and Science

ﬁ U iA Faculty of Engineering

CosT EFFECTIVE SENSOR PACKAGE FOR ROAD
MONITORING

Benjamin Wehus Knutsen and Omer Zec

Supervisor

Kristian Muri Knausgard

This Master’s Thesis is carried out as a part of the education at the University of Agder and
is therefore approved as a part of this education. However, this does not imply that the

University answers for the methods that are used or the conclusions that are drawn.

University of Agder, 2019
Faculty of Engineering and Science

Department of Engineering Sciences

Abstract

The companies responsible for road maintenance are expecting an increase in number of roads.
It is of interest to find effective solutions to adapt to the increased work in road maintenance.
Most of the road monitoring has to be done manually. This thesis is aimed to do research on
how road inspection effectively can be monitored at a low cost. The goal is to create and im-
plement a sensor package in a vehicular platform. The group has provided concepts, produced

a sensor package for testing, software development and tested chosen areas of interest.

Traffic sign recognition, lane mark quality, vibration measurements and light intensity is re-
searched and tested. Results are uploaded to a database with associated GPS coordinates and
illustrated on a map service program. The maintenance staff can have access to the database
and a complete overview of the detected states. The sensor package is designed for mounting in
several vehicles, to avoid special made vehicles for road monitoring. Robot Operating System is
used to launch and operate the road monitoring system. Most of the system software is written

in Python.

The method for sign recognition with red color extraction gave positive results based on the
testing. Lane mark measurement using a 2D camera is shown to work with correct installation.
The communication for retrieving and writing data to geospatial database is shown to work
properly. The results indicate that lightening conditions and other vehicles affect the results
in a negative way. In addition, the results indicates that with further work on this topic, it is
possible to monitor road conditions from a low cost and compact sensor package installed in a

vehicular platform.

Acknowledgements

First of all the group would like to thank the supervisor, Kristian Muri Knausgard for help and
guidance during this thesis. We are grateful for all the lab engineers at University of Agder for
help during this spring.

Additionally the group is grateful for HK Motorservice AS for letting us borrow their car spo-

radically during the afternoons which allowed us for testing the sensor package.

Lastly the group will thank Nye Veier AS and Tor Alf Hgye, academic responsible at Nye Veier

AS for meeting us and identifying their needs.

Bengaimen W Rnedaen 24.05.2019
Benjamin Wehus Knutsen Date
Omen Jec 24.05.2019
Omer Zec Date

CONTENTS

Contents
Contents| m
[List of Figures| Y|
[List of Tables| X
1__Introduction| il
LI _Motivationl e I
2 Stateof the Artl. il
[L3~ Problem Statementl
1.4 Requirement and Standards,
[1.4.1 TMumination Requirements|.
[1.4.2 Lane Mark Quality Requirements|. @A
[I.5 Report Outling] e @A
[I.6 Acronyms and Abbreviations|
6
I Softward §
B2 TABTAITE . « o o v v o e e e e g
23 Hardward e e 8
2.4 Machine Visionl e
2.5 Thresholding] e 14
2.6 HSV, HSL and LAB Color Space|
2.7 Canny Edge Detection| Iz
2.8 Hough Transform|. 19]
2.9 Template Matching|. 21
210 2D Convolutionl 23]
RITSensors . - - o v v oo 23
2.11.1 Inertial Measurement Unitl 23]
2.11.2 Photoconductive Sensorl e
RIT.3 GPSReceived e 20]
[2.11.4 Tnfrared Temperature Measurement|
2.12 Edge Computing Vs. Cloud Computing| 28
2.13 GPU Vs. CPU Computing] 29
[2.14 Geospatial Information System| oL 30
[2.15 Diftuser for Light Sensor| 30
2.16 _Camera Calibrationl e o0
217 Thermal Camera Calibrationl 34
2.18 IMU Calibration - Intel Real Sense D4351 34

CONTENTS

[3 Concept Development| 35
[3.1 Product Specification|. o 3
3.2 Concept Generation| e 30

[3.2.1 Concept 1 - Standard Road Detection with Temperature Measuring] . . . [B1
13.2.2 Concept 2 - Hybrid Camera with Light Intensity Measurements|. 38
[3.2.3 Concept 3 - Hybrid Camera with Light and Surface Temperature Mea- |

[surementsl e 59
3.3 Concept Evaluation & Selection|. oo oo 40
[3.4 Structure & Shape Variations| L 3]

3.4.1 Power Supplyl 43
13.4.2 Mounting Location Temperature Sensor| 43
[3.4.3 Mounting Location Light Intensity Sensor| 44
[3.4.4 Tight Tntensity Detection] 44
B.45 Hardwarel 44
13.4.6 Temperature Sensor| Lo 45
3.5 Final Concept|. 46
4 Methods 47
.1 System Design] e 47
[£.1.1 Design Detailing] @47
[d. 1.2 Heat Dissipation Up2],
[4.1.3 Sensor Package Frame] L. 15%1]
[4.1.4 Power Supplyl H0)
4.2 Data Flowl. e ¥
4.3 Sensor Package System|. L b1
4.3.1 Create Workspace| By
4.3.2 Create Packagel o bYS)
4.3.3 Camera Nodel e 0]
4.3.4 Sensor Nodel e e e 01}
4.3.5 GPS Subscriber Nodelo o 63
4.3.6 IMU Subscriber Nodel o 04]
[4.3.7 Database Communicationl 65]
[4.3.8 Dropbox Communication| 67
[4.3.9 System Launch| o 0o oo 69
4.4 Calibrationl e e (0]
4.4.1 Camera Calibration - Intel RealSense D4351 70
[4.4.2 Light Intensity Sensor Calibration| 73]
443 IMU - Intel Real Sense 4351 irdrd|
4.5 FHlectrical Connections| e [70]
4.6 Speed Limit Sign Recognition| 80
4.7 Lane Mark Quality| 80
4.7.1 Determine Lane Mark Length|. 02
[4.7.2 Alignment Error on Line Length Measurement| 7]

CONTENTS

4.8 Lane Curvature, Curve Radius and Vehicle Position| 0]
4.9 Light Intensity Detection| 106
[4.10 Prototype Testing]o 109
4.11 Vibration Measurementsl 110
A12 Communication In ROS|
6_Results| 115
[5.1 Traffic Sign Recognition|
(.2 Vibration Measurements 117
B3 Databasel IBE]
B4 QGIS 1T9]
5.5 Dropbox]. 21
5.6 Lane Mark Quality] 123
5.7 Light Intensity Detection| 126
B.8 Lane Curvaturel e e 129]
6__Discussionl 150!
6.1 Bright Conditions|. 130
6.2 Light Intensity Sensor| 132
6.3 Lane Curvaturel e e 152
6.4 Camera Position Frrorlo 150
[6.5 Power Supplyl 134
6.6 IMU Coordinate System| 135
6.7 Machine Learning Vs. Template Matching| 136
6.8 Light Intensity Sensor - GPS Problem| 130!
6.9 ROS, QGIS and PostgreSQL| L 1306
6.10 Lane Mark Detectionl. e 1501
Dropbox] 137

612 GPS Antennal 37
[7__Conclusion| 138
[8 Suggestions for Further Work| 139
[8.1 Speed Limit Sign Recognition| L. 139

B2 Cameral e 139]
8.3 Hardwarel e e 139
[8.4 Light Intensity Algorithm| oo 139
8.5 Touch Monitor for Up2[. 140
8.6 Lane Mark Quality] 140
[8.7 Improve Algorithm for Bright Conditions| 140
[Bibliography| 141l
ApPD d

II1

CONTENTS

[A_Costl @47
(B Solidworks Drawings| 14§
[B.1 Semsor Packagel 48
IB.2 Frame for Power Supply| 1541
[C_Gantt Chartl 158
(D Verification of Test Setup During Length Measurement| 159
(2_Data Sheets] 162!
(5.1 TIntel RealSense 4351 162
[E2 MLX 90640 - Thermal Cameral 162
E3 Photocelll oot 163
.4 GPS Sensorl 164
.5 Intel Up Ai Squared Computer| 167
[E.6 Arduino Uno R3| o 169
|[E.7 Biltema Power Supply| 178

[FF Python Scripts| I88
[F.1 Finding Lane Curvature, Curve Radius and Vehicle Position| 188
[F.2 IMU Calibration Script - Intel RealSense 4351 [1| 203!
[F.3 Traffic Sign Detection Script|. 220
[F.3.1 Speed Limit 100[. 220

[F.3.2 Speed Limit 90| 223

[F.4 Lane Mark Detection Script| 227
[F.5 Vibration Measurement Script| 230
[F.6 Upload to Dropbox Script|o 232
.7 Communication Arduino and ROS|
/G_ROS - Launch File 235
([H MatLab Scripts| 236!
[H.1 Script for Reading ROS bag files|, 230!

(I Arduino Scripts| 239
.1 ~ GPS and Light Intensity Script| oo 239

v

LIST OF FIGURES

List of Figures

[[.1 Tunnel Broken Down Into 4 Parts 2]
R.1 ROS Overview [3]l. . - - . o oo @
2.2 Intel UP Squared Al Vision X Developer Kit| 9]
2.3 Ardummo Uno R3l oo o 10
2.4 TIntel RealSense DA35I 1l
[2.5 Image Acquisition [4l|. Lo
2.6 Original Tmage] e 14
2.7 Grayscale Imagel 14
2.8 Binary Imagel 14
[2.9 Hue - Color Representation [bfl
DI0 ROBTMARE - . -« o o o oo e e e e
DAT HSVTMART - .« -« o o o o oo e e
[2.12 HSL - Color Space| o 10
2.13 LAB - Color Space| 16
[2.14 Non Maximum Suppression [6| 0oL 17
.15 Determine Edge with Hysteresis [7]| 18
[2.16 Canny Edge Detection - Illustration| 18]
[2.17 Polar Coordinates [8|. 19
[2.18 Ilustration of the Function [8]|. 20)
[2.19 Template Matching - Illustration| 21
[2.20 2D Convolution [Ofl 23]
[2.21 Valence and Conduction Band [10lf 24
[2.22 Change in Resistance Vs. Change in Lux JLL]| . « « « v v v v v v oo oot 27
[2.23 Circuit of the Voltage Divider [L1]|
[2.24 Trilateration - GPS Positioning [12]| 20]
.25 Tnfrared Thermometer [I3]. o o v it
[2.26 Edge and Cloud Computing Visualized [14l| 28
P27 CPU Vs GPU Coras T - -« o oo 7
[2.28 From 3D World Coordinates to 2D Image Coordinates [16]| 30)
.29 The Pixel Skew [lustration [I7]| . - « .« « o oo vt e e e BT
.30 Tangential Distortion [I7]] . . .« « « v v v vt o e e
.31 Radial Distortion [LT]| v o o v oo e
[2.32 Reprojection Error of Images [I8]| 0oL
3.1 Concept Phase| o 36l
[3.2 Concept 1 - Dashboard View| B7
3.3 Concept 2 - Dashboard View| 38

LIST OF FIGURES

[3.4 Concept 3 - Dashboard View| 39
B.5 Final Concept [TO]] o o it 16
[4.1 Intel Real Sense D4351 [20]| @7
4.2 MLX90640 Thermal Camera [21]| 18]
4.3 Joby Suction Cup|. e 49
d4 NEO 6M - GPS Receiver] e 510
ES _Photocelll oo o e e e 50
.6 Up2 Dimensions] e
{4.7 Temperature Rise Above Ambient [22] L. 53
48 Base Framel e B4
A9 Top Cover] e 15%1]
|4.10 Bracket for Light Intensity Sensor|
4.11 Base Frame with Hardwarel oo %)
[£.12 Sensor Package - Assembly]
4.13 Step-Down Module - Inputs and Outputs| 0
[4.14 Frame for Power Supplyl H0)
[4.15 Tlustration of the Data Flowl Lyl
4.16 Calibration Setup|. 70
417 Calibration Gridl 70
[4.18 Intel RealSense Dynamic Calibrator - Start Up Screen| 1]
|4.19 Intel RealSense Dynamic Calibrator - Initialization Step| 1
[4.20 Intel RealSense Dynamic Calibrator - RGB Camera] 2]
|4.21 Intel RealSense Dynamic Calibrator - Depth Cameral
[4.22 Certified RS Light Meter] 73]
[4.23 Setup - Light Intensity Calibration|
|4.24 Measurements - Graphical [llustration| !
|4.25 Measurements - Logarithmic Conversion|
[4.26 Position 1 - Upright Facing Out|. irderd
[£.27 Position 2 - USB Cable Up and Facing Out| irdrd|
[4.28 Position 3 - Upside Down Facing Out| 78
|4.29 Position 4 - USB Cable Down and Facing Out|. 78
4.30 Position 5 - Facing Down| o [T8]
[4.31 Position 6 - Facing Up| oo Lo (8
[4.32 Calibration Script - Command Prompt|. 78
[4.33 Circuit Diagram| 79
[4.34 Speed Limit Signs| 0]
|4.35 Flowchart - Traffic Sign Recognition| ()
[4.36 Speed Limit Sign Recognition Test Setup| 7]
4.37 Threshold for Red Circled o o o oo 8]
[.38 HSV Color Range [23]]]3]
4.39 Bounded Box around Circles] R3
[4.40 Template Score and Match| 85

VI

LIST OF FIGURES

4.41 Flowchart - Lane Mark Quality| o o L. 80
42 Tield Of View - From FT8 o RT
[4.43 Lane Mark Dimension - E18 with Speed Limit Over 90 =2 =7
[4.44 Warped Frame| 88
[4.45 Binary Output| 89
4.46 Warped Output|. o 90
[4.47 Test Setup Line Length| oo 2]
[4.48 Geometrical Model to Determine Line Length| 92
4.49 Floor Level 1| o o 03]
4.50 Floor Level 2 e e 90
4.51 Camera Level 1] e 93]
4.52 Camera Level 2/ 93]
[4.53 Binary Image - Line Length Test 1| 95
[4.54 Binary Image - Line Length Test 2| 95
4.55 Result - Length Test 1| 90
4.56 Result - Length Test 2|o 906
[4.57 Camera Angle at 0 Degrees| 07
[4.58 Result with Different Angles|. oL . 7]
4.59 0 Degree Angle| 08
[4.60 2.5 Degree Anglel O8]
4.61 5 Degree Angle| O8]
|4.62 Library Function - Display Images| 99
|4.63 Library Function - Image Warping| 100!
4.64 Input Image| 100!
[4.65 Warped Imagel e 100
|4.66 Library Function - HLS Thresholding| 100
4.67 HLS Image and the Binary HLLS Image|. 101
4.68 Library Function - LAB Thresholdingl 107
4.69 LAB Image and the Binary LAB Image| 1071
|4.70 Library Function - LAB Combined with HLS Thresholding 102
|4.71 Warped RGB Image and the Combined Thresholded Imagel
|4.72 Library Function - Sliding Window Method Part 1) 103
4.73 Library Function - Sliding Window Method Part 2| 103!
[4.74 Sliding Window Method - Output| 104
4.75 Library Function - Polynomial Previous Fit| 104
|4.76 Polynomial Previous Fit - Output|
4. 7r Curve Position - Function|o 100f
4.78 LDR Circuit Wiring] 100!
4.79 Making Diffuser|{. 106!
4.80 3D Model of Diffuser Framelo oo o o 107
|4.81 Diftuser Frame, Diffuser Dome and Photo Cell| a7
4.82 Assembled Diffuserlo o7

VII

LIST OF FIGURES

4.83 Test Setup|. o 109
|4.84 Cameras Coordinate System|. 110
|4.85 Measurement from Car with Soft Suspension| 11T
4.86 Measurement from Car with Stiff Suspension| 111
487 ROS Environment] 114
5.1 Detected 90 Sign Nedenes-Grimstad|
[5.2" Detected 90 Sign Grimstad-Nedenes|
5.3 Detected 50 Sign After Testingl 1106
5.4 Detected 100 Sign After Testing]. 116
0.5 Detected Peaks in Z-directionl L 117
(.6 Detected Peakl e 117
[5.7 Pushed Road Condition Data to PostgreSQL| 118
[5.8 Pushed Sign Data to PostgreSQL|. 118
5.9 90 Sign Hlustrated in QGIS| oo 119
[5.10 IMU Peaks Illustrated in QGIS| 110
5. 11 Information about GPS Point o o oL 1201
[5.12 Uploading Detected Images to Dropbox{ 121
[5.13 Uploaded Detected ITmages to Dropbox Folder] 121
[5.14 Detected Images to Dropbox From another Computer|
0.15 Lane Mark Detection Between Grimstad and Kristiansandl. 123
[5.16 Shadow from Lamp Post Crossing the Lane Mark|. 124
b.17 Lane Mark Detection - Shadows from Vehicles|. 24
[H.18 Lane Mark Detection - Worn Lanel
0.19 Test Setup - Heavy Rainlo 120!
£.20 Test Routel e 120
[5.21 Light Intensity Measurements - Rainy Weather| 127
[5.22 Test Setup - Sunny Weather|. o oo 128
15.23 Light Intensity Measurements - Sunny Weather{ 128
[5.24 Final Output - Lane Detection| 129
[6.1 Dark Frame - Not Detected Signf 130
6.2 Detected Signl 130
6.3 Lane Mark Detection - Worn Lanel 131
[6.4 Diffuser with Conical Shape|
6.5 Coordinate System for Object and Camera] 133!
[6.6 Voltage Converter from Biltema [24][. 134
[6.7 Power Supply with Tenition Offf 134
6.8 7-Axis for Vertical Measurement| 0oL 135
6.9 Y-Axis for Vertical Measurement| oL
IC.1 Gantt Chart - Part 11. e 193]
IC.2 Gantt Chart - Part 2. 15]

LIST OF FIGURES

DT HGERE TABIG . .« o o o oo e e e e T59
[D.2 Height Box| e 160
ID.3 Height Camera] e 160
[D.4 Length Long Line|. 16T
[D.5 TLength Short Line 1611

IX

LIST OF TABLES

List of Tables

[I.1 Dimension Class for Illumination [25].
[L.2 Average Illumination Requirements in Lux [25]|
[L.3 Requirements Illuminance tunnels |2 1
[1.4 Description of Acronyms and Abbreviations|
.1 Tntel UP Squared AT Vision X - Specifications [26] 9
2.2 Cloud Computing]. e 28
2.3 Edge Computing] e 28
[3.1 Evaluation - Functionality] 41
B2 Evaluation - Costl [T
4.1 Cost for Consept 3| e 1531
[£.2° 3D Printer Specifications|.
4.3 Measurements - Numericall. 74
[4.4 Measurements - Numerical [log]| [75)
AT Cost . . oo 47

1. Introduction

1. Introduction

1.1 Motivation

Today most of the road monitoring is manually inspected. Human inspectors drive in their
inspection vehicles and report areas that are not sufficient. This way of road inspection is inef-

ficient and time consuming.

It is of interest to apply disciplines within machine vision, automation and digitization for
efficient road monitoring and data collection. There is placed stationary road monitoring devices
along the road today, but these sensors provide information from the stationary point. The
solution is to implement a compact sensor package on a vehicular platform that can monitor
the road in real time and send information to a database, where the owners of the road can

access the stored information.

1.2 State of the Art

In paper [27] authors have developed a sensor package on a vehicular platform for road mainte-
nance during winter. The main purpose of the sensor package is to support roads or highways
operators. This platform allows real time exchanges between the maintenance vehicles and the
operating server in order to improve the maintenance and inform clients in real time about the
road condition. In the research article [28], an automatic visual inspection system using onboard
in-car camera is developed. The paper presents the method for detecting potholes, pavements
and lane quality on the road using a camera. When the unaccepted states occurs the camera

marks the spot on the road describing the fault.

The papers [27] and [28] are compact sensor packages that can be mounted inside a vehicular
platform. In other papers the focus is on one topic using one sensor. In paper [29], a tem-
perature sensor is used for measuring road surface temperature on a vehicular platform. This
product indicates the surface temperature while driving and it is mounted outside the vehicle.
In paper [30] the author presents how salt concentration is measured on the highway roads.
A refractometer is used to probe the salt concentration. The refractometer gives a statement
about the salt concentration on the road. Author in paper [30] does not use a vehicle when
measuring the salinity, but in paper [31], it is shown that a refractometer can be used behind the
rear bumper, where the water from the roads splashes in a refractometer. Other sensors that
are made for road maintenance are the sensors provided by Pavematrics. The sensor package
features terrain models, detection of road edges, lane markings and curbs. The equipment uses

dual laser profiles to map the road surface and the road shape can be inspected.

1. Introduction

In the papers above, two papers include road maintenance as a package with several sensors. In
paper [27], there is used temperature, humidity sensor, camera and other heterogeneous sensors.
In the other references and research papers there is used individual sensors to detect the road
quality on a vehicular platform. When companies and contractors provide road maintenance
services, the focus is scoped to one topic. The sensors used to provide information about single
topics are custom designed and using components with high accuracy to ensure better results.
This also results in expensive equipment and does not make it a low cost sensor package for

vehicles patrolling on the highways.

1.3 Problem Statement

The number of highways in Norway increases and due to this the road maintenance increases.
By digitizing the road inspection and monitoring, it decreases cost and increases the efficiency
for maintaining the roads. The interest is how the road monitoring can be digitized and the
goal is to develop a cost-effective sensor package that can be installed in several vehicles which

is already trafficking the roads.

Examples on conditions that can be monitored and/or do research at are listed below:

Speed Limit Sign Recognition
Quality of the Lane Markings
Road Condition

Light Intensity

Detect Road Surface Temperature

Detect Lane Curvature

When a sensor detects a state, a probe of the state is documented by the sensor package and
sent to a map service application. Therefore a task of this project is to investigate how the

sensor package can communicate with the map service program.

Which sensors and methods can monitor and detect these conditions? The group should provide
concepts, system design, develop a prototype and also show test results from a chosen area of

focus.

1.4 Requirement and Standards

In this section the requirements for the roads that Nye Veier is responsible for is presented. The
relevant roads are highways with speed limits 90, 100 and 110 lch The roads with speed limits
at 100 kTm are classified as H8 and H9, while roads with speed limits 90 kTm are classified as H5.
As a new manual is being released, the new classification is H2 and H3 for the roads with speed
limit 90 and 110 &2

1. Introduction

1.4.1 Illumination Requirements

By driving in the dark, the risk of accidents is 1.5 to 2 times higher than driving in the daylight.
These statistics are for serious accidents and young drivers. The illuminance on the highways is

to help drivers holding the course steady and handle unexpected situations in a best way. [25]
The dimension class table for illumination is illustrated in table Since the relevant roads

are roads with middle railings and the average daily traffic is more than 4000 vehicles, the class
is MEW3.

Table 1.1: Dimension Class for Illumination [25]

ADT < 1500 | ADT 1500 - 4000 | ADT > 4000
Roads with middle railing MEW3 MEW3
Roads with speed limit over 40 kTm MEW4 MEW3 MEW?2
Roads with speed limit 30 kTm CE3 CE3

Table 1.2: Average Illumination Requirements in Lux [25]

Average luminance in %2 2 1.5 1 0.75 0.5
MEW3 | MEW4 | MEW5
Class CEO0 Mggl MCE];,JZ;Q CE3 CE4 CE5 | S4 | S5 | S6
S1 S2 S3
Average luminance in Lux | 50 30 20 10 7.5 5 3| 2

As seen from table the average luminance in the roadway has to be minimum 20 Lux.

Requirements for tunnels are different. If the tunnels are longer than 100 meter it is required
to have illuminations. The tunnels can be broken down into 4 parts, which is shown in Figure

L1

Run-in Zone [Transition Zone Ir T Exit Zone

Figure 1.1: Tunnel Broken Down Into 4 Parts [2]

1. Introduction

In table the requirements for illuminance in the tunnels are shown. For roads with a speed
limit of 110 kTm the lux needs to be minimum 1 between 00: 00 A.M and 05: 00 A.M, else 2
Lux. During the day the Lux needs to be minimum 4 at the inner zone. The run-in zone needs
to be at least 7% of the adaption luminance. By adaption it means the ability for the eye to
adjust to various levels of light. The adaption luminance is the average luminance of objects

and surfaces in the vicinity of the observer estimating the visual range. [32]

Table 1.3: Requirements Illuminance tunnels [2]

ADT <4000 4000 - 12000 >12000
Speed Limit 60 Bm | 80 m | 60 Am | 8o km | gp km | 170 km
Run-in zone 2% 3% 3% 4% 5% ™%
Inner zone day 2 1% 2 % 2 ;—‘12 2 ncT% 4 ;—‘12 4 ;T%
All zones night 14 [14 [14 |14 |24 | 224
All zones night between 00 - 05 AM. [05 4 [05 <4 |05 < |05 [14 [14

1.4.2 Lane Mark Quality Requirements

The lane markings plays an important role regarding the traffic safety. There was not provided
any requirements for lane mark quality. Therefore, during this project, it is categorized as good
lane or bad lane. This is set by thresholds which can be modified for further requirements or

standards that comes in the future.

1.5 Report Outline

This report contains 7 chapters. Chapter 1 includes introduction, problem statement and the
state of art. Chapter 2 contains the theory which is used to solve the problems. Chapter 3
includes the concept phase which contain concept generation and concept selection. Chapter 4
includes the methodology that is used in this project. In chapter 5 the results is presented. In
chapter 6 discussions about certain subjects and the groups opinion is presented. In chapter 7

the conclusion of the project is presented. Suggestions for further work is discussed in chapter 8.

1. Introduction

1.6 Acronyms and Abbreviations

The acronyms and abbreviations mentioned in the report are listed below in table

Table 1.4: Description of Acronyms and Abbreviations

Acronyms and Abbreviations Description

up2 Intel Up Al Squared - The computer

LDR Light Dependant Resistor

IMU Inertial Measurement Unit

GPS Global Positioning System

ROS Robot Operating System

MEW Illumination Classes for roads with speed limit over 40 kTm
CE Illumination Classes for roads with speed limit at 30 kTm
S Illumination Classes For pedestrian and cycle paths

Lux Unit of illumination

GIS Geospatial Information System

OpenCV Open Source Computer Vision
API Application Programming Interface

2. Theory

2. Theory

In this chapter the needed theory to solve the problems is presented. In addition theory and

information about the products and software which was used is included as well.

2.1 Software

Python

Python is a programming language for developers, and it is an open source programming lan-
guage made to be easy-to-read and powerful. In Python there is no compilation step and it
is easy to debug. Python is a high-level programming language and because of its simplicity,
writing scripts are less time consuming than in other languages. When Python was created, the
inspiration came from programming languages such as C and C++. Python was written in the

programming language C. [33]

Robot Operating System

Robotic Operating System, referred to as ROS is a system which contains a number of inde-
pendent nodes. Each node can communicate with each other. For example, one node could be
a camera and another node could be a script for using camera to detect objects. The camera
subscriber script subscribes to the camera publisher node to receive a video frame. The nodes

are independent and does not need to have same programming languages to run.

There is a ROS master node and ROS nodes, the ROS master node handles the communication
between nodes. If for example "nodel” requests information from ”"node2” the ROS master node
makes the communication go through. The way these nodes are communicating is publishing
and subscribing to topics. If a node is a subscriber to another node it receives information from
it. Then the subscriber node requests information from the publisher node.[3] In Figure a

basic overview over the ROS master and ROS nodes is illustrated.

2. Theory

ROS
Master
Registration Registration
ROS Messages ROS Messages ROS
Node 1 ™" Node 2 " Node n
\ Messages /

Figure 2.1: ROS Overview [3]

Quantum GIS

Quantum GIS known as QGIS is an open source geographic information system application that
gives users the ability to view, edit and analyze geospatial data. QGIS supports vector layers,
where the vector data is either stored as a point, polygon or line features. QGIS has integrated
software support for PostGIS, MapServer and GRASS. For more flexibility QGIS is equipped
with C++ and Python to execute individual operations on the geospatial data. The application
is written in C++ and Python, and the user interface is developed in Qt. The application can

be installed on any device that operates Microsoft Windows, Linux, macOS or UNIX. [34]

PostgreSQL

PostgreSQL, known for being referred to as Postgres is an open source object-relational database
management system. Postgres has focus on extensions and standards compliance. Postgres can
handle workloads on local memory, but it handles larger tasks such as internet-facing appli-
cations and data warehousing. To show an example, Postgres is the default database on the
macOS Server. The Postgres database system supports a large amount of extensions, one ex-
tension that is important for this project is PostGIS. This extension allows Postgres to store
geographic information data types. The data can then be imported to a GIS application as
a layer and view the geospatial information. There is a long list of interfaces for Postgres, in
this project psycopg?2 was used for Python interface. Postgres has built-in support for process-
ing languages. Processing languages give the developer opportunities to extend and modify
databases for own specifications. There are three supported languages in Postgres, and those
are SQL, PL/pgSQL and C. The first two procedural languages are safe to use, but C is not
safe. It is experienced that functions written in C have the best performance, but bugs can

occur and this results a crash and corrupting the database. [35]

2. Theory

2.2 Libraries

Open Source Computer Vision

Open Source Computer Vision, OpenCV, is an open source computer vision library. The library
consists of different algorithms that perform given tasks within image processing and machine
vision. Examples of tools found in the OpenCV library is edge detection by using the canny
edge method, line identifications by using Hough Transform, converting images to different types
such as grayscale and HSV images. This is a few examples of what the library has available.

OpenCV supports the common programming languages such as C++, Python and Java. [36]

Dropbox API

Dropbox is a file hosting service and can be synced with computers, cell phones and other de-
vices. To use Dropbox as an image storing place, the Dropbox application has to be downloaded
on the local computer. It is not possible to upload images to Dropbox from scripts without
downloading and including the Dropbox SDK for a specific programming language. The images
are stored in desired folders on the local computer and when the internet is available, the images

are automatically synced to the Dropbox.

Psycopg?2

Psycopg?2 is a library that establishes communication between Python scripts and PostgreSQL.
This library ensures to access different features for handling data between scripts and databases.
Psycopg?2 is made for Python scripts only and cannot be used in other programming languages.

Other programming languages has own libraries for communication with PostgreSQL.

2. Theory

2.3 Hardware

Intel UP Squared AI Vision Kit

Intel UP Al Vision Kit is a compact computer which is designed for computer vision related
work. This computer includes pre-installed software and comes with Ubuntu operating sys-
tem. In addition, it includes the library OpenVINO, which is an Al based library that uses
pre-trained models to detect different objects in a camera frame. This hardware is made for
advanced applications with edge computing. The kit comes with a USB camera with resolution
up to 1920p x 1080p at 30 FPS. [26] In tablethe specifications of the computer are presented.
In Figure 2.2] the kit is shown.

Figure 2.2: Intel UP Squared AI Vision X Developer Kit

Table 2.1: Intel UP Squared Al Vision X - Specifications [26]

VPU Intel Movidius Myriad X
Graphics Intel HD Graphic 505
System Memory 8GB LPDDR4
Storage Capacity 64GB eMMC
Connectivity WiFi (option), LTE (optional)
Video Output HDMI and Displayport
Power input 5V at 6A

2. Theory

Arduino Uno

Arduino Uno is a microcontroller that is operated by its own software. The Arduino software
is used to write code to the Arduino microcontroller. Arduino is an open source platform and
uses a simplified version of C++ as a programming language, which makes this a vast platform
for sensor applications. Since there is high number of Arduino users, developers have made
wrappers for using other programming languages to operate the Arduino platforms. The Ar-
duino Uno is equipped with an ATmega328 microcontroller, 14 digital I/O and 6 analog I/0O.
The Arduino Uno is powered by a computer or an external battery source. In Figure the
Arduino Uno R3 is shown. [37]

ARDUINO

Figure 2.3: Arduino Uno R3

10

2. Theory

Intel RealSense D4351

Intel RealSense D435i is the latest model of the D400 series. The camera is a depth camera
which can calculate depth by using stereo vision. In addition the camera is equipped with an
inertial measurement unit. The camera produces high resolution images in RGB and depth.
The camera delivers depth images with maximum resolution 1280 x 720 and RGB images with
maximum resolution 1920 x 1080 pixels. [20] In Figure the camera is shown.

Figure 2.4: Intel RealSense D435i

11

2. Theory

2.4 Machine Vision

Machine vision is the process of applying algorithms and methods to an image, so the computer
gets the ability to see. Machine vision is used in industrial applications such as pattern recog-
nition, hand writing recognition, object detection etc. Machine vision can be broken down into

the 5 steps which is described below.

Image Acquisition

The first stage of vision algorithms is the image acquisition. This converts from analog to digi-
tal. It is required to perform before other operations and algorithms are applied. In Figure 2.5]

a graphical illustration of the image acquisition process is shown.

ﬁ‘w"‘h’ B @ J
[J | I | 1
World

Camera Digitizer Digital
Imaga

10| 10| 15 | 50| 70| BOD

0 [100] 120 125130] 13

-
L.
7O | 100 10| 20 | 20 PIXEL
7 (plcture element)
15|70 Dy O) 0|15

35(100| 150 1504 80| S0

15| 50| 120 1104130] 11

w|wm|o|o|o|o|o
wm

10| 20| 50| 50| 20 | 5

Figure 2.5: Image Acquisition [4]

Image Processing

Image processing is a way to perform operations at an image. Reducing noise and improving
contrast are examples of image processing. The purpose of this step is to extract useful in-
formation by suppressing unnecessary information. By removing unnecessary information, the
computer needs less power to compile the program. There are two types of image processing,
digital and analog. Analog image is for example a photography, and digital image is the image
the computer sees. Digital image processing is the most relevant. With image processing the

images are represented as 2D signals. Reasons for performing image processing are for example:

[38]

e Improve Regions of Interest
e Improve Quality of an Image
e Reduce Noise

e Remove Unnecessary Information of an Image

12

2. Theory

Image Segmentation

Image segmentation is the process where the image is divided into several segments, which is
several sets of pixels. The purpose is to simplify or amplify for example changes in an image
which makes it easier to analyze. Image segmentation is used for locating lines, boundaries etc.
For example, Canny Edge detection algorithm. Image segmentation is used to identify objects
in an image. The most common image segmentation is the threshold method [39]. Thresholding

is further explained in chapter [2.5

Image Analysis

Image analysis means extracting useful information of an image, it is the ability to recognize
attributes in the image. For example, taking measurements of objects or relationships, reading

a QR-code or recognizing a face of a human.

Pattern Recognition

Pattern Recognition is an automated process which recognize patterns in an image. Machine
learning and Al is relevant subjects for pattern recognition. The pattern recognition is to verify

for example if the face or code from an image analysis is the correct one.

13

2. Theory

2.5 Thresholding

The input image to a threshold operation can for example be a grayscale or a color image. The
output image after a threshold operation is for example a binary image. In a binary image
the black pixel represent the background while the white pixels represent the foreground. In
an implementation such as intensity threshold, each image pixel is compared to the threshold
value. If the intensity of the pixel is higher than the threshold, the pixel is white, and if the
pixel intensity is below the threshold value then it is black.

Thresholding is widely used within machine vision to remove unnecessary information. In Fig-
ure[2.6/ the original image is shown. In Figure[2.7the original image is thresholded into grayscale
and in Figure [2.8]it is further thresholded into binary.

Figure 2.6: Original Image Figure 2.7: Grayscale Image Figure 2.8: Binary Image

14

2. Theory

2.6 HSV, HSL and LAB Color Space

HSV, HSL and LAB are three different color spaces which are used to represent an image. By
changing the color space in an image, it can help extracting useful information. HSV, HSL and
LAB are further explained below. [40)]

HSYV is short for hue, saturation and value. Hue is the color model which goes from 0 to 360
degrees which determine the portion of a certain color. In Figure [2.9]it is illustrated which color
that belongs to what value. Saturation is the amount of gray in the color and can be adjusted
from 0 to 100%. Value goes from 0 to 100% and is the brightness.

0
330 30
300 60
270 q0
240 120

210 150
180

Figure 2.9: Hue - Color Representation [5]

In Figure and the same image is illustrated in RGB and HSV.

Figure 2.10: RGB Image Figure 2.11: HSV Image

HSL is short for hue, saturation and lightness. Hue is the same as in HSL as for the HSV color

model. S is the saturation of the color and L is the lightness of the color.

15

2. Theory

In Figure the same image as shown in Figure is illustrated in HSL color space.

Figure 2.12: HSL - Color Space

LAB is a three axis color space. L is short for lightness. which has a range from 0 to 100,
where 0 is black and 100 is white. A goes from cyan(-100) to magenta(100). Cyan and magenta
is 2 different colors, cyan is a light blue color and magenta is a light pink color. B is short for
blue(-100) to yellow(100). [41]

The same RGB image as shown in Figure [2.10]is illustrated in the LAB color space in figure[2.13]

Figure 2.13: LAB - Color Space

16

2. Theory

2.7 Canny Edge Detection

Canny edge detection is an algorithm for detecting edges in images. The algorithm consist of 5
steps which is further explained below [42] [6] :

1. Apply Gaussian filter. In order to reduce false lines the noise has to be filtered out.
This is done by a Gaussian filter. The size of the Gaussian kernel will give different results
for edge detection.

2. Find intensity gradients of the image. Since an edge in an image can be pointed
in any direction, a sobel filter is used to detect the horizontal and vertical direction.
Furthermore, the first derivative in horizontal direction (G;) and in the vertical direction
(Gy) is found. From this the edge gradient and direction for each pixel is found. The
gradient is perpendicular to the edges, so 6 can be four different angles. In Equation
the formula for edge gradient is shown, and in Equation the formula for calculating

the direction is shown. This stage of the the algorithm amplifies the changes in an image.

G = /(G2 + (G, (2.1)
6 = tan! <Gx> (2.2)

Where:

G: The gradient of the edge.

G;: The first derivative in the horizontal direction.
Gy: The first derivative in the vertical direction.

0: The direction of the edge.

3. Apply non maximum suppression to remove outliers. This stage finds the line
with the highest gradient. As seen in Figure point A is on the edge. Point B and C
are on the direction of the gradient, but not on the edge. Then point A is tested against
point B and C to see if they create a local maximum. If that is the case it can proceed to

the next stage, otherwise it is suppressed.

Gradient Gradient
Direction Direction

yedge edge

Figure 2.14: Non Maximum Suppression [6]

In the end the output is a binary image with thin edges, it is illustrated in the right image

in Figure 2.16]

17

2. Theory

4. Apply double threshold to locate lines. Then apply a low and a high threshold. If an
edge pixel gradient is higher than the high threshold it is marked as a strong edge. If the
edge pixel gradient is between the higher and lower threshold it is marked as possible edge.
If the edge pixel gradient is below the low threshold it gets suppressed. For visualization

see Figure [2.15

Edge 1

/ Real edges

/--"’""' Connectivity
Edge 3

Analysis

Edge 2 No edges

Figure 2.15: Determine Edge with Hysteresis [7]

5. Locate edges by using hysteresis. Then the strong edge pixels are in the final image.

The weak edge pixel is in the final image only if the previous pixel is a part of the line.

In Figure an illustration of the Canny Edge detector is shown.

Original Image Edge Image

Figure 2.16: Canny Edge Detection - Illustration

18

2. Theory

2.8 Hough Transform

Hough Transform is a technique used in image processing to detect lines and identify shapes.
Hough Transform is a way of finding the values that indicate a line, circle or other parametric
curve. The first step in Hough Transform is to detect all the lines in an image. The Canny Edge
detector is used. Furthermore, the resulted edge detection is the input for the Hough Transform

algorithm. Lastly a set of pixels describes the boundary to an object.

The general formula for a line is described in Equation ({2.3)).

y=azr+b (2.3)

The problem with the general formula is that the vertical lines can not be described, therefore
it is described by polar coordinates which is shown in Figure The distance from the origin

and to the point P is r, and 6 is the angle of the vector.

i

Figure 2.17: Polar Coordinates [§]

Further the line is described in polar coordinates and is shown in Equation (2.4). Then by
rewriting and solving for ”r” as shown in Equation ([2.5)).

cos 0 r
y__<sin6?> .x—i_(sine) (2:4)

r=ux-cosf +y-sinf (2.5)

19

2. Theory

For example, for an arbitrary point P in an image, to get all possible lines through this point,
then the line has to be rotated from 0 to 180 degrees. In Figure [2.18] an illustration is shown.
In the left side of the Figure the line will be rotating around the point P. On the right side of
the Figure the corresponding visualization of r and 6. The result will be a sinusoidal function.
When the two points are on the same line the trajectories (Red and green sinusoidal) will cross

each other. The r and # in this intersection is the exact description of the line.

Reset

x i

Figure 2.18: Illustration of the Function [g]

Hough transform summarized, draw sinusoidal trajectories for the points. Then find the highest

number of crossed trajectories in a single point. This crossing describes the line.[S]

20

2. Theory

2.9 Template Matching

Template matching is an image processing technique which makes it possible to find objects or
small parts in an image. It searches over the image to find similarities between the template
and the input image. In other words, it slides the template over the source image and compares
the pixels, this technique is called 2D convolution which is further explained in section [2.10
After choosing comparison methods and run the algorithm it returns a gray scale image where
each pixel expresses how much the neighbor of the same pixel match the template. A certain
threshold has to be set manually and if the result of template matching is greater than the
threshold, it is a match [43]. In Figure an example is illustrated where the template is
located in the upper left corner. If it finds the area which is higher than a threshold, a rectangle

is drawn around the area which matched.

Figure 2.19: Template Matching - Hlustration

There are 3 main template matching algorithms. Sum of squared difference, cross correlation
and correlation coefficient matching. These 3 methods can be normalized which means that
in theory there are 6 different methods. By normalizing, the result will be more accurate but

requires more computation. Below the 3 main techniques are further described. [44]

The sum of square difference. It squares the difference between the image point and the template
point. The ideal result would be 0 which is a full match, and the bad matches will approach to
1. In Equation (2.6 the formula for this technique is shown.

2
Ryg(z,y) =Y (T@'y) - I(@+2"y+v)) (2.6)
z/7yl
Where:
Rgq(x,y): The result of the template match.

T(«',y'): The image pixel value in the template image.

21

2. Theory

I(x,y): The image pixel value in the source image.

Cross correlation. This technique relies on multiplication. The template is multiplied with the
image. Therefore, a perfect match would be 1, and 0 means no match. The template goes over
all pixels position and multiply the pixel value at the template with the pixel value of the source
image. This is done for all the pixels in the source image. Lastly it sums all the products to
get a result between 0 and 1 for the template match. In Equation the formula for this

technique is shown.

Reelw,y) = Y (T y) - 1w+ 'y +4/))° (27)
{l‘/,y/
Where:
Rec(z,y): The result of the template match.
T(2',y'): The image pixel value in the template image.

I(z,y): The image pixel value in the source image.

Correlation coefficient matching. This is a technique where it check the match between the
mean of the template and image relative to its own mean value. For this reason a perfect match
would be 1 and a mismatch would be -1. In Equation (2.8)) the formula for this technique is

shown.

Reoess(t,y) = Y (T2, y) - 'z + ',y +))° (2.8)
I',,yl
Where:
Reoeff(x,y): The result of the template match.
T(z',y'): The image pixel value in the template image.

I(x,y): The image pixel value in the source image.

The disadvantages of template matching is rotating and scaling. If the template matching is
performed and the template has wrong image size it would be difficult to find the object. There-

fore to perform image operations before applying template matching, it can improve the result.

22

2. Theory

2.10 2D Convolution

In image processing 2D convolution is used in the algorithms. For example, in blurring, sharpen-
ing and edge detection. It is a way of multiplying two arrays of numbers by help of neighborhood
operation. For example, if you have a mask and an original image. The mask goes over the
image and then calculates a new value. The mask depends of what operation that is executed.

In Figure 2.20] an example of 2D convolution is illustrated.

0 1 0
2 3 1.5 1 7 7 1
g 5l:I 1—1 0
1 a g

Figure 2.20: 2D Convolution [9]

2.11 Sensors

2.11.1 Inertial Measurement Unit

The inertial measurement unit, referred to as IMU, consists of a cluster of sensors. Accelerom-
eter, gyroscope and magnetometer. These sensors are mounted to a common base to maintain
the same relative orientations. The accelerometer measures the force it experiences in z, y and
z directions due to gravity. The gyroscope measures the angular velocity along z, y and z
axis. The magnetometer is measuring the magnetism. With help of the earth magnetic field it

measures the orientation.[45]

23

2. Theory

2.11.2 Photoconductive Sensor

The photoconductive sensor is used in applications where light measurements are involved.
Photoconductive sensors are made of semiconducting materials and have high resistance. The
working principle is by photoconductivity, which is an optical phenomenon, where the materials
conductivity is reduced when light is absorbed by the material. In short, when the light is
absorbed by the photoconductive sensor the light energy forces the electrons to jump from the
valence band to the conduction band as shown in Figure [2.21] This operation reduces the
conductivity of the material and lowers the resistance in an electrical circuit. When identifying

the resistance in the photoconductive sensor, the light energy can be determined. [10]

Conduction Band
O ® O

% To & ¢ ¢
Valence Band

Figure 2.21: Valence and Conduction Band [10]

The most common photoconductive sensor is a Light Dependant Resistor. The change in the
electrical energy is directly related to the change in the light intensity. The LDR is made of the
semiconducting material cadmium. The electrical resistance will due to absorbed light change
from over thousands of ohms in the dark to hundreds of ohms when the light occurs. In Figure
the change in resistance and the change in lux is illustrated for better understanding. [11]

Dark Might Average Bright
Time Sunny Day Sunlight
-

10° :
|
w |
[s: |
= | :
i |

§ | Photacell

o | Resistance

wm e

v I
e |

B - ————=

Dark 0.1 Numination {Lux) 1000 Light

Figure 2.22: Change in Resistance Vs. Change in Lux [I1]

24

2. Theory

There are different circuits including the LDR which can be used to measure the light intensity.
One example is the Voltage Divider. The circuits are built up by a resistor with a permanent
resistance, a variable resistor and a DC supply voltage. A big advantage of this is that different

voltage appears at the intersection for different levels of light. An illustration of this circuit is

shown in Figure [11]

Vin
Light
intensity

LDR

Rz
Dv
Figure 2.23: Circuit of the Voltage Divider [11]

In Equation (2.9)) the formula for calculating the voltage out of the circuit is shown.

Ry
Vout = Vin - Ripn+ Ro (2.9)
Where:
Vout: Voltage output.
Vin: DC supply voltage.
Ry: A resistor. [Ohm]

Rrpr: A Variable resistor / LDR. [Ohm)]

25

2. Theory

2.11.3 GPS Receiver

GPS is short for Global Positioning System. GPS system is a satellite-based navigation system
which consist of 24 satellites. At any location on the earth four satellites are detectable by the
GPS receiver. By the Time-of-Flight principle it can calculate how far away the receiver is, but

to measure this the GPS demands very accurate timing.

The last factor that must be compensated for is the delays the signal experiences as it travels
through the atmosphere. The clock difference between the GPS receiver and the satellites must
be compensated for. To determine the position of the GPS receiver it needs information from
at least three satellites. Using trilateration, the position can be determined. By locating where
the three circles intersect the position can be determined. The more detected satellites the more
accurate the position will be. A graphical explanation of the trilateration is presented in Figure
224 [12]

Figure 2.24: Trilateration - GPS Positioning [12]

26

2. Theory

2.11.4 Infrared Temperature Measurement

An infrared thermometer consists of a lens to gather the emitted energy and a detector that
converts energy to an electrical signal. The heat is transferred between objects through convec-
tion, conduction or radiation. Most radiation is in the infrared specter of the electromagnetic
specter. Infrared energy is emitted from object surfaces and the energy from the infrared takes
part in the electromagnetic spectrum. Infrared radiations are represented as wavelengths and
it is strongest between 0.7 and 14 microns. The infrared thermometer measures the wavelength
emitted from the object surfaces and estimates the surface temperature. It is worth to mention
that the red dot pointer from the infrared thermometer only indicates the center of measured
circle on the object. The lens in the thermometer gather the radiation to the detector, which
converts the radioactive power to an electrical signal. This can be displayed in temperature

units. It has to be compensated for ambient temperature. The functionality of the IR temper-
ature sensor is shown in Figure [13]

[5 L
Deatecior ADC H H H H

Oplics Display

IR Thermometer
Measured

Object

Figure 2.25: Infrared Thermometer [13]

27

2. Theory

2.12 Edge Computing Vs. Cloud Computing

With edge computing, it allows data to be processed where the data is created or collected,
instead of sending the data across long routes to data centers or clouds. By computing the data
at the edge, it allows data analysis real-time, a need for companies and organizations in the au-
tomotive and maintenance industry. Cloud computing makes computer system resources such
as storage and computational power available in the cloud. The purpose of cloud computing
is to send data to the cloud, where computation is performed in a data center with powerful
computers. When the data is processed, it is pushed to a desired location. It is necessary with
internet connection when performing cloud computing. In Figure 2.26] an illustration of edge
and cloud computing are shown for easier understatement. In tables and the advantages

and disadvantages of cloud and edge computing are listed.

INTERNET
CLoUD
Big Data processing
Business Logic
Data Warehousing
EDGE LAN/WAN

Data caching, buffering
Data filtering, optimization
M2M communications LEC3031

' '
'
Realtime data processing
At sourcefon premises g)
data visualization ", ------- 13 . ------- »
Basic analitics ::: —
o o

& 4 A

,,,,,,,,,,,,,

SENSORS AND CONTROLLERS

Figure 2.26: Edge and Cloud Computing Visualized [14]

Table 2.2: Cloud Computing

Advantages | Disadvantages
Cost Savings Downtime
Reliability Security
Manageability | Vendor Lock-In
Strategic Edge | Limited Control

Table 2.3: Edge Computing

Advantages Disadvantages
Low Latency Potential Loss or Corruption of data
Real Time Availability Longer Outage Time
Real Time Data Transmission Higher Risk
Increased Productivity Hardware

28

2. Theory

2.13 GPU Vs. CPU Computing

Computers are equipped with microprocessors for handling different operations. The computers
have central processing unit (CPU) and graphics processing unit (GPU). The two processors
are similar in look and they are both made of silicone-based materials, thus they have different
roles in a computer. A CPU is known as the brain of the computer, the CPUs task is to manage
the running programs on the computer. A CPU can perform calculations, actions, and run pro-
grams. Examples where CPUs can perform without problems are, low resolution applications

such as MS PowerPoint, Skype and Google Chrome.

The first CPUs came with a single core, this resulted limited task operations and slow comput-
ing. Since the technology has improved, modern computers comes with quad-cores, some are
provided with octa-cores. Higher number of cores gives the computer increased computational
power, and it can perform multiple tasks simultaneously. When there is assigned a higher num-
ber of tasks, the CPU reaches a limit, and the computer is occurring to lag, therefore the GPUs

are invented.

The GPU is designed for complex mathematical and geometrical computations. A GPU can
handle thousands of tasks simultaneously due to the thousands of cores that it contains. The
GPUs are known for performing difficult computational tasks such as training models for ma-
chine learning, rendering images and computer games. In addition, the GPU works as an
accelerator for the CPU. In this project, the amount of data processed is vast. For example,
the camera is set to deliver 30 frames per second, this means that the processing unit receives
30 images per second, and perform image processing (mathematical operations) over 30 images
in that second. Since the CPU is not designed for a high number of complex mathematical
calculations simultaneously, it will not be able to process all the delivered data, and a GPU

should be included in the computer that is used for this project. [46]

CPU GPU
Multiple Cores Thousands of Cores

Figure 2.27: CPU Vs. GPU Cores [15]

29

2. Theory

2.14 Geospatial Information System

GIS is a system for capturing, storing and analyzing data. Geospatial information systems
are softwares used for storing data and geographic data more effective. It usually consists of
coordinates, longitude and altitude values, street addresses or zip codes. In other words, any

information which ties it to a specific location at earth. [47]

2.15 Diffuser for Light Sensor

A diffuser is made of a material that diffuses the light, so the light sensor receives ambient light.
By using a diffuser, a more realistic impression of the light surroundings is established. By not
using a diffuser the light sensor is detecting concentrated light and the output of the sensor will
vary and is not realistic. Therefore, when measuring the intensity of the light it is necessary to

implement a diffuser on the light sensor.

2.16 Camera Calibration

To ensure that the camera accuracy is sufficient the camera needs to be calibrated. If the cam-

era is out of the bozx, calibration should not be necessary, unless otherwise is mentioned.

When the camera is calibrated the intention is to estimate the intrinsic camera parameters. In
Figure the homography is illustrated, which shows the relationship of 3D world coordinates
and 2D image pixel coordinates. As shown the intrinsic parameters is necessary and a poor

calibration results in deviation in the world coordinates.[16]

X
u fx 0 cf [rm m ™3 4 Y
s|vi=10 fy cy| |t ™2 ™13 ; 7
1 0 0 1 rh T T i 1

2D Image Intrinsic properties i 3D World

{Camera Rotation

Coordinates (Optical Centre, scaling) 2
and translation)

Coordinates

Figure 2.28: From 3D World Coordinates to 2D Image Coordinates [16]

The intrinsic parameters describe the optical, geometric, and digital characteristics of the cam-
era. The intrinsic parameters are defined by the transformation between the camera frame and

the pixel coordinates. The intrinsic parameters are represented in a intrinsic matrix, K, which
is shown in Figure [17]

fa

=
I

Cz
c, (2.10)
1

o o
ook =

30

2. Theory

Where:

fz: Focal length in z-direction.

fy: Focal length in y-direction.

C,: The horizontal displacement of the image from the optical axis in mm.
Cy: The vertical displacement of the image from the optical axis in mm.

~: The skew angle.

The focal lengths are measured in pixel and is equal if the image pixels are squares. The formula
for focal length in z and y directions is shown in Equation (2.11)) and (2.12)). [17]

fo= (2.11)
F
fy = s, (2.12)

Where:

F: Is the focal length in mm. The focal length is the distance between the center of the lens
and to the surface of the imaging sensor.

Sz: Equals the horizontal size of a pixel in the camera sensor in pixels per mm.

Sy: Equals the vertical size of a pixel in the camera sensor in pixels per mm.

The skew angle is calculated with formula in Equation (2.13]).

5= fy-tano (2.13)

Where:

s: The skew angle.

fy: See formula in Equation [2.12]

a: The offset angle which is illustrated in Figure [2.29

Px
Skew

Figure 2.29: The Pixel Skew Illustration [17]

31

2. Theory

Most of the camera which is used in machine vision is a pin hole camera and an ideal pin hole
camera model does not have a lens. Therefore, the camera matrix does not take distortion into
account. To represent a camera as accurate as possible some small tangential and radial distor-
tion can be compensated for. In Figure [2.30] is illustrated. The tangential distortion appears

when the camera lens and the plane is not parallel.

Zero Tangential Distortion Tangential Distortion
Lens and sensor are parallel Lens and sensar are not parallel
Camera lens Camera lens
Vertical plane Vertical plane
mera
sensor Camera
sensor

Figure 2.30: Tangential Distortion [17]

Tangential distortion can be compensated for by adding distortion coefficients to the pixel
location (z,y). The compensated point can therefore be expressed as (g, yiq). The formula
for compensation is shown in Equation (2.14) and (2.15)). [17]

:ctd:a:+(2-p1-x'y+p2(r2+2‘x2)) (2.14)

Yya=y+ 01 +2-y)+2-p2-x-y)) (2.15)

Where:

z and y: Undistorted pixel locations.
p1 and po: Distortion coefficients.
r2 x? 4 y2.

Negative radial distortion Mo distortion Positive radial distortion
“pincushion” "barrel”

Figure 2.31: Radial Distortion [17]

Radial distortion is experienced when the light beams bends more at the edges of the lens than

the center. This can be compensated for, the point that is compensated for the distortion can

be expressed as (2,4, Yrd). [17]

32

2. Theory

a:rd:x-(1+k1-r2+k2-r4+k3~r6) (2.16)

Yra =y (L+ki-1° + kg vt + k3 - 1) (2.17)

Where:

z and y: Undistorted pixel locations.
ki1, ko and k3: Distortion coefficients.
r2 x? 4 yz.

When the camera is calibrated the accuracy can then be tested, for example by calculating the
reprojection errors. Furthermore, to improve the intrinsic parameters, more images can be put
into the calibration. Another improvement can be to exclude the image with high reprojection
errors and then re-calibrate. If the calibration is done in MATLAB, the reprojection error of
the images is illustrated in a graph which is shown in Figure 2.32] Then it can easily be seen
which images that are above the mean value and can be replaced with new images to improve
the result. [I§]

Mean Reprojection Error per Image

0.25

0zr

o
o

Mean Ermor in Pixels
o
e

0.051

— — —Overall Mean Error: 0.18 pixels
[L] L] [

Images

Figure 2.32: Reprojection Error of Images [1§]

33

2. Theory

2.17 Thermal Camera Calibration

To calibrate an infrared thermometer a blackbody source can be used. This is a common
method. A blackbody is in theory a perfect emitter, this means that it emits the maximum
amount of energy no matter which temperature. In practice there is no perfect blackbody that
exist, but the principle contributes a strong basis for the calibration. It radiates the same in-

tensity of the radiations in all directions, which makes it a diffuse emitter.

Before the calibration a blackbody needs to be determined. It can be broken down into two in-
frared calibration sources, Hot Plate or Cavity- Type blackbody source. The Cawvity-Type consist
of a hole in a sphere. Further the temperature is controlled, and it is measured by a thermo-
couple probe. This type has a higher surface emissivity than the Hot Plate, with 0.98 or higher.
The hot plate normally consists of an aluminum plate. Further the temperature of the plate is

measured by thermocouple or an RTD probe.

Commonly the infrared camera is pointed into the source with a distance between 0.2m and
1m. To keep in mind when choosing blackbody, the higher the target emissivity the higher

accuracy. [48]

2.18 IMU Calibration - Intel Real Sense D435i

The intention to calibration the IMU is to get as correct measurements as possible. If the
camera is been exposed for hard bumps it is recommended to calibrate. By calibrating the cam-

era, the intrinsic parameters and extrinsic parameters are updated and wrote to the device. [49]
The intrinsic parameters include:

e The scale factor sensitivity accelerometer - This is a factor that is multiplied with the
data to ensure a metric output

e Bias accelerometer - The bias will cancel any value so it would be zero, when the sensor
should be reading so.

e Off axis terms accelerometer - This is a factor that is used to correct the axes if it is not
orthogonal.

e Bias gyro - Cancel the value to be zero when the sensor should be reading so.
The extrinsic parameters include:

e Rotation - This is the rotation from the left camera to the IMU. 3x3 rotation matrix.

e Translation - Translation from the left camera and to the IMU.

34

3. Concept Development

3. Concept Development

The scope of this chapter is to create, detail and select a concept.

The concept phase investigates the different resources and details existing to establish and gen-
erate new concepts. These could be design specifications, cost, weight limits or application area.
When a good overview is established, it is possible to generate a concept specification. The
product in development must fulfill the criterion which is described in the section below. A

total of 3 concepts was generated.

3.1 Product Specification

There are requirements that the product must fulfill. The product must be able to inspect the
road and give information about the given conditions which are described in section In

addition, the product criterion is mentioned below:

e The sensor package must be able to be installed on a vehicular platform.

e The sensor package must be a low price product, with a compact design. The price for
the product must not exceed 10 000 NOK. This price includes all components but not
software development or working hours.

e The sensor package must be easy to install and mobile which means that it can easily put
the sensor package into a new car without any competent staff.

e The system cannot consume more power than the 12V cigarette lighter can deliver.

e The data must be collected and be available for maintenance crew.

35

3. Concept Development

3.2 Concept Generation

In this section the general layout and logic of the concept phase is described. Every concept is
equipped with a GPS sensor, hardware and a power supply. The product will not be able to
detect the given condition during the wintertime or heavy rain. A graphical explanation of the
concept phase is illustrated in Figure

Concept Concept

Evaluation

Concept

Generation Selection

Structure
Design Final <:| and Shape
Detailing Concept

Variations

Figure 3.1: Concept Phase

36

3. Concept Development

3.2.1 Concept 1 - Standard Road Detection with Temperature Measuring

First concept includes one standard RGB camera. Concept 1 will not be able to perform edge

computing, but will be able to:

Detect speed limit signs

Detect and evaluate the lane mark quality

Vibration measurement

This concept will need an external IMU sensor for the vibration measurements.

Dashboard View

Measure the surface temperature on the road

i

—e

Figure 3.2: Concept 1 - Dashboard View

37

3. Concept Development

3.2.2 Concept 2 - Hybrid Camera with Light Intensity Measurements

The second concept includes a camera which contains one standard RGB camera and an inte-
grated measurement unit. This sensor package performs edge computing, it is therefore neces-

sary with an upgraded hardware performance. Concept 2 is capable to :

e Detect speed limit signs
e Detect and evaluate the lane mark quality
e Vibration Measurement

e Measure the light intensity

This concept does not need external IMU due to the hybrid camera.

Dashboard View

Figure 3.3: Concept 2 - Dashboard View

38

3. Concept Development

3.2.3 Concept 3 - Hybrid Camera with Light and Surface Temperature Mea-

surements

The third concept includes one camera with integrated inertial measurement unit. This concept
will be able to perform edge computing. This concept measures the road surface temperature

and the light intensity from the dashboard. Concept 3 can provide information as following

e Detect speed limit signs

e Detect and evaluate the lane mark quality
e Vibration measurement

e Measure the surface temperature

e Measure the light intensity

This concept will detect all the necessary parameters as well as performing edge computing

which makes this a complete package.

Dashboard View

Figure 3.4: Concept 3 - Dashboard View

39

3. Concept Development

3.3 Concept Evaluation & Selection

Each concept was evaluated, and two tables was created. One for cost evaluation and the second
for functionality. The evaluation topics are split into subcategories to estimate an overall result.

This gives an indication for which concept is best suited for this application.

Concept 1 - Standard Road Detection with Temperature Measurements

Concept 1 is a road detection package with temperature and vibration measurements. This
concept does not include edge computing which results lower price due to hardware selection.
Though, the concept includes temperature measurement of the surface which means that it can
be challenging to measure it through the windshield. Alternatively, it can be mounted on a
different location. In addition, this camera does not include IMU, therefore an external IMU is

necessary.

Concept 2 - Hybrid Camera with Light Intensity Measurements

Concept 2 which contains the hybrid camera solution is a compact concept, where only one
camera is used for RGB video and measurement from the integrated IMU. This setup does
not require much space and electrical wiring, this makes the sensor package easy to mount and
install in vehicles. The package can provide standard RGB video up to 30fps, vibrations from
the road and the light intensity along the road and in tunnels. Another feature that can be

provided is depth data, since the camera includes stereo camera.

Concept 3 - Hybrid Camera with Light and Surface Measurements

Concept 3 contains the same equipment as concept 2 plus the surface temperature sensor. This
concept uses edge computing which leads to higher cost. Therefore, this concept is the most ex-

pensive concept, but will be the most complete sensor package with most detectable parameters.

40

3. Concept Development

Evaluation Tables

The concepts are evaluated in two tables, cost and functionality. The concepts are rated on a
scale ranging from 1-10, where 10 is great functionality and low cost. Table [3.1] and [3.2] displays

the evaluation table for functionality and cost.

Table 3.1: Evaluation - Functionality

Criterion Concept 1 | Concept 2 | Concept 3 | Ideal
Detectable Parameters 8 8 10 10
Complexity 9 8 7 10
Reliability 8 7 7 10
Physical size 9 9 9 10
Mobility 8 8 7 10
Sum 42 39 40 50
Relative Value 0.84 0.78 0.8 1

Table 3.2: Evaluation - Cost

Criterion Concept 1 | Concept 2 | Concept 3 | Ideal
Number of Components 8 8 6 10
Hardware 8 7 7 10
Installation 9 9 8 10
Sum 25 24 21 30
Relative Value 0.83 0.8 0.7 1

41

3. Concept Development

Concept Selection

Every concept has been evaluated based on the given criterion in the table[3.1] and The ta-
ble address is key properties of each concept and works as a guidance in the process of selecting

a final concept.

The values in the table could give a false representation of the characteristics needed in the
system. For instance, detectable parameters are more important than physical size. A lot of

values are connected, like complexity and number of detectable parameters.

Concept 1 gets the highest overall score in the evaluation tables. This concept has scored better

than the other 2 concepts, yet it cannot detect all parameters.

Concept 3 scored well at the functionality but not ideal for the cost. Since the cost is within
the budget, concept 3 is chosen. In the next chapter the structure and shape variation of this

concept is presented.

42

3. Concept Development

3.4 Structure & Shape Variations

In this section the structure and shape of concept 3 is considered.

3.4.1 Power Supply

The sensor package requires a power supply. It needs constant power and one of the options is
the 12V contact in the car. By using the 12V contact from the car itself, an external battery
should be used for a manual shutdown. This is to maintain a secure shut down for the device

and to protect the data and the hardware.

The first concept is direct power from the car, an external battery is not required. The sensor
package must therefore be shut down manually, before removing the key. The ignition can be

still be off since the car is delivering power if the key is in the ignition.

The second concept is that the sensor package is directly coupled to an external battery. when
the car runs, the battery is charged by the 12V contact in the car. This makes the sensor

package independent and much more mobile.

3.4.2 Mounting Location Temperature Sensor

There are several locations where the temperature sensor can be mounted in the car. Simplicity
of the installation and the mobility is the key requirement. It can be necessary to mount the

sensor outside if the error by measuring though the windshield occur.

One possible mounting location is in the front of the car, behind the front bumper. The wiring
can go through the firewall or directly from the fuse box in the engine compartment. Since the

sensor is moved outside the cockpit it adds more complexity to the installation and relocation.

The second location could be at the left or right front fender. Fastened with a magnet which
makes it easy to install and easy to clean the sensor. The wiring will have to go through the
window or through the left mirror. The disadvantage is that the sensor is more exposed for the

weather.

The third option is to mount the temperature sensor on the top of the sensor package frame.
The sensor package is mounted at the dashboard. A challenge is to measure through the wind-

shield due to heat vaporization from a warm engine.

43

3. Concept Development

3.4.3 Mounting Location Light Intensity Sensor

The light intensity sensor needs to be located where it easily can detect the light from the out-

side surroundings. As for the temperature sensor the installation and mobility are emphasized.

The first location is at the dashboard. This makes it mobile and does not require complex

installation, since it is integrated at the sensor package frame.

The second location is outside, with a magnet on the hood. From that location it is highly
exposed for the light which gives more accurate results. The disadvantage is that installation

gets more advanced and the mobility is reduced.

3.4.4 Light Intensity Detection

A luxmeter uses a photodiode. A photodiode is a semiconductor that converts incoming light
energy to electrical current. The sensor conducts current proportional to the amount of light
that the sensor receives. Filters and build in lenses are providing the photodiode and outputs

the light measurements in lux. [50]

Luxmeters comes in different shapes and sizes. Since our design must be compact, the group
must provide a method for measuring the light intensity. Light intensity can be measured by
using a light dependent resistor, as explained in chapter under section ”Photoconduvtive
Sensor”. A light dependent resistor is a photo conductive sensor that reduces its conductivity
by absorbing light. This means if the sensor is placed in an electrical circuit, the resistance is
high in dark and almost no current is flowing through the circuit. When the sensor is absorbing
light, the resistance is reduced, and it allows current to flow through the circuit. The current
can be measured in a micro controller and converted to a lux value. By performing this method,

the light intensity can be detected and determined.

3.4.5 Hardware

The computer for the sensor package must be compact, cost effective and powerful enough to
perform edge computing. There are 4 different hardware/microcontroller setups that are rele-
vant for this project. Nvidia Jetson TX2 development kit, Intel UP Al Square kit, Raspberry
pi and Arduino Uno. Either Jetson or Intel must be used to run the system, and Arduino or

Raspberry Pi for operating the sensors.

Jetson TX2 is a powerful computer made for difficult tasks and application with required large
amount of data processing. It is a Al computing device because of its power and efficiency. In
addition, Nvidia has provided libraries for building Al applications with the Jetson hardware
called JetPack. The disadvantage is that the original carrier board for the Jetson series requires

relatively big space, which makes it difficult to make a compact solution for a reasonable price.

44

3. Concept Development

Intel UP Square Vision kit is a compact and powerful computer designed for computer vision
and edge computing. The Intel UP shares similar performances as the Nvidia Jetson developer
kit, but it has a more compact design and carrier board out the box. The AI computer from
Intel has pre-installed computer vision network library, open VINO. The openVINO is a toolkit

to make AI applications with the Intel and it has pre-trained models.

The Raspberry Pi could be an alternative to combine with the super computers Jetson or Intel
up2. Arduino is a micro controller that can be used in the same way as the Raspberry pi. Both
Arduino and the Raspberry Pi could run read and operate sensors like GPS, temperature and
light intensity sensor. The larger computers Jetson TX2 or Intel UP square subscribe to the

information from the micro controllers and use them in their favor.

3.4.6 Temperature Sensor

Surface road temperature describes the state condition of the road. When the surface temper-
ature is known, the surface condition can be predicted. If the road temperature is decreasing
towards 0 degree Celsius, ice is then formed, to avoid ice, de-icing trucks are informed, and
they spread salt on the highways. There are different ways of measuring temperature. In this

project, methods for non-contact surface measurement is considered.

Measuring temperature without contacting the surface can be performed with a thermal camera
or an infrared temperature sensor. Both the thermal camera and the infrared sensor works on
the same principle by reading the emitted infrared energy from the surroundings. The main
difference is that the infrared temperature sensor measures one spot and outputs one number.
The thermal camera in the other hand outputs a surface image and provides information over
the capable measuring surface. By measuring spots, crucial information can be lost, and the
true overall temperature of the road can be determined wrong. The accuracy of these two types
of contact less measurements are similar due to the same working principle. Expected error is

approximately 1 degree of Celsius of both thermal camera and the infrared sensor.

45

3. Concept Development

3.5 Final Concept

The final concept was generated after evaluating all the different layouts and structure varia-
tions. Concept that was chosen is concept 3 with further iterations. The mounting location
for the light intensity sensor is in the dashboard integrated in the frame for the actual sensor
package, this make the system less complicated and simplifies the installation. The temperature
sensor will be mounted at the right or front fender for more accurate measurements. As shown
in Figure [3.5] the location of the sensor package, camera, temperature- and light intensity sensor

are illustrated.

Sensor Package.
Camera

Light Intensity
Sensor

Temperature Sensor

Figure 3.5: Final Concept [19]

The power supply which was chosen for the final concept is first concept which is direct power
from the car but without external battery. Since the 12V contact still deliver power when the
ignition is off it can still perform a safe shut down. The communication between the sensors and
the sensor package is wired since most of the sensors are mounted at the actual sensor package.
For detecting the light intensity, a photo conductive sensor is used, this is due to its simplicity

and price. To measure the temperature a thermal camera was chosen.

Design detailing is presented in chapter

46

4. Methods

4. Methods

In this chapter the methodology of the project is presented.

4.1 System Design

4.1.1 Design Detailing

The advantage of the chosen design is the simplicity and mobility as well as the number of
detectable parameters. In this chapter the products used are shown, in addition the total cost
for the final concept is presented. The computer is the main driver for the system, other sensor
components used in this concept rely on the computational strength of the computer. If the
computational power is low, all states of the road cannot be provided. Therefore, a powerful

computer and a reliable power source is necessary.

Camera

The camera that was chosen is the Intel Real Sense D435i. The reason for selecting this cam-
era was the price and various abilities and it is possible to implement with the computer from
Intel. The camera offer resolution up to 1920p x 1080p and up to 30 frames per second. It
has integrated IMU which suits the chosen concept. The field of view is 85.2° horizontal, 58°
vertical and 94° diagonal.[20] The camera is shown in Figure

Figure 4.1: Intel Real Sense D435i [20]

47

4. Methods

Thermal Camera

For road surface temperature, a thermal camera was chosen. The MLX90640, provided by
melexis is an infrared and cost-effective thermal camera with high accuracy. The operational
temperature is between -40 to 85 degree Celsius and it can measure objects from -40 to 300
degree Celsius. The MLX90640 can be provided with two different field of view options. For
long range thermal measurements, the field of view is 55° x 35°. If an application for close range
thermal measurements is applied, the MLX90640 is provided with a 110° x 75° field of view.
Therefore for this project the MLX90640 with 55° x 35° field of view is chosen.|2I] The thermal
camera is shown in Figure

Figure 4.2: MLX90640 Thermal Camera [21]

Hardware

The hardware that was chosen is the Intel UP AI Square Vision Kit in combination with Arduino
Uno. The reason for choosing the computer from Intel was the price, size and performance.
The Arduino Uno R3 is chosen for operating the light intensity sensor, GPS sensor and the
temperature sensor. The thermal camera for measuring the temperature require 20 000 or more
bytes of ram which the Arduino can provide. By using several sensors at the same time, a more

powerful micro controller is necessary, for example a Raspberry Pi.

Power Supply

To supply power to the sensor package in the car the original power supply could not be used
since it is rated for 230V input power. Therefore, a power supply had to be bought or made.
The power supply requires a cigarette lighter contact that can transform 12V to 5V and deliver
6A. The power supply is further explained in details in section

48

4. Methods

Fixture for Fastening 3D Camera

To fasten the camera a suction cup was used. The suction cup was fastened on the dashboard

beside the sensor package for better field of view.

To fasten it to the dashboard a suction cup from Joby was chosen. The suction cup is adjustable.
In addition, the fastening bolt on the top fits the internal threads at the chosen camera. The

Joby suction cup is shown in Figure 4.3

Figure 4.3: Joby Suction Cup

49

4. Methods

GPS Receiver

The GPS receiver that was chosen was a GY-NEO6MV2, which is a module for Arduino. This
makes it more compatible to the chosen microcontroller. In addition, it is small and the price

is reasonable. The accuracy was precise. The GPS receiver is shown in Figure [£.4

Figure 4.4: NEO 6M - GPS Receiver

Light Dependent Resistor

For measuring the light intensity, a photocell was chosen and wired as a light dependent resistor.

This is a cheap solution but gives a reasonable result after calibration. The photocell is shown
in Figure [£.5

Figure 4.5: Photocell

50

4. Methods

Cost

In table the estimated cost for the chosen concept is shown. This estimate is quite accurate

but may vary due to variation in exchange rate since several components are ordered abroad.

The shipping cost from the dealers are not included in this estimate. Material such as wiring
and printing is not included as well.

Table 4.1: Cost for Consept 3

Component Price in NOK

Intel UP Ai Square kit 3G antenna 4640
3G Adapter 660
Photo Cell and diffuser 100
Intel RealSense D435i 1535
Thermal Camera 458
Arduino Uno R3 200

GPS Sensor 30
Joby Suction Cup 299
Step Down Module 110
Sum 8032

o1

4. Methods

4.1.2 Heat Dissipation Up2

To design the frame for the sensor package and whether the up2 needs to be placed inside the
frame or if an external fan was necessary, the group needs to determine how much heat the up2
emits. To calculate the emitted heat, the dimensions of the up2 is required, it was assumed

that it is a square. In Figure the dimensions are shown.

C=6cm

B=10cm

A=10.5cm

Figure 4.6: Up2 Dimensions

The surface area of up2 must be calculated, which is done in Equation (4.1]). The variables are
defined in Figure 4.6

Area =2 ((A-B) F(A-O)+ (B-C)) (4.1)

Area =2 - ((10.5cm -10) + (10.5 - 6) + (10 - 6)) = 456¢m? = 456000mm? = 4.9083 ft*

The up2 emits 30W, in Equations (4.2)) the input power in watts per square foot is calculated.
22

SOW_ s 11 W (4.2)

Input Power = W 12

52

4. Methods

To determine the temperature rise, the graph in Figure [£.7] was used. With the input power
at 6.11 % and the material is painted non-metallic, the temperature rise is approximately 15

degrees or 30 fahrenheit.

Sealed Enclosure Temperature Rise

o 120 66.6 g
3 2
g 100 555 3
H & 80 44.4 g 9
("] -
oG 60 333 o 5
BE 40 22 §F
e < @ <
g 20 111 g
(1) @
= 0 =

2 4 6 8 10 12 14 16
Input Power (Watts/Square Foot)

—A—Unfinished Aluminum and Stainless Steel Enclosures
—e— Painted Metallic and Non-metallic Enclosures

Figure 4.7: Temperature Rise Above Ambient [22]

The temperature rise is only an approximation and will vary due to internal fan use and air
flow. Therefore, a safety factor of 25% is added.

Furthermore, it was necessary to calculate the volume airflow to see if an external fan was
needed. The formula in Equation (4.3) was used. [22]

3.16-W 30-3.16

= = 9. 4.
AT 113 - 734 39 (4.3)

CFM =

Where:

CEFM: Volume airflow.
W: Internal heat load in watt.

AT': Internal temperature minus ambient temperature in fahrenheit.

A normal 120mm fan which is commonly used in stationary computers provides volume airflow
around 80CFM. The volume airflow in the up2 is calculated to be 2.39, therefore an external
fan was not necessary in this case. Normal air circulation is sufficient for maintaining normal
operating temperature. Since the computer was placed on the dashboard, the air circulation

was sufficient, therefore the up2 is placed outside the frame.

53

4. Methods

4.1.3 Sensor Package Frame

A base frame for the sensor package was designed and produced. The design was done in
SolidWorks. The purpose of this design was to get access to the components in the sensor
package and to be compact. The frame consists of the base frame, top cover and bracket
for light intensity sensor. The base frame is illustrated in Figure As viewed the up2 will
not have a top cover, this is due to the required airflow which is described in section [4.1.2] above.

5mm Holes

Wiring Hall
M3 Cylinders

Figure 4.8: Base Frame

The base frame includes 5mm holes for fastening the up2, M3 threaded cylinders to fasten the
Arduino and the GPS receiver, M3 threaded holes for fastening the top cover to the base frame
and a spacious wiring hall. This is shown in Figure

Furthermore, a top cover was designed, and 3D printed. The top cover was fastened to the
base frame by using 3 x M3 bolts which makes it easy to disassemble and get access to the up2,
sensors and Arduino. As seen in Figure the top cover got openings for the wiring from the

Arduino to the sensors.

Figure 4.9: Top Cover

54

4. Methods

Additionally, a bracket for the light intensity sensor was designed. The bracket for light intensity
was designed in such a way to receive as much light as possible. Therefore, the high height of
the bracket and the 55 degree angle. In Figure[4.10]the bracket for light intensity sensor is shown.

Figure 4.10: Bracket for Light Intensity Sensor

In Figure the base frame is illustrated with the computer, Arduino and the GPS receiver
mounted. Lastly in figure the total assembly is shown.

Figure 4.11: Base Frame with Hardware Figure 4.12: Sensor Package - Assembly

All parts are printed in 3D Ultimaker Printer and the specifications are listed in table

Table 4.2: 3D Printer Specifications

Material PLA
Nozzle 0.4mm
Layer Height | 0.15mm

Infill 20 %

55

4. Methods

4.1.4 Power Supply

The up?2 is supplied with 5V and consumes 6A on maximum performance through a DC jack
5.5/2.1mm cable. The power supply must convert 12V from the cigarette lighter in the car to
5V DC jack 5.5/2.1mm. This is not a very common power supply, and the group had trouble

getting hands on this type from suppliers without ordering a larger quantity.

Therefore, a power supply had to be made. A step-down module was obtained. The step-down
module is shown in Figure with the input and output specified. [51]

Input: + and -
cable from the
cigarette lighter,
12v.

Output: USB cable 5V DC SatliF
to Jack 5.5/2.1mm to up St
sauared computer

Figure 4.13: Step-Down Module - Inputs and Outputs

Furthermore, to implement this to the sensor package and for testing, a frame had to be de-
signed to the step-down module. This frame was designed in SolidWorks and 3D printed in
PLA plastic. This will ensure that the step-down module will not get in touch with anything
that leads electricity. The frame consists of a base frame and a top cover with M3 threaded

holes for fastening. The frame can be seen in Figure 4.14]

Figure 4.14: Frame for Power Supply

56

4. Methods

4.2 Data Flow

The sensor package is using applications and scripts to receive, store and illustrate data for

the end user. A simple illustration of how the communication was determined to be for sensor
package is shown in Figure

Dropbox _ Ei - Map Service
a_—

Central Station
l
’

Local Memory /

Figure 4.15: Ilustration of the Data Flow

Replicated
Database

o7

4. Methods

4.3 Sensor Package System

The system is communicating with Robotic Operating System, ROS. The programming lan-
guages used was Python and Arduino. The hardware which was operating and writing infor-
mation to the scripts are Intel RealSense D435i, light intensity sensor, GPS receiver, up2 as
the main computer and Arduino micro controller for sensor reading. All code cannot operate
in a single script. If all code is running in one single script, image processing goes slow and
computer lag is occurring. Therefore, the code is distributed into different scripts. ROS is an
operating system that gives opportunities for communications between nodes and scripts. To
access and communicate with nodes and usage in scripts are explained in the subsections below.

All the communication happens in the terminal window.

4.3.1 Create Workspace

Since ROS was used, a workspace that fulfills ROS requirements must be provided. The tool
required for a workspace that enables ROS to work properly is catkin. Catkin is a build system
and is default when installing ROS, this structure simplifies the build process for the ROS pack-

ages. When catkin is installed it must be sourced to our environment as shown in the code below.

1 $ Source /opt/ros/kinetic/setup.bash

The commands to build the workspace using catkin is shown in the code below. The name of
the folder can be replaced to a desired folder name. In the code below the folder name is set to

catkin_ws, but this can be replaced.

$ mkdir —p “/catkin_ws/src
2 $ cd “/catkin_ws/
$

catkin_make

When the catkin tool has created the environment, a CMakeLists.txt file is created in the src
folder. A build and a devel folder is added. In the devel folder an important file is stored,
which is setup.sh. This is a sourcing file, that overlays the operating workspace at the top of
the environment, and when running ROS, the sourced folder is used. The code for sourcing the
workspace is shown below. It is important to mention when sourcing the workspace, it must be

done from the workspace folder. [52]

1 $ source devel/setup.bash

58

4. Methods

4.3.2 Create Package

For ROS to find the scripts, it must be placed in a package that supports ROS communication.
To create a package the catkin tool was used. The commands for creating a package is shown
below and they must be executed from the src folder in the workspace by using the terminal
from the computer. It is important to include the dependencies for the created package. It is
normal to include rospy, roscpp and std_msgs. These dependencies are included in the CMake-

Lists.txt file inside the package folder and can be modified if other dependencies are needed. [53]

1 # This is an example, do not try to run this

> # catkin_create_pkg <package name> [dependl] [depend2] [depend3]

4.3.3 Camera Node

For detection with a camera, a video frame was provided for the scripts. Since there is more
than one script that uses video frame for detection, a camera node is provided. This is because
there cannot be more than one script receiving information from a USB port, unless it is a
node. Another problem is that the RealSense camera is not a normal USB camera, and video
frames cannot be provided from the USB port as on normal cameras. This is due to the mul-
tiple functions the camera can provide. Developers have created a RealSense package for ROS
implementation with the RealSense camera. When the package is installed in the workspace,
the camera can be a node in ROS. The camera publishes all topics that the camera can provide.

Some of the topics provided by the RealSense camera is shown below:

e RGB camera node is /camera/color/image_raw
e Depth camera node is /camera/depth/image_rect_raw
e infraredl camera node is /camera/infral/image_rect_raw

e infrared2 camera node is /camera/infra2/image_rect_raw

59

10

11

12

13

14

15

16

17

4. Methods

The

camera has 60 topics available when it is running. The code for importing the RGB video

frame from the RealSense is shown below, which is the subscriber to the camera node.

def

def

if

camera_calback (msg) :

global frame

global sharped

frame = bridge.imgmsg _to_cv2(msg, ”bgr8”)

main () :

Create Node

rospy . init_node(’'listener_ 90, anonymous=True)

Define Image Topic

camera_topic = ”/camera/color/image_raw”

Set Subscriber and Define its Callback

rospy . Subscriber (camera_topic , Image, camera_calback)
Spin until ctrl + ¢

rospy .spin ()

__name__ = ' __main__~

main ()

It is important to import libraries such as cv2, cv_bridge and rospy to the Python script for

translating the frame message published by the camera node and to be able to process the video

frame further.

60

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

4. Methods

4.3.4 Sensor Node

The sensors used in this sensor package except the camera are operated by the Arduino micro
controller. The Python scripts running on the up2 are using ROS to communicate with the
Arduino. The Arduino is a publisher and the Python scripts are subscribers to the Arduino
node. There was experienced slow communication between the Arduino and ROS when using
the package provided for ROS communication with Arduino. The provided package occupies
memory on the Arduino, and it becomes slow. The solution was to enable communication
between Arduino and a Python script using libraries made for Python and Arduino commu-
nication. When the communication was established, the Python script was created to be a
publisher node. The communication was faster, and the subscribers got the information that
was required to run. The code for reading the sensor values with python and creating a pub-

lisher is shown below, which is the sensor node publisher.

import serial
import psycopg?2
import rospy

from std_msgs.msg import Float64

#Connect to Serial Port

try:
arduino = serial.Serial(’/dev/ttyACMO’, 115200)
ok=1

except:
print (” Check port”)

def talker():
#Read Serial and Create a Publisher
latitude=rospy . Publisher(’lat ', Float64, queue_size=10)
longitude=rospy.Publisher('Ing’, Float64, queue_size=10)
lux = rospy.Publisher('Ilx’, Float64, queue_size=10)
rospy .init _node (’talker’,anonymous=True)
rate = rospy.Rate(10)

while not rospy.is_shutdown ():

gps_point = str (arduino.readline())
if ok==I1:
try:

lat = float (gps_point [0:9])

Ing = float (gps_point [10:18])

Ix = float (gps_point[19:27])
except:

lat =0.0;

61

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

4. Methods

lng=0.0;
1x=0.0;
#print (lat ,Ing,1x)
rospy . loginfo (lat)
rospy .loginfo (Ing)
rospy . loginfo (1x)
longitude.publish (Ing)
latitude . publish(lat)
lux . publish (1x)
rate.sleep ()

while True:

try:
talker ()

except rospy.ROSInterruptException:

pass

62

1

10

11

12

13

14

15

16

17

18

4. Methods

4.3.5 GPS Subscriber Node

When the sensor package detects states in the road, the GPS position for the detected state
was required. The scripts are subscribers to the sensor node and the code for subscribing the

GPS coordinates is shown below.

def lat_callback (msg):
global lat

lat=msg. data

def lng_callback (msg):
global Ing
Ing=msg.data

def main():
Create Node
rospy .init_node(’'listener ’, anonymous=True)
Define Subscriber and Define its Callback
rospy . Subscriber (" lat”, Float64, lat_callback)
rospy . Subscriber (" Ing”, Float64, Ing_callback)
Spin until ctrl 4+ ¢
rospy .spin ()

if __name__. = ’__main__":

main ()

63

10

11

13

14

15

16

17

18

19

20

4. Methods

4.3.6 IMU Subscriber Node

To give an approximation of the road condition, an accelerometer was used. Since the camera
used in this project is hybrid, it contains an IMU with an accelerometer. The camera node
provides the topic for extracting information from the IMU. The acceleration in Z-direction can

be extracted with a coded script. The code for acceleration in Z-direction is shown below.

import rospy

from sensor_msgs.msg import Imu

def accel_callback (msg):
global acc
acc=abs(msg. linear_acceleration.z—9.32)
print (acc)
if acc > 4.5:
#update_folder ()
update_table ()

while True:

try:
rospy .init_node(accel_list ', anonymous=True)
rospy . Subscriber (” /camera/accel /sample”, Imu,

accel_callback)

rospy .spin ()

except rospy.ROSInterruptException:

pass

64

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

26

27

4. Methods

4.3.7 Database Communication

The observations made from the sensor package was stored in a database for illustrating the
observations on a map application. Furthermore, the company that is responsible for repairing
the road can determine whether the detected fault needs repair. The database used was Post-
greSQL and Python to push data, the library psycopg2 was imported and a code was provided
to ensure pushed data to the database. Since the server is password protected, the connection
line contains username and password to gain server access. The information was stored in ta-
bles, one column that hold the information about the detected state and the image number, the
second column contains the GPS information stored as a point. Map service application QGIS,
cannot plot the GPS location of the state if it was not stored as a point. The code for pushing

information to the database from the Python script is shown below.

import rospy

import psycopg2

import cv2

from std_msgs.msg import Float64

from sensor_msgs.msg import Imu

def globallyChange () :
global i
4= 1

def lat_callback (msg):
global lat

lat=msg.data

def Ing_callback (msg):
global Ing
Ing=msg. data

def update_table():
name= 'Bad Road{:>03}".format (i)
cursor . execute ('’ INSERT INTO roadcondition (geom,info)
VALUES(ST_GeomFromText ("POINT (%s %s) ',4326),%s) '’ ,(1lng,
lat ,name))
connection .commit ()

count=cursor .rowcount

def update_folder ():

cv2.imwrite(’/home/upsquared/Desktop/detected_images/

bad_road/pic{:>03}.jpg’ .format (i), frame)

65

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

4. Methods

globallyChange ()

while True:

try:

#Connect to Database and Create Node and Subscribers

connection= psycopg?2.connect (user="postgres”,

password="upsquared”, host="localhost”, port
=5432,database="mas500")

cursor = connection.cursor ()

i=20

rospy.init_node(accel_list ', anonymous=True)

rospy . Subscriber (” /camera/accel /sample” , Imu,
accel_callback)

rospy . Subscriber (" lat”, Float64, lat_callback)

rospy . Subscriber (" Ing”, Float64, Ing_callback)

rospy . spin ()

except rospy.ROSInterruptException:

pass

66

10

11

12

13

14

15

16

17

18

19

20

21

26

27

28

29

4. Methods

4.3.8 Dropbox Communication

The images from detected states are stored in Dropbox and to upload images to Dropbox with a
Python script the library dropbox was imported. It is not possible to access folders with Python
without creating an application folder in Dropbox. Dropbox has provided an application solu-
tion for developers when uploading files with scripts. When an application is made, a access key
can be generated for the account. The access key allows scripts to access the desired Dropbox

folders made for the project. The code for uploading files to a Dropbox folder is shown below.

import psycopg?2

import rospy

from std_msgs.msg import Float64
import dropbox

import time

import os

import numpy as np
#Access Dropbox Account

access_token =
MpY68MMUGcAAAAAAAAAADylpSgD1Dh6mJHqv4D5FnJm3ykA rZW4iRatzyG_bW19 '’
dbx = dropbox.Dropbox(access_token)

#Direction to Detected Images

rootdir = ’/home/upsquared/Desktop/detected_images /90 _sign’

def accel_callback (msg):
global upl
upol)msg. data
upload_img ()

def upload_img():
#Code for Uploading to Dropbox
for dir, dirs, files in os.walk(rootdir):
for file in files:
try:
file_path= os.path.join (dir,
file)
#Name of the Folder in
Dropbox Apps Folder
dest_path=os.path.join (/90
_sign /7, file)

67

4. Methods

30 print (' Uploading %s to %s’ %
(file_path , dest_path))

31 with open(file_path ,”rb”) as
f:

32 dbx. files_upload (f.

read (), dest_path

, mute=True)

33 except Exception as err:
34
35 print (” failed to upload %s\n

%s” % (file ,err))
36

37 def main():

38 upload_img ()

39 # Spin until ctrl + ¢
10 rospy .spin ()

41

42

43 if __name__. = ’__main__ " :
m main ()

68

4. Methods

4.3.9 System Launch

To operate all scripts simultaneously there were two possibilities. The first method was to
manually start each node in the command prompt with ROS commands. The second method
was to create a launch file that starts the system with one ROS command. When launching the
system, ROS handles the scripts to start simultaneously in a single terminal tab. The code for

the written launch file is shown below.

<launch>

<include file= "$(find realsense2_camera)/launch/rs_camera.
launch” />

<node name= ”lane_mark_listener” pkg="python_skripter” type="
line_detection .py” />

<node name= " listener_100" pkg="python_skripter” type="
camera_100.py” />

<node name= "listener_90” pkg="python_skripter” type="
camera_90.py” />

<node name= " talker” pkg="python_skripter” type="
ros_coord_node.py” />

<node name="accel_list”pkg="python_skripter”type="accel.py”
/>

</launch>

69

4. Methods

4.4 Calibration

In this section the method for calibrating the sensors are presented.

4.4.1 Camera Calibration - Intel RealSense D4351

To perform the calibration of Intel RealSense D435i, software and hardware was necessary. Be-

low the software and hardware that was used is listed :

e Intel Real Sense D435i with firmware 5.11.01. Connected with a USB C cable
e A tripod for supporting the camera

e A PC with Ubuntu 16.04

e Calibration grid on Dynamic Target Tool app at a smart phone. [54]

e Intel RealSense Dynamic Calibrator tool. Version: 2.6.8.0. [55]

The setup of the calibration is shown in Figure [4.16] while the calibration grid is shown in
Figure The device was placed approximately 700mm from the target. Intel recommends

distance between 600mm and 850mm.

28
L
2E

B

LA

OLT6 Tg 1) 1o 16Ty cTaT
S L
L i

Figure 4.16: Calibration Setup Figure 4.17: Calibration Grid

The program was launched and the main screen is shown in Figure Both RGB and depth
camera was calibrated during this process. The resolution on the camera throughout the cali-
bration was 1280p x 720p with 30 frames per second. By clicking on ”Show Demo” it is possible
with a simple review of how the calibration process work. The calibration grid consists of black

and white bars, and height depends on which smart phone that i used.

70

4. Methods

e screen with the "Intel RealS:

Show Demo

Start Calibration

Figure 4.18: Intel RealSense Dynamic Calibrator - Start Up Screen

When the calibration process was started, the device was moved until the target device has

cleared the blue area. This stage of the process is shown in Figure [4.19

Position device 600 - 850 mm away pointing to target so the bars are vertical in field of view

Move slowly to position target bars over the blue squares until all are cleared

Used frames; 451

Figure 4.19: Intel RealSense Dynamic Calibrator - Initialization Step

71

4. Methods

When the RGB camera was calibrated. The device was slowly moved around until the green

bar was at 100%. The blue frames are the approved positions. This is shown in Figure [4.20)

Position device 600 - 850 mm away pointing fo target so the bars are vertical in field of view

Move slowly to position target bars on different locations in field of view until completion

1115 (73%)

Figure 4.20: Intel RealSense Dynamic Calibrator - RGB Camera

Lastly the depth camera was calibrated. This was done in the same way as for the RGB. Slowly

move the camera around until it is satisfied, which is shown in Figure [.21]

Position device 600 - 850 mm away pointing to target so the bars are vertical in field of view

Move slowly to position target bars on different locations in field of view until completion

Figure 4.21: Intel RealSense Dynamic Calibrator - Depth Camera

When the steps are completed, it appears a calibration is successful message. The results are

automatically updated to the device.

72

4. Methods

4.4.2 Light Intensity Sensor Calibration

Before calibration, it was important that the light meter and the photocell sensor was placed in
the same surroundings and placed at the same angle. To calibrate the light intensity sensor a
certified light meter was necessary. Therefore in this calibration a RS certified RS PRO ILMO1
light meter was used and it is shown in Figure

The photocell and diffuser was wired to a multi-meter which measured the resistance of the

photocell, in the respective light surroundings. This setup is shown in Figure |4.23

RS ILM-01

Figure 4.22: Certified RS Light Meter Figure 4.23: Setup - Light Intensity Calibration

73

4. Methods

In table [£.3] the measurements are shown. In Figure the lux as a function of resistance is
illustrated graphically. Furthermore, this is written into an excel sheet.

Table 4.3: Measurements - Numerical

RS Light Meter[LUX] | Photo Cell [Ohm]
1 180000
2 117000
20 25700
43 13800
100 8360
200 5570
250 4880
300 4380
350 4000
400 3660
500 3500
590 3110
640 2990
700 2820
930 2350
1270 1980
1976 1460
2460 1330
3340 1130

Lux as a function of Resistance

E
3
g
2
E
2

100000 120000 140000 160000 180000
Resistance (Ohms)

+-Resistance vs Lux

Figure 4.24: Measurements - Graphical Illustration

74

4. Methods

As seen from the graphical representation, the function was not linear. To linearize the mea-
sured values are converted to a logarithmic value. The converted values are shown in the table

[4.4] The graph for logarithmic conversion is shown in Figure

Table 4.4: Measurements - Numerical [log]

log (RS Light Meter[LUX]) | log(Photo Cell [Ohm])

0.0

5.255272505

0.301029996

5.068185862

1.301029996

4.409933123

1.633468456

4.139879086

2.0

3.922206277

2.301029996

3.745855195

2.397940009

3.688419822

2.477121255

3.641474111

2.544068044

3.602059991

2.602059991

3.563481085

2.698970004

3.544068044

2.770852012

3.492760389

2.806179974

3.475671188

2.84509804

3.450249108

2.968482949

3.371067862

3.103803721

3.29666519

3.29578694

3.164352856

3.390935107

3.123851641

Figure 4.25

3.523746467

log(R) vs log(lux)

3
log(Resistance)

3.053078443

: Measurements - Logarithmic Conversion

75

4. Methods

To estimate the light intensity of the surroundings with the photocell, mathematical operations

was applied to the convert the numbers. From mathematics, a straight line can be represented

as y = m - x + b. Therefore, the formula for the straight line is shown in Equation (4.4]).

logLux =m -logR+ b

Lux = 107" +?

Lux = 10° - R™

Where:

R: Resistance of the LDR sensor
m: Constant

b: Constant

Lux: Light intensity measured in Lux

For our system the estimated constants m and b, are —1,59366 and 8.322372561.

76

4. Methods

4.4.3 IMU - Intel Real Sense 4351

To calibrate the IMU of Intel RealSense D435i it required software and hardware. Below the

software and hardware that were used is listed :

e A PC with Windows 10

Intel RealSense D435i and a USB C cable.
Python 2.7

Python calibration script provided by Intel [56]

Libraries in Python; Pip, Numpy, Enium, pyrealsense2

The calibration process contains 3 stages. First recording IMU data in 6 different positions,

then computing the parameters. Lastly, write the parameters over to the camera.

First the calibration script was launched, and the first stage of the process started. In every
position the camera was held steady for 3 seconds or longer until enough data was collected.
Further the script requests the next position automatically when enough data from previous

position is collected. From Figure [1.26] to [£.3T] all positions are shown in the correct order.

Figure 4.26: Position 1 - Upright Facing Out

Figure 4.27: Position 2 - USB Cable Up and
Facing Out

7

4. Methods

Figure 4.28: Position 3 - Upside Down Facing
Out

Figure 4.29: Position 4 - USB Cable Down and
Facing Out

umenms e
L

M@

S i
J

Figure 4.30: Position 5 - Facing Down Figure 4.31: Position 6 - Facing Up

In Figurel4.32|the command prompt from the script is shown. As seen, it requests the desired po-

sition and the lower right corner prints true in x, y and z if the camera is in the correct position.

Figure 4.32: Calibration Script - Command Prompt

After the script has collected the necessary information and finished the calibration after 6000
measurements it provides an overall score for the calibration which can be compared with previ-
ous calibration that has been uploaded. Further it can be decided with a keystroke to overwrite
the previous calibration file. Then the device is calibrated and ready for use. The full calibra-
tion script which is written in Python and provided by Intel is shown in Appendix [56]

78

4. Methods

4.5 FElectrical Connections

The prototype was wired as shown in Figure|4.33] The camera and Arduino were directly wired
and powered by the up2. The GPS receiver and the light intensity sensor is powered by the
Arduino. The up2 is powered from the cigarette lighter in the cockpit of the car.

Camera with IMU

USB C
Arduino Cable

r AREF

I Analog Read

ONN ONINGYY =

Antenna Tx and
Rx

GPS Input
Receiver

Light

Intensity
Sensor

Figure 4.33: Circuit Diagram

79

4. Methods

4.6 Speed Limit Sign Recognition

This algorithm detects speed limit signs from dashboard position in the vehicle. The signs that
was detected with this algorithm is 90 and 100 kTm speed limit signs. The signs can be seen in

Figure [£.34]

Figure 4.34: Speed Limit Signs

For detecting speed limit signs there were two methods that the group considered. Machine
learning, and HSV thresholding with template matching. Machine learning is a more complex
method than HSV thresholding, which means more powerful computer is required. The group
first started training a model for traffic sign recognition, but the accuracy was not good enough
and the number of outliers was not satisfactory. Therefore, the second method was used. The
general overview of the algorithm is illustrated in the flowchart in Figure The algorithm

and the code is shown and explained in detail further below in this section.

Convert into Thresholding
‘ | t F ‘
o AL HSV for red color

Clips out Locate
circle from center of the
frame circle(s)

Looking for
circles

Resize all 3 Perform If match it
templates to Template saves GPS

30x30p Matching coordinate

Updates
table in
database

Figure 4.35: Flowchart - Traffic Sign Recognition

80

4. Methods

The image from the camera frame is converted from RGB to a HSV color model. HSV color
model representation was used since HSV better represents how humans relate to colors than
RGB color model does. Since the focus is on speed limit signs, one color is repeatable in all of
them. The speed limit signs in Norway contains a red circle at the edge of the sign. Therefore,
if only the red color is extracted, it is possible to detect circles with the cv2. HoughClircles
function in OpenCV. For testing the concept, printed Norwegian speed signs was placed on a
wall to indicate if the algorithm for detecting the signs with color threshold could work. In
Figure the testing facilities are shown.

Figure 4.36: Speed Limit Sign Recognition Test Setup

See code below for converting the image to HSV and extracting the red color is shown. The

upper and lower threshold for the color red is chosen for red color.

81

10

4. Methods

#Convert Image to HSV

hsv = c¢v2.cvtColor (copy_frame, cv2.COLORBGR2HSV)
#Set Lower and Upper Boundaries for Red Color
lower_red = np.array ([0,150,95])

upper_red = np.array ([10,255,255])

maskl = cv2.inRange(hsv, lower_red, upper_red)
lower_red = np.array ([170,150,95])

upper_red = np.array ([180,255,255])

mask2 = cv2.inRange(hsv, lower_red, upper_red)

mask = maskl + mask?2

The resulted frame after extracting the red colors is shown in Figure [4.37

Figure 4.37: Threshold for Red Circles

To extract the red colors from the image, a reference was found on the internet. The reference

image used for thresholding the red colors is shown in Figure [4.38

82

4. Methods

5o (1) =S (H: 0-180, 5: 0-255, V: 255)

00

Figure 4.38: HSV Color Range [23]

As shown in Figure the circles can be detected and cv2.HoughCricles was applied. When
the circles was detected, a bounding box was drawn around the circle. The bounding box was
printed on the frame and is shown in Figure

Figure 4.39: Bounded Box around Circles

83

10

11

12

13

14

15

16

17

18

19

20

21

22

23

4. Methods

When the signs are detected, the script snips out the bounded area from the original frame and
a template match method is executed to identify the sign. The template images are resized and
has the same size as the input image. The code for template matching is shown below. In this

example the sign identification and score is shown for the 90 sign in Figure [4.40

def template():

#Snapshot the Rectangle from the Original Frame

h=z+45

detected_img = frame|[y—h:y+h, x—h:x+h]

detected_img_gray = cv2.cvtColor(detected_img , cv2.
COLOR.BGR2GRAY)

detected_img_gray = cv2.blur(detected_img_gray, (5,5),3)

#Resize Template to the Real Size

template_ 90 = cv2.imread (' /home/upsquared /MAS500 ws/src/
python _skripter/src/scripts/fartsgrense_90.png’,0)

template_90 = cv2.resize (template_ 90, (2xh, 2xh))

template_90 = cv2.blur (template 90, (5,5),3)

global result
result = cv2.matchTemplate(detected_img_gray , template_ 90, cv2.
TM_CCOEFF NORMED)
w, h = template_90.shape[:: —1]
threshold = 0.7
loc = np.where(result >= threshold)
for pt in zip(xloc[::—1]):
#res = "{}%”.format (result , float(result))
font = cv2.FONT HERSHEY SIMPLEX
#cv2.putText (copy_frame, res, (x—h, y+h), font,
1,(255,255,255) ,2,cv2.LINELAA) ;
cv2.putText (copy_frame, '90 _sign’, (x—h—50, y-h), font,
1,(255,255,255) ,2,cv2.LINELAA) ;
update_folder ()
update_table ()

84

4. Methods

90_sign

[[0.9427154]]%

Figure 4.40: Template Score and Match

When the sign was identified, the script requested the GPS location of the sensor package and

it updated a table in the database containing detected sign and its location.

85

4. Methods

4.7 Lane Mark Quality

This section explains how the quality of the lane marks were determined. The lane marks was
categorized into Bad Lane Mark and Good Lane Mark. This was determined by thresholds
which can be modified. The route that was tested was on E18 between Grimstad and Lillesand,
change in lane mark pattern was not considered at exits and entrance ramps. In addition, this
algorithm was developed for cars in the right lane, but with adjustments this algorithm can
work in the left lane. In Figure [£.41] the general overview of the algorithm is shown in a flow

chart.

Warp Frame
Input frame for better
FOV

Thresholding
to HLS color

Splitimage
vertically
into 2 equal
arrays

Warp the
frame into
«birds view»

Thresholding
to Binary

Sums up all Left array Right array
the pixel represent represent
value in both lane mark to lane mark to

arrays the left the right

Compare the Compare the
sum of right sum of left

: array to array to
mark quality threshold_right threshold_left

Determine
the lane

Figure 4.41: Flowchart - Lane Mark Quality

86

4. Methods

As seen in the flowchart the algorithm sums all the pixels vertically which results in an indica-

tion of how worn the lane marking is. When the car was driving in the right lane the field of
view is shown in Figure

Figure 4.42: Field Of View - From E18

There is two kinds of lane markings, the solid lane to the right and the dashed marking to the

left which separate the lanes. In Figure [£.43] the dimensions of the lane marking is shown.

3 Meters

9 Meters

3 Meters

Figure 4.43: Lane Mark Dimension - E18 with Speed Limit Over 90 lch

87

4. Methods

Below the code which was written in Python is partially described. The full script can be seen

in Appendix

First the input frame which is shown in Figure [4.42] was warped for a better view, the code is
shown below. The src points is the array that determine the warping points. The output frame
is shown in Figure

src = np.float32 ([[0, 600], [1010, 600], [450, 400], [700, 400]])
bottom_left = src[0][0] + O, src[O][l]

bottom_right = src[1][0] src[1][1]

top_-left = src[3][0] — 0, 1

top_-right = src[2][0] + 0, 1

dst = np.float32 ([bottom_left , bottom_right, top.-right, top_left])

img_warped = Transform_Camera_View (copy_frame, src, dst)[0]

100
200
300
400
500

600

700

0 200 400 600 800 1000 1200

Figure 4.44: Warped Frame

88

4. Methods

Then the next step was to threshold the warped frame into HLS color space which helped high-
lighting the lane markings. Furthermore, it was thresholded into a binary frame. The code is

shown below and the binary thresholded frame is shown in Figure [4.45

def HLS_L_Threshold (img, thresh=(195, 255)):
img = img[:, :, 1]
img = img * (255 / np.max(img))
binary_output = np.zeros_like (img)
binary_output [(img > thresh[0]) & (img <= thresh[1])] =1

return binary_output

100
200
300
400
500

600

700

0 200 400 600 800 1000 1200

Figure 4.45: Binary Output

89

4. Methods

Next, the frame was further warped into Birds-Eye View, the reason for this was to sum up the
pixel values for determining the lane mark quality. The code is shown below and the warped

image is shown in Figure |4.46

ptsl = np.float32 ([[456, 0], [665, 0], [0, 720], [1280, 720]]) #
Old points

pts2 = np.float32 ([[0, 0], [1280, O], [0, 720], [1280, 720]]) # New
points

matrix = cv2.getPerspectiveTransform (ptsl, pts2) # Transformation

matrix
result = cv2.warpPerspective (thresh. HLS, matrix, (1280, 720)) # The

transformed image

100
200
300
400
500

600

700

0 200 400 600 800 1000 1200

Figure 4.46: Warped Output

90

4. Methods

Lastly the image pixels are divided into two equal arrays vertically of the image. The white
pixel in the array has a value of 255. Which means that when summing up all the pixel value
in left side of the image and in the right side it will indicate if the lane marking is good or bad.
Since the lane marking to the left has a different pattern than the lane marking to the right,
different thresholds are required for correct results. The code for splitting the image into two

arrays and sum the values is shown below.

left , right = np.hsplit (thresh. HLS, 2)
counts_left = np.sum(left = 1, axis=0)
counts_right = np.sum(right = 1, axis=0)
total_left = math.fsum(counts_left)
total_right = math.fsum(counts_right)

91

4. Methods

4.7.1 Determine Lane Mark Length

To determine the lane mark length or give an indication of the lane mark quality a conversion
between image pixels to world coordinates can be calculated. For further work on lane mark
quality the area of the lane mark can be calculated. The camera used in this method was the
camera included with the up2. The camera was calibrated in MATLAB with the calibration tool
for 2D cameras. A checkerboard with 20x20mm squares was used to perform the calibration. It
was recommended to use 10 - 20 images from different locations pointing on the checkerboard.
The group provided 25 images to improve the result. The calibration file for the camera was
saved and included to the script for measuring the lines. The camera model was assumed to be
a pinhole camera model. To calculate the length of the line, focal length and the camera lens
center from the camera is required. Focal length and camera lens center are provided in the
calibration file. The test setup is shown in Figure 4.47, The geometry that can determine line
length is shown in Figure [£.48

Figure 4.47: Test Setup Line Length

Camera Center

[[=]

dl

d2

Figure 4.48: Geometrical Model to Determine Line Length

92

4. Methods

To ensure better results, the angle between camera and floor should equal zero. Therefore, a

leveler was used to make the angle difference as small as possible. In Figure [4.49] [4.50] [4.51]

H

Figure 4.49: Floor Level 1 Figure 4.50: Floor Level 2

Figure 4.51: Camera Level 1 Figure 4.52: Camera Level 2

and .52 the floor and camera level is shown.

The equations for calculating the length of the line are shown in Equation @, (4.8) and (4.9)).

_f
di=h (4.7)
_f
dy= b (4.8)
L=dy—d (4.9)

93

10

11

12

4. Methods

Where:

f: Focal Length Camera

x1: Distance in Pixel From Camera Pixel Center

z9: Distance in Pixel From Camera Pixel Center

L: Line Length

h: Height From Floor to Camera Lens Center

dy: Horizontal Distance from Camera Lens to First Point on Line

do: Horizontal Distance from Camera Lens to Second Point on Line

The MATLAB script for calculating the length is shown below. The line was moved further
away to express the accuracy of the test. The Figures and shows the position of the
line during the test.

I = imread (measure8.png’);

undistored = undistortIlmage (I, calibrationSession.CameraParameters);

marker = insertMarker (undistorted ,[945.06325899310
587.529936931676];

marker = rgb2gray (marker) ;

bw = imbinarize (marker, graythresh (marker));

bw = bwareaopen (bw, 7000);

imshow (bw)

f=1378;
10=1181;
h=817;

dl = (f/(898—587.529936931676))«h;
d2 = (f/(812-587.529936931676)) «h;

94

4. Methods

Figure 4.54: Binary Image - Line Length Test 2

The coordinates x1 and xo was measured manually with a cursor and the result of Test 1 and

Test 2 is shown in Figure and

95

4. Methods

L =

1.3544e+03

1.1468

Figure 4.55: Result - Length Test 1

L =

1.3893e+@3

1.1764

Figure 4.56: Result - Length Test 2

The results are in mm and the measurements has an offset of approximately 15%. There is
provided an measured error due to angle offset in subsection [£.7.2] The measurements for the
height are shown in Figure [D:1], [D-2 and [D-3] in Appendix

96

4. Methods

4.7.2 Alignment Error on Line Length Measurement

The purpose of this section was to show how the measurement of a line is affected due to camera

alignment relative to the line surface.

To show the measured error, the camera was placed in different angles. The first angle was 0
degrees relative to the surface where the lines are measured. A white sheet indicating the 0

degree line is shown in Figure and the green line represents camera center in the image.

Figure 4.57: Camera Angle at 0 Degrees

There were two yellow line samples on the table and the size was different. The longest line
was 200mm and the short line was 100mm long. The converted measurements are executed as
in chapter [£.7.1] and the result of measuring the lines is provided in Figure [£.58

Actuall Short Line [mm] Actual Long Line[mm] Measured Short Line[mm] Measured Long Line[mm] Angle Accuracy Short Accuracy Long
100 200 82.63 165.1 0 degree 0.8263 0.8255
100 200 56.5566 114.3411 2.5 degree 0.5656 0.5717
100 200 39.19 78.3841 5 degree 0.3686 0.3919
100 200 103.4928 204.8678 Removed Spacer 1.0349 1.0243

Figure 4.58: Result with Different Angles

97

4. Methods

The camera angles are shown in Figure [4.59] [£.60] and [4.61}

Figure 4.59: 0 Degree Angle

Figure 4.60: 2.5 Degree Angle Figure 4.61: 5 Degree Angle

From the results, bad measurements occur if the camera angle was not 0 degrees relative to the
measuring surface. The sensitivity was high. By having a 5 degree misalignment the accuracy
was cut in half. There was used spacers to create different angles with the camera. At the end,
the group did a test without the spacer and calculated the line length. The result was 98 %
accurate, which means using this method for indicating if a line is in good condition is reliable
if the camera angle is set correct relative to the measuring surface. The actual measurements
of the lines and distance from the wall can be found in Figures[D.4] and [D.5] in Appendix

98

4. Methods

4.8 Lane Curvature, Curve Radius and Vehicle Position

The group decided to determine the curvature of the lane, the radius and the vehicle position.
This was performed for continuation of this thesis. For example, detecting unexpected objects
in the current lane. This thesis is a beginning towards a finished product which can be used for

road monitoring, with several detectable parameters.

Furthermore, in this section the code for finding lane curvature, curve radius and vehicle posi-
tion is explained. The code was fetched from Mohamed Ameen via Github and provided fully
from there [57]. The group had to do adjustments to make it work. Although the group did not
write this code, it was time consuming to make it work, since the author used different setup
than the group. The script required time to understand. Below the code is partially described.
The whole script can be seen in Appendix

In Figure the function display_Images allows to show images. This function was used dur-

ing the script and allows two images to be shown beside each other.

5, ¥, img3=[]1, 1bl3=[], cmap=None, n=2):

Figure 4.62: Library Function - Display Images

Further the frames were warped from the dashboard view to the Birds Eye View. This was
executed in function Transform_Camera_View which is shown in Figure[4.63] As seen the input
was the frame, source image coordinates and the destination images coordinates. This function
returns the warped image, the transformation matrix, and inverse transformation matrix. In
Figure the input image which was from E18 Grimstad is shown and the Figure [4.65] illus-

trates the warped image.

99

4. Methods

Transform_Camera w(img, src, d

image shape = img.shape
img_size = (image shape[1], image shape[8])

src, dst)
=form(dst, src)

warped = cv2.warpPe ective(img, M, img size)
return warped,

Figure 4.63: Library Function - Image Warping

Figure 4.64: Input Image Figure 4.65: Warped Image

Further the warped image was thresholded to the L-channel of the HLS color, which is the
brightness. This function highlights white lane markings and then threshold it to binary. The
inputs in this function were the warped image and low / high threshold. The function is shown
in Figure In Figure the HLS image and the binary HLS image is shown.

d(img, thres

img = img[:, :, 1]
img = img * (255 / ‘img))

binary output = np)s_like (img)
binary_output[(img > thresh[®]) & (img <= thresh[1])] = 1
return binary_output

Figure 4.66: Library Function - HLS Thresholding

100

4. Methods

L-Thresholded HLS Image

HLS Image

Figure 4.67: HLS Image and the Binary HLS Image

Then the warped image was again put into LAB_B_Threshold function. This function was
thresholding the input image to the B-channel of the LAB color space. The B-channel is a color
range scale which goes from -128(blue) to 128(yellow). This functions extract yellow lane mark-
ings. In Figure [4.6§| the script is shown. Further the LAB image and the binary thresholded
LAB image is shown in Figure As seen, the image is black, this is due to no yellow lanes

in input image.

def LAB_B_Threshold(img, thresh=(230, 255)):

img = img[:, :, 2]
it np.max(img) > 175:
img = img * (255 / np.max{img))
binary output = np.zeros like(img)
binary output[(img > thresh[8]) & (img <= thresh[1])] = 1
return binary_output

Figure 4.68: Library Function - LAB Thresholding

LAB Image B-Thresholded LAB Image

Figure 4.69: LAB Image and the Binary LAB Image

101

4. Methods

Further a function was made for combining the HLS threshold and the LAB threshold. This
function is called Combined_HLS_LAB_Threshold, this basically combine both the binary thresh-
olded image from HLS and LAB. The function can be viewed in Figure In Figure the

warped RGB image is shown as well as the combined binary thresholded image.

def Combined HLS LAB Threshold(img):

img HLS = cv2.c r{img, cv2.COLOR_RGB2HLS)
img LAB = cv2.cvtColor(img, cv2.COLOR_RGB2Lab)
img_thresh HLS = HLS L Thr d(img_HLS)

img thresh LAB = LAB B Thr old(img LAB)

combined img = s _like(img_thresh_HLS)
combined img[((img_thresh HLS == 1) | (img_thresh LAB == 1))] = 1
return combined img

Figure 4.70: Library Function - LAB Combined with HLS Thresholding

RGB image

Figure 4.71: Warped RGB Image and the Combined Thresholded Image

Furthermore, to find the lanes a function called sliding window method was used. The script
is shown in Figure and In the Figure it is described how the sliding window method

works.

102

4. Methods

Sliding Window Method(ir
histogram = np.sum{img[img.shape[0]

midpoint = np.int(histogram.shape[@]
quarter_point = np.int(midpoint // 2)

leftx_base = np.a histogram[quarter_point:midpoint]) + quarter_point
rightx_base = np.argmax(histogram[midpoint: (midpoint + guarter_point)]) + midpoint

nwindows = 70

window_height = np.int(img.shape[8]
nonzero = im)

nonzeroy = np.a nonzero[@])

nonzerox = np. nonzero[1])

leftx_current = leftx_base
rightx_current = rightx base

margin = 80
minpix = 40

left_lane inds =
right lane inds =

rectangle_d

Figure 4.72: Library Function - Sliding Window Method Part 1

window in range(nwindows):

win vy low = img.shape[@] - (window + 1) * window_height

win_y_high = img.shape[@] - window * window_height

win_xleft_low = leftx_current - margin

win_xleft high = leftx current + margin

win_xright low = rightx_current - margin

win_xright_high rightx_current + margin

rectangle _data.a d((win_y low, win_y high, win_xleft_low, win_xleft high, win_xright low, win_xright_high))

good_left_inds = ((nonzeroy >= win_y low) & (nonzeroy < win_y_high) & (nonzerox >= win_xleft_low) &
(nonzerox < win_xleft high)).non y[el

good_right_inds = ((nonzeroy win_y low) & (nonzeroy < win_y high) & (nonzerox >= win_xright_low)
(nonzerox n_xright_high)).nc y[e]

left_lane_inds. end(good_left inds)
right_lane_inds (good_right_inds)

if len{good left_inds) > minpix:

leftx_current = np.int(np.mean(nonzerox[good_left_inds]))
if len{good_right_inds) > minpi:

rightx_current = np.int(np.mean(nonzerox[good right inds]))

left_lane_inds = np te(left_lane_inds)
right_lane_inds = np.c at (right_lane_ inds)

leftx = nonzerox[left_lane_inds]
lefty = nonzeroy[left lane inds]
rightx = nonzerox[right lane_inds]
righty = nonzeroy[right_lane_inds]
left_fit, right_fit = (None, None)

n(leftx)

left_fit = np.p fit(lefty, leftx, 2)
n(rightx) != @

right_fit = np. it(righty, rightx, 2)

visualization_data = (rectangle data, histogram)

eturn left_fit, right_fit, left_lane_inds, right_lane_inds, visualization_data

Figure 4.73: Library Function - Sliding Window Method Part 2

103

4. Methods

In Figure [£.74] the output of the sliding window function is shown.

Original image Sliding window
Figure 4.74: Sliding Window Method - Output

Additionally, a polynomial fit function was used to determine the curvature. This was done to
the input binary image based on the previous fit, which makes an indication of the position
of the lane markings in the frame. This function assumes that there is no significant change
from one frame to another. The script can be seen in Figure and the output from the
polynomial fit function is showed in Figure

def PolynomialFit Previous Fit(img, left fit prev, right fit_

margin =
left_lane_inds = ((nonzerox > (left fit_prev[@]*(non *%2) + left_fit prev[1]*nonzeroy + left_fit prev[2] - margin))
& (nonzerox < (left fit prev[@]*(nonzer + left_fit_prev[1]*nonzeroy + left fit prev[2] + margin)))
right_lane_ind (nonzerox > (right fit prev[@]*(nonzeroy**2) + right_fit_prev[1]*nonzeroy + right fit prev[2] - margin})
< (right_fit_prev[@]*(nonzeroy**2) + right_fit prev[1]*nonzeroy + right_fit_prev[2] + margin)))
leftx = nonzerox[left lane_inds]
lefty = nonzeroy[left lane_inds]
rightx = nonzerox[right lane_inds]
righty = nonzeroy[right_lane_inds]
left fit new, right fit new = (None, None)
if len(leftx) != o:
left_fit_new = np.polyfit(lefty, leftx, 2)
if len(rightx)
right_fit_new np.polyfit(righty, rightx, 2)
return left_fit_new, right_fit_new, left_lane_inds, right_lane_inds

Figure 4.75: Library Function - Polynomial Previous Fit

104

4. Methods

QOriginal image

Polyfit using previous fit

Figure 4.76: Polynomial Previous Fit - Output

When the polynomial approach for the lane markings was found, the next step was to find
the lane curvature and the position of the vehicle. In Figure [£.77] the script for the function

Curve_Position can be seen.

1 fit, r_fit, 1 lane_inds, r_lane_ir

left_curverad, right_curverad, center_dist = (9, @, @)

h = img._shape[0]
ploty = np.lir
y_eval = np

nonzero = img
nonzeroy = np
nonzerox = np nonzero[1])

leftx = nonzerox[l lane inds]
lefty = nonzeroy[l lane inds]
rightx = nonzerox[r_lane_inds]
righty = nonzeroy[r_lane_inds]

if len(leftx) != @ and len(rightx) != @:

left_fit_cr = np.p it(lefty™® er_pix, leftx*xm_per pix, 2)
right_fit_cr = np. fit(righty*ym_per_pix, rightx*xm_per_pix, 2)

left curverad = ((1 + (2*left_fit_cr[@]*y eval*ym_per pix + left_fit_cr[1])**2)**1.5) u left_fit cr[o])
right_curverad = ((1 + (2*right_fit_cr[@]*y_eval*ym per_pix + right_fit_cr[1])**2)**1. = U ght_fit_cr[e])

if r_fit is not None and 1_fit t None:
car_positior img.shape[1]/2
1 fit x int = 1 fit[2 + 1 fit[1]*h + 1 _fit[2]
r_fit_x_int = r_fit[@] 2 + r_fit[1]*h + r_fit[2]
lane_center position = (r_fit x int + 1 fit x int) /2
center_dist = (car_position - lane_center_position) * xm_per_pix
return left curverad, right curverad, center dist

Figure 4.77: Curve Position - Function

The script for writing data and drawing the line indication can be seen in the full script in

Appendix

105

4. Methods

4.9 Light Intensity Detection

To measure the light intensity at the roads, a photocell was used and wired as a light de-

pendent resistor and placed at the dashboard. This means that the change in lux is directly

related to the change in resistance in the photocell. The wiring diagram is shown in Figure [4.78

Arduine

Analog
Input

Voltage

Qutput

10k ohm

Figure 4.78: LDR Circuit Wiring

To get a correct measurement of the light surroundings a diffuser was made, since the light

intensity gives a wrong indication of the lux without a diffuser. With a diffuser it creates a

more flattering light and the lux measurement is more accurate.

A diffuser dome was used of a LED bulb which is shown in Figure The LED bulb consist

of hard plastic. By using this diffuser dome it allows more even measurements from the light

surroundings results more realistic measurements.

Figure 4.79: Making Diffuser

106

4. Methods

To assemble the photocell and the diffusor, a frame had to be designed and 3D-printed. The
3D model of the diffuser frame is shown in Figure

Figure 4.80: 3D Model of Diffuser Frame

In Figure all the parts of the diffuser is shown before assembling. The diffuser consists of
the diffuser dome, diffuser frame, photocell and wirings. The finished and assembled diffuser
ready for use is viewed in Figure

Figure 4.81: Diffuser Frame, Diffuser Dome and Figure 4.82: Assembled Diffuser
Photo Cell o

As described in chapter [2.11.2] to approximate the light intensity of the surroundings, an equa-
tion describing the light intensity has to be determined. When the constants were identified,

the equation was implemented to the Arduino controller and the lux was measured. The code

for identifying the light intensity is shown below, which was written in Arduino.

#include <SoftwareSerial .h>

float
float
float
float
float
float
float

v_in =5.0;
v_out;
ldr_voltage;
r=10000.0;
ldr_input = AO;
ldr_value;
rldr;

107

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

4. Methods

float lux_scalar = 210074123.7;

float exponent = —1.59366;
float ldrlux;
float 1i;

float res_voltage;

static const int RXPin = 4, TXPin = 3;
static const uint32_t GPSBaud = 9600;

TinyGPSPlus gps;
SoftwareSerial ss(RXPin, TXPin);

void setup ()

{
Serial . begin(115200) ;
ss . begin (GPSBaud) ;

void loop ()

{
ldr _value = analogRead(ldr_input);
res_voltage = ldr_valuexv_in/1023;
ldr_voltage = v_in — res_voltage;
rldr = ldr_voltage/res_voltage x r;

ldrlux = (lux_scalar)*pow(rldr ,exponent)

The script reads an analog signal from the LDR circuit and converts the analog signal to identify

the voltage over the 10k resistor. When the voltage over the 10k resistor is known, the voltage
over the LDR sensor can be identified. From Equation (4.10)) all parameters were known except
the LDR resistor. By modifying the equation, the LDR resistor can be determined. Since the

equation for the light intensity is based on the LDR resistance and constants, the determined

resistance is further used to output the light intensity.

Vout = Vin, - 1t
Where:
Vout: Voltage output.
Vin: DC supply voltage.
Ry: A resistor.[Ohm]
Rrpr: A Variable resistor / LDR. [Ohm)]

Ripr+ Ra

(4.10)

108

4. Methods

4.10 Prototype Testing

The chosen area of focus is speed limit sign detection, lane mark detection, vibration mea-
surement and light intensity including uploading information to a database with geospatial
information. In Figure the setup is shown. The vehicle that was used was a Volkswagen

Transporter T7. The test route was along E18 from Grimstad to Nedenes.

To execute and start the program a monitor, keyboard and a mouse was necessary for prototype

testing.

== . »
§ ‘wmr i

Figure 4.83: Test Setup

109

4. Methods

4.11 Vibration Measurements

When measuring the quality of the road, the IMU from the camera was used. To determine
whether the road was in good or bad condition, the acceleration from the y-axis was recorded.
The script is limited for the specific test vehicle. Different suspension gives different IMU re-
sults. Therefore, if the car is changed, thresholds must be updated. In Figure the setup

that was used is shown, including the cameras coordinate system.

Figure 4.84: Cameras Coordinate System

It was measured along the same route with the same velocity. The group recorded 7564 samples
of the IMU which is approximately 120 seconds with a sample rate at 63. As seen from the
Figures there was a difference in the output, since the suspension on the cars were different.
In Figure the car has a more soft suspension and in Figure the suspension is more
stiff, due to a relatively new car. As seen in the figures an older car with more soft suspension
produces more noise. After approximately 95 seconds both cars detect the same unevenness at
the road.

110

4. Methods

[1000 2000 3000 4000 5000 8000 7000 8000

Figure 4.85: Measurement from Car with Soft Suspension

v,

-85

[1000 2000 3000 4000 5000 8000 7000 8000

Figure 4.86: Measurement from Car with Stiff Suspension

111

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

4. Methods

4.12 Communication in ROS

To ensure communication between sensors and scripts, ROS was used. To be able to commu-
nicate, there must be provided subscribers and publishers. The subscribers are the scripts that
receive the sensor data. The scripts that provide sensor data are the publishers. In this project
Arduino was used to provide sensor data to the scripts. ROS has provided libraries to make
sure that Arduino can be set as a node and a publisher or a subscriber. In this case the Arduino
is a publisher. It was experienced that the Arduino runs slow when the libraries for GPS and
ROS was included, the Arduino updated the location slow and it was not sufficient to run the
GPS signal as a publisher from Arduino itself. The solution was to use a Python script to read
the sensor values from the Arduino and to create a publisher from the Python script. The result

was improved, and the publisher was running faster.

The script for reading the values from the Arduino, and creating a publisher from the Python

script is shown in the code below.

import serial
import psycopg2
import rospy

from std_msgs.msg import Float64

#Connect to Serial Port

try:
arduino = serial. Serial(’/dev/ttyACMO’, 115200)
ok=1

except :
print (” Check port”)

def talker ():

#Read Serial and Create a Publisher
latitude=rospy . Publisher (’lat ', Float64, queue_size=10)
longitude=rospy.Publisher ('Ing’, Float64, queue_size=10)
lux = rospy.Publisher(’'lx’, Float64, queue_size=10)
rospy.init_node ('talker S anonymous=True)
rate = rospy.Rate(10)
while not rospy.is_shutdown():

gps_point = str(arduino.readline ())

if ok==1:

try:

lat = float (gps_point [0:9])
Ing = float (gps_-point[10:18])

112

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

10

11

12

13

14

15

16

17

4. Methods

Ix = float (gps_point[19:27])

except:
lat =0.0;
lng=0.0;
1x=0.0;

#print (lat ,Ing , 1x)
rospy . loginfo (lat)
rospy .loginfo (Ing)
rospy . loginfo (1x)
longitude . publish (Ing)
latitude . publish(lat)
lux . publish (1x)
rate.sleep ()

while True:

try:
talker ()

except rospy.ROSInterruptException:

pass

For another script to access the publisher data, the script subscribes to the publisher node. The

code below illustrates how the subscriber receives data from the publisher. The functions from

the code below are implemented in the scripts that requests sensor data.

import rospy

from std_msgs.msg import Float64

def lat_callback (msg):
global lat
lat=msg. data

def Ing_callback (msg):
global Ing
Ing=msg.data

while True:

try:
rospy . init_node(’listener ', anonymous=True)
rospy . Subscriber (" lat”, Float64, lat_callback)
rospy . Subscriber (" Ing”, Float64, Ing_callback)

113

18

19

20

21

4. Methods

rospy .spin ()

except rospy.ROSInterruptException:

pass

The system was launched by a launch file. When the system was launched, it started a ROS

environment. The environment starts a master node that registers all the created nodes. The

master node controls which node subscribes, and which node publishes. Figure shows the

layout of the ROS environment.

Registration

[Registration |

Registration

Registration

Figure 4.87: ROS Environment

114

5. Results

5. Results

5.1 Traffic Sign Recognition

The sign recognition test was performed on E18, from Grimstad to Nedenes. The goal was
to detect 90 signs on the highway. The sensor package detected 90 signs that occurred along
the road and pushed geospatial information to the database. The sensor package saved the
detected signs in a folder for later uploading to Dropbox. One of the detected 90 signs that
were captured from Nedenes to Grimstad is shown in Figure [5.I} another 90 sign that was

detected from Grimstad to Nedenes is shown in Figure [5.2

Figure 5.1: Detected 90 Sign Nedenes-Grimstad

Figure 5.2: Detected 90 Sign Grimstad-Nedenes

115

5. Results

The sensor package detects other signs during driving. The detected signs are not pushed to
the database since the template does not match a 90 sign. One example of a detected 50 sign
during testing is shown in Figure The package detected a 100 sign that is shown in Figure
Signs that are shown in Figure [5.3] and [5.4] was detected outside the testing range.

Figure 5.3: Detected 50 Sign After Testing

Figure 5.4: Detected 100 Sign After Testing

116

5. Results

5.2 Vibration Measurements

The test for vibration measurements was performed on E18 from Grimstad to Nedenes. The
script was set to detect high peaks during driving. The average value when the car was standing
still was measured to be —9.32%3 in z2-direction. The value was subtracted from the measured
value. A peak was set to be +4.5. The result is illustrated as a layer in QGIS and shown in
Figure One of the detected peaks is shown in Figure [5.6

Bringsvaerbekken

|| Bringsveermyra
B

Figure 5.6: Detected Peak

117

5. Results

5.3

Database

The detected states were GPS tagged and saved to the database. The information can later be

illustrated as a layer in QGIS. The vibration measurements stored in the database are described

as " BadRoad0000” because no frames are captured. The locations where the road was bad is
shown in Figure 5.7l The information for the 90 sign detection is shown in Figure The

image info is set in a way to be recognized in Dropbox when inspecting the detected state.

\Data Output | Explain | Messages History

info
character varying(255)

geom
geometry(Point,4326)

Bad_Roadb@g

Bad Roadbog

Bad_Roadoeg

Bad Roadogg

Bad Roadogg

Bad Roadoog

Bad_Roadb@g

Bad Roadbog

O o~ n hA(WN (=

Bad_Roadoeg

10 |Bad Roadoosg

11 |Bad Roadogg

12 |Bad_Roadoss

13 |Bad_Roadb@g

14 |Bad_Roadbgg@

15 |Bad_Roadoes

16 |Bad Roadoosg

17 |Bad Roadogs

18 |Bad_Roadoss

19 |Bad_Roadb@g

20 |Bad_Roadbgg@

21 |Bad_Roadoes

22 |Bad Roadoog

0101000020E6100000CF126404540021401975ADBD4F274D40
0101000020E6100000070951BEARO52140384D9F1D70274D48
0101000020E610000092CECOCBCEO221401E1BE1785D274D40
0101000020E610000092CECOCEBCEO221401E1BE1785D274D40
0101000020E610000096986725AD00214071581AF851274D40
0101000020E610000096986725ADB0214071581AF851274D40
0101000020E610000096986725AD00214071581AFB51274D40
0101000020E6100000DBBY9388FOFF2040EAZ245B5D4E274D40
0101000020E61000008E06F0164800214003B5183C4C274D40
0101000020E610000032CTFZAEVADD2]140AF264F594D274D40
0101000020E6100000F6D214014E47214022516859F72F4D40
0101000020E6100000F6D214014E47214022516859F72F4D40
0101000020E6100000F6D214014E47214022516859F72F4D40
0101000020E6100000FED214014E47214022516859F72F4D40
0101000020E6100000F6D214014E47214022516859F72F4D40
0101000020E6100000B3295778973B2140D3C1FA3IFE72F4D40
0101000020E610000007EBFF1CEG3B21406EDFASFETAZFAD40
0101000020E61000002383DC4598422140304ADO5FEB2F4D40
0101000020E610000092770EGSAB42214097AB1FOBE42F4D40
0101000020E610000092770EGSAB42214097AB1FO9BE42F4D40
0101000020E610000081E9B46E8242214014CDO358E42F4D40
0101000020E610000081E9B46E8242214014CDO358E42F4D40

Figure 5.7: Pushed Road Condition Data to PostgreSQL

13 |(910le08020E6100000CF488446B0592140909FBD5C37334048 98picBBl.jpg
14 |0101000020E6100000CF488446B0592140909F8D5C37334D40 98picBBZ.jpg
15 |0101000020E61000005EBEF561BD5921400BF148BC3C334D40 98piceB3.jpg
16 |0101000020E61000005EBEF561BD5921400BF148BC3C334D40 98piceB4.jpg
17 |(9101008020E61000005EBEF561BD5921400BF148BC3C334040 99pic@es5. jpg
18 |(0101000020E61000007B32FFEBOE6421407TAB4ETOT74354D48 98p1cBB6.jpg
19 |(0101008020E6100080C861307FB56421401900AABB71354D48 98p1cBB7.jpg
20 |0101000020E6100000C861307F856421401900AABET1354D40 98picBB8.jpg

Figure 5.8: Pushed Sign Data to PostgreSQL

118

5. Results

5.4 QGIS

QGIS was used to show where the detected states occur. The map was imported as a WMS-
service from kartkatalog.geonorge.no. The map used was Topografisk Norgeskart graatone.
This is a topological map of Norway in grayscale. Detected states are dragged over the topo-
logical map and the different colors represent different states. The result of detected 90 sign

has green points and shown in Figure [5.9, The detected peaks by the IMU has purple points
and shown in Figure [5.10]

Figure 5.10: IMU Peaks Illustrated in QGIS

119

kartkatalog.geonorge.no

5. Results

By enlarging the image in QGIS, and clicking on the GPS tagged point, the information about

the state can be shown. In Figure the enlarged probe of the image with point information

is shown.

TEEREOR 0 APAANPPRABER @e K & REECZ= v - B

WV B Sn-o ki< B-= QE]=NE B -A

Browser Panel

oeyvmTe

B8

» [Project home
» [Home

4 Favourites
>/

& oB2

P MssQL
v @ PostGIs

» < gisdata

» < MAS500

/# SpatiaLite

& ArcGisFeatureserver

@ ArcGisMapserver
» @ ows

@ Tile Server (XYZ)
® wes

@ WFs
v @ wMs

» < Topo_Norge

y S

Layers Panel
v @ ® VE-BRO

& © roadcondition
& © geo

v & ¥ Topografisk norgeskart 4 graatone

/‘é&

Figure 5.11: Information about GPS Point

120

5. Results

5.5 Dropbox

Images stored in Dropbox was uploaded with ethernet internet connection after the testing. 4G
module on the up2 does not work and therefore the upload to Dropbox was shown after the
test run. The script for uploading images to Dropbox was run from the command prompt with

ROS commands. The commands and printed uploading confirmation is shown in Figure [5.12

upsquared@localhost s$ rosrun python_skripter uploader.py
Jusr/local/lib/python2.7/dist-packages/requests/ _init__.py:83: RequestsDependencyWarning: 0ld version of cryptography ([1, 2, 3]) may cause slowdown.
warnings.warn(warning, RequestsDependencyWarning)

i /home fupsquared/Desktop/detected_images/90_sign/pic006.jpg to /90_sign/pice06.jpg

/home fupsquared/Desktop/detected_images/96_sign/pic0@1.jpg to /98_sign/piceel.]ipg

/home fupsquared/Desktop/detected_images/9 i .jpg to /98 _sign/picee3.jpg

/home fupsquared/Desktop/detected_images/9 i .jpg to /90_sign/piceo2.jpg

/home/upsquared/Desktop/detected_images/9 i to /90_sign/pic004.jpg

{ { jpg te /96_sign/picees.jpg

/home fupsquared/pesktop/detected_images/96_ { .ipg to /98 sign/piceee. jpg
/home fupsquared/Desktop/detected_images/96_sign/pic007.jpg to /98 _sign/pice07.3ipg
upsquared@localhost s$

Figure 5.12: Uploading Detected Images to Dropbox

By viewing the ”Apps” folder on the local computer, the uploaded images are stored in the
folder for the detected states. In this case the images were uploaded to the folder for 90 sign
recognition. In Figure the Dropbox folder for 90 sign detection is shown.

fYHome Dropbox Apps MAS_500_detection 90_sign

Recent — r— r— r— r—1
Home | :) h , h /) | ;

Desktop pic000.jpg pic001.jpg pic002.jpg pico03.jpg pico04.jpg pic005.jpg
Documents a é

Downloads

pic006.jpg pic007.jpg

OB O

Music
Pictures
Videos

Trash

Y E E Q& ¢

Network

Computer

2 @

Connect to Server

Figure 5.13: Uploaded Detected Images to Dropbox Folder

To access the images from another computer, the group logged into the Dropbox user account
that was made for the up2. The images was found in the 90 sign folder and the confirmation
is shown in Figure There is important to notice that the image found in Dropbox folder
and the information in describing the GPS tagged point has the same containment in the name.
See the browser tab in Figure

121

5. Results

pic006.jpg - Mozilla Firefox
33 picoo6.jpg

(— ¢ @ @ & Dropbox, Inc (US) | https://www.dropbox.com/home/Apps/MAS_500_detection/90_sign?preview=pic006.jpg

¢ picO0Bjpg %
Modified today at 3:03 am

Figure 5.14: Detected Images to Dropbox From another Computer

122

5. Results

5.6 Lane Mark Quality

The tests was along E18 from Grimstad to Kristiansand. Test setup was the same as for testing
for speed limit sign recognition. The group captured screenshots during the testing of the frame,
warped frame and the binary warped frame. Since the GPS sensor stopped working the group

did not manage to test this algorithm properly.

As seen in Figure the algorithm did manage to detect the lane marks. With a proper
working GPS sensor and correct thresholds, the sensor package sends an image of the frame

including GPS coordinates to the database when the sum of pixels is below the threshold.

e« % @B PLL o
/home/upsquared/MAS500_ws/src/launch_file/src/system.launch http://localhost:11311
6 5- likely re or fe !
654835693440] (s e Medi
L1

13/05 03:29:2
a formats : [

[1557732567
30
[1557732567.4921
[1557732567
[1557732567
[1557732567
[1557732567
[1557732567

i
estamp.cpp:174) HID timest

tamp.cpp:64) UVC metadat
1s.

Dynamic
(dss-ti

e 5t I@BEPALHS

le_£AR w2\ Pe114 ;e117 D103 fu—£an emtEm oo

Figure 5.15: Lane Mark Detection Between Grimstad and Kristiansand

Bright daylight resulted in shadows from trees and lamp post, which affected the result. In Fig-
ure the shadow from a lamp post crossed the lane mark, resulting that the sensor package

did not manage to detect this area as a part of the line. This is shown in figure [5.16

123

5. Results

=% ¢t @O L LOLHY

() /home/upsquared/MAS500_ws/src/launch_File/src/system.launch httpi//localhost:11311
at 36315752-1a66-a242-9065-d01814a likely requires patch for fourcc code RW1
13/85 03:29:27,485 WARNING [146654835693446] (sensor.cpp:366) Unregistered Medi
a formats : [RW16 1; Supported: []
[1557732567.488791985]: color stream is enabled - width: 640, height: 48
30
[1557732567.492116437]: insert Depth to Stereo Module
[1557732567.492624221]: insert Color to RGB Camera
[1557732567.492824370]: insert Infrared to Stereo Module
[1557732567.492914089 insert Infrared to Stereo Module
[1557732567.492980982]: insert Gyro to Motion Module
[1557732567.493052688]: 1 Accel to Motion Module
[1557732567.615395065 i 3
[1557732567.615608486
[1557732567.618587991]: RealSense Node Is Up!
[1557732567.618703319]: Setting Dynamic reconfig parameters.
13/05 03:29:27,636 WARNING [140653954569984] (ds5-timestamp.cppi174) HID timest

amp not found! please apply HID patch.

13/05 03:29:27,675 WARNING [140653400946432] (ds5-timestamp.cpp:64) UVC metadat
a payloads not available. Please refer to installation chapter for details

[INFO] [1557732567.711253984]: Done Setting Dynamic reconfig parameters.

13/05 03:29:27,745 WARNING [140654112732928] (ds5-timestamp.cppi64) UVC metadat
a payloads not available. Please refer to installation chapter for details.
ﬁ){(bwinduw: Unhandled client message: "_COMPIZ_TOOLKIT_ACTION"

fu_£An w22 PR Fegn DeEa)

Figure 5.16: Shadow from Lamp Post Crossing the Lane Mark

Additionally when the vehicles from the left lane drove by and the shadow occurred the sensor

package was not able to detect the lane marks, as seen in Figure

=5 ¢+ 4 @B L HPLHY

) /home/upsquared/MAS500_ws/src/launch_File/src/system.launch httpi//localhost:11311
at 36315752-1a66-a242-9065-d01814a likely requires patch for fourcc code RW16!
13/65 03:29:27,485 WARNING [140654835693440] (sensor.cpp:366) Unregistered Medi
a formats : [RW16]; Supported: []
[1557732567 color stream is enabled - width: 640, height: 48
)

insert Depth to Stereo Module
insert Color to RGB Camera
insert Infrared to Stereo Module
89]: insert Infrared to Stereo Module
[1557732567.492980982]: insert Gyro to Motion Module
[1557732567.493052688]: insert Accel to Motion Module
15395065]: num_filters: 0
15608486]: SELECTED BASE:Depth,
18587991]: RealSense Node Is Up!
[1557732567.618703319]: Setting Dynamic reconfig parameters.
13/05 03:29:27,636 WARNING [140653954569984] (ds5-timestamp.cpp:174) HID timest
amp not found! please apply HID patch.
13/05 03:29:27,675 WARNING [140653400946432] (ds5-timestamp.cpp:64) UVC metadat
a payloads not available. Please refer to installation chapter for details.
[INFO] [1557732567.711253984]: Done Setting Dynamic reconfig parameters.
13/05 03:29:27,745 WARNING [140654112732928] (ds5-timestamp.cpp:64) UVC metadat
a payloads not available. Please refer to installation chapter for details.
oXcbiindow: Unhandled client message: "_COMPIZ_TOOLKIT_ACTION"

€4 w_22\ M.a1n Fand D.0n

Figure 5.17: Lane Mark Detection - Shadows from Vehicles

124

5. Results

In Figure the lane is worn which make it brighter, resulting the pixel value to be below the

threshold. This causes disturbance in the frame and difficult to determine the lane mark quality.

e % ¢ @B PLHOHY

p— /home/upsquared/MAS500_ws/src/launch_file/src/system.launch http://localhost:11311
at 363157 242-9065-d01814a Llikely requires patch for fourcc code RW16!
13/65 03 5 ING [148654835693440] (sensor.cpp:366) Unregistered Medi
a formats : [RW16 [
INFO] £ enabled - width: 640, height: 48

T (il
ra

615395065]
6156/ 6]

9] 5
ING [14065395456 (174) HID timest
amp not found! please apply HID patch.
13/05 03 6 ING [14065340094 (ds5-timestanp.cpp:64) UVC metadat
a payloads not available. PL r to installation chapter for detail
[INFO] [1557732567.71 4 ting Dynamic reconfig rs.
13/05 03 7,745 ¥ 8] (dss-til P:i64) UVC metadat
a payloads not available. PL to installation chapter for details.
i/{(bwindow: Unhandled client mess COMPIZ_TOOLKIT_ACTION

fu_£An w_23\ n.ac ;01D fu_non w_aml 1occ

Figure 5.18: Lane Mark Detection - Worn Lane

125

5. Results

5.7 Light Intensity Detection

The light intensity sensor was calibrated with a certified lux sensor as described earlier in the
report, which means that the value the light intensity sensor can be considered correct. The
sensor is sensitive, and the sensor varies several hundreds of lux over a short amount of time.
During heavy raining it varies more than for example in sunny weather. In Figure the test

setup during heavy rain is shown.

Figure 5.19: Test Setup - Heavy Rain

The group did the testing at E18 near Grimstad on a route of 7.6 km which is illustrated on a
map in Figure [5.20

Figure 5.20: Test Route

126

5. Results

The sensor package was outputting lux value every second. In Figure a graph of the values
is illustrated. As seen the lux varies due to the weather and the long distance traveled. In

addition, the lux measurements can vary in terms of how the vegetation next to the highway.

8500 — I *

w m ww M i 1

I HHH‘ A 1 A
I Ud J L
‘ 1 \‘ ‘ \we‘m
Lux Ll il

|
(fn ‘\H H
7500 - H‘ w\UJ | ! ” U ‘ ‘ ‘U ‘
AN H\ ‘l | |

7000 - [[['1]] ‘ \ Il

‘I' Vi M‘

‘ UHJ \

6500 ;“u“il‘ \‘ ul‘m“ FM\M“M‘”WN ” L/“ \\\ Mf'

6000

. NHJ'.H' v L

I l“M‘
‘l |

5500 —

5000 [| B

4500 — -
L L L L L L L
50 100 150 200 250 300 350

Time in seconds

Figure 5.21: Light Intensity Measurements - Rainy Weather

Furthermore, the group tested when the weather was more stable. The test setup is shown in
Figure which also shows the sunny weather condition.

127

5. Results

Figure 5.22: Test Setup - Sunny Weather

In Figure the graph of the measurement in sunny condition is shown. The same route was
driven as for measuring in rainy conditions. As seen in the figure the measurements are more
stable. The lux is approximately around 20 000 lux on average. The drop at the graph around

270 seconds and at 320 seconds is caused by the vegetation that leaves shadow at the road.

25— -

| | | | | |
0
0 50 100 150 200 250 300 350

Time in Seconds

Figure 5.23: Light Intensity Measurements - Sunny Weather

128

5. Results

5.8 Lane Curvature

The curvature of the lane, vehicle position and curve radius are written to the final output.
In addition, the lanes are highlighted. In Figure the final output is shown. on-site tests
were not performed of the lane curvature algorithm. All though images were imported from the

dashboard cam to run the algorithm which is illustrated in the figure below.

Figure 5.24: Final Output - Lane Detection

129

6. Discussion

6. Discussion

6.1 Bright Conditions

During the testing different lightening conditions were an issue. During bright conditions, the
light was intense and when light hits the camera lens, the camera experienced difficulties with
detecting the speed limit signs. The red color becomes too dark and the color threshold in the
script does not look for this type of color. In Figure [6.1] a state where the camera does not
detect the sign is shown. Figure [6.1] can be compared with Figure [6.2} It is worth to mention

that both figures are from the same test run.

The lane mark detection is affected by the lighting condition. When the lanes become old
the asphalt gets brighter. The bright asphalt can result as noise when thresholding for bright
objects in the lane, but it can give an indication for worn lanes. In Figure the worn lanes
are shown. When there was rain, the asphalt was darker than the lines and the problem is

eliminated.

Figure 6.1: Dark Frame - Not Detected Sign Figure 6.2: Detected Sign

130

6. Discussion

St +4@BEPLPLPHY
e e /home/upsquared/MAS500_ws/sre/launch_Filesrc/system.launch hetp://localhost:11311

pateh for fourc
.cpp:366) Unregi.

INFO]
, fps:
INFO] [1
INFO]
INFO]
INFO]
INFO]
INFO] [1
INFO]
INFO]
INFO]
[INFO]

o installatio
ting Dynamic
s5-

A
il
L

Figure 6.3: Lane Mark Detection - Worn Lane

One solution to the problem is to test with different filter for the camera lens. Polarizing filter is
a good solution, since this filter is eliminating unwanted reflections during very light conditions.

Additionally, it saturates the colors in a more normal way.

Since the camera has options for modifying the setup, a solution could be to modify the camera
parameters for bright and dark lightning. The light intensity sensor can be used to distinguish
between bright and dark surroundings. By determining the light condition with the light inten-

sity sensor, the camera setup can be modified for correct surroundings.

131

6. Discussion

6.2 Light Intensity Sensor

In the current design of the light intensity sensor, the diffuser is not placed inside a conical form,
this makes the diffuser exposed for unwanted shadows from the surroundings. During testing
the group experienced variations in the measurements if there was movement in the room or
near the sensor package in the car. This is due to the shadows the diffuser experienced from
a long distance. To make it less sensitive for the movement from the surroundings and make
it more responsive to the actual light, the diffuser must be placed inside a conical form. An
example of this is shown in Figure

Figure 6.4: Diffuser with Conical Shape

6.3 Lane Curvature

The group did not perform tests of the algorithm with video for finding the lane curvature,
only images taken from dashboard. Though, the group found it interesting due to further work.
This algorithm requires more testing and tuning. When the lane curvature is found and the
lane area is determined, the next step is to look for unwanted objects in this area. The lanes

are the region of interest.

If the algorithm is looking for unwanted objects in the whole frame, the algorithm can detect
objects outside the road shoulders. This is not relevant. By defining the region of interest, it

can improve results and computational power is reduced.

The region of interest limits the algorithm to only search for unwanted objects in the lane the
car is driving. Additionally, the region of interest can be adjusted to include the road shoulder.

Due to safety the road shoulder should be free for objects that may cause danger for the traffic.

132

6. Discussion

6.4 Camera Position Error

When the group measured the lane mark, both the camera and the object had to be aligned
correctly to achieve great results. Optionally both cannot have the different offset. This affects
the result in a negative way. It means that the rotation of the z-axis and y-axis of the camera
needs to be the same as for the measured object. The setup and the coordinate systems are

shown in Figure [6.5

Figure 6.5: Coordinate System for Object and Camera

Therefore, when measuring in practice it is important to mount the camera in level with the
road at the dashboard. The road surface can be assumed to be in level, except uphill and
downhill. Some error in the measurements is to be expected when going uphill or downhill. To
remove human measuring error and to improve the result, the mounting of the camera should be
measured with a laser tracker. By using a laser tracker, the height is more accurate measured,
but there is always a measurement error, but lower than measuring with handheld measuring

equipment.

133

6. Discussion

6.5 Power Supply

During testing a voltage converter from Biltema was used. This is not an ideal solution for the
end product, since it converts 12V up to 230V and then the power supply for the up2 converts
the 230V to 5V. All these conversions may cause disturbance and the system would not work
properly. All tough, the group find this solution sufficient for the testing purposes. The voltage

converter from Biltema is shown in Figure

Figure 6.6: Voltage Converter from Biltema [24]

For completing the product, the group strongly recommended to find a better solution to a
power supply. As mentioned earlier in the report, an appropriate power supply which directly
converts 12V to 5V with enough power was found. Unfortunately, it was not possible to order
one piece, the company required orders of several pieces. The Transporter that was used during
testing have power supply in the cigarette contact when the car is turned off. In Figure [6.7]
the Biltema converter is supplied with power while the key is not in contact. If the car does

not have this option, an external power supply is recommended to have a safe system shutdown.

Figure 6.7: Power Supply with Ignition Off

134

6. Discussion

6.6 IMU Coordinate System

When extracting information from the camera IMU, the group faced problems with the coordi-
nate system. The coordinate system in the RealSense-Viewer application that is provided from
Intel is not the same as in the Realsense package provided for the ROS environment. When
measuring acceleration with Realsense-Viewer, the vertical axis is Y-axis. When extracting
acceleration data using ROS, the vertical axis is Z-axis. In Figure and the difference in

coordinate system is shown.

upsquared@localhost:~5 rostopic echo /camera/accel/sample
header:
seq: 3414
stamp:
secs: 1556985529
nsecs: 290985584
frame_1id: "camera_accel optical_frame"
orientation:
X: 0.0
y: 0.0
Z: 0.0

W: 0.0

orientation_covariance: [-1.0, 0.0, 0.0, 0.0, 0.0, 6.0, 0.0, 0.0, 0.0]
angular_velocity:

X: 0.0

y: 0.0

z: 6.0
angular_velocity covariance: [0.01, 0.0, 0.0, 0.0, 0.01, 0.0, 0.0, 0.0, 0.01]
linear_acceleration:

x: -0.187873149216

y: 0.245166242123

Z: 9.40457725525
linear_acceleration_covariance: [©.01, 0.0, 0.0, 0.0, 6.01, 0.0, 0.0, 0.0, 0.01]

Figure 6.8: Z-Axis for Vertical Measurement

D435| inHn 80 o
[
0.284
9.424
0.049
N: 49429

Figure 6.9: Y-Axis for Vertical Measurement

135

6. Discussion

6.7 Machine Learning Vs. Template Matching

In the beginning of the project the group spent time on machine learning, training datasets and
trying different machine learning techniques. Afterwards the group concluded that performing
edge computing and training datasets required a powerful computer that exceeds the budget.
Therefore, the options was to exceed the budget and buy a powerful computer, or buy a less
powerful computer and rethink the process. The group approached the task in a more simplified
direction and tried to find a way to use template matching to recognize the traffic signs instead

of neural network.

6.8 Light Intensity Sensor - GPS Problem

During testing, when the vehicle entered tunnels, the GPS signal was lost. Since the light in-

tensity meter runs on the Arduino with the GPS sensor, the light measuring stops.

One solution is to run the GPS sensor individually from other sensors, meaning that there can
be used two Arduino micro controllers where the sensors are independent of each other. In that

way the problem can be solved and prevent issues from the GPS signal.

6.9 ROS, QGIS and PostgreSQL

For the group, ROS, QGIS, Python and PostgreSQL was unknown topics before the thesis. The
group lost time due to understanding the softwares and to get enough knowledge for project
implementation. All though, the group find these softwares relevant for the project. If the
group had basic knowledge about the softwares before thesis start up, better results could have

been achieved.

6.10 Lane Mark Detection

The lane mark quality is determined by summing white pixels in the left and right side with
a threshold. This method is not sufficient due to noise and car position. The estimation with
pixel summation does not give an explanation about the actual line. The car can turn, and the
line is out of the frame, the script would push wrong information to the database. By measur-
ing the line with camera intrinsic parameters, a better condition of the line is provided. The
line measurements can be performed in vertical and horizontal directions. Real measurement

estimation would give a better understanding of the line quality.

136

6. Discussion

6.11 Dropbox

Dropbox is only used as a simple solution during prototype testing. Dropbox is not an ideal
solution for storing images. Services such as private storage facilities, MS Azure, Amazon Web

Services etc are better suited to an actual implementation intended for production.

6.12 GPS Antenna

The GPS antenna had issues from the start. It used 10 to 15 minutes to receive signal from
the satellites. When the connection was established, the GPS worked without faults. At the
end of the project, the GPS module stopped receiving signals from the satellites. The power
indication for the module is on, but not blinking. It is recommended to replace the antenna or

buy a better GPS module.

137

7. Conclusion

7. Conclusion

Digitized road maintenance is an important topic due to increased efficiency of road mainte-
nance. If the digitized road monitoring system can reduce manual road inspection, it may result

in significantly lower maintenance cost.

Difficulties with present road maintenance is that most of the inspection is provided manually
by humans and in some cases driving special made vehicles. Since the number of highways
increases, more maintenance and inspection is required. As a result of increased number of
highways with manual inspection, the cost increases. Therefore, by producing a compact and
cost effective sensor package and by implementation in trafficking vehicles it can replace the

special made vehicles for road inspection and monitoring.

By detecting states as traffic signs, lane mark quality and light condition with a sensor package,
it results in a more effective road inspection. The stored data is pushed to a database where it is
illustrated on a map service to show where the detected states are located. The sensor package
updates the detected faults until the fault is repaired. For the tested conditions in Chapter
the sensor package gave positive results on sign detection, vibration measurements, storing and

plotting data.

Some new vehicles are equipped with autonomous driving on the highways, where navigation
using the lane marks is a key factor. By implementing the line length measuring to the sensor
package, it can give an indication of the lane mark quality. The owner of the highway can

predict when it is necessary to renew the lane marks.

The sensor package is not complete and requires more testing and implementation for perfec-
tion. This first version shows that it is possible to create a low cost and compact sensor package
for implementation in a vehicular platform. Because the sensor package is compact, it sim-
plifies the installation process and can be implemented in several vehicles. By increasing the
computational power and utilizing the sensors maximum performance, the result can further be

improved.

138

8. Suggestions for Further Work

8. Suggestions for Further Work

8.1 Speed Limit Sign Recognition

To improve the algorithm and to make it more automatic, improvements can be done. At
"Kartverket”, the GPS locations for the speed limit signs are available. When the car is at the
area where it is a speed limit sign, the sensor package runs the algorithm to detect if a sign
is recognizable at this location. If the sensor package detects the signs no states are provided
to the database. If the sign is not detected at the desired location, a probe of the location is
pushed to the database to show the fault. This could improve the result instead of just letting

the sensor package search for speed limit signs continuously.

8.2 Camera

The RealSense camera has several tuning parameters for the RGB camera. During this thesis
the camera was set on ” Auto”. To manipulate the tuning parameters, the camera can get im-

proved during bright conditions and the issue with dark signs would be solved.

The camera is a depth camera which has a camera depth topic available for further work. Since
the camera is already integrated in ROS, the depth information can be provided from the cam-

era node. The depth information can be used for scanning the road rails, detect worn tracks etc.

8.3 Hardware

To implement trained models for detecting different states, a more powerful computer is recom-
mended to use. When using the up2 with the highest camera resolution activated, lag occurred.
An example of a more powerful supercomputer is the Jetson Xavier Developer Kit provided by
NVIDIA.

8.4 Light Intensity Algorithm

As described in the introduction chapter there is lightning requirements at the road and in the
tunnels at different times of the day. An improvement could be to make an algorithm which
determines the average lightning in tunnels and road. They could be set accordingly to the

requirements and whether it is measuring along the road or in tunnels.

139

8. Suggestions for Further Work

8.5 Touch Monitor for Up2

To have a complete product the sensor package should include a monitor to give an overview
for the operator. The monitor should show that the sensor package is up and running without
errors. The monitor should also be able to have a ”Start” and ”Stop” function which allows the
driver to start the sensor package and shut it down in a secure way before the key is removed
from the ignition. Additionally, the monitor should be able to abort and launch each of the
algorithm, lane mark quality, vibration measurements, speed limit sign recognition and light

intensity sensor.

An example could be a 7-inch touch monitor, which is possible to get hands on for a low cost.

8.6 Lane Mark Quality

For further work on this algorithm, the area of the lane marks can be determined and verified
against standards. Since the length of lane marks now can be identified, next step is to find the
lines in the frame with for example Canny Edge detection. Furthermore, when the length and

width of the lane marks are known the area can be calculated.

8.7 Improve Algorithm for Bright Conditions

To improve the algorithm for bright conditions histogram normalization can be used. This al-
gorithm normalize the pixel value from a desired image. The desired image has to be an image

with ideal lightening conditions, since the algorithm uses this as reference.

140

8. BIBLIOGRAPHY

Bibliography

[1] Python Calibration Script - IMU Intel Real Sense 435i
https://github.com/IntelRealSense/librealsense [12.03.19].

[2] Handbok N500 Vegtunneler
https://www.vegvesen.no/_attachment/61913/binary/11438167fast_title=HJC3%
A5ndbok+N500+Vegtunneler.pdf| [11.03.19)].

[3] ROS Overview
https://robohub.org/ros-101-intro-to-the-robot-operating-system/ [03.04.19].

[4] Image Acquisition
http://wwwl.idc.ac.il/toky/imageProc-08/lectures/02_acqusitionx4.pdf
[01.02.19].

[5] Hue Color Circle - Image
https://www.quackit.com/css/color/values/css_hsl_function.cfm [08.04.19].

[6] Canny Edge Detection - OpenCV
https://docs.opencv.org/3.4/da/d22/tutorial_py_canny.html [14.02.19].

[7] Track Edges by Hysteresis - Image
http://www.meccanismocomplesso.org/opencv-python-canny-edge-detection/
[14.02.19].

[8] Hough Transform
http://matlabtricks.com/post-39/understanding-the-hough-transform [14.02.19].

[9] 2D Convolution
http://graphics.stanford.edu/courses/cs148-10-summer/docs/04_imgproc.pdf
[16.05.19).

[10] Photo Conductive Sensor
https://www.youtube.com/watch?v=i1N8XIK77dc&t=136s|[28.01.19].

[11] Photo Conductive Sensor - Light Dependant Resistor
https://www.electronics-tutorials.ws/io/io_4.html [22.02.19].

[12] GPS Receiver Explained
http://www.physics.org/article-questions.asp?id=55 [28.01.19].

[13] Inrared Temperature Sensor
https://www.sensortips.com/temperature/infrared-temperature-sensor/

[20.01.19].

141

https://github.com/IntelRealSense/librealsense
https://www.vegvesen.no/_attachment/61913/binary/1143816?fast_title=H%C3%A5ndbok+N500+Vegtunneler.pdf
https://www.vegvesen.no/_attachment/61913/binary/1143816?fast_title=H%C3%A5ndbok+N500+Vegtunneler.pdf
https://robohub.org/ros-101-intro-to-the-robot-operating-system/
http://www1.idc.ac.il/toky/imageProc-08/lectures/02_acqusitionx4.pdf
https://www.quackit.com/css/color/values/css_hsl_function.cfm
https://docs.opencv.org/3.4/da/d22/tutorial_py_canny.html
http://www.meccanismocomplesso.org/opencv-python-canny-edge-detection/
http://matlabtricks.com/post-39/understanding-the-hough-transform
http://graphics.stanford.edu/courses/cs148-10-summer/docs/04_imgproc.pdf
https://www.youtube.com/watch?v=ilN8XIK77dc&t=136s
https://www.electronics-tutorials.ws/io/io_4.html
http://www.physics.org/article-questions.asp?id=55
https://www.sensortips.com/temperature/infrared-temperature-sensor/

8. BIBLIOGRAPHY

[14]

[17]

[18]

[20]

[21]

22]

[23]

[24]

[25]

[26]

Visualisation of Edge and Cloud Computing
https://www.lanner-america.com/blog/4-edge-computing-technologies-—

enabling-iot-ready-network-infrastructure/ [21.02.19].

CPU Vs. GPU Cores
http://www.adaltas.com/en/2018/07/24/deep-learning-tenserflow-yarn-hadoop/
[06.03.19].

From 3D World Coordinates to 2D Image Coordinates
https://www.cc.gatech.edu/classes/AY2016/cs4476_fall/results/proj3/html/
agartia3/index.html|[21.02.19].

What is Camera Calibration?

https://uk.mathworks.com/help/vision/ug/camera-calibration.html|[21.02.19].

Evaluating the accurace of camera calibration
https://www.mathworks.com/help/vision/examples/evaluating-the-accuracy-of-

single-camera-calibration.html|[21.02.19].

VW Transporter Drawing
http://www.just-tow.co.uk/towbars/volkswagen-tow-bars/volkswagen-

transporter-towbars.html [16.05.19].

Intel Real Sense 435i
https://click.intel.com/intelr-realsensetm-depth-camera-d435.html| [07.02.19].

MLX90640 Thermal Camera
https://shop.pimoroni.com/products/mlx90640-thermal-camera-breakout?
variant=12549161746515 [07.02.19].

Heat Dissipation in Electrical Enclosures
http://www.hoffmanonline.com/stream_document.aspx?rRID=233309&pRID=162533&
fbclid=IwAR1pmN1M505Iyw2uDN37wjpouXogYolHUES jpf_0xaZox97m7FB56VTkmgk
[30.04.19].

HSV Color Range
https://stackoverflow.com/questions/10948589/choosing-the-correct-upper-

and-lower-hsv-boundaries-for-color-detection-withcv| [20.03.19].

Voltage Converter from Biltema
https://www.biltema.no/bil---mc/elektrisk-anlegg/kontakter-og-uttak-12-
volt/spenningsomformer-2000030753/ [10.05.19].

Handbok V124 Teknisk planlegging av veg- og tunnelbelysning
https://www.vegvesen.no/_attachment/61499/binary/963994 [08.03.19].

Intel UP Squared Al Vision kit

142

https://www.lanner-america.com/blog/4-edge-computing-technologies-enabling-iot-ready-network-infrastructure/
https://www.lanner-america.com/blog/4-edge-computing-technologies-enabling-iot-ready-network-infrastructure/
http://www.adaltas.com/en/2018/07/24/deep-learning-tenserflow-yarn-hadoop/
https://www.cc.gatech.edu/classes/AY2016/cs4476_fall/results/proj3/html/agartia3/index.html
https://www.cc.gatech.edu/classes/AY2016/cs4476_fall/results/proj3/html/agartia3/index.html
https://uk.mathworks.com/help/vision/ug/camera-calibration.html
https://www.mathworks.com/help/vision/examples/evaluating-the-accuracy-of-single-camera-calibration.html
https://www.mathworks.com/help/vision/examples/evaluating-the-accuracy-of-single-camera-calibration.html
http://www.just-tow.co.uk/towbars/volkswagen-tow-bars/volkswagen-transporter-towbars.html
http://www.just-tow.co.uk/towbars/volkswagen-tow-bars/volkswagen-transporter-towbars.html
https://click.intel.com/intelr-realsensetm-depth-camera-d435.html
https://shop.pimoroni.com/products/mlx90640-thermal-camera-breakout?variant=12549161746515
https://shop.pimoroni.com/products/mlx90640-thermal-camera-breakout?variant=12549161746515
http://www.hoffmanonline.com/stream_document.aspx?rRID=233309&pRID=162533&fbclid=IwAR1pmN1M505Iyw2uDN37wjpouXogYo1HUE5jpf_OxaZox97m7FB56VTkmgk
http://www.hoffmanonline.com/stream_document.aspx?rRID=233309&pRID=162533&fbclid=IwAR1pmN1M505Iyw2uDN37wjpouXogYo1HUE5jpf_OxaZox97m7FB56VTkmgk
https://stackoverflow.com/questions/10948589/choosing-the-correct-upper-and-lower-hsv-boundaries-for-color-detection-withcv
https://stackoverflow.com/questions/10948589/choosing-the-correct-upper-and-lower-hsv-boundaries-for-color-detection-withcv
https://www.biltema.no/bil---mc/elektrisk-anlegg/kontakter-og-uttak-12-volt/spenningsomformer-2000030753
https://www.biltema.no/bil---mc/elektrisk-anlegg/kontakter-og-uttak-12-volt/spenningsomformer-2000030753
https://www.vegvesen.no/_attachment/61499/binary/963994

8. BIBLIOGRAPHY

[27]

28]

[30]

[31]

32]

[33]

[39]

https://up-shop.org/home/285-up-squared-ai-vision-x-developer-kit.html
[29.01.19].

Sensor vehicular platform for road maintenance
https://ieeexplore.ieee.org/document/7577114 [15.02.19)].

An Automatic Road Distress Visual Inspection System Using an Onboard In-Car Camera
https://www.hindawi.com/journals/am/2018/2561953/ [15.02.19].

ROADWATCH ROAD SURFACE TEMPERATURE SENSORS FROM M.S. FOSTER
https://msfoster.com/products/winter-products/roadwatch-temperature-

measuring-system/roadwatch-road-surface-temperature-sensors/ [15.02.19].

Measuring salt on road surfaces - A discussion of salt concentration versus salt amount
https://wiki.math.ntnu.no/_media/tma4850/2009v/feste_og_saltmengde_vs_
saltkonsentrasjon.pdf [15.02.19].

Yutaka Suya. New road surface maintenance of expressway using an On-Vehicle salinity

Sensor System which measures the salinity continuously. Yamada Giken Co LTD, 2014.

Adaption Luminance

https://encyclopedia2.thefreedictionary.com/adaptation+luminance|[11.03.19].

Python Explained
https://www.python.org/doc/essays/blurb/|[10.02.19].

QGIS - Software
https://no.wikipedia.org/wiki/QGIS|[15.04.19].

PostgreSQL - Software
https://en.wikipedia.org/wiki/PostgreSQL#Storage_and_replication [15.04.19].

What is OpenCV?
https://opencv.org/about.html| [28.01.19].

Arduino Uno R3
https://www.elfadistrelec.no/no/mikrokontrollerkort-uno-
arduino-a000066/p/110389197channel=b2c&price_gs=235&source=
googleps&ext_cid=shgooaqnono-na&pup_e=1&pup_cid=35879&pup_
1d=11038919&gcl1id=CjOKCQiAzKnjBRDPARIsAKxfTRBJamOKwAwcwp_
ou7rQUO7Fu7TY4wDvrngW1HJal7hqkf5vKFkz_1saAqXVEALw_wcB [18.02.19)].

Image Processing
https://www.engineersgarage.com/articles/image-processing-tutorial-

applications [04.02.19].

Image Segmentation

143

https://up-shop.org/home/285-up-squared-ai-vision-x-developer-kit.html
https://ieeexplore.ieee.org/document/7577114
https://www.hindawi.com/journals/am/2018/2561953/
https://msfoster.com/products/winter-products/roadwatch-temperature-measuring-system/roadwatch-road-surface-temperature-sensors/
https://msfoster.com/products/winter-products/roadwatch-temperature-measuring-system/roadwatch-road-surface-temperature-sensors/
https://wiki.math.ntnu.no/_media/tma4850/2009v/feste_og_saltmengde_vs_saltkonsentrasjon.pdf
https://wiki.math.ntnu.no/_media/tma4850/2009v/feste_og_saltmengde_vs_saltkonsentrasjon.pdf
https://encyclopedia2.thefreedictionary.com/adaptation+luminance
https://www.python.org/doc/essays/blurb/
https://no.wikipedia.org/wiki/QGIS
https://en.wikipedia.org/wiki/PostgreSQL#Storage_and_replication
https://opencv.org/about.html
https://www.elfadistrelec.no/no/mikrokontrollerkort-uno-arduino-a000066/p/11038919?channel=b2c&price_gs=235&source=googleps&ext_cid=shgooaqnono-na&pup_e=1&pup_cid=35879&pup_id=11038919&gclid=Cj0KCQiAzKnjBRDPARIsAKxfTRBJam0KwAwcwp_ou7rQU07Fu7TY4wDvrngW1HJal7hqkf5vKFkz_lsaAqXVEALw_wcB
https://www.elfadistrelec.no/no/mikrokontrollerkort-uno-arduino-a000066/p/11038919?channel=b2c&price_gs=235&source=googleps&ext_cid=shgooaqnono-na&pup_e=1&pup_cid=35879&pup_id=11038919&gclid=Cj0KCQiAzKnjBRDPARIsAKxfTRBJam0KwAwcwp_ou7rQU07Fu7TY4wDvrngW1HJal7hqkf5vKFkz_lsaAqXVEALw_wcB
https://www.elfadistrelec.no/no/mikrokontrollerkort-uno-arduino-a000066/p/11038919?channel=b2c&price_gs=235&source=googleps&ext_cid=shgooaqnono-na&pup_e=1&pup_cid=35879&pup_id=11038919&gclid=Cj0KCQiAzKnjBRDPARIsAKxfTRBJam0KwAwcwp_ou7rQU07Fu7TY4wDvrngW1HJal7hqkf5vKFkz_lsaAqXVEALw_wcB
https://www.elfadistrelec.no/no/mikrokontrollerkort-uno-arduino-a000066/p/11038919?channel=b2c&price_gs=235&source=googleps&ext_cid=shgooaqnono-na&pup_e=1&pup_cid=35879&pup_id=11038919&gclid=Cj0KCQiAzKnjBRDPARIsAKxfTRBJam0KwAwcwp_ou7rQU07Fu7TY4wDvrngW1HJal7hqkf5vKFkz_lsaAqXVEALw_wcB
https://www.elfadistrelec.no/no/mikrokontrollerkort-uno-arduino-a000066/p/11038919?channel=b2c&price_gs=235&source=googleps&ext_cid=shgooaqnono-na&pup_e=1&pup_cid=35879&pup_id=11038919&gclid=Cj0KCQiAzKnjBRDPARIsAKxfTRBJam0KwAwcwp_ou7rQU07Fu7TY4wDvrngW1HJal7hqkf5vKFkz_lsaAqXVEALw_wcB
https://www.engineersgarage.com/articles/image-processing-tutorial-applications
https://www.engineersgarage.com/articles/image-processing-tutorial-applications

8. BIBLIOGRAPHY

[40]

[41]

[46]

[49]

[51]

https://en.wikipedia.org/wiki/Image_segmentation [04.02.19].

HSV and HSL Color Spaces
https://codeitdown.com/hsl-hsb-hsv-color/ [08.04.19].

LAB - Color Space
https://hidefcolor.com/blog/color-management/what-is-lab-color-space/
[08.04.19].

Canny Edge Detector Explained
https://en.wikipedia.org/wiki/Canny_edge_detector [28.01.19].

Template Matching Basics
https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_
imgproc/py_template_matching/py_template_matching.html [06.03.19].

Gary Bradski & Adrian Kaehler. Learning OpenCV: Computer Vision with the OpenCV
Library. O’REILLY Media Inc, 2008.

What Are Inertial Measurement unit(IMU)?
http://students.iitk.ac.in/roboclub/2017/12/21/Beginners-Guide-to-IMU.html
[28.01.19].

The Difference Between CPU and GPU
https://blogs.nvidia.com/blog/2009/12/16/whats-the-difference-between-a-
cpu-and-a-gpu/ [06.03.19].

Geospatial Information System
https://disruptivetechasean.com/big_news/geospatial-data-explained/
[20.02.19].

Calibration of Infrared Thermometer
https://www.rdmag.com/article/2004/07/how-choose-ir-blackbody-calibration-
source [21.02.19].

IMU Intel Real Sense 4351 Calibration
https://www.intel.com/content/dam/support/us/en/documents/emerging-
technologies/intel-realsense-technology/RealSense_Depth_D435i_IMU_Calib.
pdf| [06.03.19].

Light Intensity Detection
https://www.instrumentchoice.com.au/emails/Monthly’%20Newsletter/10-10-
17/how-does-a-lumen-lux-meter-work [04.02.19].

Step Down Module
https://www.banggood.com/XH-M249-DC5V-6A-Step-Down-Module-12V24V-to-
5V-Power-Supply-USB-Charging-5A-30W-p-1264861.html?rmmds=myorder&cur_

144

https://en.wikipedia.org/wiki/Image_segmentation
https://codeitdown.com/hsl-hsb-hsv-color/
https://hidefcolor.com/blog/color-management/what-is-lab-color-space/
https://en.wikipedia.org/wiki/Canny_edge_detector
https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_template_matching/py_template_matching.html
https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_template_matching/py_template_matching.html
http://students.iitk.ac.in/roboclub/2017/12/21/Beginners-Guide-to-IMU.html
https://blogs.nvidia.com/blog/2009/12/16/whats-the-difference-between-a-cpu-and-a-gpu/
https://blogs.nvidia.com/blog/2009/12/16/whats-the-difference-between-a-cpu-and-a-gpu/
https://disruptivetechasean.com/big_news/geospatial-data-explained/
https://www.rdmag.com/article/2004/07/how-choose-ir-blackbody-calibration-source
https://www.rdmag.com/article/2004/07/how-choose-ir-blackbody-calibration-source
https://www.intel.com/content/dam/support/us/en/documents/emerging-technologies/intel-realsense-technology/RealSense_Depth_D435i_IMU_Calib.pdf
https://www.intel.com/content/dam/support/us/en/documents/emerging-technologies/intel-realsense-technology/RealSense_Depth_D435i_IMU_Calib.pdf
https://www.intel.com/content/dam/support/us/en/documents/emerging-technologies/intel-realsense-technology/RealSense_Depth_D435i_IMU_Calib.pdf
https://www.instrumentchoice.com.au/emails/Monthly%20Newsletter/10-10-17/how-does-a-lumen-lux-meter-work
https://www.instrumentchoice.com.au/emails/Monthly%20Newsletter/10-10-17/how-does-a-lumen-lux-meter-work
https://www.banggood.com/XH-M249-DC5V-6A-Step-Down-Module-12V24V-to-5V-Power-Supply-USB-Charging-5A-30W-p-1264861.html?rmmds=myorder&cur_warehouse=CN
https://www.banggood.com/XH-M249-DC5V-6A-Step-Down-Module-12V24V-to-5V-Power-Supply-USB-Charging-5A-30W-p-1264861.html?rmmds=myorder&cur_warehouse=CN
https://www.banggood.com/XH-M249-DC5V-6A-Step-Down-Module-12V24V-to-5V-Power-Supply-USB-Charging-5A-30W-p-1264861.html?rmmds=myorder&cur_warehouse=CN
https://www.banggood.com/XH-M249-DC5V-6A-Step-Down-Module-12V24V-to-5V-Power-Supply-USB-Charging-5A-30W-p-1264861.html?rmmds=myorder&cur_warehouse=CN

[55]

[57]

8. BIBLIOGRAPHY

warehouse=CN [16.05.19].

Create Workspace - ROS
http://wiki.ros.org/catkin/Tutorials/create_a_workspace [28.04.19].

Create Package - ROS
http://wiki.ros.org/catkin/Tutorials/CreatingPackage [28.04.19].

Dynamic Target Tool App - Calibration Grid
https://play.google.com/store/apps/details?id=com.intel.
realsenseviewer17613&hl=en_US| [13.03.19].

Intel RealSense Dynamic Calibrator Program - Download
https://downloadcenter.intel.com/download/28517/Intel-RealSense-D400-
Series-Calibration-Tools-and-API7product=128255 [13.03.19].

IMU Calibration Intel RealSense 4351
https://www.intel.com/content/dam/support/us/en/documents/emerging-
technologies/intel-realsense-technology/RealSense_Depth_D435i_IMU_Calib.
pdf [12.03.19].

Advanced Lane Finding Using OpenCV
https://github.com/mohamedameen93/Advanced-Lane-Finding-Using-0OpenCV
[26.03.19].

Intel RealSense D400 Series - Datasheet
https://www.mouser.com/pdfdocs/Intel_D400_Series_Datasheet.pdf [16.05.19].

MLX 90640 Thermal Camera - Datasheet
https://cdn.sparkfun.com/assets/7/b/f/2/d/MLX90640-Datasheet-Melexis.pdf
[16.05.19].

145

https://www.banggood.com/XH-M249-DC5V-6A-Step-Down-Module-12V24V-to-5V-Power-Supply-USB-Charging-5A-30W-p-1264861.html?rmmds=myorder&cur_warehouse=CN
https://www.banggood.com/XH-M249-DC5V-6A-Step-Down-Module-12V24V-to-5V-Power-Supply-USB-Charging-5A-30W-p-1264861.html?rmmds=myorder&cur_warehouse=CN
https://www.banggood.com/XH-M249-DC5V-6A-Step-Down-Module-12V24V-to-5V-Power-Supply-USB-Charging-5A-30W-p-1264861.html?rmmds=myorder&cur_warehouse=CN
http://wiki.ros.org/catkin/Tutorials/create_a_workspace
http://wiki.ros.org/catkin/Tutorials/CreatingPackage
https://play.google.com/store/apps/details?id=com.intel.realsenseviewer17613&hl=en_US
https://play.google.com/store/apps/details?id=com.intel.realsenseviewer17613&hl=en_US
https://downloadcenter.intel.com/download/28517/Intel-RealSense-D400-Series-Calibration-Tools-and-API?product=128255
https://downloadcenter.intel.com/download/28517/Intel-RealSense-D400-Series-Calibration-Tools-and-API?product=128255
https://www.intel.com/content/dam/support/us/en/documents/emerging-technologies/intel-realsense-technology/RealSense_Depth_D435i_IMU_Calib.pdf
https://www.intel.com/content/dam/support/us/en/documents/emerging-technologies/intel-realsense-technology/RealSense_Depth_D435i_IMU_Calib.pdf
https://www.intel.com/content/dam/support/us/en/documents/emerging-technologies/intel-realsense-technology/RealSense_Depth_D435i_IMU_Calib.pdf
https://github.com/mohamedameen93/Advanced-Lane-Finding-Using-OpenCV
https://www.mouser.com/pdfdocs/Intel_D400_Series_Datasheet.pdf
https://cdn.sparkfun.com/assets/7/b/f/2/d/MLX90640-Datasheet-Melexis.pdf

Appendices

A. Cost

A. Cost

This estimate is accurate but may vary due to variation in exchange rate since several compo-
nents are ordered abroad. The shipping cost from the dealers are not included in this estimate.
Material such as wiring, and printing is not included as well.

Table A.1: Cost

Component Price in NOK
Intel UP Ai Square kit 3G antenna 4640
3G Adapter 660
Photo Cell and diffuser 100
Intel RealSense D435i 1535
Arduino Uno R3 200
GPS Sensor 30
Joby Suction Cup 299
Step Down Module 110
Power Supply for Testing 299
Sum 7873

147

B. Solidworks Drawings

B. Solidworks Drawings

B.1 Sensor Package

148

ITEM NO. PART NUMBER DESCRIPTION QTY.
1 Base Frame 1
2 Top Cover 1
Bracket for Light
3 : 1
Intensity Sensor
4 Diffuser Frame 1
DIMENSIONS ARE N MLLNETERS | SREA SieP DO NOTSCALE DRAWNG ReVSION
SURFACE FNIsH s
UNEAR
ANGULAR
A sonanre | oate e
R
Sensor Package
APV
s
or VATERAC owe o
W scnErs SHeer 1 or 1

7 6 5 4 3 2 1

20,01 3,00

4,50

5,00
18,00

63,00

— 4 S 45,00
= 23,00 ® ® ‘
o] @ 30,00 - 5 ;
S n & @ ; 30,00
© = < P4,20 o
g % ‘9/03 3 L{;‘ —===3
= (@)
o \ 27,90 8
-@)- N
o @ o >
S | 48,60 | N
™ N o
o
a4 © R5,00
o~ | — e :
3
| 3
x/ 8
959G
38,00
o
e
NS
88,00 53,00
i i i
g { m Ui i o
> N @
8 85,00 iR N
T
N ~ H*}“%?‘ﬂ“” ,w‘m + uniess oeRvse specrreD: s DESURR AND. DO NOT SCALE DRAWNG REVSON
e ittt S ’P,j SURFACE FINISH: EDGES
h NAME SIGNATURE DATE TITLE:
o Base Frame
198,00

PLA 1

WEIGHT: SCALE2 SHEET 1 OF |

7 6 5 4 3 2 1

79.50

7,00

2,00

180,00

8
© 5,00 49,00
8
o € 3
=) Q
8 x R2,00
o
/\ S
&
N \ 8 x R3,00
1 e

8,00

S - T

5,00

198,00

o
o
<

UNLESS OTHERWISE SPECIFIED:

FINISH

DIMENSIONS ARE IN MILIMETERS

SURFACE FINISH.
TOLERANCES!

LUNEAR:

ANGULAR

NAVE

DRAWN

CHKD
APPVD

MFG

QA

SIGNATURE

DEBURR AND
BREAK SHARP

DATE

MATERIAL

PLA

WEIGHT:

TLE:

Port No.

SCALE2

2

DO NOT SCALE DRAWING

Top Cover

2

SHEET 1 OF |

REVISION

1

A3

g,
N

/
30,00
20,00

\ (0«"
\ \
\ <
\or
\
Uy L?\f
,00
60,00
DIMENSIONS ARE IN MILLIMETERS BREAK SHARP DO NOTSCALE DRAWING REVISION
SURFACE FINISH: EDGES
Bracket for Light
CHKD r " r I
Intensity Senso
ntensi nsor
A3
PLA 3

WEIGHT: SCALE1:] SHEET 1 OF 1

7 6 5 4 3 2 1

>

© 50,00

\
2 OL 2,00

@200

UNLESS OTHERWISE SPECIFIED: FINISH
DIMENSIONS ARE IN MILIMETERS
SURFACE FINISH:
TOLERANCES!

UNEAR:

ANGULAR

NAME SIGNATURE

DRAWN
CHKD
APPVD

QA

DATE

MATERIAL:

PLA
WeGH

3

3,

00

DEBURR AND
BREAK SHARP

TE:

PARTNO,

SCALEZ!]

2

DO NOT SCALE DRAWING REVISION

Diffuser Frame

4

SHEET 1 OF |

1

A3

B. Solidworks Drawings

B.2 Frame for Power Supply

154

ITEM NO. PART NUMBER DESCRIPTION QrTY.
1 Base Frame Power 1 F
Supply
2 Top Cover Power 1
Supply

UNLESS OTHERWISE SPECIFIED: FINISH DEBURR AND

DIMENSIONS ARE IN MILLIMETERS BREAK SHARP DO NOTSCALE DRAWING REVISION
SUREACE P e
oA
oo
AR
e sownre | one me
i Fraome for Power
ciro
orvo S u |y
wo | A
an e WGNG. a3
weonT soaez SHeer 1o 1

7 6 5 4 3 2 1

s Ihrec’de

%,OCL

68,00

o

e T— 200 3400

£ Rspp— g 8

' T S

; as

0* U

3

)

<

>

x
S
N
[s0}

32,50

15,00

2,00

64,00

UNLESS OTHERWISE SPECIFIED:

DIMENSIONS ARE IN MILIMETERS

SURFACE FINISH:
TOLERANCES!

LUNEAR:

ANGULAR

NAVE

DRAWN

CHKD
APPVD

MFG

QA

28,00

4,00

FINISH DEBURR AND
BREAK SHARP

SIGNATURE DATE

MATERIAL

PLA

WEIGHT:

3

TLE:

PARTNO,

SCALEZ!]

2

DO NOT SCALE DRAWING

REVISION

Base Frame Power
Supply

1

SHEET 1 OF |

1

A3

32,00

4x45§e>glr_eisslmm

FINISH

DIMENSIONS ARE IN MILIMETERS

SIGNATURE

Top Cover for
Power Supply

C. Gantt Chart

C. Gantt Chart

January February March
Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10
Research on road monitoring
Research on sensors for monitoring/detecting
Deadline for defining the task text
Deadline for ordering Hardware
Deadline for presentasion of concepts
Deadline for choosing of consept
Deadline for ordering sensors
Testing the camera for different dashboard positions
Testing the IMU for different scenarios _
Proofreading of the report
Deadline for having first draft of the report
Building prototype
Design and produce bracket for the sensor package if neccessary
Testing the prototype
Report writing
Deadline for software programming
Develop an algorithm for detecting lanes, lanes quality. _
Develop an algorithm for detecting signs and scanning the road rails
Develop an algortihm for mesuring quality of the road with IMU
Develop an algortihm for detecting light intensity _

Figure C.1: Gantt Chart - Part 1

March April May
Week 11 Week 12 Week 13 Week 14 Week 15 Week 16 Week 17 Week 18 Week 19 Week 20 Week 21

Research on road monitoring

Research on sensors for monitoring/detecting

Deadline for defining the task text

Deadline for ordering Hardware

Deadline for presentasion of concepts

Deadline for choosing of consept

Deadline for ordering sensors

Testing the camera for different dashboard positions

Testing the IMU for different scenarios

Proofreading of the report _
Deadline for having first draft of the report []

Building prototype

Design and produce bracket for the sensor package if neccessary
Testing the prototype

Report writing

Deadline for software programming

Develop an algorithm for detecting lanes, lanes quality.

Develop an algorithm for detecting signs and scanning the road rails
Develop an algortihm for mesuring quality of the road with IMU

Develop an algortihm for detecting light intensity |

Figure C.2: Gantt Chart - Part 2

158

D. Verification of Test Setup During Length Measurement

D. Verification of Test Setup During Length

Measurement

Figure D.1: Height Table

159

D. Verification of Test Setup During Length Measurement

Figure D.2: Height Box

15mm

Figure D.3: Height Camera

160

D. Verification of Test Setup During Length Measurement

Figure D.4: Length Long Line

Figure D.5: Length Short Line

161

E. Data Sheets

E. Data Sheets

E.1 Intel RealSense 435i

Due to the size of the datasheet of the Intel RealSense 435i, the datasheet is listed as a reference
in the bibliography. [58]

E.2 MLX 90640 - Thermal Camera

Due to the size of the datasheet of the thermal camera MLX 90640, the datasheet is listed as a
reference in the bibliography. [59]

162

E. Data Sheets

E.3 Photocell

CdS PHOTOCONDUCTIVE CELLS

GL5528

A Epoxy encapsulated
A Quick response

A Small size

A High sensitivity

A Reliable performance
A Good characteristic of

spectrum
Light Resistance at 10Lux (at 25°C) 8~20KQ Outline
Dark Resistance at 0 Lux 1.0MQ(min)
Gamma value at 100-10Lux 0.7 it f
2.4MAX

Power Dissipation(at 25C) 100mw

- = -
Max Voltage (at 25°C) 150V o q

B h
Spectral Response peak (at 25°C) 540nm v sl

m
Ambient Temperature Range: -30~+70C — =

Measuring Conditions

1. Light Resistance:
measured at 10 lux with standard light A (2854k color
temperature) and 2h pre-illumination at 400-600 lux prior
to testing.

2. Dark Resistance:
measured 10 seconds after pulsed 10 lux.

3. Gamma Characteristic:
between 10 lux and 100 lux and given by
7= La(RIORID) -\ o (R10R100
= Togrooro) - gl)
R10, R100 cell resistance at 10 lux and 100 lux.
The error of Tis +0.1.

4. Pmax:
Max. power dissipation at ambient temperature of 25°C.

5. Vmax:
Max. voltage in darkness that may be applied to the cell
continuously.

Illuminance Vs. Photo Resistance

KQ
1000

100

10

1 10
Spectral Response
100
RIIAYA
o B AN
/X)\Cd(:ﬁe)
N

,-Cd$e

40 /
VAN
KA \{

0 400 500 600 700 800 900 1000

20

(%) &yanisuag aaney

Wavelength (nm)

163

E. Data Sheets

E.4 GPS Sensor

164

NEO-6 series

Versatile u-blox 6 GPS modules

Highlights

e UART, USB, DDC (I?C compliant) and SPI interfaces
e Available in Crystal and TCXO versions

e Onboard RTC crystal for faster warm and hot starts
e 1.8V and 3.0V variants

Features

e U-blox 6 position engine:

o Navigate down to -162 dBm and -148 dBm coldstart
Faster acquisition with AssistNow Autonomous
Configurable power management
Hybrid GPS/SBAS engine (WAAS, EGNOS, MSAS)
Anti-jamming technology

O O O O

e Simple integration with u-blox wireless modules

e A-GPS: AssistNow Online and AssistNow Offline services,
OMA SUPL compliant

Backward compatible (hardware and firmware); easy
migration from NEO-5 family or NEO-4S

LCC package for reliable and cost effective manufacturing

Compatible with u-blox GPS Solution for Android
Based on GPS chips qualified according to AEC-Q100
Manufactured in ISO/TS 16949 certified production sites
Qualified according to 1SO 16750

Product selector

NEO-6:
12.2 x16.0 x 2.4 mm

Product description

The NEO-6 module series brings the high performance of the
u-blox 6 position engine to the miniature NEO form factor.
u-blox6 has been designed with low power consumption and
low costs in mind. Intelligent power management is a break-
through for low-power applications. These receivers combine
a high level of integration capability with flexible connectivity
options in a small package. This makes them perfectly suited
for mass-market end products with strict size and cost re-
quirements. The DDC interface provides connectivity and en-
ables synergies with u-blox LEON and LISA wireless modules.

All NEO-6 modules are manufactured in ISO/TS 16949
certified sites. Each module is tested and inspected during
production. The modules are qualified according to ISO 16750
- Environmental conditions and electrical testing for electrical
and electronic equipment for road vehicles.

Model Type Supply Interfaces Features
A —
© = ~
z & 5 2 = 2
%) @) [a) =2 = © > o S
a = z < > = LT 35 c £
O O © % o = g 7% % — %'9 2 £
@ g = 21N 9 © 1l eEx . = 922 & o £
ke) ke) [54] o] | m) co o 0 o 8 S “© Y
o] S o o > | = 5 = = o c 35 > > T 5
ke] kel c - > = =) = o iRl = o ca
© 2 < g 0 o @ 9] 2% G @) 2o 5 e T
i 3 £ 7 ™~ ™~ < N T a o ® A = c 2 o £ 2 O
&a V2 = o - ~ >) %) [a) ot (@) o < ®) = S =2
NEO-6G o o ° o . o T o [¢] 3 1 o
NEO-6Q ° . T . o 3 1 .
NEO-6M C . [e] 3 1 .

o = requires external components and integration on application processor

C =Crystal /T =TCXO

@blox

¥}
+—
©
—
Q@
)
O
O
©
u
+—
48}
=
-
>
S
&
@]
o
Q;
+—
©
O
ke)

Receiver performance data

Receiver type

Navigation update rate

Accuracy'

Acquisition’

Sensitivity?

T All'SV @ -130 dBm

50-channel u-blox 6 engine
GPS L1 C/A code
SBAS: WAAS, EGNOS, MSAS

up to 5 Hz
Position 2.5m CEP
SBAS 2.0 m CEP
NEO-6G/Q NEO-6M
Cold starts: 26s 27 s
Aided starts?: 1s <3s
Hot starts: 1s 1s
NEO-6G/Q NEO-6M
Tracking: -162 dBm -161 dBm
Cold starts: -148 dBm -147 dBm
Hot starts: -157 dBm -156 dBm

2 Dependent on aiding data connection speed and latency
3 Demonstrated with a good active antenna

Electrical data

Package

24 pin LCC (Leadless Chip Carrier): 12.2 x 16.0x 2.4 mm, 1.6 g

Pinout
GND GND

MOSI/CFG_COMO RF_IN
MISO/CFG_COM1 GND
CFG_GPS0/SCK VCC_RF
Reserved

SDA2 N EO-G VDDUSB
scz Top View yep pp
D1 USB_DM
RxD1 EXTINTO
V_BCKP TIMEPULSE
vee ssN
GND Reserved

Reserved

Environmental data, quality & reliability

Power supply

Power consumption

Backup power

Supported antennas

Interfaces

2.7V —-3.6V (NEO-6Q/6M)
1.75V -2.0V (NEO-6G)

111 mW @ 3.0V (continuous)

33 MW @ 3.0V Power Save Mode (1 Hz)
68 MW @ 1.8V (continuous)

22 mW @ 1.8V Power Save Mode (1 Hz)
1.4V =36V, 22 yA

Active and passive

Serial interfaces

Digital I/0

Serial and I/0

Timepulse

Protocols

Legal Notice

1 UART

1 USB V2.0 full speed 12 Mbit/s
1 DDC (I*C compliant)

1 SPI

Configurable timepulse
1 EXTINT input for Wakeup

Voltages 2.7 = 3.6 V(NEO-6Q/6M)
1.75 - 2.0 V(NEO-6G)
Configurable 0.25 Hz to 1 kHz

NMEA, UBX binary, RTCM

-40° Cto 85° C
-40° Cto 85° C

Operating temp.
Storage temp.
RoHS compliant (lead-free)

Qualification according to ISO 16750

Manufactured in ISO/TS 16949 certified production sites

Support products

u-blox 6 Evaluation Kits:

Easy-to-use kits to get familiar with u-blox 6 positioning
technology, evaluate functionality, and visualize GPS performance.

EVK-6H: u-blox 6 Evaluation Kit with TCXO, suitable
for NEO-6G, NEO-6Q
EVK-6P: u-blox 6 Evaluation Kit with crystal, suitable

for NEO-6M

Ordering information

u-blox reserves all rights to this document and the information contained herein. Products, names, logos
and designs described herein may in whole or in part be subject to intellectual property rights. Reproduc-
tion, use, modification or disclosure to third parties of this document or any part thereof without the
express permission of u-blox is strictly prohibited

The information contained herein is provided “as is”. No warranty of any kind, either express or implied, is
made in relation to the accuracy, reliability, fitness for a particular purpose or content of this document. This
document may be revised by u-blox at any time. For most recent documents, please visit www.u-blox.com.

Copyright © 2011, u-blox AG

Specification applies to FW 7

www.u-blox.com

NEO-6G-0 u-blox 6 GPS Module, 1.8V, TCXO,
12x16mm, 250 pcs/reel

NEO-6M-0 u-blox 6 GPS Module, 12x16mm,
250 pcs/reel

NEO-6Q-0 u-blox 6 GPS Module, TCXO, 12x16mm,

250 pcs/reel

Available as samples and tape on reel (250 pieces)

Contact us

China
+86 10 68 133 545
info_cn@u-blox.com

HQ Switzerland
+41 44 722 7444
info@u-blox.com

EMEA
+41 44 722 7444
info@u-blox.com

Japan
+81 3 5775 3850
info_jp@u-blox.com

Korea
+82 2 542 0861
info_kr@u-blox.com

Americas
+1 703 483 3180
info_us@u-blox.com

Taiwan
+886 2 2657 1090
info_tw@u-blox.com

APAC - Singapore
+65 6734 3811
info_ap@u-blox.com

GPS.G6-HW-09003-D

E. Data Sheets

E.5 Intel Up Ai Squared Computer

167

DATA SHEET INTEL UP SQUARED Al VISION X DEVELOPER KIT

UP board version

Compatible with UP Squared

SoC

VPU

Graphics

System memory
Storage capacity
USBZ2.0 external connector
USB 3.0 port
Ethernet
Connectivity

WOL

Video output

Power input
Operating tempature
RTC

PXE

Expansion

M.2 2230 E-key
SATA

Operating humidity
Certificate

Country of Origin

Vertical Market

UP Squared

UP Squared

Intel ATOM x7-E3950

Intel Movidius Myriad X (Version B)

Intel HD Graphic 505

8GB LPDDR4

64GB eMMC

x4

1x USB 3.0 Host, 1x USB 3.0 OTG
2x Gb Ethernet (full speed) RJ-45
WiFi (option), LTE (optional)
YES

HDMI+DP

5V@6A with DCjack 5.5/2.1mm
0-40 °C

YES

YES

40 pin General Purpose bus, supported by Altera Max V. ADC 8-bit@188ksos

x1

x1

10%~ 80%RH non-condensing

CE/FCC Class A, RoHS complaint Microsoft Azure certified

Netherlands

Vision

E. Data Sheets

E.6 Arduino Uno R3

169

FEC

Arduino Uno R3

Ground and AREF : .
) Digital Inputs/outputs Serial tra'nsmlt‘ter and
pins receiver pins

ICSP for USB
interface

Reset button

2 = 0 N~ < N -~ O = 2

2 IR st st » 4 “~" peside a number

DIGITAL (PWM~™ : of bin means it used for
e

USB Plug (5V) PWM output
U N O R3 smweON
~
ICSP for
Atmega328

ATMEGA16u2- mu
microcontroller

ATMEGA328P-PU
microcontroller

External Power
Supply

AC _DC adaptor

Power pins Analog Inputs

INTRODUCTION

Arduino is used for building different types of electronic circuits easily using of both a physical
programmable circuit board usually microcontroller and piece of code running on computer with
USB connection between the computer and Arduino.

Programming language used in Arduino is just a simplified version of C++ that can easily replace
thousands of wires with words.

FEC

ARDUINO UNO-R3 PHYSICAL COMPONENTS
ATMEGA328P-PU microcontroller

The most important element in Arduino Uno R3 is ATMEGA328P-PU is an 8-bit Microcontroller
with flash memory reach to 32k bytes. It’s features as follow:

* High Performance, Low Power AVR
e Advanced RISC Architecture

o 131 Powerful Instructions — Most Single Clock Cycle Execution
o 32 x 8 General Purpose Working Registers

o Up to 20 MIPS Throughput at 20 MHz

o On-chip 2-cycle Multiplier

» High Endurance Non-volatile Memory Segments

4/8/16/32K Bytes of In-System Self-Programmable Flash program memory
256/512/512/1K Bytes EEPROM

512/1K/1K/2K Bytes Internal SRAM

Write/Erase Cycles: 10,000 Flash/100,000 EEPROM

Data retention: 20 years at 85°C/100 years at 25°C

Optional Boot Code Section with Independent Lock Bits

In-System Programming by On-chip Boot Program

True Read-While-Write Operation

Programming Lock for Software Security

0O 0O O O 0o o O O O

¢ Peripheral Features

Two 8-bit Timer/Counters with Separate Prescaler and Compare Mode

One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture Mode
Real Time Counter with Separate Oscillator

Six PWM Channels

8-channel 10-bit ADC in TQFP and QFN/MLF package

Temperature Measurement

6-channel 10-bit ADC in PDIP Package

Temperature Measurement

Programmable Serial USART

0O 0O O O 0o 0O o0 O O

FEC

Master/Slave SPI Serial Interface

Byte-oriented 2-wire Serial Interface (Philips 12 C compatible)
Programmable Watchdog Timer with Separate On-chip Oscillator
On-chip Analog Comparator

Interrupt and Wake-up on Pin Change

0O O O O O

» Special Microcontroller Features

Power-on Reset and Programmable Brown-out Detection

Internal Calibrated Oscillator

External and Internal Interrupt Sources

Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, Standby, and
Extended Standby

O O O O

¢ |/O and Packages

o 23 Programmable /O Lines
o 28-pin PDIP, 32-lead TQFP, 28-pad QFN/MLF and 32-pad QFN/MLF

¢ Operating Voltage:
o 1.8-55V
* Temperature Range:
o -40°Cto 85°C
* Speed Grade:
o 0-4MHz@1.8-5.5V,0-10 MHz@2.7-5.5.V,0-20 MHz @ 4.5 - 5.5V
¢ Power Consumption at 1 MHz, 1.8V, 25°C

o Active Mode: 0.2 mA
o Power-down Mode: 0.1 pA
o Power-save Mode: 0.75 PA (Including 32 kHz RTC)

FEC

e Pin configuration

(PCINT14/RESET) PC6 []
(PCINT16/RXD) PDO [
(PCINT17/TXD) PD1 [
(PCINT18/INTO) PD2 []

(PCINT19/0C2B/INT1) PD3 [

(PCINT20/XCK/T0) PD4 []
VCC]
GND [}
PB6 [
PB7 [
PD5 []
PD6 []
PD7]
PBO [

(PCINT6/XTAL1/TOSC1
(PCINT7/XTAL2/TOSC2
(PCINT21/0COB/T1
(PCINT22/0CO0A/AINO
(PCINT23/AIN1
(PCINTO/CLKO/ICP1

@ N N =

—_ ok ok (D
B W N = O

28
27
26
25
24
23
22
21
20
19
18
17
16
15

] PC5 (ADC5/SCL/PCINT13)
1 PC4 (ADC4/SDA/PCINT12)
1 PC3 (ADC3/PCINT11)

] PC2 (ADC2/PCINT10)
1PC1 (ADC1/PCINT9)

] PCO (ADCO/PCINTS)

1 GND

] AREF

1 AVCC

1 PB5 (SCK/PCINTS)

] PB4 (MISO/PCINT4)

] PB3 (MOSI/OC2A/PCINT3)
] PB2 (SS/OC1B/PCINT2)

1 PB1 (OC1A/PCINT1)

ATMEGA16u2- mu microcontroller

Is a 8-bit microcontroller used as USB driver in Arduino uno R3 it’s features as follow:

¢ Advanced RISC Architecture

o O O O

High Performance, Low Power AVR

125 Powerful Instructions — Most Single Clock Cycle Execution

32 x 8 General Purpose Working Registers

Fully Static Operation

Up to 16 MIPS Throughput at 16 MHz

* Non-volatile Program and Data Memories

0O O O O O

8K/16K/32K Bytes of In-System Self-Programmable Flash

512/512/1024 EEPROM
512/512/1024 Internal SRAM

Write/Erase Cycles: 10,000 Flash/ 100,000 EEPROM
Data retention: 20 years at 85°C/ 100 years at 25°C

FEC

O
o
o

Optional Boot Code Section with Independent Lock Bits
In-System Programming by on-chip Boot Program hardware-activated after reset
Programming Lock for Software Security

¢ USB 2.0 Full-speed Device Module with Interrupt on Transfer Completion

0O O O O O

o

Complies fully with Universal Serial Bus Specification REV 2.0
48 MHz PLL for Full-speed Bus Operation: data transfer rates at 12 Mbit/s
Fully independent 176 bytes USB DPRAM for endpoint memory allocation
Endpoint O for Control Transfers: from 8 up to 64-bytes
4 Programmable Endpoints:
— IN or Out Directions
— Bulk, Interrupt and Isochronous Transfers
— Programmable maximum packet size from 8 to 64 bytes
— Programmable single or double buffer
Suspend/Resume Interrupts
Microcontroller reset on USB Bus Reset without detach
USB Bus Disconnection on Microcontroller Request

» Peripheral Features

(@)

0O O O O O

One 8-bit Timer/Counters with Separate Prescaler and Compare Mode (two 8-bit PWM
channels)

One 16-bit Timer/Counter with Separate Prescaler, Compare and Capture Mode(three 8-
bit PWM channels)

USART with SPI master only mode and hardware flow control (RTS/CTS)

Master/Slave SPI Serial Interface

Programmable Watchdog Timer with Separate On-chip Oscillator

On-chip Analog Comparator

Interrupt and Wake-up on Pin Change

¢ On Chip Debug Interface (debug WIRE)

* Special Microcontroller Features

O O O O

Power-On Reset and Programmable Brown-out Detection

Internal Calibrated Oscillator

External and Internal Interrupt Sources

Five Sleep Modes: Idle, Power-save, Power-down, Standby, and Extended Standby

¢ |/O and Packages

O
(@]

22 Programmable 1/0O Lines
QFN32 (5x5mm) / TQFP32 packages

FEC

* Operating Voltages
o 2.7-5.5V
¢ Operating temperature
o Industrial (-40°C to +85°C)
e Maximum Frequency
o 8 MHzat 2.7V - Industrial range
o 16 MHz at 4.5V - Industrial range

e Pin configuration

AVCC

uvcce

D-

D+

UGND

UCAP

PC4 (PCINT10)

PC5 (PCINTS/ OC.1B)

w
N
w
-
w
o
N
©
N
=]
N
~l
s}
=]
o}
[&)]

XTAL1[] 1@ 24[] Reset (PC1/dwW)
(PCO) XTAL2[] 2 23[] PC6 (OC.1A 1 PCINTS)
GND |: 3 22[] PC7 (INT4/ICP1/ CLKO)
VCC |: 4 21[] PB7 (PCINT7 / OC.0A/ OC.1C)
(PCINT11 /AIN2) PC2] 5 TQFP32 20[] PB6 (PCINTSB)
(OC.0B /INT0) PDO |: 6 19[] PB5 (PCINTS)
(AINO/INTT)PD1 [] 7 18[] PB4 (T1/ PCINT4)
(RXD1/AIN1/INT2)PD2 [] 8 17 :] PB3 (PDO/ MISO / PCINT3)

9 10111213141516
| N N [N N N Sy - -
[2] 0w O~ o «— N
S30cc8aa
[T« T W o W s W o T iy o Y
S EoNBDRS N
z2%Czzzzz
\\\\\ O OO
- B0 nod oo
obE&zF < <=
EE253518 %3

z -z =-0¢%

< |,c2 = @=

) °~‘|§ 5

X 2 ~

FEC

OTHER ARDUINO UNO R3 PARTS
Input and Output

Each of the 14 digital pins on the Uno can be used as an input or output, using pinMode (),
digitalWrite(), and digitalRead() functions. They operate at 5 volts. Each pin can provide or
receive a maximum of 40 mA and has an internal pull-up resistor (disconnected by default) of
20-50 k Ohms. In addition, some pins have specialized functions:

o Serial: 0 (RX) and 1 (TX). Used to receive (RX) and transmit (TX) TTL serial data. These
pins are connected to the corresponding pins of the ATmega8U2 USB-to-TTL Serial chip.

o External Interrupts: 2 and 3. These pins can be configured to trigger an interrupt on a
low value, a rising or falling edge, or a change in value.

o PWM:3,5,6,9, 10, and 11. Provide 8-bit PWM output with the analogWrite() function.

o SPI:10(SS), 11 (MOSI), 12 (MISO), 13 (SCK). These pins support SPI communication
using the SPI library.

o LED: 13. There is a built-in LED connected to digital pin 13. When the pin is HIGH value,
the LED is on, when the pin is LOW, it's off.

The Uno has 6 analog inputs, labeled A0 through A5, each of which provide 10 bits of resolution
(i.e.1024 different values). By default they measure from ground to 5 volts, though is it possible
to change the upper end of their range using the AREF pin and the analogReference() function.
Additionally, some pins have specialized functionality:
e TWI: A4 or SDA pin and A5 or SCL pin. Support TWI communication using the Wire
library.
There are a couple of other pins on the board:
e AREF: Reference voltage for the analog inputs. Used with analogReference().
e Reset: Bring this line LOW to reset the microcontroller. Typically used to add a reset
button to shields which block the one on the board.

FEC

ARDUINO UNO R3 SCHEMATIC DIAGRAM

ON9

N9
207 :&H

20004

7
L [

NG+ 9€10GLSLTTTAIN

m

MOTT3A

UZNY

W20 X Taarsaam
™

s PR AL
j— XSS HEFT34
2 e 47 i X
o] Nd-dBZEYIIHLY
i leg L S o oneaswewy T ng
YOg ! e annoy e
mov 1 20T 20d(0LND MOTT3A —5| 0ad(0LNIE000) O [= 83 Pmb
O 1 EOT £0d(1LND XL ——{ 1ad{1INVONIY) = K
% 1 T vad0L) TUXIBA 2) anon o N
19, 1 Tor—] Sad(kL) s EadeInviaxy +0 Ui Uge?
4% — pre e TR B domoammod 3o -t
"BH- 47X
g o (0odoony - L8 e ey R SLES o @
MW_II_ L ¥ _EMSQW & i g ; 2| g
oL 20d(z00¥ N | NN awo |-— R rnd
o ! I] kts 5 1odonnad 20 8 Yng
9 I WUSTY0T gz | 1odon) 29 A s it 2 2
$0d(500¥ g 2 0daINdNI0)
| ST & | © - S0 odonndoirIng 20N iR H
SoH-Jp 3 R -
ol = 08d0INOdISS) 1T¥IX = =
8 (o] TSR] 18NOIOS) m Aﬂmm.“_m_ .
§ |0z ZTSON Z8dZINIOISONIO) (00dETVIX N 82z
o1 [0 ZOSTT7| EedEInOd0sIoad) UBEG Z-050 HSH-
77 |0 g g| 'AdvINQdIL)
2% |0 —Gad & | SEdSINOd) (Masod)13s3y 12z}
€7 |07 98 iz | S89NIad
O] 780 17| L8K0IO0N000/LINIDA) =
1% = R oN9
y0s
é%mmﬂh H e ok B .ﬁ w ok
*8H-27X vt 7 9
SH-IEE 50 ©) e 50 Qe
¥ d um_ M [4 P QO TNIS
ne+ N9 N o z ZUSIH
Na k 66 N e
3
G'8H-47%8 Ng el g+
wHL.Ja 3|
3
o,
S m— eASd ONN (W LHouinp4g
oaH meum a !
o | z
o S
y3M0d nG+ TR

N9

uge
7

E. Data Sheets

E.7 Biltema Power Supply

178

BILTEMA Art. 38-122

SPANNINGSOMVANDLARE
SPENNINGSOMFORMER
JANNITTEENMUUNNIN
SPZENDINGSOMFORMER

Biltema, Garnisonsgatan 26, 2nd FL, SE-254 66 Helsingborg. www.biltema.com c €

© 2018-03-02 Biltema Nordic Services AB —

BILTEMA

Art. 38-122

SPANNINGSOMVANDLARE

SAKERHETSINSTRUKTIONER

e |Las bruksanvisningen noga innan produkten
anvands.

¢ Anvand alltid spanningsomvandlaren i ett valventi-
lerat utrymme.

e Spanningsomvandlaren ska endast anvandas i
dammfria och torra utrymmen. Far inte anvandas i
vata eller fuktiga utrymmen.

e Placera spanningsomvandlaren odtkomligt for
barn.

e Undvik att placera spanningsomvandlaren i direkt
solljus eller ndra annan varmekalla.

e Spanningsomvandlaren kan bli mycket varm. Se
till att det &r 5 cm fritt utrymme runt enheten.

e Anvand inte spanningsomvandlaren i ndrheten av
brandfarliga vatskor eller gaser.

¢ Anvand inte spanningsomvandlaren i omgivnings-
temperatur éver 40°C.

e Spanningsomvandlaren far inte demonteras eller
modifieras pa nagot satt.

 Overbelasta inte spanningsomvandlaren.

¢ Om spanningsomvandlaren blir fér varm; stdng
av den inkopplade apparaten foér att minska ef-
fektuttaget. Skulle inte det racka; stédng dven av
spanningsomvandlaren. Starta sedan spannings-
omvandlaren utan nagon apparat inkopplad.

e Om batteriet verkar daligt laddat, ladda det innan
spanningsomvandlaren anvands igen.

¢ Ta bort spanningsomvandlaren fran spannings-
matning nar den inte anvands.

SPANNINGSMATNING

Enheten maste ha en kontinuerlig spanningsforsorj-
ning pa min. 10.5 V och max. 15 V DC fran batteri eller
motsvarande DC-spanningskalla.

ANSLUTNING TILL SPANNINGSMATNING

e Satt ON/OFF-knappen i lage OFF.

¢ Anslut cigarettédndaruttaget pluggen i uttaget.
VARNING: Omvandlaren kan endast anslutas till 12 V
DC spénningskalla.

Anslut apparat till spanningsomvandiaren
e Se till att ansluten apparat &r inom angivna specifi-

kationer.

¢ Anslut stickkontakten till uttaget pa spanningsom-
vandlaren.

e Satt ON/OFF-knappen i lage ON. Gron lysdiod
tands.

Lysdioden slocknar om spénningen sjunker under 10 V
och omvandlaren stédngs av. Om detta sker — stédng av
ansluten apparat och dra ur natkabeln.

UPPLADDNINGSBARA ENHETER

Uppladdningsbara enheter som kan anslutas direkt till
standard sockel kan skada spé&nningsomvandlaren.

VID ANSLUTNING TILL BILBATTERI TANK PA
ATT:

e Kor bilmotorn ungefér 15 minuter varje timme for
att undvika att batteriet laddas ur.

¢ Spanningsomvandlaren kan anvandas bade da
motorn &r igang eller &r stoppad.

e Spanningsomvandlaren kan sluta fungera for ett
kort 6gonblick da bilen startas.

SAKERHETSFUNKTIONER I
SPANNINGSOMVANDLAREN

® Om spéanningsmatningen sjunker under 10 V stangs
omvandlaren av.

 Qverstiger spanningsmatningen 15 V stings om-
vandlaren av.

e Kortslutningsskydd — 15 A sdkring

o Qverhettningsskydd stanger av omvandlaren om
den interna temperaturen blir 65°C. Lat svalna i ca.
15 minuter.

—— © 2018-03-02 Biltema Nordic Services AB

DETALJBESKRIVNING

1. ON/OFF-knapp

2. USB-anslutning, 5DC V, 500 mA
3. Anslutningskabel till cigarettuttag
4. AC uttag

5. Overlastindikering

GENERELLA PROBLEM

e Apparaten startar men stannar igen. Sla pa och av
omvandlaren snabbt nagra ganger.

® Brus i musiksystemet. Vissa hogtalare kan inte
filtrera de modifierade sinusvagorna som omvand-
laren genererar.

e TV fungerar daligt. Omvandlaren ar skdrmad men
kan anda ge storningar, sarskilt om TV-signalen
ar svag. Placera TV:n sa langt fran spanningsom-
vandlaren som mdjligt och anvand antennkabel av
god kvalité.

Felsdkning

Art. 38-122

TEKNISKA DATA

Markeffekt 150 W

Max effekt 300 W

Frekvens 50~60 Hz
Utgangsspénning 100~240 V AC
USB-anslutning............. 5V DC, 500 mA
Stromférbrukning >0,35 A
Ingadngsspanning. 12V
Spanningsomrade 10~15V
Sakring 20A
Omgivningstemperatur 10°C-27°C

ORSAK REKOMMENDERAD ATGARD

Omvandlaren ar déverbelastad

Minska belastningen

Spénningsmatningen ar under 10,6 V

Se till att spanningsmatningen ar éver 10,6 V

Daligt batteri

Byt batteri

Glappkontakt

Kontrollera cigarettuttaget, rengér eller byt.

Omvandlaren uppnar inte arbetstemperatur

Sla pa och av omvandlaren nagra ganger.

Cigarettdndaren behdver spanning

Starta motorn

Batterispanningen &r under 10V

Ladda eller byt batteri

Omvandlaren har stangts av p.g.a éverhettning

Lat omvandlaren svalna

Sakringen har 16st ut

Byt sakring. Kontrollera anslutningar till batteri. Ratt
polaritet.

© 2018-03-02 Biltema Nordic Services AB —

BILTEMA

Art. 38-122

SPENNINGSOMFORMER

SIKKERHETSINSTRUKSJONER

¢ |es bruksanvisningen ngye for du tar produktet i
bruk.

¢ Bruk alltid spenningsomformeren i et godt ventilert
rom.

e Spenningsomformeren skal brukes kun i stovfrie
og tarre rom, og ma ikke brukes i vate eller fuktige
rom.

¢ Plasser spenningsomformeren utilgjengelig for
barn.

e Unnga & plassere spenningsformeren i direkte sol-
lys eller neer en annen varmekilde.

e Spenningsomformeren kan bli svaert varm. Serg
for at det er 5 cm fritt rom rundt enheten.

¢ Bruk ikke spenningsomformeren i neerheten av
brannfarlige vaesker eller gasser.

¢ Bruk ikke spenningsomformeren i omgivelsestem-
peratur pa over 40 °C.

® Spenningsomformeren ma ikke tas fra hverandre
eller modifiseres p& noen som helst méate.

¢ Overbelast ikke spenningsomformeren.

e Om spenningsomformeren blir for varm, sla av det
tilkoblede apparatet for & minske effektuttaket.
Skulle dette ikke veere tilstrekkelig, sla ogsa av
spenningsomformeren. Start s& spenningsomfor-
meren igjen uten noe apparatet tilkoblet.

e Om batteriet virker darlig ladet, lad det for spen-
ningsomformeren brukes igjen.

e Koble spenningsomformeren fra stromtilforsel nar
den ikke er i bruk.

SPENNINGSTILFORSEL

Enheten ma ha en kontinuerlig spenningstilfersel pa
min. 10,5 V og maks. 15V DC fra batteri eller tilsva-
rende DC spenningskilde.

TILKOBLING TIL SPENNINGSTILFORSEL

e Sett ON/OFF-knappen i posisjon OFF.

e Koble sigarettennerpluggen i uttaket.
ADVARSEL: Omformeren kan kun kobles til 12 V DC
spenningskilde.

KOBLE APPARAT TIL
SPENNINGSOMFORMEREN

¢ Sjekk at tilkoblet apparat ligger innenfor angitte
spesifikasjoner.
¢ Koble stgpselet til uttaket pa spenningsomforme-
ren.
e Sett ON/OFF-knappen i posisjon ON. Gronn lys-
diode tennes.
Lysdioden slukkes dersom spenningen synker under
10 V, og dersom omformeren slas av. Om dette skjer —
sla av tilkoblet apparat og trekk ut nettkabelen.

OPPLADBARE ENHETER

Oppladbare enheter som kan kobles direkte til stan-
dard sokkel, kan skade spenningsomformeren.

VED TILKOBLING TIL BILBATTERI HUSK PA
FOLGENDE:

e Kjor bilmotoren ca. 15 minutter hver time slik at
batteriet ikke lades ut.

¢ Spenningsomformeren kan brukes bade nar moto-
ren er i gang og nar den er stanset.

e Spenningsomformeren kan slutte & fungere et kort
ayeblikk nar bilen startes.

SIKKERHETSFUNKSJONER |
SPENNINGSOMFORMEREN

e Om spenningstilferselen synker under 10V, slas
omformeren av.

¢ Dersom spenningstilferselen overstiger 15V, slas
omformeren av.

e Kortslutningsvern — 15 A sikring.

e Overopphetingsvern slar av omformeren dersom
den innvendige temperaturen blir 65 °C. La den
avkjgles i ca. 15 minutter.

—— © 2018-03-02 Biltema Nordic Services AB

DELEBESKRIVELSE

1. ON/OFF-knapp (pa/av)

2. USB-tilkobling, 5 DC V, 500 mA
3. Tilkoblingskabel til sigarettuttak
4. AC-uttak

5. Overbelastningsindikering

GENERELLE PROBLEMER

e Apparatet starter, men stanser igjen. Sla omforme-

ren raskt p& og av noen ganger.

e Stoy i musikkanlegget. Noen hoyttalere kan ikke

TEKNISKE DATA

Art. 38-122

Merkeeffekt 150 W

Maks. effekt. 300 W
Frekvens 50~60 Hz
Utgangsspenning 100~240 V AC
USB-tilkobling. 5V DC, 500 mA
Stromforbruk >0,35 A
Inngangsspenning. 12V
Spenningsomrade 10~15V

SIkring 20A
Omgivelsestemperatur 10 °C-27 °C

filtrere de modifiserte sinusbglgene som omforme-

ren genereretr.

e TV fungerer darlig. Omformeren er skjermet
men kan likevel gi forstyrrelser, spesielt dersom
TV-signalet er svakt. Plasser TV-en sé langt fra
spenningsomformeren som mulig, og bruk anten-

nekabel av god kvalitet.

FEILSOKING

ARSAK ANBEFALT TILTAK

Omformeren er overbelastet

Reduser belastningen

Spenningstilforsel er under 10,6 V

Se til at spenningstilfarsel er over 10,6 V

Darlig batteri

Skift batteri

Los kontakt

Kontroller sigarettuttaket, rengjor eller skift

Omformeren kommer ikke opp i arbeidstem-
peratur

Sld omformeren pd og av noen ganger

Sigarettenneren trenger spenning

Start motoren

Batterispenningen er under 10V

Lad eller skift batteri

Omformeren er slatt av pga. overoppheting

La omformeren avkjoles

Sikringen har gatt

Skift sikring. Kontroller tilkoblinger til batteri Riktig polaritet.

5 © 2018-03-02 Biltema Nordic Services AB —

BILTEMA

Art. 38-122

JANNITTEENMUUNNIN

TURVAOHJEET

¢ [ue kayttdohje huolellisesti ennen tuotteen kaytta-
mista.

e Kayta invertteria vain hyvin tuuletetussa tilassa.

¢ |nvertteria saa kayttaa vain polyttémissa ja kuivis-
sa tiloissa. Sité ei saa kayttdd marissa tai kosteissa
tiloissa.

e Sailyta invertteria poissa lasten ulottuvilta.

o VAltd altistamatta invertterid suoralle auringonpais-
teelle tai kuumuudelle.

e |nvertteri voi kuumentua voimakkaasti. Varmista,
ettd sen ympaérilla on 5 cm vapaata tilaa.

o Al3 kayta invertteria helposti syttyvien nesteiden
tai kaasujen lahella.

o Al4 kayts invertterid, jos ympdristén 1ampétila
ylittéda 40 °C.

e |nvertteria ei saa purkaa, eiké siihen saa tehda
mitddn muutoksia.

¢ Al3 ylikuormita invertteria.

e Jos invertteri lampenee liikaa, katkaise siihen
yhdistetty laite kuormituksen vahentamiseksi.
Jos tdma ei riitd, katkaise virta myds invertterista.
Kaynnista invertteri tdman jalkeen uudelleen ilman
ettd siihen on yhdistetty mitdan laitetta.

e Jos akku on ladattu huonosti, lataa se tayteen
ennen invertterin kayttamista.

¢ |rrota invertteri virransy6tdsta, kun sita ei kayteta.

VIRRANSYOTTO

Laitteeseen on sy&tettava jatkuvasti 10,5-15 voltin
tasavirtaa esimerkiksi akusta.

YHDISTAMINEN VIRRANSYOTTOON

e Varmista, ettd ON/OFF-painike on OFF-asennos-
sa.
e Yhdista laite savukkeensytytinliitantaan.
VAROITUS: Invertterin saa yhdistaa vain 12 voltin
tasavirtaan.

SAHKOLAITTEEN YHDISTAMINEN
INVERTTERIIN

¢ Varmista, ettd yhdistettavan laitteen tekniset tiedot
vastaavat invertterin asettamia vaatimuksia.
¢ Yhdisté laitteen pistoke invertterin sdhképistorasi-
aan.
¢ Aseta ON/OFF-painike ON-asentoon. Vihred mer-
kivalo syttyy.
Merkkivalo sammuu, jos jannite alittaa 10 volttia.
Tallin invertteristéd katkaistaan virta. Jos néin kay,
katkaise yhdistetysta laitteesta virta ja irrota pistoke.

LADATTAVAT LAITTEET

Ladattavat suoraan tavalliseen pistorasiaan yhdistetta-
vat laitteet voivat vaurioittaa invertteria.

OTA HUOMIOON YHDISTETTAESSA AUTON
AKKUUN

e Kaytd auton moottoria noin 15 minuuttia kerran
tunnissa, jotta akku ei tyhjene.

¢ Invertteria voi kdyttda moottorin ollessa kdynnissa
tai pyséhdyksissa.

e Kun auto kdynnistetdan, invertteri voi lakata toimi-
masta hetkeksi.

INVERTTERIN TURVALLISUUSTOIMINNOT

¢ Jos jannite alittaa 10 volttia, invertterista katkais-
taan virta.

¢ Jos jannite ylittda 15 volttia, invertterista katkais-
taan virta.

¢ |nvertterissa on 15 A:n oikosulkusulake.

¢ |nvertterista katkaistaan virta ylikuumenemissuoja-
uksen avulla, jos sen ldmpdtila ylittaa 65 °C. Anna
jaahtyd noin 15 minuuttia.

—— © 2018-03-02 Biltema Nordic Services AB

Art. 38-122

OSIEN KUVAUS TEKNISET TIEDOT
1. ON/OFF-painike Nimellisteho. 150 W
2. USB-liitanta: 5V DC, 500 mA Enimmaisteho 300 W
3. Savukkeensytytinliitantajohto Taajuus 50-60 Hz
4. Virtapistoke Lahtéjannite. 100-240 V AC
5. Ylikuormituksen ilmaisin USB-liitéanta. 5V DC, 500 mA
Virrankulutus > 0,35 A
YLEISET ONGELMAT o TUIOJANNIte . . .« e 12V
e Laite kdynnistyy ja sammuu. Kaynnista ja sammu- Jannitealue 10-15V
ta invertteri nopeasti muutaman kerran. Sulakeot 20 A
. quiikkijérjestelmésté kuuluu kohinag. Tietyt kgi- Ymparistén [ampétila 10-27 °C
uttimet eivat pysty suodattamaan pois invertterin
tuottamia sinusaaltoja.
e Televisio toimii huonosti. Invertterissa on suojaus,
mutta se voi silti aiheuttaa hairiéita varsinkin jos
tv-signaali on heikko. Aseta televisio mahdollisim-
man kauas invertteristd. Jos mahdollista, kayta
hyvélaatuista antennijohtoa.
VIANETSINTA
SYY SUOSITELTU TOIMENPIDE
Invertteri ylikuormittuu. Vahenna kuormitusta.
Jannitteensyo6tto alittaa 10,6 volttia. Varmista, etté jannitteensydétto ylittaa 10,6 volttia.
Huono akku. Vaihda akku.
Huono liitos. Tarkista savukkeensytytinliitdnta. Puhdista tai vaihda
Se.
Invertteri ei saavuta ty6skentelylampétilaa. Kaynnisté ja sammuta invertteri nopeasti muutaman
kerran.
Savukkeensytytinliitdntaan ei sydteta virtaa. Kaynnistéd moottori.
Akun jannite alittaa 10 volttia. Lataa tai vaihda akku.
Invertterista on katkaistu virta esimerkiksi ylikuor- Anna invertterin jadhtya.
mituksen vuoksi.
Sulake on lauennut. Vaihda sulake. Tarkista akkuliitdnnat. Tarkista na-
paisuus.

7 © 2018-03-02 Biltema Nordic Services AB —

BILTEMA

Art. 38-122

SPZANDINGSOMFORMER

SIKKERHEDSINSTRUKTIONER

e | zs omhyggeligt brugsanvisningen, inden pro-
duktet bruges.

¢ Anvend altid spaendingsomformeren i et godt
ventileret rum.

e Spaendingsomformeren ma kun anvendes i
stavfrie og terre omgivelser. Ma ikke anvendes i
fugtige eller vdde omgivelser.

¢ Placer spaendingsomformeren utilgeengeligt for
born.

¢ Placer ikke spaendingsomformeren i neerheden af
en varmekilde eller i direkte sollys.

e Spaendingsomformeren kan blive meget varm.
Sorg for, at der er 5 cm frit rum omkring enheden.

¢ Brug ikke speendingsomformeren i naerheden af
brandfarlige luftarter eller vaesker.

¢ Anvend aldrig spaendingsomformeren i tempera-
turer over 40° C.

e Spaendingsomformeren ma ikke adskilles eller
e&ndres pa nogen made.

¢ Overbelast ikke speendingsomformeren.

¢ Hvis spaendingsomformeren bliver for varm skal
du slukke det tilkoblede apparat for at mindske
effektudgangen. Hvis det ikke er nok, skal du
slukke for spaendingsomformeren. Start derefter
spaendingsomformeren uden apparater tilkoblet.

e Hvis batteriet forekommer at veere darligt opla-
det, skal det oplades, inden spaendingsomforme-
ren anvendes igen.

¢ Fjern speendingsomformeren fra cigarteenderstik-
ket, nar den ikke er i brug.

SPZANDINGSFORSYNING

Enheden skal tilfares en kontinuerlig spaending pa
min. 10,5 V og maks. 15 V DC fra batteri eller tilsva-
rende DC-spaendingskilde.

TILSLUTNING TIL SPZENDINGSFORSYNINGEN
e Saet ON/OFF-knappen i OFF-position.
e Slut stikket til cigarteenderstikket.
ADVARSEL: Omformeren ma kun tilsluttes en 12V DC
speendingskilde.

Saet et apparat til spaendingsomformeren
e Sorg for, at det tilsluttede apparat holder sig
inden for de angivne specifikationer.
e Slut stikket til udtaget pa spaendingsomformeren.
e Saet ON/OFF-knappen i ON-position. Grgn lys-
diode teendes.
Hvis spaendingen synker til under 10 V, slukker
lysdioden, og omformeren slukkes. Hvis dette sker -
sluk det tilsluttede apparat og tag netstikket ud.

OPLADELIGE ENHEDER

Opladelige enheder, som kan sluttes direkte til en
standardsokkel, kan beskadige spaendingsomforme-
ren.

VED TILSLUTNING TIL BILBATTERIET, HUSK:

e Kgr med bilmotoren cirka 15 minutter hver time,
sé batteriet ikke aflades.

e Speendingsomformeren kan anvendes, bade nar
motoren kerer, og nar den er standset.

e Speendingsomformeren kan holde op med at
fungere et kort gjeblik, nar motoren startes.

SIKKERHEDSFUNKTIONER |
SPZAENDINGSOMFORMEREN

* Hvis spaendingen falder til under 10 V, slukkes
omformeren.

¢ Hvis spaendingen overstiger 15V, slukkes omfor-
meren.

e Kortslutningssikring — 15 A sikring

¢ Overophedningssikringen slukker automatisk
spaendingsomformeren, nér den indvendige tem-
peratur er 65° C. Lad den kole af i ca. 15 minutter.

—— © 2018-03-02 Biltema Nordic Services AB

OVERSIGT

1. ON/OFF-knap

2. USB-tilslutning, 5DC V, 500 mA

3. Tilslutningskabel til cigartaenderudtag
4. AC-udtag

5. Overbelastningsindikering

Generelle problemer

e Apparatet starter, men stopper igen. Teend og
sluk for omformeren nogle gange.

e Sus i musiksystemet. Visse hgjtalere kan ikke
filtrere de modificerede sinusbglger, som omfor-
meren genererer.

e TV fungerer darligt. Omformeren er skeermet,
men kan alligevel give forstyrrelser, iseer hvis
TV-signalet er svagt. Placer fjernsynet sé langt fra
spaendingsomformeren som muligt og et anten-
nekabel af god kvalitet.

FEJLSOGNING

Art. 38-122

Frekvens 50~60 Hz
Udgangsspeending.......... 100~240 V AC
USB-tilslutning 5V DC, 500 mA
Stremforbrug >0,35 A
Indgangsspeending. 12V
Speendingsomrade 10~15V
Sikring......... 20A
Temperatur 10° C-27°C

ARsAG ANBEFALET FORANSTALTNING

Omformeren er overbelastet.

Formindsk belastningen

Spaendingen er under 10,6 V

Serg for, at speendingstilfersien er over 10,6 V

Darligt batteri

Udskift batteri

Darlig kontakt

Kontroller cigarteenderstikket, renger eller udskift

Omformeren opnar ikke arbejdstemperatur

Teend og sluk for omformeren nogle gange

Cigartaenderen skal have spzending pa

Start motoren

Batterispeendingen er under 10 V

Oplad eller skift batteri

Omformeren er slukket pga. overophedning

Lad omformeren kole af

Sikringen er udlost

Skift sikring. Kontroller batteriets tilslutninger. Rigtig polaritet.

9 © 2018-03-02 Biltema Nordic Services AB —

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

F. Python Scripts

F. Python Scripts

F.1 Finding Lane Curvature, Curve Radius and Vehicle Posi-

tion

The source code is fetched from GitHub, and the credit goes to the owner of the script. [57]

import
import
import
import
import
import

import

numpy as np

cv2

pickle

glob

matplotlib.pyplot as plt

matplotlib.image as mpimg

(O}°]

def display_Images (imgl, img2, 1bll, 1bl2, x, y, img3=][], 1bl3=]],

cmap=None, n=2):

plt
plt
plt
plt

plt.
plt.

plt
plt
plt
plt

.figure (figsize=(x, y))
.subplot (1, n, 1)

.imshow (imgl, cmap=cmap)

.xlabel (1bl1 ,
xticks ([])

yticks ([])

.subplot (1, n, 2)

.imshow (img2, cmap=cmap)

.xlabel (
.xticks ([])
plt. (

if n =

plt
plt
plt

yticks

[1)
3:

xticks

yticks

plt .show ()

1bl2 ,

(
(
(

1bl13

[1)
[1)

fontsize=15)

fontsize=15)

.subplot (1, n, 3)

.imshow (img3, cmap=cmap)
.xlabel
plt.
plt.

fontsize=15)

188

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

F. Python Scripts

def

def

def

Transform_Camera_View (img, src, dst):

9999 99

Convert the vehicles camera into a Birds eye View

» 9

image_shape = img.shape

img_size = (image_shape[l], image_shape[0])

Given src and dst points, calculate the perspective transform
matrix

M = cv2.getPerspectiveTransform (src, dst)

Minv = cv2.getPerspectiveTransform (dst, src)

Warp the image using OpenCV warpPerspective ()
warped = cv2.warpPerspective(img, M, img_ size)
Return the resulting image and matrix

return warped, M, Minv

HLS_L_Threshold (img, thresh=(195, 255)):
Threshold the input image to the L—channel of the HLS color
space. Which is the lightness

img = img[:, :, 1]

img = img * (255 / np.max(img))

binary_output = np.zeros_like (img)

binary_output [(img > thresh [0]) & (img <= thresh[1])] =1

return binary_output

LAB_B_Threshold (img, thresh=(230, 255)):

Threshold the input image to the B—channel of the LAB color
space.

img = img[:, :, 2]

if np.max(img) > 175:
img = img * (255 / np.max(img))

binary_output = np.zeros_like (img)

binary_output [(img > thresh[0]) & (img <= thresh[1])] =1

189

F. Python Scripts

71 return binary_output
72
73

74

75 def Combined HLS_LAB_Threshold (img) :

9999 99
76

77 Threshold the input image to the L—channel of the HLS color
space and the B—channel of the LAB color space.

999 97
78

79 img_ HLS = c¢v2.cvtColor (img, cv2.COLORRGB2HLS)

80 img LAB = cv2.cvtColor (img, cv2.COLOR_RGB2Lab)

81 img_thresh_ HLS = HLS_L_Threshold (img_HLS)

82 img_thresh LAB = LAB_B_Threshold (img LAB)

83 combined_img = np.zeros_like (img_thresh_HLS)

84 combined_img [((img_thresh. HLS = 1) | (img_thresh.LAB = 1))] =
1

85 return combined_img

86

87

ss def Sliding_Window_Method (img) :

999 97
89

90 Fit a polynomial to the input binary image.

91

o » 9

93 # Take a histogram of the bottom half of the image

94 histogram = np.sum(img[img.shape[0] // 2:, :], axis=0)

95 # Find the peak of the left and right halves of the histogram

96 # These will be the starting point for the left and right lines

o7 midpoint = np.int (histogram.shape[0] // 2)

08 quarter_point = np.int (midpoint // 2)

99 # Previously the left/right base was the max of the left/right
half of the histogram

100 # this changes it so that only a quarter of the histogram (
directly to the left/right) is considered

101 leftx_base = np.argmax(histogram[quarter_point:midpoint]) +

quarter_point
102 rightx_base = np.argmax(histogram [midpoint:(midpoint +
quarter_point)]) + midpoint

103

104 # Choose the number of sliding windows
105 nwindows = 70
106 # Set height of windows

190

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

131

132

133

134

136

137

138

140

141

142

F. Python Scripts

window_height = np.int (img.shape[0] / nwindows)

Identify the x and y positions of all nonzero pixels in the

image
nonzero = img.nonzero ()
nonzeroy = np.array(nonzero[0])
nonzerox = np.array(nonzero|[1])

Current positions to be updated for each window

leftx_current = leftx_base

rightx_current = rightx_base

Set the width of the windows +/— margin
margin = 80

Set minimum number of pixels found to recenter window

minpix = 40

Create empty lists to receive left and right lane pixel
indices

left _lane_inds = []

right _lane_inds = []

Rectangle data for visualization

rectangle data = []

Step through the windows one by one
for window in range(nwindows):

Identify window boundaries in x and y (and right and left)

win_y_low = img.shape[0] — (window + 1) % window_height
win_y_high = img.shape[0] — window * window_height
win_xleft_low = leftx_current — margin

win_xleft_high = leftx_current + margin

win_xright_low = rightx_current — margin
win_xright_high = rightx_current + margin

rectangle_data.append ((win_y_low, win_y_high, win_xleft_low ,
win_xleft_high , win_xright_low , win_xright_high))
Identify the nonzero pixels in x and y within the window
good_left_inds = ((nonzeroy >= win_y_low) & (nonzeroy <
win_y_high) & (nonzerox >= win _xleft_low) &
(nonzerox < win_xleft_high)).nonzero() [0]
good_right_inds = ((nonzeroy >= win_y_low) & (nonzeroy <
win_y_high) & (nonzerox >= win_xright_low) &
(nonzerox < win_xright_high)).nonzero ()
[0]
Append these indices to the lists
left lane_inds .append(good_left_inds)
right _lane_inds .append(good_right_inds)

191

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

161

162

163

164

166

167

168

169

171

172

173

174

175

176

177

178

F. Python Scripts

If you found > minpix pixels, recenter next window on
their mean position
if len(good_left_inds) > minpix:
leftx_current = np.int (np.mean(nonzerox|[good_left_inds])
)
if len(good_right_inds) > minpix:
rightx_current = np.int (np.mean(nonzerox|[good_right_inds

1))

Concatenate the arrays of indices
left _lane_inds = np.concatenate(left_lane_inds)

right_lane_inds = np.concatenate(right_lane_inds)

Extract left and right line pixel positions

leftx = nonzerox[left_lane_inds|
lefty = nonzeroy[left_lane_inds]
rightx = nonzerox|[right_lane_inds|

righty = nonzeroy|[right_lane_inds |

left _fit , right_fit = (None, None)
Fit a second order polynomial to each
if len(leftx) != 0:
left _fit = np.polyfit(lefty , leftx , 2)
if len(rightx) != 0:
right _fit = np.polyfit(righty , rightx, 2)

visualization_data = (rectangle_data , histogram)

return left_fit , right_fit , left_lane_inds , right_lane_inds ,

visualization_data

def PolynomialFit_Previous_Fit (img, left_fit_prev , right_fit_prev):
” 99
Fit a polynomial to the input binary image based upon a previous
fit.
This assumes that the fit will not change significantly from one
video frame to the next.
Parameters:
img: Input image.
left _fit_prev:
right _fit_prev:

9999 99

192

179

180

181

182

183

184

185

186

188

189

190

191

192

194

195

196

198

199

200

201

202

203

204

205

206

207

209

210

211

212

F. Python Scripts

def

nonzero = img.nonzero ()
nonzeroy = np.array (nonzero[0])
nonzerox = np.array(nonzero[1l])
margin = 80

left_lane_inds = ((nonzerox > (left_fit_prev [0]*(nonzeroy=**2) +
left _fit_prev [1l]*nonzeroy + left_fit_prev [2] — margin))
& (nonzerox < (left_fit_prev [0]«(nonzeroy*%2) +
left _fit_prev [1l]*nonzeroy + left_fit_prev [2] +
margin)))
right_lane_inds = ((nonzerox > (right_fit_prev [0]*(nonzeroy=x2)
+ right_fit_prev [1]*nonzeroy + right_fit_prev [2] — margin))
& (nonzerox < (right_fit_prev [0]*(nonzeroy*%2) +
right_fit_prev [1]*nonzeroy + right_fit_prev [2] +

margin)))

leftx = nonzerox[left_lane_inds|
lefty = nonzeroy[left_lane_inds]
rightx = nonzerox|[right_lane_inds|

righty = nonzeroy|[right_lane_inds |
left _fit_new , right_fit_new = (None, None)
if len(leftx) != 0:
left _fit_new = np.polyfit(lefty , leftx, 2)
if len(rightx) != 0:
right _fit_new = np.polyfit(righty , rightx, 2)
return left_fit_new , right_fit_new , left_lane_inds ,

right_lane_inds

Image_Process (img) :
399
Apply undistortion , perspective transform , and color space
thresholding to the input image.
Parameters:
img: Input image.
Perspective Transform

img, M, Minv = Transform_Camera_View (img, src, dst)

Create a thresholded binary image
img = Combined HLS_LAB_Threshold (img)

return img, Minv

193

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

239

240

241

242

243

244

245

F. Python Scripts

def Curve_Position (img, 1_fit , r_fit, l_.lane_inds, r_lane_inds):

9999 99

Calculating the lane curvature and the vehicle position on the
lane .
Parameters:
img: Input image.
1_fit , r_fit, l_lane_inds, r_lane_inds: Detected lane
lines .
Define conversions in x and y from pixels space to meters
ym_per_pix = 3.048/100 # meters per pixel in y dimension, lane
line is 10 ft = 3.048 meters
xm_per_pix = 3.7/378 # meters per pixel in x dimension, lane
width is 12 ft = 3.7 meters
left _curverad , right_curverad, center_dist = (0, 0, 0)
Define y—value where we want radius of curvature
1’11 choose the maximum y—value, corresponding to the bottom
of the image
h = img.shape[0]
ploty = np.linspace (0, h—1, h)
y_eval = np.max(ploty)

Identify the x and y positions of all nonzero pixels in the

image
nonzero = img.nonzero ()
nonzeroy = np.array (nonzero[0])
nonzerox = np.array(nonzero|[1])

Again, extract left and right line pixel positions

leftx = nonzerox|[l_lane_inds]
lefty = nonzeroy[l_lane_inds |
rightx = nonzerox|[r_lane_inds |
righty = nonzeroy|[r_lane_inds]
if len(leftx) != 0 and len(rightx) != 0:

Fit new polynomials to x,y in world space

left _fit_cr = np.polyfit(lefty*xym per_pix, leftx*xm_per_pix,
2)

right _fit_cr = np.polyfit(righty*ym _per_pix, rightxsx
xm_per_pix, 2)

Calculate the new radii of curvature

left _curverad = ((1 + (2xleft_fit_cr [0]xy_evalxym_per_pix +
left _fit_cr [1])*%2)x%x1.5) / np.absolute(2xleft_fit_cr [0])

194

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

268

269

270

271

272

274

275

276

277

279

280

F. Python Scripts

right_curverad = ((1 + (2xright_fit_cr [0]*y_evalxym_per_pix
+ right _fit_cr [1])*%2)%%x1.5) / np.absolute(2xright_fit_cr

[0])

Now our radius of curvature is in meters

Distance from center is image x midpoint — mean of 1_fit and
r_fit intercepts

if r_fit is not None and 1_fit is not None:
car_position = img.shape[1l]/2
1 fit_x_int = 1_fit [0]*h=*x2 + 1_fit [1]*xh + 1_fit [2]
r_fit_x_int = r_fit [0]«h*x2 + r_fit [1]«h + r_fit [2]
lane_center_position = (r_fit_x_int + l_fit_x_int) /2
center_dist = (car_position — lane_center_position) x

Xm_per_pix

return left_curverad , right_curverad , center_dist

def Draw_Lane(original_img , binary_img, 1_fit , r_fit , Minv):
Draw the detected lane over the input image.
Parameters:
original_img: Input frame.
binary_img: Preprocessed image.
1_fit , r_fit: Detected lanes.
Minv: Calibration matrix.
new_img = np.copy(original_ img)
if 1_fit is None or r_fit is None:
return original_img
warp_zero = np.zeros_like (binary_img).astype (np.uint8)
color_warp = np.dstack ((warp_zero, warp_zero, warp-zero))
h,w = binary_img.shape
ploty = np.linspace (0, h—1, num=h)
left _fitx = 1_fit [0]* ploty=*x2 + 1_fit [1]*ploty + 1_fit [2]
right _fitx = r_fit [0]xploty**2 + r_fit [1]«xploty + r_fit [2]

pts_left = np.array ([np.transpose(np.vstack ([left_fitx , ploty]))

1)

pts_right = np.array ([np. flipud (np.transpose (np.vstack (|
right_fitx , ploty])))])

pts = np.hstack ((pts_left , pts_right))

cv2.fillPoly (color_warp, np.int_([pts]), (0,255, 0))

195

F. Python Scripts

281 cv2.polylines(color_warp, np.int32 ([pts_left]), isClosed=False,
color=(255,0,255), thickness=15)

282 cv2.polylines(color_warp, np.int32 ([pts_right]), isClosed=False,
color=(0,255,255), thickness=15)

283 newwarp = cv2.warpPerspective(color_warp, Minv, (w, h))

284 result = cv2.addWeighted (new_img, 1, newwarp, 0.5, 0)

285 return result

286

287

288

289 def Write_Data(original_img , curv.rad, center_dist):

9999 99
290

291 Write the lane curvature and vehicle position over the input
image .

292 Parameters:

293 original_img: Input frame.

204 curv_rad: Lane curvature.

295 center_dist: Vehicle position.

296 oy

207 new_img = np.copy(original_img)

208 h = new_img.shape [0]

299 font = c¢v2.FONT HERSHEY DUPLEX

300 text = 'Curve radius: ~ 4+ "{:04.2f} . format(curv_rad) + 'm’

301 cv2.putText (new_img, text, (40,70), font, 1.5, (255,255,255), 2,
cv2.LINE_AA)

302 direction =’

303 if center_dist > O0:

304 direction = ’'right’

305 elif center_dist < 0:

306 direction = ’“left’

307 abs_center_dist = abs(center_dist)

308 text = 7{:04.3f} .format(abs_center_dist) + 'm ~ + direction +
of center’

300 cv2.putText (new_img, text, (40,120), font, 1.5, (255,255,255),
2, cv2.LINE_AA)

310 return new_img

311
312

313 class Line():

=

314 def __init__(self):
315 # was the line detected in the last iteration?
316 self.detected = False

196

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

F. Python Scripts

x values of the last n fits of the line
self . recent_xfitted = []
#average x values of the fitted line over the last n
iterations
self.bestx = None
#polynomial coefficients averaged over the last n iterations
self.best_fit = None
#polynomial coefficients for the most recent fit
self.current_fit = []
#radius of curvature of the line in some units
self.radius_of_curvature = None
#distance in meters of vehicle center from the line
self.line_base_pos = None
#difference in fit coefficients between last and new fits
self.diffs = np.array ([0,0,0], dtype='float’)
#number of detected pixels
self.px_count = None
def add_fit (self, fit, inds):
if fit is not None:
self.detected = True
self.px_count = np.count_nonzero (inds)
self.current_fit .append(fit)
if len(self.current_fit) > 5:
self . current_fit = self.current_fit[len(self.
current _fit) —5:]
self . best_fit = np.average(self.current_fit , axis=0)
else:
self.detected = False
if len(self.current_fit) > 0:
self . current_fit = self.current_fit [:len(self.
current _fit)—1]
if len(self.current_fit) > 0:

self . best_fit = np.average(self.current_fit, axis=0)

def Frame_Processor (img):
M NN
Process the input frame and return the frame with detected lane
and curvature and vehicle position information.
Parameters:

img: Input frame.

9999 99

197

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

F. Python Scripts

new_img = np.copy (img)
img_bin, Minv = Image_Process(img)
if not 1_line.detected or not r_line.detected:
1_fit , r_fit , l_lane_inds, r_lane_inds, _ =
Sliding_Window_Method (img_bin)
else:
1_fit , r_fit, l_lane_inds, r_lane_inds =
PolynomialFit_Previous_Fit (img_bin, 1_line.best_fit ,
r_line.best_fit)

l_line.add_fit (1_fit , 1_-lane_inds)

r_line.add_fit (r_fit , r_lane_inds)

img_outl = Draw_Lane(new_img, img_bin, 1_fit , r_fit , Minv)

rad_l, rad.r, d._center = Curve_Position(img_bin, 1_fit , r_fit ,
l_lane_inds , r_lane_inds)

img_out = Write_Data(img_-outl, (rad_-l4+rad.-r)/2, d_center)

return img_out

img = cv2.imread (Test E18 Grimstad .PNG")
img = c¢v2.cvtColor (img, cv2.COLORBGR2RGB)
image_shape = img.shape

print (” Image shape:”, image_shape)

plt .imshow (img)

plt .show ()

src = np.float32 ([[0, 600], [1010, 600], [450, 400], [700, 400]])
bottom_left = src[0][0] 4+ 0, src[0][1]
I

0
bottom_right = src[1][0] —0 , src[1][1]
top_-left = src[3][0] — 0, 1
top_right = src[2][0] + 0, 1
(1

o
o

dst = np.float32 ttom_left , bottom_right, top_right, top-_-left])

img_warped = Transform_Camera_View (img, src, dst)[0]
plt .imshow (img_warped)
plt .show ()

img RGB = img_warped

img LAB = c¢v2.cvtColor (img RGB, cv2.COLORRGB2Lab)
img LAB. B = img LAB[:, :, 2]

198

F. Python Scripts

393

304 img HLS = ¢v2.cvtColor (img RGB, c¢v2.COLORRGB2HLS)

305 img HLS_ L = img HLS[:, :, 1]

396

307 thresh HLS = HLS_L_Threshold (img_HLS)

sss display_Images (img HLS, thresh . HLS, 'HLS Image’, 'L—Thresholded HLS
Image’, 14, 7, cmap="gray)

399

100 thresh.LAB = LAB_B_Threshold (img_ LAB)

a1 display_Images (img -LAB, thresh.LAB, 'LAB Image’, 'B-Thresholded LAB
Image’, 14, 7, cmap="gray)

402

103 threshold_color_img = Combined HLS_LAB Threshold (img_warped)

104 display_Images (img_warped, threshold_color_img , 'RGB image’,

Combined Thresholded Image’, 14, 7, cmap='gray’)
405
406
101 FHAHHAH#NEW STARGHAHHHAHE
408

109 image_org = cv2.imread(Test E18 Grimstad .PNG")
a0 image_org = cv2.cvtColor(image_org, cv2.COLORBGR2RGB)

411

a2 image_processed , Minv = Image_Process(image_org)

413

414

a5 display_Images (image_org, image_processed, 'Original test image’,
Processed test image’, 14, 7, cmap=’gray’)

416

417

415 img = image_processed

a9 left_fit , right_fit , left_lane_inds , right_lane_inds ,
visualization_data = Sliding_-Window_Method (img)

120 h = img.shape [0]

21 left_fit_x_int = left_fit [0]*xh*x2 + left_fit [1]*xh + left_fit [2]

w22 right_fit_x_int = right_fit [0]*h*%2 + right_fit[1]+xh + right_fit [2]

123 rectangles = visualization_data [0]

124 histogram = visualization_data [1]

125 # Create an output image to draw on and visualize the result

126 out_-img = np.uint8 (np.dstack ((img, img, img))=*255)

127 # Generate x and y values for plotting

128 ploty = np.linspace (0, img.shape[0]—1, img.shape[0])

120 left_fitx = left_fit [O]*ploty*x2 + left_fit [1]xploty + left_fit [2]

199

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

F. Python Scripts

right _fitx = right_fit [0]xploty**2 4+ right_fit [1]*ploty + right_fit
2]
for rect in rectangles:
Draw the windows on the visualization image
cv2.rectangle (out_img ,(rect [2],rect [0]) ,(rect [3],rect[1])
,(0,255,0), 2)
cv2.rectangle (out_img ,(rect [4] ,rect [0]) ,(rect [5],rect[1])
,(0,255,0), 2)

Identify the x and y positions of all nonzero pixels in the image

nonzero = img.nonzero ()

nonzeroy = np.array(nonzero[0])

nonzerox = np.array(nonzero|[1])

out_img [nonzeroy [left _lane_inds], nonzerox|[left_lane_inds]] = [255,
0, 0]

out_img [nonzeroy [right_lane_inds], nonzerox|[right_lane_inds]] =

[100, 200, 255]
plt.figure (figsize=(14, 7))
plt.subplot (1, 2, 1)
plt .imshow (image_org)
plt.xlabel (' Original image’, fontsize=15)
plt.xticks ([])
plt.yticks ([])
plt.subplot (1, 2, 2)
plt .imshow (out_img)
plt.xlabel (’Sliding window’, fontsize=15)
plt.plot(left_fitx , ploty, color="yellow)
plt.plot(right_fitx , ploty, color="yellow ")
plt.xlim (0, 1280)
plt.ylim (720, 0)
plt . xticks ([])

plt.yticks ([])
plt .show ()

margin = 50

left _fit , right_fit , left_lane_inds , right_lane_inds,
visualization_data = Sliding_-Window_Method (img)

left _fit2 , right_fit2 , left_lane_inds2 , right_lane_inds2 =
PolynomialFit_Previous_Fit (img, left_fit , right_fit)

ploty = np.linspace (0, img.shape[0] —1, img.shape[0])

left _fitx = left_fit [0]*ploty**2 4+ left_fit [1]xploty + left_fit [2]

200

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

F. Python Scripts

right _fitx = right_fit [0]xploty**2 4+ right_fit [1]*ploty + right_fit

2]

left fitx2 = left_fit2 [0]«ploty**2 + left_fit2 [1]xploty + left_fit2
2]

right _fitx2 = right_fit2 [0]*ploty**2 + right_fit2[1]*ploty +
right_fit2 [2]

out_img = np.uint8 (np.dstack ((img, img, img))*255)

window_img = np.zeros_like (out_img)

nonzero = img.nonzero ()

nonzeroy = np.array (nonzero[0])

nonzerox = np.array (nonzero[1])

out_-img[nonzeroy [left _lane_inds2]|, nonzerox|[left_lane_inds2]] =
(255, 0, 0]

out_img [nonzeroy [right_lane_inds2], nonzerox|[right_lane_inds2]] =
[0, 0, 255]

left_line_windowl = np.array ([np.transpose(np.vstack ([left_fitx —
margin, ploty]))])

left_line_window2 = np.array ([np. flipud (np. transpose (np. vstack (|
left _fitx+margin, ploty])))])

left _line_pts = np.hstack ((left_line_windowl , left_line_window2))

right_line_windowl = np.array ([np.transpose(np.vstack ([right_fitx —
margin, ploty]))])

right_line_window2 = np.array ([np. flipud (np. transpose (np. vstack (]
right _fitx+margin, ploty])))])

right _line_pts = np.hstack((right_line_windowl, right_line_window2))

cv2.fillPoly (window_img, np.int_([left_line_pts]), (0,255, 0))

cv2.fillPoly (window_img, np.int_([right_line_pts]), (0,255, 0))

result = cv2.addWeighted (out_img, 1, window_img, 0.3, 0)

plt.figure (figsize=(14, 7))

plt.subplot (1, 2, 1)

plt .imshow (image_org)

plt.xlabel (' Original image’, fontsize=15)

plt.xticks ([])

plt.yticks ([])

plt.subplot (1, 2, 2)

plt .imshow (result)

plt.xlabel (" Polyfit using previous fit’, fontsize=15)

plt.plot(left_fitx2 , ploty, color="yellow ")

plt.plot(right_fitx2 , ploty, color="yellow ")

plt.xlim (0, 1280)

plt.ylim (720, 0)

plt.xticks ([])

201

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

F. Python Scripts

plt.yticks ([])

plt .show ()

rad_1, rad.r, d_center = Curve_Position(image_processed , left_fit ,
right _fit , left_lane_inds2 , right_lane_inds2)

print ('Radius of curvature for example:’, rad_l, 'm,’, rad.r, 'm’)

print (’Distance from lane center for example:’, d_center, 'm’)
plt.figure (figsize=(14, 7))

plt.subplot (1, 2, 1)

plt .imshow (image_org)

plt.xlabel(Original image’, fontsize=15)

plt . xticks ([])

plt.yticks ([])

plt.subplot (1, 2, 2)

plt .imshow (result)

plt.xlabel (" Polyfit using previous fit’, fontsize=15)
plt.plot(left_fitx2 , ploty, color="yellow)

plt.plot (right_fitx2 , ploty, color="yellow ")
plt.xlim (0, 1280)

plt.ylim (720, 0)

plt.xticks ([])

plt.yticks ([])
plt .show ()

left _fit , right_fit , left_lane_inds , right_lane_inds,
visualization_data = Sliding_-Window_Method (image_processed)

left _fit2 , right_fit2 , left_lane_inds2 , right_lane_inds2 =
PolynomialFit_Previous_Fit (image_processed , left_fit , right_fit)

rad_1, rad.r, d_center = Curve_Position(image_processed , left_fit ,
right _fit , left_lane_inds2 , right_lane_inds2)

result = Draw_Lane(image_org, image_processed , left_fit , right_fit ,
Minv)

result = Write_Data(result, (rad_l+rad_r)/2, d_center)
plt.figure (figsize=(14, 7))
plt.subplot (1, 2, 1)

plt .imshow (image_org)

plt.xlabel (' Original image’, fontsize=15)
plt.xticks ([])
plt.yticks ([])

202

536

537

538

539

540

541

10

11

12

13

14

15

16

17

18

19

20

21

22

23

25

26

27

28

29

30

F. Python Scripts

plt.subplot (1, 2, 2)
plt .imshow (result)

plt.xlabel (' Detected Lane’, fontsize=15)

plt.xlim (0, 1280)
plt.ylim (720, 0)
plt.xticks ([])

plt.yticks ([])
plt .show ()

F.2 IMU Calibration Script - Intel RealSense 435i [1]

#!/usr/bin/python
from __future__ import
import numpy as np
import sys

import json

import ctypes

import os

import binascii

import struct

import pyrealsense2 as
import ctypes

import time

import enum

import threading

is_data = None

get_key = None

if os.name = ’posix
import select
import tty

import termios

is_.data = lambda
sys.stdin], [],
get_key = lambda

elif os.name = ’'nt’
import msvert
is_data =

get_key = lambda

print_function

rs

select .select ([sys.stdin],

[1)

sys.stdin.read (1)

msvert . kbhit

msvert . getch ()

[

203

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

F. Python Scripts

else:

raise Exception(’ Unsupported OS: %s’ % os.name)

if sys.version_info[0] < 3:

input = raw_input

max_float = struct.unpack(’'f’ b’\ xff\xff\xff\xff) [0]
max_int = struct.unpack(i’ b7\ xff\xff\xff\xff ") [0]
max_uint8 = struct.unpack(’'B’, b’\ xff) [0]

g = 9.80665

COLORRED = ”"\033[1;31m"

COLORBLUE = ”\033[1;34m”

COLORCYAN = "\033[1;36m’
[

COLOR.GREEN = ”\033[0;32m"
COLORRESET = ”\033[0;0m”

COLORBOLD = "\033[;1m"
COLORREVERSE = 7\ 033[;7m’

class imu_wrapper:
class Status(enum.Enum) :
idle = 0,
rotate = 1,
wait_to_stable = 2,
collect_data = 3

def __init__(self):
self.pipeline = None
self.imu_sensor = None
self.status = self.Status(self.Status.idle)# 0 — idle, 1 —
rotate to position, 2 — wait to stable, 3 — pick data
self.thread = threading.Condition ()

self.step_start_time = time.time()
self .time_to_stable = 3
self.time_to_collect = 2

self.samples_to_collect = 1000

self .rotating_threshold = 0.1

self . moving_threshold_factor = 0.1
self.collected_data_gyro = []
self.collected_data_accel = []
self.callback_lock = threading.Lock()

204

72

73

74

75

76

s

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

104

105

106

107

108

109

110

111

F. Python Scripts

def

def

self .max norm = np.linalg .norm(np.array ([0.5, 0.5, 0.5]))
self.line_length = 20

self.is_done = False

self.is_

data = False

escape_handler (self):

self.thread.acquire ()
self.status = self.Status.idle
self.is_done = True
self.thread.notify ()

self.thread.release ()

sys.exit(—1)

imu_callback (self , frame):

if not self.is_data:

self.is_data = True

with self.callback_lock:

try:

if is_data():
¢ = get_key ()
if ¢ = "\xlb’: # x1b is ESC
self.escape_handler ()

if self.status = self.Status.idle:
return
pr = frame. get_profile ()
data = frame.as_motion_frame().get_motion_data ()
data_np = np.array ([data.x, data.y, data.z])

elapsed_time = time.time() — self.step_start_time

Status.collect_data

if self.status = self.Status.collect_data:
sys.stdout.write('\r %I15s" % self . status)
part_done = len(self.collected_data_accel) /

float (self.samples_to_collect)
sys.stdout.write(’: %—3.1f (secs)’ % (self.

time_to_collect — elapsed_time))

color = COLOR.GREEN
if pr.stream_type() == rs.stream.gyro:

self.collected_data_gyro.append (np.append(

205

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

F. Python Scripts

frame . get_timestamp (), data_np))
is_moving = any(abs(data_np) > self.
rotating_threshold)
else:
is_.in_norm = np.linalg.norm(data_np — self.
crnt_bucket) < self.max norm
if is_in_norm:
self.collected_data_accel.append(np.
append (frame. get_timestamp (), data_np
))
else:
color = COLORRED
is_moving = abs(np.linalg.norm(data_np) — g)

/ g > self.moving_threshold_factor

sys.stdout.write(color)

sys.stdout.write(’['+ . xint (part_-donexself.
line_length)+’ ’'xint((1—part_done)xself.
line_length) + "] 7)

sys.stdout . write (COLORRESET)

if is_moving:
print ("WARNING: MOVING)
self.status = self.Status.rotate

return

if elapsed_time > self.time_to_collect:
if part_done >= 1:
self.status = self.Status.collect_data
sys.stdout.write(’\n\nDirection data
collected . ”)
self.thread.acquire ()
self.status = self.Status.idle
self . thread.notify ()

self.thread.release ()

return
if pr.stream_type() = rs.stream.gyro:
return
sys.stdout.write(’\r %I15s’ % self.status)
crnt_dir = np.array(data.np) / np.linalg.norm(
data_np)

206

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

171

172

173

174

175

177

178

179

180

F. Python Scripts

crnt_diff = self.crnt_direction — crnt_dir
is_.in_norm = np.linalg .norm(data_np — self.

crnt_bucket) < self.max norm

Status.rotate

if self.status = self.Status.rotate:
sys.stdout.write(’: %35s’ % (up.array2string(
crnt_diff , precision=4, suppress_small=True)

))

sys.stdout.write(’: %35s’ % (np.array2string (abs

(crnt_diff) < 0.1)))

if is_in_norm:

self.status = self.Status.wait_to_stable

sys.stdout.write(’\r '+’ "%90)
self.step_start_time = time.time ()

return

Status.wait_to_stable

if self.status = self.Status.wait_to_stable:
sys.stdout.write(’: %—3.1f (secs)’ % (self.
time_to_stable — elapsed_time))

if not is_in_norm:
self.status = self.Status.rotate
return
if elapsed_time > self.time_to_stable:
self.collected_data_gyro = []
self.collected_data_accel = []
self.status = self.Status.collect_data
self.step_start_time = time.time ()
return
return
except Exception as e:
print ('ERROR? " + str(e))
self .thread.acquire ()
self.status = self.Status.idle
self.thread.notify ()

self.thread.release ()

def get_measurements(self , buckets, bucket_labels):
measurements = []
print (’ ")
print ("x*x* Press ESC to Quit sxx’)

207

181

182

184

185

186

188

189

190

191

192

193

194

195

197

198

199

200

201

202

203

204

205

206

208

209

210

211

212

213

214

215

F. Python Scripts

print ("’)

for bucket ,bucket_label in zip (buckets, bucket_labels):
self.crnt_bucket = np.array (bucket)
self.crnt_direction = np.array(bucket) / np.linalg.norm/(

np.array (bucket))

print ("\nAlign to direction: ', self.crnt_direction ,
, bucket_label)
self .status = self.Status.rotate

self .thread.acquire ()
while (not self.is_done and self.status != self.Status.
idle):
self.thread.wait (3)
if not self.is_data:
raise Exception(’'No IMU data. Check connectivity
)

if self.is_done:

raise Exception(’ User Abort.’)
measurements.append (np.array(self.collected_data_accel))

return np.array (measurements), np.array (self.

collected_data_gyro)

def enable_imu_device (self, serial_no):
self.pipeline = rs.pipeline ()
cfg = rs.config()
cfg.enable_device (serial_no)
try:
self.pipeline.start (cfg)
except Exception as e:
print ('ERROR: ', str(e))

return False

self.sync_imu_by_this_stream = rs.stream.any

active_imu_profiles = []

active_profiles = dict ()
self.imu_sensor = None
for sensor in self.pipeline.get_active_profile().get_device
() .sensors:
for pr in sensor.get_stream_profiles():
if pr.stream_type() = rs.stream.gyro and pr.format
() = rs.format.motion_xyz32f:

active_profiles [pr.stream_type()] = pr

208

F. Python Scripts

216 self .imu_sensor = sensor

217 if pr.stream_type() = rs.stream.accel and pr.format
() = rs.format.motion_xyz32f:

218 active_profiles [pr.stream_type()] = pr

219 self .imu_sensor = sensor

220 if self.imu_sensor:

221 break

222 if not self.imu_sensor:

223 print ('No IMU sensor found.’)

224 return False

225 print (’\n’.join (['FOUND %s with fps=%s’ % (str(ap[0]).split

(".7)[1].upper(), ap[1l].fps()) for ap in active_profiles.

items()]))

226 active_imu_profiles = list (active_profiles.values())
227 if len(active_imu_profiles) < 2:

228 print (’Not all IMU streams found.’)

229 return False

230 self.imu_sensor.stop ()

231 self.imu_sensor.close ()

232 self.imu_sensor.open(active_imu_profiles)

233 self.imu_start_loop_time = time.time ()

234 self.imu_sensor.start (self.imu_callback)

235

236 # Make the device use the original IMU values and not

already calibrated:
237 if self.imu_sensor.supports(rs.option.
enable_motion_correction):
238 self.imu_sensor.set_option(rs.option.
enable_motion_correction , 0)
239 return True
240

241 class CHeader:

242 def __init__(self, version, table_type):

243 self.buffer = np.ones (16, dtype=np.uint8) x 255
244 self.buffer [0] = int(version[0], 16)

245 self.buffer [1] = int(version[l], 16)

246 self.buffer.dtype=np.uintl6

247 self.buffer [1] = int(table_type, 16)

248

249 def size(self):

250 return 16

251

209

252

253

254

255

256

257

258

260

261

262

263

264

266

267

268

269

270

271

272

273

274

275

277

278

279

280

281

282

283

284

285

286

288

289

290

291

F. Python Scripts

def

def

def

def set_data_size (self, size):
self.buffer.dtype=np.uint32
self . buffer [1] = size

def set_crc32(self, crc32):
self.buffer.dtype=np.uint32

self.buffer [3] = cre32 % (1<<32) # convert from signed to

unsigned 32 bit

def get_buffer(self):
self.buffer.dtype=np.uint8

return self.buffer

bitwise_int_to_float (ival):

return struct.unpack(’f’, struct.pack(’i’, ival))[0]

bitwise_float_to_int (fval):
return struct.unpack(’i’, struct.pack(’'f’, fval))][0]

parse_buffer (buffer):
cmd_size = 24

header_size = 16

buffer.dtype=np.uint32
tabl_size = buffer [3]
buffer.dtype=np.uint8
print ("tabl_size (all_data): ', tabl_size)

tabl = buffer [cmd_size:cmd_size+tabl_size| # 520 = epprom++
tabl.dtype=np.uint32

tab2_size = tabl[1]

tabl.dtype=np.uint8

print ('tab2_size (calibration_table): 7, tab2_size)

tab2 = tabl[header_size:header_size+tab2_size] # calibration
table

tab2.dtype=np.uint32

tab3_size = tab2[1]

tab2.dtype=np.uint8

print ("tab3_size (calibration_table): ', tab3_size)

210

F. Python Scripts

292 tab3 = tab2[header_size:header_size+tab3_size] # D435 IMU Calib
Table

293 tab3.dtype=np.uint32

294 tab4 _size = tab3[1]

295 tab3.dtype=np.uint8

296 print ("tab4_size (D435 IMU_Calib_Table): ', tab4_size)

297

208 tab4 = tab3|[header_size:header_sizet+tab4_size] # calibration
data

299 return tabl, tab2, tab3, tab4

300

son def get_D435_IMU_Calib_Table (X):

302 version = [’'0x027, '0x01"]

303 table_type = 0x20°

304 header = CHeader(version, table_type)

305

306 header_size = header.size ()

307 data_size = 37x4 + 96

308 size_of_buffer = header_size 4+ data_size # according to table

"D435 IMU Calib Table” here: https://user—images.
githubusercontent .com/6958867/50902974—20507500—1425—11e9—-8
cad—8bd2ac2dleal . png

309 assert (size_of_buffer % 4 = 0)

310 buffer = np.ones(size_of_buffer , dtype=np.uint8) x 255
311

312 use_extrinsics = False

313 use_intrinsics = True

314

315 data_buffer = np.ones(data_size , dtype=np.uint8) *x 255
316 data_buffer.dtype = np.float32

317

318 data_buffer [0] = bitwise_int_to_float (np.int32(int (

use_intrinsics)) << 8 |
319 np.int32 (int (
use_extrinsics)))

320

321 intrinsic_.vector = np.zeros (24, dtype=np.float32)
322 intrinsic_vector [:9] = X[:3,:3].T. flatten ()

323 intrinsic_vector [9:12] = X[:3,3]

324 intrinsic_vector [12:21] = X[3:,:3]. flatten ()

325 intrinsic_vector [21:24] = X[3:,3]

326

211

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

F. Python Scripts

def

def

data_buffer[13:13+X.size]| = intrinsic_vector
data_buffer.dtype = np.uint8

header.set_data_size (data_size)

header.set_crc32(binascii.crc32(data_buffer))
buffer [: header_size]| = header.get_buffer ()
buffer [header_size:] = data_buffer

return buffer

get_calibration_table (d435_imu_calib_table):
version = [’'0x027, "0x00"]
table_type = 0x20°

header = CHeader(version, table_type)

d435_imu_calib_table_size = d435_imu_calib_table.size

sn_table_size = 32

data_size = d435_imu_calib_table_size 4+ sn_table_size
header_size = header.size ()
size_of_buffer = header_size + data_size # according to table

"D435 IMU Calib Table” in ”https://sharepoint.ger.ith.intel.

com/sites /3D _project/Shared’20Documents/Arch/D400/FW/
D435i_IMU _Calibration_eeprom_0_52 . xlsx”

assert (size_of_buffer % 4 = 0)

buffer = np.ones(size_of_buffer , dtype=np.uint8) x 255

data_buffer = np.ones(data_size , dtype=np.uint8) * 255
data_buffer [: d435_imu_calib_table_size| = d435_imu_calib_table

header.set_data_size (data_size)
header.set_crc32(binascii.crc32(data_buffer))

buffer [: header_size| = header.get_buffer ()
buffer [header_size: header_size+data_size] = data_buffer

return buffer

get_eeprom (calibration_table):
version = ['0x017, ’0x01"]
table_type = 0x09’

212

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

F. Python Scripts

def

header = CHeader(version, table_type)

DCMM_EEPROM SIZE = 520

data_size = calibration_table.size

header_size = header.size ()
size_of_buffer = DCMM_EEPROM SIZE
data_size = size_of_buffer — header_size

size_of_buffer = header_size + data_size

assert (size_of_buffer % 4 =— 0)
buffer = np.ones(size_of_buffer , dtype=np.uint8) * 255

header.set_data_size (data_size)
buffer [header_size:header_size+calibration_table.size] =
calibration_table

header.set_crc32(binascii.crc32(buffer [header_size:]))
buffer [: header_size| = header.get_buffer ()
return buffer

write_eeprom_to_camera (eeprom, serial_no=""):
DCMM_EEPROM SIZE = 520

DCMM_EEPROM SIZE = eeprom. size

DS5. CMD_LENGTH = 24

MMEW _Cmd_bytes = b’\ x14\x00\xab\xcd\x50\x00\x00\x00\x00\x00\x00\
x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"’

buffer = np.ones ([DCMM_EEPROMSIZE + DS5.CMD_LENGTH, |, dtype =
np.uint8) x 255

cmd = np.array (struct.unpack('’ x6, MMEW_Cmd _bytes) , dtype=np.
uint32)

cmd.dtype = np.uintl6

emd [0] += DCMM_EEPROM.SIZE

cmd. dtype = np.uint32

cmd [3] = DCMM_EEPROMSIZE # command 1 = 0x50

command 2

Il
o

command 3 = size

213

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

F. Python Scripts

def

cmd. dtype = np.uint8

buffer [:len (cmd)] = cmd

buffer [len (cmd):len (cmd)+eeprom. size| = eeprom

debug = get_debug_device(serial_no)

if not debug:

print (’Error getting RealSense Device.’)

return
tabl, tab2, tab3, tab4 = parse_buffer (buffer)

rcvBuf = debug.send_and_receive_raw_data(bytearray (buffer))
if rcvBuf[0] = buffer [4]:
print ('SUCCESS: saved calibration to camera.’)

else:

print ('FAILED:

print (rcvBuf)

failed

to save calibration to camera.’)

get_debug_device (serial_no):

ctx =

rs.context ()

devices

= ctx.query_devices ()

found_dev = False

for dev

in devices:

if len(serial_.no) = 0 or serial_-no = dev.get_info(rs.

camera_info.serial_ number):

found_dev = True

break

if not found_dev:

print ('No RealSense device found’ + str(’

) = 0 else with serial number: ’4serial_no))
return 0
set to advance mode:
advanced = rs.rs400_advanced_mode (dev)

if not advanced.is_enabled ():

advanced . toggle_advanced_mode (True)

print (a few basic information about the device)
Device PID: 7,

print (
)

print (

print (

N

Device name:

Serial

number :

)

if len(serial_no

dev.get_info(rs.camera_info.product_id)

Y

dev.get_info(rs.camera_info.name))

dev.get_info (rs.camera_info.

214

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

F. Python Scripts

def

def

print (

serial_number))

Firmware version:

firmware_version))

debug = rs.debug_protocol(dev)

return debug

check X (X, accel, show_graph):

fdata = np.apply_along_axis(np.dot,

print (’norm (raw data): %f’ % np.mean(norm_data))

print (’norm (fixed data): %f’

import pylab
pylab.plot (norm_data ,
#pylab . hold (True)
pylab.plot (norm_fdata ,
pylab .show ()

calibration will be near %f” % g)

main () :

' b)

g)

0;

", dev.get_info(rs.camera_info.

1, accel, X[:3,:3]) — X[3,:]
norm_data = (accel*%2).sum(axis=1)xx(1./2)
norm_fdata = (fdatax%2).sum(axis=1)*x(1./2)
if show_graph:

0 np.mean(norm_fdata) ,

if any([help_str in sys.argv for help_str in [’—h’,

/2710

print (” Usage:” , sys.argv

[0] Y

”[Options]”)

"A good
'—help’,

")

print

print (' [Options|: ")

print (’—i : /path/to/accel.txt [/path/to/gyro.txt]’)
print (’—s : serial number of device to calibrate.
print ('—g : show graph of norm values — original

blue and corrected in

print

green .

print (’If —i option is given,

previosly saved files

)

)

values in

calibration is done using

print (’Otherwise, an interactive process is followed.)

sys.exit (1)

try:

accel_file = None
gyro_file = None
serial_no =

show_graph = '—g’ in sys

.argv

215

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

502

503

504

505

506

507

508

509

510

511

512

513

514

515

F. Python Scripts

for idx in range(len(sys.argv)):
if sys.argv[idx] = '—i":
accel_file = sys.argv[idx+1]
if len(sys.argv) > idx+2 and not sys.argv[idx+2].
startswith('—"):
gyro_file = sys.argv|[idx+2]
if sys.argv[idx] = '—s’

serial_.no = sys.argv|[idx+1]

buckets = [[0, —g, O], [g, 0, 0],
[07 g, 0]7 [_gv 07 0]7
[0, 0, —gl, [0, 0, g]]
buckets_labels = [” Upright facing out”, "USB cable up facing
out”, ”"Upside down facing out”, "USB cable pointed down
7, 7”Viewing direction facing down”, ”Viewing direction

facing up”|

gyro_bais = np.zeros (3, np.float32)
old_settings = None
if accel_file:
if gyro_file:
#compute gyro bais

#assume the first 4 seconds the device is still

gyro = np.loadtxt(gyro_file, delimiter=".,")
gyro = gyro[gyro[:, 0] < gyro[0, 0]+4000, :]
gyro_bais = np.mean(gyro[:, 1:], axis=0)

print (gyro_bais)

#compute accel intrinsic parameters

max_norm = np.linalg .norm(np.array ([0.5, 0.5, 0.5]))

measurements = [[], [], [], [I, [, []]

import csv

with open(accel_file, 'r’) as csvfile:
reader = csv.reader(csvfile)
rnum = 0

for row in reader:
M = np.array ([float (row[1]), float (row[2]),
float (row [3])])

216

F. Python Scripts

516 is_ok = False
517 for i in range(0, len(buckets)):
518 if np.linalg.norm(M — buckets[i]) < max_norm
519 is_ok = True
520 measurements[i].append (M)
521 rnum 4= 1
522 print ('read %d rows.’ % rnum)
523 else:
524 print (’Start interactive mode:)
525 if os.name = ’posix’
526 old_settings = termios.tcgetattr(sys.stdin)
527 tty.setcbreak (sys.stdin. fileno ())
528
529 imu = imu_wrapper ()
530 if not imu.enable_imu_device(serial_no):
531 print (’Failed to enable device.’)
532 return —1
533 measurements, gyro = imu.get_measurements(buckets,
buckets_labels)
534 con.mm = np.concatenate (measurements)
535 if os.name — ’'posix’
536 termios. tcsetattr (sys.stdin, termios.TCSADRAIN,
old_settings)
537
538 header = input(’\nWould you like to save the raw data?
Enter footer for saving files (accel_<footer >.txt and
gyro_<footer >.txt)\nEnter nothing to not save raw
data to disk. >7)
539 print ('\n")
540 if header:
541 accel_file = “accel %s.txt’ % header
542 gyro_file = “gyro %s.txt’ % header
543 print (*Writing files :\n%s\n%s’ % (accel_file ,
gyro_file))
544 np.savetxt(accel_file , conmm, delimiter=".,", fmt="%
S)
545 np.savetxt (gyro_file , gyro, delimiter=",", fmt="%s")
546 else:
547 print ('Not writing to files.’)
548 # remove times from measurements:
549 measurements = [mm[: ,1:] for mm in measurements |

217

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

F. Python Scripts

gyro_bais = np.mean(gyro[:, 1:], axis=0)

print (gyro_bais)

mlen = np.array ([len (meas) for meas in measurements])
print (mlen)

print (using %d measurements.’ % mlen.sum())

nrows = mlen.sum/()

w = np.zeros ([nrows, 4])

Y = np.zeros ([nrows, 3])

row = 0

for i in range(0, len(buckets)):

for m in measurements|[i]:

wlrow, 0] = m[0]

wlrow, 1] = m[1]

wlrow, 2] = m[2]

wlrow, 3] = —1

Y[row, 0] = buckets[i][0]

Y[row, 1] = buckets[i][1]

Y[row, 2] = buckets[i][2]

row += 1
np_version = [int(x) for x in np.version.version.split(’.)]
rcond_val = None if (np_version[l] >= 14 or np_version[0] >

1) else —1

X, residuals , rank, singular = np.linalg.lstsq(w, Y, rcond=

rcond_val)

print (X)

print (" residuals:”, residuals)
print (" rank:” , rank)
print (" singular:”, singular)

check X (X, w[:,:3], show_graph)

calibration = {}

calibration [” device_type”] = ”?D435i”

b

calibration ["imus”]| = list ()

[
[
calibration |
[

”imus”].append ({})
calibration [”imus”][0][” accelerometer”] = {}
calibration [”imus”][0][” accelerometer”][” scale_and_alignment
"] = X.flatten () [:9]. tolist ()
calibration [”imus”][0][” accelerometer”][” bias”] = X. flatten

218

F. Python Scripts

()[9:]. tolist ()

589 calibration [”imus”][0][” gyroscope”]| = {}

590 calibration [”imus”|[0][” gyroscope”][” scale_and_alignment”] =
np.eye(3).flatten().tolist ()

591 calibration [?imus”|[0][” gyroscope”][” bias”] = gyro_bais.
tolist ()

592 json_data = json.dumps(calibration, indent=4, sort_keys=True
)

593

594 directory = os.path.dirname(accel_file) if accel_file else

595

596 with open(os.path.join(directory ,” calibration.json”), 'w’)
as outfile:

597 outfile.write(json_data)

598

599 #concatinate the two 12 element arrays and save

600 intrinsic_buffer = np.zeros ([6,4])

601

602 intrinsic_buffer [:3,:4] = X.T

603 intrinsic_buffer [3:,:3] = np.eye(3)

604 intrinsic_buffer [3:,3] = gyro_bais

605

606 # intrinsic_buffer = ((np.array(range(24) ,np.float32)+1)/10)
.reshape ([6,4])

607

608 d435_imu_calib_table = get_D435_IMU_Calib_Table (
intrinsic_buffer)

609 calibration_table = get_calibration_table(
d435_imu_calib_table)

610 eeprom = get_eeprom (calibration_table)

611

612 with open(os.path.join(directory ,” calibration.bin”), 'wb’)
as outfile:

613 outfile.write(eeprom.astype(’'f’).tostring())

614

615 is_.write = input(’Would you like to write the results to the
camera\ s eeprom? (Y/N)’)

616 is_write = 'Y’ in is_write.upper()

617 if is_write:

618 print (’Writing calibration to device.’)

619 write_eeprom_to_camera (eeprom, serial_no)

219

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

10

11

12

13

14

15

16

17

F. Python Scripts

print ('Done. ")
else:
print (’Abort writing to device’)
except Exception as e:
print (’\nDone. %s’ % e)
finally :

if os.name = ’posix’ and old_settings

is not None:

termios. tcsetattr (sys.stdin, termios.TCSADRAIN,

old_settings)

MMM

wtw = dot (transpose (w) ,w)
wtwi = np.linalg.inv (wtw)
print (wtwi)
X = dot(wtwi, Y)
print (X)
)

if __name__ = ' _main__"~

main ()
F.3 Traffic Sign Detection Script

F.3.1 Speed Limit 100

#! /usr/bin/python

Import Libraries

import rospy

from sensor_msgs.msg import Image
import cv2

import numpy as np

import psycopg?2

from std_msgs.msg import Float64
from cv_bridge import CvBridge, CvBridgeError
import dropbox

import time

import os

import numpy as np
#Connect to Database

bridge = CvBridge()

connection= psycopg2.connect (user="postgres”, password="upsquared”

220

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

F. Python Scripts

host="localhost”, port=>5432,database="mas500”)

cursor = connection.cursor ()
i=20
def globallyChange () :

global i

i4=1

def lat_callback (msg):
global lat

lat=msg.data
def Ing_callback (msg):
global Ing

Ing=msg. data

def update_table():

name= '100pic{:>03}.jpg’ . format (i)

cursor . execute ('’ 'INSERT INTO geol00 (geom, info) VALUES(

ST_GeomFromText ("POINT (%s %s) ’,4326),%s) "’

))

connection .commit ()

count=cursor .rowcount

def update_folder():

",(Ing ,lat ,name

cv2.imwrite (' /home/upsquared/Desktop/detected_images /100

_sign/pic{:>03}.jpg’ .format (i), copy-frame)

globallyChange ()

def camera_calback (msg):

global frame

frame = bridge.imgmsg_to_cv2(msg, ”bgr8”)

global copy_frame
copy-frame= frame.copy ()
#Convert Image to HSV

hsv = c¢v2.cvtColor (copy_frame, cv2.COLORBGR2HSV)
#Set Lower and Upper Boundaries for Red Color
lower_red = np.array ([0,150,95])

upper_red = np.array ([10,255,255])

maskl = cv2.inRange(hsv, lower_red, upper_red)
lower_red = np.array ([170,150,95])

upper_red = np.array ([180,255,255])

mask2 = cv2.inRange(hsv, lower_red, upper_red)

221

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

F. Python Scripts

mask = maskl + mask2
#Sharpen the Image and Strengthen the Red Color and Convert to

GrayScale

kernel = np.ones((5,5), np.uint8)

erosion = cv2.erode(mask, kernel ,iterations=1)

red_circles = cv2.bitwise_and (copy_frame, copy_frame, mask =
mask)

dilate = cv2.dilate(red_circles ,kernel ,iterations=1)

kernel_1 = np.array([[-1,-1,-1],[-1,9,—-1],[—-1, =1, —1]])
sharped = cv2.filter2D (dilate, —1, kernel_1)
gray = cv2.cvtColor (sharped, cv2.COLORBGR2GRAY)
#Find Circles and Set Global Variables x,y,z where z is the
Radius
global x
global y
global z
circles = cv2.HoughCircles (gray , cv2 .HOUGH GRADIENT,2 ,20 , param1l
=100,param2=70,minRadius=15,maxRadius="70)
if circles is not None:
circles = np.round(circles [0, :]).astype(”int”)
for (x,y,z) in circles:
if x>0:
#Mark Sign With Rectangle
h=z+5
cv2.rectangle (copy_frame ,(x—h, y—h) ,(x+h, y+h)
,(0,128,255) ,3)
template ()

#cv2 . imshow (” Stream_100: 7, copy-frame)

if cv2.waitKey (1) & OxFF = ord('q’):
cv2.destroyAllWindows ()
def template():

#Snapshot the Rectangle from the Original Frame

h=z+5

detected_img = frame[y—h:y+h, x—h:x+h]

detected_img_gray = cv2.cvtColor(detected_img , cv2.
COLOR.BGR2GRAY)

detected_img_gray = cv2.blur(detected_img_gray, (5,5),3)

#Resize Template to the Real Size

template_ 100 = cv2.imread (' /home/upsquared /MAS500_ws/src/
python _skripter/src/scripts/fartsgrense_100.png’,0)

222

93

94

95

96

97

98

99

101

102

103

104

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

F. Python Scripts

template_100 = cv2.resize (template 100, (2xh, 2xh))
template_ 100 = cv2.blur(template 100, (5,5),3)

global result
result = cv2.matchTemplate(detected_img_gray , template_100
cv2 . TM.CCOEFF NORMED)
w, h = template_100.shape[:: —1]
threshold = 0.7
loc = np.where(result >= threshold)
for pt in zip(xloc[:: —1]):
#res = "{}%”.format (result , float(result))
font = cv2.FONT HERSHEY SIMPLEX
#cv2 . putText (copy_frame, res, (x—h, y+h), font,
1,(255,255,255) ,2,cv2.LINELAA) ;
cv2.putText (copy_frame, 100 sign’, (x—h—50, y—h),
font, 1,(255,255,255),2,cv2.LINE_AA);
update_folder ()
update_table ()

def main():
Create Node
rospy .init_node(’listener 1007, anonymous=True)
Define Subscriber and Define its Callback
rospy . Subscriber (” /camera/color /image raw”, Image,
camera_calback)
rospy . Subscriber (" lat”, Float64, lat_callback)
rospy . Subscriber (" Ing”, Float64, Ing_callback)
Spin until ctrl + ¢
rospy . spin ()

if __name__. = ' __main__"’

main ()

F.3.2 Speed Limit 90

#! /usr/bin/python

#Import Libraries
import rospy
from sensor_msgs.msg import Image

import cv2

i

223

10

11

12

13

14

15

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

40

41

42

43

44

F. Python Scripts

import numpy as np

import psycopg2

from std_msgs.msg import Float64

from cv_bridge import CvBridge, CvBridgeError
import time

import numpy as np

#Connect to Database

bridge = CvBridge()

connection= psycopg?2.connect (user="postgres”, password="upsquared”,
host="localhost”, port=5432,database="mas500")

cursor = connection.cursor ()

i=0

def globallyChange () :
global i
i4+=1

def lat_callback (msg):
global lat

lat=msg. data

def lng_callback (msg):
global Ing
Ing=msg.data

def update_table():
name= '90pic{:>03}.jpg’ .format (i)
cursor . execute ('’ 'INSERT INTO geo (geom, info) VALUES(
ST_GeomFromText ("POINT (%s %s) *,4326),%s) ’ "’ ,(lng,lat ,name
))
connection .commit ()

count=cursor .rowcount
def update_folder():
cv2.imwrite (' /home/upsquared/Desktop/detected _images /90 _sign
/pic{:>03}.jpg .format(i), copy-_frame)

globallyChange ()

def camera_calback (msg):

224

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

F. Python Scripts

global frame

global sharped

frame = bridge.imgmsg _to_cv2(msg, ”bgr8”)
global copy_frame

copy_frame= frame.copy ()

#Convert Image to HSV

hsv = c¢v2.cvtColor (copy_frame, cv2.COLORBGR2HSV)
#Set Lower and Upper Boundaries for Red Color
lower_red = np.array ([0,150,95])

upper_red = np.array ([10,255,255])

maskl = cv2.inRange(hsv, lower_red, upper_red)
lower_red = np.array ([170,150,95])

upper_red = np.array ([180,255,255])

mask2 = cv2.inRange(hsv, lower_red, upper_red)
mask = maskl + mask2

#Sharpen the Image and Strengthen the Red Color and Convert to

GrayScale

kernel = np.ones((5,5), np.uint8)

erosion = cv2.erode (mask, kernel ,iterations=1)

red _circles = c¢v2.bitwise_and (copy_frame, copy_frame, mask =
mask)

dilate = cv2.dilate(red_circles ,kernel ,iterations=1)

kernel-1 = np.array([[-1,—-1,-1],[-1,9,—-1],[—-1, —1, —1]])
sharped = cv2.filter2D (dilate, —1, kernel_1)
gray = cv2.cvtColor (sharped, cv2.COLORBGR2GRAY)
#Find Circles and Set Global Variables x,y,z where z is the
Radius
global x
global y
global z
circles = cv2.HoughCircles (gray ,cv2 .HOUGH.GRADIENT,2 ;20 , param1l
=100,param2=70,minRadius=10,maxRadius="70)
if circles is not None:
circles = np.round(circles [0, :]).astype(”int”)
for (x,y,z) in circles:
if x>0:
#Mark Sign With Rectangle
h=z+5
cv2.rectangle (copy_frame ,(x—h, y—h) ,(x+h, y+h)
,(0,128,255) ,3)
template ()

225

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

109

110

111

112

113

114

115

116

117

118

F. Python Scripts

def

def

#Show the Frame

cv2.imshow (” sone_90” ,copy_frame)

if cv2.waitKey (1) & OxFF = ord(’q’):
cv2.destroyAllWindows ()

template () :

#Snapshot the Rectangle from the Original Frame

h=z+5

detected_img = frame|[y—h:y+h, x—h:x+h]

detected_img_gray = cv2.cvtColor(detected_img , cv2.
COLOR.BGR2GRAY)

detected_img_gray = cv2.blur(detected_-img_gray, (5,5),3)

#Resize Template to the Real Size

template_ 90 = cv2.imread (' /home/upsquared /MAS500 ws/src/
python _skripter/src/scripts/fartsgrense_90.png’,0)

template_ 90 = cv2.resize (template_ 90, (2xh, 2xh))

template_90 = cv2.blur (template_ 90, (5,5),3)

global result
result = cv2.matchTemplate(detected_img_gray , template 90, cv2.
TM_.CCOEFF NORMED)
w, h = template_90.shape[:: —1]
threshold = 0.7
loc = np.where(result >= threshold)
for pt in zip(xloc[:: —1]):
#res = "{}%”.format (result , float(result))
font = cv2.FONT_HERSHEY _SIMPLEX
#cv2.putText (copy_frame, res, (x—h, y+h), font,
1,(255,255,255) .2, cv2 . LINELAA) ;
cv2.putText (copy_frame, '90 _sign’, (x—h—50, y—h), font,
1,(255,255,255) .2, cv2 . LINELAA) ;
update_folder ()
update_table ()

main () :

Create Node

rospy .init_node(’listener_90 , anonymous=True)
Define Image Topic

camera_topic = 7 /camera/color/image_raw”

Set Subscriber and Define its Callback

226

119

120

121

122

123

124

125

126

127

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

F. Python Scripts

rospy . Subscriber (camera_topic, Image, camera_calback)
rospy . Subscriber (" lat”, Float64, lat_callback)

rospy . Subscriber (" Ing”, Float64, Ing_callback)

Spin until ctrl + ¢

rospy .spin ()

if __name__. = ' __main__"’

main ()

F.4 Lane Mark Detection Script

#! /usr/bin/python

Import Libraries

import rospy

from sensor_msgs.msg import Image
import cv2

import numpy as np

import psycopg?2

from std_msgs.msg import Float64
from cv_bridge import CvBridge, CvBridgeError
import time

import numpy as np

import math

from matplotlib import pyplot as plt

#Connect to Database
bridge = CvBridge ()

connection= psycopg2.connect (user="postgres”, password="upsquared”
host="localhost”, port=5432,database="mas500”)

cursor = connection.cursor ()

i=0

def globallyChange () :
global 1
i4+=1
def lat_callback (msg):
global lat

lat=msg. data

def lng_callback (msg):

I

227

31

32

33

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

F. Python Scripts

def

def

def

def

global Ing
Ing=msg. data

update_table () :
name= 'pic{:>03}.jpg’ .format (i)
cursor . execute ('’ INSERT INTO line (geom, info) VALUES(
ST_GeomFromText ("POINT (%s %s) ’,4326),%s) '’ ,(Ing ,lat ,name
))
connection .commit ()

count=cursor .rowcount
update_folder () :

cv2.imwrite (' /home/upsquared/Desktop/detected_images/
bad _lane/pic{:>03}.jpg .format (i), frame)
globallyChange ()

Transform_Camera_View (img, src, dst):

image_shape = img.shape

img _size = (image_shape[l], image_shape[0])

Given src and dst points, calculate the perspective transform
matrix

M = cv2.getPerspectiveTransform (src, dst)

Minv = cv2.getPerspectiveTransform (dst, src)

Warp the image using warpPerspective ()

warped = cv2.warpPerspective (img, M, img size)

return warped, M, Minv

HLS_L_Threshold (img, thresh=(135, 255)):

img = img[:, :, 1]

img = img * (255 / np.max(img))

binary_output = np.zeros_like (img)

binary_output [(img > thresh[0]) & (img <= thresh[1])] =1

return binary_output

6« def camera_calback (msg):

65

66

67

68

global frame
frame = bridge.imgmsg_to_cv2(msg, ”bgr8”)
global copy_frame

228

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

F. Python Scripts

copy-_frame= frame.copy ()
threshold_middle_lane = 120
threshold_right_lane = 300
threshold_plot = threshold_right_lane

src = np. float32 ([[50, 450], [520, 450], [250, 350],

(360, 350]])
bottom_left = src[0][0] + 0, src[O0][1]
bottom_right = src[1][0] — 0, src[1][1]
top-left = src[3][0] — 0, 1
top_right = src[2][0] + 0, 1
[

dst = np.float32 ([bottom_left , bottom_right ,
top_right , top_left])

img_warped = Transform_Camera_View (copy_frame, src,
dst) [0]

img HLS = cv2.cvtColor (img_warped, cv2.COLORRGB2HLS

)
img HLS_L = img HLS[:, :, 1]

thresh_. HLS = HLS_L_Threshold (img_HLS)

ptsl = np.float32 ([[256, 39], [359, 39], [90, 480],
[500, 480]]) # Old points

pts2 = np.float32 ([[0, 0], [640, 0], [0, 480], [640,
480]]) # New points

matrix = cv2.getPerspectiveTransform (ptsl, pts2) #

Transformation matrix

result = cv2.warpPerspective (thresh_. HLS, matrix,
(640, 480)) # The transformed image

cv2.imshow (” Frame” , frame)

cv2.imshow (" Warped” , img_warped)

cv2.imshow (” Warped_Image_Binary” ,thresh HLS*255)

left , right = np.hsplit (thresh.HLS, 2)

counts_left = np.sum(left = 1, axis=0)

counts_right = np.sum(right = 1, axis=0)

total_left = math.fsum(counts_left)

total_right = math.fsum(counts_right)

229

103

104

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

134

135

136

F. Python Scripts

threshold_left = 6000
threshold_left _lower = 4000
threshold_right = 35000
threshold_right_lower = 3000

if total_left < threshold_left:

if total_left < threshold_left_lower:

print ('Bad Lane left side’)
#update_folder ()
#update_table ()

if total_right < threshold_right:

if total_right < threshold_right_lower:
print ('Bad Lane right side’)
#update_folder ()
#update_table ()
if cv2.waitKey (1) & OxFF = ord('q’):
cv2.destroyAllWindows ()
def main () :
Create Node
rospy .init_node ('lane mark listener ', anonymous=True)

Define Subscriber and Define its Callback

rospy . Subscriber (” /camera/color /image_raw”, Image,
camera_calback)

rospy . Subscriber (" lat”, Float64, lat_callback)

rospy . Subscriber (" Ing”, Float64, Ing_callback)

Spin until ctrl + ¢

rospy .spin ()

if __name__. = ’__main__":

main ()

F.5 Vibration Measurement Script

#!/usr/bin/env python
import rospy

import psycopg2
import cv2

from std_msgs.msg import Float64

230

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

27

28

29

30

32

33

34

35

36

37

38

40

41

42

43

F. Python Scripts

from sensor_msgs.msg import Imu

def

def

def

def

def

def

globallyChange () :
global i
i =1

lat_callback (msg) :
global lat

lat=msg.data
Ing_callback (msg) :
global Ing

Ing=msg. data

update_table () :

name= 'Bad Road{:>03}".format (i)

cursor . execute ('’ INSERT INTO roadcondition (geom,info)

VALUES(ST_GeomFromText ("POINT (%s %s) ’,4326),%s) "’

lat ,name))
connection .commit ()
count=cursor .rowcount
update_folder () :

cv2.imwrite (’/home/upsquared/Desktop/detected _images/

bad_road/pic{:>03}.jpg’ .format (i), frame)

globallyChange ()

accel_callback (msg):

global acc

acc=abs(msg.linear_acceleration.z—9.32)

print (acc)
if acc > 4.5:

#update_folder ()

update_table ()

while True:

try:

", (Ing,

#Connect to Database and Create Node and Subscribers

connection= psycopg?2.connect (user="postgres”,

password="upsquared” ,

host="localhost”,

port

231

44

45

46

47

48

49

50

51

52

53

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

F. Python Scripts

=5432,database="mas500”)

cursor = connection.cursor ()
i=20
rospy.init_node(accel list ', anonymous=True)

rospy . Subscriber (” /camera/accel /sample” , Imu,
accel_callback)

rospy . Subscriber (" lat”, Float64, lat_callback)

rospy . Subscriber (" Ing”, Float64, Ing_callback)

rospy .spin ()

except rospy.ROSInterruptException:

pass

F.6 Upload to Dropbox Script

#! /usr/bin/python

#Import Libraries

import psycopg?2

import rospy

from std_msgs.msg import Float64
import dropbox

import time

import os

import numpy as np
#Access Dropbox Account

access_token =
MpY68MMUG6cAAAAAAAAAADylpSgD1Dh6mJHqv4D5FnJm3ykA rZW4iRatzyG_bW19’
dbx = dropbox.Dropbox(access_token)

#Direction to Detected Images

rootdir = ’/home/upsquared/Desktop/detected_images /90 _sign’

def upload_img():
#Code for Uploading to Dropbox
for dir, dirs, files in os.walk(rootdir):
for file in files:
try:
file_path= os.path.join (dir,
file)
#Name of the Folder in
Dropbox Apps Folder

232

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

10

11

12

13

14

15

16

17

18

F. Python Scripts

dest_path=os.path.join (/90
_sign /7, file)

print (' Uploading %s to %s’ %

(file_path ,

dest_path))

with open(file_path ,”rb”) as

f:

dbx. files_upload (f.
read (), dest_path

, mute=True)

except Exception as err

print (” failed to upload %s\n
%s” % (file ,err))

def main():
upload_img ()
Spin until ctrl + ¢
rospy .spin ()

if __name__. = ’__main__":

main ()

F.7 Communication Arduino and ROS

#! /usr/bin/python

#Import Libraries
import serial
import psycopg?2
import rospy

from std_msgs.msg import Float64

#Connect to Serial Port

try:
arduino = serial.Serial(’/dev/ttyACMO’, 115200)
ok=1

except:
print (” Check port”)

def talker ():
#Read Serial and Create a Publisher

latitude=rospy.Publisher(’lat’, Float64, queue_size=10)

233

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

F. Python Scripts

longitude=rospy.Publisher('Ing’, Float64, queue_size=10)
lux = rospy.Publisher('lx’, Float64, queue_size=10)
rospy . init_node(’talker’ anonymous=True)
rate = rospy.Rate(10)
while not rospy.is_shutdown():

gps-point = str(arduino.readline ())

if ok==I1:

try:

lat = float (gps-point [0:9])
Ing = float (gps_-point[10:18])
Ix = float (gps-point[19:27])

except:
lat =0.0;
lng=0.0;
l1x=0.0;

#print (lat ,Ing ,1x)
rospy .loginfo (lat)
rospy . loginfo (Ing)
rospy . loginfo (1x)
longitude . publish (Ing)
latitude.publish(lat)
lux . publish (1x)
rate.sleep ()

while True:

try:
talker ()

except rospy.ROSInterruptException:

pass

234

G. ROS - Launch File

G. ROS - Launch File

<launch>

10

11

12

13

14

<include file= "$(find realsense2_camera)/launch/rs_camera.
launch” />

<node name= ”lane_mark_listener” pkg="python_skripter” type="

line_detection .py” />

<node name= ”listener_100” pkg="python_skripter” type="
camera_100.py” />

<node name= "listener_90” pkg="python_skripter” type="
camera_90.py” />

<node name= " talker” pkg="python_skripter” type="
ros_coord_node.py” />

9

<node name= " accel_list” pkg="python_skripter” type="accel.py

b />

</launch>

235

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

H. MatLab Scripts

H. MatLab Scripts

H.1 Script for Reading ROS bag files

For testing the algorithms before car implementation, the group recorded certain routes along
E18 with Intel RealSense D435i. The files from the Intel camera was stored as rosbag files. To
access the stored information in the rosbag file, images was extracted and into .png or and .jpg

files and then merged to .avi files.

close all
clear

cle

bagMsgs = robotics.ros.Bag.parse('\ Users\benja\Desktop\MAS500\
Bag_files\2019225_141440.bag’);

%Extracts information of the

Y%bag file , by clicking on the bagMsgs you can locate the available
topics

%From there you can choose what kind of topic you want to look into

bagMsgs2 = select (bagMsgs, 'Time’,
[bagMsgs. StartTime bagMsgs. StartTime + 10], "Topic’, '/device 0/

sensor_1/Color_0/image/data’);

%Here we choose the topic of the bagfile we want to extract, here we
just

%basically one

%second of the file. sat the interval to be from start bagfile to

one second ,

msgs = readMessages (bagMsgs2) ;

%The readMessages reads the messages stored in the topic that we
chose.

Y%from here we can loop all the messages and convert them to images

for ii = 1:length (msgs)

img = msgs{ii};

236

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

54

55

56

57

58

59

60

61

62

63

H. MatLab Scripts

Z%image = uint8 (readlmage (img) /256) ;

image = (readlmage (img));

baseFileName = sprintf('%d.png ', ii);

fullFileName = fullfile (’\ ', Users’, benja’, Desktop’, 'MAS500" "’
bag to_video’, img RGB’, baseFileName) ;

imwrite (image, fullFileName);

%imwrite (image , sprintf ("%d.png’, ii))

end

% Make an avi movie from a collection of PNG images in a folder.
% Specify the folder.
myFolder = '\ Users\benja\Desktop\MAS500\ bag _to_video\img RGB’;
if “isdir (myFolder)

errorMessage = sprintf (' Error: The following folder does not

)

exist:\n%s’ , myFolder);
uiwait (warndlg (errorMessage)) ;
return ;
end
% Get a directory listing .
filePattern = fullfile (myFolder, ’*.PNG’);
pngFiles = dir(filePattern);
% Open the video writer object.
writerObj = VideoWriter ('\ Users\benja\Desktop\MAS500\ bag _to_video\
Ferdig_Videoer\test123.avi’);
open(writerObj);
% Go through image by image writing it out to the AVI file.
for ii = 1 : length(pngFiles)
% Construct the full filename.
baseFileName = sprintf('%d.png ', ii);
fullFileName = fullfile (’\ ', Users’, benja’, Desktop , 'MAS500" "’
bag to_video’, img RGB’, baseFileName) ;
% Display image name in the command window .
%fprintf (1, 'Now reading %s\n’, fullFileName):;:
% Display image in an axes control.
thisimage = imread (fullFileName);
%imshow (thisimage); % Display image.
drawnow; % Force display to update immediately.
% Write this frame out to the AVI file.
writeVideo (writerObj, thisimage);
end

% Close down the video writer object to finish the file.

237

H. MatLab Scripts

61 close (writerObj);

238

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

I. Arduino Scripts

I. Arduino Scripts

I.1 GPS and Light Intensity Script

#include <TinyGPS++.h>
#include <SoftwareSerial.h>

float v_in=5.0;

float v_out;

float Idr_voltage;

float r=10000.0;

float ldr_input = AO;
float ldr_value;

float rldr;

float lux_scalar = 210074123.7;
float exponent= —1.59366;
float ldrlux;

float i;

float res_voltage;

static const int RXPin = 4, TXPin = 3;
static const uint32_t GPSBaud = 9600;

TinyGPSPlus gps;
SoftwareSerial ss(RXPin, TXPin);

void setup ()

{
Serial . begin(115200) ;
ss . begin (GPSBaud) ;

void loop ()

{
ldr_value = analogRead(ldr_input);
res_voltage= ldr_valuex v_in/1023;
ldr_voltage = v_in — res_voltage;

rldr = ldr_voltage/res_voltage x r;

239

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

8. Arduino Scripts

ldrlux = (lux_scalar)spow(rldr ,exponent);
while (ss.available() > 0

)

gps.encode(ss.read());
if (gps.location.isUpdated()){

Serial

Serial.

Serial

Serial.

Serial.

.print (gps.location.lat (), 6);

print (7 7);

.print (gps.location.lng(), 6);

print (7 7);
println (ldrlux , 2);

240

	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	State of the Art
	Problem Statement
	Requirement and Standards
	Illumination Requirements
	Lane Mark Quality Requirements

	Report Outline
	Acronyms and Abbreviations

	Theory
	Software
	Libraries
	Hardware
	Machine Vision
	Thresholding
	HSV, HSL and LAB Color Space
	Canny Edge Detection
	Hough Transform
	Template Matching
	2D Convolution
	Sensors
	Inertial Measurement Unit
	Photoconductive Sensor
	GPS Receiver
	Infrared Temperature Measurement

	Edge Computing Vs. Cloud Computing
	GPU Vs. CPU Computing
	Geospatial Information System
	Diffuser for Light Sensor
	Camera Calibration
	Thermal Camera Calibration
	IMU Calibration - Intel Real Sense D435i

	Concept Development
	Product Specification
	Concept Generation
	Concept 1 - Standard Road Detection with Temperature Measuring
	Concept 2 - Hybrid Camera with Light Intensity Measurements
	Concept 3 - Hybrid Camera with Light and Surface Temperature Measurements

	Concept Evaluation & Selection
	Structure & Shape Variations
	Power Supply
	Mounting Location Temperature Sensor
	Mounting Location Light Intensity Sensor
	Light Intensity Detection
	Hardware
	Temperature Sensor

	Final Concept

	Methods
	System Design
	Design Detailing
	Heat Dissipation Up2
	Sensor Package Frame
	Power Supply

	Data Flow
	Sensor Package System
	Create Workspace
	Create Package
	Camera Node
	Sensor Node
	GPS Subscriber Node
	IMU Subscriber Node
	Database Communication
	Dropbox Communication
	System Launch

	Calibration
	Camera Calibration - Intel RealSense D435i
	Light Intensity Sensor Calibration
	IMU - Intel Real Sense 435i

	Electrical Connections
	Speed Limit Sign Recognition
	Lane Mark Quality
	Determine Lane Mark Length
	Alignment Error on Line Length Measurement

	Lane Curvature, Curve Radius and Vehicle Position
	Light Intensity Detection
	Prototype Testing
	Vibration Measurements
	Communication in ROS

	Results
	Traffic Sign Recognition
	Vibration Measurements
	Database
	QGIS
	Dropbox
	Lane Mark Quality
	Light Intensity Detection
	Lane Curvature

	Discussion
	Bright Conditions
	Light Intensity Sensor
	Lane Curvature
	Camera Position Error
	Power Supply
	IMU Coordinate System
	Machine Learning Vs. Template Matching
	Light Intensity Sensor - GPS Problem
	ROS, QGIS and PostgreSQL
	Lane Mark Detection
	Dropbox
	GPS Antenna

	Conclusion
	Suggestions for Further Work
	Speed Limit Sign Recognition
	Camera
	Hardware
	Light Intensity Algorithm
	Touch Monitor for Up2
	Lane Mark Quality
	Improve Algorithm for Bright Conditions

	Bibliography
	Appendices
	Cost
	Solidworks Drawings
	Sensor Package
	Frame for Power Supply

	Gantt Chart
	Verification of Test Setup During Length Measurement
	Data Sheets
	Intel RealSense 435i
	MLX 90640 - Thermal Camera
	Photocell
	GPS Sensor
	Intel Up Ai Squared Computer
	Arduino Uno R3
	Biltema Power Supply

	Python Scripts
	Finding Lane Curvature, Curve Radius and Vehicle Position
	IMU Calibration Script - Intel RealSense 435i pythscriptimu435i
	Traffic Sign Detection Script
	Speed Limit 100
	Speed Limit 90

	Lane Mark Detection Script
	Vibration Measurement Script
	Upload to Dropbox Script
	Communication Arduino and ROS

	ROS - Launch File
	MatLab Scripts
	Script for Reading ROS bag files

	Arduino Scripts
	GPS and Light Intensity Script

