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Abstract

In this thesis, an adaptive backstepping controller is proposed for tracking of a desired trajectory
for the attitude of a laboratory helicopter from Quanser called Aero. The Aero has two degrees of
freedom (DOF), and can rotate around two axes, and is a multiple-inputs-multiple-outputs (MIMO)
system. A mathematical model of the system is �rst derived based on Newton's law and Eulers
rotational dynamics and parameters for the model are estimated. A theoretical proof of stability
with adaptive backstepping is given with the use of constructed Lyapunov functions, where tracking
is achieved and also boundedness of all signals in the closed loop system. Also, the transient perfor-
mance for the tracking errors in terms of L2 norm is derived, where the tracking error performance
can be improved by adjusting the design parameters. Simulations and experiments are carried out
where the performance of the adaptive backstepping controller is compared with the performance
of a linear quadratic regulator (LQR). Di�erent disturbances have been added to see the behavior
of the controllers. For all the tests, the adaptive controller is able to estimate the parameters and
track the desired reference signal. For di�erent step inputs to the angles at di�erent time instances,
the two controllers show a similar behavior. Planning the path and using a smoother transition
between the steps, a better performance is observed for both controllers both in terms of lower
total error and less voltage use. The adaptive backstepping controller shows a better performance
relative to error than the LQR under smoother steps.
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Chapter 1
Introduction

The history of helicopters goes back over 2000 years when the Chinese made a toy called Chinese
Top [1]. This toy had a propeller on a stick that would �y when the stick was spun. Over the years,
several design of a helicopter was constructed, and the modern helicopter was invented in the 1930's
by the Russian Igor Sikorsky, and the �rst helicopter was build in 1939. The helicopter had one
main and one tail rotor. The main rotor was mounted horizontally and gave a lifting force, but at
the same time it would generate aerodynamic forces, drag, that makes the helicopter rotate about
yaw. The invention of using a tail rotor to account for the torque produced by the main rotor made
the helicopter practical to �y. The tail rotor was mounted vertically and gave an opposite torque
to the main rotor so that the helicopter did not spin around.

One of the greatest advantage with a helicopter is its ability to have vertical take-o� and land-
ing and have practical use where there is not need for a runway. This makes helicopters useful for
rescue of people in mountains and at sea, to transport people to hospitals and to platforms at sea
and use in military actions among other things. When the helicopter is in the air, it will encounter
disturbances from weather conditions, and wind is one of the challenges. Also if a helicopter is to
land on a platform at sea, it will have disturbance from waves and so a helicopter needs to adapt
to di�erent �ight conditions fast.

In this project a laboratory equipment from Quanser called Aero is used to experiment with di�erent
control structures, with focus on adaptive backstepping control. The Aero has two degrees of free-
dom, pitch and yaw, and resembles the behavior of a helicopter. There is a cross-coupling between
the two rotors, making it challenging to control. For the laboratory helicopter rotor blades are �xed,
while on a helicopter the airfoils can change angles. For the Aero, control is achieved by changing
speed of the rotors while control is achieved by changing angles of the airfoils for a helicopter. The
Aero also has the center of mass below the pivot point, so that it resembles a pendulum, which is
one of the things making control of pitch angle nonlinear. This is a multiple-inputs-multiple-outputs
(MIMO) nonlinear dynamic system, and because of the complexity it is di�cult to both model and
to design a good control structure.

1.1 Project Description

In this thesis the following have had main focus

• Perform a literature review of previous work related to 2 degrees of freedom (DOF) helicopter
models similar to the one in this thesis.

• Derive a mathematical model of the Aero dynamics with actuation of rotation of the system.

• Design of four di�erent controllers for the Aero including two PID based controllers, one linear
controller, LQR, and one nonlinear controller. The main focus has been to the nonlinear
controller using adaptive backstepping.

1
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• Perform a theoretical analysis of stability of the Aero with adaptive backstepping control.

• Simulation of the system with the di�erent controllers in Matlab/Simulink. Simulation results
will be presented.

• Testing of the di�erent controllers for control of the Aero. Results from testing will also be
presented.

1.2 Previous Work

Air vehicles such as helicopters and unmanned aerial vehicles have received an increased interest the
past years. This has also resulted in more research later years for control of such systems. Helicopter
models like the one from Quanser gives a good opportunity to test di�erent controllers and there
have been proposed many di�erent control structures/design for tracking and stabilizing helicopters
based on such models. Here is a presentation of some of the works that have been published relating
to control of a helicopter.

Conventional controllers like proportional � integral � derivative (PID) controller and linear quadratic
regulator (LQR) have been tested for twin rotor MIMO systems. Pandey and Laxmi (2014) [2] pre-
sented a linearized model of a twin rotor MIMO system. First a conventional PID controller to
control pitch and yaw separately was tested and this was compared with an optimal state feedback
controller using LQR technique where both state and control input were in the cost function. This
was evaluated with step input and the conclusion was that the optimal controller gave better per-
formance both in terms of transient and steady state response compared to the PID controller. In
Ramalakshmi and Manoharan (2012)[3], two di�erent type of PID controllers were evaluated for a
twin rotor MIMO system. First vertical and horizontal movements were controlled separately with
PID controllers, then a cross coupling of four PID controllers were tested. Three di�erent inputs
were given to the system, step, sine and a square wave. It is di�cult to say if the cross coupled PID
controller had a better performance than the separate PID controllers based on the presented results.

More advanced controllers have also been tested where a nonlinear model often is used. Predictive
or adaptive controllers have been tested and the performance is often compared with performance of
a conventional controller. In 2018, Gabrielsen and Frasik [4] wrote a master thesis for the same sys-
tem as for this thesis. In their work, several controllers were tested for the Aero to control the pitch
and yaw angular position. This included cascade P-PI, LQR and the more advanced controllers
like model predictive control (MPC) and model reference adaptive control (MRAC). MPC is an
approach that �rst make a prediction of the system output and then chooses future control signals
over a control horizon that minimizes future error of what is desired and what is predicted. This is
repeated for every time step. MRAC is a controller that continuously change the control parameters
based on a reference model of the controlled system. A combined step response sequence for pitch
and yaw was simulated and tested on the system. Also a test with emulated actuator damage was
performed, where the tail propeller was changed with a propeller with higher e�ciency.
In Dutka et al.(2003) [8] a nonlinear predictive control was applied to a 2DOF helicopter model. The
nonlinear algorithm was based on state-space generalized predictive control. Here the future control
was predicted, and then future states for the model and time-varying parameters were predicted
based on the control. A desired setpoint for the angles was given, and the proposed algorithm
was able of stabilizing the system. In Ramalakshmi et al.(2016) [7] a MPC for a 2DOF helicopter
was developed. Based on a model of the system, performance of a PID controller was compared
with performance from the MPC controller when disturbances of step and sine were applied to the
model. Both had the same settling time but PID has a higher overshoot than MPC. MPC had a
smoother control compared to PID in this test and maintained system stability and reduced the
e�ect of disturbances and noise. Ahmed et al (2010) tested a 2-Sliding mode based robust controller
for a 2DOF helicopter in [9]. Variations in mass distribution were tested, where a wanted constant
pitch angle was tracked under disturbance from changing center of gravity during the experiment.
This gave unwanted moments that the controller had to deal with, and the results showed a good



CHAPTER 1. INTRODUCTION 3

performance under these uncertainties. In Lopéz-Martinéz (2005)[12] a nonlinear H∞ controller for
a twin rotor laboratory helicopter was designed and tested. This controller had a structure as a
nonlinear PID controller with gains that varied over time. The controller was tested with di�erent
series of step references and showed a good performance given the references.
Chalupa et.al. (2015) presented modelling of a twin rotor MIMO system and an adaptive controller
for the system in [5] and [6]. A signi�cant cross-coupling between the two rotors was observed
and also a nonlinear behaviour of the system. A model based on �rst-principle was derived for
the helicopter model. The adaptive controller tested was a self-tuning controller based on online
identi�cation of controlled process, and where the linearized model of the plant was used. In Pa-
tel et al. (2017) [10] an adaptive integral backstepping control scheme for tracking control for a
Quanser 2DOF Helicopter was proposed. The advantage of such a controller is that it is robust to
uncertainties and unmodeled dynamics. Performance of this controller was compared with a LQR
controller. A mass in form of a marker pen was placed onto the front propeller after 30 s, trying to
hold a given pitch angle and so there is an uncertainty to the mass. Simulations and testing on the
Quanser helicopter with this showed a better performance for the integral backstepping controller
when such uncertainties were present. In Zou and Huo (2015)[11] an adaptive tracking control for
a model helicopter in presence of external disturbances was presented. The design was based on
backstepping and a proof that the tracking errors are bounded was also given. Simulation of posi-
tion tracking and tracking of the yaw showed that the control design was robust to disturbances.

1.3 Outline

The outline of this M.Sc thesis is:

Chapter 2 provide a description of the Aero that is used in this thesis before a short descrip-
tion about state space approach is given and then modeling of the kinematics and dynamics of the
system is described. The parameters for the model are then estimated.

In Chapter 3 a short description of multivariable system is given before di�erent control designs
that will be simulated and tested for control of the Aero is given. This include two PID based
controllers, one linear and one nonlinear controller. The focus is on a linear controller, LQR, and
a nonlinear controller using adaptive backstepping. A stability proof of the Aero with the adaptive
controller is also given.

The next chapter, Chapter 4, provides simulation and testing of the di�erent controllers with control
of the Aero. First the models are veri�ed to see that they have a behavior as expected before the
di�erent controllers are simulated and tested for di�erent control inputs such as a sine-wave and
step-input at di�erent time instances. To compare the controllers, the total error and also the total
voltage is measured. Then di�erent disturbances is added to the model to compare the behavior of
the LQR and the adaptive backstepping controller.

A conclusion and suggested future work is given in Chapter 5.



Chapter 2
Description and Modeling of the Aero

2.1 Description of the System

The main equipment used in this project is a Quanser Aero which is shown in Figure 2.1. This is a
two-rotor laboratory equipment with 2DOF used for �ight control based experiments, designed for
education and research purposes.

The Aero can be con�gured with either control by a computer via USB connection or by the use of
a microcontroller device. The components of the Aero are:

1. Aero base. Here the system input/output (I/O) is connected, such as power, USB or SPI Data
connector. The Aero base is stationary and have zero DOF.

2. Aero frame. A support yoke is connected to the Aero base. To this, a horizontal metal
tube with two thrusters including the motors are connected, de�ning these components as
the Aero body. The support yoke and the Aero body can rotate along the vertical axis of the
support yoke and a slip ring allows for unlimited rotation. The Aero body can also be tilted
about a pivot point. This gives the Aero body 2DOF. The tilting angle for the Aero body is
constrained to ±62 degrees from a horizontal position due to physical limits on the equipment.
An inertial measurement unit (IMU) with accelerometers and gyros is mounted in the Aero
body, making it possible to have real time measurements of angular positions and velocities
along the primary axis. Two DC-motors powered by a PWM ampli�er are used to drive the
system, and rotary encoders are used to measure position for the motors and tachometer to
measure the speed of the motors. There are also two optical encoders mounted in the Aero
frame as illustrated in Figure 2.1 to measure the angles.

It is possible to lock the support yoke so that it does not rotate and it is also possible to lock the
Aero body so that it does not tilt. Locking one of them separately reduces DOF so that only 1DOF
remains. This will be used when �nding di�erent estimates for the parameters in the mathematical
model.

The propellers used in this thesis is shown in Figure 2.2a and are low e�ciency eight-vane 3D-
printed propellers. It is possible to change propellers to another set of high e�ciency propellers
shown in Figure 2.2b. When testing for disturbances on the system, one or two of the propellers
will be exchanged with these.

The thruster angles can be adjusted to a horizontal or vertical position. The setup used in this
thesis is a horizontal position of the main thruster and a vertical position of the tail thruster as
Figure 2.1 shows, and this resembles a helicopter.

4
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Figure 2.1: Quanser Aero, equipment used in project

(a) Low e�ciency propellers used on Aero (b) High e�ciency propellers

Figure 2.2: Propellers
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Figure 2.3: Block diagram of a system in state space

2.2 State Space Approach

The state space form is one way of describing the behavior of a dynamical system. The system is
then formulated as a set of �rst order di�erential equations with state variables x1, x2, ..., xn = x,
and input variables u1, u2, ..., um = u, that in general form looks like

ẋ =f(x,u) (2.1)

y =h(x), (2.2)

and will describe a nonlinear system. If the system can be describes in the form

ẋ1 = a11x1 + a12x2 + ...+ a1nxn + b11u1 + b12u2 + ...+ b1mum,

ẋ2 = a21x1 + a22x2 + ...+ a2nxn + b21u1 + b22u2 + ...+ b2mum, (2.3)

:̇

ẋn = an1x1 + an2x2 + ...+ annxn + bn1u1 + bn2u2 + ...+ bnmum,

and the output variables (y1, y2, ..., yk) also can be formulated with the state- and input variables
where

y1 = c11x1 + c12x2 + ...+ c1nxn + d11u1 + d12u2 + ...+ d1mum,

y2 = c21x1 + c22x2 + ...+ c2nxn + d21u1 + d22u2 + ...+ d2mum, (2.4)

:̇

yk = ck1x1 + ck2x2 + ...+ cknxn + dk1u1 + dk2u2 + ...+ dkmum,

Then both the equations for the system and for the output can be presented in matrix form as

ẋ = Ax+Bu (2.5)

y = Cx + Du (2.6)

where matrix A is the state matrix, B is the input matrix, C is the output matrix and D is the
direct transmission matrix. This is the linear state space form, and a block diagram of the linearized
system in state space is shown in Figure 2.3. One advantage of using state space form is that it
applies for MIMO- and nonlinear- systems as well as for single-input-single-output (SISO)- and
linear- systems [13].
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Figure 2.4: Coordinate system of Aero body and inertial frame

2.3 Modeling of the Aero

The �rst step in control design is to have a mathematical model of the system where this model is
an approximate representation of the real system. In this section a model for the Aero is developed.
The system for the Aero is a MIMO system with two system inputs, Vp and Vy, that is the voltages
applied to the main and tail motors and four state variables, that is the tilting angle of the Aero
body, the angle from rotation of the support yoke and Aero body along the vertical axis, and then
the angular velocities for these. All state variables can be measured. The system has 2DOF, and
thus there will be two equations describing the dynamic of Aero. The rotor blades are airfoils,
that can have di�erent characteristics giving di�erent aerodynamic forces for a helicopter, mostly
a�ecting the lifting force. The design of these and how this e�ect the model are outside the scope
of this thesis.

The Aero is considered as a rigid body, and with the use of Newton's law and Euler's rotational
dynamics, the Newton-Euler equations of motion are [14][

mb 0
0 Ib/o

] [
r̈i
ω̇bib

]
=

[ ∑
Fi∑

Mb − (ωbib)
xIb/oω

b
ib + τ∆

]
(2.7)

where a subscript or superscript, b, denotes the body frame, i denotes the inertial frame and o
denotes the pivot point. The scalarmb is the mass of the Aero body, matrix Ib/o is the mass moment
of inertia about the pivot point, the vector r̈i is the acceleration for the mass, ωib is the angular
velocity vector of body frame relative to inertial frame, and with superscript b for this, ωbib, means
this is the angular velocity when looking from the body frame. This is the angular velocity that can
be measured from the IMU's rate gyroscopes. Vector ω̇bib is the angular acceleration vector, vector∑

Fi is the sum of forces, and the vector
∑

Mb is the sum of moments. The matrix (ωbib)
x is the

skew symmetric matrix of the angular velocities. Vector τ∆ is the disturbance torque. When �nding
these equations, the translational forces is considered in the inertial frame, and the rotational is
considered in the body frame. Equations in this section is from [14] and [15].

To �nd these equations and make a mathematical model, a coordinate system is �rst selected. The
inertial frame, I, for the model is shown in Figure 2.4, where origin is chosen in the pivot point for
the Aero body and the axes are denoted (xi, yi, zi). This is considered �xed relative to ground. The
helicopter have a body frame, B, also with origin in the pivot point and with axes denoted (xb,yb,zb).
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The orientation of the body frame relative to the inertial frame is described by a direction co-
sine matrix Ri

b expressed with Cardan angles, better known as Euler angles. This is a rotation
matrix from the inertial frame to the body frame, and is rotation about x-, y- and z-axis with
Euler angles λ = [φ, θ, ψ]T called roll-pitch-yaw angles. There are twelve possible combinations of
Euler angles based on which order of rotation is chosen. A rotation �rst about z-axis, then y-axis
and then x-axis is typical for aircraft and spacecraft attitude angles and is therefore chosen for this
system. The direction cosine matrix for this system is then [15]

Ri
b = Rx(φ)Ry(θ)Rz(ψ) =

 cθcψ cθsψ −sθ
−cφsψ + sφsθcψ cφcψ + sφsθsψ sφcθ
sφsψ + cφsθcψ −sφcψ + cφsθsψ cφcθ

 , (2.8)

where Rz, Ry and Rx are the rotation matrices about z-, y-, and x-axis, and c(·) and s(·) is
abbreviation for cos(·) and sin(·). The rotation matrix about x -axis can be reduced to an identity
matrix since there is no rotation about x for the Aero, and so Equation (2.8) can be simpli�ed to

Ri
b = Rx(φ)Ry(θ)Rz(ψ) =

cθcψ cθsψ −sθ
−sψ cψ 0
sθcψ sθsψ cθ

 . (2.9)

The pitch angle is zero when the helicopter is horizontal relative to ground, and has a positive pitch
angle for a counter-clockwise (CCW) rotation about y-axis. The yaw angle is zero at start, and has
a positive yaw angle for CCW rotation about z-axis. When the angles are zero, the two reference
frames are coincident.

The rotation matrix is orthogonal and we have

Ri
bR

i,>
b = I. (2.10)

When di�erentiating this with time, this gives

d

dt
[Ri

bR
i,>
b ] = Ṙi

bR
i,>
b + Ri

bṘ
i,>
b = 0, (2.11)

and so the matrix Ṙi
bR

i,>
b is skew symmetric. De�ning this skew symmetric matrix as

Ṙi
bR

i,>
b = (ωiib)

x, (2.12)

the kinematic di�erential equation of the rotation matrix can be formulated as

Ṙi
b = (ωiib)

xRi
b = Ri

b(ω
b
ib)

x. (2.13)

The skew symmetric matrix for the angular velocities is

(ωbib)
x =

 0 −ωbz ωby
ωbz 0 −ωbx
−ωby ωbx 0

 , (2.14)

where ωbx, ωby and ωbz are the angular velocities in xb-, yb- and zb-directions in body frame.

The angular velocities of the Euler angles is λ̇ = [φ̇, θ̇, ψ̇]T . The angular velocity in body frame
relative to this will be [14]

ωbib =

ωbxωby
ωbz

 = Eb(λ)λ̇ =

1 0 −sθ
0 cφ cθsφ
0 −sφ cθcφ

φ̇θ̇
ψ̇

 . (2.15)
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The determinant of matrix Eb(λ) is equal to cos θ, and when this is zero there is a singularity to
the matrix. This is the Euler-angle singularity for this choice of rotation matrix, meaning it is not
possible to describe the angular velocity for all components when θ = ± 90 degrees. Since the pitch
angle for this system is constrained to ± 62 degrees, this will not be an issue for the Aero. For
small angles, the angular velocities in body frame, ωbib, can be approximated to the angular veloci-

ties, λ̇, and this will be used when linearizing the dynamic equations for the Aero in the next section.

Inverting the matrix Eb(λ) gives the angular velocities of the Euler angles relative to angular
velocities in body frame φ̇θ̇

ψ̇

 =
1

cθ

cθ sφsθ cφsθ
0 cφcθ −sφcθ
0 sφ cφ

ωbxωby
ωbz

 . (2.16)

Now the position, velocity and acceleration of the center of mass relative to the inertial frame can
be found. The center of mass, rcm, for the Aero body is located in position [0,−lcm,−lcm]> relative
to the body frame. The position and velocity of the center of mass in the inertial frame will be

ri = Ri
brb, (2.17)

ṙi = Ṙi
brb + Ri

bṙb. (2.18)

Since the position of the center of mass is constant in the body frame, the time derivative of this
will be zero, reducing the Equation (2.18) to

ṙi = Ṙi
brb

= Ri
b(ω

b
ib)

xrb. (2.19)

The acceleration is then

r̈i = R̈i
brb,

= Ṙi
b(ω

b
ib)

xrb + Ri
b(ω̇

b
ib)

xrb

= Ri
b(ω

b
ib)

x(ωbib)
xrb + Ri

b(ω̇
b
ib)

xrb, (2.20)

where the �rst term of Equation (2.20) is the centripetal acceleration and the second term is the
transversal acceleration.

The forces on the Aero body is visualized in Figure 2.5 showing both a free body diagram (FBD)
and a kinetic diagram (KD). The main motor is producing two forces, one main force, FMz, in the
zb-direction that will give a positive pitch angle and also a force, FMy, in the yb-direction, meaning
this will give a yaw angle. This last force is due to the aerodynamic forces. The tail motor is also
producing two forces, FTz and FTy. This motor is basically here to counteract the yaw from the
main motor and thus control the yaw while the main motor is controlling the pitch. These forces
are functions of the two system inputs Vp and Vy. Viscous damping, proportional to the velocity
of the Aero body, is also present. An angular velocity ωbz, gained with a damping constant DV y,
is damping for a rotation about yaw axis, zb, and an angular velocity ωby, gained with a damping
constant DV p, is damping for a rotation about pitch axis, yb.
The Aero body is pivoted in origo with the support yoke, and there is one tangential force, Ft and
one normal force, Fn in this point. The tangential force will have one component in xb direction,
while the normal force will have one component in yb- and zb- direction. There is also a gravity
force, Fg caused by the total mass of the Aero body, mb, and the constant of acceleration due to
gravity, g. Since the center of mass is below the pivot point, the Aero body behaves as a pendulum.
Now that the acceleration is found and all forces identi�ed, the �rst equation for the motion of Aero
body can be found.

To �nd the inertia and moments for the Equation (2.3), the system is considered in the body
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Figure 2.5: Free body diagram and kinetic diagram of the Aero body

frame. By taking the sum of moments about the pivot point, the tangential and normal force will
not give any moments. The sum of moments for the Aero body is then

∑
Mb =

 0
FMzrp + FTzrp − Fglcmsθ −DV pωby

FTyrp − FMyrp −DV yωbz

 (2.21)

=

 0
f1(Vp) + f2(Vy)− Fglcmsθ −DV pωby

f3(Vy) + f4(Vp)−DV yωbz

 , (2.22)

where rp is distance from the pivot point to the motors, the functions f1(Vp) and f2(Vy) are the
main- and cross torque about pitch axis, yb, produced by input voltages, and functions f3(Vy) and
f4(Vp) are the main- and cross torque about the yaw axis, zb, produced by input voltages.

The inertia tensor is

Ib/o =

Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

 , (2.23)

which is the inertia about the three axis xb, yb and zb. For the Aero body, the elements in this
matrix will be constant and invariant with time since this is relative to the body frame. The masses
for the Aero body is divided into three components as illustrated in Figure 2.6. That is the mass
of the horizontal metal tube and one mass for each of the thrusters with propeller and motor.
The metal tube is considered as a rod rotating about its center with mass mtube and length ltube,
where the center of mass is in the pivot point, [0, 0, 0]>. The two thrusters are considered as point
masses, mp, rotating at distance rp from the pivot point. The main thruster has its center of mass
in [−rp, 0,−l1]> while the tail thruster has its center of mass in [rp,−l1, 0]>. The distances l1 in
Figure 2.6 is exaggerated for illustration purpose only.
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Figure 2.6: Mass components for the Aero body

This gives the following inertia for the Aero body :

Ipb(xx) = 2mpl
2
1

Ipb(xy) = Ipb(yx) = mpl1rp,

Ipb(xz) = Ipb(zx) = −mpl1rp,

Ipb(yz) = Ipb(zy) = 0,

Ipb(yy) =
1

12
mtubel

2
tube + 2mpr

2
p +mpl

2
1,

Ipb(zz) = Ipb(yy). (2.24)

There are also signals that will a�ect the system but that are not chosen as input to the system.
These are disturbance signals [16]. For this model, there are still unmodeled dynamics like Coulomb
friction not included in the model that will be a disturbance to the plant. The support yoke will
also rotate with a rotation Rz(ψ), changing inertia of the system. To simplify the system some,
the support yoke has been disregarded, and so this will give a disturbance to the system in form
of unmodeled dynamic. The mass of the two thrusters that are considered as point masses give a
disturbance to the model since the inertia for these are simpli�ed. There can be load variations
that a�ect the system that can not be controlled like wind and turbulence for air vehicles and also
measurement disturbances in gyros and accelerometers like electronic noise, drifts and misalign-
ment. There can also be changes in the plant caused by for instance wear. All these disturbances
are included in the model as τ∆.

Now all components for the second equation of motion is found and we have

Ib/oω̇
b
ib =

∑
Mb − (ωbib)

xIb/oω
b
ib + τ∆. (2.25)

The pitch angle is as mentioned before constrained for the Aero to the range of ± 62 deg and also
the input voltages Vp and Vy are constrained with limits of ± 24 V, and both constraints have a
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nonlinear behavior, i.e. saturation. The Aero is not able to roll, and so the angular velocity in roll,
φ̇, is set to zero.

2.3.1 Nonlinear model of the Aero

The objective is to control the attitude of the Aero with control of pitch and yaw angles. The state
space variables are then de�ned as

xT = [θ, ψ, ωby, ωbz], (2.26)

with output variables

yT = [θ, ψ, ωby, ωbz], (2.27)

and control variables

uT = [Vp, Vy]. (2.28)

The model can be expressed as
θ̇

ψ̇
ω̇by
ω̇bz

 =


ωby
1

cos θωbz
I−1

2b [
∑

Mb − (ω2)xI2bω
b
ib + τ∆,y]

I−1
3b [
∑

Mb − (ω3)xI3bω
b
ib + τ∆,z]

 , (2.29)

where matrix I−1
2b and I−1

3b is the second and third row of matrix I−1
b/o, matrix (ω2)x and (ω3)x is the

second and third row of the skew symmetric matrix (ωbib)
x and I2b and I3b is the second and third

row of the inertia matrix Ib/o and τ∆,y and τ∆,z are disturbances.

A simpli�ed version of this is
θ̇

ψ̇
ω̇by
ω̇bz

 =


ωby
1

cos θωbz
I−1
p

∑
Mby

I−1
y

∑
Mbz

 (2.30)

=


ωby
1

cos θωbz
I−1
p (f1(Vp) + f2(Vy)− Fglcmsθ −DV pωby)

I−1
y (f3(Vy) + f4(Vp)−DV yωbz)

 , (2.31)

where the cross terms of the angular velocities are disregarded and only the diagonal elements from
the inertia tensor is included and Ip is the same as inertia Iyy and Iy is the same as Izz and where
the disturbances are not included. Another simpli�cation is considering the functions of the input
variables, f1(Vp), f2(Vy), f3(Vy) and f4(Vp) as linear. Then the model can be expressed as

θ̇

ψ̇
ω̇by
ω̇bz

 =


ωby
1

cos θωbz
I−1
p (KppVp +KpyVy − Fglcmsθ −DV pωby)

I−1
y (KyyVy +KypVp −DV yωbz)

 , (2.32)

where Kpp and Kyy are torque thrust gains from main and tail motors, Kpy is cross-torque thrust
gain acting on pitch from tail motor, and Kyp is cross-torque thrust gain acting on yaw from main
motor. Rewriting Equation (2.32) into state space form gives

ẋ =


x3
1

cosx1
x4

I−1
p (Kppu1 +Kpyu2 − Fglcm sinx1 −DV px3)

I−1
y (Kyyu2 +Kypu1 −DV yx4)

 , (2.33)

and this is the model that will be used for the nonlinear controller.
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2.3.2 Linearized model of Quanser Aero

The model for the Aero has also been linearized. If assuming small changes in the angles, the model
can be linearized with sin θ ≈ θ and cos θ ≈ 1, ωby ≈ θ̇ and ωbz ≈ ψ̇. Then the state space variables
from Equation (2.26) can be linearized to

x> = [θ, ψ, θ̇, ψ̇], (2.34)

and the output and control variables are the same as for the nonlinear model as given in Equations
(2.27) and (2.28). The nonlinear state space model from Equation (2.33) can now be expressed as

ẋ =


x3

x4

I−1
p (Kppu1 +Kpyu2 − Fglcmx1 −DV px3)

I−1
y (Kyyu2 +Kypu1 −DV yx4)

 . (2.35)

This gives the linear state space model

ẋ = Ax+Bu

=


0 0 1 0
0 0 0 1

−Fglcm
Ip

0 −DV p

Ip
0

0 0 0 −DV y

Iy

x +


0 0
0 0
Kpp

Ip

Kpy

Ip
Kyp

Iy

Kyy

Iy

u, (2.36)

y = Cx+Du

=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

x +


0 0
0 0
0 0
0 0

u. (2.37)

This is the model that will be used for the linear controller, LQR. In the next section the parameters
for the model are estimated.

2.4 Estimation of Variables

All the parameters for the equation of motion need to be estimated, and for this model this mean
�nding values for all mass components of the Aero, the distance between the pivot point and
thrusters, rp, length of metal tube ltube, the center of mass, rcm, the viscous damping coe�cients
DV p and DV y, and �nding the main and cross torque gains for the four functions f1(Vp), f2(Vy),
f3(Vy) and f4(Vp). The mass components are the Aero body, mb = 1.075 kg, mass of thruster
including motor mp = 0.43 kg and mass of metal tube mtube = 0.094 kg, and are supplied in
a MATLAB �le from Quanser. There are uncertainties to these value since they have not been
measured. Also the lengths rp = 0.158 m and ltube = 0.1651 m are given in documents from
Quanser and are also easily measured to verify the values. All inertia components can be estimated
based on these values for mass and lengths. The other values will now be estimated.

2.4.1 Estimating Center of Mass

The distance to center of mass for a 1DOF con�guration as shown in Figure 2.7 is given in documents
from Quanser. This is used to �nd the center of mass for the 2DOF con�guration. The center of
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Figure 2.7: 1DOF con�guration of Quanser Aero

mass for the 1DOF con�guration is located at

rcm1 =

∑n
1 miri
mb

(2.38)

=
mp[−rp, 0,−l1]> +mp[rp, 0,−l1]> +mtube[0, 0, 0]>

mb
(2.39)

=
2mp

mb
[0, 0,−l1]> (2.40)

= [0, 0,−rm]>, (2.41)

where rm is distance to center of mass in zb-direction. From this the value of l1, that is the distance
from the xb-axis to the mass center of the motors can be estimated and is equal rmmb/2mp. Now
the center of mass for the 2DOF con�guration can be found.

rcm =

∑n
1 miri
mb

(2.42)

=
mp[−rp, 0,−l1]> +mp[rp,−l1, 0]> +mtube[0, 0, 0]>

mb
(2.43)

= [0,−lcm,−lcm]>, (2.44)

and lcm is estimated equal l1mp/mb. The center of mass, rcm, for the pitch body is then located
below the pivot point in negative zb direction and also in negative yb direction.
The distance to center of mass have also been estimated by testing on the Aero [4]. Then a mass,
M , in the form of small washers was applied at a distance rp from the pivot point and the pitch
angle was measured for di�erent masses. Solving for the equilibrium torque

mbglcm sin θ = Mgrp cos θ, (2.45)

the center of mass could be estimated. This was calculated for di�erent masses as Figure 2.8 shows,
and the average was then calculated to be the center of mass, giving lcm = 2.6 mm. From the �rst
method the value for lcm was found to be 3.8 mm and so there is uncertainty related to this value.

2.4.2 Estimating Viscous Damping about Pitch Axis

The method to estimate viscous damping was similar to the method described in Quansers Lab
Guide [17] and theory for this is from [18]. To estimate the viscous damping for the pitch axis, the
yaw axis was �rst locked to make the system 1DOF. Then an initial disturbance in form of a short
impulse of -20 V was applied to the main motor. Since the pivot point is not equal to the center
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Figure 2.8: Test data for center of mass of pitch body

of mass of the pitch body, the gravitational force makes the system oscillate about the pivot point,
and so the free vibration of the pitch body was looked at. Figure 2.9 shows the pitch angle and
velocity as the system oscillates. The 1DOF equation of motion is now

Ipθ̈ = −DV pθ̇ −mbglcm sin θ, (2.46)

and because this is a second order nonlinear di�erential equation an approximate solution is consid-
ered when �nding the damping and assuming small angular displacements, sin θ ≈ θ. The second
order di�erential equation is then:

Ipθ̈ +DV pθ̇ +Kspθ = 0, (2.47)

where Ksp is equalmbglcm. Assuming a solution in the form θ(t) = Cert, the characteristic equation
is

Ipr
2 +DV pr +Ksp = 0, (2.48)

where the roots are

r1,2 = −
DV p

2Ip
±

√(
DV p

2Ip

)2

− Ksp

Ip
(2.49)

and the solution to this can be written as

θ(t) = C1e
(−ζ+
√
ζ2−1)ωnt + C2e

(−ζ+
√
ζ2−1)ωnt, (2.50)

where ζ is the damping ratio, ωn is the undamped natural frequency and C1 and C2 are constants
determined from the initial conditions of θ(0) and θ̇(0). For this system the initial velocity is
assumed to be θ̇(0) = 0. From Figure 2.9 the system can be seen to have an underdamped solution.
From this, the frequency of the damped vibration can be calculated as

ωd =
2π

tosc
, (2.51)
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Figure 2.9: Free vibration of pitch body

where tosc is the time between each amplitude. The amplitude of the �rst and the nth overshoot
was measured and the logarithmic decrement computed as

δ =
1

n− 1
ln
θ1

θn
. (2.52)

The viscous damping ratio was then found as

ζ =
δ√

(2π)2 + δ2
, (2.53)

and so the undamped natural frequency could be found as

ωn =
ωd√

1− ζ2
. (2.54)

The logarithmic decrement is equal to

δ =
2π

ωd

DV p

2Ip
, (2.55)

and so the damping was estimated to be

DV p =
Ipδωd
π

. (2.56)

The same test was performed �ve times giving �ve estimates of the damping, and an average of this
was calculated. The value of DV p was found to be 0.0052.

2.4.3 Estimating Viscous Damping about Yaw Axis

To estimate the viscous damping for yaw axis, the same method as described in Quansers Lab guide
[17] was used. First, the pitch axis was locked, so the system only has 1DOF. Then a short impulse



CHAPTER 2. DESCRIPTION AND MODELING OF THE AERO 17

0 1 2 3 4 5 6 7
0

1

2

3

 (
ra

d)

Free Oscillation Response about the Yaw Axis

0 1 2 3 4 5 6 7

0

0.2

0.4

0.6

y (
ra

d/
s)

0 1 2 3 4 5 6 7
time (s)

0

10

20

u 
(V

y)

Figure 2.10: Estimation of viscous damping for yaw axis

of -20V was applied to the tail motor, Vy, and the free oscillation response was looked at. The
equation of motion was then

Iyψ̈ = −DV yψ̇, (2.57)

and in terms of angular rate this is

Iyω̇by +DV yωby = 0. (2.58)

Laplace transforming this one gets

ωby(s) =
Iy/DV y

Iy/DV ys+ 1
ωby(0), (2.59)

and this is similar to a �rst order response with a time constant, τ , equal Iy/DV y. To �nd the time
constant, the time to reach 63% of the �nal value is looked at, de�ned as τ = t1− t0. Here t0 is the
start time and t1 is the time when 63% of the �nal value is reached. The �nal value will be zero
and so we are looking to �nd t1 when

ωby(t1) = (1− e−1)(ωby,ss − ωby(t0)) = e−1ωby(0). (2.60)

A plot of this test is shown in Figure 2.10, where ωby(t1) and ωby(t0) is marked in the second subplot.
Now the time constant was estimated τ = t1 − t0 and so the damping was found as

DV y =
Iy
τ
. (2.61)

The same test was performed �ve times giving �ve estimates of the damping, and an average of this
was calculated. The value of DV y was estimated to be 0.0095.

2.4.4 Estimating Main Torque for Pitch Axis

To estimate the parameters for the main torque f1(Vp) from Equation (2.22) for the pitch axis, the
yaw axis was �rst locked. The system can then not rotate about the yaw axis and has only 1DOF.
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Figure 2.11: Estimating parameters for the main torque from applying di�erent voltages to the
main motor.

Then a voltage was applied to the main motor, Vp, and the resulting pitch angle when the system
was at rest was measured. Since θ̈ = θ̇ = Vy = 0, the equilibrium for this is

0 = f1(Vp)−mbglcm sin θ, (2.62)

and so the main torque can be estimated based on torque from the gravity that will change for
di�erent angles. A plot of the test data is shown in Figure 2.11. A least square curve �t was used
to get the parameters for the curve on the form

f1(Vp) = sign(Vp)Kp1V
2
p +Kp2Vp −Kp3sign(Vp), (2.63)

giving satisfying results with a correlation of 99.98% between data and estimated curve. An applied
voltage between −1.8V and +1.8V did not change the pitch angle.

The resulted parameters were: Kp1 = 6.80e−5, Kp2 = 5.95e−4 and Kp3 = 9.37e−4.

A linearized estimate was also found from the same data giving the linear function

f1(Vp) = KppVp, (2.64)

where Kpp is estimated to 0.0012.

2.4.5 Estimating Main Torque for Yaw Axis

To �nd the parameters for the main torque about the yaw axis, f3(Vy), from Equation (2.22), the
pitch axis was �rst locked, thus the system can only rotate about the yaw axis and has 1DOF. A
voltage was applied to the tail motor, Vy over a period of 4 seconds, and the angular velocity was
recorded. The equation of motion was then

Iyψ̈ = f3(Vy)−DV yψ̇, (2.65)



CHAPTER 2. DESCRIPTION AND MODELING OF THE AERO 19

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-5

0

5

by
 (

ra
d/

s)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

time (s)

-20

-10

0

10

20

V
y

Figure 2.12: Test to estimate parameters for the main torque about yaw.

and so the function f3(Vy) was estimated from

f3(Vy) = Iyω̇by +DV yωby (2.66)

= Iy
∆ωby
∆t

+DV y∆ωby,

where ∆t is the time from the voltage was applied to the test was stopped, and ∆ωby is the change
of angular rate over this time. Figure 2.12 shows one of the tests where a voltage of -16 V was
applied to the tail motor. This was tested for di�erent values of Vy and used for solving Equation
(2.66). The results was plotted as Figure 2.13 shows. A least square curve �t was used to get the
parameters for the curve on the same form as for the main torque about pitch, where

f3(Vy) = sign(Vy)Ky1V
2
y +Ky2Vy −Ky3sign(Vy), (2.67)

and the resulted parameters were: Ky1 = 4.00e−5, Ky2 = 1.65e−3 and Ky3 = 1.09e−2.

A linearized estimate was also found from the same data giving the linear function

f3(V3) = KyyVy, (2.68)

where Kyy was estimated to 0.00176.

2.4.6 Estimating Cross Torque for Pitch and Yaw axis

To estimate the parameters for the cross torque f2(Vy) from Equation (2.22), the same method as
described in Quansers lab guide [17] was followed. The equation was �rst linearized. Next, a voltage
Vy was applied to the Aero while Vp = 0 and the response for pitch axis was recorded. The equation
is then

Ipθ̈ = f2(Vy)−DV pθ̇ −mbglcmθ, (2.69)
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Figure 2.13: Estimating parameters for the main torque from applying di�erent voltages to the tail
motor.

that in terms of angular velocity gives

f2(Vy) = Ipω̇by +DV pωby (2.70)

= Ip
∆ωby
∆t

+DV p∆ωby,

where ∆t is the time from applied voltage to angular velocity is maximum and ∆ωby is the change
of angular rate that is equal to the maximum angular velocity. The test was performed for di�erent
voltages as Figure 2.14 shows, and a linear function for this was found to be

f2(Vy) = KpyVy, (2.71)

with the value for Kpy to be 0.0012.

The same method was used when �nding the cross torque about the yaw axis. The equilibrium
equation was then

Iyψ̈ = f4(Vp)−DV yψ̇, (2.72)

that in terms of angular velocity gives

f4(Vp) = Iyω̇bz +DV yωbz (2.73)

= Iy
∆ωbz
∆t

+DV y∆ωbz,

and a linear function was estimated to be

f4(Vp) = KypVp, (2.74)

with the value of Kyp to be -0.0014.



CHAPTER 2. DESCRIPTION AND MODELING OF THE AERO 21

-20 -15 -10 -5 0 5 10 15 20

Voltage(V
y
)

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

C
ro

ss
 T

or
qu

e,
 f 2

(V
y) 

(N
m

)

Estimating Cross Torque Pitch Axis

Data from test
Fitted exponential

Figure 2.14: Test data for cross torque for pitch axis



Chapter 3
Control Design

3.1 Control of Multivariable systems (MIMO)

A MIMO system has more than one input and output to its system [16]. One input can a�ect
more than one output, and it is the cross coupling between inputs and outputs that makes a MIMO
system di�cult to control. For a MIMO system, one can connect each input to an output and
then control every pair as a SISO system. The problem with this approach is that even though
every SISO system in the MIMO system is stable, the MIMO system can still be unstable. And all
partial SISO systems can be minimum-phase and the MIMO system can be non-minimum phase.
If there is a strong cross coupling between input and outputs, the system is better treated as one unit.

Modeling of a single variable system leads to a di�erential equation that contains input and output.
For a multivariable system one get a vector-di�erential equation. The easiest way of representing
such a system is in state space.

Stability of a linear MIMO system is just as for a linear SISO system. The system is stable if
all poles are in the left half plane. The poles are the eigenvalues counted with multiplicity of the
system matrix A when the system is represented in state space form. The number of poles gives
the order of the system as well.[16, Theorem 3.10]

An important feature in the design of control systems is whether or not the system is controllable
and observable. De�nitions of these are therefor given.

De�nition 1 (Controllability) [16] The state x∗ is said to be controllable if there is an input
that in �nite time gives the state x∗ from the initial state x(0) = 0. The system is said to be
controllable if all states are controllable.

De�nition 2 (Observability) [16] The state x∗ 6= 0 is said to be unobservable if, when u(t) =
0, t ≥ 0 and x(0) = x∗, the output is y(t) ≡ 0, t ≥ 0. The system is said to be observable if it
lacks unobservable states.

Considering a system

ẋ = Ax+Bu, (3.1)

y = Cx, (3.2)

where A is an n× n matrix, u is an m-vector and C is a p× n matrix, the condition for complete
state controllability requires that the rank of the n× nm matrix

[B AB · · · An−1B], (3.3)

22
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is n. The condition for complete state observability is that the rank of the np× n matrix
C

CA
...

CAn−1

 (3.4)

is n. A controllable system can always be stabilized and an observable system is always detectable.
For a linear system like Equation (3.1), one important feature is that the eigenvalues in theA-matrix
can be modi�ed with state feedback if the system is controllable. If the system is not completely
controllable, only the controllable eigenvalues can be modi�ed.

3.1.1 Linear vs nonlinear model

There are di�erent methods for control of a MIMO system. Linear controllers are widely used be-
cause there is a well developed mathematical theory for linear systems. But a real control system
contain some form of nonlinearity, and with linear controllers approximations are used. The more
advanced controllers can use a nonlinear model of the system for control and then use a more ac-
curate model. When a linear model is used, the principle of superposition is valid, and this is not
the case for nonlinear models since then the outputs are not proportional to the inputs. Another
option is to linearize the model piecewise, de�ning di�erent state space models for each instance [16].

There are two basic limitations with linearization. Linear approximations will only be valid over a
limited range, when the system is outside the range, the linear controller will not be e�ective and
the error will increase. Also, the dynamics of a linear system will not be as rich as the dynamics of
a nonlinear system. [19].

Some non-linear properties are saturation, where a variable have limits to the amplitude, sine,
cosine and exponential functions.

In this thesis, two PID based controllers will be simulated and tested, treating the system as two
SISO system for controlling pitch and yaw separately. These controllers are not model-based. A
linear controller, LQR, will be simulated and tested with the linear model of Aero and a nonlinear
controller using adaptive backstepping will be simulated and tested using the nonlinear model of
the Aero.

3.2 PID

A PID controller has a proportional-, derivative and an integrating term added together and is a
well known feedback controller. With a control input u(t) and an error e(t) de�ned as the di�erence
between the desired setpoint and the measured output, this can be expressed as

u(t) = Kpe(t) +Ki

∫ t

0
e(ϕ)dϕ+Kdė(t), (3.5)

where Kp is the proportional gain, Ki is the integration gain and Kd is the derivative gain.

In this thesis, two di�erent PID controllers will be simulated and tested. The PID controllers
are not model-based.

3.2.1 Decoupled PID Control of the Aero

The system for Aero has two inputs that a�ect both control of pitch angle and of yaw angle. Now
a decoupled controller is considered where one PID controller will be designed for control of pitch
and one PID controller for yaw for the main torques, and where the cross coupling is considered as
a disturbance to the system.
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The two equations describing the dynamics of the system from Equation (2.35) is then rewritten
into

Ipθ̈ = KppVp −DV pθ̇ −mbglcmθ, (3.6)

Iyψ̈ = KyyVy −DV yψ̇, (3.7)

just neglecting the cross torques. Now the system can be described by two transfer functions and so
by taking the Laplace transform of Equations (3.6) and (3.7), and assuming the initial conditions
for the angles and velocities are zero, θ(0) = θ̇(0) = ψ(0) = ψ̇(0) = 0, gives

Ips
2θ(s) = KppVp(s)−DV psθ(s)−mbglcmθ(s), (3.8)

θ(s)

Vp(s)
=

Kpp

Ips2 +DV ps+mbglcm
, (3.9)

for pitch and

Iys
2ψ = KyyVy(s)−DV ysψ, (3.10)

ψ(s)

Vy(s)
=

Kyy

Iys2 +DV ys
(3.11)

for yaw.

Laplace transforming the PID controller gives

C(s) = Kp +
Ki

s
+Kds, (3.12)

and the open loop for pitch, compensated with a PID gives

Po(s) = C1(s)
θ(s)

Vp(s)
(3.13)

=

Kpp

Ip
(Kps+ ki + kds

2)

s(s2 +
DV p

Ip
s+ mbglcm

Ip
)
. (3.14)

Closing the loop with unity feedback gives

Pc(s) =

Kpp

Ip
(Kps+ ki + kds

2)

s3 + (
DV p

Ip
+

Kpp

Ip
kd)s2 + (mbglcm

Ip
+

Kpp

Ip
kp)s+

Kpp

Ip
ki
, (3.15)

where the characteristic equation can be looked at as a third-order equation on the form

T (s) = (s+ p0)(s2 + 2ζωns+ ω2
n), (3.16)

where p0 is positon of a zero and ζ is damping and ωn is frequency of the desired response. The
gains are chosen by setting the characteristic equation from Equation (3.15) equal Equation (3.16)
and choosing values for p0, ζ and ωn.
The same method is used for the compensator for yaw. A block diagram of the system is shown in
Figure 3.1.

3.2.2 Decoupled PV Control of the Aero

Another PID-based controller is a proportional-velocity (PV) controller that is presented in Quansers
lab guide [17]. This is almost like a PD controller except only the negative velocity is fed back unlike
the PD controller where the velocity of the error is fed back. This is a decoupled controller just
as the PID controller in Section 3.2.1. One PV controller is designed for control of pitch and one
for control of yaw for the main torques, and the Equations (3.6) and (3.7) are used to describe the
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Figure 3.1: Block diagram of decoupled PID control of the Aero

system for Aero.
The two controllers can be expressed by

u1(t) = Kp(θ)e1(t)−Kd(θ)θ̇(t), (3.17)

u2(t) = Kp(ψ)e2(t)−Kd(ψ)ψ̇(t), (3.18)

where uθ(t) = Vp(t) is the control input for pitch angle, uψ(t) = Vy(t) is control input for yaw angle,
e1(t) = θd(t) − θ(t) is the error in pitch angle from desired to actual angle, e2(t) = ψd(t) − ψ(t) is
the error in yaw angle, the constants Kp(θ) and Kp(ψ) are proportional gains for pitch and yaw, and
the constants Kd(θ) and Kd(ψ) are the derivative gains for pitch and yaw.

All initial conditions are assumed to be zero. A block diagram of the control structure is shown in
Figure 3.2. Laplace transforming of Equations (3.17) and (3.18) give

Vp(s) = Kp(θ)(θd(s)− θ(s))−Kd(θ)sθ(s), (3.19)

Vy(s) = Kp(ψ)(ψd(s)− ψ(s))−Kd(ψ)sψ(s), (3.20)

and using the Laplace transformation from Equations (3.9) and (3.11) for the system, the closed
loop transfer functions for pitch and yaw can be found.

3.3 Linear Quadratic Regulator (LQR)

An optimal controller [13] seeks to maximize return from a system

ẋ = f(x(t),u(t), t) (3.21)

by �nding a control u(t) that minimizes a cost function

J =

∫ t1

t0

h(x(t),u(t), t)dt. (3.22)
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Figure 3.2: Block diagram of decoupled PV control of the Aero

How the cost function will look like depends on what kind of control problem to solve. For instance,
the aim can be to minimize the control energy when transferring a state from an initial to a �nal
state. This is used for satellite control. Another example is a regulator control problem, that is if
a system has a displacement from its equilibrium point, the regulator will seek to return to equi-
librium while minimizing the cost function. Generalizing this regulator problem for time-varying
desired states, this is called tracking.

If the state and control variables in the cost function are squared, the cost function becomes
quadratic, and this gives the advantage for a linear system of a solution with a linear control
law

u(t) = −Kx(t), (3.23)

where matrix K is the state feedback gain. An LQR is an optimized regulator for the linear system

ẋ = Ax+Bu, (3.24)

seeking to �nd the matrix K of the control law from Equation (3.23) with the aim of minimizing
the cost function

J =

∫ ∞
0

(x>Qx + u>Ru)dt, (3.25)

where Q is a weight matrix for the state variables and R is a weight matrix for the control values,
both square and symmetric [20]. Solving this optimization problem gives

ẋ = Ax−BKx, (3.26)

= (A−BK)x,
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and the matrix (A−BK) needs to be stable. By substituting Equation (3.23) into (3.25) yields

J =

∫ ∞
0

x>(Q + K>RK)xdt, (3.27)

and by setting

x>(Q + K>RK)x = − d

dt
(x>Px), (3.28)

where P is a square, symmetric matrix we get

x>(Q + K>RK)x = −ẋ>Px− x>Pẋ, (3.29)

= −x>[(A−BK)>P + P(A−BK)]x,

and then

(Q + K>RK) = −[(A−BK)>P + P(A−BK)], (3.30)

must hold true for any x. Now the matrix R is set equal to T>T and Equation (3.30) can be
written as

Q + K>T>TK + (A−BK)>P + P(A−BK) = 0, (3.31)

Q + A>P + PA + [TK− (T>)−1B>P]>[TK− (T>)−1B>P]−PBR−1B>P = 0, (3.32)

and the minimum occurs when

TK = (T>)−1B>P. (3.33)

This gives the optimal matrix K to be

K = R−1B>P, (3.34)

and so the optimal control law is

u(t) = −Kx(t), (3.35)

= −R−1B>Px(t). (3.36)

Equation (3.30) can be reduced to

PA + A>P−PBR−1B>P + Q = 0. (3.37)

This is called the reduced matrix Riccati equation, and the matrix P must satisfy this equation.
An LQR needs the matrices A and B to be able to calculate K, and so a limitation of the LQR is
that all the parameters in the linear model need to be estimated or known.

For a tracking problem where the state vector x(t) should follow a desired trajectory xr(t), so-
lution of minimizing the cost function yields the Riccatti equation (3.37) obtained for the LQR
with an additional set [13]

ṡ = (A−BR−1B>P)>s−Qxr, (3.38)

where s is a tracking vector with boundary conditions

s(t1) = 0. (3.39)
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3.3.1 Design Procedure of LQR

The design procedure for a LQR is to �rst check controllability of the system. If not all the state
variables are available for feedback a state observer is needed to estimate the state variables that
can not be measured, so a check of observability is needed. Then the matrices Q and R need to
be found, where higher elements in the Q matrix will give faster system dynamics, requiring higher
control values also, and a higher value of elements in R reduces the value of the control gains and
so this says something to how aggressive the controller is. Now the solution for matrix P from
the Riccati equation must be found. With matlab, if matrices A, B, Q and R are de�ned, the
function [K,P,E] = lqr(A,B,Q,R) gives the solution matrices, where vector E is the eigenvalues
of (A−BK).

3.3.2 LQR of the Aero

The linear state space model

ẋ(t) = Ax(t) +Bu(t)

=


0 0 1 0
0 0 0 1

−Fglcm
Ip

0 −DV p

Ip
0

0 0 0 −DV y

Iy

x(t) +


0 0
0 0
Kpp

Ip

Kpy

Ip
Kyp

Iy

Kyy

Iy

u(t), (3.40)

y(t) = Cx(t) +Du(t)

=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

x(t) +


0 0
0 0
0 0
0 0

u(t) (3.41)

will be used for the LQR where x(t) are the state variables from the linearized model, repeated here
as

x(t)> = [θ(t), ψ(t), θ̇(t), ψ̇(t)] (3.42)

and the control variables are

u(t)T = [Vp(t), Vy(t)]. (3.43)

The objective for the Aero is to follow a desired state trajectory, and so an optimized control u(t)
with the aim of minimizing the cost function

J =

∫ ∞
0

(
(xr(t)− x(t))>Q(xr(t)− x(t)) + u(t)>Ru(t)

)
dt, (3.44)

needs to be found where xr(t) are the desired state variables. The LQR is thus a regulator that in
this case will be used as a tracking controller and so the design of this controller is probably not
optimal as a tracking controller. The matrix Q ∈ R4×4 since there are four states, and the matrix
R ∈ R2×2 since there are two control variables. The block diagram for this is shown in Figure 3.3,
with the controller for this to be

u(t) = K(xr(t)− x(t)), (3.45)

where matrix K ∈ R2×4. The solution for the matrix P ∈ R4×4 for the Riccati equation is found
in MATLAB with the function [K,P,E] = lqr(A,B,Q,R), where there are four eigenvalues in the
vector E.
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Figure 3.3: Block diagram for LQR of the Aero

3.4 Adaptive Control

Adaptive control systems have a history going back to the 1950's, when the idea of a controller that
could adjust itself and adapt its parameters in a feedback system emerged. The goal for an adaptive
controller is to control plants with unknown parameters and change behavior as a response to dy-
namic in a system and also change behavior if there are disturbances to the system. This controller
can be used both for linear and nonlinear systems, and has been most successful for parameters
appearing linearly. An adaptive controller is designed with a combination of a control law together
with estimates of the unknown parameters that are adjusted when the system is operating [21].

There have been proposed several di�erent adaptive control designs, such as MRAC, adaptive pole
placement control and adaptive backstepping. The adaptive control technique can be classi�ed into
Lyapunov-based and estimation-based techniques. The di�erence between these two is that they
have di�erent update laws for the unknown parameters and di�erent ways of proving stability and
convergence.

Lyapunov-based design uses a Lyapunov function to prove stability and to choose the control so
that stability of the equilibrium is achieved. Stability is the main requirement for all controllers and
stability of equilibrium points is Lyapunov stability and will be the focus in the next section.

3.4.1 Lyapunov Stability

Since the system of the Aero considered in this thesis is a non-autonomous system where the solution
to the di�erential equation depends on both t and t0, the stability of the equilibrium point for such
a system is looked into. The objective is then to stabilize a system

ẋ = f(t,x), x(t0) = x0, (3.46)

where x ∈ Rn, and f(t,x) : R+ × Rn → Rn is piecewise continuous in t and locally Lipschitz in x,
and the origin is an equilibrium point of (3.46). If a system does not have the equilibrium point at
the origin, a change of variables is used so that the system is transformed to have its equilibrium at
the origin. If assuming this change of variables is done for (3.46), then the origin is an an equilibrium
point at t = 0 if

f(t,0) = 0, ∀t ≥ 0. (3.47)

De�nition 3 [21] A continuous function γ : [0, a)→ R+ is said to belong to klass K if it is strictly
increasing and γ(0) = 0. It is said to belong to class K∞ if a =∞ and γ(r)→∞ as r →∞.

To see if an equilibrium point is stable or not, a de�nition of the systems stability of the origin with
respect to initial time is now given.

De�nition 4 [19] The equilibrium point x = 0 of (3.46) is

• stable if, for each ε > 0, there is δ = δ(ε, t0) > 0 such that

‖x(t0)‖ < δ ⇒ ‖x(t)‖ < ε, ∀t ≥ t0 ≥ 0; (3.48)
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• uniformly stable if, for each ε > 0, there is δ = δ(ε) > 0, independent of t0, such that (3.48)
is satis�ed;

• unstable if not stable;

• asymptotically stable if it is stable and there is a positive constant c = c(t0) such that x(t)→ 0
as t→∞, for all ‖x(t0)‖ < c;

• uniformly asymptotically stable if it is uniformly stable and there is a positive constant c,
independent of t0, such that for all ‖x(t0)‖ < c, x(t)→ 0 as t→∞, uniformly in t0, that is,
for each η > 0, there is T = T (η) > 0 such that

‖x(t)‖ < η, ∀t ≥ t0 + T (η), ∀‖x(t0)‖ < c; (3.49)

• globally uniformly asymptotically stable if it is uniformly stable, δ(ε) can be chosen to satisfy
limε→∞ δ(ε) = ∞, and, for each pair of positive numbers η and c, there is T = T (η, c) > 0
such that

‖x(t)‖ < η, ∀t ≥ t0 + T (η, c), ‖x(t0)‖ < c. (3.50)

To determine stability of equilibrium points, a Lyapunov function is used. Often, a Lyapunov
function is taken as the total energy of the system, but this is not always the case. A function V (x)
can be chosen as a Lyapunov function candidate (LFC), and require that it satis�es the conditions
given in the Lyapunov stability theorem. This theorem is now stated for an autonomous system

ẋ = f(x). (3.51)

Theorem 1 (Lyapunov Stability) [19] Let x = 0 be an equilibrium point of (3.51) and D ⊂ Rn
be a domain containing x = 0. Let V : D → R be a continuously di�erentiable function such that

V (0) = 0 and V (x) > 0 in D − {0}, (3.52)

V̇ (x) ≤ 0 in D, (3.53)

then, x = 0 is stable. Moreover, if

V̇ (x) < 0 in D − {0}, (3.54)

then x = 0 is asymptotically stable.

If the function V (x) satis�es Equation (3.52) it is said to be positive de�nite and if V̇ (x) satis�es
Equation (3.53) this is said to be negative semide�nite and when it satis�es Equation (3.54) it
is said to be negative de�nite. This stability theorem can also be extended to a non-autonomous
system, and to also include uniform stability and uniform asymptotic stability and so this theorem
is extended and formulated as follows.

Theorem 2 (Uniform Stability) [21] Let x = 0 be an equilibrium point of (3.46) and D =
{x ∈ Rn | |x| < r}. Let V : D × Rn → R+ be a continuously di�erentiable function such that
∀t ≥ 0, ∀x ∈ D,

γ1(|x|) ≤ V (x, t) ≤ γ2(|x|), (3.55)

∂V

∂t
+
∂V

∂x
f(x, t) ≤ −γ3(|x|). (3.56)

Then the equilibrium x = 0 is

• uniformly stable, if γ1 and γ2 are class K functions on [0, r) and γ3(·) ≥ 0 on [0, r);

• uniformly asymptotically stable, if γ1, γ2 and γ3 are class K functions on [0, r);

• exponentially stable, if γi(ρ) = kiρ
α on [0, r), ki > 0, α > 0, i = 1, 2, 3;
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• globally uniformly stable, if D = Rn, γ1 and γ2 are class K∞ functions, and γ3(·) ≥ 0 on R≥0;

• globally uniformly asymptotically stable, if D = Rn, γ1 and γ2 are class K∞ functions, and γ3

is a class K function on R≥0; and

• globally exponentially stable, if D = Rn and γi(ρ) = kiρ
α on R≥0, ki > 0, α > 0, i = 1, 2, 3.

A desired stability property is to have a uniformly asymptotically stable equilibrium, because then
disturbances are better dealt with [21]. Adaptive controllers will in general achieve less strong
properties for the equilibrium than this but also more than uniform stability because an adaptive
controller will force the tracking error to go towards zero. For a time-varying signal, this is called
tracking. The following theorem is used for convergence analysis.

Theorem 3 (LaSalle-Yoshizawa) [21] Let x = 0 be an equilibrium point of (3.46) and suppose f
is Locally Lipschitz in x uniformly in t. Let V : Rn → R+ be a continuously di�erentiable, positive
de�nite and radially unbounded function V(x) such that

V̇ =
∂V

∂x
(x)f(x, t) ≤ −W (x) ≤ 0, ∀t ≥ 0, ∀x ∈ Rn, (3.57)

where W is a continuous function. Then, all solutions of (3.46) are globally uniformly bounded and
satisfy

lim
t→∞

W (x(t)) = 0. (3.58)

In addition, if W(x) is positive de�nite, then the equilibrium x = 0 is globally uniformly asymptoti-
cally stable (GUAS).

The Lipschitz condition is a proof of existence and uniqueness of a solution to the di�erential
equation (3.46) and the theorem for this is stated below.

Theorem 4 (Local Existence and Uniqueness) [19] Let f(t,x) be piecewise continuous in t and
satisfy the Lipschitz condition

||f(t, x)− f(t, y)|| ≤ L||x− y||, (3.59)

∀ x, y ∈ B = {x ∈ Rn| ||x − x0|| ≤ r}, ∀ t ∈ [t0, t1]. Then, there exists some δ > 0 such that the
state equation ẋ = f(t, x) with x(t0) = x0 has a unique solution over [t0, t0 + δ].

By assuming that f(t, x) is piecewise continuous in t, allows including step changes with time for
a time-varying input. The constant L is called the Lipschitz constant. A locally Lipschitz function
on a domain D ⊂ Rn is Lipschitz on every subset of D that are closed and bounded.

3.4.2 Adaptive Backstepping Control

Adaptive backstepping is a recursive Lyapunov-based design method, stepping back towards the
control input. The controller then has a dynamic feedback for estimating the parameters in form of
an adaptive update law, and is a nonlinear dynamic feedback controller. One of the advantages with
this controller is that it can avoid cancellations of nonlinearities and has the objective of stabilizing
and tracking of a given reference signal.

To design a controller based on backstepping, some of the state variables are considered as vir-
tual controls, and Lyapunov functions are utilized to design the control input and also an update
law is chosen to ensure stability of the equilibrium point. Considering a second order system with
state space model on the form

ẋ1 = x2

ẋ2 = u+ φT (x1, x2)Θ (3.60)
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where vector Θ is unknown and constant and vector φ contains known nonlinear functions. For
this system, x2 is �rst considered as a virtual control, used to stabilize x1. This is solved with an

adaptive controller with a control law α(x1) and an update law
˙̂
Θ = f(x1). The controller will

guarantee boundedness of the plant state x and also stability, where a desired reference signal is
tracked. This will be illustrated in the next section with a proof of stability and achieved reference
tracking for the Aero system using constructed Lyapunov functions. The procedure for the design
of the adaptive backstepping controller follows the procedure in [22].

3.4.3 Adaptive Backstepping Control of the Aero

The dynamical system for the Aero has a nonlinear model with several unknown parameters. The
parameters can be estimated but there are uncertainties to the estimates. Because of this an
adaptive controller is of high interest for controlling such a system. The nonlinear model given in
Chapter 2.3.1 will be used for designing the adaptive controller, with the state variables de�ned as

x> = [θ, ψ, ωby, ωbz],

and with the equations for the model

θ̇ = ω̇by, (3.61)

ψ̇ =
1

cos θ
ωbz, (3.62)

ω̇by = I−1
p (KppVp +KpyVy − Fglcm sin θ −DV pωby), (3.63)

ω̇bz = I−1
y (KyyVy +KypVp −DV yωbz). (3.64)

The Aero will now be considered as two second order systems on the form

ω̇by = up + Φ>1 (θ, ωby)Θ1, (3.65)

ω̇bz = uy + Φ>2 (ψ, ωbz)Θ2, (3.66)

where the variables up and uy are the control inputs for pitch and yaw, Φ1 and Φ2 are known
nonlinear functions and Θ1 and Θ2 are unknown vector constants. Equations (3.61) to (3.64) are
rewritten into this form, giving the state space model

ẋ =


x3
1

cos(x1)x4

up + ΦT
1 (x1, x3)Θ1

uy + ΦT
2 (x2, x4)Θ2

 , (3.67)

where the variables up and uy are equal to

up =
1

Ip
(Kppu1 +Kpyu2), (3.68)

uy =
1

Iy
(Kyyu2 +Kypu1),

the vectors ΦT
1 and ΦT

2 are the known nonlinear functions

Φ1 =

[
sinx1

x3

]
, Φ2 = x4, (3.69)

and Θ1 and Θ2 are the unknown parameters

Θ1 =
1

Ip

[
−Fglcm
−DV p

]
, Θ2 = −

DV y

Iy
. (3.70)

The control objective is to design a control law for up(t) and uy(t) to force the outputs y1(t) = x1(t),
y2(t) = x2(t), y3(t) = x3(t) and y4(t) = x4(t) and to asymptotically track the reference signals for
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pitch and yaw, xr1(t) and xr2(t).

Assumption 1: The reference signals, xr1(t) and xr2(t) and �rst and second order derivative
are piecewise continuous and bounded.

Now the adaptive backstepping control laws for the nonlinear system will be designed.

Step 1 - Design of virtual control

The state variables x3 and x4 are considered as control variables and will be used to stabilize x1

and x2. The coordinates are changed to

z1 = x1 − xr1, (3.71)

z2 = x2 − xr2, (3.72)

z3 = x3 − α1 − ẋr1, (3.73)

z4 =
1

cosx1
x4 − α2 − ẋr2. (3.74)

Here α1 and α2 are the virtual controls that will be chosen so that the error functions z1 and z2

converges towards zero. The derivative of the tracking errors z1 and z2 are

ż1 = x3 − ẋr1, (3.75)

ż2 =
1

cosx1
x4 − ẋr2, (3.76)

and by applying this to Equations (3.73) and (3.74) we have

z3 = ż1 − α1 ⇔ ż1 = z3 + α1, (3.77)

z4 = ż2 − α2 ⇔ ż2 = z4 + α2. (3.78)

A control Lyapunov function

V1 =
1

2
z2

1 +
1

2
z2

2 (3.79)

is chosen, and now we want the derivative of this function to be a negative de�nite function. The
derivative of V1 is

V̇1 = z1ż1 + z2ż2,

= z1(z3 + α1) + z2(z4 + α2). (3.80)

The virtual controls are now chosen to be

α1 = −c1z1, (3.81)

α2 = −c2z2, (3.82)

where c1 and c2 are positive constants and so

V̇1 = z1(z3 − c1z1) + z2(z4 − c2z2),

= −c1z
2
1 + z1z3 − c2z

2
2 + z2z4. (3.83)

If z3 and z4 are zero, then V̇1 is negative and z1 and z2 will converge towards zero as wanted.
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Step 2 - Design control input and choose an update law

The derivative of z3 and z4 are expressed as

ż3 = ẋ3 − α̇1 − ẍr1
= up + ΦT

1 (x1, x3)Θ1 − (−c1ż1)− ẍr1
= up + ΦT

1 (x1, x3)Θ1 + c1(x3 − ẋr1)− ẍr1, (3.84)

ż4 = ẋ4 − α̇2 − ẍr2
= uy + ΦT

2 (x2, x4)Θ2 − (−c2ż2)− ẍr2

= uy + ΦT
2 (x2, x4)Θ2 + c2(

1

cosx1
x4 − ẋr2)− ẍr2. (3.85)

The control inputs up and uy will now be designed so that z1, z2, z3 and z4 all converge towards
zero. To do this, the following second Lyapunov function is utilized

V2 = V1 +
1

2
z2

3 +
1

2
z2

4 +
1

2
Θ̃>1 Γ−1

1 Θ̃1 +
1

2
Θ̃>2 Γ−1

2 Θ̃2, (3.86)

where Γ1 and Γ2 are the adaption gain matrices, both positive de�nite, and were the matrices

Θ̃1 = Θ1 − Θ̂1, (3.87)

Θ̃2 = Θ2 − Θ̂2, (3.88)

and since Θ1 and Θ2 are constant, the time derivative of Equations (3.87) and (3.88) are

˙̃Θ1 = − ˙̂
Θ1, (3.89)

˙̃Θ2 = − ˙̂
Θ2. (3.90)

The derivative of Equation (3.86) gives

V̇2 =V̇1 + z3ż3 + z4ż4 + Θ̃>1 Γ−1
1

˙̃Θ1 + Θ̃>2 Γ−1
2

˙̃Θ2

=− c1z
2
1 + z1z3 − c2z

2
2 + z2z4 + z3(up + Φ>1 (x1, x3)Θ1 + c1(x3 − ẋr1)− ẍr1)

+ z4(uy + Φ>2 (x2, x4)Θ2 + c2

(
1

cosx1
x4 − ẋr2

)
− ẍr2)− Θ̃>1 Γ−1

1
˙̂
Θ1 − Θ̃>2 Γ−1

2
˙̂
Θ2. (3.91)

To ensure that the derivative of V2 is negative de�nite, the control inputs are chosen to be

up =− z1 − Φ>1 Θ̂1 − c3z3 − c1(x3 − ẋr1) + ẍr1, (3.92)

uy =− z2 − Φ>2 Θ̂2 − c4z4 − c2

(
1

cosx1
x4 − ẋr2

)
+ ẍr2, (3.93)

where c3 and c4 are positive constants. By inserting Equations (3.92) and (3.93) into Equation
(3.91) we obtain

V̇2 = −c1z
2
1 − c2z

2
2 − c3z

2
3 − c4z

2
4 + Φ>1 (Θ1 − Θ̂1)z3 + Φ>2 (Θ2 − Θ̂2)z4 − Θ̃>1 Γ−1

1
˙̂
Θ1 − Θ̃>2 Γ−1

2
˙̂
Θ2,

= −c1z
2
1 − c2z

2
2 − c3z

2
3 − c4z

2
4 + Φ>1 Θ̃1z3 + Φ>2 Θ̃2z4 − Θ̃>1 Γ−1

1
˙̂
Θ1 − Θ̃>2 Γ−1

2
˙̂
Θ2,

= −c1z
2
1 − c2z

2
2 − c3z

2
3 − c4z

2
4 − Θ̃>1 Γ−1

1 (
˙̂
Θ1 − Γ1Φ1z3)− Θ̃>2 Γ−1

2 (
˙̂
Θ2 − Γ2Φ2z4), (3.94)

and now the update laws are chosen to be

˙̂
Θ1 = Γ1Φ1z3, (3.95)

˙̂
Θ2 = Γ2Φ2z4, (3.96)

where the update laws eliminate the last two terms in Equation (3.94). Then

V̇2 = −c1z
2
1 − c2z

2
2 − c3z

2
3 − c4z

2
4 . (3.97)

The adaptive backstepping design is summarized in Table 3.1.



CHAPTER 3. CONTROL DESIGN 35

Table 3.1: Adaptive Backstepping Control Scheme

Change of coordinates:

z1 = x1 − xr1 (3.71)
z2 = x2 − xr2 (3.72)
z3 = x3 − α1 − ẋr1 (3.73)
z4 = 1

cosx1
x4 − α2 − ẋr2 (3.74)

Adaptive Control Law:

up = −z1 − Φ>1 Θ̂1 − c3z3 − c1(x3 − ẋr1) + ẍr1 (3.92)

uy = −z2 − Φ>2 Θ̂2 − c4z4 − c2

(
1

cosx1
x4 − ẋr2

)
+ ẍr2 (3.93)

with virtual controls
α1 = −c1z1 (3.81)
α2 = −c2z2 (3.82)

Parameter update laws:

˙̂
Θ1 = Γ1Φ1z3 (3.95)
˙̂
Θ2 = Γ2Φ2z4 (3.96)

Theorem 5 Considering the closed loop adaptive system consisting of the plant (3.67), the adaptive
controllers (3.92) and (3.93), the virtual control laws (3.81) and (3.82), the parameter updating laws
(3.95) and (3.96) and Assumption 1. All signals in the closed loop system are ensured to be globally
bounded. Furthermore, asymptotic tracking is achieved, i.e.

lim
t→∞

= [yi(t)− xri(t)] = 0 for i = 1, 2. (3.98)

Proof: The stability properties of the equilibrium follows from Equations (3.86) and (3.97) and
invoking the stability theorem (Theorem 2). By applying the LaSalle-Yoshizawa theorem (Theo-
rem 3), V2(t) is globally uniformly bounded. This implies that z1, z2, z3, z4 are bounded and are
asymptotically stable and z1, z2, z3, z4 → 0 as t → ∞ and also Θ̂1 and Θ̂2 are bounded. Since
z1 = x1 − xr1 and z2 = x2 − xr2, tracking of the reference signals is also achieved, and x1 and x2

are also bounded since z1 and z2 are bounded and since xr1 and xr2 are bounded by de�nition, cf.
Assumption 1. The virtual controls α1 and α2 are also bounded from Equation (3.81) and (3.82)
and then x3 and x4 are also bounded. From Equations (3.92) and (3.93) it follows that the control
inputs also are bounded.

Remark 1. The theorem states a global boundedness of the Lyapunov function V2(t). Because the
model has a singularity for a pitch angle of ± 90 degrees, the equation explodes at this point. For
this to be global, the singularity can not be present. By using quaternion method for the attitude
parameterization, this singularity will be avoided [15].

Now, considering the error state z including the tracking errors. The adaption gain matrices are
considered as Γ1 = γI and Γ2 = γI. Bounds for transient performance can be derived, and
bound on the L2 norm will now be proven, similar to [23] and [24].

Theorem 6 [21] In the adaptive system (3.67), (3.95), (3.96), (3.92), (3.93),(3.81) and (3.82), the
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following inequalities hold for the transient tracking errors

||y1(t)− yr1(t)||2 ≤
|Θ̃1(0)|+ |Θ̃2(0)|√

2c1γ
, (3.99)

||y2(t)− yr2(t)||2 ≤
|Θ̃1(0)|+ |Θ̃2(0)|√

2c2γ
, (3.100)

and the following inequalities hold for the transient velocity tracking errors

||ẏ1(t)− ẏr1(t)||2 ≤
(

1
√
c3

+
√
c1

)
|Θ̃1(0)|+ |Θ̃2(0)|√

2γ
, (3.101)

||ẏ2(t)− ẏr2(t)||2 ≤
(

1
√
c4

+
√
c2

)
|Θ̃1(0)|+ |Θ̃2(0)|√

2γ
. (3.102)

with initial values for z set to zi(0) = 0, i = 1, 2, 3, 4.

Proof: The Lyapunov function V2 is non increasing from (3.97) and bounded from below by zero,
and then

||z1||22 =

∫ ∞
0
|z1(τ)|2dτ ≤ 1

c1
V2(0), (3.103)

||z2||22 =

∫ ∞
0
|z2(τ)|2dτ ≤ 1

c2
V2(0), (3.104)

||z3||22 =

∫ ∞
0
|z3(τ)|2dτ ≤ 1

c3
V2(0), (3.105)

||z4||22 =

∫ ∞
0
|z4(τ)|2dτ ≤ 1

c4
V2(0). (3.106)

With the initial values for z set to zi(0) = 0, i = 1, 2, 3, 4, the initial value for Equation (3.86) will
be

V2(0) =
1

2γ
(|Θ̃1(0)|2 + |Θ̃2(0)|2), (3.107)

that are independent of ci, i = 1, 2, 3, 4, and decreasing with γ. From (3.103), (3.104) and (3.107)
this results in

||z1||2 ≤
1
√
c1

|Θ̃1(0)|+ |Θ̃2(0)|√
2γ

, (3.108)

||z2||2 ≤
1
√
c2

|Θ̃1(0)|+ |Θ̃2(0)|√
2γ

, (3.109)

where the bounds can be reduced by increasing c1 and c2 or by increasing γ. For the velocity
tracking errors we have

||ẏ1 − ẏr1|| = ||ż1||2 = ||z3 − c1z1||2 ≤ ||z3||2 + c1||z1||2 (3.110)

=

(
1
√
c3

+
√
c1

)
|Θ̃1(0)|+ |Θ̃2(0)|√

2γ
, (3.111)

||ẏ2 − ẏr2|| = ||ż2||2 = ||z4 − c2z2||2 ≤ ||z4||2 + c2||z2||2 (3.112)

=

(
1
√
c4

+
√
c2

)
|Θ̃1(0)|+ |Θ̃2(0)|√

2γ
, (3.113)

where the bounds depend on ci, i = 1, 2, 3, 4 and γ. The L2 transient performance of the z sys-
tem can be improved by increasing the control parameters ci or by increasing the adaptation gain γ.

Remark 2. The tracking error can be made smaller by increasing the design parameters ci and γ.
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Figure 3.4: Block diagram of the closed loop adaptive backstepping for the Aero

The closed loop system of the Aero in matrix form looks like

ż =


−c1 0 1 0

0 −c2 0 1
−1 0 −c3 0
0 −1 0 −c4

 z +


0 0
0 0

Φ1 0
0 Φ2

[Θ1 − Θ̂1

Θ2 − Θ̂2

]
, (3.114)

˙̂Θ =


0
0

Γ1Φ1

Γ2Φ2

 z, (3.115)

and a block diagram of the closed loop adaptive backstepping control is shown in Figure 3.4.



Chapter 4
Simulation and Testing on the Aero

All controllers were simulated with the use of Simulink and MATLAB. In Table 4.1 the parameters
used for the simulation and for the implemented controllers are given. For simulation and imple-
mentation on the Aero, a �xed sample time of 0.002 s was used with the solver ODE1 (Euler) that
uses the Euler integration method to compute the model state at the next time step based on the
current value of the state and the state derivatives. The initial condition for angles and angular
velocities were set to zero.

First a veri�cation of models is given in Section 4.1 and also an openloop test of the system. In
Section 4.2 the trajectories that the Aero will follow both for simulation and testing are given. Then
the controllers PID and PV are simulated and tested to see if it is possible to use these as controllers
for the Aero in Sections 4.3 and 4.4. Next, the LQR and adaptive controller will be simulated and
tested in Sections 4.5 and 4.6, before di�erent physical disturbances are added to the Aero and
tested with LQR and adaptive control in Section 4.7. In the last Section 4.8, the two controllers
will be compared based on total error and total voltage for all tests.

4.1 Veri�cation of Models

The nonlinear and the linearized model have both been simulated to check that the behavior was
as expected. For both models di�erent tests that are summarized in Table 4.2 were checked. All
models used in simulation and testing have a saturation for input voltages to ±24 V, implemented
to prevent over-voltage, and saturation for the pitch angle to ±60 deg. The nonlinear model is
based on the simpli�ed model from Equation (2.33) and with the linearized estimates for the main
and cross-torques. The linearized estimates was chosen since the behavior was quite similar as for
the polynomial estimates when this was simulated. Both nonlinear and linear model had a behavior
as expected.

The linear state space model for the Aero from Section 2.3.2 with

ẋ = Ax+Bu

y = Cx+Du

and Equation (2.36) and (2.37) shows that A is a 4× 4 matrix, and u is a 2-vector and C is a 2× 4
matrix. According to the de�nitions of controllability and observability given in Section 3.1, if the
rank of the controllability matrix is n, that in this case is 4, the system is controllable and if the
rank of the observability matrix is n, the system is observable. The rank of the controllability and
observability matrix is 4 and so the system is fully controllable and observable.

4.1.1 Openloop Test of Model

After the models were veri�ed, an openloop test of the nonlinear and linear model together with
Aero were tested. The results for this is shown in Figure 4.1. The models both have the same

38
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Table 4.1: Parameters used for the controllers

Parameter Value Description

Ip 0.0217 Inertia about the pitch axis

Iy 0.0217 Inertia about the yaw axis

DV p 0.007 Viscous damping about the pitch axis

DV y 0.0095 Viscous damping about the yaw axis

mb 1.075 Mass of the Aero body

g 9.81 Constant of acceleration due to gravity

lcm 0.0038 Distance to center of mass in zb-direction

Kpp 0.0012 Torque trust gain from the main motor acting on pitch

Kyy 0.00176 Torque trust gain from the tail motor acting on yaw

Kpy 0.0012 Cross-torque thrust gain acting on pitch from tail motor

Kyp -0.0014 Cross-torque thrust gain acting on yaw from main motor

PID Constants

p0 1 zero pole

ζ 1 damping

ωn 2 frequency

LQR Constants

Q-matrix


250 0 0 0
0 70 0 0
0 0 0 0
0 0 0 0


R-matrix

[
0.0029 0

0 0.0029

]
Adaptive Backstepping Constants

c1 6

c2 6

c3 3

c2 3

γ 1

Table 4.2: Simulation test for the nonlinear and linear model to verify that the models behaves as
expected

Test Expected behavior of model Nonlinear Model Linearized Model

No inputs to
the system. Nothing should change.

√ √

Initial positive Expected oscillation about pitch,
pitch angle. going to zero.

√ √

Initial positive No change for pitch,
yaw angle. yaw stays at initial given angle.

√ √

Rotation about yaw in
Initial positive positive direction, going to a
velocity for yaw. constant yaw angle. No change for pitch.

√ √

Pitch angle change in positive
Initial positive direction, oscillating back to zero.
velocity for pitch. No change for yaw.

√ √

Positive input Vp. Positive pitch and negative yaw.
√ √

Positive input Vy. Positive pitch and positive yaw.
√ √
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Figure 4.1: Openloop test to verify that the models behave as the Aero

behavior as the Aero, where the di�erences is due to unmodeled dynamics and is assumed to be
mostly because of unmodeled Coulomb friction. This is especially seen in yaw, where the voltage
needs an input Vy greater than 5.7 V to have a rotation, so the Aero have some static friction not
taken into account.

4.2 Test Sequences for Simulation and Testing

The same test sequences were applied for control of Aero in simulation and testing. Three di�erent
desired trajectories were given to test and compare the linear and nonlinear controllers.

Test 1: The �rst test was a sine wave with amplitude of 40 degrees and frequency of 0.05 Hz
applied to pitch, while there should be no rotation about yaw.
Test 2: The second test was di�erent step inputs to pitch and yaw at di�erent time instances.
Test 3: The third test was the same step sequence as in the second test but with smoother
steps. To do so, the step functions from test 2 was gained with a second-order transfer function
ω2
nt/(s

2 + 2ζtωnts + ω2
nt) so that the output of this is the new reference signal, giving a smoother

transmission between the steps [19]. The cut-o� frequency ωnt was chosen to 1.5 and the damping
ratio ζt was chosen to have a value of 1. The though is that the adaptive controller needs time to
adapt to changes and adjust the estimated parameters Θ̂1 and Θ̂2. Assuming that step functions
are not optimal for an adaptive controller, it is assumed that it will be better to give a smooth
curve function to follow instead. This is due to the fact that the controller is designed as a tracking
controller, i.e. following trajectories, i.e. it is not able to follow discrete changes. Then tracking
errors are introduced that are injected into the adaptive law possibly causing divergence in the
estimated parameters Θ̂1 and Θ̂2. Also when the reference trajectory is chosen, the performance of
the system can be improved by choosing a gentler trajectory for the controller to follow.

For all the tests, the reference signals and �rst and second derivative of the signal are piecewise
continuous and bounded.
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The test was carried out by �rst a simulation of the system, then testing on the Aero. For two of
the controllers, di�erent disturbances were added to the system to see the behavior with this.

4.2.1 Filters to Reduce Noise from Gyros

When testing on the Aero, there is measurement noise from the di�erent sensors. The signals for
pitch and yaw angular velocities were �ltered using a second order low-pass �lter with a cut o�
frequency of 70 rad/s and a damping ratio of 0.8. This �lter was added to reduce measurement
noise from the gyros, and the same �lter was added for both LQR and adaptive controller. A plot
of the gyro signal before and after �ltering is shown in Figure 4.2. This plot is from a test sequence
with a smooth step.

The �ltered gyro signal lags a bit behind the un�ltered signal, and also if a lower break frequency
was chosen, this would have smoothen out the signal some. A lower break frequency of 50 (rad/s)
was tested and result shown in Figure 4.3 so a smoother signal can be used.

4.3 Simulation with the Decoupled PID Controller

The decoupled PID controller from Chapter 3.2.1 was simulated and tested for control of the Aero.
One PID compensator was designed for pitch and one for yaw for the main torques, and so the cross-
coupling torques were disregarded. This means it was treated as two SISO systems, and since the
controller did not take into account the cross coupling, unwanted motion was expected. The results
from the simulation are shown in Appendix A, Figures A.1 to A.3 where all three test sequences
were simulated. When tested on the Aero, a �rst-order highpass �lter on the form ωnps/(s + ωnp)
was used to compute the velocities of the errors, where ωnp is the cut-o� frequency, set to 100 rad/s.

The simulation results show a good tracking performance for both pitch and yaw for all three
test sequences. When the PID controllers were tested for control of the Aero, the performance was
not good and the input voltage had a chattering behavior. The bad performance was assumed to
be because the gains were to high and also since the cross coupling was not taken into account for
the closed loop. Further tuning to have a better performance was not looked into.

4.4 Simulation and Testing with the PV Controller

The decoupled PV controller as described in Chapter 3.2.2 was also simulated and tested for control
of the Aero. This was a decoupled controller only taking into account the main torques, and so
control of the Aero was treated as two SISO systems. Here the same highpass �lter as for the PID
was applied to compute the velocities of the errors. The results from the simulation and testing are
presented in Appendix B.

Results for test 1 are shown in Figures B.1 and B.2. The Aero was able to follow the given trajectory
both when simulating and testing with this control structure. The maximal error in pitch was about
8 deg for the simulation and 10 deg when tested on the Aero, and there was a maximal error in
yaw of about 7 deg for the simulation and 5 deg for testing. The input voltages from simulation in
Figure B.2 had nice sine-curves, and the input voltages from testing had the same sine-curves but
with more chattering.

The results from simulation and testing of test 2 are shown in Figures B.3 and B.4. From the
simulation a maximal steady state error of 4.8 deg in pitch can be observed after the �rst step and
a maximal steady state error of 5.5 deg in yaw is observed after the �rst step in yaw. From the test,
these errors are slightly higher with a maximal steady state error of 5.7 deg in pitch and 6.2 deg in
yaw.
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Figure 4.2: Signals from gyro, un�ltered (red) and �ltered (blue)
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Figure 4.3: Close up of gyro signals with reduced break frequency, un�ltered (red) and �ltered
(blue)

The results from the simulation and testing of test 3 are shown in Figures B.5 and B.6. From
the simulation, the same steady state error is observed for pitch and yaw as in test 2. From the
testing, the maximal steady state error in pitch is 5.4 deg and about 7.8 deg for yaw.

4.5 Simulation and Testing with the LQR

To simulate the system with the LQR, the weighting matrices Q and R were �rst needed. The
simulation was �rst tested with values for these matrices given from Quanser, and was modi�ed
some, resulting in the matrices in Table 4.1. The values for the two matrices were adjusted so that
the performance of the controller had similar performance for the test sequence from test 2 with step
inputs, as the adaptive controller, that will be discussed in Chapter 4.6. The total squared voltage
was similar here and this will be shown later in Chapter 4.8 when the controllers are compared.
From this the K and P matrices could be found with MATLAB, and also giving four eigenvalues,
all negative.

The results from simulation and testing on the Aero with the LQR is shown in Figures 4.4 to
4.9 for the three di�erent test sequences, sine wave, step function and smooth step function.

For test 1, the biggest error in pitch angle was when reaching the maximum and minimum points
of 40 degrees on the pitch trajectory. Then the error was around 3 deg. This is seen in Figure 4.4a.
When running on the Aero, this error was some delayed. The yaw angle only had small errors that
was less than 1 deg, seen in Figure 4.4b.

For test 2, the steady-state error in pitch was about 2.5 deg when pitch was not zero, while yaw
followed the desired angle �ne. The biggest errors were of course when there was a change in step.
There were also small errors in pitch when yaw had a change of angle, and the same applied for
yaw when pitch changed angles and was due to the cross coupling e�ect. This can be seen for pitch
in Figure 4.6a at time 10s, 30s and 40s when yaw had change in step, and for yaw in Figure 4.6b
at time 5s, 20s and 40s.
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CONTROLLER

For test 3, the steady-state error in pitch was similar to test 2, but the biggest errors that could be
seen for the step function when changing steps, were not here any more. The smoother transition
between steps gets rid of these errors.

4.6 Simulation and Testing with the Adaptive Backstepping Con-
troller

To simulate the system with the adaptive backstepping control, a Simulink model was build with
the system setup as described in Chapter 3.4.3. The values for the constants c1, c2, c3 and c4 and for
the adaption gain γ were found by trial and error. First all the gains were set equal to 1, and then
adjusted to meet the same performance as the LQR for the step functions. The initial conditions
for the estimated parameters were set to Θ̂1(0) = Θ1 and Θ̂2(0) = Θ2, since they already had been
estimated. This is not required for the controller to work, but now the controller does not have to es-
timate values from zero, reducing the error in the beginning since Θ̂1 ans Θ̂2 are closer to Θ1 and Θ2.

The results from simulation and testing on the Aero with the adaptive controller is shown in Figures
4.10 to 4.18 for the three di�erent test sequences.

Looking at the plots for the sine wave trajectory (test 1) shown in Figure 4.10a, the absolute
error was ≤ 2 deg for pitch angle and ≤ 0.9 deg for yaw angle. The maximum error occurred when
the input voltages changed sign, seen in Figure 4.11, meaning this was when the rotors changed
direction. Both simulation and testing on the Aero showed that the desired trajectory for a sine
wave in pitch could be followed using the adaptive controller. The input voltages were similar for
both simulation and testing as Figure 4.11 shows. In Figure 4.12, Θ̂1, was adapting to changes as
the pitch angle changed, while Θ̂2 was not changing since there wa no change for the trajectory of
the yaw angle.

For test 2, the desired trajectory was followed closely as Figure 4.13 shows. The biggest error
was at the time of a step both during simulation and testing, and there was also a cross-coupling
e�ect that could be seen as pitch and yaw changed position. This cross coupling e�ect was only seen
when tested on the Aero. Input voltages from simulation and testing showed a similar behavior,
this can be seen in Figure 4.14. The Θ̂i, i = 1, 2, were adapting at every step, shown in Figure 4.15.
Also Θ̂1 was changing in between time 20− 40s. At that time there was a small error in the pitch
angle, that was reduced over the same time period.

For the third test, the desired trajectory was followed smoothly as Figure 4.16 shows. The biggest
error was 2.5 deg for pitch at the time of the biggest change in pitch from a positive pitch of 30
deg to a negative pitch of 20 deg. Input voltages shown in Figure 4.17 had a similar behavior for
simulation and testing. The only di�erence was from time 45s to 50s where the desired pitch and
yaw angles were zero and inputs were zero for simulation but Vp = 4V and Vy = −4V for testing,
and giving the same output angles. This was probably due to the error in yaw that the controller
was trying to compensate for, and yaw was assumed not changing since there was static friction
in the system, and a higher voltage would be needed to have a rotation. The equal inputs with
di�erent sign would not change the pitch angle since the main and cross-torque gains for pitch were
equal, Kpp = Kpy. The Θ̂i, i = 1, 2 were adapting during the simulation and testing as Figure 4.18
shows.

For all three trajectories tested here, the output tracked the desired reference signal and the tracking
error was bounded.
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Figure 4.4: Angles and errors for test 1 (sine wave) with the LQR, both simulated and tested on
the Aero
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Figure 4.5: Voltage for test 1 (sine wave) with the LQR, when tested on the Aero
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Figure 4.6: Angles and errors for test 2 (step sequence) with the LQR, both simulated and tested
on the Aero
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Figure 4.7: Voltage for test 2 (step sequence) with the LQR, when tested on the Aero
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Figure 4.8: Angles and errors for test 3 (smooth step) with the LQR, both simulated and tested on
the Aero
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Figure 4.9: Voltage for test 3 (smooth step) with the LQR, when tested on the Aero
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(a) Pitch angle and error for test 1 (sine wave) with adaptive backstepping control
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(b) Yaw angle and error for test 1 (sine wave) with adaptive backstepping control

Figure 4.10: Angles and errors for test 1 (sine wave) with adaptive backstepping control, both
simulated and tested on the Aero
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Figure 4.11: Voltage for test 1 (sine wave) with adaptive backstepping control, when tested on the
Aero
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Figure 4.12: Estimated theta for test 1 (sine wave)
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(a) Pitch angle and error for test 2 (step sequence) with adaptive backstepping control
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(b) Yaw angle and error for test 2 (step sequence) with adaptive backstepping control

Figure 4.13: Angles and errors for test 2 (step sequence) with adaptive backstepping control, both
simulated and tested on the Aero
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Figure 4.14: Voltage for test 2 (step sequence) with adaptive backstepping control
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Figure 4.15: Estimated theta for step sequence with adaptive backstepping control
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(a) Pitch angle and error for test 3 (smooth step) with adaptive backstepping control
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(b) Yaw angle and error for test 3 (smooth step) with adaptive backstepping control

Figure 4.16: Angles and errors for test 3 (smooth step) with adaptive backstepping control, both
simulated and tested on the Aero
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Figure 4.17: Voltage for test 3 (smooth step) with adaptive backstepping control,
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Figure 4.18: Estimated theta smooth step with adaptive backstepping control
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4.7 Test on the Aero with Disturbances

Di�erent disturbances were added to the Aero to test how well the LQR and the adaptive controller
could cope with disturbances. The adaptive controller should be able to adjust its estimates to meet
the disturbances. The gains for the two controllers were not changed. Four di�erent disturbances
were added, changing the system in di�erent ways, and the di�erent disturbances and results from
this will be shown in the next sections.

4.7.1 Disturbance of Added Mass

Negative Torque

A mass of 5.8 grams in form of a washer was added to the main thruster, a distance of 23.8 cm
from the pivot point. This means a negative torque was added for pitch that is not included in
the model. The added mass also have impact on several of the parameters in the model, a�ecting
both the Aero mass, mb and the inertia Ib/o and also changing the center of mass rcm. When this
mass was added, the equilibrium moved from zero degrees to a negative pitch angle of 24.5 deg.
To test the same sequences as without this physical disturbance, the Aero was hold in horizontal
position at startup and then let go when running the control so that the disturbance was added after
approximately 1 second after start of the desired trajectory. This gave a disturbance in form of load
variation. The results from this test can bee seen in Appendix C where Figures C.1 to C.3 show
the �rst test sequence, Figures C.4 to C.6 show test sequence two and C.7 to C.9 show the third test.

For the �rst test, both controllers had a maximal error that was less than 1 degree for yaw. Both
followed the sine wave, and both had a maximal error of approximately 4 deg. The LQR had the
biggest error when the pitch trajectory reached max and min values, while the adaptive controller
had the biggest error around where the Aero had its equilibrium point, a pitch angle of -24.5 deg.
This was also when the rotors changed from a positive to a negative voltage. The plotted Θ̂i, i = 1, 2
in Figure C.3 show how the update law was changing with time and by comparing these values with
the values from no disturbances presented in Figure 4.12, Θ̂1 was changing more now, with increas-
ing values.

For the second test, when the mass was added in the beginning, both controllers had an error
in pitch angle of about 2.5 deg. When there was a step in pitch for 30 deg, the adaptive controller
had almost zero error at the end of the step. After the next step, the adaptive controller had a
bigger error than LQR, but one can see that the error was reduced with time, going towards zero.
The Θ̂i, i = 1, 2 in Figure C.6 shows that Θ̂1 had changed behavior for the �rst estimate relative to
what was the result from this test without disturbances. The two other estimates were relatively
equal as without disturbance. This seems to be a correct behavior since the parameter that changed,
was the parameter that was relating to the pitch angle, i.e. state variable x1.

For the third test, the plot in Figure C.7a shows the same error in pitch angle in the �rst 5
seconds, when pitch angle should be zero, as test two. After the pitch angle was changed at time
5 s, the error for the adaptive controller was going towards zero. For the last time period where
the pitch angle should be zero, both the LQR and the adaptive controller had an error just as in
the beginning, �rst 5 seconds, when the desired pitch angle was zero. The errors were much smaller
than it was for test two, just as it was without disturbances.

Positive Torque

A similar disturbance with the same mass was also tested. Now the mass was added to the tail
thruster at the same distance as in the previous test. This gave a positive torque to the Aero and
a new equilibrium point, moved from zero degrees to a positive pitch angle of 24.5 deg. The same
procedure was followed when the test sequences was tried as for the previous test. The results are
shown in Appendix D Figures D.1 to D.9. The results for this disturbance was similar to the one
with a negative torque, with the main di�erence of changed sign for errors.
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From test one, the LQR had same behavior as before, with largest errors for max and min points
on the pitch trajectory, while the adaptive controller had largest error when the Aero had a pitch
angle of 24.5 deg, which was at the new equilibrium point of the Aero in pitch. The Θ̂i, i = 1, 2
were changing as they did for the previous disturbance, but Θ̂1 for x1 was changed in a negative
direction now.

For test two, when mass was added in the beginning, both controllers had an error in pitch angle
just as they had for a negative torque, with the di�erence of changed sign of error and also Θ̂1 had
changed direction.

A similar behavior can be seen for the third test as for the negative torque. A closer look at the pitch
error in time period 25 to 40 s, one can see that the LQR had a steady-state error of about 4 deg,
while the adaptive controller is reducing the error with time, and also that the estimated parame-
ter Θ̂1 was changing for the same time-period. This can also be seen for the step function in test two.

Both controllers seemed to handle the added mass, and follow the given trajectories. Both con-
trollers had a steady state error when the desired pitch angle was zero.

4.7.2 Disturbance of Changing Tail Propeller

The tail propeller was changed from a low- to high e�ciency propeller, meaning that the main and
cross-torque gains produced by the input Vy were changed. The new propeller also had di�erent
airfoils, that is the cross sectional shape of blades on the propeller, than the old propeller, and
so this will change the aerodynamic force also. Because this new propeller had a lower weight, a
mass was also included to the tail thruster so that the Aero retained a horizontal position when at
rest. This disturbance illustrate actuator damage where the dynamics were changed. Results from
testing are shown in Appendix E.

For test 1 one can see from Figure E.1 that both controllers were able to follow the desired sine curve
trajectory. Once again the LQR had biggest error when the pitch trajectory reached maximum and
minimum values, with a maximal error of 4 deg, a little higher than without added disturbance.
The adaptive controller had biggest error at the equilibrium point with maximal error of 2 deg,
just as without the disturbance. From Figure E.2 one can see that a higher voltage was needed to
reach the highest points on the curve, where both input voltages had increased for both controllers,
but input Vy had changed most. Figure E.3 shows that the estimated parameter Θ̂1 was slightly
changed relative to without disturbance.

For test 2, Figure E.4 shows that the cross-coupling e�ect between pitch and yaw gave bigger
errors than without disturbance. For the applied voltages seen in Figure E.5, input Vy had in-
creased values now, this seems fair based on the changed propeller. Also the Θ̂i, i = 1, 2 seen in
Figure E.6, were changing more now.

For test 3, the results are shown in Figures E.7, E.8 and E.9, and both controllers were able to
follow the desired trajectory. The errors were some higher and the estimated parameters were
changing more now due to this disturbance relative to before the propeller was changed.

4.7.3 Disturbance of Changing both Propellers

Both propellers were changed to high e�ciency propellers, and so main and cross torque gains pro-
duced by both inputs were changed. Also the mass of the Aero body was changed since the new
propellers were lighter than the old. Results from tests are given in Appendix F.

Looking at the plot of input voltages in Figure F.2 for test one, saturation was reached when
pitch angle was going below approximately - 25 deg, as seen in Figure F.1. This gave big errors for
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Table 4.3: Compare total error of the LQR and the adaptive backstepping controller

Total error

Test Controller
No
disturbance

Disturbance,
added
mass -

Disturbance,
added
mass +

Disturbance,
changed
tail propeller

Disturbance,
changed both
propellers

Sine
LQR 0.0938 0.1228 0.1245 0.1625 1.2054
Adaptive 0.0153 0.0616 0.1001 0.0195 1.2825

Step
LQR 0.6974 0.7912 0.8337 1.0352 1.6936
Adaptive 0.7228 0.8109 0.8611 1.0402 1.2752

Smooth LQR 0.0727 0.1092 0.1477 0.2589 0.2719
step Adaptive 0.0175 0.0869 0.1383 0.1024 0.1095

both controllers since it was not possible to reach the desired reference, because a higher voltage
was needed than what could be applied.

In Figure F.4, showing angles and errors from test two, a bigger overshoot can be seen for both
controllers, and also a bigger steady state error for the pitch angle. Figure F.5 shows that higher
values of input was needed and Figure F.6 shows changes in the estimated values.

The last test sequence had smallest errors when the propellers were changed, with biggest ab-
solute error in pitch at 6.5 deg for the LQR and 4.9 deg for the adaptive controller at time 31.5 s
as seen in Figure F.7. The LQR had bigger steady state errors than the adaptive. Figure F.8 shows
that there was a bigger need of inputs than before. The parameter Θ̂1 had a bigger change now
than before.

4.8 Comparing the Controllers

The LQR and adaptive backstepping controller were compared with a measurement of tracking
error, i.e. the error between reference signal of pitch and yaw and actual pitch and yaw. Also the
total voltage used is measured. Both are used when comparing results from the controllers. The
more accurate the controller is, meaning the error is smaller, the more voltage is needed to hold the
trajectory closer to the reference and so there is a trade-o� between these two. The measurement
of the total error is

‖zγ‖2 =

∫ t

0
|zγ(t)|2dt, (4.1)

and the measurement of the total voltage, i.e. input to the system, is

‖u‖2 =

∫ t

0
|u(t)|2dt. (4.2)

In Table 4.3 the total tracking errors from Equation (4.1) are included from each test without and
with the di�erent disturbances for both the LQR and the adaptive backstepping controller. Ta-
ble 4.4 shows the measurement of the total voltage from Equation (4.2). The gains for the two
controllers were adjusted to have a similar performance for the step sequence in test two, and the
highlighted values in Tables 4.3 and 4.4 show where the two controllers had a similar performance.
Looking at these results one can see that for all the tests, both controllers had a better performance
with both a lower total error and lower total voltage for the smooth step compared to ordinary step.

In Figure 4.19 the results from test one are plotted, where the blue plots are for the LQR and
the red plots are for the adaptive backstepping controller. For four out of �ve of the tests, the
adaptive controller had a lower error than the LQR. For the last test, where both propellers were
changed, saturation was reached that resulted in big errors and high voltage usage.
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Table 4.4: Compare total voltage of the LQR and the adaptive backstepping controller

Total voltage

Test Controller
No
disturbance

Disturbance,
added
mass -

Disturbance,
added
mass +

Disturbance,
changed
tail propeller

Disturbance,
changed both
propellers

Sine
LQR 6572 8953 8623 11666 22848
Adaptive 7244 9107 9028 11848 24252

Step
LQR 6716 9253 11925 13433 20376
Adaptive 6722 8640 11513 13704 20406

Smooth LQR 4875 7435 9905 13914 17552
step Adaptive 5392 7593 10127 14308 19770
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Figure 4.19: Comparing the LQR (blue plots) and the adaptive backstepping controller (red plots)
for test 1

Figure 4.20 shows the compared results from test two. The two controllers had similar perfor-
mance for four of the tests, but when both propellers were changed the adaptive controller had a
better performance.

Last is the smooth step, and a compared plot in Figure 4.21. The adaptive controller had a better
performance for all the tests relative to error, but used more input than the LQR.
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Figure 4.20: Comparing the LQR (blue plots) and the adaptive backstepping controller (red plots)
for test 2
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Figure 4.21: Comparing the LQR (blue plots) and the adaptive backstepping controller (red plots)
for test 3



Chapter 5
Conclusion

In this thesis an adaptive backstepping controller has been proposed as a control structure for the
Quanser Aero laboratory equipment. A mathematical model was �rst derived, where the kine-
matics and dynamics of the system were looked into, and a nonlinear model was derived. Some
simpli�cations were done to the model, where for instance all the mass components were simpli�ed
when looking at the inertia for the Aero body and Coulomb friction was not included. The sup-
port yoke which is rotating with a rotation in yaw was also neglected to simplify the model. The
nonlinear model was also linearized, so that a linear controller could be tested for control of the Aero.

All parameters for the model were estimated and the parameters have uncertainties to their value.
All mass components were assumed to have the weight given by Quansers documentation, but have
not been veri�ed by weighting. The center of mass was estimated with two di�erent approaches,
giving two di�erent estimates. The real value is probably somewhere in between these two. Viscous
damping was estimated with the same test performed �ve times, averaging the value to reduce un-
certainty. The main torques were estimated resulting in nonlinear function for this. For simplicity,
the linear estimates for this were used for the controllers.

Four di�erent controllers have been proposed for control of the Aero including two PID based
controllers that are not model-based, one linear controller, LQR, requiring a linear model with esti-
mated parameters to be able to calculate the feedback matrix K and a nonlinear controller based on
adaptive backstepping where the nonlinear model was used. The latter controller does not require
any estimated values.

The purpose of the simulation and testing with the decoupled PID and PV was to illustrate that
control of a MIMO system using SISO systems not necessarily is a good idea since this will be
harder to control than using a holistic approach for control. The PV controller showed that control
using two SISO systems, controlling pitch and yaw separately, is possible but also causes bigger
deviations from the desired trajectory than for controlling as a MIMO system. For this control
method, the cross-coupling between inputs and outputs was neglected.

The LQR and the adaptive backstepping controller were simulated and tested and the perfor-
mance compared. The LQR was minimizing the error in trajectory, velocity of trajectory and the
inputs, while the adaptive controller only took the tracking errors and velocity of tracking errors
into account when adapting its estimates. Three di�erent desired trajectories in form of a sine wave
for the pitch angle, di�erent step inputs to pitch and yaw at di�erent time instances and the same
step sequence but with smoother step were simulated and tested. The reference signals and �rst
and second derivative of the signal were piecewise continuous and bounded. Gyro signals were used
to measure the angular velocities for pitch and yaw. To reduce measurement noise from the gyros,
the rate signals were �ltered by a second order low-pass �lter. A test with lower break frequency
showed that the signals could have been smoother.
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Di�erent physical disturbances were also added to the Aero to test if the adaptive controller was
able to adapt to these changes. First a mass was added to the main thruster, giving a negative
torque, then the same mass was added to the tail thruster, giving a positive torque. The third
disturbance tested was changing the tail propeller from a low- to a high-e�ciency propeller, and
the last disturbance test was changing both propeller from low- to high-e�ciency propellers.

For all tests with and without added disturbances, both controllers were able of tracking the desired
reference signal. The results from a desired trajectory in form of a sine wave for the pitch angle
showed that the LQR had biggest deviation when reaching the maximum and minimum points on
the trajectory while the adaptive controller had biggest deviation around the equilibrium point for
the Aero. The adaptive controller had a lower error for four out of the �ve tests with the sine wave.
For the step sequence, the two controllers had a similar performance and for the smoother step the
adaptive controller had a better performance relative to error than the LQR.

When the goal is to get from one desired reference angle to a new desired angle, a step func-
tion is often used. If one can plan the path between the two points, a smoother function can be
used that will give a better performance for the system with both smaller errors and with lower
consumption of input voltages. This was veri�ed by simulation and testing of the step and the
smooth step inputs, where a second order lowpass �lter was used after the referenced step input.
Also, giving a step function means that there will be a sudden change in the wanted pitch and yaw
angles and this means the function is not continuous at that point. For the adaptive controller con-
tinuity is a need, but the Lipschitz condition reduces this to piecewise functions so that an adaptive
controller can work even if the trajectory is not continuous at every point. But when we have a step
function, the adaptive controller will perhaps need some time to adapt its estimated values. The
smoother step function does not have this sudden change, and so the adaptive can change along
the new reference trajectory. The smoother step seems to be a better solution for both the LQR
and adaptive controller showing better performance, resulting in less errors both in tracking and
less voltage use. The better performance can be seen for all the tests without and with disturbances.

The main focus has been to the adaptive backstepping controller and a stability proof have been
given using constructed Lyapunov functions. It is shown that all signals in the closed loop system
are bounded and asymptotic tracking of a reference signal is achieved. Simulation and testing con-
�rms that this is so. The transient performance for the z system including the tracking errors in
terms of L2 norm have been derived, where the performance can be improved by increasing the
control parameters ci, i = 1, 2, 3, 4 or by increasing the adaptation gain γ, and so the tracking errors
can be made smaller.

5.1 Future Work

The nonlinear model used in this thesis included several simpli�cations, and there were unmodel
components not included. All small deviations from the real system give small error in the model.
A suggestion is to add more terms to the nonlinear model and then try to improve the adaptive
backstepping control scheme. Motor dynamic is one of the things that can be include.

It is further suggested to look into what caused the adaptive backstepping controller to give an
error in pitch angle around the equilibrium point of the Aero, and also why there is an error in the
pitch angle after an added mass, when the desired angle is zero.

Another suggestion is to investigate the estimated parameters and see how they behave. Are they
converging to their true values for any initial conditions? What is the relationship between the
potential number of estimated parameters and measurements? How does the model formulation
impact the behaviour of the estimated parameters?

Other disturbances can be tested, like wind.
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Another thing is to try the proposed adaptive backstepping control scheme for a quad-copter with
3DOF (rotation) or 3+3DOF (rotation and translation). Then it is also suggested to change the
attitude parameterization to a quaternion method or SO(3) for 3DOF (rotation) or SE(3) for 6DOF
[14], this to avoid having singularities so that the quad-copter can turn however it wants.
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Figure A.1: Simulation of decoupled PID for Aero, Sine wave
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Figure A.2: Simulation of decoupled PID for Aero, Step sequence
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Figure A.3: Simulation of decoupled PID for Aero, smooth step sequence
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(a) Pitch angle and error for test 1 (sine wave) with PV control
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(b) Yaw angle and error for test 1 (sine wave) with PV control

Figure B.1: Angles and errors for test 1 (sine wave) with PV control, both simulated and tested on
Aero
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Figure B.2: Voltage for test 1 (sine wave) with PV control, when tested on Aero
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(a) Pitch angle and error for test 2 (step sequence) with PV control
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(b) Yaw angle and error for test 2 (step sequence) with PV control

Figure B.3: Angles and errors for test 2 (step sequence) with PV, both simulated and tested on
Aero
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Figure B.4: Voltage for test 2 (step sequence) with PV control, when tested on Aero
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(a) Pitch angle and error for test 3 (smooth step) with PV control
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(b) Yaw angle and error for test 3 (smooth step) with PV control

Figure B.5: Angles and errors for test 3 (smooth step) with PV control, both simulated and tested
on Aero
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Figure B.6: Voltage for test 3 (smooth step) with PV control, when tested on Aero
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(a) Pitch angle and error for test 1 (sine wave) with disturbance of added mass, negative torque
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Figure C.1: Angles and errors for test 1 (sine wave) with disturbance of added mass, negative torque
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Figure C.2: Voltage for test 1 (sine wave) with disturbance of added mass, negative torque
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Figure C.3: Estimated theta for test 1 (sine wave) with disturbance of added mass, negative torque
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(a) Pitch angle and error for test 2 (step) with disturbance of added mass, negative torque
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(b) Yaw angle and error for test 2 (step) with disturbance of added mass, negative torque

Figure C.4: Angles and errors for test 2 (step) with disturbance of added mass, negative torque
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Figure C.5: Voltage for test 2 (step) with disturbance of added mass, negative torque
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Figure C.6: Estimated theta for test 2 (step) with disturbance of added mass, negative torque
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(a) Pitch angle and error for test 3 (smooth step) with disturbance of added mass, negative torque
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(b) Yaw angle and error for test 3 (smooth step) with disturbance of added mass, negative torque

Figure C.7: Angles and errors for test 3 (smooth step) with disturbance of added mass, negative
torque
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Figure C.8: Voltage for test 3 (smooth step) with disturbance of added mass, negative torque
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Figure C.9: Estimated theta for test 3 (smooth step) with disturbance of added mass, negative
torque
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(a) Pitch angle and error for test 1 (sine wave) with disturbance of added mass, positive torque
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Figure D.1: Angles and errors for test 1 (sine wave) with disturbance of added mass, positive torque
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Figure D.2: Voltage for test 1 (sine wave) with disturbance of added mass, positive torque
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Figure D.3: Estimated theta for test 1 (sine wave) with disturbance of added mass, positive torque
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(a) Pitch angle and error for test 2 (step) with disturbance of added mass, positive torque
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(b) Yaw angle and error for test 2 (step) with disturbance of added mass, positive torque

Figure D.4: Angles and errors for test 2 (step) with disturbance of added mass, positive torque
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Figure D.5: Voltage for test 2 (step) with disturbance of added mass, positive torque
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Figure D.6: Estimated theta for test 2 (step) with disturbance of added mass, positive torque
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(a) Pitch angle and error for test 3 (smooth step) with disturbance of added mass, positive torque
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(b) Yaw angle and error for test 3 (smooth step) with disturbance of added mass, positive torque

Figure D.7: Angles and errors for test 3 (smooth step) with disturbance of added mass, positive
torque
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Figure D.8: Voltage for test 3 (smooth step) with disturbance of added mass, positive torque
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Figure D.9: Estimated theta for test 3 (smooth step) with disturbance of added mass, positive
torque
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(a) Pitch angle and error for test 1 (sine wave) with disturbance of changing tail propeller
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(b) Yaw angle and error for test 1 (sine wave) with disturbance of added mass,positive torque

Figure E.1: Angles and errors for test 1 (sine wave) with disturbance of changing tail propeller
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Figure E.2: Voltage for test 1 (sine wave) with disturbance of changing tail propeller
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Figure E.3: Estimated theta for test 1 (sine wave) with disturbance of changing tail propeller



94

0 5 10 15 20 25 30 35 40 45 50
-20

0

20

40
Pitch (deg)

Pitch desired
Pitch LQR
Pitch Adaptive

0 5 10 15 20 25 30 35 40 45 50

-40

-20

0

20

Pitch error (deg)

Pitch LQR error
Pitch Adaptive error

(a) Pitch angle and error for test 2 (step) with disturbance of changing tail propeller
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(b) Yaw angle and error for test 2 (step) with disturbance of changing tail propeller

Figure E.4: Angles and errors for test 2 (step) with disturbance of changing tail propeller
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Figure E.5: Voltage for test 2 (step) with disturbance of changing tail propeller
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Figure E.6: Estimated theta for test 2 (step) with disturbance of changing tail propeller
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(a) Pitch angle and error for test 3 (smooth step) with disturbance of changing tail propeller
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(b) Yaw angle and error for test 3 (smooth step) with disturbance of changing tail propeller

Figure E.7: Angles and errors for test 3 (smooth step) with disturbance of changing tail propeller
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Figure E.8: Voltage for test 3 (smooth step) with disturbance of changing tail propeller
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Figure E.9: Estimated theta for test 3 (smooth step) with disturbance of changing tail propeller
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(a) Pitch angle and error for test 1 (sine wave) with disturbance of changing both propellers
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(b) Yaw angle and error for test 1 (sine wave) with disturbance of changing both propellers

Figure F.1: Angles and errors for test 1 (sine wave) with disturbance of changing both propellers
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Figure F.2: Voltage for test 1 (sine wave) with disturbance of changing both propellers

0 5 10 15 20 25 30 35 40 45 50
-7

-6

-5

-4

-3

-2

-1

0

1
Estimated Theta

Theta1
1

Theta1
2

Theta2

Figure F.3: Estimated theta for test 1 (sine wave) with disturbance of changing both propellers
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(a) Pitch angle and error for test 2 (step) with disturbance of changing both propellers
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(b) Yaw angle and error for test 2 (step) with disturbance of changing both propellers

Figure F.4: Angles and errors for test 2 (step) with disturbance of changing both propellers
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Figure F.5: Voltage for test 2 (step) with disturbance of changing both propellers
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Figure F.6: Estimated theta for test 2 (step) with disturbance of changing both propellers
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(a) Pitch angle and error for test 3 (smooth step) with disturbance of changing both propellers
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(b) Yaw angle and error for test 3 (smooth step) with disturbance of changing both propellers

Figure F.7: Angles and errors for test 3 (smooth step) with disturbance of changing both propellers
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Figure F.8: Voltage for test 3 (smooth step) with disturbance of changing both propellers
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Figure F.9: Estimated theta for test 3 (smooth step) with disturbance of changing both propellers
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