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Abstract— In this paper, we investigate the output consensus
tracking problem for a class of high-order nonlinear system-
s subjected to unknown parameters and uncertain external
disturbances. A novel backstepping based distributed adaptive
control scheme is presented under the directed communication
status. For the subsystems without direct access to time-
varying desired trajectory, local estimators are introduced and
the corresponding adaptive laws are designed in a totally
distributed fashion. With the presented scheme, the assumption
on linearly parameterized reference signal and the information
exchange operation of subsystem inputs in the existing results
are no longer needed. It is shown that all the closed-loop signals
are globally uniformly bounded and desired output consensus
tracking can be achieved.

I. INTRODUCTION

Multi-agent systems have received significant attention
over the past decades due to its wide application in vari-
ous areas such as mobile robot networks, intelligent trans-
portation managements, wireless sensor networks and power
networks [1]–[6]. Compared with traditional single system,
distributed consensus control aims at achieving an agreement
on the states or outputs of the subsystems, by designing
a local controller for each subsystem using information
only collected within its neighboring area. Leader-following
consensus control is one of the most typical distributed
consensus problems, which has been studied extensively
[4]–[9], [13], [16]. In most available results, the desired
reference trajectory is generated by a prescribed agent with
the similar dynamics to the followers and zero/known inputs.
For more general cases, the common desired trajectory can
be represented by a time-varying function, such issues are
termed consensus tracking control [7]–[9]. It is worth noting
that the main challenge in consensus tracking control is that
only a small portion of subsystems in the networks can access
the full knowledge of desired trajectory directly.

Some distributed control schemes are presented to achieve
adaptive output consensus tracking control; see for examples
[5], [6], [9]–[11], [13], [16], [17]. In [5], [10] and [6] partial
information of reference trajectories is assumed to be known
by all of the subsystems. Based on this, distributed observers
are designed to account for the remaining uncertainties
for the subsystems without direct access to the desired
trajectory. In [11], local controllers are designed based on
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their neighbors’ control inputs and states. Thus, satisfactory
tracking performance can be achieved though the reference
trajectory is totally unknown by partial subsystems. However,
the mutual dependence of control inputs without a prescribed
priority will bring new problems during implementation [13].
In [9], based on an assumption that the reference signal is
linearly parameterized with basis functions known by all
the subsystems, asymptotic output consensus tracking of
uncertain nonlinear subsystems is achieved under directed
graph condition. Moreover, in the design of virtual control
input at the first step, a stabilizing term is included with a
global graph parameter adopted.

To address the aforementioned issues, some effective
solutions are presented in [16], [17]. In [16], for those
subsystems without direct access to the desired trajectory
yr(t), the only available information of yr is that ẏr is upper
bounded by an unknown positive constant. By introducing
compensating terms in a smooth function form of consensus
errors and certain positive integrable functions in each step of
virtual control design, asymptotic output consensus tracking
is achieved. However, the proposed scheme is only applicable
to the case with undirected communication topology. The
results are extended to the case with balanced and weakly
connected digraph in [17], whereas the considered system is
limited to second-order Euler Lagrange system.

In this paper, we shall revisit the distributed adaptive
control problem for nonlinear systems with unknown param-
eters and uncertain external disturbances. Compared with the
existing results, the main features of the presented scheme
can be summarized as follows. i) Backstepping technique
is adopted, hence all the subsystems share the same but
arbitrarily high relative degree. ii) The topology condition
is a digraph containing a directed spanning tree. iii) The
linear parametrization assumption on the desired trajectory is
removed and extra information exchange of subsystem inputs
or parameter estimates can be avoided. iv) For the subsystems
without full information of the reference trajectory, local
estimators are designed to estimate the time-varying refer-
ence in a distributed fashion. It is shown that all closed-loop
signals are globally uniformly bounded and desired output
consensus tracking performance of all subsystem outputs can
be achieved with adjustable tracking errors.

The remaining part of this paper is organized as follows.
In Section II, the considered MAS model and related graph
theory are introduced and the control objective is stated. The
distributed controller design and closed-loop system stability
analysis are provided in Section III and IV, respectively.
Simulation results are given in Section V followed by a



conclusion drawn in Section VI.

II. Problem formulation

A. System Model

In this paper, a group of N nonlinear subsystems modeled
as follows [12] are considered.

yi
(n)(t) −

pi∑
l=1

θilϕil(yi, ẏi, . . . , yi
(n−1)) = biui + di(t) (1)

where yi ∈ R and ui ∈ R are the output and control input of
subsystem i for i = 1, . . . ,N, respectively. bi ∈ R, θil ∈ R are
unknown constant parameters and bi is nonzero. ϕil : Rn → R
is a known smooth nonlinear function. di(t) ∈ R denotes
uncertain external disturbance.

By defining the state variables as xi,q = y(q−1)
i , q = 1, . . . , n,

system (1) can be described by the following state space
representation

ẋi,q = xi,q+1, q = 1, 2, . . . , n − 1;
ẋi,n = biui + ϕi

Tθi + di(t)
yi = xi,1

(2)

where ϕi = [ϕi1, ϕi2, . . . , ϕipi ]
T and θi = [θi1, θi2, . . . , θipi ]

T .

B. Information Transmission Condition among the N Sub-
systems

Suppose that the information transmission condition a-
mong the N linked subsystems can be described by a fixed
directed graph G , (V, ε), where V = {1, . . . ,N} denotes
the set of indexes corresponding to the N linked subsystems
and ε ⊆ V × V is the set of edges between two distinct
subsystems. The agent j can access the information from
agent i if (i, j) ∈ ε, but not necessarily vice versa [14].
In this case, the agent i is called the neighbor of agent
j and we use N j to denote the set of neighbors of agent
j, that is, N j , { j ∈ V : (i, j) ∈ ε}. Note that the self
edges (i, i) are not allowed, thus (i, i) < ε and i < Ni.
The adjacency matrix A = [ai j] ∈ RN×N with nonnegative
elements is defined such that ai j = 1 if ( j, i) ∈ ε, otherwise
ai j = 0. It is clear that the diagonal elements are all 0 due
to (i, i) < ε. We introduce an in-degree matrix defined as
4 = diag(4i) ∈ RN×N with the diagonal elements 4i =

∑
j∈Ni

ai j

being the ith row sum of A. The Laplacian matrix of A is
defined as L = 4 − A. In a directed graph, a directed path
from node i to j is defined if there exists a sequence of
successive edges {(i, k), (k,m), (m, l), (l, j)} ⊆ ε. A directed
graph contains a directed spanning tree if there exists at least
a root node i such that all the remaining nodes in the graph
can be reached from i through a directed path. In this paper,
we use µi = 1 to denote the case that the subsystem i can
directly access the full information of reference trajectory,
otherwise µi = 0.

C. Control Objective

The control objective of this paper is to design a local
adaptive controller ui in a distributed fashion for each sub-
system i under a directed graph condition such that:

• all the closed-loop signals are globally uniformly bound-
ed;

• all subsystem outputs can track a desired time-varying
trajectory yr(t) as closely as possible, though yr(t) is ex-
actly known by only a small fraction of the subsystems.

In order to achieve the control objective, some necessary
assumptions are imposed.

Assumption 1: The directed graph G contains a spanning
tree and the the full knowledge of yr(t) is directly available
to at least one root node i, that is, µi = 1 .

Assumption 2: The first nth-order derivatives of yr(t) are
bounded and piecewise continuous. For subsystem i with
µi = 0, the only known trajectory information is that |ẏr(t)| ≤
F with F being an unknown positive constant.

Assumption 3: The sign of bi is known in each subsystem
i.

Assumption 4: |di(t)| ≤ Di, where Di is an unknown
positive constant.

Remark 1: Compared with currently available results in
[5], [6], [9] and [20], the assumption that yr(t) is linearly pa-
rameterized and basis functions known by all subsystems is
relaxed. Although an effective distributed adaptive consensus
solution is provided in [16] with similar relaxed condition,
only undirected topology is considered.

Before we proceed with designing distributed adaptive
controllers, the following lemmas are also introduced, which
will take important roles in controller design and stability
analysis.

Lemma 1: [15] Based on Assumption 1, the matrix L +

B is nonsingular where B = diag{µ1, . . . , µN}. Define q̄ =

[q̄1, . . . , q̄N]T = (L + B)−1[1, . . . , 1]T

P = diag{P1, . . . , PN} = diag{
1
q̄1
, . . . ,

1
q̄N
}

Q = P(L + B) + (L + B)T P

then q̄i > 0 for i = 1, . . . ,N and P and Q are positive definite.
Lemma 2: [18] The following inequality holds

0 ≤ |z| − z · sg(z) ≤ η

for any scalars z ∈ R, η > 0 and sg(z) = z√
z2+η2

.

III. Design of distributed adaptive controllers
To generate distributed adaptive control laws, backstep-

ping technique [19] is adopted and the detailed design
procedure will be provided recursively.

Introduce the change of coordinates as

ei =yi − µiyr − (1 − µi)ŷr,i

=yi − yr + (1 − µi)(yr − ŷr,i)
=δi + (1 − µi)ỹr,i (3)

zi,1 =

N∑
j=1

ai j(yi − y j) + µi(yi − yr) (4)

zi,k =xi,k − αi,k−1, k = 2, . . . , n (5)

where δi = yi − yr denotes the actual tracking error. ŷr,i is
an estimate introduced to account for unknown yr(t) in each



subsystem i with µi = 0. ỹr,i := yr − ŷr,i is the corresponding
estimation error. zi,1 is often known as the local neighborhood
consensus error. αi,k−1 is the virtual control to be determined
in each recursive step.

To illustrate the adaptive backstepping design procedures,
only the first step is elaborated in detail.
• Step 1: From (3) and (5), the derivative of ei is computed

as

ėi =zi,2 + αi,1 − µiẏr − (1 − µi)˙̂yr,i (6)

The virtual control αi,1 is chosen as

αi,1 = −c1ei − kP̂izi,1 + µiẏr + (1 − µi)˙̂yr,i (7)

where c1 and k are positive design parameters. P̂i is the local
estimate of Pi, which is defined in Lemma 1. Substituting
(7) into (6) gives

ėi = zi,2 − c1ei − kP̂izi,1 (8)

The trajectory and parameter update laws are designed as

˙̂yr,i = −γyr,i [zi,1 + κyr,i (ŷr,i − yr,i0)] (9)

and
˙̂Pi = −γPi [eizi,1 − κPi (P̂i − Pi0)] (10)

where γyr,i , γPi , κyr,i , κPi , yr,i0 ,Pi0 are all positive design
parameters.

The Lyapunov function candidate is chosen as

V1 =
1
2

N∑
i=1

ei
2 +

1
2

N∑
i=1

k
γPi

P̃2
i +

1
2

N∑
i=1

kPi(1 − µi)
γyr,i

ỹ2
r,i (11)

where P̃i = Pi−P̂i and ỹr,i = yr,i−ŷr,i. From (8), the derivative
of V1 is computed as

V̇1 =

N∑
i=1

eizi,2 − c1

N∑
i=1

ei
2 − kδT PHδ +

N∑
i=1

k
γPi

P̃i(γPi eizi,1 −
˙̂Pi)

+

N∑
i=1

kPi(1 − µi)
γyr,i

ỹr,i(ẏr − ˙̂yr,i − γyr,i zi,1) (12)

where δ = [δ1, . . . , δN]. From (9), (10) and Lemma 1, (12)
can be further derived as

V̇1 =

N∑
i=1

eizi,2 − c1

N∑
i=1

ei
2 − kδT PHδ +

N∑
i=1

kκPi P̃i(P̂i − Pi0)

+

N∑
i=1

kPi(1 − µi)
γyr,i

ỹr,iẏr +

N∑
i=1

kPiκyr,i (1 − µi)ỹr,i(ŷr,i − yr,i0)

≤

N∑
i=1

eizi,2 − c1

N∑
i=1

ei
2 −

k
2
λmin(Q)‖δ‖2

+

N∑
i=1

kPi(1 − µi)
γyr,i

∣∣∣ỹr,i

∣∣∣ F +

N∑
i=1

kκPi P̃i(P̂i − Pi0)

+

N∑
i=1

kPiκyr,i (1 − µi)ỹr,i(ŷr,i − yr,i0)

≤

N∑
i=1

eizi,2 − c1

N∑
i=1

ei
2 −

k
2
λmin(Q)‖δ‖2

+

N∑
i=1

kPi(1 − µi)
γyr,i

[
1
4
γyr,iκyr,i ỹ

2
r,i +

F2

γyr,iκyr,i

]

+

N∑
i=1

kκPi P̃i(P̂i − Pi0) +

N∑
i=1

kPiκyr,i (1 − µi)ỹr,i(ŷr,i − yr,i0)

≤

N∑
i=1

eizi,2 − c1

N∑
i=1

ei
2 −

k
2
λmin(Q)‖δ‖2 −

N∑
i=1

kκPi

2
P̃2

i

−

N∑
i=1

kPiκyr,i (1 − µi)
4

ỹ2
r,i +

N∑
i=1

kPi(1 − µi)F2

γyr,i
2κyr,i

+

N∑
i=1

kκPi

2
(Pi − Pi0)2 +

N∑
i=1

kPiκyr,i (1 − µi)
2

(yr − yr,i0)2

(13)

where the property that Θ̃T (Θ̂ − Θ0) = Θ̃T (−Θ̃ + Θ − Θ0) ≤
− 1

2

∥∥∥Θ̃∥∥∥2
+ 1

2‖Θ − Θ0‖
2 has been applied.

Remark 2: In this step, we introduce the term −kP̂izi,1
in designing the first virtual control signal for the purpose
of generating negative definite quadratic term of δ in the
derivative of Lyapunov function defined later for the entire
closed-loop system. Note that similar technique was initiated
in [9], where Pi is adopted directly. However, Pi can only be
obtained with full knowledge of the overall graph. Motivated
by this fact, a modification is made here hence the presented
adaptive consensus control laws are ensured to be totally
distributed.
• Step k(k = 2, . . . , n − 1): The virtual control αi,k is chosen
as

αi,k = −zi,k−1 − ckzi,k + α̇i,k−1 (14)

with

α̇i,k−1 =

k−1∑
l=1

∂αi,k−1

∂xi,l
xi,l+1 +

∂αi,k−1

∂P̂i

˙̂Pi +

N∑
j=1

k−1∑
l=1

ai j
∂αi,k−1

∂x j,l
x j,l+1

+ µi

k∑
l=1

∂αi,k−1

∂yr
(l−1) yr

(l) + (1 − µi)
∂αi,k−1

∂ŷr,i

˙̂yr,i (15)

where ck is a positive constant. Define the Lyapunov function
as

Vk = V1 +
1
2

N∑
i=1

k∑
l=2

zi,l
2 (16)

whose derivative can be computed as

V̇k ≤

N∑
i=1

zi,kzi,k+1 − c1

N∑
i=1

ei
2 −

k
2
λmin(Q)‖δ‖2 −

N∑
i=1

k∑
l=2

clzi,l
2

−

N∑
i=1

kκPi

2
P̃2

i −

N∑
i=1

kPiκyr,i (1 − µi)
4

ỹ2
r,i

+

N∑
i=1

kPi(1 − µi)F2

γyr,i
2κyr,i

+

N∑
i=1

kκPi

2
(Pi − Pi0)2

+

N∑
i=1

kPiκyr,i (1 − µi)
2

(yr − yr,i0)2 (17)

• Step n: From (2) and (5), there is

żi,n = biui + ϕi
T θi + di(t) − α̇i,n−1 (18)



Design the control input as

ui = %̂i[αi,n − ϕi
T θ̂i − sg(zi,n)D̂i] (19)

where %̂i, θ̂i and D̂i are the parameter estimates of 1
bi

, θi and
the upper bound Di of external disturbance, respectively. αi,n

is defined in (14) for k = n.
The parameter update laws are designed as

˙̂%i =γ%i zi,nsgn(bi)[ϕi
T θ̂i + sg(zi,n)D̂i − αi,n]

− γ%iκ%i (%̂i − %i,0) (20)
˙̂θi =zi,nΓiϕi − Γiκθi (θ̂i − θi,0) (21)
˙̂Di =γDi zi,nsg(zi,n) − γDiκDi (D̂i − Di,0) (22)

where γκi , γDi , κ%i , κDi , Γi, κθi , κi,0, θi,0 and Di,0 are all positive
design parameters with appropriate dimension.

IV. Stability analysis

The main results of this paper are now formally stated in
the following theorem.

Theorem 3: Consider the closed-loop system consisting of
N uncertain nonlinear subsystems (2) satisfying Assumptions
1-4. With the local controllers (19) and parameter update
laws (9), (10), (20)-(22), the following conclusions can be
drawn.
• All the signals in the closed-loop system are globally

uniformly bounded;
• The tracking errors for all subsystems will converge to

a compact set and the upper bound of overall tracking
errors in the mean square sense is adjustable.
Proof: Define a Lyapunov function for the entire system

as

Vn =Vn−1 +
1
2

N∑
i=1

zi,n
2 +

N∑
i=1

|bi|

2γκi

%̃2
i +

1
2

N∑
i=1

θ̃T
i Γi
−1θ̃i

+

N∑
i=1

1
2γDi

D̃2
i (23)

where %̃i = %i − %̂i, θ̃i = θi − θ̂i and D̃i = Di − D̂i.
Differentiating Vn with respect to time t yields

V̇n ≤V̇n−1 +

N∑
i=1

zi,n(αi,n − α̇i,n−1) +

N∑
i=1

θ̃T
i Γi
−1(zi,nΓiϕi −

˙̂θi)

+

N∑
i=1

|bi|

γ%i

%̃i(γ%i zi,nsgn(bi)(ϕi
T θ̂i + sg(zi,n)D̂i − αi,n) − ˙̂%i)

+

N∑
i=1

1
γDi

D̃i(γDi zi,nsg(zi,n) − ˙̂Di) +

N∑
i=1

ηiDi (24)

where the Lemma 2 has been utilized to handle the effects
of external disturbances.

From (14), (15), (17) and (20)-(22), we have

V̇n ≤ − c1

N∑
i=1

ei
2 −

k
2
λmin(Q)‖δ‖2 −

N∑
i=1

k∑
l=2

clzi,l
2 −

N∑
i=1

kκPi

2
P̃2

i

−

N∑
i=1

kPiκyr,i (1 − µi)
4

ỹ2
r,i −

N∑
i=1

|bi| κ%i

2
%̃2

i −

N∑
i=1

κθi

2

∥∥∥θ̃i

∥∥∥2

−

N∑
i=1

κDi

2
D̃2

i + M∗

≤ −
k
2
λmin(Q)‖δ‖2 − σV + M∗ (25)

where

σ = min{2ci, γPiκPi ,
1
2
γyr, i

κyr, i
, γ%iκ%i ,

κθi

λmax(Γi
−1)

, γDiκDi }

(26)
and

M∗ =

N∑
i=1

kPi(1 − µi)F2

γyr,i
2κyr,i

+

N∑
i=1

kκPi

2
(Pi − Pi0)2

+

N∑
i=1

kPiκyr,i (1 − µi)
2

(yr − yr,i0)2 +

N∑
i=1

|bi| κ%i

2
(%i − %i0)2

+

N∑
i=1

κθi

2

∥∥∥θi − θi,0
∥∥∥2

+

N∑
i=1

κDi

2
(Di − Di0)2 +

N∑
i=1

ηiDi

(27)

By neglecting the first term in the right hand side of
inequality (25) and then directly integrating it, we obtain

Vn(t) ≤ Vn(0)e−σt +
M∗1
σ

(1 − e−σt) ≤ Vn(0) +
M∗1
σ

(28)

which implies that Vn is globally uniformly bounded. Thus,
the signals ei, zi,k for k = 2, . . . , n, ŷr,i, P̂i, %̂i, θ̂i and D̂i are all
bounded. From (3) and (4), xi,1 and zi,1 are bounded. From
(7), it implies αi,1 is bounded. Similarly, from (5), (14) and
(15) for k = 2, xi,2 and αi,2 are bounded. Through recursive
analysis along this line, it concludes that xi,k and αi,k for
k = 2, . . . , n are bounded. Finally, from (19), the distributed
control inputs ui are bounded. Therefore, all the signals in
the closed-loop system are bounded.

From (3) and (23), we have

‖δ‖2 ≤

N∑
i=1

2(ei
2 + (1 − µi)2ỹ2

r,i) ≤ ζVn(t) (29)

where ζ = max
{
4,

4(1−µi)γyr, i
kPi

}
for i = 1, . . . ,N. Further,

combining (28) yields

‖δ‖2 ≤ ζ[Vn(0)e−σt +
M∗1
σ

(1 − e−σt)] (30)

which shows that the tracking errors in Euclidean norm will
converge to a compact set Er = {δ|‖δ‖2 ≤ ζ(M∗1 + τ)/σ} with
convergence time t ≥ (1/σ)ln(

∣∣∣Vn(0)σ − M∗1
∣∣∣ /τ), in which τ

is an arbitrary small positive constant.
In terms of (25), we have

V̇n ≤ −
k
2
λmin(Q)‖δ‖2 + M∗ (31)

Integrating both sides of the foregoing equation yields

‖δ‖2[0,T ] =
1
T

∫ T

0
‖δ‖2dt

≤
2

kλmin(Q)

[
Vn(0) − Vn(t)

T
+ M2

∗

]



≤
2

kλmin(Q)

[
Vn(0)

T
+ M2

∗

]
(32)

where M2
∗ is a positive constant. From (25) and (27), it

follows that the upper bound of the overall tracking errors
in the mean square sense can be decreased by decreasing
κPi , κyr,i , κ%i , κθi , κDi and increasing k, γPi , γyr,i , γκi ,Γi, γDi .

Remark 3: From (9), (10), (20)-(22) and (19), it can be
seen that information exchange of local control inputs or
parameter estimates in [11], [13], [17] is not needed in
this paper to implement the designed distributed adaptive
controllers.

V. Simulation Results
To verify the effectiveness of our proposed distributed

adaptive control scheme, we consider a group of 4 second
order subsystems modeled as follows,

ẋi,1 =xi,2;

ẋi,2 =biui + ϕi
Tθi + di(t), i = 1, . . . , 4. (33)

where b1 = 2, b2 = −1, b3 = 0.5, b4 = 1, θ1 = 1,
θ2 = 0.5, θ3 = −2, θ4 = −3 are all unknown system
parameters and ϕ1 = x1,1x1,2, ϕ2 = x2

2,2, ϕ3 = x3,2, ϕ4 =

x4,1x4,2, d1(t) = sin(t), d2(t) = sin(t)2, d3(t) = 2 sin(t)
and d4(t) = sin(t). The communication status among the 4
subsystems and yr(t) are represented by a directed graph,
as shown in Fig. 1. The reference trajectory is given by
yr(t) = cos(0.1t) whose information is directly available for
subsystem 1 shown in Fig. 1. In simulation, all the initials
including xi,1(0), xi,2(0), F̂i(0), ŷr,i(0), θ̂i(0), κ̂i(0), D̂i(0) are set
as zero. The design parameters are chosen as c1 = c2 = 1,
k = 5, γPi = γκi = γθi = γDi = 1, γyr,i = 5, κPi = κ%i = κθi =

κDi = 0.005, κyr,i = 0.01, Pi,0 = κi,0 = θi,0 = Di,0 = yri,0 =

0.01, η = 0.2e−0.03t. The performance of all the 4 subsystem
outputs and tracking errors is provided in Fig. 2- 3. Control
inputs (19) and all the parameter estimates are shown in
Fig. 4- 9, respectively. It can be seen that satisfied output
consensus tracking for each subsystem is achieved and all
the closed-loop signals are ensured bounded.

3 2 1 4

yr(t)

Fig. 1. Communication topology for 4 subsystems.

VI. CONCLUSION
In this paper, the output consensus tracking problem for a

class of high-order nonlinear systems with unknown parame-
ters and uncertain external disturbances is investigated under
the directed communication status. A novel backstepping
based distributed adaptive consensus control scheme is pre-
sented. The assumption on linearly parameterized reference
trajectories and known basis function existing in currently
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Fig. 2. The outputs yi(t), i = 1, . . . , 4.
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Fig. 3. Tracking errors δi(t) = yr(t) − ŷr,i, i = 1, . . . , 4.

0 10 20 30 40 50
−15

−10

−5

0

5

10

Time(sec.)

co
nt

ro
l u

i(t
)

 

 

u
1

u
2

u
3

u
4

Fig. 4. Control inputs ui(t), i = 1, . . . , 4.
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Fig. 5. Parameter estimates ŷr,i, i = 2, . . . , 4.

available results are relaxed. Besides, extra information ex-
change of local control inputs is not needed. It is shown



0 20 40 60 80 100
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time(sec.)

P̂
i

 

 

P̂1

P̂2

P̂3

P̂4

Fig. 6. Parameter estimates P̂i, i = 1, . . . , 4.
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Fig. 7. Parameter estimates %̂i, i = 1, . . . , 4.
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Fig. 8. Parameter estimates θ̂i, i = 1, . . . , 4.
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Fig. 9. Parameter estimates D̂i, i = 1, . . . , 4.

that all the signals in the closed-loop system are globally
uniformly bounded and desired output consensus tracking

can be achieved.
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