
1

Novel Distance Estimation Methods Using
“Stochastic Learning on the Line” Strategies

Jessica Havelock, B. John Oommen, IEEE Fellow, and Ole-Christoffer Granmo

Abstract—In this paper, we consider the problem of Distance
Estimation (DE) when the inputs are the x and y coordinates
(or equivalently, the latitudinal and longitudinal positi ons) of
the points under consideration. The aim of the problem is to
yield an accurate value for the real (road) distance betweenthe
points specified by the latter coordinates1. This problem has,
typically, been tackled by utilizing parametric functions called
“Distance Estimation Functions” (DEFs). The parameters are
learned from the training data (i.e., the true road distances)
between asubset of the points under consideration. We propose
to use Learning Automata (LA)-based strategies to solve the
problem. In particular, we resort to the Adaptive Tertiary S earch
(ATS) strategy, proposed by Oommenet al., to affect the learning.
By utilizing the information provided in the coordinates of the
nodes and the true distances from thissubset, we propose a
scheme to estimate the inter-nodal distances. In this regard, we
use the ATS strategy to calculate the best parameters for the
DEF. Traditionally, the parameters of the DEF are determined
by minimizing an appropriate “Goodness-of-Fit” (GoF) function.
As opposed to this, the ATS uses the current estimate of the
distances, the feedback from the Environment, and the set of
known distances, to determine the unknown parameters of the
DEF. While the goodness-of-fit functions can be used to show
that the results are competitive, our research shows that they
are rather not necessary to compute the parameters themselves.
The results that we have obtained using artificial and real-life
datasets demonstrate the power of the scheme, and also validate
our hypothesis that we can completely move away from the GoF-
based paradigm that has been used for four decades.

Based on the latter results, the paper also suggests a completely
novel method by which we can extend the traditionally-studied
DE problem where the road distances were, typically, estimated
using only thex and y coordinates (or equivalently, the latitudinal
and longitudinal positions). In such a generalized model, we
hypothesize that one can also provide to the system the additional
z coordinate, that represents the height or elevation of the subset
of nodes and of the cities whose inter-city distance is to be
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1This is a typical problem encountered in a Geographic Information System
(GIS), or in a GPS. However, unlike the traditional systems whereall the inter-
city distances are assumed to be stored, in our setting, the distance between
any pair of citiesis assumed to becomputedby merely having access to a
small subsetof known inter-city distances.

estimated. The results for this generalized model are currently
being compiled into a companion paper.
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I. I NTRODUCTION

There are many well-studied problems whose solutions de-
pend upon the distances between points in the Cartesian plain
or in a geographic region. The traveling salesman problem, and
vehicle scheduling problems are common examples of real-
life scenarios that rely on distance information. The inputto
these Distance Estimation (DE) problems are, typically, the
start and end locations in the form ofx and y co-ordinates
of the locations in the Cartesian plain, or the latitude and
longitude in the geographic region. To determine the direct
distance (i.e. as the bird flies), that must be traveled between
a pair of known locations, is trivial. However, determiningthe
actual “road distances” (the physical distance to be traveled
on the “roads” built in the community) for an area, is more
challenging. These road distances (also synonymously known
as traveling distances, or “true” distances), can depend onthe
network, the terrain, the geographical impediments like rivers
or canyons, and of course, the direct distance between the
respective points – which serves as a lower bound for the
“true” distances. The problem of DE involves finding the best
estimator for the true distances. This problem has been studied
for over three decades, and its solutions have been put to use
in many practical applications, such as in developing vehicle
scheduling software2, vehicle routing, and in the partitioning
of districts for firefighters [8, 9, 26]. Indeed, as alluded to
earlier, this is a central issue in designing GISs and GPSs.

To initiate discussions, we first informally formulate the DE
problem. Consider a table of distances in which the points
or cities are listed in the column and row headings. The
table is, typically, populated with the corresponding inter-point
distances. However, consider the scenario, which more truly
resembles the real world, where only asmall subset of these
distances is actually known to any given precision. The goalof
DE is to approximate the missing distances. DE is especially
useful when the distances are hard to measure, because the
problem space has limited physical access to computing the
exact true distances, or when the measurements are difficult
to obtain. The ability of DE to produce useful estimates in
these difficult situations makes it beneficial for both research

2Two common vehicle scheduling software packages, ROADNET and
TRUCKSTOPS 2, use DE methods when determining the distancesbetween
the suppliers and the customers [8].
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and practical purposes. Further, it is unarguably infeasible to
store the actual distances when the number of villages/cities,
specified by the size of the table, is in the thousands or tens
of thousands.

From an abstract perspective, the fact that DE is used for
approximating distances in road networks, does not mean that
it is limited in its applications. The most obvious application
is in modelling travel times. Thus, DE has been used by
companies to schedule deliveries [8]. A more “academic”
problem, seen in the use of DE in modeling travel times,
involves location and transportation problems (the traveling
salesman problem) in geographical areas where the distances
are almost entirelyunknown. DE has also been useful in
resolving location analysis and optimization problems. Thus, it
has found direct applications in urban planning. For example,
in Turkey, DE has been used to determine the optimal locations
for fire stations [9]. Otherwise, road distance estimation has
been applied in road network simulations to take into account
network impedance, for tasks such as OEM picking-up routing
[22].

In general, whenever a problem requires the knowledge of
all the distances between all possible points in the domain,the
invocation of DE can be highly advantageous. DE can also
be used in in sailing and under-water navigation, where the
distance to be traversed has to also consider rocks and islands,
and possibly, ocean currents. Indeed, while in the simplest
setting these estimated distances are geographical distances,
in a more general case, for example, dealing with chemical
structures, these estimated distances may be far more abstract
“navigational” distances required to change the structurefrom
one configuration to another3.

A. Legacy Methods: Distance Estimation Functions

Any system that consists of inter-connected points, like a
road network, can utilize DE to model and estimate the inter-
point distances. To achieve this, historically, one typically
resorts to Distance EstimatingFunctions(DEFs). These func-
tions can take on any form, but the ideal ones are those that are
simultaneously good estimators, and that are also characterized
by low computational requirements. Love and Morris first in-
troduced the concept of using simple parametric functions that
employ thex and y co-ordinates for approximating distances
[16]. The first DEFs were based on common norms, most
of which are still used. All these DEFs involved parameters
whose values are obtained by a “training” phase in order for
them to best fit the data of the system being characterized.
Consequently, some distances in the system must be knowna
priori , and they are used to “learn” the parameters associated
with the DEFs. The accuracy of the estimations depends on
the DEF, the system and the available data.

For over four decades, DEFs have been applied in DE and
the methods utilized have been extensively tested and modified
[4, 5, 16, 17, 18, 35, 36]. Over the years, new DEFs have been
proposed, based on other distance measures [7, 30]. These
new DEFs have been derived as a consequence of applying

3In the interest of being focused, we shall concentrate here on the traditional
problem of using DE for estimating “road” distances.

more complex principles. For example, some researchers have
proposed using aweightedlinear combination of two more
primitive DEFs [7, 30]. Another novel idea for a DEF is to use
a nonparametricmethod [1]. DEFs have further been used in
business models, including in the modeling of service systems,
and in operational and strategic decision processes [6].

A new strategy by which DE has been improved, has been
by modifying and adapting the basic method involved in the
DE itself. Brimberget al. proposed a way of improving DE
by rotating the co-ordinate axes [8]. This was done so as to
minimize the rotational bias of a co-ordinate system, and to
thus improve the accuracy of the estimate. Others have tried
a multi-regional approach to DE. The latter approaches divide
the original region into smaller sub-regions, and each sub-
region has its own trained parameters. One example of such a
multi-regional approach to DE was presented by Fildes and
Westwood [10]. The scheme estimated the distances based
on the sub-regions that lay between the two points. The sub-
regions themselves determined the weighting of the parameters
used in the DEF, which, in turn, was based on the propor-
tion of the Euclidian distance that lay in each sub-region.
Another multi-regional approach used Vector Quantization
(VQ) [3, 26]. This strategy utilized the points learned by
the VQ to represent closed groups of points. The parameters
that were used for inter-regional and intra-regional distance
estimation themselves were obtained by training using the VQ
points. Besides invoking methods that have involved DEFs,
Alpaydinet al.suggested applying neural networks and a non-
parametric method to tackle DE [1]. They compared these two
methods with the voting and stacking of typical DEF-based
DE methods. The overall leader was the one which used the
stacking of simple DEFs.

B. Our Proposed Approach

In this paper, we will contribute to the field of DE by
applying a new method for determining the DEF. This method
is called the Adaptive Tertiary Search (ATS) which was
derived by Oommen and Raghunath [28]. To date, it has been
applied to two problems, namely, the continuous Stochastic
Point Location problem [28], and the problem of parameter
learning from a stochastic teacher or a stochastic compulsive
liar [29]. Both of these problems work within a stochastic
domain analogous to that of DE. The ability of the ATS
to perform ε-optimally in these stochastic domains renders
it an ideal search strategy which can be used in DE. The
ATS is a search method that uses Learning Automata (LA) to
perform a stochastic search “on a line” to determine or locate
the parameter sought for. As explained presently, the most
“daring” step that we have taken is that we have completely
moved away from invoking Goodness-of-Fit (GoF) criteria
for the DEFs, thus proposing a marked departure from the
methods that have been used for more than four decades.

LA [21] are autonomous or self-operating machines that
have the ability to learn in stochastic environments. They are
typically used to determine information and make decisionsin
environments that have incomplete knowledge [38]. They are
able to learn in these environments because the search for the
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information is actually preformed in a probability space and
not the action space itself [34]. The probability space alluded
to is traversed intelligently through the learning process.
Typically, the process of learning for human beings requires
some form of inference from experience, and a mechanism of
decision making. In the case of LA, the experience, or input,
usually comes in the form of a sequence of responses from
the environment that the LA is interacting with and which it
can observe. For an LA, the mechanism of decision making
depends on its structure and the environment it is in.

Put in a nutshell, the strategy we propose for using the ATS
to solve DE is as follows: At any given time instant, the system
has certain values for the parameters which characterize the
DEF in question. With this as a premise, as per the LA’s
inference philosophy, the ATS searches a bounded interval
by comparing the current estimate to the feedback from the
environment, where the latter is presented in terms of pairs
of points and their corresponding known distances. After
comparing the current estimate with the latter, a new smaller
search interval for the parameters of the DEF is inferred. The
search interval is continually decreased until it reaches asmall-
enough size.

It is crucial to emphasize the following: Apart from the
convergence phenomena, the rationale and goal for using
the ATS is to improve the accuracy of the DEFs bytotally
removing any dependencies on the GoF functions.

C. Outline of the Paper

This paper starts with an overview of topics related to
the field of DE. The objective of this section is to briefly
present the reader with relevant background information and
with a collection of existing research, in a well-organized
fashion. Section III deals with the ATS and Section IV explains
the adaptations required in order for the ATS to operate
in a DE domain. Thereafter, in Section IV-D, we explain
the analysis of the two-dimensional ATS, and explains its
use in DE. The adapted ATS and the environments that are
defined are then tested in the subsequent section, Section V.
This includes the testing procedure, the test results and a
discussion for the results obtained for the two-dimensional
ATS. In two dimensions, the intention is to demonstrate that
the ATS operatesε-optimally in the domain of DE, and that
it produces competitive results. To perform the tests, we shall
utilize three types of data sets, namely, noiseless, noisy and
those from the real world. The first set demonstrates that the
behavior of the ATS in theideal DE environment isflawless.
The second is used to show that the ATS can function in a
noisy DE environment. The experiments for the real world data
measure how the ATS can function in a practical application.
In order to demonstrate that the ATS produces competitive
parameters for the DEF, for the purpose of comparison, we
have invoked a hill-climbing search. This is quite realistic,
because in the literature, the parameters were either foundby
a linear regression or a hill-climbing search [7, 8, 36]. As a
result, the parameters found by means of such a hill-climbing
search proved, unequivocally, that it is a natural method of
showing that the ATS’s parameters are competitive. Section
VI concludes the paper.

D. Contributions of the Paper

The following list highlights the three primary contributions
of this paper:

1) The first contribution of this paper is the extension of the
ATS so as to involve determining multiple parameters
simultaneously, and utilizing this strategy in DE.

2) The second contribution involves the improvements to
the field of DE itself by virtue of the use of the ATS.
We argue that the application of the ATS eliminates
the dependence on Goodness-Of-Fit functions, and show
that it improves the overall performance by reducing
errors caused by overtraining.

3) The third contribution is the “proof of the pudding” of
these results in DE, where we submitted experimental
results for artificial noiseless data, artificial noisy data,
and for real-life data. The results that we have obtained
are, truly, conclusive.

4) Our final contribution lies in the fact that we have
suggested how we can use the same concepts for 3D
DE. The details of these results, where we show that
the 3D DE problem for estimating distances over certain
types of “hilly” terrains is solvable, are currently being
compiled for a separate publication.

II. D ISTANCE ESTIMATION : CORE CONCEPTS

A. Formalizing Distance Estimation

The distance4 between two points or objects is a measure of
how much they differ. This difference may be with respect to
their geographical locations or in their physical structures. For
example, in Figure 1, the blue path represents the true path (the
“road” path) and the red line is the direct path (as the bird flies)
between Carleton University and Ottawa University in Ottawa,
Canada, and the goal of the DE problem is to estimate the
length of the blue path as accurately as possible. For this study,
we will consider the “direct” distance between the two objects
to be the shortest path between their point representations. The
length of the shortest path depends not only on the location
of the points but also on the space (or area) in which they lie.
The shortest path must be passable, implying that one should
be able to reach all the intermediate points when moving from
one extreme point to the other.

As opposed to this, there are many ways of determining
the true distance between points. The simplest strategy is to
maintain a table or database of the points and their known
distances. Such databases often contain all the distances be-
tween large intersections for a single city, or between many
(or all) the cities in a large region. These databases are
difficult to use if one is to employ multiple databases so
as to determine the overall true distance. Combining these
databases can also result in errors due to the changes caused
by different coordinates systems or by the points from which
the distances are measured [36]. For example, in 1982, the
Province of Ontario published all the distances between large

4The entire section describing DE, DEFs and Goodness-of-Fitfunctions is
included in the interest of completeness. It can be abridgedor even deleted
if recommended by the Referees.
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Fig. 1: The blue path represents the true path (the “road” path) and
the red line is the direct path (as the bird flies) between Carleton
University and Ottawa University in Ottawa, Canada.

intersections throughout the province [36], which was com-
plied in a document referred to as the “Distance Table”. While
the collection of this data is impressive, it is still difficult to
calculate the distance between two locations whose pertinent
data is not included. Rather, to obtain this, one must find allthe
relevant distances between the intermediate intersections, and
thereafter,computethe overall true distances. This, in itself,
is not a problem when finding asingle true distance, but it is
a challenge when one needs to determine a set of distances in
the region.

For mathematical rigor, distance functions are traditionally
used to determine the real distances between points. These
distance functions are specific to the terrain or space under
consideration. For example, the distance between points onan
axis is the absolute value of the difference between their coor-
dinates. The distance between points on a “smooth” Cartesian
plain is the Euclidian distance. Both of these distance functions
report the true inter-point distance in their respective spaces.
However, determining the true distances in a space that is non-
uniform and unknown is much more difficult. To determine the
true distance between points in a network or on a non-uniform
or hilly terrain, one requires additional information so asto
obtain the “correct” distance function. In fact, the problem of
finding the distance function that yields the true distance for
all points in these more complex spaces may actually be both
infeasible and unreasonable. Rather, one may have to resort
to the approximate prediction of the true distance due to the
complex computations involved inexactlydetermining them,
or due to the fact that the true distance cannot be computed
by merely usingthe information that is provided.

The prediction or DE, is typically done by determining or
discovering the appropriate DEF. A DEF is a mapping from
Rd×Rd to R, and returns the estimate of the true distance.

The inputs to the DEF are the locations of the two points,
and it produces an estimate of the distance between them by
incorporating the set of parameters into the DEF. One observes
that the set of parameters alluded to must belearnt in order
for the DEF to best represent the space.

Definition 1: A Distance Estimation Function (DEF) is
defined as a functionπ(P1,P2|Λ) : Rd×Rd −→R, whereP1 =
〈x1,x2, ...,xd〉 andP2 = 〈y1,y2, ...,yd〉 are points inRd, andΛ
is a set of parameters whose values characterizeπ, and which
must be learnt using a set of training points with known true
inter-point distances.

The set of parameters,Λ, is typically learnt by minimizing
a goodness-of-fit function, which, in turn, is used to measure
how well a network or region is represented by the DEF.

B. Goodness-of-Fit

Central to the legacy methods of DE is the concept of
Goodness-of-Fit (GoF) functions. GoF functions are measures
of how good a DEF estimates the true (but unknown) distances.
Several GoF functions have been consistently utilized in the
literature pertaining to the field of DE. The simplest and most
commonly-used one is the Absolute-value Difference (AD)
given by Eq. (1) [1, 3, 4, 8, 10, 16, 17, 18, 26, 30, 35], which
was originally proposed by Love and Morris. It is given by
the sum of the absolute values of the differences between the
estimated distances and the actual distances, and is given as:

AD=
n−1

∑
i=1

n

∑
j=i+1

|A(Pi ,Pj)−π(Pi,Pj |Λ)|, (1)

whereA(Pi,Pj) is the actual distance between the pointsPi and
Pj . Observe that this GoF measure, used in[1, 3, 4, 8, 10, 16,
17, 18, 26, 30, 35], leads us to a natural way of minimizing the
overall error of the DEF, although larger distances are given
more weight than smaller ones [3, 8, 16, 26].

Although the AD is both a common and conveniently-
simple GoF function, it is not useful when comparing regions
with varying topographies or geographies. This is due to the
fact that it favors larger distances, and that it does not take into
account therelativevalues of these distances. To compare dif-
ferent regions and to also incorporate such relative quantities,
the Relative Absolute-value Difference (RAD) function given
in Eq. (2) is often recommended [4]:

RAD=
∑n−1

i=1 ∑n
j=i+1 |A(Pi,Pj)−π(Pi,Pj |Λ)|

∑n−1
i=1 ∑n

j=i+1A(Pi,Pj)
. (2)

The next and third most-common GoF function is the
Normalized Absolute-value Difference (NAD), given by Eq.
(3) [8, 19, 35]. Although like the AD, the NAD uses the sum
of the absolute values of the differences between the distances,
unlike the former, it however, normalizes these differences
with respect to their respective actual quantities. This allows
the errors for both large and small distances to be weighted
equally [8, 19]. Thus, while the AD measures the overall error,
the NAD quantifies the weighted percentage error for each
distance as follows:
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NAD=
n−1

∑
i=1

n

∑
j=i+1

|A(Pi ,Pj)−π(Pi,Pj |Λ)|
A(Pi ,Pj)

. (3)

In spite of the advantage of the above indices, the most
commonly-used GoF function is the sum of Square Deviation
(SD) given by Eq. (4) [1, 3, 4, 8, 10, 16, 17, 18, 26, 35].

SD=
n−1

∑
i=1

n

∑
j=i+1

(

A(Pi ,Pj)−π(Pi,Pj |Λ)
√

A(Pi ,Pj))

)2

. (4)

This index was also proposed by Love and Morris, and
has useful properties such as its statistical significance and
continuity. The SD is both continuous and differentiable with
respect to the parameter,Λ. This allows the user to employ
a gradient decent search scheme to determine the “best”
parameterΛ [1, 3, 26, 35]. Although the SD favors larger
distances, it does not possess as large a bias as the AD does
[1, 8, 16].

C. Distance Estimation Functions (DEFs)

In this section we shall present a brief overview of some
of the common DEFs and their properties, and proceed to
compare their relative performances.

1) Lp-based DEFs:The properties of norms are ideal for
a DEF because they are capable of yielding measurable and
“usable” distances. Consequently, the simplest way of creating
a DEF, that also possesses the properties of norms or metrics,
is to use a well-understood and established norm/metric. The
most common types of DEFs are those based on the family5

of Lp norms, traditionally used for computing distances:

Lp(X) =

(

n

∑
i=1

(|xi |
p

)1/p

. (5)

The variousLp norms have been used as stepping stones
to design DEFs, and some of the most common DEFs have,
indeed, been derived from theLp norms as shown6 in Table I
(Eq. (6) to (11)), also initially suggested by Love and Morris
[16, 17]. The input to these functions are the co-ordinates
of the input vectors,X1 and X2. In practice, these DEFs are
first trained on the subset of the co-ordinates of the cities
and their known inter-point distances for the specific region
under consideration. This training is done so as to obtain the
“best” parameters for the DEF given the training data. Once
the parameters have been determined, the DEF can then be
used for estimating distances in the same region.

(6 ) (7 ) (8 ) (9 ) (1 0 ) (1 1 )

Each of these DEFs has been extensively tested on different
data sets [1, 4, 8, 16, 17, 18, 19, 26, 31, 35, 37]. In particular,
Eq. (6) performed well7 over a small area, usually described

5The cases forp= 1, p= 2 and p= ∞ represent the Taxi-Cab, Euclidean
and Largest Absolute Value norms respectively. TheLp norms for other values
of p (p∈ R) also have significance in DE.

6We apologize for the placement of the tables in the manuscript. It was not
dictated by us, but by the IEEE LaTex style files.

7In performing comparisons, there are essentially two main GoF criteria:
the AD given by Eq. (1), and the SD specified by Eq. (4).

by the boundaries of a given city, but did not perform well over
larger areas [16]. Eq. (7) produced usable results for both a
network of roads from within a city and which extended to
other cities [16]. The Weighted Euclidean DEF in Eq. (7) out-
preformed theLp DEF in Eq. (6); however, both of these were
out-performed by the WeightedLp DEF given by Eq. (8) [16].

The DEF described by Eq. (8) has an advantage over the
previoustwo DEFs because it contains two learnt parameters.
As a result, this DEF is more flexible and better able to
adjust to the environment. The percentage improvement for
Eq. (8) over Eq. (7) has a large variation depending on the
geographical area being studied. In a study by Berens, the
percentage improvement, based on the GoF criteria, ranged
from 0% to 11.27% [1, 5]. Berens and Korling felt that the
additional calculation of multiple parameters could not bejus-
tified. The difference in improvement must be viewed against
the backdrop of the considerations due to the environment.
Berens and Korling reported an AD improvement of 0.12%
and a SD improvement of 0.03% in Germany with 117 cities
and 6786 distances [18]. Love and Morris reported AD and SD
improvements of 2.4% and 8.3% respectively in Germany with
15 cities and 100 distances [18]. In the United States, Love
and Morris reported AD and SD improvements of 10.55%
and 34.63% respectively when using Eq. (8) over Eq. (7).
Some of the reasons that have attributed to the large difference
in improvement are the size of the network tested, the road
density, and the differences in the road structures. Berens
and Korling stated that “The Federal Republic of Germany
is a comparatively small country, with a well developed road
network. Thus, there is hardly any room for improvement in
the accuracy by abandoning d1” (where d1 is Eq. (8)). While
improvements are small for a well-developed area such as the
Federal Republic of Germany, the WeightedLp DEF shows
an improvement over the Weighted Euclidean DEF, especially
in more rural or less-developed road networks.

Although the WeightedLp DEF yields good results, it is out-
performed by thekLps DEF in Eq. (9) [17] characterized by
three parameters. The DEF has been shown to be statistically
stronger than the WeightedLp DEF. Of all the DEFs listed in
Table I, Eq. (8) performed second-best in all types of regions.
It performed well in both rural and urban networks, but was
out-performed by Eq. (9) [16]. Eq. (9) was the best estimator
in urban settings [17]. However, the best DEF for urban areas
was the Elliptical DEF described in Eq. (11), which performed
well in networks that were not highly developed but did not
perform well otherwise [17].

In 2000, Uster and Love proposed using a Generalized
WeightedLp DEF, given by Eq. (10). They reported that the
generalized WeightedLp norm yields significant improvements
for areas with directional “non-linearity”. However, in areas
with little directional “non-linearity”, (i.e., when thek’s are
equal), the Generalized WeightedLp has no significant im-
provement over the WeightedLp.

Overall, considering all the DEFs shown in Table I, Eq. (9)
is the best-performing DEF and is the best estimator for the
generic situation [16, 17].

The general conclusion offered in the literature is that the
specific DEF should be chosen based on the properties of the
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Norms Derived fromLp norms
DEF Expression Name of DEF Parameters Equation

F1
(

∑d
i=1 |x1i −x2i |

p
)1/p

Lp p (6)

F2 k
(

∑d
i=1 |x1i −x2i |

2
)1/2

Weighted Euclidean k (7)

F3 k
(

∑d
i=1 |x1i −x2i |

p
)1/p

WeightedLp k and p (8)

F4 k
(

∑d
i=1 |x1i −x2i |

p
)1/s

kLps k, p, ands (9)

F5
(

∑d
i=1(ki ∗ |x1i −x2i |

p
)1/p

Generalized WeightedLp {ki} and p (10)

F6 [(X1−X2)
′M(X1−X2)]

1/2 Elliptical DEF M =

[

k p/2
p/2 s

]

(11)

TABLE I: List of DEFs related to variousLp norms and their corresponding parameters.

geographical area in question. Of course, as explained later, a
multi-regional approach for areas with different geographical
features, is always superior8.

We now proceed with the specific contribution of this paper,
namely, the use of the the Adaptive Tertiary Search (ATS) in
DE.

III. T HE ADAPTIVE TERTIARY SEARCH

The solution that we propose for DE is based on a scheme
relevant to the Stochastic Point Location (SPL) problem.
To formulate the SPL, we assume that there is a Learning
Mechanism (LM) whose task is to determine the optimal value
of some variable (or parameter),λ. We assume that there is
an optimal choice forλ - an unknown value, sayλ∗ ∈ [0,1].
In the interest of completeness, we list the available solutions
to the SPL:

1) The first-reported SPL solution proposed the problem
itself, and then pioneered a solution operating in a
discretized space [24];

2) The Continuous Point Location with Adaptive Tertiary
Search (ATS) solution was a solution in which three LA
worked in parallel to resolve it [28];

3) The extension of the latter, namely the Continuous Point
Location with Adaptived-ARY Search (CPL-AdS), used
‘d’ LA in parallel [28], and these could operate in truth-
telling and deceptive Environments;

4) The General CPL-AdS Methodology extended the CPL-
AdS to possess all the properties of the latter, but could
also operate in non-stationary Environments [15];

5) The Hierarchical Stochastic Search on the Line (HSSL)
proposed that the LM moved to distant points in the
interval (modelled hierarchically), and specified by a tree
[40];

6) The Symmetrical Hierarchical Stochastic Search on the
Line (SHSSL) symmetrically enhanced the HSSL to
work in deceptive Environments [42];

7) The Adaptive Step Search (ASS) used historical in-
formation within the last three steps to determine the
current step size [33].

8) The Thompson Sampling (TS)-guided Stochastic Point
Location (TS-SPL) scheme introduced the first Bayesian
representation of the SPL, that also overviewed the
complete search space at every time instant [11, 12].
Based on the so-called Thompson Sampling [14], both

8The literature also reports various neural and Vector Quantization schemes
suitable for DE. Since we are using ATS and LA-based schemes for learning
the parameters of DEFs, these are not surveyed here.

the location ofλ∗ and the probability of receiving correct
feedback were simultaneously learned, allowing TS-
SPL to operate in both deceptive and non-stationary
Environments.

In this paper, we shall use the ATS [28] to solve the DE
problem, although any of the other-reported solutions could
have been used just as well. The advantage of the ATS is
that it is not a hill climbing search, and therefore overcomes
the problems of being dependent on a starting point and a step
size. In [28], the ATS was applied to a stochastic environment,
and the ability of the ATS to function in such environments
makes it ideal for the DE problem.

As alluded to above, Oommen and Raghunath used the ATS
to determineλ∗, in a bounded interval within a resolution of
accuracy. In their work, the Oracle or Environment is modeled
as a “Stochastic Teacher” [28], implying that it provides a
correct response with a probability greater than 0.5 [29]. This
Environment (the “Stochastic Teacher”) for the SPL problem
provides feedback about the location of the point in question,
i.e., whetherλ∗ is to the right or to the left of the currently
chosenλ(n).

To determineλ∗ within the resolution of accuracy, the
original search interval is divided into three equal and disjoint
subintervals,∆i , wherei = 1...3. The subintervals are searched
using a two-action LA. The LA returns theλ(n), the estimated
position ofλ∗ from that subinterval,Oi ∈{Le f t,Right, Inside}.
From these outputs, a new search interval is obtained which
is based on the decision table given in Table II. This is
repeated until the search interval is smaller than the resolution
of accuracy. The search interval will be reduced to yield the
required resolution within a finite number of epochs because
the size of search interval is non-increasing [28]. After the
search interval has been sufficiently reduced, the midpointof
the final search interval is returned as the estimate forλ∗. The
ATS algorithm can be seen in Algorithm 1.

O1 O2 O3 New Sub-Interval
Inside Left Left ∆1

Left Left Left ∆1

Right Inside Left ∆2

Right Left Left ∆1∪∆2

Right Right Inside ∆3

Right Right Left ∆2∪∆3

Right Right Right ∆3

TABLE II: Decision Table
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Algorithm 1 ATS Algorithm
Input: The Resolution,ρ
Output: Estimate ofλ∗

Method:

1: repeat
2: (∆1,∆2,∆3)←Get partitions(∆)
3: for j ← 1 to 3 do
4: Get position ofλ∗ from LA j
5: end for
6: ∆← Get new search interval from Table II
7: until Size of Interval< ρ
8: λ∗← Midpoint(∆)

End Algorithm

IV. ATS FOR DISTANCE ESTIMATION

The ATS proposed by Oommen and Raghunath [28] was
initially used to solve the SPL problem, and subsequently
for parameter learning when interacting with a stochastic
teacher/compulsive liar [28, 29]. For both of these problems,
one had to determine only a single unknown parameter. Our
aim is to utilize these core concepts in DE where one has
to learn/estimate many parameters simultaneously. In order to
adapt the ATS to find more than a single parameter, we must
specify the corresponding “Environment”, and also both the
process of updating multiple search intervals and the issueof
how the set of LA interacts with it.

A. Updating Search Intervals

Let us first consider the case where the DEF has two param-
eters, sayk and p. The strategy for our search will be to use
the ATS to determine the best value fork andp, sayk∗ andp∗,
respectively. However, it is crucial that theorder of updating
the search intervals in thek and p spaces is considered when
determining these multiple unknown parameters. If this is not
done correctly, it may result in the premature reduction of
a search interval. In the SPL problem, the subintervals were
first searched using the LA, after which the search interval was
updated. This order of executing the searching, and the pruning
of the intervals must also be maintained while searching forthe
two parameters,k andp, simultaneously. In other words, all the
subintervals must be searched before any interval is updated.
Each search interval must undergo the same search process as
in the case of the single-parameter ATS. The only differenceis
that the search intervals must be updated simultaneously. The
order (or sequence) for achieving this is shown in Algorithm
2.

The set of LA operate in the same manner as in [28], except
for how it deals with the additional parameters. When the
LA is learning information about how it should update the
value fork, it uses values ofp from within its current search
interval and vice versa. As a result, each LA operates with
the knowledge of thecurrent search interval ofall the other
parameters.

This process of searching for multiple parameters can be
done in parallel by assuming that for each learning loop, the
other parameter’s value is either the maximum or the minimum

Algorithm 2 TwoDimensionalATS
Input: The Resolutionsρk and ρp

Output: Estimates ofk∗and p∗

Method:

1: repeat
2: for j ← 1 to 3 do
3: ExecuteLA j for k
4: ExecuteLA j for p
5: end for
6: GetNewInterval fork - From Table II
7: GetNewInterval forp - From Table II
8: until (Size of Interval(k) < ρk) ∧ (Size of Interval(p) < ρp)
9: k∗← Midpoint(FinalInterval(k))

10: p∗← Midpoint(FinalInterval(p))
End Algorithm

of its current search interval. This is a consequence of the
monotonicity of the DEFs, as discussed in Section IV-C.

We shall now describe in greater detail the various modules
of the system.

B. The Corresponding LA

Each LA is provided with two inputs, namely the parameter
that it is searching for, and all the search intervals. Each
LA is required to yield as its output the relative location
of the parameter in question. It does this by producing a
decision (Left, Right or Inside) based onits final belief after
communicating with its specific Environment.

The LA starts out with a uniform belief, 50% for both “Left”
and “Right”. It then makes a decision based on its current
belief. If the decision is “Left”, then the LA picks a point
in the left half of the interval at random; otherwise (i.e., the
decision is “Right”) the point is chosen from the right half
of the interval. Once the decision is made, the LA asks the
Environment for a response. The LA uses a Linear Reward
Inaction (LRI) update scheme, and so the current belief is only
updated if the Environment’s response is positive.

The LA and the Environment repeat this loop for a large
number, sayN∞, iterations. After they are done communicat-
ing, the LA produces its output as per Algorithm 3. If the
LA’s belief of “Right” is greater than 1− ε, the parameter in
question is to the right side of the current search interval,and
so its output is “Right”. Conversely, if the belief of “Left”is
greater than 1− ε, the LA’s final decision is “Left”. If neither
of these cases emerge, the LA does not have a belief greater
than 1−ε that the parameter is to the “Right” or “Left”, and in
this case, the LA decides that the parameter’s optimal valueis
“Inside” the present interval. The entire algorithm is formally
given in Algorithm 3, whereθR (0≪ θR < 1) is the (LRI)
learning coefficient.

C. The Corresponding Environment

Each LA requires feedback from a specific Environment.
This feedback informs the LA if it has made the correct
decision, i.e., choosing the right or left half of the subinterval.
It is easy to obtain this answer because it only involves a single
parameter at a time. To further explain this, consider the DEF



8

Algorithm 3 The LA algorithm
Input: Parameter to be determined, Search interval,θR, N∞.
Notation: pL and pR are the probabilities of choosing the left and
right sub-intervals respectively.

Output: Decision∈ {Left, Right, or Inside}

Method:

1: for i = 1 to N∞ do
2: CurrentAction← ChooseAction
3: Feedback ← GetEnvironmentsResponse(CurrentAction) -

From either Algorithms 4 or 5
4: if Feedback == Agreethen
5: if CurrentAction == Leftthen
6: pR = pR∗ (1−θR)
7: pL = 1− pR
8: end if
9: if CurrentAction == Rightthen

10: pL = pL ∗ (1−θR)
11: pR = 1− pL
12: end if
13: end if
14: end for
15: if pR > 1− ε then
16: Return Right
17: else if pL > 1− ε then
18: Return Left
19: else
20: Return Inside
21: end if
End Algorithm

in Eq. (8) which can be simplified into two equations, Eq. (12)
and Eq. (13) as below:

F(k, p) = k ·F1(X1,X2, p),and where, (12)

F1(X1,X2, p) =

(

d

∑
i=1

|x1i− x2i|
p

)1/p

. (13)

Although nothing specific can be said about the monotonic-
ity characteristics ofF(k, p), we see from Eq. (12) that by
virtue of the fact that it is always positive and that it can be
factored, it is monotonicallyincreasingwith k for any fixed
value, p. Similarly, from Eq. (13), since F1(X1,X2, p) is not
a function of k, it is monotonicallydecreasingwith p for
any fixed value ofk. These properties allow the Oracle to
respond according to Algorithm 4 when findingk, and for the
corresponding LA to move in the desired direction (i.e., “Left”
or “Right”) in the space that only involves the single parameter
k. The contrary monotonicity properties allow the Oracle to
respond according to Algorithm 5 when determiningp, and
for the corresponding LA to move in the desired direction (i.e.,
“Left” or “Right”) in the space that involves onlyp.

We now consider how we can optimally take advantage of
the above-mentioned monotonicity properties. This is doneby
the DEF using either theMax or Min values of the other
parameter while it evaluates the estimated distance between
the points under consideration. Whether the evaluation is done
with the Max or Min point itself depends on the choice that
the LA is making. The two possible cases for Algorithm 4 are
listed below:

1) If k has to be decreased, the value ofp must be chosen so
as to minimize the decrease ink so that it is achieved
in a conservative manner. Thus, if the parameterk is
chosen from the left half of the search interval, its value
in the DEF is chosen randomly from the left-half of
k’s region, but withp being at its largest value,pMax.
If under these settings, the estimated distance based on
the DEF is larger than or equal to the true distance,
the Environment provides the corresponding LA with a
Reward.

2) If the parameterk is chosen from the right half of the
search interval, its value in the DEF is chosen randomly
from the right-half ofk’s region but withp being atits
smallest value,pMin. Again, if under the latter settings,
the estimated distance based on the DEF is smaller
than or equal to the true distance, and the Environment
provides the corresponding LA with a Reward.

The analogous two possible cases for Algorithm 5 are the
following:

1) If p has to be decreased, the value ofk must be chosen so
as to minimize the decrease inp so that it is achieved in
a conservative manner. Ifp is chosen from the left half
of the search interval, its value in the DEF is chosen
randomly from the left-half ofp’s region, but withk
being atits largest value,kMax. If under these settings,
the estimated distance based on the DEF is smaller than
or equal to the true distance, the Environment provides
the corresponding LA with a Reward.

2) If the parameterp is chosen from the right half of the
search interval, its value in the DEF is chosen randomly
from the right-half ofp’s region but withk being atits
smallest value,kMin. Again, if under the latter settings,
the estimated distance based on the DEF is larger than
or equal to the true distance, the Environment provides
the corresponding LA with a Reward.

In both the above cases, the Environment otherwise yields a
negative or Penalty response.

Algorithm 4 EnvironmentResponse(k)
Input: Training Distances; Action chosen by the LA, and the current
intervals ofk and p.
Notation: The evaluation ofF(k, p) is done at a pointkr randomly
chosen from the interval under consideration, and withp being at
either the maximum or minimum value in its region.

Output: Decision∈ {Agree, Disagree} as far as the parameterk is
concerned.

Method:

1: if ((Choice== Left) ∧ (F(kr , pMax)≥ TrueDistance))then
2: return Agree
3: else if((Choice== Right)∧ (F(kr , pMin)≤ TrueDistance))then
4: return Agree
5: else
6: return Disagree
7: end if

End Algorithm
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Algorithm 5 EnvironmentResponse(p)
Input: Training Distances; Action chosen by the LA, and the current
intervals ofk and p.
Notation: The evaluation ofF(k, p) is done at a pointpr randomly
chosen from the interval under consideration, and withk being at
either the maximum or minimum value in its region.

Output: Decision∈ {Agree, Disagree} as far as the parameterp is
concerned.

Method:

1: if ((Choice== Right) ∧ (F(kMin, pr)≥ TrueDistance))then
2: return Agree
3: else if ((Choice == Right) ∧ (F(kMax, pr) ≤ TrueDistance))

then
4: return Agree
5: else
6: return Disagree
7: end if

End Algorithm

D. Theε-optimality of the Multi-parameter ATS

We now consider theε-optimality of the Multi-parameter
ATS. The proof of the scheme relies heavily on the proof
of the corresponding single-parameter ATS which was earlier
rigorously proven in [28]. Consequently, to avoid repetition,
we shall merely cite the results from [28] wherever they are
needed, and not re-iterate the fine details of the proofs of the
assertions here.

To prove that the team of LA described above operateε-
optimal, we will first show that the Environment that we have
defined above provides the correct response withp> 0.5.

Lemma 1:The Environment defined above provides the
correct response withp> 0.5 whenever the training data has
an accuracy greater than 50%.

Proof: We shall first prove the claim when we are dealing
with the parameterk and whenp is maintained constant. The
proof for the alternate case when we are dealing with the
parameterp and whenk is maintained constant follows almost
identical arguments.

Let us start with an arbitrary learning loop for the parameter
k. Let k′ be the randomly chosen value fork for this loop, and
let the current search interval fork be denoted as∆k = [A,B].
Note that the DEF,F(k, p) is monotonically increasing with
respect tok. Now, with respect to the current interval forp, let
pMax be the value ofp that minimizes9 F(·, ·), in this region,
and letpMin be the value that maximizes it. We specify below
the probability of the defined Environment producing an error.
To do this, we consider two mutually exclusive and exhaustive
cases, namely whenk∗ is be to the left of the current interval,
and whenk∗ is to the right of the current interval.
Case 1: Let k∗ be to the left of the current interval, andTdist
be the true distance provided by the points under consideration
in the training data.

We now partition ∆k into three mutually exclusive and
exhaustive parts as∆k =P1∪P2∪P3, where: P1 =[A,k1] - such
that ∀k∈ [A,k1], F(k, pMax)< Tdist or F(k, pMin)> Tdist,
P2 =[k1,k2] - such that∀k ∈ [k1,k2], F(k, pMax) > Tdist and

9The reader must remember thatF(k, p) is monotonicallydecreasingwith
respect top.

F(k, pMin)< Tdist,
P3 =[k2,B] - such that∀k ∈ [k2,B], F(k, pMax) < Tdist or
F(k, pMin)> Tdist.
These partitions fully divide the search interval due to the
monotonicity properties ofF(·, ·). Consequently:

Pr(error)

= Pr(error|k′ ∈ P1)Pr(k′ ∈ P1)

+Pr(error|k′ ∈ P2)Pr(k′ ∈ P2)

+Pr(error|k′ ∈ P3)Pr(k′ ∈ P3)

By considering the P2 term more clearly, we see that:

Pr(error|k′ ∈ P2)Pr(k1≤ k′ ≤ k2)

< Pr(error|k′ ∈ P2,k′ < kmid)Pr(k1 ≤ k′ ≤ kmid)

+Pr(error|k′ ∈ P2,k′ < kmid)Pr(kmid ≤ k′ ≤ k2)

= (1)Pr(k1≤ k′ ≤ kmid)+ (0)Pr(kmid≤ k′ ≤ k2)

= Pr(k1≤ k′ ≤ kmid) .

We now observe thatk∗ is to the left and that the Environment
would thus always provides a negative response. Since the
error in the intervals[A,k1] and [k2,B] come entirely from the
data:

Pr(error|k′ ∈ [A,k1])< 0.5, and
Pr(error|k′ ∈ [k1,B])< 0.5.

This renders the probability of the Environment returning
an error to be:

Pr(error) < (0.5)Pr(A≤ k′ ≤ k1)+Pr(k1 ≤ k′ ≤
kmid)+ (0.5)Pr(k2≤ k′ ≤ B)
We now letx= k1−A

B−A , andy= B−k2
B−A . Then:

Pr(error) < (0.5)x+0.5− x+(0.5)y Let x> y, sincek∗ is to the left of the interval

=⇒ Pr(error) < (0.5)x+0.5− x+(0.5)x

=⇒ Pr(error) < 0.5

Similarly, if k∗ were to the right of the current interval,
Pr(error)< 0.5.

Combining these assertions, we see that the Environment
provides the correct response withp > 0.5, if x > y. Hence
the result!

Lemma 2:Using theLRI scheme with a parameterθ which
is arbitrarily close to zero, the following is true:

• If λ∗ is left of ∆ j
k, then Pr(O j=Left) → 1

• If λ∗ is right of ∆ j
k, then Pr(O j=Right)→ 1

• If λ∗ is inside∆ j
k, then Pr(O j=Left, Right or Center)→ 1.

Proof: The proof is identical to the one found in [28] and is
thus omitted.

Lemma 3:Using theLRI scheme with a parameterθ which
is arbitrarily close to zero, the following is true:

• If (O j=Left) then Pr(λ∗ being left or inside of∆ j
k) → 1

• If (O j=Right) then Pr(λ∗ being right or inside of∆ j
k)→ 1

• If (O j=Inside) then Pr(λ∗ being Inside of∆ j
k) → 1.

Proof: The proof is identical to the one found in [28] and is
thus omitted.

Lemma 4:If the algorithm uses theLRI same scheme at
all levels of the recursion and a parameterθ arbitrarily close
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to zero, the LA converge at every level with a probability as
close to unity as desired.
Proof: The proof follows from the above, and is due to the
ε-optimality of the LA used in every level of the scheme.

Theorem 1:The set of decision rules given in Table II is
complete.
Proof: Again, the proof is identical to the one found in [28]
and is thus omitted.

The final theorem about the entire scheme follows.
Theorem 2:The unknownλ∗ is always contained in the

subinterval encountered in the subsequent invocation of the
algorithm and thus the algorithm finally converges to a value
arbitrarily close toλ∗, assuming the following conditions:

• The algorithm uses theLRI same scheme at all levels of
the recursion.

• The parameterθ is arbitrarily close to zero.
• The parameterN∞ is sufficiently large.

Proof: The proof of this theorem, which is true for every level
of the LA, is identical to the one found in [28] and is thus
omitted. This concludes the proofs of the algorithms.

V. TESTING AND RESULTS: 2-DIMENSIONAL

ENVIRONMENTS

In this section, we present the results for the 2-dimensional
DE using the ATS. We show that this method of estimation
works for three different DEFs where, as mentioned, the first
two DEFs, Eq. (6) and Eq. (7) each contained only a single
parameter that must be determined, eitherk or p respectively.
The last DEF, Eq. (8), contained two parameters,k and p.
To compare the results we used four GoF measures. The first
three, RAD, NAD, and SD were presented in Section II-B, in
Eq. (2), Eq. (3) and Eq. (4) respectively. The last GoF measure
was the Expected Percent (EP) error for each distance in the
region under consideration. The EP error was given by Eq.
(14):

EP=
1
n

n−1

∑
i=1

n

∑
j=i+1

|A(Pi ,Pj)−π(Pi,Pj |Λ)|
A(Pi ,Pj)

. (14)

The SD and NAD GoF functions were useful for comparing
the results against the methods reported in the literature as they
are some of the most commonly-used GoF functions; however,
the RAD and the EP were useful when looking at the values
by themselves. TheRAD is, in fact, the percentage error for
the entire region. The EP also has a useful physical meaning:
It is the expected error for an estimated distance in the region
in question.

A. Results for the Noiseless Data

a) Experimental Setup :The first type of data was noise-
less. This set of noiseless data was constructed by randomly
generating points in the region and it employedknownvalues
of k andp to generate the “true” distances from the DEF being
tested. These known values which were used to create the data
sets will be called the “Actual Values”. The consequence of
creating the noiseless data in this manner is that the inter-city
distances perfectly fit the DEF. The primary purpose of this

data set was to show that under ideal conditions, the ATS can
always determine the optimal parameter.

Each DEF was tested on three sets of noiseless data. The
first set had 29 points, the second had 75, and the third had
100 points. We show below examples of runs for the Weighted
Euclidean DEF and the WeightedLp DEF, where the accuracy
was reported over 100 runs of each data set. Each LA’s reward
parameter (θR) was set to 0.02. We used anε value of 0.1 and
N∞ = 2,500. These values were chosen through preliminary
testing and lie within the generally excepted range of values
use for these types of LA. We emphaszie that the algorithm
was not overly sensitive to these values because the decisions
of the LAs were only used to update the search interval and
not the final parameter. As a result, only requiring a “belief” of
90% helped the convergence times, since theLRI LA converge
slowly as the probability approach the absorbing barriers,zero
and unity.

b) Weighted Euclidean DEF :In this case, we examined
the Weighted Euclidean DEF (Eq. (7)), which has only a
single parameter,k. The reason for considering such a simple
DEF was to demonstrate how the ATS functions in the new
Environment pertaining to DE. Here we observed that the
ATS always succeeded in finding the optimal parameter for
a DEF that contained only a single parameter in a noiseless
environment. As a result, all the errors were zero with a
standard deviation of zero over 100 executions of the search.
Figure 2 shows a pictorial representation of the ATS in this
environment.

Fig. 2: The progress of the ATS scheme for a typical noiseless
environment for the DEF given by (Eq. (7)). Here, the blue lines
represent the current search interval, and the blue diamonds represent
the current estimate ofk.

c) Lp DEF: We now consider theLp DEF from Eq. (6).
This DEF also has a single parameter, and consequently, the
typical ATS is very similar to the one shown in Figure 2. The
result was identical as for the Weighted Euclidian DEF, and
is omitted in the interest of space. All the errors were exactly
equal to zero, because the ATS always converged to the actual
value of p.

d) Weighted Lp DEF:: The final DEF that we studied
was the WeightedLp DEF from Eq. (8). This DEF has two
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parameters,k and p, and as a result, the ATS had to simul-
taneously search for both the parameters in the joint space.
Although this was easily done, it did affect the minimum
resolution. This is because the reduction of the search interval
for each parameter was depended on the resolution of the
search interval of the other parameter. In the example for
which the results are submitted, the ATS for the Weighted
Euclidian DEF, the resolution was set to 0.0000001; however,
for this ATS the resolutions fork and p were set to 0.00001
and 0.001 respectively. Table III shows an example of a typical
ATS for the WeightedLp DEF in a noiseless environment. The
errors for this ATS were almost (although not exactly) zero,
which is due to the larger resolutions that we had employed.

Fig. 3: The progress of the ATS scheme for a typical noiseless
environment for the DEF given by (Eq. (8)). The blue and red lines
represent the current search intervals for the respective parameters,
and the diamonds represent the current estimates of the parameters.

Figure 3 shows a pictorial representation of an ATS for
multiple parameters in a noiseless environment.

We again emphasize that the errors in the example run are
typical for the ATS for the WeightedLp DEF in a noiseless
environment. This is confirmed in Table IV, where we report
the average errors and standard deviation of 100 runs of the
ATS. It should be noted the “Actual” values were always
contained in the final search intervals. We also mention that
if the resolution was set to be too small, the ATS would
not be able to reduce the search interval to the required
size causing it to continue, until the process was manually
terminated. Thus, while we had set the resolution to be the
convergence requirement, one could alternately have used the
number of epochs as the convergence requirement. Under these
circumstances the resolution would vary from run to run.

B. Results for the Noisy Data

a) Experimental Setup::We now consider the more
realistic case of testing the ATS on noisy data sets. The sets
were constructed in the same manner as the noiseless data
sets, except that noise was added to the true distances. Thus,
to create the noisy data, an additional term was added to
each distance. This additional term was proportional to the

Epoch k′s Current p′s Current
Search Interval Search Interval

22 [6.0396743, 6.040656] [6.630701, 6.703157]
23 [6.0396743, 6.040329] [6.642777, 6.693094]
24 [6.0397835, 6.040238] [6.651163, 6.6861053]
25 [6.0397835, 6.0400863] [6.6569867, 6.681252]
26 [6.0398846, 6.0400863] [6.661031, 6.6778817]
27 [6.039952, 6.0400863] [6.6638393, 6.6755414]
28 [6.039952, 6.0400414] [6.6657896, 6.673916]
29 [6.039982, 6.0400414] [6.667144, 6.672787]
30 [6.039982, 6.0400214] [6.668084, 6.6720033]
31 [6.039982, 6.040008] [6.6687374, 6.671459]
32 [6.0399904, 6.040008] [6.669191, 6.671081]
33 [6.039996, 6.040008] [6.669506, 6.6708183]
34 [6.039996, 6.0400043] [6.669506, 6.670381]

Estimated Values k= 6.04 p= 6.669944
Known Values k∗ = 6.04 p∗ = 6.67

SD 6.775008639660095E−8
NAD 6.862434467784457E−4
RAD 2.3117311334956413E−7
EP 2.407871743082266E−7

TABLE III: Example run of the ATS with theWeighted Lp DEF on
the noiseless data.

magnitude of the distance, where the proportion was based on
a Gaussian distribution as below:

Noise=
TrueDistance

10
∗X (15)

where, X is a random Gaussian variable, N(0,1)

Due to the noise that was added to the distances, the
“Actual” values, that are used to construct the data, was not
necessarily the “Benchmark” values to predict the distances
for the data set. For these noisy data sets, the “Benchmark” or
optimal parameter was then found using a simple hill-climbing
search that minimized the SD error. This parameter was then
compared to the “Estimated” values, in order to verify the
accuracy of the ATS’s estimate.

The Hill-climbing search that we applied started at the
values found by the ATS search. It should be noted that other
starting points were tested and produced the same results;
however, the search took longer to converge. Starting from the
values found by the ATS, the Hill-climbing search compared
its current value (say,λ) to the λ+ ε and λ− ε, and moved
to the value that minimized the GoF function. This process
was repeated until the current valueλ minimized the GoF
function. The Hill-climbing search had to calculate the value
of the GoF at every time step, and as a result, this search was
computationally, very expensive.

Each of the DEFs was trained on 70% of the data set, and
the testing was conducted on the remaining 30%. The points in
the training set were randomly chosen from the whole data set.
While we did not follow a rigorous cross-validation process,
we believe that the error obtained is a good representation of
the performance of the corresponding scheme, and the only
major difference can be seen in the larger standard deviations.
This was done for all three data sets, where the first set had 29
points, the second had 75 and the third had 100 points. One
example of the ATS is presented for the Weighted Euclidian
DEF and the WeightedLp DEF for the data set of size 75.
The overall characteristics of all three DEFs were examined
for the three different sets of noisy data. These characteristics
were determined by examining the accuracy of each ATS over
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Data Set N=29 N=75 N=100
Error Average Standard Average Standard Average Standard
Type Error Deviation Error Deviation Error Deviation

SD 2.06×10−7 4.69×10−7 1.04×10−7 1.57×10−7 4.17×10−7 8.77×10−7

NAD 6.84×10−5 1.05×10−4 9.41×10−4 9.47×10−4 0.0017 0.0019
RAD 1.66×10−7 2.54×10−7 3.27×10−7 3.34×10−7 3.23×10−7 3.62×10−7

EP 1.69×10−7 2.59×10−7 3.30×10−7 3.32×10−7 3.58×10−7 3.93×10−7

TABLE IV: Results for 100 runs of the ATS with the WeightedLp DEF on the noiseless data sets.

100 runs. Observe that for each of these 100 executions of the
ATS, the noise and “Actual values” change.

b) Weighted Euclidian DEF::The errors of the “Bench-
mark” and “Estimated” values shown in Table V were almost
equal. While the “Benchmark” value performed better on the
training data than the “Estimated” value, the “Estimated” value
performed marginally better than the “Benchmark” value when
applied to the testing data. The difference between the errors in
both cases are “small”; however, it is interesting that the ATS
performed better on the testing data than the optimally-trained
parameter.

Error For Estimated Value: For Benchmark Value:
Type k= 1.3528224 k= 1.346091

Training Training
SD 427.73 425.52

NAD 105.63 105.36
RAD 0.0581 0.0582
EP 0.0597 0.0595

Testing Testing
SD 24.16 24.19

NAD 6.60 6.65
RAD 0.0537 0.0545
EP 0.0550 0.0554

TABLE V: Results for the typical run for the case when the dataset
was noisy and it used the Weighted DEF.

Table VI shows the average errors of 100 ATSs for the
Weighted Euclidian DEF on each of the noisy data sets. The
errors for the “Benchmark” value and “Estimated” values
of k produce very similar errors; there was less than 0.1%
difference between the “Benchmark” and “Estimated” values
for both the RAD and the EP errors. These results clearly
demonstrate the success of the ATS for DE in a noisy
environment.

c) Lp DEF:: We again ran the ATS 100 times on the
Lp DEF which incorporated noisy data. The results are shown
in Table VII. These results are similar to those obtained for
the Weighted Euclidian DEFs, since both the “Benchmark”
and “Estimated” values ofk produced almost identical testing
errors. The difference between the “Benchmark” and “Esti-
mated” values for both the RAD and the EP errors were less
than 0.1%.

d) Weighted Lp DEF:: The ATS for the WeightedLp

DEF was performed on the noisy data. Figure 4 shows a
pictorial representation of an ATS for multiple parametersin
a noisy environment.

The average testing errors for 100 runs of the ATS using the
WeightedLp DEF is shown in Table VIII. The errors for this
norm were smaller than the errors for the other two norms.
This is an anticipated result because the WeightedLp DEF
had two parameters, and this concurs with the results found
in the literature [1, 5, 16, 18]. The errors for the “Estimated”
values were are very close to the errors for the “Benchmark”

Fig. 4: The progress of the ATS scheme for a typical noiseless
environment for the WeightedLp DEF. The blue and red lines
represent the current search interval for the respective parameters,
and the diamonds represent the current estimate of the parameters.

values, where the RAD and EP errors were within 0.2% of
each other.

C. Results for the Real-World Data Sets

a) Experimental Setup::The final test for the ATS was
done on real-world data sets, since the “proof of the pudding
is, indeed, in the eating”. This data consisted of three sets,
which in turn involved 29, 97, and 561 cities each. The
data sets involving 29 and 561 cities were obtained from the
MP-TESTDATA (the TSPLIB Symmetric Traveling Salesman
Problem Instances) [32]. The data set with 29 points is titled
“bays29.tsp”. This data was collected from cities in Bavaria,
and records the inter-street distances and the locations ofthe
cities. The data set involving 561 points is titled “pa561.tsp”
and also reports the inter-street distance and the co-ordinates
of the cities. The data set with 97 cities was obtained using
Turkish cities. The co-ordinates were obtained from [3, 26],
and the distances were calculated using Google maps [13].

Observe that for data of this type, there are no “Known”
values ofk and p. This is because the data was notcreated
and therefore did not depend on any “Known” values. The
“Benchmark” values were again used for comparison, and
the same hill-climbing search was used to determine the
“Benchmark” values.

b) Weighted Euclidian DEF::Table IX shows the result
for the three data sets when the ATS used the Weighted
Euclidian DEF. The standard deviation for the “Benchmark”
values was always zero. This is because we were not changing
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Data Set Size N=29 N=75 N=100
Error Average Standard Average Standard Average Standard
Type Error Deviation Error Deviation Error Deviation

Estimated Estimated Estimated
SD 239.31 82.55 70.71 16.78 76.57 21.16

NAD 1.99 0.4636 14.68 3.29 10.71 2.30
RAD 0.0546 0.0131 0.0572 0.0123 0.0564 0.0123
EP 0.0553 0.0129 0.0580 0.0130 0.0564 0.0121

Benchmark Benchmark Benchmark
SD 240.80 83.54 70.55 16.64 76.37 20.81

NAD 1.99 0.4596 14.66 3.27 10.69 2.29
RAD 0.0548 0.0132 0.0574 0.0124 0.0565 0.0124
EP 0.0553 0.0128 0.0579 0.0129 0.0563 0.0121

TABLE VI: Results for 100 runs of the ATS with the Weighted Euclidian DEF on noisy data sets.

Data Set Size N=29 N=75 N=100
Error Average Standard Average Standard Average Standard
Type Error Deviation Error Deviation Error Deviation

Estimated Estimated Estimated
SD 330.38 89.67 94.39 11.35 220.46 27.79

NAD 2.68 0.41 19.23 1.40 32.15 2.58
RAD 0.0724 0.0110 0.0744 0.0058 0.0726 0.0063
EP 0.0744 0.0114 0.0760 0.0056 0.0739 0.0059

Benchmark Benchmark Benchmark
SD 327.54 88.62 94.01 11.11 220.03 27.92

NAD 2.66 0.41 19.20 1.40 32.11 2.58
RAD 0.0720 0.0109 0.0744 0.0057 0.0727 0.0063
EP 0.0740 0.0113 0.0759 0.0055 0.0738 0.0059

TABLE VII: Results for 100 runs of the ATS with theLp DEF on the noisy data sets.

Data Set Size N=29 N=75 N=100
Error Average Standard Average Standard Average Standard
Type Error Deviation Error Deviation Error Deviation

Estimated Estimated Estimated
SD 99.38 85.67 28.90 24.50 57.95 44.12

NAD 0.75 0.62 5.60 4.35 8.13 6.11
RAD 0.0208 0.0171 0.0218 0.0167 0.0186 0.0138
EP 0.0208 0.0172 0.0221 0.0172 0.0187 0.0141

Benchmark Benchmark Benchmark
SD 85.36 71.04 24.85 18.30 51.73 37.37

NAD 0.70 0.56 5.20 3.76 7.67 5.68
RAD 0.0194 0.0155 0.0203 0.0147 0.0176 0.0129
EP 0.0193 0.0156 0.0205 0.0149 0.0176 0.0130

TABLE VIII: Results for 100 runs of the ATS with the WeightedLp DEF on the noisy data sets.

Data Set Size N=29 N=97 N=561
Error Average Standard Average Standard Average Standard
Type Error Deviation Error Deviation Error Deviation

Estimated Estimated Estimated
Value 0.2230 1.6259 1.3808 0.0100 0.1635 0.0010
SD 23.66 0.18 20053.85 129.84 17597.54 788.93

NAD 1.82 0.01 83.62 0.38 2237.76 51.05
RAD 0.0406 0.0001 0.1268 0.0015 0.1448 0.0043
EP 0.0507 0.0002 0.2060 0.0009 0.1576 0.0036

Benchmark Benchmark Benchmark
Value 0.2260 0.00 0.9960 0.00 0.1660 0.00
SD 28.32 0.00 35489.89 0.00 15880.77 0.00

NAD 2.02 0.00 141.93 0.00 2123.57 0.00
RAD 0.0438 0.00 0.3082 0.00 0.1350 0.00
EP 0.0562 0.00 0.3496 0.00 0.1496 0.00

TABLE IX: Results for 100 runs of the ATS with the Weighted Euclidian DEF on the real-worlds data sets.

the data set for each run, as in the previous two types of data.
The reason for doing multiple runs on the same data set was
to see how the ATS behaved.

The ATS out-performed the hill-climbing for the data sets
of size 29, and 97. For the “bays29” data set, the ATS had less
than a 1% advantage for both the RAD and EP. When tested
on the data set from Turkey, the ATS out-performed the hill-
climbing scheme by over 17% and 5% for the RAD and EP
respectively. For the larger data set, “pa561”, the hill-climbing
did out-perform the ATS, but by less than 1% for both the
RAD and EP errors. The ATS was able to out-perform the

hill climbing because the errors reported here are the testing
error, and the hill-climbing was trained using the errors from
the training set.

The results of this test are encouraging because the ATS
was able to compete with the hill-climbing scheme, that had
only a single optimum. To better comprehend the performance
of the ATS, one could also possibly compare the results of the
hill-climbing scheme with the maximum and minimum errors
that the ATS yielded.

c) Lp DEF: Table X shows the results for 100 runs of
the ATS search using theLp norm on the real-world data.
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Data Set Size N=29 N=97 N=561
Error Average Standard Average Standard Average Standard
Type Error Deviation Error Deviation Error Deviation

Estimated Estimated Estimated
Value 25.0 0.00 0.8044 0.00 25.0 0.00
SD 71326.52 0.00 27650.57 0.00 8610472.43 0.00

NAD 111.04 0.00 103.20 0.00 54193.61 0.00
RAD 3.0184 0.00 0.1731 0.00 3.7626 0.00
EP 3.0844 0.00 0.2542 0.00 3.8175 0.00

Benchmark Benchmark Benchmark
Value 25.0 0.00 1.4565 0.00 25.0 0.00
SD 71326.52 0.00 29687.46 0.00 8610472.43 0.00

NAD 111.04 0.00 127.73 0.00 54193.61 0.00
RAD 3.0184 0.00 0.2661 0.00 3.7626 0.00
EP 3.0844 0.00 0.3146 0.00 3.8175 0.00

TABLE X: Results for 100 runs of the ATS with theLp DEF on the real-world data sets.

Overall the errors were extremely large, over 300% error
for the RAD and EP errors for the data set of size 29 and
561. This can be attributed to two main reasons; first theLp

norm had very limited predicting power, and second, both the
“Estimated” values and “Benchmark” values were actually at
the maximum value of the ATS search interval. Regardless of
how this maximum value was changed, both the ATS and the
hill-climbing converged to the largest value. It should be noted
that the change in the DEF decreased for larger values ofp.

The Lp norm did a much better job of estimating the
distances for the Turkey data. This may be due to the type
of network and region under study. The errors are still high
but both the ATS and the hill-climbing search converged to
values within the search interval. The ATS out-performed the
simple hill-climbing search by about 5% for both the RAD
and the EP errors on the Turkish data.

d) Weighted Lp DEF:: When the ATS is used in conjunc-
tion with the WeightedLp DEF, the ATS out-performed the
hill-climbing search, as shown in results in Table XI. Whilethe
ATS and the hill-climbing search performed very similarly,the
ATS had a slight improvement over the hill-climbing search.

Both the data set with 29 points and the data set with 97
points had ap value that is close to 2.0. As a result, the
WeightedLp DEF had a similar performance to the Weighted
Euclidean DEF. For the data set with 561 points, the ATS
produced an averagep value of about 1.2, whereas the hill-
climbing search’sp value was 1.74. This change inp value
resulted in a larger difference in the accuracy of the estimation
of the distances between the ATS using the WeightedLp DEF
and the Weighted Euclidean DEF. Finally, the ATS using the
WeightedLp DEF, out-performed the previous two DEFs.

D. Discussion

The ATSalwaysconverged close to the “actual” values for
all three DEFs when interacting with noiseless data sets. The
errors were either exactly zero or smaller than 10−9 %. In
addition to these small errors, the “actual” values were always
contained in the final search interval. This indicated that the
ATS was well adapted to finding multiple parameters in the
ideal DE domain, and serves as an important baseline for
more realistic data sets. Another observation is that the ATS
converged very quickly, at every time step a search interval
was reduced. Overall, the ATS was able toalwaysaccurately
find the optimal parameters for noiseless data sets.

For the noisy data sets the benchmark values and estimates
values were very close, and resulted in similar errors within
0.1%. The ATS did not reduce its search interval at each
iteration; however, it was able to reduce the search interval to
the desired accuracy with additional epochs. If the number of
learning loops per epochs (N∞) were increased, it would have
been more likely to reduce the search interval at each epoch.
The ATS was able to accurately determine the parameters of
all three DEFs in a noisy environment.

In the real world setting, the ATS was competitive with the
hill-climbing search. While the hill-climbing search always
found the same values, the ATS had small variance of the
values. Both the ATS and the hill-climb search produced
similar but large errors for the data sets of size 29 and 561
using theLp DEF. These large errors are due to the predicting
abilities of the Lp DEF. The similarity between the ATS
and the hill-climbing search shows that the ATS is still a
competitive search method. Overall the ATS found values that
were competitive with the standard hill clime method.

The most significant contribution of this work was that the
ATS did not require the use of GoF functions, which we
believe is a pioneering and novel contribution.

VI. CONCLUSIONS

A. The ATS

In this paper, we considered the Distance Estimation (DE)
problem that has been studied for almost four decades. It
involves estimating the real-life distances between points in
the Cartesian plain or in a geographic region. The input to
these DE problems are, typically, the start and end locations
in the form of thex andy co-ordinates of the locations in the
Cartesian plain, or the latitude and longitude in the geographic
region. Our solution departs from the legacy methods in that
we depart from the use of so-called “Goodness-of-Fit” (GoF)
functions. Rather, we have used the field of Learning Automata
(LA) and in particular, the Adaptive Teriary Search (ATS) used
to solve the Stochastic Point Location (SPL) problem. This
paper has made some major contributions. Firstly, it extended
the ATS application to the DE problem. In this regard, we
defined both the new environments and the corresponding LA
for this problem for three simple DEFs. Using these newly-
defined Environments and LA, the ATS was shown to produce
parameters competitive to those obtained by the hill-climbing
search for all of these DEFs.
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Data Set Size N=29 N=97 N=561
Error Average Standard Average Standard Average Standard
Type Error Deviation Error Deviation Error Deviation

Estimated Estimated Estimated
K Value 0.2220 9.4600x10−4 1.3517 0.0164 0.1410 0.0022
P Value 1.9935 0.0353 1.8022 0.0932 1.1517 0.0437

SD 22.93 0.28 20118.81 226.04 17756.97 364.02
NAD 1.79 0.01 83.28 0.22 2227.20 19.61
RAD 0.0402 0.0003 0.1253 0.0004 0.1423 0.0016
EP 0.0496 0.0004 0.2051 0.0005 0.1569 0.0014

Benchmark Benchmark Benchmark
K Value 0.2203 8.1873x10−8 1.2326 0.0053 0.1550 4.9035x10−8

P Value 1.9200 9.0190x10−8 1.5071 0.0221 1.7400 6.0445x10−8

SD 23.71 0.00 19922.21 62.01 20522.75 0.05
NAD 1.83 0.00 86.27 0.16 2418.51 0.00
RAD 0.0412 0.0000 0.1381 0.0005 0.1598 0.0000
EP 0.0508 0.0000 0.2125 0.0004 0.1704 0.0000

TABLE XI: Results for 100 runs of the ATS with the WeightedLp DEF on the real-world data sets.

The second contribution that we made (with regards to the
ATS) was to successfully search for multiple parameterssimul-
taneously. To achieve this, we proposed an algorithm in which
the ATS could perform a search for multiple parameters, while
it still maintained the core foundations of the ATS described.
This search has been shown to produce both the optimal
parameters in an ideal (non-stochastic) environment, and com-
petitive parameters in a stochastic environment. While we need
the algorithm to only find two parameters simultaneously, we
believe that it can be extended to the problem of determining
more parameters by following the same principles.

B. Distance Estimation

With regards to DE, the ATS was applied to the problem of
DE in order to find the parameters for three different DEFs.
The parameters that were determined have been shown to
be competitive with the parameters computed using a hill-
climbing search. The biggest advantage of the ATS over the
hill-climbing search is that it does not require a GoF function
to determine the parameter, while using DEFs tocomparethe
qualities of the parameters.
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