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Abstract—From the attenuation measurements collected by
a network of spatially distributed sensors, radio tomography
constructs spatial loss fields (SLFs) that quantify absorption
of radiofrequency waves at each location. These SLFs can be
used for interference prediction in (possibly cognitive) wireless
communication networks, for environmental monitoring or in-
trusion detection in surveillance applications, for through-the-
wall imaging, for survivor localization after earthquakes or fires,
and so on. The cornerstone of radio tomography is to model
attenuation as the bidimensional integral of the SLF of interest
scaled by a weight function. Unfortunately, existing approaches
(i) rely on heuristic assumptions to select the weight function; and
(ii) are limited to imaging changes in the propagation medium
or they require a separate calibration step with measurements in
free space. The first major contribution in this paper addresses (i)
by means of a blind radio tomographic approach that learns the
SLF together with the aforementioned weight function from the
attenuation measurements. This challenging problem is tackled
by capitalizing on contemporary kernel-based learning tools
together with various forms of regularization that leverage prior
knowledge. The second contribution addresses (ii) by means of a
novel calibration technique capable of imaging static structures
without separate calibration steps. Numerical tests with real and
synthetic measurements validate the efficacy of the proposed
algorithms.

Index Terms—radio tomography, tomographic imaging,
channel-gain cartography, kernel-based learning.

I. INTRODUCTION

Tomographic imaging enjoys extensive popularity and
widespread usage in natural sciences, notably in medical imag-
ing [1]. The principles underpinning tomographic methods
have been carried over to construct spatial loss fields (SLFs),
which are maps quantifying the attenuation experienced by
electromagnetic waves in radio frequency bands at every
spatial position [2]. To this end, pairs of collaborating sensors
deployed across the area of interest estimate the attenuation
introduced by the channel between them. Different from
traditional techniques, radio tomography relies on incoherent
measurements, meaning that no phase information is available.
This simplification saves the costs incurred by the accurate
synchronization necessary to acquire phase differences among
waveforms received at different sensors.
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SLFs are instrumental in a number of problems, including
radio tomographic imaging [3], channel-gain cartography [4],
and device-free passive localization [2], [5], [6]. Specifically,
the absorption mapped by SLFs allows one to discern objects
in space, thus enabling radio tomographic imaging. The latter
is of interest in environmental monitoring for surveillance or
intrusion detection [7]. Relative to existing alternatives using
camera sensors, radio tomographic imaging features lower
hardware costs and benefits from the ability of radio frequency
waves to penetrate physical structures such as trees or build-
ings. The latter characteristic also renders radio tomography
appealing for through-the-wall imaging [8], [9], which finds
multiple military and civilian applications including security
and responding to emergency situations. For example, these
techniques may enable the police or emergency services to
locate persons in burning buildings, survivors in rescue op-
erations, or kidnappers in hostage situations. Similarly, SLFs
are also useful in channel-gain cartography, where the goal is
to predict the channel attenuation for links between arbitrary
pairs of locations where no sensors are deployed [4]. Channel-
gain maps obtained from SLFs solve the classical problem
of predicting the interference inflicted to receivers that never
transmit, as necessary in cognitive radio and for unlicensed
access to television broadcasting systems [10]–[13], where
the non-collaborative nature of primary users precludes any
direct form of channel estimation between secondary trans-
mitters and primary receivers. Further applications of these
channel-gain maps include network planning or interference
management in cellular networks.

The fundamental principle underlying radio tomography is
that closely located radio links exhibit similar shadowing due
to the presence of common obstructions. This correlation is
related to the geometry of the propagation environment by
the model in [14], [15], which prescribes that the attenuation
due to shadowing is proportional to the line integral of a
bidimensional SLF. Inspired by this model, [2], [3], [16]
proposed various techniques for radio tomographic imaging.
Since these techniques avoid calibration issues by estimating
the difference between the SLF at consecutive time instants
instead of the SLF itself, they reveal the location of changes
in the propagation medium but are unable to image static
structures. Similarly, [9] builds on the arguments in [17] to
replace the SLF with an indicator function of the voxels that
contain objects in motion and therefore also suffers from this
limitation. In contrast, the scheme in [7] estimates the SLF
directly and therefore can image static structures, but involves
a separate calibration stage where these structures are absent.

On the other hand, existing radio tomography approaches
approximate the aforementioned line integral by a discretized
version of the bidimensional integral of the SLF scaled by a
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function that quantifies the impact of the absorption at each
spatial point on the shadowing attenuation of each link. In [2],
[3], [9], [16], such a weight function is the indicator of an el-
lipse with foci at the transmitter and receiver positions and can
be used to account for attenuation introduced by obstructions
inside the first Fresnel ellipsoid. Building upon these works,
[7] proposes a more sophisticated weight function that assigns
a higher weight to obstructions that lie close to the straight path
between transmitter and receiver. However, since the choice
of these weight functions relies on heuristic arguments, one
expects that the performance of radio tomographic methods
can be improved upon adopting weight functions that capture
the actual propagation phenomena more accurately.

A different body of literature applies radio tomography
for channel-gain cartography. Remarkably, [18] applies the
radio tomographic model in [15] to motivate a linear time-
evolution model for channel-gain cartography. A more explicit
application of radio tomography is reported in [19], where the
weight function is constant on its elliptic support.

To sum up, all tomography works so far adopt a heuris-
tically selected weight function. In contrast, the main con-
tribution of this paper comprises three blind estimators that
simultaneously learn the weight function and the SLF from
the sensor measurements, therefore suppressing the need for
heuristic considerations. The learned weight function reveals
insightful information about propagation in the medium of
interest and opens the door to validating models such as
those in [17] and [7]. As noted in [3], the non-blind radio
tomography problem, where the weight function is given
and only the SLF has to be estimated, is intrinsically ill-
posed. Hence, the blind problem addressed here is “doubly”
challenging, since besides the SLF one has to estimate the
weight function. To cope with these difficulties, the weight
function is estimated here through kernel-based learning, a
framework that is extensively popular due to its simplicity,
universality, and because it leads to computationally efficient
algorithms [20], [21]. On the other hand, the SLF is estimated
using three alternative regularization criteria.

The second contribution is a novel calibration technique
that simultaneously estimates the antenna gains and path loss
exponent together with the SLF and weight function. Different
from existing alternatives, the proposed method can image
static structures and does not need a separate calibration stage
where obstacles are removed from the propagation medium.
Therefore, the present work constitutes a significant step
forward in most applications involving tomographic imaging,
channel-gain cartography, and device-free localization.

The rest of the paper is organized as follows. Sec. II
reviews the radio tomography model, states the problem, and
defines the calibrated and uncalibrated scenarios. The novel
blind algorithm is then derived for the calibrated scenario in
Sec. III, and extended to the uncalibrated scenario in Sec. IV.
Numerical tests with synthetic as well as real measurements
are provided in Sec. V. Finally, Sec. VI summarizes the main
conclusions.

Notation: Sets are represented with calligraphic letters,
whereas bold uppercase (lowercase) letters denote matrices
(column vectors). IT represents the T × T identity matrix

and it ∈ RT its t-th column. 0T is the T × T all-zero
matrix. Superscript (·)> stands for transposition, ⊗ for the
Kronecker product, and || · || for the Euclidean norm. The
vectorization of an M×N matrix X := [x1, . . . ,xN ] is given
by vec(X) := [x>1 , . . . ,x

>
N ]>.

II. BACKGROUND AND PROBLEM STATEMENT

This section introduces the radio tomographic model and
formulates both the non-blind and blind radio tomography
problems. Although the exposition builds on the framework
in [7], the proposed approaches readily carry over to the
frameworks in [2], [3], [16] and in [9] just by replacing the
SLF here with the difference of consecutive SLFs or with an
indicator function of voxels containing moving objects.

Consider a bidimensional geographical area indexed by the
closed and convex set A ⊂ R2. After averaging out the effects
of small-scale fading, the power gain between a transmiter
located at x ∈ A and a receiver located at x′ ∈ A is given in
dB units by

g(x,x′) = gTX(x) + gRX(x′)

− γ010 log10 ||x− x′||2 − s(x,x′) (1)

where gTX(x) (resp. gRX(x′)) is the combined gain of the
power amplifier (low-noise amplifier) and transmit (receive)
antenna, assumed omnidirectional for simplicity, of the sensor
at x ∈ A (x′ ∈ A); γ0 is the pathloss exponent, and s(x,x′)
is the attenuation due to shadow fading. All other constant
factors have been absorbed into gTX(x) and gRX(x′). The
radio tomographic model in [7], which generalizes that in [14]
and [15], prescribes that

s(x,x′) =

∫

A
w(x,x′, x̃)f(x̃)dx̃ (2)

where f : A → R+ is the SLF and w : A×A×A → R+ is
the weight function. Whereas f(x̃) represents the absorption
at location x̃ ∈ A, the weight w(x,x′, x̃) quantifies the impact
of the absorption at x̃ on the attenuation between x and x′.
Typically, function w confers a greater weight w(x,x′, x̃) to
those locations x̃ lying closer to the line segment between x
and x′ and its selection is described later in this section.

Equation (2) models how the nature and spatial distribution
of obstructions in the propagation medium affect the attenua-
tion between each pair of locations. Its relevance is twofold:
first, as mentioned in Sec. I, f represents absorption across
space and therefore it can be used for imaging; see Sec. V
for examples. Second, if both w and f are known, the gain
between any two points x and x′ can be recovered through
(1) and (2), which enables channel-gain cartography.

The goal of radio tomography is to estimate f . To this
end, N sensors at locations {x1, . . . ,xN} ⊂ A collabora-
tively obtain channel-gain measurements. Specifically, at time
t = 1, . . . , T , sensors n(t) and n′(t) measure g(xn(t),xn′(t))
e.g. through pilot sequences, where n(t), n′(t) ∈ {1, . . . ,
N} ∀t. These measurements can be expressed as ǧt =
g(xn(t),xn′(t)) + εt, t = 1, . . . , T , where εt stands for
measurement error. It is instructive to consider first that
{gTX(xn)}Nn=1, {gRX(xn)}Nn=1, and γ0 are known. In such a
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calibrated scenario, it follows from (1) that {ǧt}Tt=1 contain
the same information as {št}Tt=1, where

št :=gTX(xn(t)) + gRX(xn′(t)) (3)
− γ010 log10 ||xn(t) − xn′(t)||2 − ǧt

=s(xn(t),xn′(t))− εt.
Thus, the fusion center may use {št}Tt=1 rather than {ǧt}Tt=1.
Sec. IV will deal with the uncalibrated scenario, where
{gTX(xn)}Nn=1, {gRX(xn)}Nn=1 or γ0 are unknown.

So far, works on radio tomography have focused on the
non-blind problem, where one estimates f given w as well as
the measurements and radio locations {(xn(t),xn′(t), št)}Tt=1.
The rest of this section describes the selection of w for this
problem and formulates its blind counterpart.

The radio tomographic model originally proposed in [14, eq.
(4)] and [15, eq. (9)] is expressed in terms of a line integral as

s(x,x′) =
1√

‖x− x′‖2

∫ x′

x

f(x̃)dx̃ (4)

and can be viewed as a special case of (2) upon setting

w(x,x′, x̃) =
1√

‖x− x′‖2

∫ x′

x

δ(||x̃− x̌||2)dx̌ (5)

where δ stands for the Dirac delta. Informally, w in (5) is a
function assigning a weight 1/

√
‖x− x′‖2 to the point x̃ if

it lies on the line segment between x and x′, and zero other-
wise. Therefore, this model only accounts for the attenuation
introduced by obstacles obstructing the line of sight.

However, objects that do not obstruct the line of sight can
still introduce attenuation if they lie close to it. The approach
in [3] and [16] captures this effect by assigning the weight
1/
√
‖x− x′‖2 to all locations x̃ lying within an ellipse with

foci at x and x′ through the function

w(x,x′, x̃) :=





0 if ‖x− x̃‖2 + ‖x̃− x′‖2
> ‖x− x′‖2 + λ/2,

1/
√
‖x− x′‖2 otherwise

(6)

where λ > 0 is selected by the user. The weight function in
(6) is referred to as normalized ellipse function in [7], where λ
is set to the carrier wavelength so that w(x,x′, x̃) for fixed x
and x′ becomes the indicator of the first Fresnel zone, defined
by {x̃ ∈ R2 : ‖x− x̃‖2 + ‖x̃− x′‖2 ≤ ‖x− x′‖2 + λ/2}.

Despite capturing propagation effects more accurately than
(5), function (6) still assigns the same weight across all x̃
within the first Fresnel zone, regardless of the distance from x̃
to the direct path. Since the attenuation introduced by an obsta-
cle is expected to be a decreasing function of this distance, [7]
proposes the following inverse area elliptical function1

w(x,x′, x̃) := (7)




0 if ‖x− x̃‖2 + ‖x̃− x′‖2 > ‖x− x′‖2 + λ/2,
4

πζβ(x,x′, x̃)
√
‖x− x′‖22 + ζ2

β(x,x′, x̃)
otherwise

1The disagreement between (7) and [7, eq. (19)] owes to typographical
errors in [7] and to the fact that the problem [7, eq. (20)] is solved here in
closed form.

where β > 0 is selected by the user and ζβ(x,x′, x̃) :=

max1/2
(
β2, (‖x− x̃‖2 + ‖x̃− x′‖2)2 − ‖x− x′‖22

)
. Sim-

ilar to (6), if x̃ is out of the first Fresnel zone, then (7)
prescribes a zero weight. Otherwise, if x̃ lies inside a smaller
ellipse with foci at x and x′ and minor axis length β, then
w(x,x′, x̃) equals the reciprocal of the area of that ellipse.
Finally, if x̃ lies outside of the smaller ellipse but inside the
first Fresnel zone, then w(x,x′, x̃) equals the reciprocal of the
area of the smallest ellipse containing x̃ and having x and x′

as foci. Although w in (7) is intuitively more accurate than
its predecessors, the rationale behind its selection is heuristic
and may not accurately capture real propagation phenomena.
This idea is reinforced by noting that (7), as well as (6), is
discontinuous on the boundary of the first Fresnel zone.

To bypass this need for heuristically selecting w, the goal of
this paper is to learn w from the data {(xn(t),xn′(t), št)}Tt=1.
However, since f is generally unknown, the blind radio
tomography problem involves learning w and f given just the
measurements {(xn(t),xn′(t), št)}Tt=1.

III. BLIND RADIO TOMOGRAPHY ESTIMATORS

As explained in Sec. II, existing radio tomography schemes
estimate f from the measurements {(xn(t),xn′(t), št)}Tt=1

after setting w based on heuristic arguments. In contrast, the
present section proposes three estimators that obtain both f
and w from {(xn(t),xn′(t), št)}Tt=1. To this end, Secs. III-A,
III-B, and III-C formulate the estimation problem as a generic
optimization program that can accommodate different forms
of prior information through regularization. Subsequently,
Sec. III-D proposes three solvers for different regularizers and
Sec. III-E introduces a computationally efficient approxima-
tion for large measurement records.

A. Blind radio tomography as a function estimation problem

In the radio tomography literature, the integral in (2) is
approximated as

s(x,x′) ' c
L∑

l=1

w(x,x′, x̃l)f(x̃l) (8)

where {x̃l}Ll=1 is a grid of points in A and c is a constant that
can be set to unity without loss of generality by absorbing
any scaling factor in f . It can be recognized from (8) that the
shadowing value s(x,x′) depends on f only through its values
at the grid points. Thus, it suffices to estimate the L entries of
the real-valued vector f := [f(x̃1), . . . , f(x̃L)]> rather than
the function f(x) for all x. On the other hand, finding w is
more challenging since s(x,x′) may be evaluated at arbitrary
real-valued coordinate pairs (x,x′) and, therefore, w(x,x′, x̃)
needs to be known for all x,x′ ∈ A. Therefore, estimating w
does not boil down to a vector estimation problem; instead, w
must be estimated as a function on A3 ⊂ R6.

Intuitively, the number of measurements required to estimate
w with a target accuracy depends on the size of its domain, in
this case A3. Conversely, for a given number of measurements,
one expects that the larger the domain of w is, the lower the
quality of its estimate will be. For this reason, the rest of this



IEEE TRANSACTIONS ON SIGNAL PROCESSING (EARLY ACCESS) 4

section presents two techniques to reduce the aforementioned
problem of estimating a function on A3 into the problem of
estimating a function on a smaller domain by exploiting the
known structure of w. It is worth noting that, despite enhancing
estimation performance, these techniques are not necessary for
the methods in this paper, which can handle in principle any
weight function defined on A3.

The first technique relies on the assumption that w depends
on {x,x′, x̃} only through φ1(x,x′) := ||x − x′||2 and
φ2(x,x′, x̃) := ||x− x̃||2 + ||x̃−x′||2, which respectively de-
note the length of the line of sight from x to x′ and path going
through the intermediate point x̃. In other words, such a weight
function can be expressed as2 w(x,x′, x̃) = w(φ(x,x′, x̃)),
where φ(x,x′, x̃) := [φ1(x,x′), φ2(x,x′, x̃)]>. Besides being
intuitively reasonable, this assumption is satisfied by all weight
functions in the literature; cf. Sec. II. For example, the weight
function in (6) satisfies w(x,x′, x̃) = w(φ(x,x′, x̃)) for

w(φ) :=

{
0, if φ2 > φ1 + λ/2

1/
√
φ1 otherwise

(9)

with φ := [φ1, φ2]>. Similarly, the weight function in (7) can
be expressed as w(x,x′, x̃) = w(φ(x,x′, x̃)) for

w(φ) :=





0, if φ2 > φ1 + λ/2

min

[
Ω(φ1, φ2),Ω

(
φ1,
√
φ2

1 + β2

)]

otherwise

(10)

where Ω(φ1, φ2) := 4/(πφ2

√
φ2

2 − φ2
1). Thus, it is reason-

able to seek an estimate of w among the class of functions
satisfying this assumption, thereby reducing the problem of
estimating a function of 6 variables to that of estimating a
function of only 2. More formally, the sought w(φ) will be
defined for φ ∈ B0 := {φ ∈ R2 : 0 ≤ φ1 ≤ D, φ1 ≤ φ2 ≤
2D} ⊂ R2, where D := supx,x′∈A ||x− x′||2 is the diameter
of A and the condition φ1 ≤ φ2 follows from the triangle
inequality. Since B0 ⊂ R2, this re-parameterization of w is
expected to significantly reduce the number of measurements
needed to attain a target estimation accuracy.

The second technique to reduce the size of the domain of
w relies on the fact that this function is expected to take
significant values only on a small region of the space, the
rest being close to zero. For example, one may assume along
the lines of (9) and (10) that w(x,x′, x̃) only takes non-zero
values within a certain ellipsoid with foci at x and x′, such as
the Fresnel ellipsoid. In terms of the re-parameterization in the
previous paragraph, such an ellipsoid can be expressed as the
set of x̃ such that φ2(x,x′, x̃) ≤ φ1(x,x′) + λ/2, implying
that one may confine the support of w to the reduced set
B := {φ ∈ R2 : 0 ≤ φ1 ≤ D, φ1 ≤ φ2 ≤ 2D, φ2 ≤
φ1 + λ/2} ⊂ B0. Besides this ellipsoid, the user can select
further regions B or ellipsoids. Although w is expected to
take small values off the Fresnel ellipsoid, these values may
be estimated by selecting a larger domain set, even B = B0.
However, this operation comes with a caveat: as expected,

2Although the symbol w is used to represent both functions w(x,x′, x̃)
and w(φ), there is no ambiguity since the former function takes 6 scalar
arguments whereas the latter takes 2.

the larger B, the larger the number of measurements required
to maintain the estimation performance. Therefore, the size
of this region must be increased only if a sufficiently large
number of measurements is given.

The two techniques introduced in this section are applied
next to simplify (8). To this end, apply the re-parameterization
prescribed by the first technique to obtain the shadowing
attenuation of the t-th measurement from (8), which yields

s(xn(t),xn′(t)) '
L∑

l=1

w(φ(xn(t),xn′(t), x̃l))f(x̃l) (11)

after absorbing c in f . The second technique, which
confines the support of w to B, allows a reduction
in the number of summands in (11) by disregarding
those with φ(xn(t),xn′(t), x̃l) /∈ B since they result in
w
(
φ(xn(t),xn′(t), x̃l)

)
= 0. For the t-th measurement define

Lt := {l : 1 ≤ l ≤ L, φ(xn(t),xn′(t), x̃l) ∈ B}
:= {it,1, . . . , it,Lt} (12)

as the set comprising the indices of the Lt grid points x̃l
for which φ(xn(t),xn′(t), x̃l) is in B. With this notation, (11)
becomes

s(xn(t),xn′(t)) '
Lt∑

l=1

w(φt,l)f(x̃it,l) (13)

where φt,l := φ(xn(t),xn′(t), x̃it,l), l = 1, . . . , Lt.
In short, expression (13), which was obtained through the

re-parameterization and support confinement techniques in
this section, will prove decisive to lower the computational
complexity and improve the estimation performance of the
estimators proposed in the rest of the paper.

B. Function estimation via kernel-based learning

Before formulating the blind radio tomography problem,
this section reviews kernel-based learning, which is one of the
most prominent frameworks for non-linear function estimation
due to its simplicity, good performance, low computational
complexity, and universality, in the sense that any continuous
function vanishing at infinity can be learned with arbitrary
accuracy under general conditions; see e.g. [21].

Kernel-based methods seek function estimates within large
classes of functions termed reproducing kernel Hilbert spaces
(RKHSs) and defined as

H :=

{
w(φ) =

∞∑

i=1

αiκ(φ,φi) : αi ∈ R;φ,φi ∈ B ∀i
}
.

In this expression, κ : B×B → R denotes a reproducing ker-
nel, which is a function satisfying two properties [20]: (i) it is
symmetric, meaning that κ(φ1,φ2) = κ(φ2,φ1), ∀φ1,φ2 ∈
B; and (ii) it is positive definite, meaning that:

I∑

i=1

I∑

i′=1

αiαi′κ(φi,φi′) ≥ 0,

∀I > 0, {αi}Ii=1 ⊂ R, {φi}Ii=1 ⊂ B.



IEEE TRANSACTIONS ON SIGNAL PROCESSING (EARLY ACCESS) 5

A frequent choice of reproducing kernel is the so-called
Gaussian radial basis function

κ(φ,φ′) = exp

(
−‖φ− φ

′‖22
2σ2

κ

)
(14)

where σ2
κ > 0 is a user-selected parameter. Being a

Hilbert space, H is endowed with an inner product and,
consequently, a norm. Specifically, the norm of a function
w(φ) =

∑∞
i=1 αiκ(φ,φi) ∈ H can be obtained through the

reproducing kernel as

||w||2H =

∞∑

i=1

∞∑

i′=1

αiαi′κ(φi,φi′) (15)

and is used in kernel-based learning as a proxy for smoothness
of w. Different from other function norms such as the well-
known ||w||22 :=

∫
|w(φ)|2dφ, the RKHS norm does not

require (potentially multidimensional) integration. This con-
stitutes a major benefit of adopting the RKHS framework.

Nonparametric kernel-based estimates are commonly sought
as the minimizers of judiciously selected regularization crite-
ria. For the present problem, this paper proposes jointly
estimating ŵ and f̂ as the minimizers of

min
w∈H,f∈RL

1

T

T∑

t=1

(
št −

Lt∑

l=1

w(φt,l)f(x̃it,l)

)2

(P1)

+µw‖w‖2H + µfρ(f).

Here, the inner summation in the first term is the approx-
imation (13) to s(xn(t),xn′(t)). Therefore, the first term in
(P1) penalizes estimates w and f predicting shadowing values
that differ from those observed, i.e. {št}Tt=1. The second term
limits overfitting by promoting smooth estimates for w, where
the notion of smoothness is captured by the RKHS norm
in (15). The convex regularizer ρ(f), for which different
choices will be investigated in Sec. III-D, promotes a certain
known structure on f . Finally, the regularization parameters
µw > 0 and µf > 0 balance the trade-off between data fitting,
smoothness of w, and compliance of f with prior knowledge.
These parameters can be selected by cross-validation; see
e.g. [22, Sec. 1.3]. However, in practice, the extra computation
time entailed by this approach is bypassed by fixing these
parameters to values that exhibit acceptable performance in a
broad collection of typical scenarios.

To sum up, this section formulated the blind radio tomogra-
phy problem as the function estimation problem in (P1). The
rest of the paper will deal with solving (P1).

C. Kernel-based estimate via the representer theorem

A solution to (P1) cannot be found in its present form by
numerical means since it involves a search over the infinite
dimensional space H. To circumvent this issue, this section
reformulates (P1) as an optimization problem in finitely many
scalar variables.

To this end, one can invoke the representer theorem [20],
[23], which establishes that the minimizer of (P1) with respect

to w admits the expansion

ŵ(φ) =

T∑

t=1

Lt∑

l=1

αt,lκ(φ,φt,l) (16)

for some {αt,l}t,l. In other words, although H contains all
functions of the form w(φ) =

∑∞
i=1 αiκ(φ,φi) for arbitrary

{φi}∞i=1 ⊂ B and {αi}∞i=1 ⊂ R, one can confine the search
for an estimate to those functions of the form (16).

Clearly, after applying the representer theorem, finding
the optimum w amounts to finding the optimum {αt,l}t,l
in (16). As detailed below, these coefficients follow upon
substituting (16) into (P1). To this end, let

Kt,t′ :=




κ(φt,1,φt′,1) · · · κ(φt,1,φt′,Lt′
)

...
. . .

...
κ(φt,Lt

,φt′,1) · · · κ(φt,Lt
,φt′,Lt′

)




(17)

and let Kt := [Kt,1, . . . ,Kt,T ] ∈ RLt×L̃, where L̃ :=∑T
t=1 Lt. With this notation and w as in (16), the inner

summation in (P1) becomes

Lt∑

l=1

ŵ(φt,l)f(x̃it,l) =

Lt∑

l=1

T∑

t′=1

Lt′∑

l′=1

f(x̃it,l)κ(φt,l,φt′,l′)αt′,l′

= f>Ψ>t Ktα (18)

where α := [α1,1, α1,2, . . . , α1,L1 , α2,1, . . . , αT,LT
]> ∈ RL̃

and Ψt ∈ {0, 1}Lt×L is a matrix whose entries (l′, it,l′), l′ =
1, . . . , Lt, are set to one and the rest are set to zero. Matrix Ψt

selects the entries of f := [f(x̃1), . . . , f(x̃L)]> with indices in
Lt, that is Ψtf = [f(x̃it,1), . . . , f(x̃it,Lt

)]>. Likewise, from
(15) and (16), the norm in the second term of (P1) equals

‖ŵ‖2H =

T∑

t,t′=1

Lt∑

l=1

Lt′∑

l′=1

αt,lκ(φt,l,φt′,l′)αt′,l′ = α>Kα

(19)

where K := [K>1 , . . . ,K
>
T ]> ∈ RL̃×L̃.

Therefore, from (18) and (19), (P1) can be rewritten as

min
α,f

1

T
‖š− (IT ⊗ f>)Ψ>Kα‖22 + µwα

>Kα+ µfρ(f)

(P2)

where š := [š1, . . . , šT ]> and Ψ := diag {Ψ1, . . . ,ΨT } ∈
{0, 1}L̃×LT .

To sum up, this section reformulated (P1) as (P2). Upon
solving (P2), which will be addressed in the rest of the paper,
one directly obtains an estimate of f at the grid points {x̃l}Ll=1

through f . To recover the estimate of w, one just needs to
substitute the entries of the α solving (P2) into (16).

D. Numerical solvers for three regularizers

This section presents three solvers for (P2) with different
choices of ρ(f) that promote certain known structure in f .

Although (P2) is not jointly convex in α and f , it is
separately convex in each of these vectors. This motivates an
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alternating minimization approach where, at step [S1], one
minimizes (P2) with respect to α for fixed f and, at step
[S2], one minimizes (P2) with respect to f for fixed α. More
specifically, in [S1], one obtains the (k+1)-st iterate α[k+1],
k = 0, 1, . . . , as

α[k + 1] = arg min
α

1

T
‖š−A[k]α‖2 + µwα

>Kα (20)

where A[k] := (IT ⊗ f>[k])Ψ>K ∈ RT×L̃ depends on the
k-th iterate f [k]. From the first-order optimality conditions of
(20), its minimizer can be found in closed form as

α[k + 1] =
(
A>[k]A[k] + µwTK

)−1
A>[k]š. (21)

To obtain an update equation for [S2], note that

(IT ⊗ f>)Ψ>Kα = (IT ⊗ f>)

( T∑

t=1

it ⊗Ψ>t Ktα

)

=

T∑

t=1

(it ⊗α>K>t Ψt)f (22)

where it is the t-th column of IT . From (22), one can express
the minimizer of (P2) with respect to f as

f [k + 1] = arg min
f

1

T
‖š−B[k + 1]f‖2 + µfρ(f) (23)

where B[k] :=
∑T
t=1(it ⊗ α>[k]K>t Ψt) ∈ RT×L. Different

from (20), no closed-form solution for (23) necessarily exists.
Secs. III-D1, III-D2, and III-D3 will present three solvers for
(23) with three different choices of ρ(f).

Table I summarizes the alternating minimization solver
presented in this section. To minimize memory requirements
and execution time, one should avoid explicit construction of
Ψ by accounting for its sparsity in the operations involving this
matrix. For instance, one can obtain (IT ⊗ f>[k])Ψ> in [S1]
by selecting the appropriate columns of IT⊗f>[k]. Regarding
computational complexity, [S1] requires O(L̃3) operations
whereas the number of operations in [S2] is determined by
the selected regularizer.

1) Tikhonov regularizer: Following [3], one can adopt the
Tikhonov regularizer ρ(f) = f>Qf to promote certain forms
of smoothness on f by suitably selecting Q. The simplest
approach, which can also be adopted in absence of prior
information on f , is to set Q = IL. The resulting regularizer
ρ(f) = ||f ||22 promotes smoothness since it heavily penalizes
estimates where a small fraction of the entries of f contain
most of the energy ||f ||22. As a more sophisticated alternative,
one may set Q to be the inverse covariance matrix of f if the
latter is known [3], [7]. Such an approach is expected to yield
good performance when the SLF does not change drastically
over space, e.g. because the wave length is large relative to
objects in the area of interest. A further alternative is to set
ρ(f) = f>Qf = f>D>Df , where D is a matrix approx-
imating a differential operator; e.g. D := [D>x , (DyP)>]>,
with Dx, Dy , and P as in Sec. III-D3; see also [16].

Input: {(xn(t),xn′(t), št)}Tt=1, µf , µw , κ.
1: For every t = 1, . . . , T , obtain
Lt in (12).
φt,l := φ(xn(t),xn′(t), x̃it,l ), l = 1, . . . , Lt.

2: Form K as described in Sec. III-C.

3: Initialize f [0].

4: For k = 0, 1, . . . until convergence
[S1] α update

Compute A[k] = (IT ⊗ f>[k])Ψ>K.
Obtain α[k + 1] via (21).

[S2] f update
Compute B[k + 1] :=

∑T
t=1(it ⊗α>[k + 1]K>t Ψt).

Obtain f [k + 1] via subroutines in Tables II, III, or IV.
5: Set ŵ(φ) =

∑T
t=1

∑Lt
l=1 αt,l[k + 1]κ(φ,φt,l).

Return function ŵ(x,x′, x̃) := ŵ(φ(x,x′, x̃)) and vector f [k].

TABLE I: Proposed blind radio tomography algorithm. Note
that Ψ and {Ψt}Tt=1 need not be explicitly constructed.

Input: B[k + 1], š, µf ,Q.
1: f [k + 1] =

[B>[k + 1]B[k + 1] + µfTQ]−1B>[k + 1]š.

Return f [k + 1].

TABLE II: Subroutine to update f with Tikhonov regulariza-
tion.

With the Tikhonov regularizer ρ(f) = f>Qf , the f update
in (23) can be expressed in closed form as

f [k + 1] = arg min
f

1

T
‖š−B[k + 1]f‖2 + µff

>Qf

= [B>[k + 1]B[k + 1] + µfTQ]−1B>[k + 1]š. (24)

Therefore, to obtain an estimate for α and f , one just has
to cyclically apply (21) and (24) until convergence, i.e., one
has to execute the algorithm in Table I with the subroutine
in Table II at step [S2]. The complexity of [S2] is therefore
O(T 2L+ L3).

2) `1-norm regularization: When f exhibits a sparse pat-
tern, as occurs when the propagation medium comprises a
reduced number of relatively small obstructions such as trees,
or when trying to detect intruders in areas without obstacles,
then one can adopt the sparsity-promoting `1-norm regularizer
ρ(f) = ||f ||1 in (P2) [24]. In this case, (23) becomes

f [k + 1] = arg min
f

1

T
‖š−B[k + 1]f‖22 + µf‖f‖1. (25)

Expression (25) is an instance of the LASSO problem [25],
which can be efficiently solved e.g. by the fast iterative
shrinkage/thresholding algorithm (FISTA) [26].

To keep the computational complexity at a minimum, the
proposed algorithm inexactly solves (25) per iteration by
applying a single-pass coordinate-descent algorithm over each
element of f [27, Sec. 3.8.6]. To derive the update rule for f ,
let bl[k] denote the l-th column of B[k], and let B−l[k] rep-
resent the submatrix of B[k] resulting from removing the l-th
column. Similarly, fl denotes the l-th entry of f and f−l repre-
sents a subvector of f with its l-th entry removed. By defining



IEEE TRANSACTIONS ON SIGNAL PROCESSING (EARLY ACCESS) 7

Input: B[k + 1], š, µf ,f [k].
1: For l = 1, 2, . . . , L

s̃l[k] := š−B−l[k]f−l[k].

fl[k + 1] = Γ(s̃>l [k]bl[k];µfT/2)/‖bl[k]‖22
Return f [k + 1] = [f1[k + 1], . . . , fL[k + 1]]>.

TABLE III: Subroutine to update f with `1-norm regulariza-
tion.

s̃l[k] := š − B−l[k]f−l[k], the minimizer of the objective
in (25) at iteration k for fixed f−l can be written as fl[k+1] =
arg minfl (1/T )‖s̃l[k]−bl[k]fl‖22 +µf |fl| and can be solved
in closed form as fl[k+ 1] = Γ(s̃>l [k]bl[k];µfT/2)/‖bl[k]‖22,
where Γ is the soft-thresholding function defined as Γ(s;µ) :=
sign(s) max{0, |s| − µ}. The f -update for [S2] in the algo-
rithm of Table I is summarized in Table III. The complexity
of this subroutine is O(TL2).

3) Total variation regularization: Following [3], one can
adopt a total variation (TV) regularizer, which promotes
sharp edges by penalizing non-sparse spatial variations in
the estimate of f [28]. This is useful in presence of solid
obstacles with a relatively homogeneous absorption pattern
across its volume, e.g., concrete pillars or walls. Denote by
F ∈ RLx×Ly a matrix such that f = vec(F). Its (l, l′)-th
entry fl,l′ corresponds to the value of f at the (l, l′)-th point
of a bidimensional grid resulting from a spatial arrangement
of the points {x̃l}Ll=1 in Lx rows and Ly columns across A.
The so-called `1-based anisotropic TV is defined as

TV(F) : =

Lx∑

l=1

Ly−1∑

l′=1

|fl,l′+1 − fl,l′ |+
Ly∑

l′=1

Lx−1∑

l=1

|fl+1,l′ − fl,l′ |.

(26)

This regularizer adds the absolute differences of function
values at grid points located consecutively along a row or a
column. Thus, this regularizer promotes sparsity in the local
differences and therefore promotes constant regions in the
estimate of F . For ρ(f) = TV(F), expression (23) becomes

f [k + 1] = arg min
f

1

T
‖š−B[k + 1]f‖22 + µfTV(F).

(27)

Efficiently solving (27) is challenging since the TV regular-
izer is not differentiable. TV problems are generally solved
either through algorithms based on the iterative shrinkage-
thresholding algorithm (ISTA) [29], or through the alternating
direction method of multipliers (ADMM) [30], [31]. Unfortu-
nately, ISTA-based algorithms for TV problems are typically
complicated by proximal operations requiring inner loops with
additional iterative methods such as the gradient projection
(GP) algorithm. To circumvent this challenge, this works
pursues an ADMM approach.

To simplify notation, express (26) in terms of f as
TV(f) := ‖Dxf‖1 + ‖DyPf‖1, where P is a permutation
matrix such that Pf = vec(F>), whereas Dx := ILy

⊗
∆Lx

∈ RLy(Lx−1)×L and Dy := ILx
⊗∆Ly

∈ RLx(Ly−1)×L

Input: f [k],γx[k],γy [k],dx[k],dy [k],B[k + 1], š, µf , ν, Lx.
[S2–1] Update dual variables:

1: γx[k + 1] = γx[k] + ν(Dxf [k]− dx[k])

2: γy [k + 1] = γy [k] + ν(DyPf [k]− dy [k])

[S2–2] Update d:
3: dx[k + 1] = Γ(Dxf [k] + γx[k + 1]/ν;µf/ν)

4: dy [k + 1] = Γ(DyPf [k] + γy [k + 1]/ν;µf/ν)

[S2–3] Update f :
5:

f [k + 1] =(
2

T
B>[k + 1]B[k + 1] + νD>x Dx + νD̄>y D̄y

)−1

×
(

D>x (νdx[k + 1]− γx[k + 1])

+ D̄>y (νdy [k + 1]− γy [k + 1]) +
2

T
B>[k + 1]š

)
.

Return f [k + 1], γx[k + 1], γy [k + 1], dx[k + 1], dy [k + 1].

TABLE IV: Subroutine to update f with TV regularization.

act as discrete gradient operators where ∆l is an (l − 1) × l
matrix whose (i, j)-th entry is 1 if i = j; −1 if j = i+1; and 0
otherwise. The resulting ADMM algorithm, whose derivation
is omitted due to lack of space, is presented in Table IV. This
subroutine assumes that the algorithm in Table I initializes
γx[0], dx[0], γy[0], and dy[0]. One immediate possibility is to
set all their entries to zero. Parameter ν is a user-selected step
size. The complexity of this subroutine can easily be seen to
be O(TL2 +L3). Note that steps 1-4 decouple across entries,
which implies that they can be executed in parallel.

E. Approximation for a large number of measurements

The complexity of the algorithm in Table I is dominated by
the inversion of the L̃×L̃ matrix in (21), which requiresO(L̃3)
operations. Applications demanding high-resolution estimates
of f or w, and hence requiring large T , may therefore incur
prohibitive complexity since L̃ :=

∑T
t=1 Lt increases with T .

To bypass such a bottleneck, this section presents a technique
to approximate the solution to (P1) for large T at affordable
computational complexity.

Observe that the size of the aforementioned L̃× L̃ matrix is
determined by the number of terms in the sum of (16), which,
as dictated by the representer theorem, equals the number of
different vectors {φt,l}Lt,T

l=1,t=1 where w is evaluated in the
objective of (P1). Thus, the size of such a matrix would be
reduced if w in (P1) were only evaluated at a reduced set of
vectors {φ̄l}L̄l=1, where L̄ � L̃. To this end, approximate
w(φt,l) ≈ w(φ̄r(t,l)) in (P1), where r(t, l) is such that φ̄r(t,l)
is the best approximation of φt,l in {φ̄l}L̄l=1, to obtain

min
w∈H,f∈RL

1

T

T∑

t=1

(
št −

Lt∑

l=1

w(φ̄r(t,l))f(x̃it,l)

)2

+µw‖w‖2H + µfρ(f).(P1’)

In this case, applying the representer theorem shows that the
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minimizer of (P1’) can be expressed as

ŵ(φ) =

L̄∑

l=1

ᾱlκ(φ, φ̄l) (28)

for some {ᾱl}L̄l=1. The number of summands in (28) is
potentially much smaller than that in (16), which reduces
the complexity of [S1] and therefore that of the algorithm
in Table I.

Before presenting a solver for (P1’), investigating how
to approximate the vectors in {φt,l}Lt,T

l=1,t=1 with those of
{φ̄l}L̄l=1 is in order. To this end, suppose that {φ̄l}L̄l=1

are given. In this case, the best approximation of φt,l in
the Euclidean distance sense is φ̄r(t,l), where r(t, l) :=

arg minr∈{1,...,L̄} ‖φt,l − φ̄r‖2. Thus, for given {φ̄l}L̄l=1, one
can naturally quantify the quality of the approximation as the
sum of errors

∑T
t=1

∑Lt

l=1 ||φt,l− φ̄r(t,l)||22. Thus, if {φ̄l}L̄l=1

are not given, it would be prudent to choose the {φ̄l}L̄l=1

minimizing this total error. The resulting minimizers are the
L̄ centroids of {φt,l}Lt,T

l=1,t=1 obtained through K-means with
L̄ clusters [22, Sec. 9.1]. However, if running K-means on
{φt,l}Lt,T

l=1,t=1 is too costly for the available computational
resources, a fast alternative is to draw the vectors {φ̄l}L̄l=1 uni-
formly at random and without replacement from {φt,l}Lt,T

l=1,t=1.
The rest of this section describes how to adapt the al-

gorithm in Table I to obtain a solver for (P1’). The first
step is to recognize that all equations after (16) and all
algorithms in Secs. III-C and III-D depend on {φt,l}Lt,T

l=1,t=1

only through Kt,t′ in (17) and its concatenations Kt and K.
Therefore, the sought solver arises by replacing φt,l with
φ̄r(t,l), l = 1, . . . , Lt, t = 1, . . . , T , in the definitions of
these matrices. Specifically, the (l, l′)-th entry of Kt,t′ , which
according to (17) is given by κ(φt,l,φt′,l′), must be replaced
with κ(φ̄r(t,l), φ̄r(t′,l′)). In matrix form, this is equivalent to
replacing Kt,t′ with RtK̄R>t , where K̄ is an L̄× L̄ matrix
whose (l̄, l̄′) element is κ(φ̄l̄, φ̄l̄′) and Rt is an Lt× L̄ matrix
whose l-th row has a one at the r(t, l)-th column and zeros
elsewhere. Likewise, Kt must be replaced with RtK̄R>,
where R := [R>1 , . . . ,R

>
T ]> ∈ RL̃×L̄, and K with RK̄R>.

By applying these substitutions and letting ᾱ :=
[ᾱ1, . . . , ᾱL̄]> := R>α, problem (P2) becomes

min
ᾱ,f

1

T
‖š− (IT ⊗ f>)Ψ>RK̄ᾱ‖22(P2’)

+ µwᾱ
>K̄ᾱ+ µfρ(f).

Whereas (P2) involves L̃+L variables, (P2’) only has L̄+L, a
potentially much smaller number that confirms the complexity
reduction stemming from the approximation in this section.

The alternating minimization algorithm proposed in
Sec. III-D to solve (P2) readily carries over to solve (P2’).
Specifically, the update in [S1] can be obtained from (20) by
replacing α[k + 1] with ᾱ[k + 1], α with ᾱ, and A[k] with
Ā[k] := (IT ⊗ f>[k])Ψ>RK̄. In this way, (21) becomes

ᾱ[k + 1] =
[
Ā>[k]Ā[k] + µwT K̄

]−1
Ā>[k]š. (29)

Similarly, the update in [S2] can be obtained from (23) if
B[k] is replaced with B̄[k] :=

∑T
t=1(it ⊗ ᾱ>[k]K̄>R>t Ψt).

Input: {(xn(t),xn′(t), št)}Tt=1, µf , µw , κ, L̄.
1: For every t = 1, . . . , T , obtain
Lt in (12).
φt,l := φ(xn(t),xn′(t), x̃it,l ), l = 1, . . . , Lt.

2: {φ̄l}L̄l=1 = clustering algorithm({φt,l}t,l, L̄).

3: Obtain {r(t, l)}Lt,T
l=1,t=1 using (III-E).

4: Form K̄, {Rt}Tt=1, and R as described in Sec. III-E.

5: Initialize f [0].

6: For k = 0, 1, . . . until convergence
[S1] α update

Compute Ā[k] := (IT ⊗ f>[k])Ψ>RK̄.
Obtain ᾱ[k + 1] via (29).

[S2] f update
Compute B̄[k + 1] :=

∑T
t=1(it ⊗ ᾱ>[k + 1]K̄>R>t Ψt).

Obtain f [k + 1] via subroutines in Tables II, III, or IV.
7: Set ŵ(φ) =

∑L̄
l=1 ᾱl[k + 1]κ(φ, φ̄l).

Return function ŵ(x,x′, x̃) := ŵ(φ(x,x′, x̃)) and vector f [k].

TABLE V: Proposed blind radio tomography algorithm imple-
menting the complexity reduction approximation in Sec. III-E.
Note that the sparse matrices Ψ, {Ψt}Tt=1, {Rt}Tt=1, and R
need not be explicitly constructed.

Therefore, the subroutines in Tables II, III, and IV can be
invoked with B̄[k], rather than B[k], as input argument. After
the optimum ᾱ has been found through this modified iteration,
w can be recovered through (28).

Table V summarizes the modified solver. Through the
approximation in this section, (21) was replaced with (29). The
latter involves inverting an L̄×L̄ matrix, which is considerably
smaller than the L̃× L̃ matrix inverted in (21) and no longer
increases with T . Thus, the approximation in this section
reduced the computational complexity from O(L̃3) to O(L̄).
Moreover, since the size of B[k] equals that of B̄[k], the
complexity of [S2] remains the same as in Table I.

IV. RADIO TOMOGRAPHY FROM UNCALIBRATED
MEASUREMENTS

To simplify the presentation, Sec. III focused on the sce-
nario with known {gTX(xn)}Nn=1, {gRX(xn)}Nn=1, and γ0,
where one can obtain the equivalent set of measurements
{š(xn(t),x

′
n(t))}Tt=1 using (3). Unfortunately, these gains and

path loss exponent are difficult to determine accurately in
practice. This section extends the method in Sec. III to accom-
modate the case with unknown {gTX(xn)}Nn=1, {gRX(xn)}Nn=1,
and γ0, which will be referred to as the uncalibrated scenario.

Several approaches are available to handle uncalibrated
measurements, including [2], [3], and [16], where gain mea-
surements are replaced with their difference between two time
instants. The unknown gains and path loss cancel out since
they remain constant over time. Applying such an approach,
it becomes possible to reconstruct the difference between
the SLF at those time instants, which allows the detection
of changes in the propagation environment produced e.g. by
intruders, but does not allow for imaging static structures. A
static structure is imaged in [7] by gathering two measurement
sets. The first set is obtained before placing the structure and
is used for estimating {gTX(xn)}Nn=1, {gRX(xn)}Nn=1, and γ0.
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The second set is obtained after assembling the structure, and
is used to estimate f for a postulated w. Unfortunately, in
many cases it is not possible to remove a structure, e.g. a
building, to calibrate the system. To circumvent the limita-
tions of these approaches, this section proposes estimators
for {gTX(xn)}Nn=1, {gRX(xn)}Nn=1, and γ0, as well as f and
w, from the uncalibrated data {(xn(t),xn′(t), ǧt)}Tt=1, where
ǧt = g(xn(t),xn′(t)) + εt, t = 1, . . . , T ; see Sec. II.

Let G := {γ1, . . . , γC} denote the set of C different gains,
either for transmission or reception, so that gTX(xn) ∈ G
and gRX(xn) ∈ G ∀n. One can always form this set as
G = {gTX(x1), . . . , gTX(xN ), gRX(x1), . . . , gRX(xN )} and the
proposed algorithm will estimate these 2N gains. However,
if for example all sensors are of the same manufacturer and
model, one may assume that gTX(x1) = . . . = gTX(xN ) = γ1

and gRX(x1) = . . . = gRX(xN ) = γ2. In this case, G contains
just two elements, which implies that only two gains have to
be estimated and the quality of the estimates will therefore be
higher for a given T . Adding εt to both sides of (1) yields

ǧ = Ωγ1 − φ1γ0 − š (30)

where φ1 := 10 log10([φ1(xn(1),xn′(1)), . . . ,
φ1(xn(T ),xn′(T ))]

>), ǧ := [ǧ1, . . . , ǧT ]>, γ1 :=
[γ1, . . . , γC ]>, and Ω ∈ RT×C is a matrix whose t-th
row has ones at columns c1 and c2, where c1 and c2 are
such that gTX(xn(t)) = γc1 and gRX(xn′(t)) = γc2 . It follows
from (30) that š = Ωγ1 − φ1γ0 − ǧ = Ω̃γ − ǧ, where
Ω̃ := [−φ1,Ω] and γ = [γ0, γ1, . . . , γC ]>. Then, (P2’) can
be reformulated as

min
γ,ᾱ,f

1

T
‖ǧ − Ω̃γ + (IT ⊗ f>)Ψ>RK̄ᾱ‖22(P2”)

+ µwᾱ
>K̄ᾱ+ µfρ(f).

Minimizing (P2”) with respect to γ, one obtains

min
ᾱ,f

1

T
‖P⊥

Ω̃
(ǧ + (IT ⊗ f>)Ψ>RK̄ᾱ)‖22

+ µwᾱ
>K̄ᾱ+ µfρ(f) (31)

where P⊥
Ω̃

:= IT − Ω̃(Ω̃
>

Ω̃)−1Ω̃
>

. Comparing (P2’) with
(31), it follows that the algorithm in Table V can be em-
ployed to solve (31) if one replaces š with −P⊥

Ω̃
ǧ, A[k]

with ĀΩ̃[k] := P⊥
Ω̃

(IT ⊗ f>[k])Ψ>RK̄, and B[k] with
B̄Ω̃[k] := P⊥

Ω̃

∑T
t=1(it ⊗ ᾱ>[k]K̄>t R

>
t Ψt).

From (P2’) and (31), it follows that the price to be paid
for working with uncalibrated data is that the information
along the column span of Ω̃ is neglected. The dimension of
this column span therefore embodies the uncertainty in the
calibration. As expected, the larger this dimension, the larger
the T required to attain a target estimation performance. Since
this dimension increases with C, it is important to keep the
cardinality of G as low as possible. To this end, one can assign
multiple sensors to the same γc0 ∈ G. Although some error is
incurred if the gains of these sensors are not exactly γc0 , the
overall effect of reducing C may pay off.
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Fig. 1: (a) True SLF F; sensor locations are marked with red
crosses. (b-d) Estimated F̂ using the algorithm in Table V
(σ2

1 = 5 × 10−2, σ2
2 = 7 × 10−2, L̄ = 2, 500, T = 3, 000)

with (b) Tikhonov regularization (Q = I900, µf = 10−4,
µw = 2× 10−2); (c) `1-norm regularization (µf = 2× 10−4,
µw = 9 × 10−5); (d) TV regularization (µf = 4 × 10−5,
µw = 3× 10−4, ρ = 1× 10−3).

V. NUMERICAL TESTS

This section demonstrates the benefits of the proposed
algorithms through numerical tests with both synthetic and
real measurements.

A. Tests with synthetic measurements

This section illustrates the effectiveness of the proposed
estimators in exploiting prior information through the three
regularizers in Sec. III-D. The test setup comprises a square
area A = [0.5, 30.5]2 over which the grid {x̃l}900

l=1 :=
{1, . . . , 30}2 of L = 900 points is defined. All experiments
adopt the weight function in (10) with λ = 0.39 and β = 1.1,
whereas a certain f will be specified per experiment. A total
of N = 80 sensors were deployed uniformly at random
outside of objects over A at positions {xn}Nn=1. The t-th
measurement is obtained by the n(t)-th and n′(t)-th sensors,
where n(t) and n′(t) are drawn per t uniformly at random
without replacement from {1, . . . , N}. To focus on the impact
of regularization, the effects of calibration are not accounted
for in this section, where {gTX(xn)}Nn=1, {gRX(xn)}Nn=1, and
γ0 are assumed known, implying that the fusion center uses the
“shadowing” measurements {št}Tt=1. The latter are generated
as št := s(xn(t),xn′(t)) − εt, where s(xn(t),xn′(t)) is
obtained through (11) and {εt}Tt=1 are independent zero-mean
Gaussian random variables with variance σ2

ε = 10−2 unless
otherwise stated.
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Fig. 2: (a) True SLF F; sensor locations are marked with red
crosses. (b-d) Estimated F̂ using the algorithm in Table V
(σ2

1 = 9 × 10−2, σ2
2 = 11 × 10−2, L̄ = 2, 500, T = 3, 000)

with (b) Tikhonov regularization (Q = I900, µf = 4× 10−4,
µw = 9× 10−2); (c) `1-norm regularization (µf = 5× 10−5,
µw = 1 × 10−3); (d) TV regularization (µf = 1 × 10−4,
µw = 3.5× 10−4, ρ = 5× 10−4).

Algorithm in Table V was tested with a Gaussian kernel
κ(φ,φ′) = exp

(
−(1/2)(φ− φ′)>diag−1{σ2

1 , σ
2
2}(φ− φ′)

)

and for the three regularizers in Sec. III-D. To cope with the
large number of variables, the support confinement technique
in Sec. III-A is applied with B equal to the first Fresnel
zone. To simplify computations, the technique in Sec. III-E is
applied by drawing the vectors {φ̄l}L̄l=1 uniformly at random
and without replacement from {φt,l}Lt,T

l=1,t=1.
The rest of the section presents three simulations illustrating

the importance of appropriately capturing prior information
through the regularizers. Comparisons between the proposed
estimator and non-blind alternatives will be provided later.

The first experiment adopts the smooth function f(x) =
cf
∑3
j=1 exp(−‖x− x̄j‖22/σ2

f,j), where x̄1 = [15, 13]>, x̄2 =

[7, 20]>, x̄3 = [20, 20]>, σ2
f,1 = 13, σ2

f,2 = σ2
f,3 = 5, and

cf is a constant ensuring that maxl f(x̃l) = 1. Fig. 1a
depicts the values over the bidimensional grid of this function,
whereas Figs. 1b, 1c, and 1d depict its estimates for the three
regularizers. As expected, the SLF estimated through Tikhonov
regularization is the most satisfactory in this case since it
promotes smooth estimates, a property present in f .

In the second experiment, f was set to the sparse function
on Fig. 2a. The estimated SLFs for the three regularizers are
displayed in Figs. 2b, 2c, and 2d. In this case, the Tikhonov
regularizer does not yield a good estimate since f is not
smooth. In contrast, the `1-norm regularizer leads to the most
accurate estimate since it exploits the sparsity of f .

In the third experiment, f was set to the function with flat
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Fig. 3: (a) True SLF F; sensor locations are marked with red
crosses. (b-d) Estimated F̂ using the algorithm in Table V
(σ2

1 = 8 × 10−2, σ2
2 = 8.5 × 10−2, L̄ = 3, 000, T = 3, 000)

with (b) Tikhonov regularization (Q = I900, µf = 4× 10−4,
µw = 9× 10−2); (c) `1-norm regularization (µf = 1× 10−4,
µw = 9 × 10−5); (d) TV regularization (µf = 5 × 10−5,
µw = 6× 10−4, ρ = 5× 10−4)

regions and sharp edges on Fig. 3a. The estimates for the three
regularizers are depicted in Figs. 3b, 3c, and 3d. As expected,
the TV-regularizer leads to the best estimate since it promotes
the kind of structure present in f .

To illustrate the influence of the number of measurements,
the estimated SLF in the setup of Fig. 3d is depicted in Fig. 4
for different values of T . As expected, the quality improves for
larger T . A visually satisfying estimate is already obtained for
T = 1, 800, which corresponds to T/N = 22.5 measurements
per sensor on average. However, the needed T will be dictated
by the specific application and how quality is quantified there.

To corroborate the ability of the proposed algorithms for
learning w(φ1, φ2), Fig. 5 compares the true w(φ1, φ2) with
ŵ(φ1, φ2) obtained through the TV-regularized estimator in
the same setting as Fig. 3. Note that such functions are only
defined for φ2 ≥ φ1 since the triangle inequality imposes
that φ2(x,x′, x̃) ≥ φ1(x,x′) for all (x,x′, x̃). The fit is
satisfactory except in the vicinity of the points where w
is discontinuous or non-smooth. These singularities are a
consequence of the simplifications adopted in [7] to postulate
(10). However, it is reasonable to expect that a function w
accurately capturing the actual physics must be continuous and
smooth. Hence, these discontinuities are just model artifacts,
and the fitting error in those regions is thus not a limitation.

The next experiment investigates the robustness of the
proposed algorithms against measurement noise εt. The nor-
malized error ‖f̂ − f‖2/‖f‖2 averaged over sensor locations
and realizations of {εt}Tt=1 will be used to quantify estimation
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Fig. 4: Estimated F̂ using the algorithm in Table V (σ2
1 = 8×

10−2, σ2
2 = 8.5 × 10−2, L̄ = 3, 000), with TV regularization

(µf = 1 × 10−4, µw = 3.5 × 10−4, ρ = 5 × 10−4). (a)
T = 1, 400; (b) T = 1, 600; (c) T = 1, 800; (d) T = 2, 000.
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Fig. 5: True and estimated weight functions. Setting of Fig. 3d.

performance, where f̂ is the estimate of the true SLF f . Fig. 6
depicts this error as a function of the standard deviation of
εt in the setups of Figs. 1b, 2c, and 3d. Note that the latter
figures correspond to the right endpoint of the x-axis of Fig. 6.
Observe that the estimation performance is not meaningfully
sensitive to the standard deviation of the measurement noise
so long as the latter is sufficiently small. Moreover, Fig. 6
reveals that the noise power used in Figs. 1b, 2c, and 3d is
significantly high; yet the SLF estimates there are of a visually
good quality, which suggests that the proposed algorithms are
reasonably robust to measurement noise.

The rest of this section investigates the performance of the
proposed blind estimator in channel-gain cartography tasks.
To this end, the same setting as in Figs. 3 and 5 is adopted.
From the estimates f̂ and ŵ obtained through the algorithm in
Table V with TV regularization, an estimate of the shadowing
attenuation ŝ(x,x′) is obtained through (8) by replacing w
and f with their estimates. For comparison purposes, s(x,x′)
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Fig. 6: Normalized error vs. noise standard deviation σε
obtained by the proposed blind algorithm with the (circle)
Tikhonov regularization (setting of Fig. 1b); (triangle) `1-norm
regularization (setting of Fig. 2c); (diamond) TV regularization
(setting of Fig. 3d).
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Fig. 7: NMSE vs. number L̄ of centroids obtained by (circle)
the proposed blind algorithm with the TV regularizer (setting
of Fig. 3d with N = 200); and (square, triangle) existing
non-blind alternatives (µf = 5 × 10−5, ρ = 5 × 10−4). The
clairvoyant algorithm (square) adopts (10), which is the weight
function used to generate the measurements.

is also estimated from (8), where w(φ) is pre-specified and f
is estimated through non-blind radio tomography as [3]

min
f∈RL

1

T

T∑

t=1

(
št −

Lt∑

l=1

w(φt,l)f(x̃it,l)

)2

+ µfTV(f)

(P3)

which can be accomplished through the subroutine in Table IV.
Since {gTX(xn)}Nn=1, {gRX(xn)}Nn=1, and γ0 are known,

then knowing s(x,x′) amounts to knowing g(x,x′); cf. (1).
This suggests adopting a performance metric quantifying error
between s(x,x′) and ŝ(x,x′), such as the following normal-
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Fig. 8: Testbed configuration.

ized mean-square error (NMSE)

NMSE :=
E{
∫
A[s(x,x′)− ŝ(x,x′)]2dxdx′}
E{
∫
A s

2(x,x′)dxdx′}
where the expectation is over the set {xn}Nn=1 of sensor
locations and realizations of {εt}Tt=1. Simulations estimated
the expectations by averaging over 20 independent Monte
Carlo runs. The integrals are approximated by averaging the
integrand over 1,000 pairs (x,x′) chosen independently and
uniformly at random over A.

Fig. 7 compares the NMSE of the proposed blind algorithm
with that of its non-blind counterparts, which assume the
weight functions in (9) and (10). Since the measurements were
generated using (10), the latter acts as a benchmark. Every
point in the horizontal axis corresponds to a different value
of the parameter L̄, which in turn corresponds to a certain
computational complexity of the blind algorithm. It is observed
that the NMSE of the proposed algorithm approaches that of
the clairvoyant estimator for sufficiently large L̄. Moreover, as-
suming the wrong weight function in the non-blind algorithm
incurs a five-fold error, thus motivating blind methods.

B. Tests with real measurements

This section validates the proposed estimators using the real
data set in [7]. The test setup is depicted in Fig. 8, where
A = [0.5, 20.5]2 is a square with sides of 20 feet (ft), over
which a grid {x̃i}961

i=1 := {1, . . . , 31}2 of L = 961 points
is defined. A collection of 20 sensors measure the channel
attenuation at 2.425 GHz between pairs of sensor positions,
marked with the N = 80 crosses. Thus, although the number
of actual sensors is 20, the effective number of sensors is
N = 80. To estimate {gTX(xn)}Nn=1, {gRX(xn)}Nn=1, and γ0

using the approach in [7], a first set of 2, 400 measurements
was obtained before placing the artificial structure in Fig. 8.
Afterwards, the structure comprising one pillar and six walls of
different materials is assembled and T = 2, 380 measurements
{ǧt}Tt=1 are obtained.

The proposed algorithm is tested with the same kernel, sup-
port confinement, and approximation technique for large num-
ber of measurements as in Sec. V-A. Following [3] and [7],
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Fig. 9: Estimated F̂ via (a) the non-blind algorithm in [3],
[7] and (b-d) the Algorithm in Table V (L̄ = 2, 500) with (b)
Tikhonov regularization (σ2

1 = 1 × 10−1, σ2
2 = 1.5 × 10−1,

µf = 6 × 10−2, µw = 3 × 10−2); (c) `1-norm regularization
(σ2

1 = 8×10−2, σ2
2 = 3.5×10−1, µf = 6×10−2, µw = 1.3×

10−3); (d) TV regularization (σ2
1 = 1×10−1, σ2

2 = 3.8×10−1,
µf = 4.3, µw = 1.3 × 10−3, ρ = 1 × 10−3). The first set of
measurements was used to estimate path loss and sensor gains.

the (l, l′)-th entry of Q−1 in the Tikhonov regularizer was
set to (σ2

s/δs) exp(−‖x̃l − x̃l′‖2/δs), which is the covariance
of f(x̃l) and f(x̃l′) predicted by the exponential decay model
in [14], for σ2

s = 4.76 and δs = 1. An initial ᾱ[0] was obtained
through kernel ridge regression [20] with the Gausian kernel
by fitting (9), and f [0] was subsequently obtained from ᾱ[0]
through the subroutine associated with the selected ρ(f).

The first simulation mimics the setup in [7]. The first set of
measurements, i.e., the one obtained without the structure, is
used to estimate {gTX(xn)}Nn=1, {gRX(xn)}Nn=1, and γ0 using
the approach in [7]. The calibrated measurements {št}Tt=1 are
obtained from {ǧt}Tt=1 by substituting these estimates into (3).

Fig. 9a displays the non-blind estimate of the SLF in [7],
which essentially solves (P3) with TV(f) replaced with
f>Qf , where Q is as described earlier. Figs. 9b, 9c, and 9d
depict the blind SLF estimates with Tikhonov, `1-norm, and
TV regularization, respectively. It is observed that both
non-blind and the blind algorithms with Tikhonov and TV
regularizers successfully recover the form of the artificial
structure in the propagation medium, yet some artifacts are
introduced possibly due to the presence of the sensors and
their tripods. The proposed algorithms attain a reconstruction
performance similar to the non-blind algorithm without any
need for heuristic assumptions on w. Admittedly, the recon-
structed SLF of the blind algorithms is not visually much
better than that for the non-blind algorithm due to the low
number of measurements. The reason is that the total number
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Fig. 10: Estimated weight functions with (red) Tikhonov,
(green) `1-norm, and (blue) TV regularization.

of unknowns is 2, 982 for the former and just 961 for the latter.
On the contrary, for T sufficiently large, it is expected that the
blind algorithm achieves a better estimation performance.

In the same setup, Fig. 10 shows the estimate of w obtained
with the proposed algorithm. The estimated curves are satis-
factory since they are smooth and approximately decreasing
within their support. Unfortunately, having limited the support
of ŵ to the first Fresnel ellipsoid prevents us from estimating
the values of w off this ellipsoid. However, this limitation
was imposed by the low number of measurements relative
to the number of unknowns; one would be able to obtain
more satisfactory estimates of w on larger supports if more
measurements were available.

The second simulation assesses the performance of the
proposed algorithm in the uncalibrated scenario; see Sec. II.
In this scenario, the measurements in absence of the artificial
structure in Fig. 8 are not used. In contrast, the proposed algo-
rithm adopts the technique in Sec. IV with gTX(x1) = . . . =
gTX(xN ) = γ1 and gRX(x1) = . . . = gRX(xN ) = γ2. Fig. 11
shows the proposed SLF estimates with the three regularizers.
The estimate with TV regularization is visually acceptable,
whereas for the Tikhonov regularizer, the result is similar to
Figs. 9a and 9b, where twice more measurements were used.
Therefore, the technique in Sec. IV suppresses the need for
separate calibration stages in which the structure is not present
while minimally sacrificing estimation performance.

The last simulation assesses the performance of the pro-
posed algorithm and competing alternatives for channel-gain
cartography. To compare with the algorithm in [7], the same
set of shadowing measurements as in the first simulation of
this section was used. Data {št}Tt=1 was split into a training
set with 80% of the measurements and a test set {št}t∈E with
the remaining 20%, where the indices in the set E are drawn
uniformly at random without replacement from {1, . . . , T}.
Per Monte Carlo run, the proposed algorithm is executed
and an estimate ŝ(xn(t),xn′(t)) is obtained per t ∈ E after
substituting ŵ and f̂ into (13). Afterwards, ĝ(xn(t),xn′(t))
is obtained by substituting ŝ(xn(t),xn′(t)) as well as the
estimates for {gTX(xn)}Nn=1, {gRX(xn)}Nn=1, and γ0 from the

calibration stage into (1). The performance metric is

NMSE :=
E{∑t∈E(ǧt − ĝ(xn(t),xn′(t)))

2}
E{∑t∈E ǧ

2
t}

where the expectation is taken over realizations of E .
Fig. 12 depicts the NMSE of the proposed blind algorithm

with Tikhonov regularization along with that of the non-blind
algorithm in [7] with w as in (6) and (7). The advantage
of the proposed algorithm over its non-blind counterparts is
manifest for sufficiently large L̄. As before, greater differences
are expected for larger measurement sets.

VI. CONCLUDING SUMMARY

This paper developed blind radio tomographic algorithms
that simultaneously estimate the spatial loss field and weight
functions of the radio tomographic model, which are of
interest in imaging and channel-gain cartography applications.
Although the problem is challenging, the usage of kernel-based
learning with various regularizers accounting for prior knowl-
edge together with several complexity reduction techniques
resulted in an algorithm that needs no heuristic assumption
on the weight function, can image static structures, and does
not require separate calibration stages. The effectiveness of
the novel algorithm was corroborated through synthetic- and
real-data experiments. Future research will include online and
distributed approaches to blind radio tomography.
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