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Abstract 
Fluidized bed technology is broadly applied in industry 

due to its distinct advantages. CFD simulation of 

fluidized beds is still challenging compared to single-

phase systems and needs extensive validation. 

Multiphase particle-in-cell is a recently developed 

lagrangian modeling technique and this work is devoted 

to analyze the sensitivity of grid size, time step, and 

model parameters, which are the essences of accurate 

results. Barracuda VR 17.1.0 commercial CFD package 

was used in this study.  

500μm sand particles and air was used as the bed 

material and fluidization gas respectively. Five different 

grids, having 27378, 22176, 16819, 9000 and 6656 

computational cells were analysed, where five different 

time steps of 0.05, 0.01, 0.005, 0.001 and 0.0005 were 

used for each grid. One velocity step was maintained for 

8 seconds. The bed pressure drop at packed bed 

operation was high for simulations with reduced time 

steps while equal pressure drops were observed during 

fluidization for all time steps. Time steps of 0.0005s and 

0.001s and 0.005s produced equal result of 0.15 m/s for 

minimum fluidization velocity, irrespective of the grid 

size. The results from time steps of 0.05 and 0.01 are 

converged to the results from time steps of 0.005 and 

0.001 by increasing simulation time per one velocity 

step.   
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1 Introduction 

Gas-solid fluidized bed technology is widely utilized in 

energy generation, chemical, petrochemical, 

pharmaceutical, environmental, electronic and 

metallurgical processing industries due its distinct 

advantages of high heat and mass transfer, controlled 

material handling, large thermal inertia of solids and 

isothermal operating conditions (de Souza Braun et al. 

2010)(Vejahati et al. 2009)(Esmaili and Mahinpey 
2011). Computational fluid dynamic (CFD) modeling 

has been identified as an excellent tool to produce 

missing information during the scaling up of lab/pilot 

scale fluidized beds to industrial scale. Further, it is a 

fast and cost effective method for system optimization. 

CFD solves the conservation equations for mass, 

momentum, energy and species where this technique 

has been critically validated for the accurate 

performance in gas or liquid single phase flows. 

However, there are certain challenges related to 

interface coupling, solid phase modeling and scale 

differences in gas-solid multiphase flow systems. 

Eulerian-eulerian and eulerian-lagrangian are the two 

basic approaches for CFD modeling of multiphase 

flows.  

Multiphase Particle-In-Cell (MP PIC) modeling is a 

development of eulerian-lagrangian modeling and aims 

to reduce the computational cost in discrete modeling of 

particle phase. Instead of tracking individual particles, it 

considers the parcels containing a certain number of 

particles with similar properties. The parcels are 

modeled in the discrete phase while the particle phase 

interactions are modeled in Eulerian frame. Therefore 

particle properties are calculated in both Eulerian and 

Lagrangian frames, which are correlated via 

interpolation functions.  The successive developments 

of the MP-PIC method is illustrated in the works of 

Snider, O’Rourke and Andrew (Andrews and O’Rourke 

1996)(D M Snider 2001)(D M Snider, O’Rourke, and 

Andrews 1998)(Dale M Snider 2007)(O’Rourke and 

Snider 2012). 

Validated CFD models can be used to analyze the 

bubbling fluidized beds in terms of minimum 

fluidization velocity, bubble rise velocity, bubble 

diameter and particle mixing and segregation. The 

conservation equations of mass, species, momentum 

and energy are in partial differential form. The particular 

simulation geometry is divided into small cells, which is 

referred as the computational grid. The conservation 

equations are then discretized in space and time to get a 

set of algebraic equations. Finite difference, finite 

element and finite volume are the main techniques 

where the finite volume method is mostly used in mass, 

momentum and energy related 3D systems.   

Errors and uncertainties are integrated from the 

modeling stage to the final computer simulations. Use 
of empirical equations and model simplification lead to 

deviations during the model development. The errors 



imposed due to the selection of mesh size, time step and 

discretization method are referred as numerical errors. 

Truncation and limiting functions at the discontinuities 

also cause deviations in the result. Iterative algorithms 

used in simulations provide certain errors while the 

round off errors are integrated depending upon 

computer resource (i.e. 32 bit or 64 bit). Finally, 

improper coding can also lead to certain errors where 

these are absorbed as discretization errors. Therefore, it 

is required to identify the possibilities to reduce the 

errors in the simulations with minimal computational 

cost. 

As the model equations are concerned, it is possible 

to check the best functioning empirical models. This 

includes selecting the best drag model in gas-solid 

multiphase flow systems. Checking different values for 

the model constants/coefficients in a meaningful way is 

another approach. Different schemes such as first order 

upwind, second order upwind and central differencing 

etc. can be optimized in terms of computer cost and 

accuracy required. However, many of the mentioned 

parameters are optimized for general setting in many of 

the commercial CFD packages. Hence, the most primary 

parameters to study in first hand are the grid size and the 

simulation time step. These two parameters are 

correlated to form Courant-Friedrichs-Lewy (CFL) 

conditions, which gives the primary indication of the 

convergence of the simulation. Apart from the 

convergence, improper implementation of mesh lead to 

errors and missing information of the systems. 

Mesh sensitivity analysis has used to develop a grid 

independent model. Many of the related works for the 

mesh sensitivity were carried out for EE simulations and 

fixed time steps has been adopted based on convergence 

criteria. In contrast, as solid phase is modeled as discrete 

particles in EL modeling, the solid phase interactions are 

directly calculated. Therefore, the effect of the mesh size 

is comparatively less. Many authors have used the bed 

pressure drop and the solid volume fraction as the 

parameters to check the mesh sensitivity. Even though 

the MP PIC modeling preserves the discrete nature of 

the particles, it deviates from the original Lagrangian 

modeling as selected particle properties are calculated in 

the Eulerian frame.  

Barracuda VR is a tailor-made CFD code for 

multiphase flow systems, which uses MP PIC modeling. 

Many of the previous studies on sensitivity analysis 

have been carried out in steady boundary conditions. 

Instead, this work is focused on studying both changing 

boundary conditions of inlet flow velocity during the 

transition of packed bed to fluidized bed and steady 

boundary conditions in bubbling fluidizing regime. The 

minimum fluidization velocity, bed pressure drop and 

bubble characteristics were compared.  Barracuda VR 

17.1.0 version was used to compare the minimum 
fluidization velocity, bed pressure drop and bubble 

characteristics between different configurations of time 

step, grid size along with different models and model 

parameters.  

2 MP PIC Model Description 

The gas phase mass and momentum conservation are 

modeled with continuity and time averaged Naiver-

Stokes equations: 
𝜕(𝛼𝑔𝜌𝑔)

𝜕𝑡
+ 𝛻. (𝛼𝑔𝜌𝑔𝑢𝑔) = 0   (1) 

 
𝜕(𝛼𝑔𝜌𝑔𝑢𝑔)

𝜕𝑡
+ 𝛻. (𝛼𝑔𝜌𝑔𝑢𝑔𝑢𝑔) = −𝛻𝑃 + 𝐹 +

𝛻. (𝛼𝑔𝜏𝑔) + 𝛼𝑔𝜌𝑔𝑔       (2) 

 

Where 𝛼𝑔, 𝜌𝑔, and 𝑢𝑔 are gas phase volume fraction, 

density and velocity respectively. F is total momentum 

exchange with particle phase per volume, g is 

gravitational acceleration, P is pressure and 𝜏𝑔 is the gas 

phase stress tensor, which is given by: 

 

𝜏𝑔 =  𝜇𝑔 [(𝛻𝑢𝑔 + ∆𝑢𝑔
𝑇) −

2

3
𝛻. 𝑢𝑔𝐼]  (3) 

 

𝜇𝑔 refers to the shear viscosity that is the sum of the 

laminar and turbulent components. The large eddy 

simulation is used for the large-scale turbulence 

modeling while the subgrid scale turbulence is captured 

with Smagorinsky model: 

 

𝜇𝑔,𝑡 = 𝐶𝑠𝜌𝑔∆2|𝛻𝑢𝑔 + ∆𝑢𝑔
𝑇|  (4) 

 

Where ∆ is the subgrid length scale and calculated by 

equation 05. The default value for the model constant 𝐶𝑠 

is 0.01. 

∆= (𝛿𝑥𝛿𝑦𝛿𝑧)
1

3⁄   (5) 

 

The interface momentum transfer is calculated through 

the viscous drag force: 

 

𝐹 = ∬ 𝑓 {𝑚𝑝 [𝐷𝑝(𝑢𝑔 − 𝑢𝑝) −
𝛻𝑃

𝜌𝑝
]} 𝑑𝑚𝑝𝑑𝑢𝑝  (6) 

 

Subscript P refers to the particle phase properties where 

m and u symbolizes the mass and velocity. 𝐷𝑝 is the drag 

function. The particle phase dynamics are derived using 

particle distribution function (PDF) calculated from the 

Liouville equation given as:  
𝜕𝑓

𝜕𝑡
+ 𝛻(𝑓𝑢𝑝) + 𝛻𝑢𝑝(𝑓𝐴𝑝) = 0  (7) 

 

Where 𝐴𝑝, is the particle acceleration and is expressed 

by: 

𝐴𝑝 =
𝜕(𝑢𝑝)

𝜕𝑡
= 𝐷𝑝(𝑢𝑔−𝑢𝑝) −

𝛻𝑃

𝜌𝑝
−

𝛻𝜏𝑝

𝜌𝑝𝛼𝑝
+ 𝑔 (8) 

 



𝛼𝑝 is particle volume fraction and  𝜏𝑝 is particle stress 

function that is used in formulating interphase 

interactions of particles.  

 

𝛼𝑝 = ∬ 𝑓
𝑚𝑝

𝜌𝑝
𝑑𝑚𝑝𝑑𝑢𝑝   (9) 

𝜏𝑝 =
10𝑃𝑠𝛼𝑝

𝛽

𝑚𝑎𝑥[(𝛼𝑐𝑝−𝛼𝑝),𝜀(1−𝛼𝑝)]
  (10) 

 

𝑃𝑠 is a constant with the units of pressure, 𝛼𝑐𝑝 is the 

particle volume fraction at close packing, β is a constant 

between 2 and 5 where ε is a very small number on the 

order of 10-7.  

3 Methods and Computational Model 

The minimum fluidization velocity (MFV) was used as 

the primary measurement for the mesh and time step 

sensitivity analysis. The simulations were started at the 

packed bed conditions and the gas velocity was 

gradually increased from zero to 0.4 m/s with 0.025 

increments. Simulations were carried out for 8 seconds 

at each velocity step. Average pressure drop gradient 

across the column was plotted against the gas superficial 

velocity and the minimum fluidization velocity is read 

(𝑈𝑚𝑓) as illustrated in Figure 1. Five different grid sizes 

and five different time steps for each grid were used to 

compare the MFVs. The simulation time for each 

velocity step was gradually increased in the following 

simulations gradually up to 20 seconds in selected grids 

and the results were compared. As the drag model is a 

function of particle volume fraction, the MFV was 

analyzed at varied close pack volume fractions.   

 
Figure 1. Calculation of minimum fluidization velocity 

 

3.1 Computational model 

The dimensions of the geometry were adopted from the 

experimental rig at the University of Southeast Norway. 

As shown in Figure 2, a cylindrical column with 84mm 

in diameter and 1000mm in height with pressure 

monitoring points in 100mm intervals along the height 

was created. The gas inlet was set up as a flow boundary 

while the top gas exit as a pressure boundary at 
atmospheric pressure with no particle exit. Fluidizing 

gas was air at 300K with varying superficial velocity. 

Further, the velocity inlet was formulated as it 

homogeneously injects air in axial direction throughout 

the whole bottom cross section. Each velocity was 

maintained for 8 seconds. Spherical sand particles with 

2200 Kg/m3 in density and 500 micron in diameter was 

the bed material used. The initial particle bed height was 

set up to 350mm. 

 
 

Figure 2. (a) Boundary conditions, (b) Pressure points 

Five different meshes with 6656, 9000, 16819, 22176 

and 27378 cells were tested and cross sectional views 

are illustrated in Figure 3. 

 
Figure 3. Cross sectional views of different grids  

The grid dimensions in x, y and z direction for each 

mesh are given in Table 1. The normalized grid size in 

all x, y and z directions were kept below the warning 



line in the grid check plot. Grid refinements at the wall 

was not performed as it was assumed that there was no 

boundary layer formation with the dense phase particle 

system. Default grid generator settings were used, which 

removes the cells having less fraction of volume than 

0.04 and greater aspect ratio than 15:1. Four time steps 

of 0.05, 0.01, 0.005 and 0.001 seconds were checked for 

each grid. 

Table 1. Cell dimensions 

No of 
cells 

ΔX 
(mm)  

ΔY 
(mm) 

ΔZ 
(mm) 

Grid 
No 

6656 10.5 10.5 9.6 01 

9000 8.40 8.40 11.1 02 

16819 7.60 7.60 7.20 03 

22176 7.00 7.00 6.5 04 

27378 6.46 6.46 6.17 05 

 

Adopting to the previous experience of the author 

(Bandara, Thapa, Moldestad, & Eikeland, 2016), Wen-

Yu-Ergun correlation was used for the initial 

simulations. It is a combined formulation of Wen-Yu 

model and Ergun model, which is selected upon the gas 

volume fraction.  When the gas volume fraction is 

greater than 0.8, Wen-Yu correlation is applied which is 

given by,  

𝐾 𝑠𝑔

𝑊𝑒𝑛𝑌𝑢

=  
3

4

𝐶𝑑𝜌𝑔𝜀𝑔(1−𝜀𝑔)(𝑢𝑠−𝑢𝑔)

𝑑𝑝
휀𝑔

−2.65  (11) 

 

Where 𝐶𝑑 is given by, 

 

𝐶𝑑 = {

24

𝜀𝑔𝑅𝑒𝑠
[1 + 0.15(휀𝑔𝑅𝑒𝑠)

0.687
] , 𝑅𝑒𝑠 ≤ 1000

0.44, 𝑅𝑒𝑠 > 1000
   (12) 

 

When the gas volume fraction is less than 0.8, Ergun 

correlation is used which is given by, 

 

𝐾 𝑠𝑔

𝐸𝑟𝑔𝑢𝑛
= 150

𝜇𝑔(1−𝜀𝑔)
2

𝜑2𝑑𝑝
2𝜀𝑔

+ 1.75
𝜌𝑔(𝑢𝑔−𝑢𝑠)(1−𝜀𝑔)

𝜑𝑑𝑝
 (13) 

 

Where, subscripts g, p and s refer to gas phase, particle 

and solid phase respectively. Ksg is the interface 

momentum transfer coefficient, U is the velocity, ρ is 

the density, ε is the volume fractions, φ is the sphericity, 

μ is the viscosity, Re is the Reynold’s number and d is 

the particle diameter. 

The close pack volume fraction, maximum 

momentum redirection from collisions, normal to wall 

momentum retention and tangent to wall momentum 

retention were set to 0.6, 40%, 0.3 and 0.99 respectively. 

Default values for the parameters in the particle stress 

model were kept unchanged. Large eddy simulation was 

enabled for the turbulence modeling and “partial-donor-
cell” was used as the numerical scheme. 

4 Results and Discussion 

Minimum fluidization is a crucial parameter as it 

represents the minimum gas required to operate the 

reactor. It is sensitive to particle properties (size, shape, 

density etc.) and gas properties (density, humidity, 

viscosity etc.) along with geometry (aspect ratio). 

Therefore, it is required to know the minimum 

fluidization velocity at different contexts. A CFD model 

can be useful in predicting MFV at various process 

conditions. This work demonstrates the grid size and 

time step dependency in calculating the minimum 

fluidization velocity.  

Apart from the 20 simulations mentioned under the 

methods, time step of 0.0005 was used for grids with 

high resolutions and one other simulation was carried 

out at a coarse grid. The plots were generated for each 

grid at different time steps and each time step for 

different grids. 

According to the force balance at the minimum 

fluidization condition, the bed pressure drop is 

proportional to the particle weight and can be expressed 

as, 
∆𝑃

𝐻
= (1 − 휀𝑚𝑓)𝑔(𝜌𝑠 − 𝜌𝑔)  (14) 

Where, ∆𝑃 is bed pressure drop, 𝐻 is bed height and 휀𝑚𝑓 

is the void fraction at the minimum fluidization.  

Equation 14 and many correlations for the MFV need 

the knowledge of void fraction at minimum fluidization, 

which is difficult to determine. However, Gidaspow 

(1994) and Das et al have mentioned about the void 

fraction at minimum fluidization (휀𝑚𝑓), which varies 

between 0.44 and 0.476. Implementing the value of 0.45 

for the 휀𝑚𝑓 in equation 14, the pressure drop per unit 

height of the bed at minimum fluidization is 11.87 

Pa/mm.  

As approximated by Wen and Yu, the minimum 

fluidization velocity 𝑈𝑚𝑓 can be expressed as, 

 

𝑈𝑚𝑓 =
𝜇𝑔

𝜌𝑔𝑑𝑝
[√1135.7 + 0.048𝐴𝑟 − 33.7] (15) 

Where 𝜇𝑔is gas viscosity, 𝑑𝑝is particle diameter and 𝐴𝑟 

is the Archimedes number given by, 

 

𝐴𝑟 =
𝑑𝑝

3(𝜌𝑠−𝜌𝑔)𝜌𝑔𝑔

𝜇2   (16) 

Using Equation 15 and 16, the MFV for the simulated 

system can be calculated as 0.165 m/s.   

Air velocity (𝑢𝑔) vs pressure drop (∆𝑃) plots for 

different grids are illustrated in Figure 4 to 8. Each 

figure contains plots for different time steps used. Each 

velocity step was maintained for 8 seconds and the 

pressure drop was taken as the average value of the 8th 

second of respective velocity. The averaging was 

performed to minimize the effect of random pressure 

fluctuations during fluidization on results. The pressure 

gradient (Pa/mm) along the column height was 



calculated based on P1 and P2 data as illustrated in 

sketch (b) - Figure 2. It was assumed that the P1 and P2 

would reach the steady values before the rest of the 

transient data points (P3, P4 and P5) for pressure.  

4.1 Bed Pressure drop 

Being a fundamental formulation, pressure drop at 

onset of fluidization calculated from Equation 14, which 

is 11.87 Pa/mm, was used as the baseline to compare the 

results from simulations.  

 

Figure 4. Effect of the time step for MFV at grid 01 

 

Figure 5. Effect of the time step for MFV at grid 02 

 

Figure 6. Effect of the time step for MFV at grid 03 

4.1.1 Pressure drop at minimum fluidization 

The results for the pressure drop at minimum 

fluidization ((∆𝑃)𝑀𝐹) using time step 0.05 show the 

highest variation of 18 Pa/mm in grid 05 and 03. The 

respective value changes between 17 and 18 Pa/mm at 

different grids without any distinguishable pattern. At 

the coarsest grid, grid 01, both time steps of 0.05 and 

0.01 give the same of 17 Pa/mm for (∆𝑃)𝑀𝐹. However, 

the (∆𝑃)𝑀𝐹 using time step 0.01 gradually increases 

from 15 Pa/mm to 16.5 Pa/mm as the grid size is reduced 

from grid 02 to grid 05. The (∆𝑃)𝑀𝐹 calculated from 

time steps of 0.005 and 0.001 are identical for each grid, 

which gradually increase from 12.5 Pa/mm in grid 01 to 

13.5 Pa/mm in grid 05.  

 

Figure 7. Effect of the time step for MFV at grid 04 

 

Figure 8. Effect of the time step for MFV at grid 05 

4.1.2 Pressure drop during packed bed 

Simulation results from time steps of 0.05 and 0.01 

behaves almost equally at each grid during packed bed 

operation. The observed ∆𝑃s are considerably higher 

compared to time steps of 0.005 and 0.001 at each 

velocity step. The curves from time steps of 0.001 and 

0.0005 are identical throughout the full range of air 

velocities. The ∆𝑃 using time step 0.005 almost follow 

the time step of 0.001 with slight over prediction in grid 

01 and 04. However, the curve converges to that of the 

time step of 0.001 before the onset of fluidization.  

4.1.3 Pressure drop at fluidization regime 

The ∆𝑃 during fluidization was similar for all the time 

steps at each grid. However, respective value increases 

from 11.5 Pa/mm in grid 01 to 13 Pa/mm in grid 02. 

Almost steady pressure drops can be observed for time 

steps of 0.0005, 0.001 and 0.005 between 0.2 m/s and 

0.325 m/s air velocities. After 0.325 m/s of air velocity, 

the ∆𝑃 starts to fluctuate for all the simulations. The ∆𝑃 

is dropped down nearly by 1 Pa/mm after 0.325 m/s air 

velocity except in grid 02, in which the ∆𝑃 is slightly 

increased.  



4.2 Minimum Fluidization Velocity 

The results for minimum fluidization velocity does not 

show much variations over the grid sizes. The MFV 

obtained from time step of 0.05 is 0.175 m/s for all the 

grids. Time steps of 0.005, 0.001 and 0.0005 produce 

the same MFV of 0.15 m/s irrespective of the grid size. 

The time step of 0.01 gives the same MFV velocity of 

0.15 m/s for grid 02, 03, 04 and 05 where in grid 01, 

MFV is increased to 0.175 m/s.  

The observed differences in the ∆𝑃 and MFV might 

be related to CFL conditions or not reaching steady state 

conditions at each velocity steps. The CFL equation is 

given by:  

𝐶𝐹𝐿 = 𝑢
∆𝑡

∆𝑥
   (17) 

 

Where ∆𝑡 is time step, ∆𝑥 is cell size (one 

dimensional modeling) and 𝑢 is the convective flow 

velocity.  

At lower time steps the air flow is not fully 

developed. This effect is progressively increased along 

the column height. Due to that, the air velocity is getting 

lesser along the height, which force the cells near the 

inlet flow boundary to store more air according to the 

step wise increment of air velocity. This leads to 

increased pressures near the inlet boundary and 

consequently increased pressure drop gradients. 

Therefore, the pressure gradients along the height are 

less linear for higher time steps. Hence, selecting the 

transient data points of P1, P2…P3 (refer sketch (b) in 

Figure 2) to calculate the pressure drop gradient was 

critical for previous simulation results. This variation is 

clearly illustrated in air velocity vs pressure drop plots 

in Figure 9. The simulation results from grid 03 was 

used and the pressure gradients were calculated using 

different transient data points according to the 

formulations mentioned at the lower right hand corner 

of each plot. The time steps of 0.005 and 0.001 produce 

almost same results irrespective of the transient data 

points used. Even though the (∆𝑃)𝑀𝐹 is high with time 

step of 0.05, all the plots follow a similar trend. In 

contrast, the curves for time step 0.01 show higher 

deviations from each other and however, with less 

(∆𝑃)𝑀𝐹 compared to time step 0.05. The collective 

outcome of these results clearly illustrates that the 

system has not achieved steady state operation 

completely with the implemented boundary conditions 

at lower time steps of 0.05 and 0.01.  

Therefore, further simulations were carried out for 

time steps of 0.05 and 0.01 with extended simulation 

time of 14 seconds and 20 seconds for each velocity 

step. Grid 03 was used and air velocity vs pressure drop 

plots are illustrated in Figure 10 and Figure 11 along 

with the results from 8 seconds simulation time. 

When the plots in Figure 11 are compared, results 

from 14 second and 20 second simulation time are 

converged to same values in terms of both (∆𝑃)𝑀𝐹 and 

MFV. (∆𝑃)𝑀𝐹 remains at 13.6 Pa/mm while the MFV 

is further reduced to 0.13 m/s. This suggests the inability 

of further improvement of the results merely by 

increasing the simulation time for time step 0.01.  

Therefore, it is necessary to carry out additional 

simulations with increased simulation time for time 

steps of 0.005 and 0.001 for other grids to see the 

provisions for the improvements of the results.  

 

Figure 9. Effect of the time step for MFV at grid 03 

 

Figure 10. Effect of the simulation time for MFV and 

pressure drop at time step of 0.05 seconds 

 

Figure 11. Effect of the simulation time for MFV and 

pressure drop at time step of 0.01 seconds 

4.3 Effect of the close volume fraction for 

minimum fluidization velocity 

Most of the drag models are a function of particle 

volume fraction (𝛼𝑝), which is changed depending on 

particle shape and size distribution.  The previously 
illustrated simulation results were based on close 

volume fraction of 0.6 and successive simulations are 



carried out for 0.55, 0.58 and 0.65. The results are 

illustrated in Figure 12.  

 

Figure 12. Effect of the close volume fraction for MFV 

and pressure drop 

Grid 03 and time step of 0.001 second were used for the 

simulations. The pressure drop during packed bed 

operation is increased with the increased close pack 

volume fraction. The particles are closely packed that 

makes it hard for gas to pass through. A slight change in 

the (∆𝑃)𝑀𝐹 can also be observed, which is increased 

proportionally with close volume fraction.  There is a 

significant variation in the MFV, which is reduced down 

to 0.1 m/s at close volume fraction of 0.65 and as high 

as 0.225 m/s at 0.55. The drag functions are functions of 

the particle volume fraction which leads to the 

difference in MFV. The bed pressure drops are 

converged together as the air velocity is increased. This 

is because, the densely packed particles are loosened 

and attain a more or less common particle volume 

fraction as the system undergoes rigorous fluidization.  

4.4 Effect of the grid size for bubble 

behavior 

The differences in the scales involved is one of the main 

challenges related to CFD modeling of multiphase 

systems. Mostly, the particles are in sub-millimeter 

range while the reactors are in scale of meters. Further, 

the computational grid can be in the scale of millimeters, 

centimeters or either in meters depending upon the size 

of the geometry and computational capacity. Unlike in 

packed beds, bubbling fluidized beds contain a dense 

particle phase and a dilute bubble phase. Therefore, the 

grid should be fine enough to capture the bubble 

properties as the bubbles play an important role in heat 

and mass transfer along with particle mixing inside the 

bed.  

Grid 01, 02… 05 and a coarser grid having 2000 cells 

were simulated for 50 seconds in the bubbling 

fluidization regime. The time step of 0.001 seconds was 

used and a constant air velocity of 0,225 m/s was 

maintained. The behavior of the bubbles in the 40th 

second of the simulation are illustrated in Figure 13. 

Smaller and increased number of bubbles appears in the 

finer grids of grid 05 and 04. The bubble size is 

becoming larger as the grid size is increased. Finally, the 

bubbles are almost disappeared at the coarsest grid with 

2000 cells. Therefore, the grid should be fine enough to 

capture the localized bubble structures. In this case, grid 

03 seems to be good enough because, the grid 04 and 05 

produce almost the same bubble size.  

5 Conclusion 

The main objective of the paper was to analyze the effect 

of time step and grid size for the results in MP PIC 

modeling. The CPFD commercial package of Barracuda 

was used in this work. The results give a guidance about 

the critical parameters to be considered rather than 

presenting details with model validation.  

The minimum fluidization velocity and pressure drop 

at minimum fluidization were greatly affected by the 

time step and however, it could be improved by 

increasing the simulation time. Time steps 0.005s and 

0.001s produce the same of minimum fluidization 

velocity of 0.15 m/s irrespective of the grid resolution. 

The bed pressure drop at bubbling fluidization regime 

was not affected considerably by the time step which is 

12 pa/mm. However, the minimum fluidization velocity 

could converge together when the simulation time for a 

particular air velocity was increased.   

The grid size showed a minimal effect on the 

minimum fluidization velocity. However, the grid size 

had a great effect on the bubble size and consequently 

on the bed hydrodynamics. The close volume fraction 

was also found to be a deciding parameter in simulations 

for finding the minimum fluidization velocity. 

Therefore, the simulation set up should be well 

optimized depending on the required accuracy of the 

results and availability of computer power. The physical 

parameters such as close volume fraction should be 

accurately measured and implemented in the 

simulations.  
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Figure 13. Effect of the computational grid size for the bubble size at 0.225 m/s superficial air velocity 
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