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Abstract. We study behavior of solutions to two classes of nonlinear
second-order differential equations with a damping term. Sufficient con-
ditions for the first derivative of a solution x(t) to change sign at least
once in a given interval (in a given infinite sequence of intervals) are
provided. These conditions imply global non-monotone behavior of so-
lutions.
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1. Introduction

1.1. Differential Equations and Main Assumptions

We are concerned with the following two classes of nonlinear second-order
differential equations:

(r(t)x′)′ + p(t)x′ + q(t)x + f(t, x) = e(t), t ≥ t0, (1.1)

and
(r(t)x′)′ + p(t)x′ + q(t)g(x) = e(t), t ≥ t0, (1.2)

where e(t) is a continuous non-homogeneous term, and nonlinear terms f(t, x)
and g(x) satisfy, respectively, conditions

f(t, u)u ≥ 0 and f(t, u) = −f(t,−u) for all t ≥ t0 and u ∈ R,
(1.3)

and

g′(u) ≥ K > 0 and g(u) = −g(−u) for all u ∈ R. (1.4)

Assumptions (1.3) and (1.4) are satisfied, for instance, for Emden–Fowler
differential equations where f(t, u) = g(u) = |u|νsgn(u), ν > 0.
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Our main condition on the coefficients r(t) and q(t) in this paper is that
there exists a sequence of intervals [an, bn] , t0 < an < bn ≤ an+1, n ∈ N,
an → ∞ as n → ∞, such that

r(t) > 0 and q(t) > 0 on [an, bn] . (1.5)

Whenever necessary, this assumption is used on a single interval [a, b] , that
is,

r(t) > 0 and q(t) > 0 on [a, b] . (1.6)

1.2. Monotone and Non-monotone Solutions of Differential Equations

Monotonicity (or lack of it) is one of fundamental properties of solutions
to differential equations. Exponential functions et and e−t have been tradi-
tionally viewed as prototypes for monotone solutions due to the fact that
they are fundamental solutions of linear differential equations with constant
coefficients. Since e−t, in addition to monotonicity, possesses other impor-
tant characteristics (boundedness, positivity, decay to zero at infinity), these
properties have been often studied alongside with the existence of monotone
solutions.

Among pioneering results on monotone solutions of linear differential
equation we would like to mention papers by Hartman and Wintner [11,12];
related theorems can be also found in Hartman’s monograph [10, Chapter
XIV, Part I]. In addition to monotonicity of solutions, monotonicity of cer-
tain functions of solutions has also been studied with the goal to represent
some solutions in the form of Laplace–Stiltjes transforms of monotone func-
tions. As demonstrated by Liberto Jannelli [19], extensions of monotonicity
theorems from linear to nonlinear differential equations are essentially non-
trivial. Several important results on monotone solutions to different classes
of nonlinear differential equations and systems of differential equations have
been obtained by Elias and Kreith [8], Kreith [14], Marini [20], Švec [35] and,
more recently, by Cecchi et al. [3], Evtukhov and Klopot [9], Li and Fan [18],
Tanigawa [36], Wang [40]; see also the bibliography in the cited papers.

Existence of non-monotone solutions to different classes of differential
equations has been usually associated with their oscillatory nature since oscil-
lating solutions are obviously non-monotone. Although lack of monotonicity
has received much less attention in the literature, a number of interesting
results in this direction have been reported by Cecchi et al. [3], Detki [5,6],
Lepin [16,17] and other authors. It should be noted that non-monotone be-
havior is observed in many phenomena in applied sciences; see, for instance,
the papers by Pašić [26] or Zhang [38] and the references cited therein. Com-
plementing the aforementioned studies, in this paper we obtain sufficient
conditions which ensure non-monotonicity of all extendable solutions to Eqs.
(1.1) and (1.2).

1.3. Non-monotonicity of Smooth Functions

In what follows, we deal with real-valued functions h = h(t) of the real
variable t defined on (t0,∞) :
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Definition 1.1. A function h ∈ C1(t0,∞) is called non-monotone on (t0,∞)
(a weakly oscillatory function on (t0,∞)) if there exists a sequence of points
{sn}n∈N

∈ (t0,∞), sn → ∞ as n → ∞, such that h′(t) changes sign at t = sn

for all n ∈ N.

Weakly oscillatory in the sense of Definition 1.1 solutions have been
studied for several classes of differential and functional differential equations,
often in relation to oscillation and monotonicity of solutions. In particular,
Cecchi et al. [4] demonstrated that a linear second-order differential equation

(r(t)x′(t))′ + q(t)x(t) = 0 (1.7)

with positive coefficients possesses either oscillatory solutions or solutions
which are eventually strictly monotone, but (1.7) does not posses weakly
oscillatory solutions. Cecchi and Marini [2] presented sufficient conditions for
every solution x(t) of a nonlinear functional differential equation

(r(t)h(x)x′(t))′ + q(t)f(x(g(t)) = 0

to be either oscillatory or weakly oscillatory, whereas similar results for a
second-order nonlinear neutral differential equation

(a(t)(x(t) + bx(t − τ1) + cx(t + τ2))′)′ + p (t) xα(t − σ1) + q(t)xβ(t + σ2) = 0

were reported by Thandapani et al. [37]. Nonexistence of weakly oscillatory
solutions for a third-order nonlinear functional differential equation

x′′′(t) + q(t)x′(t) + r(t)f(x(t)) = 0

and for a nonlinear differential equation with the p-Laplacian
(
|x′(t)|p−1

x′(t)
)′

+ f (t, x(t), x′(t)) = 0, p ≥ 1,

have been established, respectively, by Bartušek et al. [1] and Pekarkova [28].
However, in the research literature one can come across different inter-

pretations of the term “weakly oscillatory solution”. For instance, Mihalikova
[21] calls a solution (x1(t), x2(t)) of a system of ordinary differential equations
weakly oscillatory if at least one component is oscillatory, whereas Parhi and
Padhi [24] use the term “weakly oscillatory differential equations” for differ-
ential equations which posses both oscillatory and non-oscillatory solutions.
To avoid possible confusion, we prefer not to use the term “weakly oscillatory
solutions” and refer to monotonicity properties instead.

We distinguish the following two types of non-monotonicity of a function
h (t) on an infinite interval (t0,∞) :
(i) h(t) is non-monotone on (t0,∞) in the sense of Definition 1.1,

or
(ii) lim inft→∞ h(t) < lim supt→∞ h(t).

It is not difficult to check that (ii) implies (i) because condition (ii)
ensures existence of two sequences {tn}n∈N

and {sn}n∈N
, tn < sn < tn+1,

tn → ∞ as n → ∞, such that

h(tn) < h(sn) and h(sn) > h(tn+1), for n ∈ N.
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However, the converse statement is not true. Indeed, the first derivative of a
positive function h(t) = t−1(2 + sin t),

h′(t) = t−2 (t cos t − sin t − 2) ,

changes sign infinitely many times on any interval (t0,∞), t0 ∈ R, and thus
h′(t) is a non-monotone on (t0,∞) function, but

lim inf
t→∞ h(t) = lim sup

t→∞
h(t) = 0.

Non-monotone solutions satisfying condition (ii) for Eqs. (1.1) and (1.2) have
been studied recently by Pašić and Tanaka [27] for the linear case where
f(t, u) ≡ 0 and g (u) ≡ u respectively. In particular, the following important
result has been proved:

Theorem 1.1 ([27, Theorem 2.5, part (ii)]). Suppose that r(t) > 0 and q(t) �≡ 0
on [t0,∞) and

∫ ∞

t0

1
r(s)

∫ s

t0

q(r) dr ds < ∞.

If there exists a solution x0(t) of a linear differential equation

(r(t)x′)′ + p(t)x′ + q(t)x = e(t), t ≥ t0, (1.8)

satisfying
lim inf
t→∞ x(t) < lim sup

t→∞
x(t), (1.9)

then every positive bounded solution x(t) of Eq. (1.8) satisfies (1.9) and thus
such solution x(t) is non-monotone on (t0,∞).

Unlike recent studies by Pašić [25] and Pašić and Tanaka [27], in this
paper we do not restrict our discussion only to positive solutions x(t) of Eqs.
(1.1) and (1.2). Furthermore, our approach here differs from that in the latter
paper because non-monotonicity of the type (ii) is deduced in [27] from the
asymptotic analysis of a linear differential equation

(r(t)y′(t))′ = e(t).

1.4. Reciprocal (Dual) Differential Equation

A differential equation associated with Eqs. (1.1) and (1.2),
(

1
q(t)

y′
)′

− p(t)
q(t)r(t)

y′ +
K

r(t)
y = 0, t ∈ (a, b), (1.10)

where K is a positive constant defined in (1.4), is called a reciprocal equation
(also known in the literature as dual equation). In particular, for Eq. (1.1),
K = 1. Reciprocal equation (1.10) is a linear differential equation obtained
from Eqs. (1.1) and (1.2) by replacing the coefficients r(t) and q(t) with
the reciprocal to q(t) and r(t) functions 1/q(t) and 1/r(t), respectively; its
solution y ∈ C2(a, b).
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Remark 1.1. In the literature, the reciprocal (dual) equation is usually de-
fined on the whole half-line (t0,∞) because r(t) �= 0 and q(t) �= 0 for all
t ≥ t0, see [4, the dual equation (E2), p. 386] and [7, the reciprocal equation
(1.2.11), p. 22]. This is not, however, possible in our case since condition (1.5)
does not exclude the possibility for either r(t), or q(t), or both to have zeros
at points which are not located in (a, b). Therefore, coefficients 1/q(t) and
1/r(t) may have singularities outside (a, b), as illustrated in the example that
follows. For further discussion on the reciprocal (dual) equations on (t0,∞)
in the case where p(t) ≡ 0, we refer the reader to the papers by Cecchi et al.
[4] and Potter [29] and to the monograph by Došlý and Řehák [7].

Example 1.1. Consider a Hill differential equation

x′′ + (sin t)x′ + (cos t)x = 0. (1.11)

Writing Eq. (1.11) in the self-adjoint form,
(
e− cos tx′)′ + (cos t) e− cos tx = 0, t ∈ R, (1.12)

we observe that x(t) = ecos t is a positive non-oscillatory solution of Eq.
(1.12). Hence, by Sturm separation theorem, every solution x(t) of the linear
differential equation (1.12) is also non-oscillatory. The reciprocal equation
(1.10) associated with Eq. (1.12) has the following form:

(
ecos t

cos t
y′(t)

)′
+ ecos ty(t) = 0, t ∈ (a, b). (1.13)

Observe that r(t) = e− cos t > 0 and q(t) = (cos t) e− cos t > 0 on the inter-
val (a, b) = (−π/4 + 2nπ, π/4 + 2nπ) , n ∈ N, but the coefficient 1/q(t) =
(cos t)−1 ecos t has infinitely many singular points tn = π/2 + nπ located out-
side (a, b) . Despite this, y(t) = C sin t, C ∈ R, is a one-parameter family of
smooth solutions of the reciprocal equation (1.13).

2. Auxiliary Results

2.1. Critical Points and Monotonicity of Solutions

The following lemma demonstrates that if, under some additional conditions,
the derivative x′(t) of a solution x (t) vanishes at a certain point t∗ ∈ [a, b] ,
then t∗ should not be an inflection point of x (t) .

Lemma 2.1. Suppose that (1.3) (respectively, (1.4)) and (1.6) hold. Let x(t)
be a solution of (1.1) (respectively, (1.2)) such that

|x(t)| + |e(t)| �= 0 and x(t)e(t) ≤ 0 on [a, b] . (2.1)

If x′(t) has a zero in [a, b] , then x′(t) changes sign on (a − ε, b + ε) for all
sufficiently small ε > 0.

Proof. By the assumptions of the lemma, there exists a t∗ ∈ [a, b] such that

x′(t∗) = 0. (2.2)
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Suppose, contrary to the claim of the lemma, that x(t) is monotone on (a −
δ, b + δ) for some small δ > 0 and thus x′(t) does not change sign on (a −
δ, b + δ), that is, t∗ should be an inflection point, x′′ (t∗) = 0. This implies
that

(r(t)x′(t))′|t=t∗ = 0, (2.3)

and it follows from (1.1) (respectively, (1.2)), and (2.3) that

F (t∗, x(t∗)) = e(t∗), (2.4)

where

F (t, u) =

{
q(t)u + f(t, u), in the case of (1.1),
q(t)g(u), in the case of (1.2).

Note that assumption |x(t)| + |e(t)| �= 0 on [a, b] excludes the possibility
for x(t) and e(t) to vanish simultaneously at t = t∗. Hence, if x(t∗) = 0 and
e(t∗) �= 0 (respectively, e(t∗) = 0 and x(t∗) �= 0), it follows from (1.3) (respec-
tively, (1.4)) and (2.4) that 0 = e(t∗) �= 0 (respectively, 0 �= F (t∗, x(t∗)) =
e(t∗) = 0), a contradiction. If both x(t∗) �= 0 and e(t∗) �= 0, then assump-
tions (1.3) (respectively, (1.4)), x(t)e(t) ≤ 0, and q(t) > 0 on [a, b], imply
that the left- and right-hand sides in (2.4) have different signs, which is also
not possible. Therefore, x′(t) has to change the sign on (a − ε, b + ε) for all
small enough ε > 0. �

As an immediate consequence of Lemma 2.1, we derive the following
result used in the sequel:

Corollary 2.1. Let assumptions of Lemma 2.1 be satisfied. If a solution x(t)
of (1.1) (respectively, (1.2)) is monotone on (a − ε, b + ε) for some ε > 0,
then x′(t) �= 0 for all t ∈ [a, b] .

2.2. Relation Between Zeros of x′(t) and y(t)
In order to illustrate relationship between zeros of the solution y(t) of Eq.
(1.10) and the derivative x′(t) of the solution x(t) of Eq. (1.1) (respectively,
(1.2)), consider once again Hill differential equation (1.12) along with the
reciprocal equation (1.13). Observe that y(t) = sin t is an exact solution of
(1.13) possessing zeros in [an, bn] = [−π/4 + 2nπ, π/4 + 2nπ], n ∈ N. On the
other hand, the first derivative x′(t) of the exact solution x(t) = ecos t of
(1.12) also has zeros in the intervals [an, bn] because x′(t) = − (sin t) ecos t (in
this particular case, exactly the same zeros tn = 2πn, n ∈ N). The following
lemma establishes that, in general, if y(t) has a zero in (an, bn) , so does x′(t),
but zeros may not necessarily coincide.

Lemma 2.2 ([25, Theorem 3.1]). Suppose that assumptions (1.3), (1.5) hold
and

(−1)ne(t) ≤ 0 on (an, bn) , n ∈ N.

Assume further that

p2(t) ≤ 4r(t)q(t) on (an, bn) , n ∈ N. (2.5)
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If every solution y(t) of the reciprocal equation (1.10) on (an, bn) , n ∈ N, has
a zero in (an, bn), n ∈ N, then the derivative x′(t) of every positive solution
x(t) of (1.1) (respectively, of Eq. (1.2)) also has a zero in (an, bn) , n ∈ N.

Remark 2.1. If the reciprocal (dual) equation (1.10) is defined on the infi-
nite interval (t0,∞) rather than on a bounded interval (a, b), the so-called
reciprocity (duality) principle states that the main equation

(r(t)x′)′ + p(t)x′ + q(t)x = 0, t ≥ t0,

is non-oscillatory if and only if Eq. (1.10) is non-oscillatory, see, for instance,
Cecchi et al. [4, p. 386] or Potter [29, p. 474]. Since in our case the reciprocal
equation (1.10) is defined only on a sequence of intervals (an, bn) , n ∈ N,
a similar reciprocity principle cannot be applied and a different result is
required instead. Unlike standard reciprocity principles, Lemma 2.2 relates
zeros of solutions y(t) of (1.10) and zeros of the derivatives x′(t) of solutions
x(t) of (1.1) rather than zeros of solutions.

Using a local result which holds on (a, b) rather than on the whole
half-axis (t0,∞), we observe that condition (2.5) in Lemma 2.2 is satisfied
automatically. Introducing a new function

Θ(t) = exp
(∫ t

a

p(τ)
r(τ)

dτ

)
, t ∈ (a, b), (2.6)

we eliminate damping terms in Eqs. (1.1), (1.2), and (1.10):

(Θ(t)r(t)x′)′ + Θ(t)q(t)x + Θ(t)f(t, x) = Θ(t)e(t), t ∈ (a, b), (2.7)

(Θ(t)r(t)x′)′ + Θ(t)q(t)g(x) = Θ(t)e(t), t ∈ (a, b), (2.8)
(

1
Θ(t)q(t)

y′
)′

+
K

Θ(t)r(t)
y = 0, t ∈ (a, b). (2.9)

Note that every solution x(t) of (1.1) on (a, b) (respectively, solution y(t) of
(1.10)) also satisfies Eq. (2.7) (respectively, Eq. (2.9)) and vice versa; this is
also valid for solutions x (t) of (1.2) and solutions y(t) of (1.10). The same
relation holds for Eqs. (1.2) and (2.8). Furthermore, (2.9) is a reciprocal equa-
tion to (2.7) as well; coefficients of (2.7) satisfy (2.5) since the damping term
in (2.7) is equal to zero and other coefficients are positive functions. Thus,
applying Lemma 2.2 directly to Eqs. (2.7) and (2.9) instead of Eqs. (1.1) and
(1.10), we do not need anymore assumption (2.5). This trick, however, does
not work for oscillation criteria where damping terms play important role,
see, for instance, Mustafa et al. [23], Rogovchenko and Rogovchenko [30,31],
Rogovchenko [32], or Rogovchenko and Tuncay [34].

Lemma 2.3. Suppose that conditions (1.3) (respectively, (1.4)) and (1.6) hold.
If every solution y(t) of the reciprocal equation (1.10) has a zero in [a, b] , then
for every solution x(t) of (1.1) (respectively, (1.2)) satisfying condition (2.1)
on [a, b] the derivative x′(t) changes sign on (a−ε, b+ε) for all small enough
ε = ε (x) > 0.
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Proof. Let x(t) be a solution of Eq. (1.1) (respectively, (1.2)) satisfying con-
dition (2.1) on [a, b] . Suppose that the conclusion of lemma is false, then
there exists a δ > 0 such that x(t) is a monotone function on (a − δ, b + δ).
Let

wa
def=

G(x(a))
Θ(a)r(a)x′(a)

∈ R,

where

G(u) def=

{
u, for Eq. (1.1),
g(u), for Eq. (1.2).

By Corollary 2.1, x′(t) �= 0 for all t ∈ [a, b] and the functions

u(t) = wa and v(t) =
G(x(t))

Θ(t)r(t)x′(t)

are well-defined and continuously differentiable for all t ∈ [a, b] . Taking into
account that

du

dt
= 0, Θ(t)q(t) > 0, and

1
Θ(t)r(t)

> 0, t ∈ [a, b] ,

we conclude that, for all t ∈ [a, b] ,

du

dt
< Θ(t)q(t)u2 +

K

Θ(t)r(t)
and u(a) = wa, (2.10)

where K is a positive constant defined in (1.4). On the other hand, since
Θ(t) > 0, r(t) > 0, q(t) > 0 and G(x(t))e(t) ≤ 0 on [a, b] , by virtue of (2.7)
and (2.8), we deduce that, for all t ∈ [a, b] ,

dv

dt
≥ Θ(t)q(t)v2 +

K

Θ(t)r(t)
and v(a) = wa. (2.11)

Since the right-hand side of the inequality (2.11) is strictly positive, the
function v (t) is increasing on [a, b] and thus,

u(t) = wa = v(a) < v(t), t ∈ [a, b] . (2.12)

It follows from (2.10) to (2.12) and [15, Theorem 1.2.1] (see also [22]) that
there exists a function w ∈ C1([a, b]) such that, for all t ∈ [a, b] ,

dw

dt
= Θ(t)q(t)w2 +

K

Θ(t)r(t)
and w(a) = wa.

It is not difficult to check that the function

y(t) = exp
(

−
∫ t

a

Θ(s)q(s)w(s) ds

)

satisfies the reciprocal equation (2.9) for all t ∈ [a, b] and thus it satisfies Eq.
(1.10) as well. Since y(t) > 0 for all t ∈ [a, b] , this contradicts the assumption
of the lemma stating that every solution y(t) of the reciprocal equation (1.10)
has a zero in [a, b]. Thus, x(t) should be non-monotone on (a − ε, b + ε) for
all small enough ε > 0. The proof is complete now. �
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Example 2.1. To illustrate Lemma 2.3, consider a linear second-order homo-
geneous differential equation

x′′ +
sin t

sin t + 2
x = 0, t ∈ R, (2.13)

and the associated reciprocal equation(
sin t + 2

sin t
y′

)′
+ y = 0, t ∈ (a, b), (2.14)

where 0 < a < π/2 < b < π. Clearly,

q(t) =
sin t

sin t + 2
> 0

on [a, b] . Since e(t) ≡ 0 in Eq. (2.13), condition (2.1) reads as x(t) �= 0,
t ∈ [a, b]. It is easy to see that x(t) = sin t + 2 is a solution of (2.13) such
that x(t) > 0 on [a, b] and x′(t∗) = 0 for t∗ = π/2 ∈ [a, b]. Observe that
y(t) = cos t is a solution of the reciprocal equation (2.14) that vanishes at
the same point t∗ = π/2 ∈ [a, b].

With a similar argument as in Lemma 2.3, one can also derive the
following result:

Lemma 2.4. Let conditions (1.3) (respectively, (1.4)) and (1.5) be satisfied,
and [an, bn] , n ∈ N, be a sequence of intervals defined in (1.5). If every solu-
tion y(t) of the reciprocal equation (1.10) has a zero in each of the intervals
[an, bn] , then every solution x(t) of (1.1) (respectively, of Eq. (1.2)) satisfying
(2.1) on [an, bn] is non-monotone on (t0,∞).

Note that in order to satisfy the assumption of Lemma 2.4 that every
solution y(t) of (1.10) on (an, bn) has a zero in [an, bn] , one can apply to the
reciprocal equation (1.10) any appropriate interval oscillation criteria which
guarantee location of zeros in a given sequence of intervals, see Kong and
Pašić [13] or Rogovchenko and Tuncay [33] and the references cited therein.

2.3. Location of Zeros of x(t) and y(t) in a Given Interval

As pointed out in Sect. 2.2, in this paper we are interested in sufficient con-
ditions on r(t), p(t), and q(t) which ensure that solutions y(t) of (1.10) and
the derivatives x′(t) of solutions x(t) of (1.1) (respectively, of Eq. (2.9)) have
zeros located in a sequence of intervals [an, bn] , n ∈ N, whereas solutions x (t)
may not vanish in these intervals. In fact, referring again to Eq. (1.12), recall
that every member of a one-parameter family of solutions y(t) = C sin(t),
C �= 0 of reciprocal equation (1.13) has a zero in [an, bn] for all n ∈ N, yet all
solutions x(t) of (1.12) are non-oscillatory.

However, in this section, we prove a criterion which guarantees that
both solutions y(t) of (1.10) and x(t) of (1.1) vanish at least once in a given
interval.

Theorem 2.1. Let Θ(t) be defined as in (2.6). Assume that conditions (1.3)
and (1.6) hold. If there exists a positive number γ such that

1
π

∫ b

a

min
{

Θ(t)q(t)
γ

,
γ

Θ(t)r(t)

}
dt ≥ 1, (2.15)
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then all solutions x(t) of (1.1) satisfying (2.1) on [a, b] and all solutions y(t)
of the associated reciprocal equation (1.10) have at least one zero in [a, b].

In the proof of Theorem 2.1, we exploit a Riccati transformation and a
comparison principle. We also use properties of the integral

I(t) =
∫ t

a

min
{

Θ(s)q(s)
γ

,
γ

Θ(s)r(s)

}
ds, t ∈ [a, b], (2.16)

and of the function

ϕ(t) = tan (I(t) + arctan ω0) , t ∈ [a, T ∗), (2.17)

where ω0, T ∗ ∈ R and T ∗ > a. We start by proving the following auxiliary
result:

Lemma 2.5. Suppose that (1.6) is satisfied and let γ > 0 be a real number
such that (2.15) holds. Then, for every ω0 ∈ R, there exists a T ∗ ∈ (a, b) such
that the function ϕ(t) defined in (2.17) has the following properties:

⎧
⎪⎪⎨
⎪⎪⎩

dϕ
dt ≤ γ

Θ(t)r(t)ϕ
2 + Θ(t)q(t)

γ , t ∈ (a, T ∗),
dϕ
dt ≤ Θ(t)q(t)

γ ϕ2 + γ
Θ(t)r(t) , t ∈ (a, T ∗),

ϕ(a) = ω0, limt→T ∗ ϕ(t) = ∞.

(2.18)

Proof. It follows from (2.15) and (2.16) that the function I(t) is continuous
on [a, b], I(a) = 0, and I(b) ≥ π. Therefore,

I(a) + arctan ω0 = arctan ω0 <
π

2
< π + arctan ω0 ≤ I(b) + arctan ω0.

Since I(t) is continuous on [a, b], there exists a T ∗ ∈ (a, b) such that

I(T ∗) + arctan ω0 =
π

2

and thus,

lim
t→T ∗

ϕ(t) = ∞. (2.19)

An elementary calculation yields

dϕ

dt
=

1
cos2(I(t) + arctan ω0)

dI

dt
=

[
1 + tan2 (I(t) + arctan ω0)

] dI

dt

=
[
1 + ϕ2(t)

] dI

dt

=
[
1 + ϕ2(t)

]
min

{
Θ(s)q(s)

γ
,

γ

Θ(s)r(s)

}
.

(2.20)

The validity of both differential inequalities in (2.18) follows immediately
from (2.20) and assumption (2.15). The proof of the lemma is complete.

�
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Proof of Theorem 2.1. Let x(t) and y(t) be solutions of Eqs. (1.1) and (1.10).
Suppose, contrary to the claim of the theorem, that x(t) �= 0 and y(t) �= 0 on
[a, b] , in which case the functions

ξ(t) = −γΘ(t)r(t)x′(t)
x(t)

and ψ(t) = − γy′(t)
Θ(t)q(t)y(t)

are well defined on [a, b] . Now, using assumptions (2.7) and (2.9), we conclude
that ξ, ψ ∈ C1([a, b]) and, for all t ∈ [a, b] ,

dξ

dt
≥ γ

Θ(t)r(t)
ξ2 +

Θ(t)q(t)
γ

and
dψ

dt
≤ Θ(t)q(t)

γ
ψ2 +

γ

Θ(t)r(t)
.

(2.21)
Choosing first ω0 = ξ(a) and then ω0 = ψ(a), using (2.18), (2.21), and the
comparison principle [39], we deduce that ϕ(t) ≤ ξ(t) and ϕ(t) ≤ ψ(t) for
t ∈ [a, b] . In particular, it follows that ϕ ∈ C1([a, b]), which contradicts
condition (2.19). Therefore, our assumption is wrong and both x(t) and y(t)
should vanish at least once in [a, b]. The proof for Eq. (2.9) follows the same
lines. �

3. Main Results

We provide first a test for a non-monotone behavior of solutions of Eqs. (1.1)
and (1.2). Let the intervals [an, bn] , n ∈ N, and the function Θ(t) be defined
in (1.5) and (2.6), respectively.

Theorem 3.1. Let t0 > 0, and assume that (1.3) (respectively, (1.4)) and (1.5)
hold. Let {αn}n∈N

and {βn}n∈N
be two sequences of positive numbers such

that, for all n ∈ N and for all t ∈ [an, bn] ,

βn ≥ αn

(
1
4

+
π2

ln2(bn/an)

)
(3.1)

and
βn

q(t)
≤ Θ(t) ≤ αnKt2

r(t)
. (3.2)

Then every solution x(t) of Eq. (1.1) (respectively, of Eq. (1.2)) satisfying for
t ∈ [an, bn] condition (2.1) is non-monotone on (t0,∞).

Proof. For t > 0 and n ∈ N, consider the Euler differential equation
1
βn

z′′ +
1

αnt2
z = 0. (3.3)

If Mn = βn/αn, assumption (3.1) yields

Mn ≥ 1
4

+
π2

ln2(bn/an)
, n ∈ N.

Since Mn > 1/4, the numbers ρn =
√

Mn − 1/4 are well-defined and

ρn ≥ π

ln(bn/an)
> 0, n ∈ N. (3.4)
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Observe that, by virtue of (3.4), the function

z(t) =
√

t sin(ρn ln(t/an)) (3.5)

is a solution of Eq. (3.3) satisfying

z(an) = z(tn) = 0, (3.6)

where tn = an exp(π/ρn) ∈ (an, bn] . Furthermore, an and tn are two consec-
utive zeros of z(t) in [an, bn] for all n ∈ N, since for every t ∈ (an, bn) there
exists an s ∈ (0, π) such that t = an exp(s/ρn) and hence, z(t) > 0.

Next, it follows from the assumption (3.2) that for t ∈ [an, bn] ,

1
Θ(t)q(t)

≤ 1
βn

and
K

Θ(t)r(t)
≥ 1

αnt2
. (3.7)

Using (3.7) and applying Sturm comparison theorem to the reciprocal equa-
tion (2.9) and Euler equation (3.3), we deduce that every solution y(t) of
equation (2.9) has at least one zero between two consecutive zeros t = an

and t = tn of a solution z(t) of Eq. (3.3) in each interval [an, bn] , n ∈ N. An
application of Lemma 2.4 completes the proof of the theorem. �

Example 3.1. For t ≥ 1, consider a nonlinear differential equation
(
α0t

k sin(ln t)x′)′
+ α0t

k−1 sin(ln t)x′ + tlx + g(t)|x|m sgn(x) = e(t), (3.8)

where α0 ∈ (0, 2/5], k ≤ 1, l ≥ 0, m > 0, and g(t) ≥ 0 on [1,∞). We claim
that all assumptions of Theorem 3.1 are satisfied with

αn = α0, βn =
5
2
α0, an = e2nπ+π/6, and bn = e2nπ+5π/6.

In fact, note that t0 = 1, r(t) = α0t
k sin(ln t) > 0, p(t) = α0t

k−1 sin(ln t),
q(t) = tl > 0, and Θ(t) = t/an on [an, bn]. Since

βn = 5α0/2 ≤ 1 ≤ e(2nπ+ π
6 )l = al

n,

we have anβn ≤ al+1
n ≤ tl+1 for t ∈ [an, bn]. This establishes the estimate

from below for Θ (t) in (3.2), βn/q(t) ≤ Θ(t), t ∈ [an, bn].
Next, since k − 1 ≤ 0 and an > 1, we have

0 < α0t
k−1 sin(ln t) ≤ α0a

k−1
n ≤ αnan, t ∈ [an, bn],

that is, r(t) ≤ αnant for t ∈ [an, bn], so the estimate from above for Θ (t) in
(3.2) also holds, Θ(t) ≤ αnKt2/r(t), where K = 1.

Finally, observe that

βn =
5
2
α0 =

5
2
αn = αn

(
1
4

+
π2

ln2(bn/an)

)
,

and thus (3.1) holds. Therefore, by Theorem 3.1, every solution x(t) of equa-
tion (3.8) satisfying (2.1) on [an, bn] is non-monotone on (t0,∞).

Remark 3.1. Recall that we have used Euler differential equation (3.3) in
the proof of Theorem 3.1. For the solution (3.5) of Eq. (3.3) satisfying (3.6),
condition tn ≤ bn is equivalent to the inequality (3.1). Letting αn = α0 > 0
in (3.1), we conclude that
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lim inf
n→∞ βn ≥ α0

4
> 0. (3.9)

Application of Sturm comparison theorem to Eqs. (1.1) and (2.9) requires
that

1
αnt2q(t)

≤ Θ(t) ≤ 1
βnr(t)

. (3.10)

However, if Θ(t)r(t) becomes unbounded as t → ∞, inequalities (3.10) yield

lim inf
n→∞ βn = 0,

which contradicts (3.9). For instance, condition (3.9) holds in Example 3.1,
and, on the other hand,

lim sup
t→∞

(Θ(t)r(t)) = α0 lim sup
t→∞

(tk+1 sin(ln t))

= α0 lim sup
n→∞

e(k+1)(2n+1/2) = ∞,

that is, Θ(t)r(t) is unbounded as t → ∞. Therefore, even for linear equation
(1.8), application of Sturm comparison theorem to Euler differential equation
(3.3) does not lead to the situation described in Sect. 2.3.

The following result demonstrates how an oscillation criterion like The-
orem 2.1 can be turned into a non-monotonicity test.

Theorem 3.2. Suppose that conditions (1.3) and (1.5) hold, and let assump-
tion (2.15) be satisfied on a sequence of intervals [an, bn] , n ∈ N, defined in
(1.5). Then every solution x(t) of Eq. (1.1) satisfying for t ∈ [an, bn] condition
(2.1) is non-monotone on (t0,∞).

Proof. Observe that the first derivative x′(t) of any nontrivial oscillatory
function x(t) changes sign infinitely many times on (t0,∞) and thus, x(t) is
non-monotone on (t0,∞). On the other hand, applying Theorem 2.1 on the
intervals [an, bn] , we conclude that every nontrivial solution x(t) of equation
(1.1) has at least one zero in each of the intervals [an, bn] . This implies
that x(t) is a nontrivial oscillatory function and thus x(t) is non-monotone
on (t0,∞). Finally, note that every solution x(t) of Eq. (1.1) satisfying for
t ∈ [an, bn] condition (2.1) is a nontrivial function. Otherwise Eq. (1.1) would
yield e(t) ≡ 0, which is not possible due to condition (2.1). This completes
the proof of the theorem. �

Example 3.2. Let t0 ∈ R and let ω satisfy 0 < 3ω ≤ (3/4)1/4. Consider a
nonlinear differential equation

x′′ + sin(ωt)x + f(t, x) = e(t), t ≥ t0, (3.11)

where the function f(t, x) satisfies (1.3). We claim that for γ such that

1 ≤ γ ≤ 1
πω

or 3ω ≤ γ ≤
(

3
4

)1/4

,
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all assumptions of Theorem 3.2 are met with

an =
1
ω

(π

3
+ 2nπ

)
and bn =

1
ω

(
2π

3
+ 2nπ

)
.

In fact, for both choices of γ, we conclude that inequalities 0 < 3ω ≤
(3/4)1/4 < 3/π imply 1 ≤ 1/(πω) and 3ω ≤ (3/4)1/4. Furthermore, since
r(t) ≡ 1 and p(t) ≡ 0, we have Θ(t) ≡ 1 and the left-hand side of (2.15)
assumes the form

1
π

∫ bn

an

min
{

Θ(t)q(t)
γ

,
γ

Θ(t)r(t)

}
dt =

1
π

∫ bn

an

min
{

sin(ωt)
γ

, γ

}
dt.

We need to verify condition (2.15). To this end, let first 1 ≤ γ ≤ 1/(πω).
Then 1 ≤ γ2 and sin(ωt)/γ ≤ γ. This yields

1
π

∫ bn

an

min
{

Θ(t)q(t)
γ

,
γ

Θ(t)r(t)

}
dt =

1
π

∫ bn

an

sin(ωt)
γ

dt

=
1

πγω
≥ 1, n ∈ N.

Suppose now that 0 < 3ω ≤ γ ≤ (3/4)1/4. In this case,

sin(ωt) ≥ min
[an,bn]

sin(ωt) =
√

3
2

≥ γ2 on (an, bn) ,

that is, sin(ωt)/γ ≥ γ on (an, bn) , and hence,

1
π

∫ bn

an

min
{

Θ(t)q(t)
γ

,
γ

Θ(t)r(t)

}
dt =

1
π

∫ bn

an

γ dt

=
γ

3ω
≥ 1, n ∈ N.

Thus, in both cases condition (2.15) is satisfied. Consequently, it follows from
Theorem 3.2 that every solution x(t) of Eq. (3.11) satisfying (2.1) on [an, bn]
is non-monotone on (t0,∞).
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[7] Došlý, O., Řehák, P.: Half-Linear Differential Equations, North-Holland Math-
ematics Studies, 202. Elsevier Science B.V, Amsterdam (2005)

[8] Elias, U., Kreith, K.: Nonlinear differential systems with monotone solutions.
Hiroshima Math. J. 10, 553–556 (1980)

[9] Evtukhov, V.M., Klopot, A.M.: Asymptotic behavior of solutions of ordinary
differential equations of n-th order with regularly varying nonlinearities. Mem.
Differ. Equ. Math. Phys. 61, 37–61 (2014)

[10] Hartman, P.: Ordinary Differential Equations. Society for Industrial and Ap-
plied Mathematics (SIAM), Philadelphia, PA (2002)

[11] Hartman, P., Wintner, A.: Linear differential and difference equations with
monotone solutions. Am. J. Math. 75, 731–743 (1953)

[12] Hartman, P., Wintner, A.: Linear differential equations with completely mono-
tone solutions. Am. J. Math. 76, 199–206 (1954)
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