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Abstract—In this paper, we consider the problem of Distance
Estimation (DE) when the inputs are thex and y coordinates
(or equivalently, the latitudinal and longitudinal positions) of
the points under consideration. The aim of the problem is to
yield an accurate value for the real (road) distance betweethe
points specified by the latter coordinate$. This problem has,
typically, been tackled by utilizing parametric functions called
“Distance Estimation Functions” (DEFs). The parameters ae
learned from the training data (i.e., the true road distances)
between asubset of the points under consideration. We propose
to use Learning Automata (LA)-based strategies to solve the
problem. In particular, we resort to the Adaptive Tertiary S earch
(ATS) strategy, proposed by Oommeret al., to affect the learning.
By utilizing the information provided in the coordinates of the
nodes and the true distances from thissubset, we propose a
scheme to estimate the inter-nodal distances. In this regdr we
use the ATS strategy to calculate the best parameters for the
DEF. Traditionally, the parameters of the DEF are determined
by minimizing an appropriate “Goodness-of-Fit” (GoF) function.
As opposed to this, the ATS uses the current estimate of the
distances, the feedback from the Environment, and the set of
known distances, to determine the unknown parameters of the
DEF. While the goodness-of-fit functions can be used to show
that the results are competitive, our research shows that thy
are rather not necessary to compute the parameters themselves.
The results that we have obtained using artificial and realdfe
datasets demonstrate the power of the scheme, and also valie
our hypothesis that we can completely move away from the GoF-
based paradigm that has been used for four decades.

Based on the latter results, the paper also suggests a comialy
novel method by which we can extend the traditionally-studéd
DE problem where the road distances were, typically, estimad
using only thex and y coordinates (or equivalently, the latitudinal
and longitudinal positions). In such a generalized model, &
hypothesize that one can also provide to the system the adiinal
z coordinate, that represents the height or elevation of theubset
of nodes and of the cities whose inter-city distance is to be
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1This is a typical problem encountered in a Geographic Inédiom System
(GIS), or in a GPS. However, unlike the traditional systerhereall the inter-
city distances are assumed to be stored, in our setting,istende between
any pair of citiesis assumed to beomputedby merely having access to a
small subsebf knowninter-city distances.
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estimated. The results for this generalized model are curmatly
being compiled into a companion paper.
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I. INTRODUCTION

There are many well-studied problems whose solutions de-
pend upon the distances between points in the Cartesiam plai
or in a geographic region. The traveling salesman probleh, a
vehicle scheduling problems are common examples of real-
life scenarios that rely on distance information. The infout
these Distance Estimation (DE) problems are, typicallg th
start and end locations in the form &fandy co-ordinates
of the locations in the Cartesian plain, or the latitude and
longitude in the geographic region. To determine the direct
distance (i.e. as the bhird flies), that must be traveled batwe
a pair of known locations, is trivial. However, determinitig
actual “road distances” (the physical distance to be tealel
on the “roads” built in the community) for an area, is more
challenging. These road distances (also synonymously know
as traveling distances, or “true” distances), can depenth®n
network, the terrain, the geographical impediments likers
or canyons, and of course, the direct distance between the
respective points — which serves as a lower bound for the
“true” distances. The problem of DE involves finding the best
estimator for the true distances. This problem has beerestud
for over three decades, and its solutions have been put to use
in many practical applications, such as in developing Mehic
scheduling software vehicle routing, and in the partitioning
of districts for firefighters [8, 9, 26]. Indeed, as alluded to
earlier, this is a central issue in designing GISs and GPSs.

To initiate discussions, we first informally formulate th&D
problem. Consider a table of distances in which the points
or cities are listed in the column and row headings. The
table is, typically, populated with the corresponding iirieint
distances. However, consider the scenario, which morg trul
resembles the real world, where onlysmall subset of these
distances is actually known to any given precision. The gbal
DE is to approximate the missing distances. DE is especially
useful when the distances are hard to measure, because the
problem space has limited physical access to computing the
exact true distances, or when the measurements are difficult
to obtain. The ability of DE to produce useful estimates in
these difficult situations makes it beneficial for both reska

2Two common vehicle scheduling software packages, ROADNE@ a
TRUCKSTOPS 2, use DE methods when determining the distanemgeen
the suppliers and the customers [8].



and practical purposes. Further, it is unarguably infdasis more complex principles. For example, some researchees hav
store the actual distances when the number of villagesécitiproposed using aveightedlinear combination of two more
specified by the size of the table, is in the thousands or tgmsmitive DEFs [7, 30]. Another novel idea for a DEF is to use
of thousands. a nonparametriomethod [1]. DEFs have further been used in
From an abstract perspective, the fact that DE is used fausiness models, including in the modeling of service syste
approximating distances in road networks, does not medn thad in operational and strategic decision processes [6].
it is limited in its applications. The most obvious applioat A new strategy by which DE has been improved, has been
is in modelling travel times. Thus, DE has been used Wy modifying and adapting the basic method involved in the
companies to schedule deliveries [8]. A more “academi®E itself. Brimberget al. proposed a way of improving DE
problem, seen in the use of DE in modeling travel timedy rotating the co-ordinate axes [8]. This was done so as to
involves location and transportation problems (the tiagel minimize the rotational bias of a co-ordinate system, and to
salesman problem) in geographical areas where the distanteis improve the accuracy of the estimate. Others have tried
are almost entirelyunknown. DE has also been useful ira multi-regional approach to DE. The latter approachegldivi
resolving location analysis and optimization problemaugtit the original region into smaller sub-regions, and each sub-
has found direct applications in urban planning. For exanplkegion has its own trained parameters. One example of such a
in Turkey, DE has been used to determine the optimal locatiomulti-regional approach to DE was presented by Fildes and
for fire stations [9]. Otherwise, road distance estimatias hWestwood [10]. The scheme estimated the distances based
been applied in road network simulations to take into actousn the sub-regions that lay between the two points. The sub-
network impedance, for tasks such as OEM picking-up routimggions themselves determined the weighting of the paennet
[22]. used in the DEF, which, in turn, was based on the propor-
In general, whenever a problem requires the knowledgetidn of the Euclidian distance that lay in each sub-region.
all the distances between all possible points in the dontlaén, Another multi-regional approach used Vector Quantization
invocation of DE can be highly advantageous. DE can al$9¥Q) [3, 26]. This strategy utilized the points learned by
be used in in sailing and under-water navigation, where thtee VQ to represent closed groups of points. The parameters
distance to be traversed has to also consider rocks andisslamhat were used for inter-regional and intra-regional dista
and possibly, ocean currents. Indeed, while in the simplesttimation themselves were obtained by training using Qe V
setting these estimated distances are geographical céstanpoints. Besides invoking methods that have involved DEFs,
in a more general case, for example, dealing with chemicalpaydin et al. suggested applying neural networks and a non-
structures, these estimated distances may be far moreetbsyarametric method to tackle DE [1]. They compared these two
“navigational” distances required to change the strucluom methods with the voting and stacking of typical DEF-based
one configuration to another DE methods. The overall leader was the one which used the
stacking of simple DEFs.

A. Legacy Methods: Distance Estimation Functions

Any system that consists of inter-connected points, like B Our Proposed Approach
road network, can utilize DE to model and estimate the inter- | - this paper, we will contribute to the field of DE by

point distan_ces. To ac_hiev_e this,_ historically, one tyjjyca applying a new method for determining the DEF. This method
resorts to Distance Estimatirfgunctions(DEFs). These func- ;. .04 the Adaptive Tertiary Search (ATS) which was

tions can take on any form, but the ideal ones are those that 8Lrived by Oommen and Raghunath [28]. To date, it has been
simultaneously good estimators, and that are also chaizede applied to two problems, namely, the continuous Stochastic

by low computational requ?rem(.ants. Love and _Morris _first ir'F’oint Location problem [28], and the problem of parameter
troduced the concept of using simple parametric functibas t learning from a stochastic teacher or a stochastic comyaulsi

employ thex andy co-ordinates for approximating diSt"’mceﬁar [29]. Both of these problems work within a stochastic

[16]. The first DEFs were based on common norms, MO%bmain analogous to that of DE. The ability of the ATS

of which are still used. All these DEFs involved parametegy perform g-optimally in these stochastic domains renders

whose values are obtained by a “training” phase in order fﬁran ideal search strategy which can be used in DE. The

them to best fit the d‘.”“a of th? system being characterlz%q-.s is a search method that uses Learning Automata (LA) to
Consequently, some distances in the system must be kaow, rform a stochastic search “on a line” to determine or cat
pr_iori, and they are used to *leam” the p_arameters associa Fld parameter sought for. As explained presently, the most
with the DEFs. The accuracy of _the estimations depends %ring” step that we have taken is that we have completely
the DEF, the system and the available data. arfgé)ved away from invoking Goodness-of-Fit (GoF) criteria

For over four-decades, DEFs have peen applied in DE ; the DEFs, thus proposing a marked departure from the
the methods utilized have been extensively tested and mdd'fhethods that have been used for more than four decades.

[4, 5,16, 17, 18, 35, 36]. Over the years, new DEFs have beer]_A [21] are autonomous or self-operating machines that

propoDsEg, bhasedbon otger_ dgtance measures [7, 3;0]' qu?g\?e the ability to learn in stochastic environments. They a
new S have been derived as a consequence of app yl&/rﬁcally used to determine information and make decisians

3In the interest of being focused, we shall concentrate hete@traditional enV"O”mentS_ that have mcomplete knOW|edge [38]- They are
problem of using DE for estimating “road” distances. able to learn in these environments because the searchefor th



information is actually preformed in a probability spacelanD. Contributions of the Paper

not the action space itself [34]. The probability spaced®il ¢ foj10wing list highlights the three primary contribottis
to is traversed intelligently through the learning procesgs ihis paper:

Typically, the process of learning for human beings reuire
some form of inference from experience, and a mechanism o
decision making. In the case of LA, the experience, or input,
usually comes in the form of a sequence of responses from2
the environment that the LA is interacting with and which it )
can observe. For an LA, the mechanism of decision making
depends on its structure and the environment it is in.

Put in a nutshell, the strategy we propose for using the ATS
to solve DE is as follows: At any given time instant, the sgste
has certain values for the parameters which characterize th
DEF in question. With this as a premise, as per the LAs
inference philosophy, the ATS searches a bounded interval
by comparing the current estimate to the feedback from the
environment, where the latter is presented in terms of pairs
of points and their corresponding known distances. After
comparing the current estimate with the latter, a new smalle
search interval for the parameters of the DEF is inferre@ Th
search interval is continually decreased until it reachasall-
enough size.

It is crucial to emphasize the following: Apart from the
convergence phenomena, the rationale and goal for using
the ATS is to improve the accuracy of the DEFs toyally
removing any dependencies on the GoF functions. 1. DISTANCE ESTIMATION: CORE CONCEPTS

fl) The first contribution of this paper is the extension of the

ATS so as to involve determining multiple parameters

simultaneously, and utilizing this strategy in DE.

The second contribution involves the improvements to

the field of DE itself by virtue of the use of the ATS.

We argue that the application of the ATS eliminates

the dependence on Goodness-Of-Fit functions, and show

that it improves the overall performance by reducing
errors caused by overtraining.

3) The third contribution is the “proof of the pudding” of
these results in DE, where we submitted experimental
results for artificial noiseless data, artificial noisy data
and for real-life data. The results that we have obtained
are, truly, conclusive.

) Our final contribution lies in the fact that we have
suggested how we can use the same concepts for 3D
DE. The details of these results, where we show that
the 3D DE problem for estimating distances over certain
types of “hilly” terrains is solvable, are currently being
compiled for a separate publication.

C. Outline of the Paper A. Formalizing Distance Estimation

This paper starts with an overview of topics related to "€ distancfebe_tween two points or objects is a measure of
the field of DE. The objective of this section is to briefy?oW much they differ. This difference may be with respect to

present the reader with relevant background informaticth af{1€l" 9éographical locations or in their physical strueturFor
with a collection of existing research, in a well-organizef*@mPle, in Figure 1, the blue path represents the true piah (
fashion. Section Il deals with the ATS and Section IV exptai "0ad” path) and the red line is the direct path (as the biejli

the adaptations required in order for the ATS to Operapéatween Carleton University and Ottawa University in Ottaw
in a DE domain. Thereafter, in Section IV-D, we explai anada, and the goal of the DE problem is to estimate the

the analysis of the two-dimensional ATS, and explains if§N9th of the blue path as accurately as possible. For thiy st

use in DE. The adapted ATS and the environments that &g Will consider the “direct” distance between the two objec

defined are then tested in the subsequent section, Sectiorf&/R€ the shortest path between their point representatiores
This includes the testing procedure, the test results and€g9th of the shortest path depends not only on the location

discussion for the results obtained for the two-dimendion@ the points but also on the space (or area) in which they lie.
ATS. In two dimensions, the intention is to demonstrate thi{'® Shortest path must be passable, implying that one should
the ATS operates-optimally in the domain of DE, and that be able to reach_ all the intermediate points when moving from
it produces competitive results. To perform the tests, vel shON€ €xtreme point to the other. N
utilize three types of data sets, namely, noiseless, naisy a S OPposed to this, there are many ways of determining
those from the real world. The first set demonstrates that th¢ rué distance between points. The simplest strategy is t
behavior of the ATS in thédeal DE environment iflawless Maintain a table or database of the points and their known
The second is used to show that the ATS can function indistances. Such databases often contain all the distarees b
noisy DE environment. The experiments for the real worlddafVeéen large intersections for a single city, or between many
measure how the ATS can function in a practical applicatiofp” all) the cities in a large region. These databases are
In order to demonstrate that the ATS produces competitigificult to use if one is to employ multiple databases so

parameters for the DEF, for the purpose of comparison, & to determine the overall true distance. Combining these
have invoked a hill-climbing search. This is quite reafisti databases can also result in errors due to the changes caused

because in the literature, the parameters were either foyndP¥ different coordinates systems or by the points from which

a linear regression or a hill-climbing search [7, 8, 36]. As i€ distances are measured [36]. For example, in 1982, the
result, the parameters found by means of such a hill-cligibiffrovince of Ontario published all the distances betweegelar
search proved, unequivocally, that it is a natural method of _ _ . L

howi h he ATS' .. Secti 4The entire section describing DE, DEFs and Goodness-diiRittions is
showing that the S parameters are competitive. eCt'?}@Iuded in the interest of completeness. It can be abridgeeven deleted
VI concludes the paper. if recommended by the Referees.



The inputs to the DEF are the locations of the two points,
and it produces an estimate of the distance between them by
incorporating the set of parameters into the DEF. One observ
that the set of parameters alluded to mustidaant in order

for the DEF to best represent the space.

Definition 1: A Distance Estimation Function (DEF)is
defined as a functiom(Py, P;|A) : R x RY — R, whereP; =
(X1,X2,...,Xd) andP, = (y1,¥2,...,yq) are points inRY, andA
is a set of parameters whose values charactetizend which
must be learnt using a set of training points with known true
inter-point distances.

The set of parameterg,, is typically learnt by minimizing
a goodness-of-fit function, which, in turn, is used to measur
how well a network or region is represented by the DEF.

B. Goodness-of-Fit

Central to the legacy methods of DE is the concept of
Goodness-of-Fit (GoF) functions. GoF functions are messur
Fig. 1: The blue path represents the true path (the “roacH)pad of how good a DEF_ estimates the true (bqt unknowr_w_) distz_mces.
the red line is the direct path (as the bird flies) between efanml Several GoF fgnctlons hav_e been con5|sterjtly utilized & th
University and Ottawa University in Ottawa, Canada. literature pertaining to_the field of DE. The S|mplest and mos

commonly-used one is the Absolute-value Difference (AD)

given by Eq. (1) [1, 3, 4, 8, 10, 16, 17, 18, 26, 30, 35], which

was originally proposed by Love and Morris. It is given by
intersections throughout the province [36], which was comhe sum of the absolute values of the differences between the

plied in a document referred to as the “Distance Table”. Whikstimated distances and the actual distances, and is given a
the collection of this data is impressive, it is still difficto

calculate the distance between two locations whose pattine n-1 n
data is not included. Rather, to obtain this, one must finthall AD = 21 > AR, Py) =R, PiA)], €y
relevant distances between the intermediate intersesgtaomd i=1j=r1

thereaftercomputethe overall true distances. This, in itse”:whereA(P,,Pj) is the actual distance between the potand

is not a problem when finding singletrue distance, but it is P;. Observe that this GoF measure, used in[1, 3, 4, 8, 10, 16,

a challenge when one needs to determine a set of distances7n1g, 26, 30, 35], leads us to a natural way of minimizing the

the region. overall error of the DEF, although larger distances arergive
For mathematical rigor, distance functions are traditiigna more weight than smaller ones [3, 8, 16, 26].

used to determine the real distances between points. Thesmthough the AD is both a common and conveniently-

distance functions are specific to the terrain or space un@,ﬁhp|e GoF function, it is not useful when comparing regions

consideration. For example, the distance between poin&onyith varying topographies or geographies. This is due to the

axis is the absolute value of the difference between th&ir-cofact that it favors larger distances, and that it does nat tato

dinates. The distance between points on a “smooth” Cartesigcount theelative values of these distances. To compare dif-

plain is the Euclidian distance. Both of these distancetions ferent regions and to also incorporate such relative gtiesiti

report the true inter-point distance in their respectivaces. the Relative Absolute-value Difference (RAD) function giv

However, determining the true distances in a space thatris ng Eq. (2) is often recommended [4]:

uniform and unknown is much more difficult. To determine the

true distance between points in a network or on a non-uniform zi”:—llz'j‘:iH |A(R,P;) — (R, Pj|A)]|

or hilly terrain, one requires additional information so tas RAD= n—1<n _

: “ M- : Yity 2 =it AR Py)
obtain the “correct” distance function. In fact, the prablef =1 &)=t !
finding the distance function that yields the true distarme f The next and third most-common GoF function is the
all points in these more complex spaces may actually be bodbrmalized Absolute-value Difference (NAD), given by Eq.
infeasible and unreasonable. Rather, one may have to re¢gyt[8, 19, 35]. Although like the AD, the NAD uses the sum
to the approximate prediction of the true distance due to thethe absolute values of the differences between the distgan
complex computations involved iexactlydetermining them, unlike the former, it however, normalizes these difference
or due to the fact that the true distance cannot be computgith respect to their respective actual quantities. Thigwal
by merely usingthe information that is provided. the errors for both large and small distances to be weighted

The prediction or DE, is typically done by determining oequally [8, 19]. Thus, while the AD measures the overallgrro
discovering the appropriate DEF. A DEF is a mapping fronhe NAD quantifies the weighted percentage error for each
RY x RY to R, and returns the estimate of the true distanceistance as follows:

)



1 by the boundaries of a given city, but did not perform welliove
NAD — g % IA(R,Pj) — (R, Pj|A)| (3 larger areas [16]. Eq. (7) produced usable results for both a
i;j:|+1 AR, P)) ' network of roads from within a city and which extended to

In spite of the advantage of the above indices, the mi)j}bher cities [16]. The Weighted Euclidean DEF in Eq. (7) out-

commonly-used GoF function is the sum of Square Deviati eformed thd P DEF in Eq. (6); however, both of these were
o t-performed by the Weightdd® DEF given by Eq. (8) [16].
(SD) given by Eq. (4) [1, 3, 4, 8, 10, 16, 17, 18, 26, 35]. The DEF described by Eq. (8) has an advantage over the
)>2 previoustwo DEFs because it contains two learnt parameters.

2 [AR,P)—T(R,PA
SD‘ZU_'ZH( AFP))

This index was also proposed by Love and Morris, a
has useful properties such as its statistical significamzk

(4) As a result, this DEF is more flexible and better able to

adjust to the environment. The percentage improvement for
- (8) over Eq. (7) has a large variation depending on the
ageographical area being studied. In a study by Berens, the

continuity. The SD is both continuous and differentiabléwi percentage improvement, based on the GO_F criteria, ranged
respect to the parametek, This allows the user to employfrom 0% to 11.27% [1, 5]. Berens and Korling felt that the

a gradient decent search scheme to determine the “be%?dgionﬁl %a}]l;:ulation.of.multiple parametersbcogld n(()jiuxe ,
parameterA [1, 3, 26, 35]. Although the SD favors Iargert' ied. The difference in improvement must be viewed against

distances, it does not possess as large a bias as the AD dggsbackdrop of-the considerations ‘?'“e to the environment.
[1, 8, 16]. Berens and Korling reported an AD improvement of 0.12%

and a SD improvement of 0.03% in Germany with 117 cities
i L i and 6786 distances [18]. Love and Morris reported AD and SD
C. Distance Estimation Functions (DEFs) improvements of 2.4% and 8.3% respectively in Germany with
In this section we shall present a brief overview of somgs cities and 100 distances [18]. In the United States, Love
of the common DEFs and their properties, and proceed 4ad Morris reported AD and SD improvements of 10.55%
compare their relative performances. and 34.63% respectively when using Eq. (8) over Eq. (7).
1) LP-based DEFs:The properties of norms are ideal forSome of the reasons that have attributed to the large diitere
a DEF because they are capable of yielding measurable andmprovement are the size of the network tested, the road
“usable” distances. Consequently, the simplest way ofttrga density, and the differences in the road structures. Berens
a DEF, that also possesses the properties of norms or metrigsd Korling stated that “The Federal Republic of Germany
is to use a well-understood and established norm/metrie. Tig a comparatively small country, with a well developed road
most common types of DEFs are those based on the familyetwork. Thus, there is hardly any room for improvement in
of LP norms, traditionally used for computing distances:  the accuracy by abandoning d1” (where d1 is Eq. (8)). While
1/p improvements are small for a well-developed area such as the
L (X) — L p 5 Federal Republic of Germany, the Weightebl DEF shows
p(X) = .;(|X'| : ®) an improvement over the Weighted Euclidean DEF, especially
) = _ in more rural or less-developed road networks.
The variousLP norms have been used as stepping stonesajihough the Weighted.P DEF yields good results, it is out-
to design DEFs, .and some of the most common DEFs ha}ﬁ%rformed by thekLps DEF in Eq. (9) [17] characterized by
indeed, been derived from the norms as shovfhin Table | ‘three parameters. The DEF has been shown to be statistically
(Eq. (6) to (11)), also initially suggested by Love and MsTigironger than the Weightdd® DEF. Of all the DEFs listed in
[16, 17_]. The input to these funct|0ns_ are the co-ordinatggp)|e I, Eq. (8) performed second-best in all types of region
of the input vectorsX; and Xo. In practice, these DEFs are|; performed well in both rural and urban networks, but was
first trained on the subset of the co-ordinates of the C't'%%t-performed by Eq. (9) [16]. Eq. (9) was the best estimator
and their known inter-point distances for the specific regiof, ,rban settings [17]. However, the best DEF for urban areas
under consideration. This training is done so as to obtan tfy 55 the Elliptical DEF described in Eq. (11), which perfodme

“best” parameters for the DEF given the training data. Onggs|| in networks that were not highly developed but did not
the parameters have been determined, the DEF can ther‘p@ﬁorm well otherwise [17].

used for estimating distances in the same region. In 2000, Uster and Love proposed using a Generalized

WeightedLP DEF, given by Eqg. (10). They reported that the

) _generalized Weighteld® norm yields significant improvements
Each of these DEFs has been extensively tested on dlfferﬁﬂt areas with directional “non-linearity”. However, inezs
data sets [1, 4, 8, 16, 17, 18, 19, 26, 31, 35, 37]. In particuld;ii, jittle directional “non-linearity”, (i.e., when thé's are
Eq. (6) performed wefl over a small area, usually descnbe%quab, the Generalized Weighté® has no significant im-

5The cases fop =1, p=2 and p = » represent the Taxi-Cab, Euclidean provement Over. the_ Welghtdd’. .

and Largest Absolute Value norms respectively. TReorms for other values ~ Overall, considering all the DEFs shown in Table I, Eq. (9)

0f6|O (p€R) also have significance in DE. is the best-performing DEF and is the best estimator for the
We apologize for the placement of the tables in the manusdtipras not in o ;

dictated by us, but by the IEEE LaTex style files. generic situation [16, 17] . . .
7In performing comparisons, there are essentially two maifr Griteria: The general conclusion offered in the literature is that the

the AD given by Eq. (1), and the SD specified by Eq. (4). specific DEF should be chosen based on the properties of the



Norms Derived fronlL” norms
DEF Expression Name of DEF Parameters Equation
A (zha b —xa ) L p ®)
F k(zi"zl [Xai — Xai |2)1, 2 Weighted Euclidean Kk @
Fs k(304 [xa —xailP) P WeightedLP k andp ®)
Fa k(ZLy bai 7><zi|P)1/S KLps k, p, ands 9)
Fs (%4 (K * [ — Xz \p)l/p Generalized Weightet {k} andp (10)
Fe (X1 —X2)' M(Xy — %2)]*/2 Elliptical DEF M= { p|;2 péz ] (11)

TABLE I: List of DEFs related to variousP norms and their corresponding parameters.

geographical area in question. Of course, as explained fate the location ofA* and the probability of receiving correct
multi-regional approach for areas with different geogiegh feedback were simultaneously learned, allowing TS-
features, is always superfor SPL to operate in both deceptive and non-stationary

We now proceed with the specific contribution of this paper, Environments.
namely, the use of the the Adaptive Tertiary Search (ATS) in )
DE. In this paper, we shall use the ATS [28] to solve the DE
problem, although any of the other-reported solutions aoul
. . that it is not a hill climbing search, and therefore overceme
The solution that we propose for DE is based on a scheme ) . .
thé problems of being dependent on a starting point and a step

relevant to the Stochastic Point Location (SPL) problefgize_ In [28], the ATS was applied to a stochastic envirortnen

To form_ulate the SPL, we assume that_ there is a Learnlgﬂd the ability of the ATS to function in such environments
Mechanism (LM) whose task is to determine the optimal value

of some variable (or parameted), We assume that there ismakes it ideal for the DE problem.

an Opt|ma| choice foi - an unknown Va|ue, Say* c [07 1] As alluded to abOVe, Oommen and Raghunath used the ATS
In the interest of Comp|eteneSS, we list the available gmist to determing\*, in a bounded interval within a resolution of
to the SPL: accuracy. In their work, the Oracle or Environment is modele

1) The first-reported SPL solution proposed the probleftp @ “Stochastic Teacher” [28], implying that it provides a
itself, and then pioneered a solution operating in gorrect response with a probability greater thab [29]. This
discretized space [24]; Environment (the “Stochastic Teacher”) for the SPL problem

2) The Continuous Point Location with Adaptive Tertiar)PrOVideS feEdb"’_‘Ck about Fhe location of the point in questio
Search (ATS) solution was a solution in which three LAC whetherA* is to the right or to the left of the currently

worked in parallel to resolve it [28]; chosen(n).
3) The extension of the latter, namely the Continuous PointTo determineA* within the resolution of accuracy, the
Location with Adaptived-ARY Search (CPL-AdS), used original search interval is divided into three equal andois
‘d’ LA in parallel [28], and these could operate in truthsubintervalsA', wherei = 1...3. The subintervals are searched
telling and deceptive Environments; using a two-action LA. The LA returns then), the estimated
4) The General CPL-AdS Methodology extended the CPIposition ofA* from that subintervald' € {Le ft,Right, Inside}.
AdS to possess all the properties of the latter, but coufdom these outputs, a new search interval is obtained which
also operate in non-stationary Environments [15];  is based on the decision table given in Table Il. This is
5) The Hierarchical Stochastic Search on the Line (HSSr¢peated until the search interval is smaller than the uéisol
proposed that the LM moved to distant points in thef accuracy. The search interval will be reduced to yield the
interval (modelled hierarchically), and specified by a trek@quired resolution within a finite number of epochs because
[40]; the size of search interval is non-increasing [28]. Aftee th
6) The Symmetrical Hierarchical Stochastic Search on tisearch interval has been sufficiently reduced, the midpafint
Line (SHSSL) symmetrically enhanced the HSSL tthe final search interval is returned as the estimate foiThe

work in deceptive Environments [42]; ATS algorithm can be seen in Algorithm 1.
7) The Adaptive Step Search (ASS) used historical in-

formation W|th_|n the last three steps to determine the ot o o3 New Sub-Interval

current step size [33]. inside | Left Ceft AL
8) The Thompson Sampling (TS)-guided Stochastic Point Left Left Left A;

Location (TS-SPL) scheme introduced the first Bayesian Right | Inside | Left A

. : Right | Left Left AtUA?

representation of the SPL, that also overviewed the Right | Right | Inside A3

complete search space at every time instant [11, 12]. Right | Right | Left A2UA3

Based on the so-called Thompson Sampling [14], both Right | Right | Right A3
8The literature also reports various neural and Vector Qzeiin schemes TABLE II: Decision Table

suitable for DE. Since we are using ATS and LA-based schemeedrning
the parameters of DEFs, these are not surveyed here.



Algorithm 1 ATS Algorithm Algorithm 2 TwoDimensionalATS

Input: The Resolutionp Input: The Resolutiongy andpp
Output: Estimate ofA* Output: Estimates ok*and p*
Method: Method:
1: repeat 1: repeat
2. (AL, 0%,A%) « GetpartitiongA) 2:  for j «+ 1to 3do
3. for j « 1to3do 3 ExecuteLA! for k
4 Get position ofA* from LA; 4 ExecuteLA! for p
5. end for 5. end for
6: A<« Get new search interval from Table I 6: GetNewlnterval fork - From Table I
7: until Size of Interval< p 7. GetNewlnterval forp - From Table |
8: A* + Midpoint(A) 8: until (Size of_Intervalk) < px) A (Size of_Interval(p) < pp)
End Algorithm 9: k* «+— Midpoint(Finallnterva(k))

10: p* - Midpoint(Finallnterva{p))
End Algorithm

IV. ATS FORDISTANCE ESTIMATION

The ATS proposed by Oommen and Raghunath [28] wa$ its current search interval. This is a consequence of the
initially used to solve the SPL problem, and subsequentiyonotonicity of the DEFs, as discussed in Section IV-C.
for parameter learning when interacting with a stochastic We shall now describe in greater detail the various modules
teacher/compulsive liar [28, 29]. For both of these prold#emof the system.
one had to determine only a single unknown parameter. Our
aim is to utilize these core concepts in DE where one has 1o Corresponding LA
to learn/estimate many parameters simultaneously. Inrdode
adapt the ATS to find more than a single parameter, we mus
specify the corresponding “Environment”, and also both t
process of updating multiple search intervals and the is§ue
how the set of LA interacts with it.

Fach LA is provided with two inputs, namely the parameter
at it is searching for, and all the search intervals. Each
LA is required to yield as its output the relative location
of the parameter in question. It does this by producing a
decision (Left, Right or Inside) based dts final belief after
communicating with its specific Environment.

A. Updating Search Intervals The LA starts out with a uniform belief, 50% for both “Left”

Let us first consider the case where the DEF has two para‘flgmn—d Right'. It then makes a decision based on its current

eters, say and p. The strategy for our search will be to use elief. If the decision is “Left”, then the LA picks a point
the ATS to determine the best value foandp, sayk* andp’, in the left half of the interval at random; otherwise (i.det

. . . . decision is “Right”) the point is chosen from the right half
respectively. However, it is crucial that thoeder Of updating of the interval.gOnz:e thepdecision is made, the LAgasks the

- .  WIETE vironment for a response. The LA uses a Linear Reward
determining these multiple unknown parameters. If thisas n . o
Irtlactlon (ri) update scheme, and so the current belief is only

done correctly, it may result in the premature reduction Ot dated if the Environment's response is positive.

a search interval. In the SPL problem, the subintervals wer he LA and the Environment repeat this loop for a large

first searched using the LA, after which the search interes W umber say\.,, iterations. After they are done communicat-
updated. This order of executing the searching, and the'rmunin the, LA O:G)duces its'out ut asy er Algorithm 3. If the
of the intervals must also be maintained while searchingifer LAg\s belief ofp“Ri ht" is reatelzor than E—a thge arame.ter in
two parametersk andp, simultaneously. In other words, all the uestion is 1o the?ri ht s?de of the curren't seafch inte
subintervals must be searched before any interval is u¢dat% : s g N . . W ]

. So_its output is “Right”. Conversely, if the belief of “Lefis
Each search interval must undergo the same search Process as ihan 1 ¢ the LAs final decision is “Left”. If neither
in the case of the single-parameter ATS. The only differésce’ ' ) :
that the search intervals must be updated simultaneouiséy. f these cases emerge, the LA does not have a belief greater

o o : 2 than 1— ¢ that the parameter is to the “Right” or “Left”, and in
order (or sequence) for achieving this is shown in AlgorlthrHﬂs case, the LA decides that the parameter’s optimal vialue
2 )

The set of LA operate in the same manner as in [28], excférgade the present interval. The entire algorithm is falhg

for how it deals with the additional parameters. When t e\;?:ir:g Q)Ig?f:gg:]t 3, wherebr (0 < 6z < 1) is the (r))
LA is learning information about how it should update the '
value fork, it uses values op from within its current search
interval and vice versa. As a result, each LA operates wifr The Corresponding Environment

the knowledge of theurrent search interval o&ll the other  Each LA requires feedback from a specific Environment.
parameters. This feedback informs the LA if it has made the correct

This process of searching for multiple parameters can Hecision, i.e., choosing the right or left half of the subinal.

done in parallel by assuming that for each learning loop, tlitds easy to obtain this answer because it only involves glsin

other parameter’s value is either the maximum or the minimuparameter at a time. To further explain this, consider thé& DE



Algorithm 3 The LA algorithm 1) If k has to be decreased, the valugahust be chosen so
Input: Parameter to be determined, Search interffa),No. as to minimize the decrease knso that it is achieved
l\_lotation: L and pr are the probabilities of choosing the left and in a conservative manner. Thus, if the paramétes
right Slfb"me_r\_/als respectlv.ely. ) chosen from the left half of the search interval, its value
Output: Decision€ {Left, Right, or Insidg in the DEF is chosen randomly from the left-half of

Method: K's region, but withp being atits largest value pyax.

1: for i =1 to Ny do If under these settings, the estimated distance based on
2:  CurrentAction<— ChooseAction the DEF is larger than or equal to the true distance,
3: Feedback <- GetEnvironmentsResponse(CurrentAction) - the Environment provides the corresponding LA with a

From either Algorithms 4 or 5

; Reward.

g i ﬁeéi?;cnktg&i;gfffgmhen 2) If the parametek is chosen from the right half of the

6: PR = Pr*(1—6R) search interval, its value in the DEF is chosen randomly
7 pL=1-pr from the right-half ofk’s region but withp being atits

8: end if . . smallest valuepwin. Again, if under the latter settings,
12:_ if %Biegﬁc(t'lofe; Righthen the estimated distance based on the DEF is smaller
11 pr=1—pL than or equal to the true distance, and the Environment
12: end if provides the corresponding LA with a Reward.

1431 ensr}grlf The analogous two possible cases for Algorithm 5 are the
15: if pr>1—¢ then following:

16:  Return Right

17: else if pL > 1—¢ then 1) If phas to be decreased, the valukafiust be chosen so
18: Return Left as to minimize the decrease jinso that it is achieved in

;gf elssetum Inside a conservative manner. ff is chosen from the left half

21 end if of the search interval, its value in the DEF is chosen
End Algorithm randomly from the left-half ofp's region, but withk

being atits largest valuekvax. If under these settings,
the estimated distance based on the DEF is smaller than

in Eq. (8) which can be simplified into two equations, Eq. (12)  or equal to the true distance, the Environment provides

and Eq. (13) as below: the corresponding LA with a Reward.
2) If the parametep is chosen from the right half of the
F(k, p) = k- F1(X1,X2, p),and where, (12) search interval, its value in the DEF is chosen randomly

from the right-half ofp’s region but withk being atits
§ 1/p smallest valuekwin. Again, if under the latter settings,
the estimated distance based on the DEF is larger than
Fr(Xg, X = i — Xoi|P . 13 ) . .
1%, %2, p) (i;m' il ) (13) or equal to the true distance, the Environment provides

the corresponding LA with a Reward.
Although nothing specific can be said about the monotonic- P g

ity characteristics of (k, p), we see from Eq. (12) that by In both the above cases, the Environment otherwise yields a
virtue of the fact that it is always positive and that it can beegative or Penalty response.
factored, it is monotonicallyncreasingwith k for any fixed
value, p. Similarly, from Eq. (13), since #X3, Xz, p) is not
a function ofk, it is monotonicallydecreasingwith p for
any fixed value ofk. These properties allow the Oracle t
. . S Intervals ofk and p.

respond according to Algorithm 4 when findikgand for the - \tation: The evaluation of (k, p) is done at a poink randomly
corresponding LA to move in the desired direction (i.e.,f{Le chosen from the interval under consideration, and witheing at
or “Right”) in the space that only involves the single paréne either the maximum or minimum value in its region.
k. The contrary monotonicity properties allow the Oracle tQutput: Decisionc {Agree, Disagrek as far as the parametkris
respond according to Algorithm 5 when determinipgand concerned.
for the corresponding LA to move in the desired directioa.(i. Method:
“Left” or “nght”)_ in the space that m_volves onlyp. . if ((Choice—= Left) A (F(k, pvax) > TrueDistance)then

We now consider how we can optimally take advantage o%: return Agree
the above-mentioned monotonicity properties. This is dmne 3: else if((Choice== Right) A (F (kr, pmin) < TrueDistance))hen
the DEF using either thMax or Min values of the other 4: return Agree
parameter while it evaluates the estimated distance betwe&: €/se _

. . . L 6: return Disagree

the points under consideration. Whether the evaluatiowniged 7 end if
with the Max or Min point itself depends on the choice thaEnd Algorithm
the LA is making. The two possible cases for Algorithm 4 are
listed below:

Algorithm 4 EnvironmentResponge(
dnput: Training Distances; Action chosen by the LA, and the current




Algorithm 5 EnvironmentResponsg) F(k, pmin) < Tdist,
Input: Training Distances; Action chosen by the LA, and the curre3 gkp,B] - such thatvk € [ko,B], F(k, pmax) < Tdist or
intervals ofk and p. F(k, pmin) > Tdist

Notation: The evaluation of (k, p) is done at a poinp, randomly - L .
chosen from the interval under consideration, and Witheing at These partitions fully divide the search interval due to the

either the maximum or minimum value in its region. monotonicity properties of (-,-). Consequently:
Output: Decisione {Agree, Disagref as far as the parameteris Pr(error)

concerned.

Method: = Pr(error|k € P1)Pr(k' € P1)

=

/! !
if ((Choice== Right) A (F (kuin, pr) > TrueDistance)then +Pr(error|k’ € P2)Pr(k' € P2)
return Agree +Pr(error|k’ € P3)Pr(k € P3)

. else if ((Choice == Right) A (F(kmax, Pr) < TrueDistance))
then

4 I return Agree By considering the P2 term more clearly, we see that:

5: else

6: return Disagree Pr(error|k’ € P2)Pr(ky <K < ko)

7: end if , , _ , _
End Algorithm < Pr(error|k' € P2,K' < kmid)Pr(ki <K < kmid)
+Pr(error|k € P2,K < kmid)Pr(kmig < K <kz)

o _ = (1Pr(ks <K < Kmig) + (0)Pr(kmia <K < k)

D. Thee-optimality of the Multi-parameter ATS — Pr(k < K < knia)

We now consider the-optimality of the Multi-parameter ] )
ATS. The proof of the scheme relies heavily on the procWe now observe thdt* is to the left and that the Environment

of the corresponding single-parameter ATS which was earli@ould thus always provides a negative response. Since the
rigorously proven in [28]. Consequently, to avoid repetiti €or in the intervalsA ki) and[kp, B] come entirely from the
we shall merely cite the results from [28] wherever they a ta:

needed, and not re-iterate the fine details of the proofsef th Pr(error|k: € [Aki]) <0.5, and
assertions here. Pr(error|k’ € [ke,B]) < 0.5.

To prove that the team of LA described above opegate This renders the probability of the Environment returning
optimal, we will first show that the Environment that we hav@" €rror to be:
defined above provides the correct response with0.5. Pr(error) < (0.5)Pr(A< k' <ki)+Pr(ky <k <
Lemma 1:The Environment defined above provides th¥mid) +(0.5)Pr(ka <K <B) o
correct response with > 0.5 whenever the training data has/Veé now letx = 3=x, andy = 5=%. Then:
an accuracy greater than 50%. _ _ Pr(error) < (0.5)x+0.5—x+ (0.5)y Let x>y, sincek* is to
Proof: We shall first prove the claim when we are dealing
with the parametek and whenp is maintained constant. The = Pr(error) < (0.5)x+0.5-x+(0.5)x
proof for the alternate case when we are dealing with the= Pr(error) < 0.5
parametep and wherk is maintained constant follows almost Similarly, if k*
identical arguments. Pr
Let us start with an arbitrary learning loop for the paramete
k. Letk’ be the randomly chosen value fofor this loop, and
let the current search interval frbe denoted agy = [A, B].
Note that the DEFF (k, p) is monotonically increasing with
respect tck. Now, with respect to the current interval fprlet
Pmax be the value op that minimize$ F(-,-), in this region, Y - i
and letpvin be the value that maximizeg it.> We specify below * If )‘* !s Igft of Ali’j then PrOJ—_Lef_t) -1
the probability of the defined Environment producing anerro * 'f A" is right of &, then PrO’=Right) — 1
To do this, we consider two mutually exclusive and exhaestiv * If A™is insidesy, then PrOJ=Left, Right or Center)-> 1.
cases, namely wheki is be to the left of the current interval, Proof: The proof is identical to the one found in [28] and is
and whenk* is to the right of the current interval. thus omitted. n
Case 1 Let k* be to the left of the current interval, affctist Lemma 3:Using theLr| scheme with a paramet@rwhich
be the true distance provided by the points under consideratis arbitrarily close to zero, the following is true:
in the training data. « If (Ol=Left) then Pri* being left or inside oﬂﬂ()_ —1
We now partition A into three mutually exclusive and , |f (Oi=Right) then Pr§* being right or inside oAﬂ() -1
exhaustive parts a§ = PLUP2UP3, where: P1 A ki] - such | f (Oi=Inside) then PX* being Inside o)) — 1.

that vk € [A k1], F (K, pmax) < Tdist or F(k, pmin) > Tdist, . . . . ,
P2 =ky, ko] - such thatvk € [k, ka], F (k, pwa) > Tdist and ;rsszr;r:;groof is identical to the one found in [28] an.d is

9The reader must remember thatk, p) is monotonicallydecreasingwith Lemma 4:If the alg(_)”thm uses theg Sam_e S(_:heme at
respect top. all levels of the recursion and a paramefiearbitrarily close

W N

were to the right of the current interval,

(error) < 0.5.

Combining these assertions, we see that the Environment

provides the correct response wigh> 0.5, if x >y. Hence

the result! ]
Lemma 2:Using thelLg, scheme with a parametérwhich

is arbitrarily close to zero, the following is true:
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to zero, the LA converge at every level with a probability adata set was to show that under ideal conditions, the ATS can

close to unity as desired. always determine the optimal parameter

Proof: The proof follows from the above, and is due to the Each DEF was tested on three sets of noiseless data. The

g-optimality of the LA used in every level of the schem@ first set had 29 points, the second had 75, and the third had
Theorem 1:The set of decision rules given in Table Il is100 points. We show below examples of runs for the Weighted

complete. Euclidean DEF and the Weighté® DEF, where the accuracy
Proof: Again, the proof is identical to the one found in [28)was reported over 100 runs of each data set. Each LA's reward
and is thus omitted. B parameterr) was set to 2. We used ar value of 01 and

The final theorem about the entire scheme follows. N = 2,500. These values were chosen through preliminary

Theorem 2:The unknownA* is always contained in the testing and lie within the generally excepted range of \&lue
subinterval encountered in the subsequent invocation ®f thse for these types of LA. We emphaszie that the algorithm
algorithm and thus the algorithm finally converges to a valugas not overly sensitive to these values because the degisio
arbitrarily close toA*, assuming the following conditions:  of the LAs were only used to update the search interval and

« The algorithm uses theg, same scheme at all levels ofot the final parameter. As a result, only requiring a “bélef

the recursion. 90% helped the convergence times, sincelthel A converge
« The parameteb is arbitrarily close to zero. slowly as the probability approach the absorbing barrzeso
« The parameteN, is sufficiently large. and unity.

Proof: The proof of this theorem, which is true for every Ievelh b) _\Nﬁiggted Elgdclidean DEF In this caser;_V\;]e Examinled
of the LA, is identical to the one found in [28] and is thudh® Weighted Euclidean DEF (Eq. (7)), which has only a

omitted. This concludes the proofs of the algorithms. = single parametek. The reason for considering such a simple
DEF was to demonstrate how the ATS functions in the new

Environment pertaining to DE. Here we observed that the
ATS always succeeded in finding the optimal parameter for
a DEF that contained only a single parameter in a noiseless
In this section, we present the results for the 2-dimensionshvironment. As a result, all the errors were zero with a
DE using the ATS. We show that this method of estimatiogtandard deviation of zero over 100 executions of the search

works for three different DEFs where, as mentioned, the firsigure 2 shows a pictorial representation of the ATS in this
two DEFs, Eq. (6) and Eq. (7) each contained only a singégwironment.

parameter that must be determined, either p respectively.
The last DEF, Eqg. (8), contained two parametérsand p.

V. TESTING AND RESULTS. 2-DIMENSIONAL
ENVIRONMENTS

. ATS for K
To compare the results we used four GoF measures. The first 2
three, RAD, NAD, and SD were presented in Section II-B, in 1.9
Eq. (2), Eq. (3) and Eq. (4) respectively. The last GoF measur 1.8 ] { { pEoE e e
was the Expected Percent (EP) error for each distance in the 17
region under consideration. The EP error was given by Eq. § 16
(14): g s
n-1 n N . § 14
NS5 AR Py) 12
The SD and NAD GoF functions were useful for comparing 11 ¢ Estimate of K
the results against the methods reported in the Iitgramﬂeey s 4 e s 10 1
are some of the most commonly-used GoF functions; however, Epoch

the RAD and the EP were useful when looking at the values
by themselves. Th®RAD is, in fact, the percentage error for

; ; ; Fig. 2: The progress of the ATS scheme for a typical noiseless
the entire region. The EP also has a useful physical meanl_rg Vironment for the DEF given by (Eq. (7). Here. the blueedin

Itis the expected error for an estimated distance in th@®regiepresent the current search interval, and the blue diasemesent
In question. the current estimate df.

A. Resullts for the Noiseless Data c) LP DEF: We now consider thé, DEF from Eq. (6).

a) Experimental Setup The first type of data was noise-This DEF also has a single parameter, and consequently, the
less. This set of noiseless data was constructed by randoimylyical ATS is very similar to the one shown in Figure 2. The
generating points in the region and it employetwnvalues result was identical as for the Weighted Euclidian DEF, and
of k andp to generate the “true” distances from the DEF beinig omitted in the interest of space. All the errors were dyact
tested. These known values which were used to create the dajaal to zero, because the ATS always converged to the actual
sets will be called the “Actual Values”. The consequence ohlue of p.
creating the noiseless data in this manner is that the aityer- d) Weighted B DEF:: The final DEF that we studied
distances perfectly fit the DEF. The primary purpose of thisas the Weighted.P DEF from Eq. (8). This DEF has two
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Epoch k’s Current p’s Current

parametersk and p, and as a result, the ATS had to simul- Search Interval Search Interval
taneously search for both the parameters in the joint space. 22 [6.0396743, 6.040656] | [6.630701, 6.703157]
Ith h thi ilv d it did affect th I 23 [6.0396743, 6.040329] [6.642777, 6.693094]
Alt oug IS was easily done, It did affect the minimum 24 [6.0397835, 6.040238]| [6.651163, 6.6861053]
resolution. This is because the reduction of the searchviite gg [g-ggg;gzg, 2'83883221 [g-gg?gg?lﬁ Gésgégig]
for each parameter was depended on the resolution of the 27 [[5_039952"6,6400863]] [[e.éesssgé, 5.675541}1]
search interval of the other parameter. In the example for ;g [g-gggggg g-gz‘rggﬁi] [%%665771%&6'66667723793176]
whic_h_the results are sut_)mitted, the ATS for the Weighted 20 {6:039985 6:0400214} [%_668084"6,67200331]
Euclidian DEF, the resolution was set t®000001; however, g; [g-(?;:g:oi 66052(?(?5& [%%%%71%714’6666771%‘;519]
for this ATS the r_esolutions fok and p were set to (])0001_ 33 [[6_039996"6_540008]] [%_669506"6_6708183]]
and Q001 respectively. Table Il shows an example of a typical 34 [6.039996, 6.0400043] | [6.669506, 6.670381]
ATS for the Weighted_P DEF in a noiseless environment. The [ _Estimated Values] k=604 | p=6669944 |
for this ATS | t (alth h t tl [ Known Values | k' =6.04 | p* =6.67 |
errors for this were almos (a ough not exactly) zero, = 563555003
which is due to the larger resolutions that we had employed. NAD 6.86243446778445 — 4
RAD 2.31173113349564B—7
EP 2.407871743082266— 7
- ATS forK and P TABLE III: Example run of the ATS with théAeighted P DEF on
the noiseless data.
9
8
o 7 Figsessereececnns magnitude of the distance, where the proportion was based on
£ s a Gaussian distribution as below:
?
a .
£ 5 . TrueDistance
g Noise= ——— %X (15)
3 4 10
% H}Hh where, X is a random Gaussian variable, N(0,1)
2 © Estimate of K ) i
# Estimate of P Due to the noise that was added to the distances, the
s w0 15 20 25 30 “Actual” values, that are used to construct the data, was not
Epoch necessarily the “Benchmark” values to predict the distance

for the data set. For these noisy data sets, the “Benchmark” o

Fig. 3: The progress of the ATS scheme for a typical noiselegg[mmI param_et_er_was then found u3|ng.a5|mple hill-climgpi
environment for the DEF given by (Eq. (8)). The blue and reesi search that minimized the SD error. This parameter was then

represent the current search intervals for the respectvanpeters, compared to the “Estimated” values, in order to verify the
and the diamonds represent the current estimates of thenptews. accuracy of the ATS's estimate.

The Hill-climbing search that we applied started at the
c}falues found by the ATS search. It should be noted that other
multiple parameters in a noiseless environment. starting points were tested and produced the same results;

We again emphasize that the errors in the example run QVever, the search took longer to converge. Starting ftem t
typical for the ATS for the Weightetl? DEF in a noiseless values found by the ATS, the Hill-climbing search compared

environment. This is confirmed in Table IV, where we repoftS cUrent value (say) to theA +& andA — ¢, and moved

the average errors and standard deviation of 100 runs of fﬂethe value that minimized the GoF function. This process

ATS. It should be noted the “Actual” values were alway¥"as repeated until the current valdeminimized the GoF
contained in the final search intervals. We also mention tﬁHPCtmn' The H|II-cI|mb|ng search had to caIcuIaFe theuenl
if the resolution was set to be too small, the ATS WOU|8f the GoF at every time step, and as a result, this search was

not be able to reduce the search interval to the requirE@MPutationally, very expensive. .

size causing it to continue, until the process was manuallyEach of the DEFs was trained on 70% of the data set, and
terminated. Thus, while we had set the resolution to be tHe t€sting was conducted on the remaining 30%. The points in
convergence requirement, one could alternately have tmed the training set were randomly chosen from the whole data set

number of epochs as the convergence requirement. Under thédtile we did not follow a rigorous cross-validation process
circumstances the resolution would vary from run to run. W€ believe that the error obtained is a good representafion o
the performance of the corresponding scheme, and the only

] major difference can be seen in the larger standard demgtio

B. Results for the Noisy Data This was done for all three data sets, where the first set had 29

a) Experimental Setup::We now consider the more points, the second had 75 and the third had 100 points. One
realistic case of testing the ATS on noisy data sets. The set@ample of the ATS is presented for the Weighted Euclidian
were constructed in the same manner as the noiseless @ and the Weighted, DEF for the data set of size 75.
sets, except that noise was added to the true distances, THie overall characteristics of all three DEFs were examined
to create the noisy data, an additional term was added ftw the three different sets of noisy data. These charatiesi
each distance. This additional term was proportional to tleere determined by examining the accuracy of each ATS over

Figure 3 shows a pictorial representation of an ATS f
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Data Set N=29 N=75 N=100
Error Average Standard Average Standard Average Standard
Type Error Deviation Error Deviation Error Deviation
SD 206x107 | 469x107 | 1.04x107 [ 157x10 7 | 417x10 " | 877x 10/
NAD 6.84x107° | 1.05x10™% | 9.41x10* | 9.47x10* 0.0017 0.0019
RAD 1.66x 1077 2.54x 1077 3.27x 1077 3.34x1077 3.23x 1077 3.62x1077
EP 1.69x 107 2.59% 1077 3.30x 1077 3.32x10°7 3.58x 1077 3.93x10°7

TABLE IV: Results for 100 runs of the ATS with the Weighté® DEF on the noiseless data sets.

100 runs. Observe that for each of these 100 executions of the ATS for K and P

ATS, the noise and “Actual values” change. 03T
b) Weighted Euclidian DEF:The errors of the “Bench- o o Estimate of K
mark” and “Estimated” values shown in Table V were almost ; ¢ Fmaeer?

equal. While the “Benchmark” value performed better on the
training data than the “Estimated” value, the “Estimatediue
performed marginally better than the “Benchmark” value whe

o
©
E
n
applied to the testing data. The difference between thesimo = JHjgarmseseereserereances
oy . . . [} 1y
both cases are “small”; however, it is interesting that ti&SA 5 o | |14
performed better on the testing data than the optimalliyéich 5
parameter. o
}Eiiiitt#QOOQQOQQOOQGQQQ
Error | For Estimated Value:| For Benchmark Value: 1
Type k= 1.3528224 k= 1.346091 0 5 10 15 20 25 30
Training Training Epoch
SD 42773 42552
NAD 10563 10536
RSE 8:822% 8:8222 Fig.l 4: The progress of.the ATS scheme for a typical nojseless
Testing Testing environment for the WeightedP? DEF. The blue and red lines
SD 2416 2419 represent the current search interval for the respectivanpeters,
NAD 6.60 6.65 and the diamonds represent the current estimate of the ptaesn
RAD 0.0537 0.0545
EP 0.0550 0.0554
TABLE V: Results for the typical run for the case when the data
was noisy and it used the Weighted DEF. values, where the RAD and EP errors were withia% of
each other.

Table VI shows the average errors of 100 ATSs for the
Weighted Euclidian DEF on each of the noisy data sets. The
errors for the “Benchmark” value and “Estimated” valueg;' Results for the Real-World Data Sets
of k produce very similar errors; there was less thab%® a) Experimental Setup:The final test for the ATS was
difference between the “Benchmark” and “Estimated” valuegone on real-world data sets, since the “proof of the pudding
for both the RAD and the EP errors. These results cleaily, indeed, in the eating”. This data consisted of three, sets
demonstrate the success of the ATS for DE in a noigyhich in turn involved 29, 97, and 561 cities each. The
environment. data sets involving 29 and 561 cities were obtained from the
c) LP DEF:: We again ran the ATS 100 times on théMP-TESTDATA (the TSPLIB Symmetric Traveling Salesman
L, DEF which incorporated noisy data. The results are shovoblem Instances) [32]. The data set with 29 points isditle
in Table VII. These results are similar to those obtained fobays29.tsp”. This data was collected from cities in Ba&ari
the Weighted Euclidian DEFs, since both the “Benchmarkind records the inter-street distances and the locatiotfseof
and “Estimated” values df produced almost identical testingcities. The data set involving 561 points is titled “paSéf't
errors. The difference between the “Benchmark” and “Estaénd also reports the inter-street distance and the co-atetin
mated” values for both the RAD and the EP errors were legf the cities. The data set with 97 cities was obtained using
than 01%. Turkish cities. The co-ordinates were obtained from [3,, 26]
d) Weighted B DEF:: The ATS for the Weighted.? and the distances were calculated using Google maps [13].
DEF was performed on the noisy data. Figure 4 shows aObserve that for data of this type, there are no “Known”
pictorial representation of an ATS for multiple parametiers values ofk and p. This is because the data was mo¢ated
a noisy environment. and therefore did not depend on any “Known” values. The
The average testing errors for 100 runs of the ATS using thBenchmark” values were again used for comparison, and
WeightedLP DEF is shown in Table VIII. The errors for thisthe same hill-climbing search was used to determine the
norm were smaller than the errors for the other two normienchmark” values.
This is an anticipated result because the Weight@dDEF b) Weighted Euclidian DEF::Table IX shows the result
had two parameters, and this concurs with the results fouftd the three data sets when the ATS used the Weighted
in the literature [1, 5, 16, 18]. The errors for the “Estindite Euclidian DEF. The standard deviation for the “Benchmark”
values were are very close to the errors for the “Benchmarkélues was always zero. This is because we were not changing
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Data Set Size N=29 N=75 N=100
Error Average | Standard | Average | Standard | Average | Standard
Type Error Deviation Error Deviation Error Deviation
Estimated Estimated Estimated
SD 23931 8255 70.71 16.78 76.57 2116
NAD 1.99 0.4636 14.68 3.29 1071 2.30
RAD 0.0546 0.0131 0.0572 0.0123 0.0564 0.0123
EP 0.0553 0.0129 0.0580 0.0130 0.0564 0.0121
Benchmark Benchmark Benchmark
SD 24080 8354 70.55 16.64 76.37 20.81
NAD 1.99 0.4596 14.66 3.27 10.69 2.29
RAD 0.0548 0.0132 0.0574 0.0124 0.0565 0.0124
EP 0.0553 0.0128 0.0579 0.0129 0.0563 0.0121

TABLE VI: Results for 100 runs of the ATS with the Weighted Bdmn DEF on noisy data sets.

Data Set Size N=29 N=75 N=100
Error Average | Standard | Average | Standard | Average | Standard
Type Error Deviation Error Deviation Error Deviation
Estimated Estimated Estimated
SD 33038 89.67 94.39 1135 22046 27.79
NAD 2.68 0.41 19.23 140 3215 2.58
RAD 0.0724 0.0110 0.0744 0.0058 0.0726 0.0063
EP 0.0744 0.0114 0.0760 0.0056 0.0739 0.0059
Benchmark Benchmark Benchmark
SD 32754 88.62 94.01 1111 22003 27.92
NAD 2.66 0.41 19.20 1.40 3211 2.58
RAD 0.0720 0.0109 0.0744 0.0057 0.0727 0.0063
EP 0.0740 0.0113 0.0759 0.0055 0.0738 0.0059

TABLE VII: Results for 100 runs of the ATS with theP DEF on the noisy data sets.

Data Set Size N=29 N=75 N=100
Error Average | Standard | Average | Standard | Average | Standard
Type Error Deviation Error Deviation Error Deviation
Estimated Estimated Estimated
SD 99.38 85.67 2890 2450 57.95 4412
NAD 0.75 0.62 5.60 4.35 8.13 6.11
RAD 0.0208 0.0171 0.0218 0.0167 0.0186 0.0138
EP 0.0208 0.0172 0.0221 0.0172 0.0187 0.0141
Benchmark Benchmark Benchmark
SD 85.36 7104 24.85 1830 5173 37.37
NAD 0.70 0.56 5.20 3.76 7.67 5.68
RAD 0.0194 0.0155 0.0203 0.0147 0.0176 0.0129
EP 0.0193 0.0156 0.0205 0.0149 0.0176 0.0130

TABLE VIII: Results for 100 runs of the ATS with the Weighted® DEF on the noisy data sets.

Data Set Size N=29 N=97 N=561
Error Average | Standard | Average Standard | Average Standard
Type Error Deviation Error Deviation Error Deviation
Estimated Estimated Estimated
Value 0.2230 1.6259 1.3808 0.0100 0.1635 0.0010
SD 23.66 0.18 2005385 12984 1759754 78893
NAD 1.82 0.01 83.62 0.38 223776 5105
RAD 0.0406 0.0001 0.1268 0.0015 0.1448 0.0043
EP 0.0507 0.0002 0.2060 0.0009 0.1576 0.0036
Benchmark Benchmark Benchmark
Value 0.2260 0.00 0.9960 0.00 0.1660 0.00
SD 2832 0.00 3548989 0.00 1588077 0.00
NAD 2.02 0.00 14193 0.00 212357 0.00
RAD 0.0438 0.00 0.3082 0.00 0.1350 0.00
EP 0.0562 0.00 0.3496 0.00 0.1496 0.00

TABLE IX: Results for 100 runs of the ATS with the Weighted Hd@an DEF on the real-worlds data sets.

the data set for each run, as in the previous two types of datdl climbing because the errors reported here are thenggsti
The reason for doing multiple runs on the same data set wesor, and the hill-climbing was trained using the erronir
to see how the ATS behaved. the training set.

The ATS out-performed the hill-climbing for the data sets The results of this test are encouraging because the ATS

of size 29, and 97. For the “bays29” data set, the ATS had |edas abl_e o compete with the hill-climbing scheme, that had
than a 1% advantage for both the RAD and EP. When testRRy @ single optimum. To better_ comprehend the performance
on the data set from Turkey, the ATS out-performed the hilll the ATS, one could also possibly compare the results of the
climbing scheme by over 17% and 5% for the RAD and E [I-climbing sc.heme with the maximum and minimum errors
respectively. For the larger data set, “pa561”, the hillabling that the ATS yielded.

did out-perform the ATS, but by less than 1% for both the c) LP DEF: Table X shows the results for 100 runs of
RAD and EP errors. The ATS was able to out-perform ththe ATS search using theP norm on the real-world data.
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Data Set Size N=29 N=97 N=561
Error Average Standard | Average Standard Average Standard
Type Error Deviation Error Deviation Error Deviation
Estimated Estimated Estimated
Value 25.0 0.00 0.8044 0.00 25.0 0.00
SD 7132652 0.00 2765057 0.00 861047243 0.00
NAD 11104 0.00 10320 0.00 5419361 0.00
RAD 3.0184 0.00 0.1731 0.00 3.7626 0.00
EP 3.0844 0.00 0.2542 0.00 3.8175 0.00
Benchmark Benchmark Benchmark
Value 25.0 0.00 1.4565 0.00 25.0 0.00
SD 7132652 0.00 2968746 0.00 861047243 0.00
NAD 11104 0.00 12773 0.00 5419361 0.00
RAD 3.0184 0.00 0.2661 0.00 3.7626 0.00
EP 3.0844 0.00 0.3146 0.00 3.8175 0.00

TABLE X: Results for 100 runs of the ATS with theP DEF on the real-world data sets.

Overall the errors were extremely large, over 300% error For the noisy data sets the benchmark values and estimates
for the RAD and EP errors for the data set of size 29 andlues were very close, and resulted in similar errors withi
561. This can be attributed to two main reasons; firstlthe 0.1%. The ATS did not reduce its search interval at each
norm had very limited predicting power, and second, both thieration; however, it was able to reduce the search inteova
“Estimated” values and “Benchmark” values were actually #ite desired accuracy with additional epochs. If the numiber o
the maximum value of the ATS search interval. Regardlesslefirning loops per epochsl{) were increased, it would have
how this maximum value was changed, both the ATS and theen more likely to reduce the search interval at each epoch.
hill-climbing converged to the largest value. It should lsded The ATS was able to accurately determine the parameters of
that the change in the DEF decreased for larger valugs of all three DEFs in a noisy environment.

The LP norm did a much better job of estimating the In the real world setting, the ATS was competitive with the
distances for the Turkey data. This may be due to the typdl-climbing search. While the hill-climbing search alys
of network and region under study. The errors are still higlound the same values, the ATS had small variance of the
but both the ATS and the hill-climbing search converged tealues. Both the ATS and the hill-climb search produced
values within the search interval. The ATS out-performeal thsimilar but large errors for the data sets of size 29 and 561
simple hill-climbing search by about 5% for both the RADusing theLP DEF. These large errors are due to the predicting
and the EP errors on the Turkish data. abilities of the LP DEF. The similarity between the ATS

d) Weighted B DEF:: When the ATS is used in conjunc-and the hill-climbing search shows that the ATS is still a

tion with the WeightedLP DEF, the ATS out-performed the competitive search method. Overall the ATS found values tha
hill-climbing search, as shown in results in Table XI. While were competitive with the standard hill clime method.
ATS and the hill-climbing search performed very similathge The most significant contribution of this work was that the
ATS had a slight improvement over the hill-climbing searchATS did not require the use of GoF functions, which we

Both the data set with 29 points and the data set with $elieve is a pioneering and novel contribution.
points had ap value that is close to 2.0. As a result, the
WeightedLP DEF had a similar performance to the Weighted
Euclidean DEF. For the data set with 561 points, the ATE The ATS
produced an average value of about 2, whereas the hill- "~
climbing search'sp value was 174. This change irp value In this paper, we considered the Distance Estimation (DE)
resulted in a larger difference in the accuracy of the egtona Problem that has been studied for almost four decades. It
of the distances between the ATS using the Weighte®EF involves estimating the real-life distances between jsoint
and the Weighted Euclidean DEF. Finally, the ATS using tH8e Cartesian plain or in a geographic region. The input to

WeightedLP DEF, out-performed the previous two DEFs. these DE problems are, typically, the start and end location
in the form of thex andy co-ordinates of the locations in the

Cartesian plain, or the latitude and longitude in the gepigia
region. Our solution departs from the legacy methods in that

The ATSalwaysconverged close to the “actual” values fowe depart from the use of so-called “Goodness-of-Fit” (GoF)
all three DEFs when interacting with noiseless data sets. Thunctions. Rather, we have used the field of Learning Autamat
errors were either exactly zero or smaller tham906. In (LA) and in particular, the Adaptive Teriary Search (ATSgds
addition to these small errors, the “actual” values wereagsv to solve the Stochastic Point Location (SPL) problem. This
contained in the final search interval. This indicated tihat t paper has made some major contributions. Firstly, it ex¢dnd
ATS was well adapted to finding multiple parameters in ththe ATS application to the DE problem. In this regard, we
ideal DE domain, and serves as an important baseline fitgfined both the new environments and the corresponding LA
more realistic data sets. Another observation is that th& ATor this problem for three simple DEFs. Using these newly-
converged very quickly, at every time step a search intendéfined Environments and LA, the ATS was shown to produce
was reduced. Overall, the ATS was ablealvaysaccurately parameters competitive to those obtained by the hill-dlirgb
find the optimal parameters for noiseless data sets. search for all of these DEFs.

VI. CONCLUSIONS

D. Discussion
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Data Set Size N=29 N=97 N=561
Error Average Standard Average Standard | Average Standard
Type Error Deviation Error Deviation Error Deviation
Estimated Estimated Estimated
K Value 0.2220 | 9.4600x10~7 1.3517 0.0164 0.1410 0.0022
P Value 1.9935 0.0353 1.8022 0.0932 1.1517 0.0437
SD 2293 0.28 2011881 22604 1775697 36402
NAD 1.79 0.01 83.28 0.22 222720 19.61
RAD 0.0402 0.0003 0.1253 0.0004 0.1423 0.0016
EP 0.0496 0.0004 0.2051 0.0005 0.1569 0.0014
Benchmark Benchmark Benchmark
K Value 0.2203 8.187X10°® 1.2326 0.0053 0.1550 4.903%10°°
P Value 1.9200 | 9.019x10°® 1.5071 0.0221 1.7400 6.0445%10°8
SD 2371 0.00 1992221 62.01 2052275 0.05
NAD 1.83 0.00 86.27 0.16 241851 0.00
RAD 0.0412 0.0000 0.1381 0.0005 0.1598 0.0000
EP 0.0508 0.0000 0.2125 0.0004 0.1704 0.0000

TABLE XI: Results for 100 runs of the ATS with the Weighté® DEF on the real-world data sets.

The second contribution that we made (with regards to th§r]
ATS) was to successfully search for multiple paramegarsil-
taneously To achieve this, we proposed an algorithm in which
the ATS could perform a search for multiple parameters,avhil
it still maintained the core foundations of the ATS desalibe [8]
This search has been shown to produce both the optimal
parameters in an ideal (non-stochastic) environment, and c
petitive parameters in a stochastic environment. While gedn  [9]
the algorithm to only find two parameters simultaneously, we
believe that it can be extended to the problem of determining
more parameters by following the same principles.

[10]

B. Distance Estimation

With regards to DE, the ATS was applied to the problem of
DE in order to find the parameters for three different DEFg; 1]
The parameters that were determined have been shown to
be competitive with the parameters computed using a hill-
climbing search. The biggest advantage of the ATS over the
hill-climbing search is that it does not require a GoF fuoiati
to determine the parameter, while using DEFsdmparethe

qualities of the parameters. [12]
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