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Abstract

The work done in this thesis has been focused on the comparison of the power production in
the ideal single junction cell, intermediate band solar cell, the unconstrained tandem cell, and the
area de-coupled 2-terminal constrained tandem cell, using di�erent band gaps. The e�ciency and
production for each of the concepts have been calculated based mathematical framework previously
established, using temperature and irradiation data collected from Kjøita in Kristiansand, using
MatLab. The monthly and annual power production for each of the concepts has been calculated
and compared. It has been found that the intermediate band solar cell with a band gap optimized
for the Am1.5 spectrum, has an annual production 3.6% and 3% higher than the 2-terminal and
4-terminal double junction solar cells with band gaps optimized for Am1.5. Also, the intermediate
band solar, 2-terminal and 4-terminal double was shown to have an annual production 29%, 26.5%,
and 26.8% higher, respectively, than the single junction cell with Am1.5 optimized band gap.
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1 Introduction

Fossil fuels is the main and a �nite source of energy in today's market[1]. In 2014 the global coal con-
sumption was 2.93 GTOE(Gigatonnes oil equivalent) and was increasing at a rate of 103 MTOE/year.
The oil consumption for the same year was 92.73 million barrels per day(MBD), and the yearly in-
crease was at 1.4MBD. And the global gas consumption was 9.30 BCM(billion cubic meter)/day and
increased by a rate of 127.4 MCM/day in the same year.

As the world becomes more concerned about the fossil-fuels impact on the climate, and the economical
viability changes as the fuel sources becomes depleted. These concerns have lead to an increased
interest in renewable energies, particularly solar energy for its abundance as a source and scalability
of the installations, from portable panels to solar power plants.

Solar energy can be divided into two categories: solar thermal energy, where electricity or heating
are produced from collecting solar energy in the form of heat. The second category is photovoltaics,
where electricity is produced directly from the sunlight. Photovoltaics still has a low contribution
to the global energy market with only about 1.3% of the installed production, but the contribution
from photovoltaics was almost 20% of the increase in global energy production in 2016[2]. Therefore,
research is focused on higher e�ciency and lower production costs of solar cells.

but the contribution from photovoltaics was almost 20% of the increase in global energy production

The evolution of photovoltaic technologies can be divided into three categories: First generation, which
consists mostly of monocrystalline and polycrystalline silicon cells, with an e�ciency in the 15-20%
range, which are the dominant type of cells on the market. The second generation is mostly known for
thin �lm solar cells that are made of amorphous silicon, Cadmium Telluride, Copper Indium Selenide
or Copper Indium Gallium Diselenide. The third generation introduces new concepts with a higher
theoretical e�ciency limits compared to the single junction limit proposed by Shockley and Queisser[3].
These concepts are among others, the intermediate band and tandem solar cells[4].

With new emerging technologies it is interesting to investigate how well these concepts might function
in a Nordic climate. This work will review the theory of the single junction, intermediate band, the
4-terminal tandem and the relatively new approach of area de-coupled 2-terminal tandem cell. A
summary of some related work done in the �eld, and simulations of the cell concepts to compare
the e�ciency and production, using irradiation and temperature data measured in 2016 at Kjøita,
Kristiansand. The mathematical framework used in this work is based on previous work done in
the �eld of intermediate band and tandem cells, and MatLab will be the analysis tool used for the
calculations and plotting.
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2 Theory

This section describes the di�erent concepts that will be used in this work. These are:

� Conventional Single Junction Cell

� Intermediate Band Solar Cell

� Tandem Solar Cell

The similarities and di�erences of the working principles of these concepts will be described, as well
as the advantages and disadvantages of implementing these. The limiting e�ciencies of the di�erent
concepts will be calculated by using Shockley and Queisser's [3] principles of detailed balance.

2.1 Detailed balance theory

Proposed by Shockley and Queisser [3], the principles of detailed balance is a technique of calculating
the e�ciency of photovoltaic(PV) concepts. The most general approach to this technique is to calculate
the photon �ux absorption in the solar cell and the �ux emission, which are related to generation rate
and recombination rate respectively.

Figure 1: Representation of the detailed balance approximation. Showing generation in yellow and
recombination in red. Sunlight is absorbed by the cell and electrons are excited into the conduction.
Electrons de-excites back into the valence band and the cell emits photons.

The principle assumes full absorption of photons above the band-gap energy and in�nite carrier mo-
bility, allowing collection of carriers independently of where generation occurs in the cell. Also, it
assumed that the charge carrier transport is lossless, zero losses from unwanted re�ections and a per-
fect mirror at the back, all recombinations are radiative and one electron is generated for every photon
with energy above the band-gap level. Depicted in �gure 1, an electron is excited for every photon and
recombination emits a photon for every electron that de-excites. Then the solar cell current becomes
the di�erence between generation and recombination multiplied by the elemental charge q.

2
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2.2 Generation �ux

The irradiation received by the solar cell can be seen as two di�erent components, direct and di�use
irradiation. The direct component is the irradiation contribution perpendicular to the disc of the sun,
this largely varies on factors like cloud coverage, moisture and other atmospheric conditions, shown
in �gure 2. The di�use contribution comes from the light scattering in the atmosphere, excluding the
direct component. The sum of these components may also be as the global horizontal irradiation[5].

Figure 2: Representation of the surface irradiation, where the yellow parts represent the direct com-
ponent from the sun and blue the di�use component form the surroundings and the rest of the sky

Depending on the position of the sun in the sky, the distance the light needs to travel through the
atmosphere changes with the sun. When the sun is directly overhead, the distance the light travels
corresponds to one atmosphere or Airmass(Am) 1. As the sun descends toward the horizon, the Am
increases. The light spectrum's for di�erent Am's is comprised of a range of wavelengths, from infrared
to ultra-violet. In each wavelength there are a number of photons, the photon �ux is often calculated
by summarizing the number of photons in an interval of wavelengths.

2.3 Recombination

Recombination rate of electrons and holes is a process where these carriers annihilate each other, where
the electron after one or more steps occupies the hole state. The energy di�erence between the hole and
electron is released during this process. Recombination is divided into three di�erent classes: Radiative
recombination, the energy is released in the form of a photon. Non-radiative recombination, the energy
is passed on as atomic or molecular vibrations, also known as phonons and auger-recombination, the
energy is released in the form of kinetic energy transferred to another electron[6]. The recombination
rate is dependant on the separation of the quasi-Fermi levels µ and can be described as[7]

ψrecombination(Eg,∞, µ, T earth) = C

∫ ∞
Eg

E2

exp E−µ
kT earth

− 1
dE, (1)

where C is a constant C = 2π
h3c2

, and Eg is the band-gap energy, c is the speed of light, h is the Planck's
constant, Tearth is the temperature of the earth, k is Boltzmann constant, E is the photon energy.

Fermi-Dirac statistics describes particle distribution over a systems energy states, made up of identical
particles that do not occupy the same quantum state in a quantum system, also known as the Pauli
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exclusion principle. While the Fermi-Dirac statistics describes the electron and hole population in
a material in thermodynamic equilibrium, this changes when excess carrier generation beyond the
thermal equilibrium occurs. When a semiconductor material becomes illuminated the majority and
minority carriers feature enhanced densities, this requires the Fermi level to shift toward both the
valence and conduction band edges. To resolve this the quasi-Fermi concept may be introduced,
which allows a way to describe a state of electrochemical non-equilibrium of a semiconductor under
illumination. This replaces the Fermi energy εF with quasi-Fermi energies for both the valence εFv
and conduction band εFc. The quasi-Fermi energy separation then relates to the implied voltage of the
illuminated semiconductor by εFc − εFv = qV [8].

2.4 Conventional Single Junction Cell(SJC)

The principle of the solar cell is that when sunlight hits the semiconductor material of the cell, an
electron gets excited into the conduction band, shown in �gure 1, if and only if the energy of the
photons of the sunlight is higher than the energy of the band gap in the semiconductor material.
However, for photons with higher energy than the band-gap an e�ect called thermalization becomes a
problem. Thermalization occurs when photons with energies larger or much larger than the band-gap
excites electron high up in the conduction band. The electron then starts, with high probability, to
generate and discharge phonons until its energy is that of the conduction band-edge[9], as shown in
�gure 3.

Figure 3: Representation of electrons being excited high up in the conduction band and then settling
at the band-edge

According to Shockley and Queisser[3] the highest theoretical e�ciency limit in the AM1.5 spectrum
and assuming a band gap of 1.34eV was approximately 33.7%.

To model the SJC, as well as the other cells in this work. The principle of detailed balance is applied,
which states [3]

J = q(G−R), (2)

where J is the current density, q the elemental charge constant, G is the photon generation rate, for
this work the photon generation is estimated based on standardized spectra and R the recombination
rate of the electron hole pairs. The recombination can be calculated using [10]

R = C

∫ ETop

EGap

E2

exp[ (E−qV )]
kT ]− 1

dE, (3)

4
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If exp[ (E−qV )
kT ] is much larger than 1, a simpli�cation can be used

R = C

∫ ETop

EGap

E2e
(qV −E)

kT dE, (4)

where ETop is the upper band gap limit, usually in�nite. V is the cell voltage, and T is the cell
temperature.

2.5 Intermediate Band Solar Cell(IBSC)

Thermalization is the largest individual limiting factor of e�ciency in solar electrical power. Utilizing
the sunlight more e�ciently by having additional band-gap interval might increase the cell e�ciency,
one way of achieving an additional band-gap is the Intermediate band solar cell(IBSC). By adding an
intermediate band(IB) in between the conduction and valence band, two photons with energies less
than the band gap level should theoretically be able to excite one electron into the conduction band.

Figure 4: Principal sketch of the Intermediate cell. Where blue arrows are the generation and red
arrows are the recombination. Left side electrons are excites over the whole band gap. While on the
right side two lower than band gap energy photons, excites an electron into the conduction band.

Figure 4 is a sketch of an IBSC. The intermediate band is currently fabricated by using either quantum
dot technology, highly mismatched alloys or with deep impurity bulk materials[11].
R.Strandberg [10] described a mathematical model, which stated

J = q(Gcv + 1/2(Gci +Giv)−R0,cve
qV
kT − 1

2

√
4R0,ciR0,ive

qV
kT + (Gci −Giv)2) (5)

5
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whereGcv is the generation rate between the valence and conduction, Gci is the generation in conduction-
intermediate band and Giv is the generation between the intermediate and the valence band. R,0 is
the recombination parameters.
The recombinations can be described as

R0,ci = C

∫ Eiv

Eci

E2e
−E
kT dE (6)

R0,iv = C

∫ Ecv

Eiv

E2e
−E
kT dE (7)

R0,cv = C

∫ ∞
Ecv

E2e
−E
kT dE (8)

Equation 6-8 describes the recombination parameters at the intervals R0.ci conduction and intermediate
band, R0.iv intermediate and valence band and R0.cv conduction and valence band respectively.

2.6 Tandem Solar Cell

Tandem solar cells are photovoltaic cells in stacks of two or more. Each of the cells in the stack has a
di�erent band-gap, which makes the cells able to use more sunlight more e�ciently, thereby increasing
the overall e�ciency. The cells are con�gured so that the high energy photons are absorbed in the top
cell and the following cells absorb photons with decreasing energy[12].

Figure 5 shows on the left side a 2 terminal(2T) tandem cell, which can either be connected in series
or parallel. The right-hand side shows a 4 terminal(4T) cell, i.e., the cells are operated independently
of each other. In both cases the high energy photons are absorbed in the top layer cell, and the lower
energy photons are absorbed in the bottom layer. The 2T has a drawback in the form of the need to
be either current matched, meaning that the current from the top cell and bottom cell needs to be the
same, or voltage matched, that the voltage across the top cell and bottom cell needs to be equal. This
can reduce the e�ciency, especially at times of the day when the infrared parts of the spectrum are
dominant. The 4T, on the other hand, do not need matching, but the design complexity increases[13].

The limiting e�ciencies under AM 1.5G were investigated by Bremner et al[14]. The e�ciencies for
constrained 2 terminals (2T), and unconstrained 4 terminal(4T) for a double stack cell con�guration
is respectively 45.71% and 46.06%.

The mathematical model for the simulations is based on the principle and equations for the 4T and
2T area de-coupled tandem two cell stack con�guration [12] [10]. These models assume an ideal cell
with perfect back-mirror and low-pass �lter between the top and bottom cell, allowing lower energy
photons to pass through the top cell into the bottom cell. The 4T con�guration can be analyzed as
two independent cells, where the output power is,

PTotal = PTop + PBottom, (9)

where PTop is the power of the top, and PBottom is for the bottom cell. The current density for each
cell is described similarly as for the single junction by

J = q(G−R). (10)

6
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Figure 5: Example sketch of a two cells series connected 2-terminals tandem cell and a independently
operated 4-terminal cell. Blue indicate high energy photons and red represents low energy photons

The recombination for the top cell can be described as

RTop = C

∫ EMax

ETop

E2e
(qV −E)

kT dE (11)

and for the bottom cell as

RBottom = C

∫ ETop

0
E2e

(qV −E)
kT dE. (12)

A general expression for the power developed for any of the cells can be expressed as

P = q(G−R)V. (13)

The simulation of the 2T tandem cell is using voltage matching and the method of area de-coupling pro-
posed by Strandberg[12]. By �ne-tuning the ratio between "m" top cells and "n" bottom cells(�gure6)
it is possible to achieve an e�ciency equal to that of the 4T tandem cells.

Figure 6: Sketch of a voltage matched 2 terminal tandem cell, with "m" top cells and "n" bottom cells.

With the assumptions mentioned in section 2.1 and and previously in the this section, the current

7



Theory University of Agder

density for the top cell can be described as

ITop =
qA

m
(G− (C

∫ E

ETop

E2e
(qVTop−E)

kT dE), (14)

where ITop is the top cell current and VTop is the cell voltage of the top cell. Similarly the bottom cell
becomes

IBottom =
qA

m
(G− (C

∫ ETop

EBottom

E2e
(qVBottom−E)

kT dE), (15)

where IBottom is the bottom cell current and VBottom is bottom cell voltage. The power of the 2T
tandem cell can then be expressed like

P = V (ITop + IBottom) (16)

where V is shared voltage across the parallel connection and need to obey the dependency mVTop =
nVBottom = V . For use in this work, the e�ciency at di�erent combinations of "n" and "m" cells for
the di�erent band gaps, and can be seen in �gures 26-29 in the appendix A.

2.7 Solar position

It is necessary to �nd an estimate of the suns position throughout the year, in order to know how
the AM changes throughout the day for a year. To calculate the solar position these sets of equations
collected from the National Oceanic and Atmospheric Administration [15] will be used.
Firstly, the fraction of the year is calculated, which divides the year into a decimal number in radians.

Y =
2π

365

(
d− 1 +

hr − 12

24

)
(17)

Where Y is the fractional year in radians, d is the day of the year and hr is the hour of the day.
With the fractional year its possible to calculate the Equation of Time(EoT), which corrects for the
eccentricity of the earth`s orbit or the di�erence between the apparent solar time and the mean solar
time, By

EoT = 229.18cos(Y ) + 0.001868cos(Y )− 0.032077sin(Y )

−0.01461cos(2Y )−0.040849sin(2Y )

.

(18)

Declination angle of the sun(Decl) is the angle between the equator and the sun and can be calculate
by,

Decl = 0.006918− 0.399912cos(Y ) + 0.070257sin(Y )− 0.006758cos(2Y )

+0.000907sin(2Y )− 0.002697cos(3Y ) + 0.00148sin(3Y ).
(19)

Where Eot is in minutes and Decl is in radians.
To account variations of the solar time within a certain time-zone, due to longitude variations in a
time-zone and can be calculated by

Timeoffset = EoT + 4long − 60timezone, (20)
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where long is the longitude of the desired position, in degrees(East of the prime meridian is in positive),
and timezone is the di�erence from GMT, which is in hours.

Tst = hr60 +min+
S

60
+ Timeoffset (21)

Where the Tst is the true solar time, the passage of time of the movement of the sun when observed
from the earth. in minutes, min is minutes of the hour and sec is the seconds. The hour angle is the
conversion of the suns movement in solar time to angles in degrees and can be calculated like

Ha =
Tst

4
− 180 (22)

where Ha is the solar hour angle, in degrees. With the previous equations, the zenith angle can now
be calculated as a function of Ha, lattitude(in degrees) and Decl, by

Z = cos-1(sin(Lat)sin(Decl) + cos(Lat)cos(Decl)cos(Ha)) (23)

Where Z is the zenith angle and Lat is the lattitude.

Figure 7: Sketch of solar zenith angle and elevation angle in relation to the surface and horizon

In Figure7 the correlation between zenith and solar elevation angle, where the AM is 1 when the sun
is perpendicular to the surface and increases the further it travels toward the horizon.
With the zenith angle the corresponding Am can be calculated using [16]

Am =
1

cos(Z)
(24)
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2.8 Band Gaps

CH3NH3PbI3 Perovskite has recently been shown to be a highly promising semiconductor material, due
to its high power conversion potential with a theoretical e�ciency limit of 31%, using the CH3NH3PbI3
alloy [17]. As well as high e�ciency, it is also attractive because of its relatively low manufacturing
cost, its ability for band-gap tailoring, reshape-ability and bend-ability [18].

Silicon(Si) semiconductors are the most established and used technology in the market, and therefore
an interesting comparison to make. Using silicon in the subcell in tandem cells has also shown to be
promising [19]. Band gap energy for silicon is usually 1.11 eV [20].

Gallium arsenide(GaAs) is a highly relevant comparison due to it having the highest recorded e�ciency
of an unconcentrated single junction cell, although being very expensive[21]. As a semiconductor
material for solar power uses GaAs is good because of its low-temperature coe�cient, good low light
performance, high e�ciency, light and �exible and UV, radiation and moisture resistant[22].

Due to high absorptivity, band-gap tailoring and cost-e�ectiveness, perovskite-perovskite tandem cells
is an exciting material combination to compare [23]. Band-gap values used is 2.25 eV and 1.55 eV for
the top and bottom cells respectively. Perovskite and CIGS is another relatively recent combination
which might result in low-cost tandem [24]. [25] et al. proposed an AlGaAs/Si combination in an
attempt to produce a low cost, high-e�ciency tandem cell.

Perovskite/Si is at the moment the most promising contender for reaching the theoretical limit for a
two stack tandem cell proposed by D.Vos[26]. Duong et al[27] demonstrated a perovskite/Si tandem
cell with an e�ciency of 26.4%.
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3 State of the art

Solar cell technologies have greatly evolved the last 80 years since the �rst solar cell reported in 1941
with an e�ciency of 1%[28]. This section will take a look at some of the work that has been done in
the �eld.

3.1 Single Junction Cell

Even though a lot of research solar cell technology has shifted towards alternative concepts of reaching
an increased utilization of solar power, like multi-junction cells, some strides have been to reach this
limit. Silverman et al[29] demonstrated the performance of a GaAs thin �lm cell, which reached 28.8%
e�ciency under AM1.5G illumination.

3.2 Intermediate band

One of the major problems with the intermediate-band approach to increase the e�ciency of solar cells
is the inherent duality nature of the intermediate band in the form of the maximum carrier occupancy.
Too low and the transition from IB to CB gets reduced, and if it is too high the transition from VB to
IB gets reduced [30]. Research has been commonly done in quantum dot[31], highly mismatched al-
loys[32], deep impurity bulk materials[33] and now emerging ratchet bands(RB)[34]. The introduction
of the ratchet band is to increase the lifespan of the intermediate state thus increasing the e�ciency,
provided that the RB not be coupled radiatively to the VB[34].

Naitoh et al. presented an e�ciency estimation for three-junction 2T and intermediate cells in Japan
[35]. It was done by using the detailed-balance on irradiation data over two years, taking into account
cell temperature and wind speed. Band gaps were optimized to Am1.5 and 300K. It was concluded that
the IBSC is more robust for spectral changes compared to the three-junction cells, especially in shorter
wavelength light. Overall the IBSC had about 1% higher production than the 2T three-junction cell,
and it was suggested that IBSC would perform well at di�erent locations around the world.
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3.3 Tandem Cells

D.Vos [26] proposed a detailed balance limit for Tandem cells. Where it was shown that the e�ciency
limit for a single cell, double, triple and quad cells were respectively 30%, 42%, 49% and 53%, illu-
minated by Am1.5. It shows the feasibility of high power density cells for speci�c applications. The
cells are usually connected either in 2T or 4T con�guration. 2T in series connection requires current
matching that reduce e�ciency at certain wavelengths and 4T increases the complexity of the cell.
Brown et al. [36] proposed an e�ciency limit of 2T current-constrained stacks and found that the
relative di�erence in current between the unconstrained and constrained was 1.5%, for stacks higher
than ten the e�ciency di�erence reduced. Bremner et al. [14] presented a similar work where 1-8
cell stack constrained and unconstrained were compared, eight stacks showed the largest e�ciency
di�erence with 62.34% unconstrained to 61.42% constrained. As a possible method of increasing the
e�ciency of 2T tandem stacks, R.Sandberg [12] presented an analysis of area decoupled modules. By
independently varying the number of "m" top cells and "n" bottom cells, making it possible to set the
voltage/current match with a higher degree of freedom, �gure 8.

Figure 8: Illustration of the connection con�guration for voltage and current matched 2T tandem cell
with m - top-cells and n - bottom-cells. The upper con�guration shows the voltage matched and the
lower shows the current matched. [12]

Jain et al[37] demonstrated a high e�ciency double stack tandem cells under Am1.5 illumination,
consisting of 1.7 eV GaInAsp top-junction with a 1.1 eV GaInAs bottom junction. This cell bandgap
combination had a conversion e�ciency of 32.6 ± 1.4% In a study presented in 2018 by Dupree et
al. [38], an e�ciency comparison between Standard Test Conditions(STC) and a �eld test located in
Denver was performed. The concepts used were the single junction cell and a 2T and 4T tandem cells.
The �ndings of STC versus In Field(IF) tests were, SJC had 27%STC and 26.1%IF, the 4T 35%STC and
34.5%IF, and 2T 35%STC and 33.8%IF. The current mismatching causes the 0.7% e�ciency di�erence
between 4T and 2T. It was also found that the temperature properties of the perovskite compensated
for the losses due to current mismatch. The temperature properties of perovskite are the opposite of
many semiconductor materials in the way that the band-gap widens, i.e., the needed energy increases
as the temperature rises, unlike c-Si that narrows. In e�ect, as the sun rises and the irradiance and
temperature increases, the current in the c-Si bottom cell increases relative to the perovskite top cell,
and this counteracts the losses caused by the spectral miss-match. This occurs only when just one of
the tandem-subcells is perovskite[38].
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3.4 Spectrum

In a study conducted by Schweiger et al[39], it was investigated how di�erent climates impact the
performance of photovoltaic modules. The modules used in the investigation was placed in Germany,
Italy, India, and Arizona(USA), thereby covering four di�erent climate zones. In�uences on the perfor-
mance that were taken into consideration were module temperature, low irradiation, soiling, angular
and spectral e�ects. What they found was �gure 9 a large spread in performance, up to 23% module

Figure 9: Module performance ration of the di�erent modules at each location.(Collected from[39])

performance ratio(MPR) di�erence. The highest variations between small and largest MPR in the dif-
ferent locations was, 23% in India, 21% in Arizona, 14% in Germany and 12% in Italy. The di�erences
caused by climate are the most signi�cant between India and Germany of 5-7%, with the occasional
observation of 14%.

Liu et al. [40] investigated how spectral variation, low irradiance, and temperature would a�ect the
performance ratio of a single junction, 2T tandem and 4T tandem, with an array of di�erent band-gaps.
In the locations of Denver, Colorado, and Singapore.

(a) Loss contributions in Singapore. Major temperature and
spectral losses contributing to the reduction in e�ciency. Col-
lected from[40]

(b) Loss contributions in Denver. Temperature and low irradi-
ance heavily in�uencing the e�ciency reduction, considerably
less temperature loss than Singapore. Collected from[40]
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The contributions to losses are described in Figure 10a. It was concluded that the spectral losses in
tropical climates could be considerable for 2T tandem cells, while small for 4T cells and it was suggested
that the 4T tandem cells with optimal sub-cells are the most promising concept to replace the single
junction cells. It was predicted that temperature would in�uence the tandem cell less compared to the
single junction cells, which �gure 10a corroborate.

Kvifte et al[41] performed a study on the spectral distribution in the Nordic countries. The spectral
distribution they found for Tromsø and Aas is given in table 1.

Table 1: Table shows the spectral distributions for Aas and Tromsø, with percentage(%) of sunlight
with photon energy(Ev) for each of the locations

Photon energy(eV) Aas(Percentage of incident light with photon energy)(%) Tromsø(Percentage of incident light with photon energy)(%)
3.22-4.2eV 13.3-14.5% 13.4-15.2%
1.97-2.5eV 19-20.6% 19.8-21.7%
1.79-1.97eV 13.6-16.7% 9.9-11.9%
0.44-1.79eV 43.7-49.6% 48.3-50.1%
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4 Simulations

The cell concepts simulations done in Matlab is based on the previous work done by Strandberg[10][12].
The assumptions for the cells have been previously mentioned in section 2.1 and 2.6. Also, it is assumed
that using the spectral irradiance for AM 1, 1.5, 2, 3, 5 and 10 gives an adequate representation of the
incoming solar energy. Flowcharts have been used to give a simpli�ed view of the MatLab programming.

4.1 Solar position

Figure 11: Flow chart for the solar position calculations in matlab
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Figure 11 shows the data �ow and order of calculations for the suns zenith angle each hour of the
day, during the year. Inputs are seconds, minutes, hours, the day of the year, longitude, latitude and
time-zone. The end product is the air mass based on the suns position. Values that corresponds to
the sun being at the other side of the globe, i.e., night-time, are ignored.

4.2 Spectra

Figure 12: Flow chart of the extraction of spectrum data in matlab. Text �les containing the photon
energy, irradiance and number of photons for Am 1,1.5,2,3,5 and 10. They are imported and then
stored in an array for later use in the concept simulations

The �owchart in �gure 12 described the function that imports and store the approximate photon energy
in eV , irradiation in W/m2 and photon generation in photons

m2s
for the respective spectra, then storing

these values in an array. This array is used in the in the concept simulations.
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A normalizing factor has been applied to the cell simulations to normalize the calculations with respect
to the measured irradiation. This is done by,

Pmeasured

Ptot.irr
(25)

where Pmeasured is the measured irradiance inW/m2 and Ptot.irr is the total irradiance in the spectrum,
in W/m2. This ratio is then multiplied with the spectrum`s photon generation and total irradiation

4.3 Simulation of concepts

Figure 13: Shows a general sketch of the steps each of the concept simulations undergoes, even if the
equations used is not the same ones at each step.
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Figure 13 shows the general principle behind the simulations conducted. The calculations done for each
of the concepts are repeated for every point of data from the in �eld measurements. Four di�erent band
gaps have been used in each simulation, corresponding to a semiconductor material. Typical for all the
concept simulations is that �rst, the output of the solar position function �gure 11 is read, then the
amount of photons with above band-gap energies is estimated. Which depends on the Am spectrum
the solar position function determines based on the time of day. Then the correction factor equation
25 is applied, and the recombination rate is calculated. The maximum power point Pmpp as a function
of Vmpp is calculated by applying a minimization function to the general equation P = qV (G − R),
which is done because the equation only has one maximum point. The e�ciency is then calculated
based on the power generated and the total irradiation in the current spectrum.

Figure 14: Temperature cell plot for year 2016, used in the simulations for cell temperatures

Figure 14 shows a plot of the cell temperature data that will be used in the simulations. It shows a
couple of extra cold temperature occurrences during the winter and a heat peak during the summer,
this will likely e�ect the e�ciency of the cells.

18



Simulations University of Agder

Figure 15: The measured irradiance for the year 2016

Figure 15 shows a plot of the measured irradiance used in the simulations.
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5 Results

This section contains the results of the simulations conducted and sorted as:

� Cell concepts power generation and e�ciency plots

� Monthly power production comparison

� Power production comparison for the whole year

5.1 Single junction
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Figure 16a, 16b,16c and 16d shows power density for SJC simulations for each point of measured data.
In common for all four simulations is that it seems the power density is the highest in April and May.
Figure 16a, 16b and 16d shows a very similar power generation because the di�erence in band gap
level is relatively small, with an upper-end density in the range of 300-350 W/m2 in the late spring
and summer and peaks up to 450 W/m2. Power density in 16c is considerably lower than in the three
others, caused by the relatively wider band gap.
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Figures 17a,17b,17c and 17d shows the e�ciency results of the simulations for the SJC at every point
of the measured data. Figure 17a seems to have the highest e�ciency overall, with up to 33-34% in the
spring, summer, and autumn. Figure 17d have the lowest e�ciency with just above 31% mid-summer
and as low as 21% at times. In �gure 17b the most noticeable is the peaks in January and November
reaching close to 35.5%. Figure 17d is overall slightly worse than 17a.
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5.2 Intermediate band
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(d) Power generation of the IBSC with AlGaAs/-
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Figures 18a, 18b, 18c and 18d shows power densities for the intermediate band solar cell simulations
for every point of measured data. Figure 18a has the overall highest power density throughout the
year, with up to 500 W/m2 in late spring and summer, and some peaks in the 500-600 W/m2 range.
In �gure 18c it can be seen that in the late spring and summer the power density reaches around 500
W/m2, which is the overall lowest power density. Figure 18b and 18d have a lower power density than
�gure 18a, with a di�erence around 25-50 W/m2.
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(d) E�ciency of the IBSC with AlGaAs/GaAs
equivalent band gap

Figures 19a, 19b, 19c and 19d shows the e�ciency plots for the intermediate band solar cell simulations.
Figure 19a has the highest e�ciency, largely being in the 45-48% region and noticeably the peaks in
January and November reaching 49.5%. Figure 19c has the lowest e�ciency, with the highest point
being at about 40.5%. Figure 19b do not have as pronounced wintertime peaks as �gure 19a and the
e�ciency is typically around 42-46%. And �gure 19d has an e�ciency generally 2-4% lower than �gure
19b.
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5.3 4T tandem cell
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(d) Power generation of the 4T tandem with Per-
ov/Si equivalent band gap

Figures 20a, 20b, 20c and 20d shows power density results of the 4T tandem cells. Figure 20a shows
a power density up to about 450 W/m2 with peaks reaching 600 W/m2. Figures 20c and 20d shows
results very similar to that of �gure 20a. While �gure 20b seems to about 50-75 W/m2 lower than
�gure 20a.
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(d) E�ciency of the 4T tandem with Perov/Si
equivalent band gap

Figures 21a-21d shows the e�ciency results for the simulations of the 4 terminal tandem cells. Unsur-
prisingly �gure 21a has the highest e�ciency up to about 46% and some peaks reaching 47%. Figure
21c has a slightly lower overall e�ciency compared to 21a, with a di�erence around 0.5-1%. For the
case in �gure 21d, it has about 2% lower e�ciency compared to �gure 21a. Figure 21b has the lowest
e�ciency with about 38%. Also, a "layered" shape can be observed and will be discussed.
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5.4 2T tandem cell
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(d) Power generation of the 2T with tandem Per-
ovskite/Si equivalent band gap

Figures 22a-22d shows the power density plot of the simulation of the 2 terminal tandem cell. Figure
22a shows a power density of about 450 W/m2 and peaks reaching 600 W/m2. Comparing �gures 22c
and 22d to �gure 22a the di�erence seems to be small. Figure 22b shows a power density lower than
the other three, with a density up to 400 W/m2 and peaks reaching 500 W/m2.
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(d) E�ciency of the 2T tandem with Perovskite/Si
equivalent band gap

Figures 23a-23d shows the e�ciency plots for the 2 terminal tandem cell. Figure 23a has the highest
e�ciency of these four simulations, with an e�ciency up to 46% and peaks reaching 47%. Figures 23c
and 23d compared to 23a shows an e�ciency di�erence of about 1% and 2% lower respectively. Figure
23a has the lowest e�ciency with about 38% at the highest, the "layered" shape previously mentioned
can be observed here as well.
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5.5 Production
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Figure 24: Showing the production on a per monthly basis for each of the cell concepts

The production on per monthly basis in kWh/m2 of 2016, for the simulations of the ideal solar cell
concepts, with varying band gaps is shown in �gure 24. It can be seen that the IBSC with the
Am1.5 optimal band gap has the highest monthly production throughout the year. 4T tandem and 2T
tandem with the Am1.5 optimal band gap have second and third best monthly production respectively.
Unsurprisingly the four SJCs have the lowest monthly production. Interestingly, it can be seen that
the IBSC InAs/GaAs cell produces better in the winter, spring and autumn months compared to the
2T perovskite/perovskite tandem cell, but has lower production during the summer. For reference see
tables 2 and 3.
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Figure 25: Comparison of the annual power production for 2016, for each of the concepts. The X-axis
is the annual kWh/m2

In �gure 25 the comparison of the annual production for the year 2016 for each of the cell concept
simulations, is shown. It can be seen that the IBSC with the Am1.5 optimal band gap has highest
annual production, with 574 kWh/m2. The 2T and 4T tandem cells with Am1.5 optimal gap shows
a very similar annual production compared to each other, with 554 and 557 kWh/m2 respectively.
It gives the IBSC a 3.6% higher production than the 2T, and a 3% higher production than the 4T.
Looking at the 2T and 4T perovskite/CIGS and the InAs/InGap IBSC, it can be seen that these three
are almost identical, with 547, 548 and 548 respectively. The 2T and 4T perovskite/Si tandem cells can
be seen to have almost identical production as well, at 536 kWh/m2 for the 2T and 537 kWh/m2 for
4T. Compared to the IBSC InAs/InGap, the InAs/InGap has a 2% and 2.2% higher annual production
than the 4T and 2T perovskite/Si respectively. The SJCs have an annual power production of 408, 406,
359 and 398 kWh/m2 for the Am1.5 optimal, Si, Perovskite and GaAs respectively. Comparing the
SJC Am1.5 optimal and Si to the IBSC and tandem cells with Am1.5 band gaps, the IBSC has a 29%
and 29.2% higher annual production. The 2T tandem cell has a 26.5% and 26.8% higher production
than the SJC, and the 4T tandem cell annual production is 26.8% and 27.1% higher respectively.
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6 Discussion

As seen in �gures 17a, 19a, 19b, 19c, 21a, 21c, 21d, 23a, 23c and 23d there are some peaks during the
winter, which for some of the cases exceeds the theoretical e�ciency limits for the cell concepts. These
occurrences are caused by extra cold days with no cloud coverage, this in measured temperature �gure
14 and irradiation data �gure 15. Also, Lin et al[40] found that increased temperatures contributed
signi�cantly to e�ciency loss, which inversely relates to the low-temperature e�ects on the e�ciency.

The e�ciency plots �gures 21b, 23b and 17c has a "layered" shape, that resembles 30. A probable
reason for this is the relatively wide band gaps used in these simulations. With band gaps of 1.6 and
2.25/1.55 eV, a signi�cant amount of the incoming photons will not have the energy necessary to excite
electrons. Therefore the e�ciency increases "stepwise" as the number of high energy photons increases
when the airmass spectrum changes. With a smoother transition between the airmass spectra, the
e�ciency plot could become more �uid.

It appears that having a band gap narrow enough to absorb photons with energies in the 0.8-1.1eV range
is desirable, considering �gures 17a, 17b, 19a, 19b, 23a, 23c, 23d, 21a, 21c and 21d. This is supported
with the �ndings of G.Kvifte et al[41], where it was found that 43-50% of the solar irradiance is in the
0.44-1.79Ev range.

Comparing the Am1.5 optimal band gaps of IBSC and, 2T and 4T tandem cells, the di�erence is
about 3.6% and 3% higher annual production for the IBSC. Also, comparing the InAs/InGap IBSC
with the 2T and 4T Perovskite/CIGS gives a the IBSC about 0.3% better annual production. The
Perovskite/Perovskite tandems cells and InAs/GaAs IBSC have a lower performance than the other
band gaps for the same concepts, with an annual production of 440 kWh/m2 for the 2T, 441 kWh/m2

for the 4T and 453 kWh/m2 for the IBSC. This gives the IBSC a 2.87% higher production than the
2T and 2.65% better compared to the 4T. This seems to agree with the �ndings of Naitoh et al[35],
which found the IBSC to have about 1% better annual production than 2T triple junction cell. The
di�erence between the annual production of the 4T and 2T at any band gap seems to be in the region of
0.18-0.36%, and this is consistent with �ndings of Strandberg[12] that the area de-coupled 2T tandem
cells can reach the same e�ciency as the 4T tandem.

Band gaps used in the simulations was partly chosen based on interest in recent research. These
interests are not only based on promising conversion e�ciency capabilities but also cost e�ciency or
other semiconductor material characteristics. This means that there might be band gaps with higher
power production capabilities. Furthermore, the band gaps used for the IBSC and tandem cells do not
have band gaps with equal photon absorption so that the comparisons might be a�ected by this.

Even if these simulations use varying cell temperatures and an approximation of spectrum changes,
the temperature dependencies of the semiconductor materials are not being taken into account. In a
real-world situation, this would a�ect the performance of the cells. The simulations use Am spectra
1, 1.5, 2, 3, 5 and 10, and this gives an ok representation of the irradiation throughout the day.
However, adding additional spectra or calculating the irradiation as a function of the solar position
would increase the accuracy of the simulations.
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7 Conclusion

Calculations of the power density and e�ciencies for the SJC, IBSC, and 2T and 4T tandem cells with
four di�erent band gaps have been done, using irradiation and temperature data over a year. The
monthly and annual power production for each of the cell concepts has been calculated and compared.
Considering the monthly and annual power production of the cells, the IBSC has the highest production
if the band gap is optimized for the Am1.5 spectrum. Similarly, for the 2T and 4T tandems cells, band
gaps optimized for Am1.5 gives the highest power production. The di�erences between the IBSC and
the 2T and 4T tandem under these conditions are 3% and 3.6% respectively. The IBSC InAs/InGap
has been shown to have almost identical annual production as the 2T and 4T Perovskite/CIGS tandem
cells, and have a 2.2% and 2% higher production than the 2T and 4T perovskite/Si. The IBSC with
band gap Am1.5 has a 29.2% and 29% higher production than SJC with Si and Am1.5 optimized band
gap respectively. The tandem cells using am1.5 band gaps have a production that is 26.5% and 26.8%
higher than SJC with Am1.5 and Si band gaps.
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8 Future work

Continuation of the work done in this thesis could include additional simulations using measured
photon �ux to better simulate the incoming wavelengths of the locations. Additionally, adding band
gap temperature dependencies and other recombination factors could be interesting.
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Appendix A 2T top/bottom cell combinations

Efficiency of top/bottom cell number combinations(%)
1.73/0.94 (eV)

10 1020 20

30

30

30

30

40

40

40

40

40

2 4 6 8 10 12 14 16 18 20

Top
Cell

5

10

15

20

25

30

35

40

45

50
B

ot
to

m
C

e
ll

0

5

10

15

20

25

30

35

40

45

E
ffi

ci
en

cy
(%

)

Figure 26: Simulation results showing the e�ciency of the 2T tandem cell with di�erent number of
bottom and top cells, for 1.73/0.94eV bandgap
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Figure 27: Simulation results showing the e�ciency of the 2T tandem cell with di�erent number of
bottom and top cells, for 2.25/1.55eV bandgap
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Figure 28: Simulation results showing the e�ciency of the 2T tandem cell with di�erent number of
bottom and top cells, for 1.63/1eV bandgap
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Figure 29: Simulation results showing the e�ciency of the 2T tandem cell with di�erent number of
bottom and top cells, for 1.6/1.11eV bandgap
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Appendix B Am distribution

Figure 30: Shows how the distribution of the airmass throughout the year used in the simulation
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Appendix C MatLab scripts

Appendix D MatLab Solar position

1 %func t i on that c a l c u l a t e s the sun po s i t i o n on the sky , based on day o f the
2 %year , hours , minutes and seconds . Returns the airmass that cor re sponds to
3 %the po s i t i o n o f the sun and the temperature and i r r a d i a t i o n measured at
4 %the given time . I gnore s va lue s during n ight time .
5 f unc t i on [ Z ,Temp, Airmass , dager , dagdag , TII ] = So l p o s i s j o n ( f i l n a vn )
6

7 L =1;
8 data=importdata ( [ f i l navn , ' . csv ' ] ) ;
9 Tempa = data . data ( : , 2 7 ) ;
10 month = data . data ( : , 2 ) ;
11 dag = data . data ( : , 3 ) ;
12 time = data . data ( : , 4 ) ;
13 minutt = data . data ( : , 5 ) ;
14 sekund = data . data ( : , 6 ) ;
15 s k r a ap l an s t r a a l i n g = data . data ( : , 1 0 ) ; % Ti l t ed i r r a d i a t i o n
16 long = 8 . 59343 ;
17 l a t = 58 . 3405 ;
18 t imezone = 1 ;
19 k =1;
20

21 f o r i =1:15: l ength ( dag )
22 hour =time ( i ) ;
23 min = minutt ( i ) ;
24 s e c = sekund ( i ) ;
25 d = dag ( i ) ;
26 m =month( i ) ;
27 y = 2016 ;
28 date1= s t r i n g ( [ y ,m, d ] ) ;
29 Date= j o i n ( date1 , '− ' ) ;
30 dd= datet ime (Date , ' InputFormat ' , ' yyyy−MM−dd ' ) ;
31 doy=day (dd , ' dayofyear ' ) ;
32 dagdagdag ( i )= doy ;
33 yoy= (2* pi /365) * ( ( doy−1)+((hour−12) /24) ) ;
34 eot= 229.18*(0 .000075+0.001868* cos ( yoy ) −0.032077* s i n ( yoy ) −0.014615* cos (2*

yoy ) −0.040849* s i n (2* yoy ) ) ;
35 dec l= 0.006918−0.399912* cos ( yoy ) +0.070257* s i n ( yoy ) −0.006758* cos (2* yoy )

+0.000907* s i n (2* yoy ) −0.002697* cos (3* yoy ) +0.00148* s i n (3* yoy ) ;
36 t im e o f f s e t= eot+(4* long )−(60* t imezone ) ;
37 t s t= ( hour *60)+min+( sec /60)+t ime o f f s e t ;
38 HA= ( t s t /4)−180;
39 Z= acosd ( ( s ind ( l a t ) * s i n ( dec l ) )+(cosd ( l a t ) * cos ( dec l ) * cosd (HA) ) ) ;
40 Am( i ) = 1/ cosd (Z) ;
41 %so r t s the r e s u l t s i n to whats u s e f u l l or not%
42 i f Am( i ) < 0
43 Airmass ( k )=NaN;
44 dager ( k ) = NaN;
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45 Temp(k ) = NaN;
46 dagdag (k ) = NaN;
47 TII (k ) = NaN;
48 e l s e i f Am( i ) > 15
49 Airmass ( k )=NaN;
50 dager ( k )=NaN;
51 Temp(k ) = NaN;
52 dagdag (k ) = NaN;
53 TII (k ) = NaN;
54 e l s e
55 Airmass ( k )=Am( i ) ;
56 dager ( k )=dag ( i ) ;
57 Temp(k )=Tempa( i ) ;
58 dagdag (k ) = dagdagdag ( i ) ;
59 TII (k ) = sk r a ap l an s t r a a l i n g ( i ) ;
60 end
61 k=k+1;
62 end
63 %Removes unwanted va lue s%
64 Temp = Temp(~ isnan (Temp) ) ;
65 Airmass = Airmass (~ i snan ( Airmass ) ) ;
66 dager = dager (~ i snan ( dager ) ) ;
67 dagdag=dagdag (~ isnan ( dagdag ) ) ;
68 TII = TII (~ i snan ( TII ) ) ;
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Appendix E MatLab Single Junction Solar Cell

1 % ca l c u l a t e s the power den i s ty and e f f i c i e n c i e s f o r the s i n g l e junc t i on
c e l l

2 % with four d i f f e r e n t band gaps and based on the data returned
3 % by func t i on s So l p o s i s j o n .m and GetSpectrum .m
4 c l o s e a l l ;
5 c l e a r a l l ;
6 c l c ;
7 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
8 %Dec lar ing the cons tant s . De f in ing and s i z i n g the v a r i a b l e s%
9 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
10 k = 1.38064852 e−23;
11 q = 1.6022176 e−19;
12 h = 6.626176 e−34;
13 c = 299792458;
14 E = 6 ;
15

16

17 Eq = E*q ;
18 fun = 0 ;
19 Const = (2* pi ) /(h^3*c^2) ;
20 t i d = 1 ;
21

22 ebg= [ 1 . 3 4 1 .11 1 .6 1 . 4 2 4 ] ;
23

24

25 %
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

26 %Cal l i ng f unc t i on s " So l p o s i s j o n " which r e tu rn s a irmass v a r i a t i o n s ( Airmass )
, %

27 %temperature (Temp) f o r each day and measured i r r a d i a n c e ( TII ) , and "
GetSpectrum" which r e tu rn s the number o f%

28 %photons , photon energy and i r r a d i a n c e f o r a i rmass 1 , 1 . 5 , 2 , 3 , 5 and 10 .
%

29 %
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

30 [E_AM1,E_AM15,E_AM2,E_AM3,E_AM5,E_AM10, AM1fotoner , AM15fotoner , AM2fotoner ,
AM3fotoner , AM5fotoner , AM10fotoner , AM1innenergi , AM15innenergi ,
AM2innenergi , AM3innenergi , AM5innenergi , AM10innenergi ]=GetSpectrum ( ) ;

31 [ Z ,Temp, Airmass , dager , dagdag , TII ] = So l p o s i s j o n ( ' combined2016 ' ) ;
32 %Prese t s the array s i z e s
33 Am = ze ro s ( l ength ( Airmass ) ,6 ) ;
34 Ptota l=ze ro s (4 , l ength ( Airmass ) ) ;
35 Ef f=ze ro s (4 , l ength ( Airmass ) ) ;
36 vo l t=ze ro s (4 , l ength ( Airmass ) ) ;
37 cur r ent=ze ro s (4 , l ength ( Airmass ) ) ;
38 day =ze ro s (1 , l ength ( Airmass ) ) ;
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39 f o r j =1:1 : l ength ( ebg )
40 Et = ebg ( j ) ;
41 Etopq = Et*q ;
42 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
43 %Determines the cur rent a i rmass and g i v e s the v a r i a b l e s theappropr i a t e %
44 %values to be used in the c a l c u l a t i o n s %
45 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
46 f o r i =1:1 : l ength ( Airmass )
47 i f (1<= Airmass ( i ) ) && (Airmass ( i ) <1.25)
48 Spekter = AM1fotoner *( TII ( i ) /AM1innenergi ) ;
49 Etot = E_AM1;
50 P = AM1innenergi *( TII ( i ) /AM1innenergi ) ;
51 Am( i , 1 )= 1 ;
52 e l s e i f ( 1 . 25 <= Airmass ( i ) ) && (Airmass ( i ) <1.75)
53 Spekter = AM15fotoner *( TII ( i ) /AM15innenergi ) ;
54 Etot = E_AM15;
55 P = AM15innenergi *( TII ( i ) /AM15innenergi ) ;
56 Am( i , 2 )= 1 . 5 ;
57 e l s e i f (1.75<= Airmass ( i ) ) && (Airmass ( i ) <2.30)
58 Spekter = AM2fotoner *( TII ( i ) /AM2innenergi ) ;
59 Etot = E_AM2;
60 P = AM2innenergi *( TII ( i ) /AM2innenergi ) ;
61 Am( i , 3 )= 2 ;
62 e l s e i f (2.30<= Airmass ( i ) ) && (Airmass ( i ) <3.50)
63 Spekter = AM3fotoner *( TII ( i ) /AM3innenergi ) ;
64 Etot = E_AM3;
65 P = AM3innenergi *( TII ( i ) /AM3innenergi ) ;
66 Am( i , 4 )= 3 ;
67 e l s e i f (3.50<= Airmass ( i ) ) && (Airmass ( i )<=6)
68 Spekter = AM5fotoner *( TII ( i ) /AM5innenergi ) ;
69 Etot = E_AM5;
70 P = AM5innenergi *( TII ( i ) /AM5innenergi ) ;
71 Am( i , 5 )= 5 ;
72 e l s e i f (6< Airmass ( i ) ) && (Airmass ( i ) <16)
73 Spekter = AM10fotoner *( TII ( i ) /AM10innenergi ) ;
74 Etot = E_AM10;
75 P = AM10innenergi *( TII ( i ) /AM10innenergi ) ;
76 Am( i , 6 )= 10 ;
77 end
78

79 day ( i ) = dagdag ( i ) ;
80 T = Temp( i ) +273.15;
81 Gtop = 0 ;
82 f o r k1=1:1: l ength ( Spekter ) %Estimating the photon gene ra t i on%
83 i f Etot ( k1 ) > Et %ra t e in the bandgap %
84 Gtop = Gtop+Spekter ( k1 ) ;
85 end
86 end
87 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
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88 %Calcu l a t ing recombination , Vmpp and Pmpp %
89 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
90 fun = @ (x , v ) exp ( ( q*v−x ) . / ( k*T) ) .* x .^2 ;
91 fun2 = @(v ) v*q*(Gtop−Const *( i n t e g r a l (@(x ) fun (x , v ) , Etopq ,Eq) ) ) ;
92 v0 = 1 ;
93 opt ions = opt imopt ions (@fminunc , ' Display ' , ' none ' , ' Opt imal i tyTolerance ' ,1 e

−40) ;
94 [ v , f v a l ] = fminunc (@(v )−fun2 (v ) , v0 , opt ions ) ;
95 Po1 = − f v a l ;
96 Ptota l ( j , i ) = Po1 ;
97 Ef f ( j , i ) = ( Ptota l ( j , i ) /P) *100 ;
98 vo l t ( j , i ) = v ;
99 cur r ent ( j , i ) = Po1/v ;
100 hvask j e r=hvask j e r+1
101 end
102 end
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Appendix F MatLab Intermediate band solar cell

1 % ca l c u l a t e s the power den i s ty and e f f i c i e n c i e s f o r the in t e rmed ia t e band
2 % so l a r c e l l , with four d i f f e r e n t band gaps and based on the data returned
3 % by func t i on s So l p o s i s j o n .m and GetSpectrum .m
4 c l e a r a l l ;
5 c l o s e a l l ;
6 c l c ;
7 %Def ines cons tant s and va r i a b l e s
8 k = 1.38064852 e−23;
9 q = 1.6022176 e−19;
10 h = 6.626176 e−34;
11 c = 299792458;
12 T = 298 . 15 ;
13 E = 6 ;
14 Eq = E*q ;
15

16 Const = ((2* pi ) /(h^3*c^2) ) ;
17

18 Ecv = [ 1 . 9 5 1 .88 1 .424 2 ] ;
19 Eiv = [ 1 . 2 4 1 .26 1 .07 1 . 4 2 4 ] ;
20 Eci = [ 0 . 7 1 0 .62 0 .354 0 . 5 7 6 ] ;
21 %

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

22 %Cal l i ng f unc t i on s " So l p o s i s j o n " which r e tu rn s a irmass v a r i a t i o n s ( Airmass )
, %

23 %temperature (Temp) f o r each day and measured i r r a d i a n c e ( TII ) , and "
GetSpectrum" which r e tu rn s the number o f%

24 %photons , photon energy and i r r a d i a n c e f o r a i rmass 1 , 1 . 5 , 2 , 3 , 5 and 10 .
%

25 %
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

26 [E_AM1,E_AM15,E_AM2,E_AM3,E_AM5,E_AM10, AM1fotoner , AM15fotoner , AM2fotoner ,
AM3fotoner , AM5fotoner , AM10fotoner , AM1innenergi , AM15innenergi ,
AM2innenergi , AM3innenergi , AM5innenergi , AM10innenergi ]=GetSpectrum ( ) ;

27 [ Z ,Temp, Airmass , dager , dagdag , TII ] = So l p o s i s j o n ( ' combined2016 ' ) ;
28 %pre s e t the array s i z e
29 Ptota l=NaN(4 , l ength ( Airmass ) ) ;
30 Ef f=NaN(4 , l ength ( Airmass ) ) ;
31 f o r j =1:1 : l ength (Ecv )
32 ecv = Ecv ( j ) ;
33 e i v = Eiv ( j ) ;
34 e c i = Eci ( j ) ;
35 f o r i =1:1 : l ength ( Airmass )
36 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
37 %Determines the cur rent a i rmass and g i v e s the v a r i a b l e s theappropr i a t e %
38 %values to be used in the c a l c u l a t i o n s %
39 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

44



Appendix University of Agder

40 i f (1<= Airmass ( i ) ) && (Airmass ( i ) <1.25)
41 Spekter = AM1fotoner *( TII ( i ) /AM1innenergi ) ;
42 Egap= E_AM1;
43 Etot = E_AM1;
44 P = AM1innenergi *( TII ( i ) /AM1innenergi ) ;
45

46 e l s e i f ( 1 . 25 <= Airmass ( i ) ) && (Airmass ( i ) <1.75)
47 Spekter = AM15fotoner *( TII ( i ) /AM15innenergi ) ;
48 Etot = E_AM15;
49 P = AM15innenergi *( TII ( i ) /AM15innenergi ) ;
50

51 e l s e i f (1.75<= Airmass ( i ) ) && (Airmass ( i ) <2.30)
52 Spekter = AM2fotoner *( TII ( i ) /AM2innenergi ) ;
53 Etot = E_AM2;
54 P = AM2innenergi *( TII ( i ) /AM2innenergi ) ;
55

56 e l s e i f (2.30<= Airmass ( i ) ) && (Airmass ( i ) <3.50)
57 Spekter = AM3fotoner *( TII ( i ) /AM3innenergi ) ;
58 Etot = E_AM3;
59 P = AM3innenergi *( TII ( i ) /AM3innenergi ) ;
60

61 e l s e i f (3.50<= Airmass ( i ) ) && (Airmass ( i )<=6)
62 Spekter = AM5fotoner *( TII ( i ) /AM5innenergi ) ;
63 Etot = E_AM5;
64 P = AM5innenergi *( TII ( i ) /AM5innenergi ) ;
65

66 e l s e i f (6< Airmass ( i ) ) && (Airmass ( i ) <16)
67 Spekter = AM10fotoner *( TII ( i ) /AM10innenergi ) ;
68 Etot = E_AM10;
69 P = AM10innenergi *( TII ( i ) /AM10innenergi ) ;
70

71 end
72 g c i = 0 ;
73 gcv = 0 ;
74 g iv = 0 ;
75 %determines the number o f photons
76 f o r i 2 =1:1 : l ength ( Spekter )
77 i f Etot ( i 2 )>e c i && Etot ( i 2 ) < e iv
78 g c i = gc i+Spekter ( i 2 ) ;
79 e l s e i f Etot ( i 2 ) > e iv && Etot ( i 2 )< ecv
80 g iv = giv+Spekter ( i 2 ) ;
81 e l s e i f Etot ( i 2 ) > ecv && Etot ( i 2 ) < 5
82 gcv = gcv+Spekter ( i 2 ) ;
83 end
84 end
85 ecvq = ecv*q ;
86 e ivq = e iv *q ;
87 e c i q = e c i *q ;
88 T = Temp( i ) +273.15;
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89 fun = @ (x ) exp((−x ) . / ( k*T) ) .* x .^2 ;
90 f une iv = i n t e g r a l ( fun , e ivq , ecvq ) ;
91 f un e c i = i n t e g r a l ( fun , ec iq , e ivq ) ;
92 funecv = i n t e g r a l ( fun , ecvq ,E*q ) ;
93

94 R0ci=fune c i *Const ;%recombinat ion parameters
95 R0iv=fune iv *Const ;
96 R0cv=funecv *Const ;
97

98 opt i fun = @(v ) q*v*( gcv +(0.5*( g c i+g iv ) )−(R0cv .* exp (q*v . / ( k*T) ) ) −(0 .5 .* s q r t
( ( 4 . * R0ci .*R0iv ) .* exp (q*v . / ( k*T) )+(gc i−g iv ) .^2) ) ) ;

99 v0 = 0 . 1 ;
100 opt ions = opt imopt ions (@fminunc , ' Display ' , ' none ' , ' Opt imal i tyTolerance ' ,1 e

−5) ;
101 %ca l c u l a t e s Pmpp and Vmpp
102 [ v , f v a l ] = fminunc (@(v )−opt i fun (v ) , v0 , opt ions ) ;
103 Ptot=−f v a l ;
104 Ptota l ( j , i )=Ptot ;
105 Ef f ( j , i ) = ( Ptot/P) *100 ;
106 end
107 end
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Appendix G MatLab 4 terminal tandem cell

1 % ca l c u l a t e s the power den i s ty and e f f i c i e n c i e s f o r the 4 te rmina l tandem
c e l l ,

2 % with four d i f f e r e n t band gaps and based on the data returned
3 % by func t i on s So l p o s i s j o n .m and GetSpectrum .m
4 c l o s e a l l ;
5 c l e a r a l l ;
6 c l c ;
7 %de f i n e s v a r i a b l e s and cons tant s
8 k = 1.38064852 e−23;
9 q = 1.6022176 e−19;
10 h = 6.626176 e−34;
11 c = 3e+8;
12 R = 0 . 1 ;
13 T = 300 ;
14 E = 4 . 5 ;
15 Eq = E*q ;
16 fun = 0 ;
17 Const = (2* pi ) /(h^3*c^2) ;
18 t i d = 1 ;
19

20 et= [ 1 . 7 3 2 .25 1 .63 1 . 6 ] ;
21 eb= [ 0 . 9 4 1 .55 1 1 . 1 1 ] ;
22

23 Ptota l=ze ro s (4 ,12 e+3) ;
24 Ef f=ze ro s (4 ,12 e+3) ;
25

26 day =ze ro s (1 ,12 e+3) ;
27 %

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

28 %Cal l i ng f unc t i on s " So l p o s i s j o n " which r e tu rn s a irmass v a r i a t i o n s ( Airmass )
, %

29 %temperature (Temp) f o r each day and measured i r r a d i a n c e ( TII ) , and "
GetSpectrum" which r e tu rn s the number o f%

30 %photons , photon energy and i r r a d i a n c e f o r a i rmass 1 , 1 . 5 , 2 , 3 , 5 and 10 .
%

31 %
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

32

33 [E_AM1,E_AM15,E_AM2,E_AM3,E_AM5,E_AM10, AM1fotoner , AM15fotoner , AM2fotoner ,
AM3fotoner , AM5fotoner , AM10fotoner , AM1innenergi , AM15innenergi ,
AM2innenergi , AM3innenergi , AM5innenergi , AM10innenergi ]=GetSpectrum ( ) ;

34 [ Z ,Temp, Airmass , dager , dagdag , TII ] = So l p o s i s j o n ( ' combined2016 ' ) ;
35 %pre s e t s array s i z e s
36 Am = ze ro s ( l ength ( Airmass ) ,6 ) ;
37 vo l t 2= NaN(4 ,12 e+3) ;
38 vo l t 1= NaN(4 ,12 e+3) ;
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39 gbottom= NaN(4 ,12 e+3) ;
40 gtop= NaN(4 ,12 e+3) ;
41 pp= NaN(4 ,12 e+3) ;
42 div= NaN(4 ,12 e+3) ;
43 g t o t a l=NaN(4 ,12 e+3) ;
44 f o r j =1:1 : l ength ( et )
45 Et = et ( j ) ;
46 Eb = eb ( j ) ;
47 Etopq = Et*q ;
48 Ebq = Eb*q ;
49 f o r i =1:1 : l ength ( Airmass )
50 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
51 %Determines the cur rent a i rmass and g i v e s the v a r i a b l e s theappropr i a t e %
52 %values to be used in the c a l c u l a t i o n s %
53 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
54 i f (1<= Airmass ( i ) ) && (Airmass ( i ) <1.25)
55 Spekter = AM1fotoner *( TII ( i ) /AM1innenergi ) ;
56 Egap= E_AM1;
57 Etot = E_AM1;
58 P = AM1innenergi *( TII ( i ) /AM1innenergi ) ;
59 pp( j , i ) = AM1innenergi *( TII ( i ) /AM1innenergi ) ;
60 Am( i , 1 )= 1 ;
61

62 e l s e i f ( 1 . 25 <= Airmass ( i ) ) && (Airmass ( i ) <1.75)
63 Spekter = AM15fotoner *( TII ( i ) /AM15innenergi ) ;
64 Etot = E_AM15;
65 P = AM15innenergi *( TII ( i ) /AM15innenergi ) ;
66 pp( j , i ) = AM15innenergi *( TII ( i ) /AM15innenergi ) ;
67 Am( i , 2 )= 1 . 5 ;
68 e l s e i f (1.75<= Airmass ( i ) ) && (Airmass ( i ) <2.30)
69 Spekter = AM2fotoner *( TII ( i ) /AM2innenergi ) ;
70 Etot = E_AM2;
71 P = AM2innenergi *( TII ( i ) /AM2innenergi ) ;
72 pp( j , i ) = AM2innenergi *( TII ( i ) /AM2innenergi ) ;
73 Am( i , 3 )= 2 ;
74 e l s e i f (2.30<= Airmass ( i ) ) && (Airmass ( i ) <3.50)
75 Spekter = AM3fotoner *( TII ( i ) /AM3innenergi ) ;
76 Etot = E_AM3;
77 P = AM3innenergi *( TII ( i ) /AM3innenergi ) ;
78 pp( j , i ) = AM3innenergi *( TII ( i ) /AM3innenergi ) ;
79 Am( i , 4 )= 3 ;
80 e l s e i f (3.50<= Airmass ( i ) ) && (Airmass ( i )<=6)
81 Spekter = AM5fotoner *( TII ( i ) /AM5innenergi ) ;
82 Etot = E_AM5;
83 P = AM5innenergi *( TII ( i ) /AM5innenergi ) ;
84 pp( j , i ) = AM5innenergi *( TII ( i ) /AM5innenergi ) ;
85 Am( i , 5 )= 5 ;
86 e l s e i f (6< Airmass ( i ) ) && (Airmass ( i ) <16)
87 Spekter = AM10fotoner *( TII ( i ) /AM10innenergi ) ;
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88 Etot = E_AM10;
89 P = AM10innenergi *( TII ( i ) /AM10innenergi ) ;
90 pp( j , i ) = AM10innenergi *( TII ( i ) /AM10innenergi ) ;
91 Am( i , 6 )= 10 ;
92 end
93

94 day ( i ) = dagdag ( i ) ;
95 T = Temp( i ) +273.15;
96 Gtop = 0 ;
97 %number o f photons to the top c e l l
98 f o r k1=1:1: l ength ( Spekter )
99 i f Etot ( k1 ) > Et
100 Gtop = Gtop+Spekter ( k1 ) ;
101 end
102 end
103

104 fun = @ (x , v ) exp ( ( q*v−x ) . / ( k*T) ) .* x .^2 ;
105 fun2 = @(v ) v*q*(Gtop−Const *( i n t e g r a l (@(x ) fun (x , v ) , Etopq ,Eq) ) ) ;
106 v0 = 1 ;
107 opt ions = opt imopt ions (@fminunc , ' Display ' , ' none ' , ' Opt imal i tyTolerance ' ,1 e

−40) ;
108 [ v , f v a l ] = fminunc (@(v )−fun2 (v ) , v0 , opt ions ) ;
109 Po1 = − f v a l ;
110 vo l t 1 ( j , i ) =v ;
111 Gb = 0 ;
112 %number o f photons to the bottom c e l l
113 f o r k2=1:1: l ength ( Spekter )
114 i f Etot ( k2 ) > Eb && Etot ( k2 ) < Et
115 Gb = Gb+Spekter ( k2 ) ;
116 end
117 end
118 gbottom ( j , i )=Gb;
119 gtop ( j , i )=Gtop ;
120 funkt ion = @ (x1 , v2 ) exp ( ( q*v2−x1 ) . / ( k*T) ) .* x1 .^2 ;
121 funkt ion2 = @( v2 ) v2*q*(Gb−Const *( i n t e g r a l (@( x1 ) funkt ion ( x1 , v2 ) ,Ebq , Etopq )

) ) ;
122 v20 = 1 ;
123 opt ions1 = opt imopt ions (@fminunc , ' Display ' , ' none ' , ' Opt imal i tyTolerance ' ,1 e

−40) ;
124 [ v2 , f v 2 a l ] = fminunc (@( v2 )−funkt ion2 ( v2 ) , v20 , opt ions1 ) ;
125 %ca l c u l a t e s Pmpp and Vmpp
126 Po2 = −f v 2 a l ;
127 Ptota l ( j , i ) = Po1+Po2 ;
128 Ef f ( j , i ) = ( Ptota l ( j , i ) /P) *100 ;
129 vo l t 2 ( j , i )= v2 ;
130

131 end
132 end
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Appendix H MatLab 2 terminal tandem cell

1 % ca l c u l a t e s the power den i s ty and e f f i c i e n c i e s f o r the 2 te rmina l area
2 % de−coupled tandem c e l l ,
3 % with four d i f f e r e n t band gaps and based on the data returned
4 % by func t i on s So l p o s i s j o n .m and GetSpectrum .m
5 c l o s e a l l ;
6 c l e a r a l l ;
7 c l c ;
8 format long g ;
9 k = 1.38064852 e−23;
10 q = 1.6022176 e−19;
11 h = 6.626176 e−34;
12 c = 299792458;
13 T = 300 ;
14 E = 6 ;
15 Eq = E*q ;
16 d e t t e t a r t i d = 1 ;
17 Const = ((2* pi ) /(h^3*c^2) ) ;
18

19 et= [ 1 . 7 3 2 .25 1 .63 1 . 6 ] ;
20 eb= [ 0 . 9 4 1 .55 1 1 . 1 1 ] ;
21 mt = [1 1 1 1 ] ;
22 nb = [ 2 . 2 1 .55 1 .88 1 . 6 2 5 ] ;
23 %

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

24 %Cal l i ng f unc t i on s " So l p o s i s j o n " which r e tu rn s a irmass v a r i a t i o n s ( Airmass )
, %

25 %temperature (Temp) f o r each day and measured i r r a d i a n c e ( TII ) , and "
GetSpectrum" which r e tu rn s the number o f%

26 %photons , photon energy and i r r a d i a n c e f o r a i rmass 1 , 1 . 5 , 2 , 3 , 5 and 10 .
%

27 %
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

28 [E_AM1,E_AM15,E_AM2,E_AM3,E_AM5,E_AM10, AM1fotoner , AM15fotoner , AM2fotoner ,
AM3fotoner , AM5fotoner , AM10fotoner , AM1innenergi , AM15innenergi ,
AM2innenergi , AM3innenergi , AM5innenergi , AM10innenergi ]=GetSpectrum ( ) ;

29 [ Z ,Temp, Airmass , dager , dagdag , TII ] = So l p o s i s j o n ( ' combined2016 ' ) ;
30 %pre s e t s the array s i z e
31 Ptota l=NaN(4 , l ength ( Airmass ) ) ;
32 Ef f=NaN(4 , l ength ( Airmass ) ) ;
33 vtot=NaN(4 , l ength ( Airmass ) ,300) ;
34 Am=NaN( length ( Airmass ) ,6 ) ;
35 dust=0;
36 f o r j = 1 : 1 : l ength ( et )
37 m=mt( j ) ;
38 n=nb( j ) ;
39 f o r i =1:1 : l ength ( Airmass )
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40 i f (1<= Airmass ( i ) ) && (Airmass ( i ) <1.25)
41 Spekter = AM1fotoner *( TII ( i ) /AM1innenergi ) ;
42 Etot = E_AM1;
43 P = AM1innenergi *( TII ( i ) /AM1innenergi ) ;
44 Am( i , 1 )= 1 ;
45 e l s e i f ( 1 . 25 <= Airmass ( i ) ) && (Airmass ( i ) <1.75)
46 Spekter = AM15fotoner *( TII ( i ) /AM15innenergi ) ;
47 Etot = E_AM15;
48 P = AM15innenergi *( TII ( i ) /AM15innenergi ) ;
49 Am( i , 2 )= 1 . 5 ;
50 e l s e i f (1.75<= Airmass ( i ) ) && (Airmass ( i ) <2.30)
51 Spekter = AM2fotoner *( TII ( i ) /AM2innenergi ) ;
52 Etot = E_AM2;
53 P = AM2innenergi *( TII ( i ) /AM2innenergi ) ;
54 Am( i , 3 )= 2 ;
55 e l s e i f (2.30<= Airmass ( i ) ) && (Airmass ( i ) <3.50)
56 Spekter = AM3fotoner *( TII ( i ) /AM3innenergi ) ;
57 Etot = E_AM3;
58 P = AM3innenergi *( TII ( i ) /AM3innenergi ) ;
59 Am( i , 4 )= 3 ;
60 e l s e i f (3.50<= Airmass ( i ) ) && (Airmass ( i )<=6)
61 Spekter = AM5fotoner *( TII ( i ) /AM5innenergi ) ;
62 Etot = E_AM5;
63 P = AM5innenergi *( TII ( i ) /AM5innenergi ) ;
64 Am( i , 5 )= 5 ;
65 e l s e i f (6< Airmass ( i ) ) && (Airmass ( i ) <16)
66 Spekter = AM10fotoner *( TII ( i ) /AM10innenergi ) ;
67 Etot = E_AM10;
68 P = AM10innenergi *( TII ( i ) /AM10innenergi ) ;
69 Am( i , 6 )= 10 ;
70 end
71 Et=et ( j ) ;
72 Eb=eb ( j ) ;
73 T = Temp( i ) +273.15;
74 Gtop =0;
75 Gb =0;
76 %determines number o f photons
77 f o r i 2 =1:1 : l ength ( Spekter )
78 i f Etot ( i 2 )>=Et
79 Gtop=Gtop+Spekter ( i 2 ) ;
80 end
81 end
82 f o r k1 = 1 : 1 : l ength ( Spekter )
83 i f Etot ( k1 ) >= Eb && Etot ( k1 )< Et
84 Gb = Gb+Spekter ( k1 ) ;
85 end
86 end
87 Etopq = Et*q ;
88 Ebq= Eb*q ;
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89 Ptot = 0 ;
90 Ptemp = 0 ;
91 v = 0 ;
92 c1=1;
93 Pare = NaN(1 ,300) ;
94

95 whi le Ptot >= Ptemp
96 v = v+0.01;
97 Ptemp = Ptot ;
98

99 funtop = @( x1 ) exp ( ( q*v/m−x1 ) . / ( k*T) ) .* x1 .^2 ;
100 funbunn = @( x2 ) exp ( ( q*v/n−x2 ) . / ( k*T) ) .* x2 .^2 ;
101 %ca l c u l a t e s top and bottom c e l l cu r r en t s
102 I top = (q*(Gtop−Const *( i n t e g r a l (@( x1 ) funtop ( x1 ) , Etopq ,Eq) ) ) ) /m;
103 Ibunn=(q*(Gb−Const *( i n t e g r a l (@( x2 ) funbunn ( x2 ) ,Ebq , Etopq ) ) ) ) /n ;
104

105 Ptot = v*( I top+Ibunn ) ;
106 Pare ( c1 )= Ptot ;
107 vtot ( j , i , c1 ) = v ;
108 c1 = c1+1;
109 end
110 Ptota l ( j , i )=Ptot ;
111 Ef f ( j , i )=max( Pare ) /P*100 ;
112

113 end
114 end
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Appendix I MatLab Spectra

1 %This func t i on r e tu rn s data c o l l e c t e d from the s tandard i zed airmass
2 %spectra , 1 , 1 . 5 , 2 , 3 , 5 and 10 .
3 f unc t i on [E_AM1,E_AM15,E_AM2,E_AM3,E_AM5,E_AM10, AM1fotoner , AM15fotoner ,

AM2fotoner , AM3fotoner , AM5fotoner , AM10fotoner , AM1innenergi ,
AM15innenergi , AM2innenergi , AM3innenergi , AM5innenergi , AM10innenergi ]=
GetSpectrum ( )

4

5

6

7 Am1=importdata ( [ 'AM1' , ' . csv ' ] ) ;
8 E_AM1=Am1. data ( : , 1 ) ;
9 AM1energi=Am1. data ( : , 2 ) ;
10 AM1fotoner=Am1. data ( : , 3 ) ;
11 AM1innenergi=sum(AM1energi ) ;
12

13 Am15=importdata ( [ 'AM15 ' , ' . csv ' ] ) ;
14 E_AM15=Am15. data ( : , 1 ) ;
15 AM15energi=Am15. data ( : , 2 ) ;
16 AM15fotoner=Am15. data ( : , 3 ) ;
17 AM15innenergi=sum(AM15energi ) ;
18

19 Am2=importdata ( [ 'AM2' , ' . csv ' ] ) ;
20 E_AM2=Am2. data ( : , 1 ) ;
21 AM2energi=Am2. data ( : , 2 ) ;
22 AM2fotoner=Am2. data ( : , 3 ) ;
23 AM2innenergi=sum(AM2energi ) ;
24

25 Am3=importdata ( [ 'AM3' , ' . csv ' ] ) ;
26 E_AM3=Am3. data ( : , 1 ) ;
27 AM3energi=Am3. data ( : , 2 ) ;
28 AM3fotoner=Am3. data ( : , 3 ) ;
29 AM3innenergi=sum(AM3energi ) ;
30

31 Am5=importdata ( [ 'AM5' , ' . csv ' ] ) ;
32 E_AM5=Am5. data ( : , 1 ) ;
33 AM5energi=Am5. data ( : , 2 ) ;
34 AM5fotoner=Am5. data ( : , 3 ) ;
35 AM5innenergi=sum(AM5energi ) ;
36

37 Am10=importdata ( [ 'AM10 ' , ' . csv ' ] ) ;
38 E_AM10=Am10. data ( : , 1 ) ;
39 AM10energi=Am10. data ( : , 2 ) ;
40 AM10fotoner=Am10. data ( : , 3 ) ;
41 AM10innenergi=sum(AM10energi ) ;
42 end
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