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Abstract. We show that c0, and in fact C(K) for any scattered com-
pact Hausdorff space K, have the property that finite convex combina-
tions of slices of the unit ball are relatively weakly open.

1. Introduction

Let X be a (real or complex) Banach space with unit ball BX , unit sphere
SX , and dual X∗. Given x∗ ∈ SX∗ and ε > 0 we define a slice of BX by

S(x∗, ε) := {x ∈ BX : Rex∗(x) > 1− ε},
where Rex∗(x) denotes the real part of x∗(x).

Recall the following successively stronger “big-slice concepts”, defined in
[3]:
Definition 1.1. A Banach space X has the

(i) local diameter 2 property if every slice of BX has diameter 2.
(ii) diameter 2 property if every non-empty relatively weakly open subset

of BX has diameter 2.
(iii) strong diameter 2 property if every finite convex combination of slices

of BX has diameter 2.
By Bourgain’s lemma [7, Lemma II.1] every non-empty relatively weakly

open subset of BX contains a finite convex combination of slices hence the
strong diameter 2 property implies the diameter 2 property. It was shown
in [4] that the two properties are not equivalent. Since a slice is relatively
weakly open, the diameter 2 property implies the local diameter 2 property.
Even though the converse is not true in general, as shown in [5], for some
spaces it is. For example, it is known that if a Banach space X satisfies that
every x ∈ SX is an extreme point of BX∗∗ , then every non-empty relatively
weakly open subset of BX contains a slice by Choquet’s lemma (cf. e.g.
Proposition 1.3 in [1]).

On a particularly sunny day at a conference at the University of Warwick
in 2015, Olav Nygaard asked if the converse of Bourgain’s lemma is ever true
for BX . The aim of this short note is to answer this question affirmatively
by showing that c0, and in fact C(K) for any scattered compact Hausdorff
space K, have the much stronger property that finite convex combinations
of slices of the unit ball are relatively weakly open. See Theorems 2.3 and
2.4 below.
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Let us note that in general it is not true that finite convex combinations
of slices of the unit ball are relatively weakly open. Indeed, for some spaces
there are finite convex combinations of slices of the unit ball that do not even
intersect the sphere. The Banach space `2 is one example [7, Remark IV.5].
In their proof (independent of [4]) that the strong diameter 2 property is
stronger than the diameter 2 property Haller, Langemets and Põldvere [8]
show that if Z is an `p-sum of two Banach spaces, Z = X ⊕p Y with 1 <
p < ∞, then for every λ ∈ (0, 1) there exists two slices S1 and S2, and a
β > 0 such that λS1 + (1− λ)S2 ⊂ (1− β)BZ .

We should also remark that the positive part of the unit sphere of L1[0, 1],
F = {f ∈ L1[0, 1] : f ≥ 0, ‖f‖ = 1} is another example of a closed convex
bounded subset of a Banach space that satisfies a converse to Bourgain’s
lemma in that finite convex combinations of slices of F are relatively weakly
open [7, Remark IV.5].

The notation and conventions we use are standard and follow e.g. [6].

2. Main result

We start by recalling the following definition (see e.g. [6, Definition 14.19]).

Definition 2.1. A compact space K is said to be scattered compact if every
closed subset L ⊂ K has an isolated point in L.

Let K be a scattered compact Hausdorff space and consider the Banach
space C(K) of all (complex valued) continuous functions on K with sup-
norm. Rudin [11] showed that C(K)∗ = `1(K) in this case. Pełczyński
and Semadeni [10] showed that for a compact Hausdorff space K we have
C(K)∗ = `1(K) if and only if K is scattered (= dispersed).

To prove the main result, we will need the following geometric lemma for
the unit circle in the complex plane.

Lemma 2.2. Let α, β ∈ R such that eiα and eiβ are distinct points on the
unit circle with distance d = |eiα − eiβ|. If 0 < µ < 1

2 , then the point
c = µeiα + (1− µ)eiβ on the line segment between eiα and eiβ satisfies

|c| ≤ 1− d2µ

4 .

Proof. A straightforward calculation shows that d2 = 2 − 2 cos(α − β) and
that |c|2 = µ2 + (1−µ)2 +µ(1−µ)2 cos(α−β). Hence |c|2 = 1−d2µ(1−µ).
Since

√
1 + x ≤ 1 + x

2 for x ≥ −1 and µ(1− µ) ≥ µ
2 for µ ∈ [0, 1

2 ] we get

|c| =
√

1− d2µ(1− µ) ≤ 1− 1
2d

2µ(1− µ) ≤ 1− d2µ

4
as desired. �

Theorem 2.3. Let K be a scattered compact Hausdorff space. Then every
finite convex combination of slices of the unit ball of C(K) is relatively weakly
open.

Proof. Let {S(fj , εj)}kj=1 be slices of BC(K) with fj ∈ `1(K), ‖fj‖ = 1, and
εj > 0 for j = 1, 2, . . . , k. Let λj > 0 with

∑k
j=1 λj = 1, and consider the
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convex combination of these slices

C =
k∑
j=1

λjS(fj , εj).

Let x =
∑k
j=1 λjzj ∈ C with zj ∈ S(fj , εj). Our goal is to find a non-empty

relatively weakly open neighborhood of x that is contained in C.
Let d = min{Re fj(zj)− (1− εj) : 1 ≤ j ≤ k} and let η > 0 be such that

η < d/3. Let E ⊂ K be a finite set such that
∑
t/∈E |fj(t)| < η for 1 ≤ j ≤ k.

Define
U =

{
y ∈ BC(K) : |y(t)− x(t)| < δ, t ∈ E

}
where δ > 0. Next we specify how δ is chosen.

Let L = max{ 1
λj

: j = 1, 2, . . . , k}. Let

EI = {t ∈ E : there exists 1 ≤ j0 ≤ k such that |zj0(t)| < 1} .

Define
δI = (1 + 3L)−1 min {1− |zj0(t)| : t ∈ EI , |zj0(t)| < 1}

if EI is non-empty and δI = 1 otherwise. Let

EIII = {t ∈ E \ EI : there exists j 6= m such that zj(t) 6= zm(t)}

and define

(1) D = min
t∈EIII

min
zj(t)6=zm(t)

{|zj(t)− zm(t)|2}.

Choose 0 < ρ < min{D/8, η/4L}. Define δIII = Dρ(4(1 + 3L))−1 if EIII is
non-empty and δIII = 1 otherwise. Finally we choose δ < min{η/6L, δI , δIII}.

Let y ∈ U . We will define yj ∈ S(fj , εj), j = 1, 2, . . . , k, and show that y
can be written y =

∑k
j=1 λjyj ∈ C.

Let {Vt}t∈E be a collection of pairwise disjoint neigborhoods for the points
in E chosen such that for each t ∈ E we have |zj(t)− zj(s)| < δ, 1 ≤ j ≤ k,
|x(t)− x(s)| < δ and |y(t)− y(s)| < δ for all s ∈ Vt. If t ∈ E is an isolated
point, we let Vt = {t}. Note that, in particular, we get |x(s)− y(s)| < 3δ for
all s ∈ Vt.
Definition of yj outside

⋃
t∈E Vt.

For s ∈ K \ ∪t∈EVt we define yj(s) = y(s) for all 1 ≤ j ≤ k.
Definition of yj on

⋃
t∈E Vt.

For each t ∈ E the way we define yj on Vt depends on whether t ∈ EI ,
t ∈ EIII , or neither, so we have to consider three cases. Let t ∈ E. Choose by
Urysohn’s lemma a real-valued non-negative continuous function nt ∈ SC(K)
with nt(t) = 1 such that nt(s) = 0 off Vt. Define w(t) = y(t) − x(t) for all
t ∈ K.
Case I: Assume t ∈ EI . Then by definition of EI there exists 1 ≤ j0 ≤ k
with |zj0(t)| < 1. Now, for s ∈ Vt let

yj0(s) = nt(s)[zj0(s) + λ−1
j0
w(s)] + [1− nt(s)]y(s)

and for j 6= j0 we let

yj(s) = nt(s)zj(s) + [1− nt(s)]y(s).
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It is straightforward to see that
∑k
j=1 λjyj(s) = y(s), and that by the choice

of δ
|zj0(s) + λ−1

j0
w(s)| ≤ |zj0(t)|+ |zj0(s)− zj0(t)|+ L|y(s)− x(s)|

≤ |zj0(t)|+ δ + 3Lδ < 1
for all s ∈ Vt. Thus we have |yj(s)| ≤ 1 for every 1 ≤ j ≤ k.

We will need that |yj0(t) − zj0(t)| ≤ λ−1
j0
|y(t) − x(t)| < Lδ < η and

|yj(t)− zj(t)| = 0 for j 6= j0.
Case II: If for all 1 ≤ j,m ≤ k we have zj(t) = zm(t) with |zj(t)| = 1, then
x(t) = zj(t) and we can just let yj(s) = y(s) for all 1 ≤ j ≤ k and s ∈ Vt.

We will need that |yj(t)− zj(t)| = |y(t)− x(t)| < δ < η.
Case III: The remaining case is that t ∈ EIII , that is, |zj(t)| = 1 for all
1 ≤ j ≤ k, but not all zj(t) are equal. Order the set {arg zj(t) : 1 ≤ j ≤ k}
as an increasing sequence {θ1 < θ2 < · · · < θq} and define θ0 = θq. We put
Ap = {j : arg zj(t) = θp} and Λp =

∑
j∈Ap

λj .
With ρ as above we define for 1 ≤ p ≤ q

cp = ρ(eiθp−1 − eiθp).
Let s ∈ Vt and define (for j ∈ Ap)

yj(s) = nt(s)
[
zj(s) + cp

Λp
+ w(s)
qΛp

]
+ (1− nt(s))y(s).

We have
k∑
j=1

λjyj(s) =
q∑
p=1

∑
j∈Ap

λjyj(s)

=
q∑
p=1

nt(s)
∑
j∈Ap

λjzj(s) +
q∑
p=1

nt(s)cp +
q∑
p=1

nt(s)
w(s)
q

+ (1− nt(s))y(s)

= nt(s)
k∑
j=1

λjzj(s) + nt(s)0 + nt(s)w(s) + (1− nt(s))y(s)

= nt(s)x(s) + nt(s)(y(s)− x(s)) + y(s)− nt(s)y(s) = y(s).
With µ = ρ/Λp

zj(t) + cp
Λp

= eiθp + µ(eiθp−1 − eiθp) = µeiθp−1 + (1− µ)eiθp .

So, by Lemma 2.2 and (1)

|zj(t) + cp
Λp
| ≤ 1− |e

iθp−1 − eiθp |2ρ
4Λp

≤ 1− Dρ

4Λp
< 1− Dρ

4 < 1− (1 + 3L)δ.

Hence ∣∣∣∣∣zj(s) + cp
Λp

+ w(s)
qΛp

∣∣∣∣∣ ≤ |zj(t) + cp
Λp
|+ |zj(s)− zj(t)|+

∣∣∣∣∣w(s)
qΛp

∣∣∣∣∣
< 1− (1 + 3L)δ + δ + 3Lδ = 1.

Thus we have |yj(s)| ≤ 1. We will also need that

|yj(t)− zj(t)| =
∣∣∣∣∣ cpΛp

+ w(t)
qΛp

∣∣∣∣∣ ≤ ρ|eiθp−1 − eiθp |L+ 3δL ≤ 2Lρ+ 3Lδ ≤ η.
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Conclusion.
So far we have defined yj ∈ BC(K) and shown that y =

∑k
j=1 λjyj . Note

that for each 1 ≤ j ≤ k the function yj is continuous on K since yj is a
combination of the continuous functions zj , y, x and nt. Also nt is zero off
Vt hence yj = y on K \ ∪t∈EVt.

It only remains to show that yj ∈ S(fj , εj). We have∑
t/∈E
|fj(t)(yj(t)− zj(t))| < η‖yj − zj‖ ≤ 2η,

and ∑
t∈E
|fj(t)(yj(t)− zj(t))| < ‖fj‖η < η.

Hence |fj(yj − zj)| < 3η so that
Re fj(yj) ≥ Re fj(zj)− 3η > Re fj(zj)− d > 1− εj ,

and we are done. �

The above theorem applies to C[0, α] for any infinite ordinal α, and in
particular to c = C[0, ω]. It should be clear that the proof also works for
real scalars and that it proves the following result.

Theorem 2.4. Every finite convex combination of slices of the unit ball of
c0 is relatively weakly open.

3. Questions and remarks

We will end with some questions and remarks.
(i) Which Banach spaces satisfy that finite convex combinations of slices

of the unit ball are relatively weakly open?
(ii) Which Banach spaces satisfy that finite convex combinations of slices

of the unit ball contain a non-empty relatively weakly open neigh-
borhood of some point in the combination?

(iii) Which Banach spaces satisfy that finite convex combinations of slices
of the unit ball always have non-empty intersection with the sphere?

(iv) If finite convex combinations of slices of both BX and BY are rel-
atively weakly open, is the same true for the unit ball of X ⊕∞ Y
and/or X ⊕1 Y ?

It is not clear that there is a connection between having relatively weakly
open convex combinations of slices and the diameter two properties. But
we have the following observation.

Remark 3.1. Let X be a (infinite dimensional) Banach space such that there
exists a slice S1 = S(x∗, ε) of BX with diamS1 < 1. Then with S2 =
S(−x∗, ε) and C = 1

2S1 + 1
2S2 it is easy to see that C ∩ SX = ∅ hence C is

a convex combination of slices which is not relatively weakly open.

Regarding Question (iii) we have the following examples of spaces where
finite convex combinations of slices intersect the sphere.

Example 3.2. Finite convex combinations of slices of the unit ball of L1[0, 1]
always intersect the sphere. Here slices are given by functions gj ∈ SL∞[0,1].
We may assume that the gj ’s are simple functions and find sets Bj ⊂ [0, 1]
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with Bj ∩ Bk = ∅ for j 6= k and ‖χBjgj‖∞ almost one. The functions
fj = m(Bj)−1χBj does the job (m is Lebesgue measure).

Example 3.3. Let X be a Banach space such that whenever Sj = S(x∗j , εj)
with x∗j ∈ SX∗ and εj > 0 for 1 ≤ j ≤ k, are slices of BX , then there exists
xj ∈ Sj ∩ SX and y ∈ SX such that ‖xj ± y‖ = 1 and xj + y ∈ Sj .

Spaces that satisfy this condition include `c∞(Γ) for Γ uncountable since
this space is almost square with ε = 0 [2, Remark 2.11]. It also includes
`∞ and C[0, 1] since the slices there are defined by measures of bounded
variation.

If X is a space with this property, then finite convex combinations of slices
of BX always intersect the sphere. Indeed, let λj > 0 with

∑k
j=1 λj = 1 and

let Sj = S(x∗j , εj) be slices of BX with x∗j ∈ SX∗ and εj > 0 for 1 ≤ j ≤ k.
By assumption, there exists xj ∈ Sj∩SX and y ∈ SX such that ‖xj±y‖ =

1 and xj + y ∈ Sj .
Choose y∗ ∈ SX∗ such that y∗(y) = 1. Then

1 = ‖xj ± y‖ ≥ y∗(y)± y∗(xj) = 1± y∗(xj)

hence y∗(xj) = 0. Now
∑k
j=1 λj(xj + y) ∈

∑k
j=1 λjSj and

‖
k∑
j=1

λj(xj + y)‖ ≥
k∑
j=1

λjy
∗(y) = 1.

Example 3.4. If X has the Daugavet property, then finite convex com-
binations of weak∗-slices of BX∗ intersect the sphere SX∗ . To see this let
xj ∈ SX , εj > 0, and let S(xj , εj) be slices of BX∗ for 1 ≤ j ≤ k. Consider∑k
j=1 λjS(xj , εj) where λj > 0 and

∑k
j=1 λj = 1.

By using [9, Lemma 2.12] and an induction argument we can, for 1 ≤ j ≤
k, find x∗j ∈ S(xj , εj) ∩ SX∗ such that ‖

∑k
j=1 λjx

∗
j‖ =

∑k
j=1 λj = 1.
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