

®idModel INT(10)

lossVal DOUBLE

lossTest DOUBLE

fileName TEXT

description MEDIUMTEXT

gen DOUBLE

netFile BLOB

file-names was stored in the ’fileName’ field. To allow for redundancy, the ML model can also
be stored in the ’netFile’ filed as binary data.
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5.2.8 Results and ResultComment

For storing the predictions from the mod-
els trained, two tables were designed as this
poses the same many to many relationship
problem as described in 5.2.6. In this case
any simulation, ’idSim’, can have many re-
sults from different networks, ’idNet’, and
from different iterations or epochs of that
network model, ’iteration’. As simulations
might have a different numbers of steps

ResultComment Results
¤idResultComment INT(10) ¤idResults INT(10)

®idSim INT(10) ®idRes INT(10)

®idNet INT(10) prediction DOUBLE

headline VARCHAR(45)

comment TEXT

RMSE DOUBLE

itteration INT(11)

the results itself were stored in a separate table connected to the ’ResultComment’ by its id.
Through a design fault the resulting data is not identified by its step or data id, making it
impractical to join this table directly with the simulations original data. To circumvent this
fault the auto incremented ’idResults’ was used to sort the data and the data table and result
table where joined externally when evaluated together.

5.3 Generating Training, Validation and Test sets

Different training sets were generated by the MATLAB code included in Appendix A.2. The
division was done by the use of pseudo-random functions reserving a predetermined factor of
simulations to either training, validation or testing in the given training set. The results were
then stored in the database according to section 5.2.6.

There is no agreed-upon ratio in which training, testing and validation data are divided. How-
ever. in general, one sees a 70/30 relationship between training and validation in most publi-
cations. To ensure a well-represented data set for testing the different models in a variety of
cases for this paper it was desired to reserve more than 1000 simulations for this purpose, as
such the final ratio for the influx-loss scenarios where set to be; 70% reserved for training, 10%
for validation and 20% for testing.

30



6. PREDICTION MODELS

6 Prediction Models

6.1 Training features

From chapter 2.2 it is known that it is a
nontrivial task to analyze a NN or DNN to
identify its key features. Furthermore, just as
too few features will have a negative effect on a
NN so will including features with no relevance
for its goal. There are also large differences on
the data available on different drilling rings,
many of which have no real-time data from the
bottom hole, or no data at all, as described in
chapter 2.1. As such there are two main goals
in training the ML models explored in this
paper on a few different feature sets.

First off, by analyzing the resulting predictions
from the different feature sets we can infer
which features are of importance to the model,
and possibly also how much of a contribution
is given. Secondly, due to differences in drilling
rigs, all features will not be available in all cases,

Table 3: Features sets explored in this paper

Feature set# 1 2 3 4 5
Flow In X X X X

S Flow Out X X X X
e SPP X X X X
n ADP X X X X
s BHP X X X
o Choke opening X X X X
r Bit deptha X X
s ROP X

Surface RPM X
Sting Velocity X
Influx Rate a a a a a
Change Rateb b b

aMeasured depth (MD)
bCalculated sum of influx rate and mud loss rate

and there might be limited bandwidth or computational capacity. Evaluation the accuracy
trade-off from removing certain features in the model is therefore an interesting aspect for this
technology in terms of its availability for after-marked or new installation without cutting edge
technology.

Feature set 1a & 1b: This feature set is designed to contain all pressure and flow information
at the key areas of the rig. The SPP, BHP, and ADP are all affected by secondary values not
relating to an influx. For the BHP the depth of the drill bit is essential. With the choke fully
open there is no response on the ADP, when closing the opening there is an inverse proportional
effect on the ADP. The SPP pressure is at 1 bar when there is no flow into the well and gradually
increases depending on the flow rate. Due to these relationships, these additional values were
added to the set.

Feature set 2a - Top Deck: As previously mentioned, bottom hole data is not always readily
available on a rig. As such a set was designed to evaluate the difference in accuracy when the
bottom hole readings are unavailable.

Feature set 3a - Only flow: From the theory chapter it is known that flow often is referenced
as the most important factor in detecting an influx or mud loss. This set will help evaluate if
there is anything to gain by adding more features to prediction.

Feature set 4a - Only Pressure: In the state of art, we see several advanced methods
using pressure information to assist the prediction of influx. While pressure waves move at the
speed of sound in the well and are affected by factors such as gas content, fluid properties, and

31



6. PREDICTION MODELS

pressure [28], these differences might be difficult to pick up on with data frequency of 1Hz. As
such evaluating the effect of pressure data alone at this frequency is of interest.

Feature set 5a & 5b: In this set features relating to the movement of the drill pipe and the
drill bit was added to the feature list to evaluate if this could help increase accuracy during
tripping and drilling.

6.1.1 Standard score

The raw data from the simulations operate on severely different scales, with pressure values
being on the scale of 107 and flow rates being scaled to 10−3. This large difference of scale
posed a problem for training the network. To solve this the standard score was calculated on
the data set. (eq 12)

z =
x− µ
σ

(12)

Where µ equals the mean and σ equals the standard deviation of the sensor value x over the
training set.

6.2 Conventional Comparison

To compare results from the ML approaches, an optimized classification trigger on delta flow
was designed. This method was built to classify an Influx whenever the delta flow surpassed a
limit. This is built as a comparable method to either a drilling operator observing the flow rates
in and out during operations or a simple threshold alarm that can be used on platforms today.
To properly compare this method against the ML models, it was given a best case scenario of
being optimized on minimum loss. To achieve this the delta flow was calculated in eq 13. An
initial trigger value (T∆Q) was set to be the mean value of delta flow.

∆Q = QOut −QInn (13)

1 % dQ: Pre−c a l c u l a t ed f low
2 % Truth : Pre−loaded boolean l i s t with t rue on i n f l u x
3 T_dQ = fminsearch ( ca l cu l a t eLo s s ,mean(dQ) )
4

5 f unc t i on Loss = ca l c u l a t eLo s s (T)
6 Pred i c t = dQ > T; % Bolean l i s t with t rue on i n f l u x
7 Loss = 1−nnz (Truth==Pred i c t ) / l ength ( Pred i c t ) ;
8 end
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6.3 Network design

The networks designed and tested in this paper have been built and trained using MATLAB’s
deep learning toolbox. This toolbox eases the technical design process and ensures the designed
network is optimized for both training and model performance on the latest technology. Sig-
nificantly reducing both development and training time. For reference to the setup described
below a one layer LSTM regression function can be found in appendix A.4.

For the input layers of the models presented in this paper a sequenceInputLayer has been
utilized. This is an input layer that allows for training and predictions using sequences of data.
This layer’s input is a predefined sequence length during training, this length is not strongly
defined as training data can include shorter sequences in the same training but not longer.
While it is trained on a full sequence of data, the resulting model can be used both to predict
a full sequence of responses at once or by being updated with one time-step of features at the
time and returning the resulting prediction at this given time-step.

In this paper, three different types of hidden layers have been used, LSTM, BiLSTM and fully
connected. All of these are seamlessly integrated with the preceding and following layers in the
network. Only the numbers of layers and nodes need to be defined.

If a classification model is to be trained, the third to last layer in the model is a fully connected
layer with as many nodes as there are classes to be predicted, in this case, two nodes representing
either Influx or No-Influx. The second to last layer is a softmax layer. This layer uses the
softmax function 14, also known as the normalized exponential function to normalize and scale
each value within the range of (0, 1).

σi =
eNi∑K
j=1 e

Nj

(14)

Where: σi each nodes adjusted value, N output value of a node in the preceding layer, K
number of nodes in preceding layer.

The last layer used in the classification network is the classification layer, this layer calculates
the loss during training and returns the class with the highest probability according to the
softmax layer during classification.

When designing a regression model, a fully connected layer with one node for each value to
be predicted is used as the second to last layer. The last layer used is the loss function that
is used to calculate the accuracy of the network during training. While there are many types
of loss functions for regression networks, the root mean squared error (RMSE) has been used
for this paper. This is the default loss function used by MATLAB, but also a well-documented
approach. The RMSE is calculated as seen in eq 15, where yt is the true measured response
and yp is the predicted response

RMSE =

√
(yp − yt)2 (15)

While the loss function in both the classification and regression models can be fully customized
to suit the optimization problem at hand. Generating a highly efficient cost function, and its
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derivative for the optimization functions is a non-trivial task and has been omitted for this
paper.

As there are no generally accepted rules for the number of layers and nodes used in the model,
section 2.2, a trial and error method have been used to explore an efficient setup.

6.3.1 Alternate Classification approach

While the classification network may prove efficient, it has the disadvantage of having to be
retrained if the sensitivity to be tuned. An alternate way to classify a kick event can be done
by tuning a trigger value on a regression network. This may prove beneficial as it allows for
real-time tuning of the network sensitivity. This method could also be compatible with the
advantages of adaptive alarms found in [48].

6.3.2 Training Option

Optimization Algorithm: Both SGD and Adam optimization algorithms are well-proven
training algorithms. For this paper, it was decided to only use the Adam algorithm as this
offered fewer parameters to tune. Reducing the number of parameters that requires tuning,
thus allowing for further exploration of different networks and training options.

By choosing the Adam algorithm, early stopping methods were not supported during training.
In place of an early stopping algorithm, continuous checkpoints of the model were saved during
training, one for each epoch, this way the result could be analyzed and the model with the best
generalization was chosen as the final model.

While the recommended default for the learning rate is set to be 0.001 for the Adam algorithm,
the fastest results were achieved using 0.004 on this data-set. Going above this value resulted
in the optimization algorithm being unstable and predicting invalid values. While reducing
it significantly reduced the algorithms convergence time. The learning rate appears to be
independent of the network types trained within this study and the same value has therefore
been used on all networks presented in the results.

Mini batch size: Based on the publications cited regarding mini-batch sizes in section 2.2, a
range of 32-512 was tested. A mini-batch size of 32 proved to be much slower at an early stage
of training, as such the minimum limit explored on larger data sets was set to 128.

Sequence length: The sequence length set during training is the maximum length of the
feature input array used during training. With the data frequency of the simulations being
1Hz the sequence length during training equals the sequential time in seconds each model had
available during training. With each simulation running for 600 seconds the sequence length
would evenly match every multiple of three. By varying the sequence length on different models
the impact of the available history could be analyzed.

Epochs: Due to the randomness used during training of a neural network there is no guarantee
as to when a minimum will be reached. For the most part 500 epochs were sufficient for a
comparison between two networks as it would near a convergence within this span as seen in
figure 13a, and for the complexity of the models used in this paper it would use between 20-45
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minutes to test a theory, a reasonable time for trial and error approaches. However, as seen in
figure 13b, the random nature of the training could result in jumps and initialization in a local
minimum outside of the scope. While figure 13 illustrates training on two different data batches
similar variations also occurred with identical training data and parameters. To counteract this
effect, secondary networks would be trained when encountering unexpected deviations in the
result and the epoch-loss graph, and the final proposed networks were trained to over 5000
epochs.

(a) Batch 1 (b) Batch 3

Figure 13: Training progression examples on 100 node single LSTM layer

6.3.3 Testing

The networks tested by the use of a test set in each batch that was withheld from the training
and validation data. As this data has not been introduced to the model during training, this
allows for testing the generalized accuracy of the network. As multiple batches of data were
used during training, one test set was generated for each batch. The loss or RMSE value for
each model was compared to find the best performing solution.

For models trained on Batch 1, the final epoch of the model was used to compare the network.
When developing the training functions and test modules for Batch 2 and 3, a method for
testing a model from each epoch of the training sequence was developed, as such the model
from the best performing epoch was chosen to compare the given training modules.

While the test sets included 1.100-2000 simulations each, three different simulations have been
selected to compare the actual predictions of the networks. The three simulations were selected
from Batch 1 so that the network performance can be compared between the batches. Figure
14 - 16 shows the simulated response values of feature set 1 on the chosen simulations.
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Figure 14: Simulation #6974 - Artificial influx

Figure 15: Simulation #6786 - Geopressure based influx

Figure 16: Simulation #6554 - Geopressure based influx and loss
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7 Results

7.1 Simulation data

Due to incremental development data was gathered in two main simulation runs. The first one,
Batch 1, was run early in the development process and focused on simulations with no drilling
and tripping. The second major simulation run included tripping and drilling simulations. This
was supplemented by Batch 1 and divided up in two new batches, Batch 2 including tripping
and drilling data and Batch 3 excluding trilling and tripping.

Table 4: Simulation set 1 summary

Batch 1 Simulations Data setsa Time (w:d:h:m:s)b

Total 5,781 (100%) 3,468,600 (100%) 5:5:3:30:0
Normal 2,858 (67%) 3,083,306 (89%) 5:0:16:28:26
Influx 1,625 (28%) 268,195 (8%) 0:3:2:29:55
Loss 264 (5%) 117,099 (3%) 0:1:8:31:39
Both 34 (1%) 0 (0%) 0:0:0:0:0
Geopressure Influx/Loss 984 (17%) 327,198 (9%) 0:3:18:53:18
Artificial Influx 939 (16%) 58,096 (2%) 0:0:16:8:16

aOne set being defined as reading all 18 sensor values at a single time step
bw: Week, d: days, h: Hours, m: Minutes, s: Seconds

Table 5: Simulation data and data set 3 summary

Batch 2 Simulations Data sets Time (w:d:h:m:s)
Total 12,800 (100%) 7,680,000 (100%) 12:4:21:20:0
Normal 7,482 (58%) 6,671,676 (87%) 11:0:5.14:36
Influx 4,626 (36%) 751,356 (10%) 1:1:16:42:36
Loss 560 (4%) 256,968 (3%) 0:2:23:22:48
Both 132 (1%) 0 (0%) 0:0:0:0:0
Geopressure Influx/Loss 3,191 (25%) 870,111 (11%) 1:3:1:41:51
Artificial Influx 2,127 (17%) 138,213 (2%) 0:1:14:23:33
Stationary 8,069 (63%) 5,482,912 (71%) 9:0:11:1:52
- Influx 2,320 (29%)b 506,685 (9%)b 0:5:20:44:45
Tripping 2,112 (17%) 826,365 (17%) 1:2:13:32:42
- Influx 1,216 (58%)b 129,756 (16%)b 0:1:12:2:36
Drilling 2,619 (20%) 1,370,723 (18%) 2:1:20:45:23
- Influx 1,216 (58%)b 129,756 (16%)a 0:1:12:2:36

aIn reference to parent value
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Table 6: Simulation set 2 summary

Batch 3 Simulations Datapoints Time (w:d:h:m:s)a

Total 8,069 (100%) 4,841,400 (100%) 8:0:0:50:0
Normal 5,367 (67%) 4,286,213 (89%) 7:0:17:23:33
Influx 2,271 (28%) 375,161 (8%) 0:4:8:12:41
Loss 382 (5%) 170,026 (4%) 0:1:23:13:46
Both 49 (1%) 0 (0%) 0:0:0:0:0
Geopressure Influx/Loss 1397 (17%) 465,623 (10%) 0:5:9:20:23
Artificial Influx 1305 (16%) 79,564 (2%) 0:0:22:6:4

7.2 Network total RMSE comparison

Table 7 compares the results from different layer and node setups trained on the same data-set,
with feature set 1 and identical training parameters. The results indicate that a single 1000
node layer of LSTM performs best, with a minor loss if the layer size is reduced to 100 nodes.
Note that this change in performance is within the bounds of training noise experienced.

Table 7: Layer size RMSE on small training batch with feature set 1a

Nodes RMSE Val kg
s

10 0.1189
10 × 10 0.1145
100 0.0958

100 × 100 0.1301
1000 0.0946

1000 × 100 0.1347

Table 8 compares the achieved influx rate RMSE on the different feature sets. Each set was
trained on a 100 node single layer LSTM network using data set 1 and identical training options.
These results show that using feature set 1, with both flow and pressure data produces the best
results. Feature set 2 shows that removing the bottom hole readings from the set negatively
impacts the accuracy of the results. While only keeping the flow data in feature set 3 further
limits the accuracy. However, predictions with flow alone can produce much higher accuracy
than the pressure readings by itself, seen in feature set 4.

Table 8: Feature set RMSE with single 100 node LSTM layer on batch 1

Feature Set RMSE Test kg
s

1a 0.1049
2a 0.1607
3a 0.3272
4a 1.207

Table 9 shows the best RMSE value achieved after 500 epochs of training on the mentioned
network types. NN only using fully connected layers achieve near identical performance while
the LSTM and BiLSTM layers much more closely estimate the flux rate.
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Table 9: Network type RMSE with feature set 1a, batch 3

Network Nodes RMSE Test kg
s

NN-Linear 0 0.9258
NN 30 × 20 0.9226
NN 100 × 100 × 100 × 50 0.9229
LSTM 100 0.1040
BiLSTM a 100 0.0744

aNot real-time results

Table 10 compares the achieved results using different mini-batch sizes and sequence lengths
over 500 epochs of training. In this result, the best performing epoch of each model is compared.
The results show that the number of training iterations is a function of the mini-batch size and
the sequence length used to train each model. Not including the first try of 128:600 and
512:600, there is only a small difference between the results. The difference between the first
and second try of 128:600 illustrates how given the same parameters the results can differ due
to randomness. While this was an abnormally large jump using the same training parameters
it illustrates the uncertainty. The last entry shows the poorest performance, as well as the least
amount of iterations of the network tried.

Table 10: mini-batch and sequence length RMSE on Batch 2, feature set 5a, max Epoch 500

Mini -batch Sequence length RMSE Test kg
s

Epoch Iteration
128 150 0.1453 484 133,584
1281st 600 0.2795 499 34,431
1282nd 600 0.1480 374 25,806
256 300 0.1511 466 31,688
512 150 0.1542 482 32,776
512 600 0.2370 302 5,134

Table 11: Best preforming model accuracy after 5000 epochs of training

Network Feature set Batch RMSE Test kg
s

Epoch Iteration
LSTM 1a 3 0.0998 1425 62,700
LSTM 1b 3 0.1223 3522 154,968
BiLSTM 1a 3 0.0562 4590 201,960
LSTM 1a 2 0.1260 4950 336,600
LSTM 1b 2 0.1811 881 59,908
BiLSTM 1a 2 0.0757 3386 230,248
LSTM 5a 2 0.1275 4686 318,648
LSTM 5b 2 0.1577 3367 228,956
BiLSTM 5a 2 0.0805 4935 335,580

Further examining the best performing model on batch 2, BiLSTM 1a, we find that the average
test simulation had an RMSE of 0.0389, with a standard deviation of 0.0650 and a median of
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Figure 17: RMSE Histogram of BiLSTM B2 1a

0.0155. A full histogram of the RMSE spread in this model can be seen in 17, and shows that
90% of the 1919 simulations reserved for testing archived an RMSE of less than 0.1kg/s.

7.3 Comparing feature sets and classification methods on Batch 1
feature set 1-4

Regression: Figure 18a and 18b shows the prediction of the models one a selected artificial
and geothermal influx case from the test set which has not been shown to the model during
training or validation. From the figures, we see that set 1a performs most accurately in both
cases by closely matching the actual influx. While in 18a it suffers from a 1s lag in the prediction
it closely follows the actual influx real time in the geopressure based simulation, fig 18b, As
with set 3a and 4a it misses out on the small geopressure based influx of 0.058kg/s spanning
from ∼75s to ∼195s mark. Set 3a takes some time to build up towards the artificial influx
and the last geopressure based influx while it also misses the first peak during the geothermal
influx, and experience a false positive around the∼195s mark, this correlates to the mud pump
being turned on in this simulation. The model trained on set 4a shows no apparent detection
of the artificial influx, and although there seems to be some correlation between the influx rate
and the prediction in the geopressure based case it is apparent that the pressure sensor data
by itself makes for an unreliable model in this case.

Examining the best performing model, set 1a, on the whole test set we achieve a root mean
square error (RMSE) of 0.10 kg/s influx mass rate on the test set of the total data set. Further
analyzing the test data shows that a larger part of this error comes from some uncertainty during
an influx, with an RMSE of 0.34 kg/s, while it tends to be smaller during stable operations,
with an RMSE of 0.04 kg/s.

The results demonstrate the effectiveness of the proposed method and show that it can effec-
tively detect a kick in the early phases of the influx. This concludes that the proposed method
can increase influx rate prediction accuracy and reduce the need for rig modifications, special-
ized equipment, and advanced physics-based models to detect discrepancies during operations.
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(a) Artificial influx

(b) Geopressure based influx

Figure 18: Prediction of influx mass rate. Where the blue line represents the simulated influx
rate, and set 1, 3a & 4a represents the predicted responses
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Classification: In fig. 19, accuracy, and loss of the different influx classification methods are
shown. 18c and 18d reflects different trigger values on the classification of an influx on the
predicted influx rate. While 18c uses a lower trigger value to reduce false negatives, and the
total loss, 18d almost completely
eliminates false positives by increas-
ing the trigger value and accepting
a larger total loss on the influx
classification. The limit used on
18d was 0.97 kg/s while 18c used a
limit of 0.13 kg/s.

The results from the LSTM classi-
fication network are shown in 18e,
and performs similar to a regression
network tuned to reduce the num-
ber of false positives. In fig. 18f
influxes were classified purely by a
trigger value on flow rate deviation
between Flow in and Flow out of
the well, where the threshold was
giving a best case scenario of be-
ing optimized on the minimum loss
for the given test set. All clas-
sification methods presented using
DNN’s outperformed the traditional
best case scenario. With the best
network giving a ×2.5 improvement.

c: Low regression trigger d: High regression trigger

e: Classification Network f: ∆Flow trigger

Figure 19: Classification results the whole test set

Fig. 20a and 20b compare the different influx classification methods on both the artificial influx
and the geopressure based influx. The results show that the ∆Flow trigger is prone to errors.
The false positive at 15s mark in fig. 20a and 195s mark in fig. 20b both correlate to the mud
flow into the well being ramped up. The apparent early influx indication around the 375s mark
in fig. 3 correlates to the mudflow shutdown in this scenario. During the artificial influx, it
suffers from a 3 second lag in both the start and end of the influx.

The LSTM Classification network is unstable during the start of the artificial influx, first
detecting it at a 1s delay and then achieving stable detecting after a 3s delay, giving a mild
improvement on the ∆Flow method. It detects the end at a 1s delay, better than both the
other methods. For the geopressure based influx, it also improves on the ∆Flow method with
no false positives. However, it misses out on much of the main influx at the end. Detecting the
first peak after 2 seconds, and then giving a false negative as soon as the influx rate reaches
below 1kg/s and not detecting it again before it builds up to more than 1kg/s. The trigger on
the predicted influx rate experience a 1s lag at the start of the artificial influx and 2s lag at the
end. It’s the only one to pick up the peak at the beginning of the geopressure influx but suffers
from some noise afterward. It correctly identifies the last influx in 20b with no lag. None of
the methods were able to pick up on the small influx of 0.058 kg/s in 20b.
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(a) Artificial influx

(b) Geopressure based influx

Figure 20: Kick classification. Where the blue line represents the simulated influx rate on the
left axis and the remaining lines is the binary classification of influx or no influx on the right
axis
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7.4 NN Influx prediction on Batch 1

Figure 21 shows the response of the two fully connected neural networks shown at the top of
table 9. Comparing these responses with the flow rates show in the simulation response in
section 6.3.3, indicates that the predicted influxes are derived from a linear relationship of flow
in and flow out. Adding two layers with more nodes does not appear to improve the solution
based on the linear relationship a neural network with no hidden layer can achieve.
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Figure 21: Non-recurrent network responses on Batch 3 with feature set 1a/b
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7.5 Results from Batch 3, excluding drilling & tripping

Figure 22 show three different networks trained on Batch 3 with feature set 1. While LSTM 1a,
only predicting influx has a 23% increase in accuracy compared to LSTM 1b, also predicting
loss. The difference in accuracy is hard to notice on randomly selected influx simulations as
seen in figure 22a) and 22b).

BiLSTM 1a performs noticeably better both at determining the edges of an influx, and more
closely estimating both the flat influx mass rate in 22a), and the jigsaw pattern, in the end,
on 22b). BiLSTM 1a is also the only one to correctly identify the 1 second influx on the 80
second mark in 22b). While it does overshoot, it is closer to the actual rate than both LSTM
1a and 1b. Examining the ends of the sequences in 22b) and 22c), the BiLSTM 1a prediction
it noticeably less accurate in during the last 5-35 seconds, illustrating a BiLSTM networks
reliance on both looking forward and backward in the sequence to make its predictions.

Figure 22c) illustrate how LSTM 1a and BiLSTM 1a ignores a loss while LSTM 1b correctly
estimates its value.

7.6 Results with drilling & tripping

Figure 23 shows the responses of the three networks listed in table 11 that was trained on
Batch 2, including drilling and tripping simulations, with feature set 1. While the results are
near identical to those described in section 7.4, there do are some more noise during the flow
in ramp up at the 170s mark in figure 23b), both in LSTM 1b and BiLSTM 1a, at the influx
on the 60s mark all the models appear to have an increased accuracy.

7.7 Results with drilling & tripping including extra sensors

Figure 24 shows the responses of the three networks listed in table 11 that was trained on Batch
2, with feature set 5. The predictions shows only minor difference from figure 24 and 22.
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Figure 22: LSTM and BiLSTM response on Batch 3 with feature set 1a/b
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Figure 23: LSTM and BiLSTM response on Batch 2 with feature set 1a/b
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Figure 24: LSTM and BiLSTM response on Batch 2 with feature set 5a/b

49



7. RESULTS

7.8 Predictions during drilling

Further examining the best performing model on batch 2, BiLSTM 1a, we find that the average
RMSE during a drilling simulation is 0.053, 36% higher than the overall average. For evaluating
the predictions model response simulation #12450, was selected as an example due to its having
an above average RMSE of 0.087, and containing an influx. The simulation response is shown
in figure 25. In this simulation, a pipe connection was done between ∼ 320 − 420s, and is
illustrated by the discontinuity in the bit depth. During this sequence, the SPP pressure is
pressure sensor also displays zero. While the maximum influx rate peaked at just over 40 kg/s,
prediction figure 26 and 27 has been scaled to show the rest of the graph in finer detail.

Figure 26 is the prediction done by the best performing network, BiLSTM B2 1a, this network
is trained on simulations including drilling and can predict the actual influx rate with great
accuracy, even throughout the pipe connection sequence.

Figure 27 is the best performing model that has not been trained on drilling simulations,
BiLSTM B3 1a. While this network has trouble predicting the influx when rising and lowering
the drill pipe for the connection, it closely predicts the actual influx during the rest of the
simulation.

Figure 25: Simulated response of drilling simulation #12450
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Figure 26: BiLSTM B2 1a - prediction on drilling simulation #12450

Figure 27: BiLSTM B3 1a - prediction on drilling simulation #12450
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7.9 Predictions during tripping

examining the performance of model BiLSTM B2 1a on tripping simulations we find that the
average RMSE per simulation is 0.0807 kg/s. For further evaluation simulation, #16276 was
chosen, this simulation has an RMSE of 0.08368 and contains three pipe connections during its
600 seconds of simulation, indicated by the plateau’s seen the bit depth plot of figure 28.

Figure 29 shows the prediction of BiLSTM B2 1a, as in the drilling scenario in the previous
section, the model accurately predicts the influx rate throughout the simulation with only minor
deviations. In this figure, the peaks at the pipe connections are also visible and the prediction
closely matches the actual peak.

Figure 30 again shows the best performing model not trained on tripping or drilling, BiLSTM
B3 1a. In this figure, it’s apparent that the model has trouble predicting the peaks of influx that
occurs during the pipe connection. Furthermore, the predictions are quite inaccurate during
the 20 seconds before and after these connection peaks. While some noise is observable on the
remaining sequence the model generally give an accurate prediction.

Figure 28: Simulated response of tripping simulation #12450
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Figure 29: BiLSTM B2 1a - prediction on tripping simulation #12450

Figure 30: BiLSTM B3 1a - prediction on tripping simulation #12450
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7.10 Examining badly performing cases

For the BiLSTM B2 1a model the worst performing prediction (fig 31) occurred on simulation
#3104 (fig 32) with a RMSE of 0.7435 kg/s. In this simulation, an artificial influx occurs with
a total mass of 48.5 kg and a mass flow rate of 6.82 kg/s. The model is unable to pick up any
influx. Examining the simulation data we can observe that the choke opening is limited to 6%,
that there is a continues difference in flow in and out during the first 180s but no loss of mud.
From this, it appears the mud has been compressed due to high pressure resulting from the
small choke opening. Examining other test results with a high RMSE value indicates that this
is a reoccurring pattern.

Figure 31: BiLSTM B2 1a - prediction on simulation #3104

Figure 32: Simulation #3104
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The second worst performing prediction (fig 33) occurred on simulation #17458 (fig 34) with
a RMSE of 0.6999. This represents another reoccurring pattern of poor performing test set
prediction. In this simulation, there is a large and rapid influx with a total mass of 9634 kg.
While the prediction is following the actual influx rate, an increasing deviation can be seen as
the influx mass rate closes in on 50 kg/s.

Figure 33: BiLSTM B2 1a - prediction on simulation #17458

Figure 34: Simulation #17458
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7.11 Training progress BiLSTM B2 1a

Figure 35 illustrates the training progression of the BiLSTM B2 1a network. With a mini-batch
size of 256 and a sequence length of 300, this network evolved through 68 iterations for each
epoch. The unfiltered RMSE on the training set is shown in green. For ease of comparison, the
rest of the lines have been filtered with a moving average of 25 epochs.

The figure shows that the model performs best on the training set. However, it also shows that
the general fitness of the predictions on the validation and test set generally follows the training
set. While the minimum on the training set was found on epoch 3386, the network appears to
be quite stable after epoch 2250, with only random fluctuations around a local minima.

Figure 35: Training progress BiLSTM B2 1a

7.12 Training progress LSTM B2 1b

Figure 35 illustrates the training progression of the BiLSTM B2 1a network. The figures show
how the training progress of these networks jumps out from the best performing local minimum
towards one with a higher error.

Figure 36: Training progress LSTM B2 1b
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8 Discussion

8.1 Simulation data

The simulated data allows for a large variation in the training data. The increased control
of the data allows for generating augmented training sets, including a greater number of edge
cases and simulated responses of the well based on, at times, unrealistic input. As presented
in section 2.2, this is a well known and recommended method for increasing the reliability of a
model. Especially around areas of interest like an influx, which is an infrequent incident that
would be dangerous to induce on a live rig to obtain more data for training a model.

The frequency at which data has been sampled through this research does not allow for the
detection of a kick in under one second (one simulation step). From section 3 we know that there
are patterns of interest that operate on a higher frequency than 1Hz. While one of DNN’s main
strengths is to pick up subtle patterns in a data sequence this might impact the performance
of the network. Increasing the data frequency would however severely increase the time needed
for simulations. Furthermore, data sets of lower frequencies cannot be used together with the
higher frequencies. As such deciding upon a frequency early in this project, and features to
be logged, helped ensure a steadily growing database of simulations that could be included in
data sets with simulations of increasing complexity. The low frequency also increased training
time for networks, making it easier to compare reliability in different training scenarios.

As mentioned in section 2.1, real drilling data generally include a large amount of noise, while
the simulated readings represent ideal sensors. As discussed in section 4, a mitigating factor
here is the low frequency at which data is read, as this allows for a quite thorough filtering of
the data. To further close the gap between simulated data and real data, artificial noise could
be generated on the simulated data. This would help evaluate the efficiency at which a DNN
by itself can handle noisy data with no filtering. With the noise augmented simulation data
its possible and often valuable to create several noise augmented data sets from the original,
increasing the training size. With the increased complexity of the data, it is not unlikely that
more training data is needed to achieve similar results. While this is an interesting field, this
was not done in this paper due to time constraints.

In section 4.2.2 a method of varying the mud density to shift the formation pore- and fracture-
pressure limits with respect to the operational conditions were implemented. While this allowed
for an increased variety of well responses based on the same input data. While this had the
intended effect on an influx estimation, of increasing the variety of responses to any given input,
it might have had a negative effect on the mud loss estimation. This is due to the mud loss rate
was given in mass per second (kg/s), and with different densities and compositions, this would
affect the mass rate at which the mud left. In comparison an Influx would always be composed
of methane gas, giving the same volumetric change and effects on the well at a given pressure
zone. This can explain some of the lost accuracies in the prediction accuracy when including
mud loss.

Moreover, while influx mass estimation proves to be able to predict the mass rate of an influx,
generally with a small margin of error (<0.15kg/s), in the prediction models, it is uncertain how
much of this comes from the difference in relationship between displaced mud and the changing
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mass rate depending on the depth, and pressure of the influx. This can be particularly difficult
to evaluate where an extended influx takes place and the gas keeps expanding while moving
upwards in the well. To counteract the negative effects on mass rate prediction mentioned here
and in the previous paragraph, a volumetric displacement might give more accurate results.
Furthermore, this could give the drilling controller information about the influx in volume, and
potentially the depth, based on this data the content of the influx could be determined by the
controller or a connected and/or centralized expert team.

8.2 Data storage

While the database system proved to take more time and effort to design than originally in-
tended, the system proved vital for ensuring both continuity in data use and the ability to cross
reference the use and origin of all the data. With this system, it proved easy to locate simula-
tions of predictions with a higher than normal error or to query the database after simulations
containing specifics characteristics.

The database proved efficient for exploring single simulations and continues injection of data
from a parallel process running simulations. However, the database had trouble with efficiently
exporting large batches of simulation data for training over the net. While a system could
be designed to handle this process it proved easier to manually export the training sets from
the database to the training server used in an optimized file format for MATLAB to interpret.
As only a limited number of training sets have been generated this did not offer any issues in
keeping track of where data was being used.

A flaw in the database was also noticed where the entries in the results table are not uniquely
relatable to simulation data due to the lack of a time index. As the Result id is automatically
set with an increment and has only been written through incrementally from a single process on
a single computer in this test this has been circumvented by referencing the relative index for
each simulation instead. Where multiple processes to write to this table at ones or not complete
predictions for each time step in a simulation injected, this system would not work. As the
tables can not join trough SQL requests this data has to be patched together after extracted
from the database, increasing development complexity.

8.3 Prediction Models

For this paper, both non-recurrent networks and recurrent networks have been tested. Exam-
ining the results of the non-recurrent NN models from table 9 and figure 21. It is apparent
that regardless of the number of layers, fully connected non-recurrent nodes are in this case not
able to predict the influx rate beyond a scalar relationship on the delta flow. This fault in this
method becomes apparent as any change of flow rate into the well results in an influx prediction
caused by the delayed flow rate response out of the well. This indicates that we cannot predict
the influx accurately without taking into account what has happened. The absence of any
improvement, beyond the bounds of expected result noise, when adding hidden layers further
indicates that the accuracy achievable on a single time step is not a question of the complexity
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of the describing model, but rather essential characteristics of an influx missing in the available
data.

Due to the poor response of the NN models, and limited training capacity, these models were
not trained on the more complex training sets, including tripping and drilling simulations. This
freed up training time to further explore the RNN’s.

In the simulated responses presented in figures 15 - 16. Several time dependencies can be
observed in the dynamics of the well, while some are short term dependencies, like the delay in
which the flow out has before it matches up with flow in, there are also longer dependencies. An
example of this can bee the concave pressure pulse experienced at the start of an injected influx,
or the convex pressure curve at the end of one (fig 9). Since these events can be far apart, and
the knowledge that one or the other has happened could be of value, a network supporting both
long and short time dependencies seems preferential. As such LSTM and BiLSTM networks
have been examined for this paper. While it is possible that RNN models could prove to be
equally efficient, the reduced capacity for context makes this seem unlikely, especially if noise
or a higher sampling frequency were introduced. Based on this, traditional RNNs have not
been further examined in this paper.

The results presented in section 7.2 shows that all LSTM and BiLSTM networks performed
significantly better than the NN network, regardless of training settings. With the one exception
being when the features only included pressure readings. Further examining the impact of
different feature sets in table 8, it is found that the flow rates in and out alone (set 3) is
the most important feature for the network. While the pressure set (4) alone has difficulties
in producing any accurate results. From figure 18 we can see that while the pressure based
prediction comes out quite noisy, there appears to be some correlation between the prediction
and the measured influx rate. The best results are found when using feature set 1, combining
pressure and flow readings. Comparing these results with the final models presented in table
11, the finding stands that feature set 1 delivers the most accurate predictions. These findings
indicate that the network can deduce the movement of the drill string and the resulting volume
change in the well by the features represented in feature set 1 alone. As this set includes both
drill bit depth and bit pressure, both directly impacted during tripping or drilling, it is likely
that these are the indicators the network picks up on. In future work, this could by comparing
the results with a network trained on feature set 2. It should be noticed that while the ROP
and string velocity both can help describe an expected volume or pressure change in the well,
the surface RPM does not correlate with any of the known causes of a simulated pressure based
influx. As such the inclusion of this seemingly unrelated feature for the influx prediction may
impact feature set 5 negatively. Furthermore, as String Velocity can be deduced by the change
in bit depth, ROP might be the only feature adding new meaning full information in this feature
set.

While stacking LSTM layers have been the cause for breakthroughs in speech recognition accu-
racy [58], the result presented in table 7 shows that stacking LSTM layers do not improve the
results in the models trained for this paper. There are several reasons why this might not be
the case in this research. Firstly, with the low data frequency there might just not be enough
context for a multiple layer LSTM network to pick up on, if this is the case adding layers should
be explored if the frequency is increased or noise is introduced to the layer, as both of these
builds upon the complexity of the data set. Secondly; the networks trained for 7 were trained
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for an equal amount of epochs, by stacking large layers the number of weights to be adjusted
significantly increases. By this logic, further research should more closely examine the learning
curve of networks with different layer size, for this paper this comparison was done before a
system for evaluating the learning curve was developed, and the applied solution of 100 nodes
performed sufficiently well. As such no further experiments were done towards optimizing the
layer size was done.

For evaluating different training options, feature sets and network layouts 500 epochs have
generally been used. While the training progression presented in figure 13a) and 35 both shows
that the training is nearing a minimum here, 13b) and the difference in identically trained
network in table 10 shows that the random nature of the training progress is reason for cation
in any absolute conclusion of neural networks with near similar performance. To counteract
this several of the networks presented in this paper have been retrained when encountering
unexpected results or abnormalities in the training progression. For the final sets of networks
to compare in table 11, the training period was also extended to 5000 epoch, saving the network
on each epoch to be able to manually pick an earlier iteration if overtraining occurred or the
network did a jump to a worse performing local minimum. While this, in general, produced a
better result, the training progress of LSTM B2 1b (fig 36) indicates that even during longer
training processes, the network can evolve to a significantly worse performing local minimum.
Due to limited training capacity, this network was not retrained.

While feature set 1a is the most examined solution in this paper, this was selected as a common
reference between the and not as the final proposed network. As presented in figures 22 to 24.
Even a near doubling of the RMSE value (LSTM B3 1a to LSTM B2 1b) on the test set presents
as nearly identical on the selected case. The more important finding seems to be the general
efficiency of LSTM networks and
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9 Conclusion

In this paper, a methodology for the detection of an unexpected influx during drilling operations
is explored. The proposed detection methodologies are based on a flux estimator, which involves
detecting and identifying the flux of fluids between permeable or fractured formations and the
wellbore. The models are developed using deep learning algorithms to better detect kick and
estimate the rate of influx in the well, based on readily available sensory data from the drill rig.

The results demonstrate the effectiveness of deep neural networks and show that they can ef-
fectively detect a kick in the early phases of the influx. In simulated drilling scenarios, the
proposed methods can increase kick detection accuracy and reduce the need for rig modifica-
tions, specialized equipment, and advanced physics-based models to detect discrepancies during
operations.

While most of the solutions examined in this paper were trained towards influx detection by
use of flow readings and pressure readings relevant data from the top deck and the drill bit.
The result shows that limiting bottom hole readings or including loss detection can be done
with only minor loss in the model accuracy.

Furthermore, the results also show that while LSTM networks deliver high accuracy on real-
time prediction, the use of BiLSTM network can improve the historical predictions. As such
a potential hybrid system could be implemented with the LSTM network doing a real-time
reading for high responsiveness, and a BiLSTM network could be used for the historical data.
With only a 5-30 second delay on its improved estimation, it could potentially increase the
human operator’s trust in a decision if other data are uncertain.

However, even though the results show an adept ability to perform influx classification and
influx mass rate estimation on simulated cases it is recognized that there will likely be a loss
in this performance if this model where to be tested on real data. Furthermore, due to the
complete lack of available real drilling data or even influx classification statistics, it is difficult to
definitively make any conclusion on the performance of the proposed methods in a real scenario.

Through the development process, several research steps towards making a generalized deep
neural network model for kick detection on real drilling data has been identified. Firstly the
mass flow rate estimation should be generalized toward volumetric flow estimation as it’s an
impossible task, with current technology, to know the substance and density of an influx with
high accuracy at an early stage. With a volumetric influx prediction and expert, or expert
system, could classify the likelihood of the influx content.

Secondly, increasing the sampling time of the data from 1Hz could potentially greatly increase
the accuracy of the models and further reduce the detection time, as the results presented by the
real-time methods in this paper generally only lagged on reading behind the actual occurrence.
Increasing the sampling frequency would also open up for adding noise to the data, further
closing the gap between simulation data and real data. This could potentially benefit from the
LSTM networks reported proficiency in filtering noise in the input data.

With the steps mentioned above taken toward reducing the gap between training on simulated
data and real data, combined learning with real and synthetic data could show great potential.
Especially due to the large quantities needed for training a complex neural network.
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A Appendices

A.1 Entry Relation Diagram

Table 12: ER Diagram SQL DB

Case

idCase INT(11)

name VARCHAR(45)

depth INT(11)

openHole INT(11)

density DOUBLE

description TEXT

idFractureProfile INT(10)

Indexes

Data

idData INT(10)

idSim INT(10)

step INT(10)

flowIn DOUBLE

flowOut DOUBLE

flowBack DOUBLE

pressureSPP DOUBLE

pressureBHP DOUBLE

pressureBit DOUBLE

pressureADP DOUBLE

chokeOpening DOUBLE

depth DOUBLE

depthBit DOUBLE

surfaceRPM DOUBLE

stringVelocity DOUBLE

ROP DOUBLE

densityIn DOUBLE

influxMass DOUBLE

influxRate DOUBLE

mudLoss DOUBLE

lossRate DOUBLE

changeRate DOUBLE

Indexes

FractureProfile

idFractureProfile INT(10)

name VARCHAR(45)

description TINYTEXT

maxDepth INT(11)

Indexes

Log

idLog INT(11)

event VARCHAR(45)

startTime DATETIME

endTime DATETIME

msg TEXT

errors INT(11)

errorMsg MEDIUMTEXT

uuid VARCHAR(14)

Indexes

Model

idModel INT(10)

name VARCHAR(45)

description TEXT

Indexes

Network

idNetwork INT(10)

name VARCHAR(45)

idSet INT(10)

idSensor INT(10)

idModel INT(10)

lossVal DOUBLE

lossTest DOUBLE

fileName TEXT

description MEDIUMTEXT

gen DOUBLE

netFile BLOB

Indexes

ResultComment

idResultComment INT(10)

idSim INT(10)

idNet INT(10)

headline VARCHAR(45)

comment TEXT

RMSE DOUBLE

itteration INT(11)

Indexes

Results

idResults INT(10)

idRes INT(10)

prediction DOUBLE

Indexes

Run

idRun INT(11)

idLog INT(11)

name VARCHAR(45)

date DATETIME

simulations INT(11)

steps INT(11)

stepTime DOUBLE

tripping TINYINT(4)

drilling TINYINT(4)

activeFlow TINYINT(4)

minerFile TEXT

simulationFile TEXT

description TEXT

Indexes

SensorSets

idSensorSets INT(10)

name VARCHAR(45)

sensors TEXT

Indexes

Sim

idSim INT(10)

idRun INT(11)

runNr INT(11)

idLog INT(11)

idCase INT(11)

totalInflux DOUBLE

totalLoss DOUBLE

flowFun VARCHAR(45)

tripping TINYINT(4)

drilling TINYINT(4)

fileName VARCHAR(45)

ConfigurationName VARCHAR(45)

SimulationName VARCHAR(45)

InitialBitDepth DOUBLE

UseReservoirModel TINYINT(4)

ManualReservoirMode TINYINT(4)

ManualInfluxLossMassRate DOUBLE

ManualInfluxLossTotalMass DOUBLE

ManualInfluxLossMD DOUBLE

ReservoirKickOffTime INT(11)

TopOfStringPosition DOUBLE

UseTransientMechanicalModel TINYINT(4)

stepTime DOUBLE

Indexes

SimUse

idSimUse INT(10)

idSim INT(10)

idSet INT(10)

idUse INT(10)

Indexes

TrainingSet

idTrainingSet INT(10)

name VARCHAR(45)

pTrain DOUBLE

pVal DOUBLE

pTest DOUBLE

description TEXT

Indexes

Use

idUse INT(10)

name VARCHAR(45)

description VARCHAR(45)

Indexes
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A.2 Code for generating training sets

A.2.1 Main script

1 %% Se t t i n g s
2 t r a i n i n gS e t = 3 ; % idTra in ingSet
3 pTest = 0 . 2 ; % Fract ion o f t e s t data
4 pVal = 0 . 1 ; % Fract ion o f Va l ida t i on data
5 se l ec tRuns = 6 : 9 ; %Simulat ion batches to in c lude
6 useCaseRatio = true ; % Overr ide i n f l u x populat ion
7 caseRat io = 0 . 5 ; % minimum of ca s e s i n c l ud ing i n f l u x
8

9 %% Fetch Simulat ion id ’ s with i n f l u x and l o s s
10 runsS = s t r j o i n ( c e l l s t r ( num2str ( se lectRuns ’ ) ) , ’ , ’ ) ;
11 whereQ = [ ’WHERE Sim . idRun IN ( ’ , runsS , ’ ) ’ , . . .
12 ’ AND Sim . t o t a l I n f l u x IS NOT NULL ’ ] ;
13 query = [ ’SELECT idSim , t o t a l I n f l u x , t o t a lLo s s FROM Sim ’ , whereQ ] ;
14 conn = connectToDB ( ) ;
15

16 SimUse = f e t ch ( conn , query ) ; % re tu rn s t ab l e with de s i r ed columns
17

18 %% count i n f l u x ca s e s
19 i f useCaseRatio
20 i s I nLo s s = any ( SimUse { : ,2 :3} >0 ,2) ; %number o f i n f l u x or l o s s

s imu la t i on s
21 n In t r e s t = nnz ( i s I nLo s s ) ; %number o f normal s imu la t i on s
22 r a t i o = n In t r e s t / he ight ( SimUse ) ; % r a t i o
23 i f r a t i o < caseRat io % i f r a t i o ou t s id e goa l
24 numNormalCases = round ( n In t r e s t / caseRatio−n In t r e s t ) ; %

Ca lcu la te normal s imu la t i on s to keep
25 temp = SimUse(~ i s InLos s , : ) ; % Copy to temporary va r i ab l e
26 SimUse(~ i s InLos s , : ) = [ ] ; % de l e t e from main tab l e
27 maxID = he ight ( temp) ; % f i nd t o t a l number o f normal
28 idxL = randperm (maxID , numNormalCases ) ; %s e l e c t a

predetermined number o f random s imu la t i on s
29 SimUse = [ SimUse ; temp( idxL , : ) ] ; % Join s e l e c t e d s imu la t i on s

in complete l i s t
30 c l e a r temp idxL maxID numNormalCases r a t i o
31 end
32 end
33 SimUse ( : , 2 : 3 ) = [ ] ; % Remove exce s s data
34 SimUse = sort rows (SimUse , ’ idSim ’ ) ; % Sort by sim id
35

36 SimUse . idSe t =repmat ( t r a in ingSe t , he ight ( SimUse ) ,1 ) ; % Set t r a i n i n g
s e t t ID

37 SimUse . idUse = ones ( he ight ( SimUse ) ,1 ) ; % pr ea l l o c a t e i dUs e

A - 2



A. APPENDICES

38 % Get indexes f o r Train , Test and va l i d a t i o n
39 [ idxTrain , idxTest , idxVal ] = part i t ionTestValData ( pTest , pVal , he ight (

SimUse ) ) ;
40

41 SimUse . idUse ( idxTrain ) = 2 ; % Set t r a i n i n g id
42 SimUse . idUse ( idxVal ) = 3 ; % Set v a l i d a t i o n id
43 SimUse . idUse ( idxTest ) = 4 ; % Set t e s t id
44

45 %% Ver i fy d i s t r i b u t i o n
46 pTest = nnz ( SimUse . idUse == 4) / he ight ( SimUse )
47 pVal = nnz ( SimUse . idUse == 3) / he ight ( SimUse )
48 pTrain = nnz ( SimUse . idUse == 2) / he ight ( SimUse )
49

50 s q lw r i t e ( conn , ’ SimUse ’ , SimUse ) %% Push tab l e to db

A.2.2 partitionTestValData

1 f unc t i on [ idxTrain , idxTest , idxVal ] = part i t ionTestValData ( pTest ,
pVal , l i s tL eng th )

2

3 % pr e a l l o c a t e l o g i c a l a r rays
4 idxTest = f a l s e (1 , l i s tL eng th ) ;
5 idxVal = idxTest ;
6

7 % Calcu la te number o f v a l i d a t i o n s imu la t i on s
8 numOut = round ( l i s tL eng th ∗( pVal+pTest ) ) ;
9 vOut = f l o o r (numOut∗( pVal /( pVal+pTest ) ) ) ;

10

11

12 idxOut = randperm ( l i s tLength , numOut) ; % Se l e c t ca s e s at random , in a
random ordered l i s t

13 V = idxOut ( 1 : vOut ) ; % Assign the f i r s t va lue s to va l i d a t i o n
14 T = idxOut (vOut+1:end ) ; % Assign r e s t to Train ing
15

16 % crea t e l o g i c a l index ar rays
17 idxTest (T) = true ;
18 idxVal (V) = true ;
19 idxTrain = ~( idxTest | idxVal ) ; % NOT idxTest OR idxVal
20

21 end
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A.3 Flow Functions

The following functions where used to generate the active flow patterns used in simulations.
Except for the static function all are randomly seeded to ensure variety in the patterns. For the
flow patterns to behave consistently throughout a simulation 5 random values where generated
in the start of a simulation, and passed to the functions via the ’seed’ variable. The total
simulation time where given in ’maxI’ and the current time in ’i’. Standardizing these values
for all functions allowed for the parent code to chose any of the functions without errors.

Static

1 f unc t i on [ x ] = f l owS t a t i c ( i , maxI , seed )
2 x = 1 ;
3 end % func t i on

Static Step

1 f unc t i on [ x ] = f l owSta t i cS t ep ( i , maxI , seed )
2 startTime = maxI/3∗ seed (1 ) ;
3 endtime = (maxI−startTime ) ∗ seed (1 ) ;
4 i f i>startTime && i<endtime
5 x = 1 ;
6 e l s e
7 x=0;
8 end
9 end % func t i on

Ramp up

1 f unc t i on [ x ] = flowRampUp( i , maxI , seed )
2 p = 10+seed (1 ) ∗50 ;
3

4 i f i<p
5 x = s in ( i /p∗pi−pi /2) /2+0.5;
6 e l s e
7 x = 1 ;
8 end
9

10 end % func t i on
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Ramp up and down

1 f unc t i on [ x ] = flowRampBump( i , maxI , seed )
2 p = 10+seed (1 ) ∗40 ;
3 pDown = 4+15∗ seed (3 ) ;
4 pPause = seed (2 ) ∗(maxI−pDown−p) ;
5 bmpSize = 1∗ seed (4 ) ;
6 i f i<p
7 x = ( s i n ( i /p∗pi−pi /2) /2+0.5) ;
8 e l s e i f i<p+pPause
9 x = 1 ;

10 e l s e i f i < p+pPause+pDown
11 x = 1−bmpSize/2−( s i n ( ( i−p−pPause ) /pDown∗pi−pi /2) /2) ∗( bmpSize ) ;
12 e l s e
13 x = 1−bmpSize ;
14 end
15

16 end % func t i on

Step Up

1 f unc t i on [ x ] = flowStepUp ( i , maxI , seed )
2 upTime = round (maxI∗ seed (1 ) ) ;
3 s t ep s = 1+round (maxI/15∗ seed (2 ) ) ;
4

5 i f i<upTime
6 x = round ( i ∗ s t ep s /upTime) / s t ep s ;
7 e l s e
8 x=1;
9 end

10

11 end % func t i on

Step Up and down

1 f unc t i on [ x ] = flowStepUpDown ( i , maxI , seed )
2 upTime = round (maxI/2∗ seed (1 ) ) ;
3 downTime = round (maxI/2∗ seed (1 ) ) ;
4 pauseTime = round ( (maxI−upTime−downTime) ∗ seed (1 ) ) ;
5 stepsUp = 1+round (maxI/15∗ seed (2 ) ) ;
6 stepsdown = 1+round (maxI/15∗ seed (2 ) ) ;
7

8 i f i<upTime
9 x = round ( i ∗ stepsUp/upTime) / stepsUp ;
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10 e l s e i f i<upTime+pauseTime
11 x = 1 ;
12 e l s e i f i<upTime+pauseTime+downTime
13 x = 1−round ( ( i−upTime−pauseTime ) ∗ stepsdown/downTime) / stepsUp ;
14 e l s e
15 x=0;
16 end
17

18 end % func t i on

Sin

1 f unc t i on [ x ] = f lowS in ( i , maxI , seed )
2 p=2+seed (1 ) ∗5 ;
3 a = seed (2 ) ;
4 x = 1−( cos ( i /maxI∗ p i ∗2∗p) /2+0.5) ∗a ;
5

6 end % func t i on

Random steps

1 f unc t i on [ x ] = flowRand ( i , maxI , seed )
2

3 s t ep s = round (10∗ seed (1 ) ) ;
4 atStep = round ( i ∗ s t ep s /maxI ) ;
5 x =seed (mod( atStep , l ength ( seed ) )+1) ;
6

7 end % func t i on
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A.4 LSTM Training function

1 f unc t i on trainLSTMNet ( f i l e , f ea ture ,mb, MaxEpochs , sequenceL , l r )
2

3 load ( [ f i l e , ’ . mat ’ ] ) % Load t r a i n i n g data
4

5 %Set save path and name
6 f o l d e r =[ ’ r e s / ’ , f i l e , ’_E’ , num2str (MaxEpochs ) , ’B ’ , num2str (mb) , ’S ’ ,

num2str ( sequenceL ) , ’L ’ , r ep l a c e ( num2str ( l r ) , ’ . ’ , ’ ’ ) ] ;
7

8 mkdir ( f o l d e r ) % Create checkpo int f o l d e r
9

10 %% Create l a y e r s
11 l a y e r s = [ sequenceInputLayer ( f ea ture , ’Name ’ , ’ inRaw ’ ) , . . .
12 l stmLayer (100 , ’OutputMode ’ , ’ sequence ’ , ’Name ’ , ’memberBerry ’ ) , . . .
13 fu l lyConnectedLayer (1 , ’Name ’ , ’ s o l v e r ’ ) , . . .
14 r e g r e s s i onLaye r ( ’Name ’ , ’RMSE’ ) ] ;
15

16 %% Set Train ing Options
17 opts = tra in ingOpt ions ( ’adam ’ , . . .
18 ’ I n i t i a lL ea rnRat e ’ , l r , . . .
19 ’ MiniBatchSize ’ ,mb , . . .
20 ’ S hu f f l e ’ , ’ every−epoch ’ , . . .
21 ’MaxEpochs ’ ,MaxEpochs , . . .
22 ’ Val idat ionData ’ ,{ zDataVal , yDataVal } , . . .
23 ’ CheckpointPath ’ , f o l d e r , . . .
24 ’ SequenceLength ’ , sequenceL ) ;
25 %% Train
26

27 [ net , ne tS ta t s ] = trainNetwork ( zDataTrain , yDataTrain , l aye r s , opts ) ;
28

29 %% Save r e s u l t i n g Workspace
30 save ( [ ’WS_’ , f o l d e r ] )
31

32 end
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