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Abstract 
Bitcoin is a phenomenon that is new and there is little information on how and why it behaves 

as volatile as it does. This thesis uses existing data on Bitcoin’s exchange rate to estimate a 

model that describes the pattern and use it in a financial risk analysis. We also aim to contribute 

as a foundation for further studies in this field. 

The statistical properties of the log-return of the exchange rate are analysed and it is deemed 

to be iid. From the eleven distributional candidates we study is the fitted skew generalised t 

distribution proven to represent the data best after evaluation by criteria and statistics. The 

estimated VaR and ES show that the rate is volatile and that the risk from investments is still 

high. 

The findings show that it is necessary to describe the exchange rate with complex and flexible 

distributions, and even if the data shows more stability today than earlier is it important to show 

caution in interpretations and evaluations on the topic. 
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1. Introduction 
Bitcoin is a currency, an ideology, and an unpredictable phenomenon that has been getting 

much attention over the last few years. Even with the enormous amount of financial methods 

and techniques that exist today, few of them have been able to explain or describe the 

development and volatility of Bitcoins exchange rate well. There have been a handful of articles 

and papers that have attempted to do just this. If some results have been obtained, there is 

certainly room for improvement in many aspects of the topic. 

The purpose of this thesis is that we want to get a better understanding of Bitcoin and its 

properties and dynamics. This will be attained through the process of obtaining two financial 

risk measurements, value at risk and expected shortfall, abbreviated VaR and ES. If these 

techniques are proven to inhibit strong volatility, it is certain that the exchange rate of Bitcoin 

will inhibit the same characteristics. Even though it is very clear that Bitcoin is volatile, it is 

desirable to have some numbers to relate to than a vague concept that is not proven. VaR and 

ES are often assessed in risk management when one needs relatively simple, but well-

informing, indicators on the risk involved in potential investments or financial decisions. John 

Hull (2015, pp. 258-259) defines the concepts of VaR and ES very simply, with VaR as an 

estimate on “how bad can things get?”, while ES asks what the expected loss is in case things 

go bad. 

In order to estimate VaR and ES is it necessary to have a fitted model, or distribution, of the 

data we want to study. VaR is a model-dependent measurement, and ES, which is sometimes 

(misleadingly) called conditional value at risk, is again dependent on VaR, so a well-fitted 

model is required. A challenge in general is to choose which distribution to use, and this 

becomes especially difficult when studying a new phenomenon that behaves very differently 

than others, more well-known currencies or assets. Luckily, there has been some research on 

this topic before, where several distributions have been attempted fitted to the exchange rate of 

Bitcoin. By learning from these, some frequently distributions used in finance can be included. 

Admittedly, one should not take for granted that these are the ones that should be used when 

there could exist some distribution that is able to explain a phenomenon better, especially when 

it is a more complex and diverse phenomenon than normally studied. 

There are different prerequisites the data must fulfil in order for us to be able to estimate and 

fit a distribution to the observed data. We want a model that has estimated parameters that gives 
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the highest likelihood of representing the data, and that is why we will perform the model 

estimation through the maximum likelihood estimation (MLE) procedure. The observations of 

the sample data are required to be independent and identically distributed, iid, if the MLE 

procedure is to be exercised. This means that before the distribution can be estimated, the 

observations must be checked to be random, non-correlated with each other, and have the same 

variance over time. This will be our starting point in the analytical part of the thesis after some 

basic statistical properties of the data have been calculated. 

Because Bitcoin is such a new concept, and thus in order to have an understanding of why 

Bitcoin behaves as it does and the need for such comprehensive studies, we consider it 

necessary to give the reader an insight into what this concept is all about. So, before the 

statistical aspects are approached, there will be an introduction to Bitcoin where we look at 

what makes a cryptocurrency different from other currencies, the technology behind Bitcoin 

called the blockchain, how mining, hash, forks and security are important contributors to 

explain Bitcoin’s behaviour, and, lastly, some historical and exchange events. The information 

we provide on Bitcoin here is only the tip of the iceberg, but we believe that this will give 

enough to acknowledge the necessity of deeper and thorough research on the properties and 

characteristics of Bitcoin. 

The motivation for our thesis, to study the exchange rate of Bitcoin, is to better understand its 

behaviour, that is very different from most other currencies and assets. The legitimacy for 

previous findings will be evaluated, and if they are proven not to be consistent will a new fitted 

distribution be proposed if it proves to describe the exchange rate better. We will perform 

certain risk measures with the proposed fitted distribution in order to set a starting point for 

later studies. With a fitted distribution will it also be easier to predict values that are out of 

sample. 

This thesis is organised and consists of three main parts divided into seven chapters. The parts 

are the concept of Bitcoin, the methodology, and the results and discussion. 

In chapter 2, the concept of the phenomenon Bitcoin will be established and given some 

general explanation on how it works, both from a historical, political, and technical way. The 

underlying technological breakthrough of blockchain will also be acknowledged and addressed, 

as it is vital to know about this in order to have some idea of why Bitcoin behaves as it does 

and why it has gotten the attention from the public it has done over the nine years it has existed. 

After the concept has been defined will we, in chapter 3, present the sheer amount of literature 
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that have previously studied the topic we are about to venture. In chapter 4 will the data we 

have collected be presented and analysed accordingly. Non-parametrical tests and explanatory 

plots are assessed to define and assign the required properties to the data in order to be able to 

describe it by statistical distributions. Some strong assumptions about the data will be made, 

but they are described and explained when needed. Then, in chapter 5, the distributions that are 

to be fitted to the data will be presented together with the criteria they will be evaluated against 

each other by. Two measures of financial risk will also be applied, to see if the data proves to 

be as volatile in studies as it seems to be empirically. In chapter 6 and 7 will our estimated 

results for iid, distributions, criteria, and financial risks be presented and commented promptly 

and objectively. A summary and concluding remarks will be given in chapter 8, where we will 

draw lines from our findings to relevant sources and studies, and also propose some ideas for 

further research. 
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2. The concept of Bitcoin 

 Cryptocurrencies as another type of money 

For as long as humans have existed we have had the need to be able to trade. A good or service 

for another, at a fair rate depending on needs, scarcity or availability. The relevant goods are 

traded at their own value in itself, which is the purpose of a commodity. Commodities have 

been the most used type of money through times because everything that is traded at its own 

value is a commodity. Types of commodities include valuables as gold, silver, copper, platinum, 

but also more common mediums as rocks, coffee, sugar, tobacco, cocoa, barley etc. 

Commodities may be traded at its own value, but because of limits of capacity, possibilities 

of transportation, and other difficulties, it is useful to have a medium that may represent the 

value of the commodity by not having it physically present. This is what we call representative 

money. The medium’s intrinsic value may be low or close to none, but there has to be something 

valuable the face value of the representative money represents. Types of this form of money 

includes i.e. certificates, bank notes, claims. 

Because of the limitations of commodities, fiat money was introduced. Fiat comes from Latin 

and translates to let it be done. Most of the world’s currencies today are fiat currencies, as the 

face value of the money is often greater than the value of the material it is made from. It is 

correct that fiat money can be perceived as representative money, but the idea is that the money 

is not a direct representation of something else like a commodity but rather just a value enforced 

by the issuing government which is agreed on by all exchanging parties. The intrinsic value of 

the fiat money is basically close to non-existent in principle. In the US it was so that, until 

president Nixon completely lifted the gold standard in 1971, most circulating money was 

backed by gold owned by the government. 

All these forms of money are physical and tangible, and the applied value is fairly easy to 

comprehend. What if we were to apply value to something un-tangible, digital, and possibly 

unregulated? The concept of virtual money, or currencies, is fundamentally different from the 

other types, first and mainly because of the aspect of non-physicality, but also in other regards 

that will be explained later in this chapter. There are several different types of virtual currencies 

such as coupons, centralized systems as PayPal or eCash, fictional currencies in online games, 

decentralized formats as Ripple, and cryptocurrencies. Common for all these formats is that 

they all are “a digital representation of value, not issued by a central bank, credit institution or 



 

 

5 

 

e-money institution, which, in some circumstances, can be used as an alternative to money” 

(European Central Bank, 2015). It is also called a virtual currency scheme because it is not 

considered money or a currency from a legal perspective, with regard to governments or central 

banks and are often controlled by the issuers themselves. Bitcoin is one of the exceptions to 

this, as it is not controlled by anyone in particular but rather by the network, or community, as 

a whole.  

A cryptocurrency is fundamentally different from other virtual currencies because, as the 

name suggests, it is based on cryptography. This means that the currency is built upon intriguing 

algorithms and complex mathematical compositions which are solved by computers within the 

blockchain. Where does the money come from? To take Bitcoin as an example: a bitcoin is 

given as a reward for solving a problem, or ‘block’, that is the algorithm, and is transferred to 

the virtual wallet of the solver. This procedure is called mining – to have a computer run 

software to solve riddles. The difficulty of this procedure is increasing by the amount of people 

mining for bitcoins and by how many bitcoins that are already in circulation. The amount of 

mined coins is relevant because the total amount possible coins to exist is limited to ₿21 

million, as defined by the original code. This limit itself is not able to prevent the great volatility 

of the exchange rate we have seen over the years, but it prevents seemingly unstoppable 

inflation we observe in most fiat currencies. There is some inflation, roughly 4% p.a., but this 

rate is declining, and by the time the limit is reached it is not unlikely there will be a deflating 

trend. It is also believed that Bitcoin will experience the deflationary spiral, that the limit 

induces hoarding of bitcoins, but because of the nature of bitcoin it is not an altogether plausible 

assumption to make. By hoarding bitcoins, one would solely do it in speculation, not because 

of a foreseeable beneficial use of the money in the future. 

Before conceptualising Bitcoin is it necessary to get an understanding of the technology 

behind it, the blockchain. 

 The Blockchain 

First introduced and conceptualized in 2008 by Satoshi Nakamoto, the blockchain is 

functioning as the cornerstone of cryptocurrencies. When it was first introduced, blockchain’s 

potential was unclear, as it was initially made mainly for bitcoin as an open-source code.  As 

of 12th March 2018, we have almost 1600 different cryptocurrencies (CoinMarketCap, 2018) 

and there are continuously more currencies popping up from all over the world. Since its 

inception, the community has found many ways to make use of the blockchain. Some people 

from technological communities have even proclaimed that this may be one of the biggest 
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unintentional innovations ever made. The basic principle of how the technology works, is that 

it allows information to be stored and distributed, while it doesn’t allow itself to be copied or 

altered (Rosic, 2017). 

The identity of a transactor, masked by the private key, is kept secret by encryption, but is 

publicly accessed by a public key. The private key is essentially a person’s wallet and is made 

out of a 256-bit number, often presented in hexadecimals. If the number of a private key is 

known, one has access to this particular wallet. That is why a public key is needed, to prevent 

others from accessing your wallet. The public key works like a pin-code for the private key. All 

private keys are able to provide the owner with a set of public keys, which is the key(s) that are 

available and shown to the public in the blockchain. A transaction between two wallets is 

performed by an encrypted digital signature on the transaction which is issued by the sending 

wallet. This signature is only possible to be decrypted by the receiving wallet – even a minor 

change will alter the whole procedure. The receiver is able to decrypt the transaction that is sent 

to his public key with his private key and receive the transferred money to his wallet. 

The blockchain is considered a digital ledger that registers and records financial transactions. 

It is also completely incorruptible, like a non-configurative balance sheet. The information that 

is saved as a database on the blockchain is not saved in one single unit or database, but is 

received, copied and stored across the whole network in every node. A node is a computer that 

is connected to the blockchain system. There are two important statements we can draw from 

this. Firstly, the blockchain cannot be controlled by a single computer or unit, unless this single 

unit, or collaboration of units, stands for more than half of the processing power, called a 51% 

attack. Secondly, the concept has no single point of failure because everyone maintains the 

same records and continue the process. Since Bitcoin was introduced, there has never been any 

operational failures, only hacking attempts or human errors. 

The blockchain system runs on a network of nodes. When a node connects to the system, a 

copy of the blockchain gets downloaded or updated on the computer. Every computer in the 

network is its administrator and user concurrently, and all these nodes validate the transactions 

together. They do this by solving mathematical puzzles – what we described as the mining 

process. 

We know that the blockchain consists of several blocks containing data about all transactions 

done throughout Bitcoin’s existence, but how is this done in practice? When a person is 

initiating a transaction, he sends the amount of money out of his wallet and gets the transmission 
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confirmed by nodes in the network. Then the bitcoin gets confirmed, it is passed on to what is 

called the memory pool, or Mempool, and is contained there until it is included into the first 

new block that is mined by a computer and is finally added to the transactional history amongst 

all other transactions and is in principle confirmed to have successfully been recorded. This is 

effectively the bottleneck of the whole network, as the exact time for finding the next new block 

is uncertain. In ~66% of all cases the new block is found in 10 minutes or less, but there is also 

a small probability of 0.3% to wait more than 60 minutes for one block. The interval of block-

creation follows a standard Poisson process with no memory and has the same probability of 

time-spending on each block every time a new block is getting solved (bitcoinwiki, 2017). This 

leads to that the Mempool may not be emptied within, in worst case, the hour, although this is 

rarely seen. The time for a transaction to be successful will vary because of this. 

It must also be mentioned that there are very rare cases that the code may lead to some 

temporary difficulties, most seen in practice that two different computers may solve the same 

block at the same time and thus make a so-called fork. The network will then be divided 

between the two chains, because the chains are equally long and difficult to solve. Luckily the 

code is also functioning such that when the network is divided, and one computer solves a new 

block, regardless of which chain it has accepted, the network will accept this as the true chain, 

since it is the longest and most difficult, and we will regain equilibrium again. This type of fork 

is called a soft fork, because the software protocol is only rendering blocks invalid.  

In comparison, a hard fork is a method of splitting the chain by revalidating previous versions 

of the software. This have been done in few, but more drastic cases when, for instance, there 

have been disagreements about an update of the code (Redman, 2017) or after security failures 

by hacking (Wong, 2017). 

The world today may have a great use for the blockchain technology, especially with its 

benefits as being non-manipulable and the security it possesses. Even if the technology is useful 

most places, it may probably be needed most in developing countries, for instance, where 

corruption and swindling are enormous problems. Examples on where the blockchain may be 

used is digital storage, management, predictions, holding medical records, smart contracts, 

efficient transactions and a more advanced internet. 

Picture 1 - Soft vs. Hard fork (Investopedia, 2016) 
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 Functionalities of Bitcoin 

First, to clarify the difference between the capitalized word Bitcoin and non-capitalized 

bitcoin, we cite bitcoin.org’s definition:  

‘Bitcoin - with capitalization, is used when describing the concept of Bitcoin, or the entire 

network itself. e.g. "I was learning about the Bitcoin protocol today."  

bitcoin - without capitalization, is used to describe bitcoins as a unit of account. e.g. "I sent 

ten bitcoins today."; it is also often abbreviated BTC or XBT.’ (bitcoin.org, 2018) 

Also, hereafter, all references as of “today” refer to the 1st April 2018. 

Bitcoins exchange rate was at $0.08 when Mt. Gox started their exchange 8 years ago. Today 

the rate is $7,400 – an incredible growth by a factor of 92,500 over those eight years is what 

most people would consider unthinkable. This is even after a dramatic decrease from December 

2017 when the rate had an all-time peak of $19,666 at the exchange of Bitstamp, or a factor 

growth of almost 250,000. It should also be pointed out that just from the 1st December to the 

17th, when the peak was observed, the rate more than doubled just during this short period, with 

daily returns of even +20%. Bitcoin’s capitalized value today exceeds $115 billion, almost 

dropped to a third of the market capitalization from the peak four months ago (blockchain, 

2018). This illustrates just a few important moments of Bitcoin’s relatively short life of merely 

9 years. 

The efficiency Bitcoins mining 

process is rated by a computers hash 

rate, or hash power, which is the speed 

a computer is able to solve the 

algorithms. In practice, the hash rate 

is “the measuring unit that measures 

how much power Bitcoin network is 

consuming to be continuously 

functional” (Khatwani, 2018). This 

graph shows that today the total hash rate is 27.23 EH/s (exabits per second), which is about 

27,230,000 TB/s (terabits per second), or 27,230,000,000,000,000,000 B/s. This number is so 

incredibly large it is hard to fathom – even the combined power of the world’s 500 most 

powerful computers would only represent a fraction of the processing power of the Bitcoin 

mining-network (Hoffmann & Watchulonis, 2015). 

Picture 2 - Hash rate development over the last year (blockchain, 2018) 
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Since the value of Bitcoin is as high as it is, as mentioned and shown later in part 4.2, it is not 

surprising that there has been many people that want to get hold of some of these coins the easy 

way, either by stealing directly from an owner of coins by hacking, taking advantage of persons 

that do not take their security seriously, or set up a fake exchange to exploit incautious people. 

Obviously, a wallet is more exposed when having a hot wallet rather than a cold wallet. A hot 

wallet is a wallet that is connected to the internet, while a cold wallet is not connected or offline. 

This is part of the reason banks are focusing on having such a strong digital security system, so 

that their customers’ accounts are not exposed. Wouldn’t the network be fairly easily 

compromised by hackers, scammers, or other attackers when the blockchain does not inhibit 

any security software or firewall? No, and it gets even harder over time. For an attacker to 

directly overcome the existing network in a 51% attack, he must be able to outpace all other 

computers in the network by 

implementing a “new” blockchain and 

stand for the majority of the hash 

processed, which is considerably difficult 

with regard to the existing hash produced 

by the network as presented above. Of 

course, it would be possible to perform 

this type of attack through a network of 

computers which has the combined 

majority of the power, but, as of today, 

the largest contributor of hash is the pool from BTC.com, which utilize 23,7% of the power, as 

we can see in picture 2. This is a remarkable rate, but for this pool to (theoretically) be able to 

take “control”, their hash rate must almost be subject to an increase of over 110%. This is 

possible since the whole concept is rooted in the blockchain. All transactions done with bitcoins 

are registered and stored in the chain, which keeps records of these in full publicity for everyone 

to see. 

 History and exchange of Bitcoin 

In 2013 there were three main contributors in the Bitcoin network that founded the first 

exchange and interest centre in downtown New York called the Bitcoin Centre NYC. The 

purpose of this establishment was not only to be a meeting centre for enthusiasts and 

stakeholders for discussion, education and encouragement of trading in bitcoins and 

cryptocurrencies rather than traditional money, but also to become a regulated exchange 

Picture 3 - Distribution of hash-contributors (blockchain, 2018) 
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platform with live currency exchange – a “fusion between Wall Street and Bitcoin” 

(Cannucciari, 2016), and was thus fittingly placed next to the Wall Street stock exchange. 

There has also been several online, private and, to some degree, unregulated exchanges for 

Bitcoin as well. For instance, Mt. Gox, Bitstamp, BTC-e, Kraken, CEX.io, and a handful others, 

are some of the non-physical places one is able to exchange in cryptocurrencies. The existence 

of these has not been flawless. Money laundering, embezzlement, fraud, DDoS attacks, hacking 

of hot wallets, exploitation have occurred in several of these exchanges and caused loss of 

values of millions of dollars. This is in addition to straight-out fake exchanges, personal hacks, 

and people losing their private keys or don’t take security measurements when managing their 

wallets. Mt. Gox’s failure and closure in February 2014 is plausibly the most infamous event 

with regard to exchanges, whereas allegedly ₿744,000 were stolen at the value of almost $500 

million, estimated at that day’s bitcoin price. It is still unclear exactly how many bitcoins that 

were stolen and all of the circumstances revolving the case, but ultimately this shows how 

important cyber security is when handling this type of business. 

In Satoshi Nakamoto’s white paper from 2008, Bitcoin: A Peer-to-Peer Electronic Cash 

System (Nakamoto, 2008), “he” first described his intentions of the concept of Bitcoin. This 

paper was written and published the year before Bitcoin was launched. His paper and its driven 

mindset has become a fundament for many 

newer cryptocurrencies as well. The main idea 

is to have an electronic cash system, peer-to-

peer, without any third parties and at the same 

time use of digital signatures, so that extra fees 

and probability of being compromised are 

negligible and that the double-spending 

possibility is removed from transfers of 

money. Nakamoto’s issue about a third party 

is that it is based on the trust-based model, which is a model exposed for exploitation and other 

human influences, transaction costs, mediating disputes and lacks practicality. His idea was to 

produce and present a system that is based on cryptography rather than human trust, which is 

un-falsifiable per se. There is of course some trust involved with respect to the possibility of 

overwriting the block chain when one actor is standing for more than half of the hash of the 

network, but the greater the network becomes with increasing processing power, the difficulty 

Picture 4 - Verification/signature procedure from 

Nakamoto’s paper 
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of overthrowing the network and implementing a new “true” block chain grows exponentially 

for the attacker, making it an ever increasingly challenging task. 

Bitcoin’s price has been one of the big talks over the world, especially after last year. When 

Bitcoin was introduced by Nakamoto in 2009, and he performed the first Bitcoin transaction 

with Hal Finney in the amount of 50 bitcoins, the net worth of a coin was nothing more than 

around ¢3. This transaction is rooted, and is also the only transaction, in block 0, which is also 

called the genesis block. Both the price, or relative value, of Bitcoin and the volume traded in 

bitcoins have seen many dramatic changes over the years. We will study this more in detail in 

part 4.2. 

Now that we have established some basic understanding of what Bitcoin is and how it works, 

we will proceed in the next part to present and discuss some of the literature that already exists 

on Bitcoin from a statistical, financial, or economical perspective.  
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3. Literature review 
There does not exist much statistical literature on Bitcoin yet. We will however present some 

of the articles that have contributed to this area of research to establish a framework around the 

topic at hand. 

The research article by Chu, Nadarajah and Chan’s Statistical Analysis of the Exchange Rate 

of Bitcoin (2015) is the first article to use data to perform an analysis of the rate and use a 

selection of statistical methods to fit parametrical distributions to the log returns of the exchange 

rate. They used data from the exchange company Bitstamp, consisting of 951 observations from 

September 2011 to May 2014. They found that the five-parametric generalised hyperbolic 

distribution gave the best represented model of the logarithmical return of the exchange rate. 

As this article coincides much to ours, it has been natural to compare some of our results to 

what they have found – both restricting our data to the one they had to see if our methods 

provide matching results, and with our extended period to study the development and changes 

in the results. This article was a part of Chan’s thesis for PhD (Chan, 2016). 

There have also been a few other studies that have been attempting to have a fitted distribution 

to describe the exchange rate, both for Bitcoin and other cryptocurrencies. Osterrieder (2017) 

is the first to study statistical properties of cryptocurrencies by more than just Bitcoin and fiat 

currencies. He uses data only from June 2014 to November 2016 to fit seven distributions, the 

normal, Student’s t, generalised t, hyperbolic, generalised hyperbolic, asymmetric normal-

inverse Gaussian, and asymmetric variance gamma, for seven cryptocurrencies, Bitcoin, 

Ripple, Litecoin, Monero, Doge, Dash, and MaidSafeCoin. With regard to Bitcoin, which is 

most relevant in our case, he concluded that it exhibits heavy tails, and that the asymmetric 

Student’s t distributions gives the best fit overall. This is despite other distributions give higher 

log-likelihood, but the difference is not very large, so it would be easier to describe the data by 

parsimony. 

Collaboratively, Osterrieder, Chan, Chu, and Nadarajah (2017) follow up on each of their 

previous studies by applying the 15 distributions used by Chu, Nadarajah, and Chan to the seven 

cryptocurrencies used by Osterrieder. The conclusions concerning Bitcoin are very similar in 

the papers and has provided us with guidance in our own research. The generalised hyperbolic 

distribution is selected to give the best fit of the data. They used data from June 2014 to February 

2017. They modelled the same data later with twelve GARCH models, as proposed by 

themselves (Chu, Chan, Nadarajah, & Osterrieder, 2017).  
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Theodossiou (1998) gave a proof of the skewed generalized t distribution and provided a 

practical approach. The most interesting part for us in this paper was the way the distribution 

was fitted to model stock exchange index from USA, Canada and Japan. This research showed 

how this distribution works in practice as a very flexible and applicable model and gave proof 

that it gives a good fit in statistical analysis in finance. The paper provided a better baseline for 

financial risk management analysis and financial modelling like GARCH and EGARCH. We 

think this distribution will provide a reasonable fit to the exchange rate of Bitcoin, and, since it 

has not been included in the studies mentioned above, function as a worthy candidate in addition 

to the other distributions. 

We believe this thesis will contribute to understanding of the phenomenon and provide more 

insight to it than the presented research has so far. This is mainly by studying the development 

over a substantially longer time-period than before. Some literature’s time span is chosen to be 

shorter than necessary because it was aimed to compare several cryptocurrencies and their 

properties over the same time period rather than studying the longest available set of 

observations for each currency. It is interesting to see whether or not it turns out to have similar 

characteristics as the shorter periods, or if inclusion of earlier data makes a big difference in the 

modelling process. 

This literature has given us good fundamental insight in theory and has guided us in our study 

of Bitcoins exchange rate. We hope to make a useful model for risk management analysis that 

can be used by others in future studies. 

Now that the concept and existing literature is known, some preliminaries to the properties of 

the exchange rate will be set to be able to study the exchange rate further and perform the 

necessary analytics.  
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4. The data 

 The gathering of data 

The data on Bitcoin’s exchange rate to United States Dollar (USD) is gathered from Quandl, 

a platform that stores financial, economic, and alternative data as a source for analysts. The 

hotlink to the source from Quandl as given in the paper by Chu, Nadarajah, and Chan were 

currently unavailable, so in order to get hold of the data we had to receive it from Quandl’s 

addon in Excel. This dataset was then imported to Stata and R as an Excel spreadsheet before 

we started analysing and processing it. The reasoning for choosing the rate from the exchange 

company Bitstamp is that the exchange has a significant and stable trading volume over a long 

time-period. Bitstamp was first founded in Slovenia, then outsourced to Britain for financial 

and legal purposes, and is apparently also located in Luxembourg from 2016 on. Their exact 

location of operation now is somewhat uncertain (Wikipedia, 2018). Bitstamp was the world’s 

second largest trader by volume a while back, but it has remained, on average, the fifth largest 

over the last five years with noticeable decline in volume from January in 2017 (Cieśla, 2018). 

An argument on why not to choose to use other sources, for instance the Bitcoin Price Index, 

was due its shorter period of available data. It lacks in fact two years in comparison to 

Bitstamp’s observations. This would in itself not be an immediate problem for us to use these 

data, but we seek to have a large number of observations in order to study the exchange rate 

more broadly and lengthily. 

There are twenty-one observations that are lacking from the dataset collected from Quandl. 

In 2011 we lack data from the 30th September, the 1st, 2nd, 15th, 16th, 18th, 19th, 22nd, 23rd, and 

27th October, the 2nd, 3rd, 7th, 23rd, and 27th November, and the 4th and 17th December. It is 

uncertain why there is no trading data on these dates. It is unlikely that these are ripples due the 

hack of Mt. Gox in June 2011, but since Bitstamp were founded and started business in August 

2011, our best guess is that it is the consequence of some technical or practical issues regarding 

the early-day trading.  From 2015 we also lack the data from 6th-8th January. This is the result 

of a hack on Bitstamp on the 5th January. The trading became suspended after the hacker got 

away with ₿18,866, valued at roughly $5 million, and they spent the consecutive days 

rebuilding the system and reconstructing their site (Kodrič, 2015). The total expenses, including 

loss of coins, costs, and reputation damage, is thought to exceed $8 million. 
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 Exchange rate, volume and log-returns 

The studied variable from Bitstamp’s dataset is the close value of the exchange rate.  

We will first consider the first four 

years, as the volatility in the exchange 

rate in the earlier years is not as clear 

when looking at the whole period at 

once. Until the start of 2013, the value 

had increased to just more than $13. 

With a rough estimate of a total growth 

of 400%, which is quite dramatic, it is 

not much compared to how it will 

develop in the near future. As we see 

from figure 1, the value over the next year exceeded $1000, for only to fall to a short oscillation 

between $200 and $300 during most of 2015. By the turn of the year, we see a more or less 

steady, but volatile, increase of the exchange rate, which continues to grow until the end of 

2017. After three years of fall and rise, the rate reached $1000 again the 1st January 2017, and 

it practically exploded from here on, at least for a year. When observing figure 2, the daily 

exchange rate from the 1st January 2016 

until the 1st April 2018, we see that the 

rate went from $10,000 at the 1st 

December 2017, peaked on the 17th at 

almost $20,000, and then plummeted 

down to $10,000 again on the 1st 

February 2018. Since then, the price has 

hovered between $7,000 to $11,000, not 

leaving much room for any certainty for 

where it will go next – evaporate, enrich, 

or actually maintain stability.  

The traded volume is also interesting to observe. In figure 3, we see only the traded volume 

by Bitstamp over its period of trading. This is only a fraction of the total volume, as seen clearly 

from the graphs in appendix A. We will not dwell much on these plots, but it should be noticed 

the enormous difference the inclusion of the Chinese Yuan (CNY) makes, especially during Q4 

in 2016 and the first days of January. Here are peaks showing daily trading in bitcoins up to  

Figure 2 - Bitstamp's exchange rate from 1/1/2016 to 1/4/2018 

Figure 1 - Bitstamp's exchange rate from 11/09/2011 to 1/1/2017 
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₿14 million only in Yuan, which is a 

huge amount considering there only 

existed about 16 million bitcoins at that 

time. Nonetheless, the American Dollar 

(USD) is traded at most at 29th February 

2016 with a volume of ₿955,000. 

Bitstamp has been trading at a daily 

volume of ₿10,000 on average but has 

also traded up to ₿137,000. Despite of 

not being the largest exchange in terms 

of volume, we regard Bitstamp of being representable for the majority of the exchanges’ rates. 

This is because the rate does normally not vary much from exchange to exchange. 

We will transform the closing rate to their logarithmical returns. This is preferable in our case, 

mostly because of normalisation, that the variable is viewed in a comparable metric, time-

additivity, and numerical stability. For thorough reasoning, see Quantivity (2011). 

To check the consistency of our data, will we compare our data to that of Chu, Nadarajah, and 

Chan. They are evaluating data from 13th September 2011 to 8th May 2014, so the shape of the 

log-returns in this period should be identical to figure 1 in their article. The plot of the raw 

exchange rate will obviously not show any particular issue with this, as the changes early on 

are minimal in general, but great relative to each other. It was not mentioned explicitly in their 

paper how to treat the observations that are missing, as it is a few ways to deal with this issue. 

After we calculated and plotted the log-return, we saw that, when comparing, that the data were 

differentiated by a couple of extrema, especially in the early period where we see a substantial 

lack of observations. This may or may not have any significant impact on our findings, but we 

will make effort to mimic the research as similarly as possible and must thus explore to find 

their method when it is not pointed out in the text. 

Figure 3 - Bitstamp's transaction volume 
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We tried first to overlook the 

values that were lacking and treat 

them as zeros. Of course, this will 

prevent the possibility of 

performing certain statistical 

calculations, and will also be false 

in a way, because even if Bitstamp 

did not have any trades these dates, 

there was still some value to 

Bitcoin. It cannot just be treated as 

it had no value. We also tried to find 

and substitute the values with either data from another exchange, Bitcoins Trading average, or 

an average of the adjacent available data over the dates with missing values. Even if we made 

some seemingly usable plots for the log-return, the use of foreign data could render the absence 

of confidence in the results. We chose eventually to only remove the dates with missing values 

and exclude them from the dataset. It is important to not have any lacking observations, because 

this will both alter some results, or make us unable to perform a number of calculations. The 

result is a plot of 2,372 observations in total, a substantially larger timespan studied than in 

every other paper in this field. Without removing the zero-values, there would not have been 

too much of a difference visually in the plot in figure 4. The main difference would be the lack 

of the extreme, and highest, observation on the 28th October 2011, and a few other negative 

peaks in the early period. 

 Statistical properties 

We will not compare the log-returns to the USD exchange rate towards other major currencies 

or cryptocurrencies as done in many studies on cryptocurrencies in general, but rather see how 

Bitcoin’s own exchange rate have changed with respect to comparable results found earlier. By 

performing the descriptive summary command in Stata, we obtain most of the same comparable 

statistics as presented in the paper by Chu, Nadarajah, and Chan. We believe the numbers are 

from a reasonable while back, in order to look at the development in the exchange rate. There 

is some change in most statistics, but it is also worth to notice that the maximum and minimum 

is unchanged from three years ago. This is also viewable when comparing figure 4 here to figure 

1 in their paper. 

Figure 4 - Log-returns of Bitstamp’s exchange rate 
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The global maximum is 0.446, observed on the 28th October 2011, and the global minimum 

is −0.664, observed on the 11th April 2013. Followed by this, we have that the range of all log-

returns is unchanged. Besides this, all other statistics have changed. The first general and 

probably most important change is that we see a much more concise dataset with less spread 

and variation.  

Statistics C, N&C (2015) N&F (2018) 

Minimum -0.664 -0.664 

First quartile -0.012 -0.012 

Median 0.004 0.002 

Mean 0.005 0.003 

Third quartile 0.025 0.020 

Maximum 0.446 0.446 

Interquartile range 0.037 0.032 

Range 1.109 1.109 

Skewness -1.503 -1.343 

Kurtosis 22.425 26.744 

Standard deviation 0.069 0.053 

Variance 0.005 0.003 

Coefficient of variation 15.156 16.629 

Table 1 - Summary statistics log-returns of the exchange rate of Bitcoin in 2015 versus 2018 

The first and third quartile are closer to zero, respectively 0.0002 larger and 0.0046 smaller. 

As a result of this, the interquartile range is ~0.005 smaller, because there is less difference 

between the quartiles. The median and mean are both 0.002 smaller, such that we are even 

closer to a dataset with zero mean. We notice that the skewness is smaller, with an increase of 

0.138. This increase indicates that the log-returns are less negatively skewed with the addition 

of the newer observations but is still left-skewed. Oppositely, we see that the kurtosis has grown 

considerably, by 4.669. This indicates that the “peakedness” of the distribution is even more 

substantial than before. It is not so strange as figure 4 shows the peaks are less volatile and 

different. Given this increase, it must be that we have even more observations clustered around 

the mean. The lower standard deviation and variation is again strengthening the indication of 

the observations’ log-return being drawn towards zero. This is also to be expected after looking 

at the log-return plot and in light of our already mentioned statistics. The coefficient of 

variation, or measurement of relative variability, is observed to have an increase of 1.473. This 

increase is despite both the standard deviation and the mean becoming smaller, so the reason of 
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the increase in the coefficient of variation must be that the decrease in the mean of the 

observations is more sizeable relative to the decrease in the standard deviation. 

For us to be able to estimate the parameters of the statistical models properly, it is necessary 

that the data possesses the property that all observations are independently and identically 

distributed (iid). The assumption of iid must be maintained by the data in order to perform the 

fitting process, which we will explain in chapter 5 and 6. 

As we are able to test only for randomness as tests with numerical results, these results will 

be presented in in chapter 6.1 alongside with the conclusion of the evaluation of observations 

being iid. The two other tests will be discussed in the following chapters. 

 Autocorrelation/Serial correlation 

We will first study the autocorrelation function (acf) and partial autocorrelation function 

(pacf) of the log-returns of the exchange rate to check for correlation between the observed 

values in the dataset. This is supposedly a straight-forward process, but when we executed the 

acf-command on the log-return variable in Stata, we see very clearly that the plot is very 

different from what we were to expect from earlier findings. The only official research that has 

included this in the paper is the article by Chu, Nadarajah, and Chan, at least to our knowledge, 

and we will compare to what they have found. If their acf in figure 2 is compared to figure 5, 

the plotted function we got as output by the command ac, we begin to wonder whether or not 

we are studying the same phenomenon. There are three main issues about this comparison. 

Firstly, the Bartlett’s formula for 

𝑀𝐴(𝑞) 95% confidence bands is 

differing from ~ ± 0.04 in our plot 

against ~ ± 0.21 in the article’s 

plot. It is not explicitly mentioned 

that they are using any other 

significance level that 5%, but even 

if lowered to 0.01%, the band 

would only be ~ ± 0.075. This 

would remove any significant 

points outside the band, but still also 

differ from the compared plot. The reason may be that they have utilised another type of 

Figure 5 - Autocorrelation plot of bitcoins log-return by 20 lags 
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autocorrelation function with some properties, but if this is the case it is not mentioned explicitly 

in the article. 

Secondly, the sizes of the autocorrelation at all lags, relative to the confidence interval, are all 

larger such that we do have five significant points outside the band. We observe these 

significands at time lag 5, 8, 11, 14, and 20. There is no reason to believe that these points 

would actually have any significant impact in particular, as they are seemingly pulled at 

random. Why would the price of Bitcoin five days ago have any impact on today’s price in a 

positive direction, while the price eight days ago would affect it negatively, and at the same 

time the four last days would be insignificant? On the other hand, it would not be directly 

unreasonable to assume the prices to be correlated to some degree in terms of time, but this 

would be easier to remark if the plot were to be more structured. 

Thirdly, the direction of the autocorrelation at each lag is inconsistent with the ones of Chu, 

Nadarajah, and Chan. There is not much more to comment on this than implying the 

autocorrelation functions looks like they are from two completely different datasets, which is 

strange given we have exactly the same log-return plot and similar statistics. 

Although significant lags, they are apparently random at some length. No clear pattern in lags 

is observed in the plot, except for possibly the four first autocorrelated lags of arising at a regular 

basis of three-days intervals. This is complimented by an almost significant point at lag two, 

which could, with some effort, be thought to have some pattern in fluctuations in the pattern 

low, high, low, high, high at the successive lags of 2, 5, 8, 11, and 14, followed by five non-

significant days and a high at lag 20. Most likely will this prove to be occurred by chance. 

Despite of this is it arguable to actually say there are any correlations between time-lags in 

general. We will probably treat the dataset in principle as a white noise process. 

There is not much research done 

in the field regarding the 

autocorrelation of Bitcoin, but we 

have found on the online forum 

stackexchange.com an anonym user 

asking for how to interpret serial 

autocorrelations and AR models 

(user3783846, 2018). Here is the 

plot for the autocorrelation first 

Figure 6 - Partial autocorrelation plot of bitcoins log-return by 20 lags 
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presented, and even if it includes 35 lags instead of 20 as we have done, it resembles our 

autocorrelation function quite reasonably with regard to the issues pointed out above. From the 

code provided at the end of the text, we see that the sample that has been referred to in the text, 

is exactly the same we have used from Quandl, providing Bitstamp’s exchange rate. There are 

however some immediate problems regarding our comparison of these correlograms. The 

difference in number of included lags, 20 to 35, and the observed timespan, which is said to be 

over five years, should be considered when evaluating.  

The pacf plotted in figure 6, and it supports our claims above. As the linear dependence is 

removed, two more significant lags are observed. We believe these plots are reflecting reality 

well, because it shows some serious impact on how observations are correlated, as expected 

from an unpredictable and volatile phenomenon. It may be that this simple autocorrelation 

function does not comprehend and explain the dynamics of Bitcoin properly, but because there 

is no clear or reasonable pattern in the autocorrelation, and we require the log-returns to be non-

correlated, will this be left as it is for now. 

 Randomness 

To test the randomness of observations in the log-return of the exchange rate, we will perform 

a series of tests, as done in the article by Chu, Nadarajah, and Chan. The seven tests we are to 

utilise are Bartels rank test (Bartels, 1982), Cox and Stuart’s sign test (Cox & Stuart, 1955), the 

difference sign test (Brockwell & Davis, 2002), the Mark-Kendall rank test of statistical 

independence (Mann, 1945) (Kendall, 1955), Wald and Wolfowitz’ test for independence and 

stationarity (Wald & Wolfowitz, 1943), the turning point test (Bienaymé, 1874), and the Ljung-

Box test (Ljung & Box, 1978). 

4.5.1  Test statistics and hypotheses 

In all the properties and statistics are 𝑛 the number of relevant observations in the data series, 

𝜇 the expected value of the test statistic, and 𝜎 the standard deviation of the test statistic. 

Bartels’ test is a rank version of the traditional von Neumann's ratio test of 1941. To test for 

randomness, we have to use the two-sided version of the test, whereas the null hypothesis is 

randomness against the alternative hypothesis of the dataset being characterised by non-

randomness. The test statistic calculated is 𝑅𝑉𝑁 =
∑(𝑅𝑖−𝑅𝑖+1)2

∑(𝑅𝑖−�̅�)2 , where 𝑅𝑖 = 𝑟𝑎𝑛𝑘(𝑋𝑖), 

 𝑖 = 1, 2, 3, … , 𝑛.  
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Cox and Stuarts test is a sign test applied to data that are grouped in pairs with the i-th 

observation to its corresponding j-th observation in each half of the time-ordered data. By using 

the two-sided test, we check the null hypothesis of randomness against the alternative 

hypothesis of the dataset showing an upward or a downward trend. The test statistic calculated 

is 𝑆 = ∑ 𝑤𝑖𝑗ℎ𝑖𝑗, where ℎ𝑖𝑗 is a comparison between the i-th and j-th observation in the subseries 

and 𝑤𝑖𝑗 is the appropriate weight. We will always have 𝑖 < 𝑗. We define the comparison 

variable as ℎ𝑖𝑗 = {
+1  𝑖𝑓  𝑦𝑖 > 𝑦𝑗

 0    𝑖𝑓   𝑦𝑖 < 𝑦𝑗
. The number of observations is 𝑁, but in the test, we have 

that 𝑛 =
𝑁

2
 (rounded down if 𝑁 is an uneven number) because of pairing, which in our case 

means that we have 𝑛 = 1185 terms that are being tested for randomness. 

The difference-sign test of statistical independence tests for if any successive differences in a 

data series is showing any sign for a trend. It tests the null hypothesis of the data series being 

iid against the alternative hypothesis of the data not being iid. The test statistic calculated is          

𝐷 =
(𝑝𝑑−𝜇)

𝜎
, where 𝑝𝑑 is the number of positive differences in the data series, 𝜇 =

(𝑛−1)

2
, and 

𝜎 = √
(𝑛+1)

12
. This test is not referred to in our reference article. 

The Mann-Kendall rank test of randomness tests for trend based on the number of increasing 

ordered pairs in a data series. It tests the null hypothesis of the data series being iid against the 

alternative hypothesis of the data not being iid. The test statistic calculated is 𝑅 =
(𝑝𝑎𝑖𝑟𝑠−𝜇)

𝜎
, 

where 𝑝𝑎𝑖𝑟𝑠 is the number of increasing pairs in the data, 𝜇 = 𝑛
(𝑛−1)

4
, and 𝜎 = √𝑛

(𝑛−1)(2𝑛+5)

72
.  

Wald and Wolfowitz’ runs test tests the null hypothesis that all observations in any sequence 

of the set is drawn independently from the same distribution and induces randomness. The 

alternative is that we have either different distributions, a trend, or dependent drawings of 

elements. Here we also use the two-sided test to test for randomness in general, and not only 

for trend. The test statistic calculated is 𝑧 =
(𝑅−𝐸(𝑅))

√𝑉(𝑅)
, with 𝑅 = ∑ 𝑥𝛼𝑥𝛼+1 + 𝑥𝑁𝑥1

𝑁−1
𝛼=1 ,  

𝐸(𝑅) =
(𝑠1

2−𝑠2)

(𝑁−1)
 and 𝑉(𝑅) =

𝑆2
2−𝑆4

𝑁−1
+

𝑆1
4−4𝑆1

2𝑆2+4𝑆1𝑆3+𝑆2
2−2𝑆4

(𝑁−1)(𝑁−2)
− 𝐸(𝑅)2, with 𝑆𝑟 = ∑ 𝑥𝑖

𝑟𝑁
𝑖=1 , 

 𝑟 = 1, 2, 3, 4. 

The turning point test tests for a data series’ independence by comparing turning points in the 

series to the expected number as in an iid series. A turning point is found where an observation 

is either higher or lower than its corresponding observations, i.e. 𝑥𝑖−1 < 𝑥𝑖 𝑎𝑛𝑑  
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𝑥𝑖 > 𝑥𝑖+1 𝑜𝑟 𝑥𝑖−1 > 𝑥𝑖  𝑎𝑛𝑑 𝑥𝑖 < 𝑥𝑖+1. It tests the null hypothesis of the data series being iid 

against the alternative hypothesis of the data not being iid. The test statistic calculated is  

𝑇 =
(𝑡𝑝−𝜇)

𝜎
, where 𝑡𝑝 is the number of turning points present in the data series, 𝜇 = 2

(𝑛−2)

3
, and                      

𝜎 = √
(16𝑛−29)

90
. 

Ljung and Box’ test is a parametric test that tests if any of a group of autocorrelations in a 

time series are different from zero. This test is testing randomness overall instead of randomness 

at every lag. Because this test has a very clear null hypothesis, but also a rather unspecified 

formulated alternative hypothesis, it is considered a portmanteau test. The null hypothesis for 

Ljung and Box' test tests the null hypothesis of the data series being iid, which implies zero 

correlation between samples and thus randomness, against the alternative hypothesis of the data 

not being iid, which implies there exists serial correlation. The test statistic calculated is  

𝑄 = 𝑛(𝑛 + 2) ∑
�̂�𝑘

2

𝑛−𝑘

𝑚
𝑘=1 , 𝑘 = 1, 2, … , 𝑚, …, where �̂�𝑘

2 is the estimated autocorrelation at lag 𝑘, 

or �̂�𝑘 =
∑ �̂�𝑡�̂�𝑡−𝑘

𝑛
𝑡=𝑘+1

∑ �̂�𝑡
2𝑛

𝑡=1
, where �̂�1, … , �̂�𝑛 is the standardised residual, and 𝑚 is the number of tested 

lags. Under the null hypothesis the test statistic follows chi-squared distribution with the 

degrees of freedom accounting for the number of included parameters in the model. 

We also chose the Ljung-Box test in favour of the Box-Pierce test, because it is shown by 

earlier subsequent simulations to provide better statistics than the former one. It is also not too 

different, which makes it comparable to Box-Pierce. Also, while it is true that this test is 

parametric (in contrast to what claimed by Chu, Nadarajah, and Chan), it is actually usable in 

our case. This is because it normally would be required to test the residuals from an already 

fitted 𝐴𝑅𝑀𝐴(𝑝, 𝑞) model, which are assumed of being a white noise process. It must be applied 

to a time series that is stationary, which our dataset also is assumed to be. 

The estimated tests’ p-values are presented in 6.1. 

 Dynamic moments 

To further strengthen our assumptions for iid, we will now look at the development of the 

dataset’s accumulated second, third, and fourth moment, namely its variance, skewness, and 

kurtosis. This is done to first make out some idea of whether there is any change in the variance 

over time, and thus decide whether the findings indicate the dataset is homo- or heteroskedastic, 

for then to establish some assumptions about the not-yet-selected distribution and its behaviour. 

In the article by Chu, Nadarajah, and Chan is the variance’s development tested for by 
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performing the Breusch-Pagan test for heteroskedasticity for linear regression models. Our 

issue with this is that they have not specified any regressive model to apply this test to. Instead 

of attempting to perform a replication of this performance, and since this test is only applicable 

as a post-regressive test, will we only evaluate the cumulative variance plot as an alternative to 

the test in regard to consider if we will come to the same conclusion of not being able to reject 

homoskedasticity in the dataset. 

The p-value in Breusch-Pagans’ test was estimated to be 0.403, which indicates strongly that 

we do not reject the tests’ null hypothesis of homoskedasticity in the log-returns. In figure 7, 

we show the cumulative variance in our dataset, or, more precisely, how the log-return’s 

variance develops and changes over the whole time-period. The first 30 days were burned out 

in order to remove extreme values and changes over the first period, and to have a more reliable 

plot to study. 

As expected, the first period of 

two years offers a relatively high 

variance compared to our value of 

reference presented under statistical 

properties (0.003). At the highest, 

29th October 2011, the variance 

peaked at 0.021, seven times higher 

than the latest observed variance. 

The variance declined quickly after 

this, and, despite the two small 

jumps in April and December 2013, 

there has been a gradual downward trend overall. Surprisingly, it seems that it has more or less 

stabilised at a variance of 0.003 from around the beginning of 2016, ending today at the value 

of 0.0027943. For the sake of comparison, we also have the variance dated to the 14th May 

2015 at 0.0047217, which is consistent with Chu, Nadarajah, and Chans presented result at 

0.005. It is some variation over this time-period, but not much of significance. This would 

imply that, even though the variance may have been heteroskedastic earlier, the dataset is most 

likely to be described as homoscedastic. This is expected and in terms of our previous findings 

and is actually closing the gap between the exchange rate and that of other currencies, although 

it is still far to go. 

Figure 7 - Cumulative variance 
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In the following figures, 8 and 9, are the cumulative skewness and kurtosis plotted, 

respectively. The kurtosis is not plotted as excess kurtosis. In these plots we see more varying 

motion in those moments than in the variance. Both plots are consistent with our findings of a 

skewness of −1.343 and a kurtosis of 26.744 today.  

By first studying the skewness’ 

development and disregarding the 

first five observations that are less 

than −2, we see that there is no 

clear trend over the whole period. 

There is however three time-

windows that show some periodical 

trends. Over the first one and a half 

year it is a downward trend from 

−0.5 to −1.3, then a sudden drop in 

mid-2013 followed by a one-and-a-

half-year stable skewness at −2 before an increase in 2014. We can make out that it was kept 

stable around −1.5 from 2014 until mid-2016 and had a small decline before increasing 

somewhat a year later and through until today. What is common for the cumulative skewness 

over six years, is that all values are negative. This indicates that our data are left-skewed, and 

that the mass of observations are located to the right in the distribution rather than in the middle 

or to the left. Eventual extreme outliers will also assumedly be found more often to the left in 

the distribution than to the right. 

The kurtosis does not seem to 

have any very extreme shifts in its 

early periods as the other moments 

have shown. Starting at 15 and 

hovering just above 10 for the first 

months, increasing sharply until 

2013. Here we also observe an 

interesting part with sudden decline 

from 25 to 22 and a harsh rise to 

above 30 over just three days, 

before being followed by more 
Figure 9 - Cumulative kurtosis 

Figure 8 - Cumulative skewness 
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unspecified patterns. There was an increase from 2014 and on until the start of 2017, when it 

was kept at roughly 30 and has declined to 27, where it is at today. Because the kurtosis is very 

high compared to the one of a normal distribution, it is called leptokurtic. What follows this 

observation is that we might expect the distribution to be heavy-tailed rather than light-tailed. 

The distribution is likely to be peaked and thus have most observations in the centred area, but 

also have quite a few more outliers than in a normal distribution. 

Now that the statistical properties and characteristics of the data has been established, will we 

in the next part describe the methods the exchange rate of Bitcoin will be fitted to and evaluated 

by.  
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5. Re: Distributions fitted 

 Distribution candidates 

We will, in this section, present the statistical distribution candidates that will be fitted to 

model the log-return of the exchange rate of Bitcoin. In the following distributions, 𝑋 will be 

the denotation of a continuous random variable of mentioned log-returns. 𝑓(𝑥) and 𝐹(𝑥) will 

represent the probability density function (pdf) and the cumulative distribution function (cdf) 

of the variable 𝑋, respectively. While it has been shown that the generalized hyperbolic 

distribution gives a good fit of the data, the analysis will be redone and re-evaluated because of 

our previous findings of dissimilarities between the data, and to check if the results are still 

consistent. We have chosen to omit five of the proposed distributions Chu, Nadarajah, and Chan 

included in their paper, because the selective criteria were found to be pretty much similar 

relative to each other. The specifications of the pdfs of the distributions that are chosen to be 

included in this thesis are as following: 

 

I. Normal distribution (Gauss, 1809): 

𝑓(𝑥; 𝜇, 𝜎) =
1

√2𝜋𝜎
𝑒

−
(𝑥−𝜇)2

2𝜎2  

for 𝑥 ∈ ℝ, 𝜇 ∈ ℝ and 𝜎 > 0; 

II. Logistic distribution (Johnson & Kotz, 1970): 

𝑓(𝑥; 𝜇, 𝜎) =
𝑒−

𝑥−𝜇
𝜎

𝜎 (1 + 𝑒− 
𝑥−𝜇

𝜎 )
2 

for 𝑥 ∈ ℝ, 𝜇 ∈ ℝ and 𝜎 > 0; 

III. Laplace distribution (Laplace, 1774): 

𝑓(𝑥; 𝜇, 𝜎) =
1

2𝜎
𝑒−

|𝑥−𝜇|
𝜎  

for 𝑥 ∈ ℝ, 𝜇 ∈ ℝ and 𝜎 > 0; 
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IV. Student’s t distribution (Gosset, 1908): 

𝑓(𝑥; 𝜇, 𝜎, 𝑣) =
Κ(𝑣)

𝜎
[1 +

(𝑥 − 𝜇)2

𝜎2𝑣
]

−(1+𝑣)
2

 

for 𝑥 ∈ ℝ, 𝜇 ∈ ℝ, 𝜎 > 0 and 𝑣 > 0, where Κ(𝑣) = √𝑣 Β(
𝑣

2
,

1

2
), and  

Β (
𝑣

2
,

1

2
) = ∫ 𝑡

𝑣

2
−1(1 − 𝑡)−

1

2 𝑑𝑡
1

0
 ; 

V. Exponential power distribution/generalised normal distribution (Subbotin, 1923): 

𝑓(𝑥; 𝜇, 𝜎, 𝛽) =
𝛽

2𝜎Γ(1/𝛽)
𝑒

−( 
|𝑥−𝜇|

𝜎
)

𝛽

 

for 𝑥 ∈ ℝ, 𝜇 ∈ ℝ , 𝜎 > 0 and 𝛽 > 0, where Γ (
1

𝛽
) = ∫ 𝑡

1

𝛽
−1

𝑒−𝑡∞

0
𝑑𝑡 is the gamma function; 

VI. Skew normal distribution (Azzalini, 1985): 

𝑓(𝑥; 𝜇, 𝜎, 𝜆) =
2

𝜎
𝜙 (

𝑥 − 𝜇

𝜎
) Φ (𝜆

𝑥 − 𝜇

𝜎
) 

for 𝑥 ∈ ℝ, 𝜇 ∈ ℝ , 𝜆 ∈ ℝ  and 𝜎 > 0, where 𝜙(∙) and Φ(∙), denote the pdf and the cdf of the 

standard normal distribution, respectively; 

VII. Skew t distribution (Hansen B. E., 1994): 

𝑓(𝑥; 𝜇, 𝜎, 𝜆, 𝜈) =
Κ(𝜈)

𝜎
[1 +

(𝑥 − 𝜇)2

𝜎2𝜈
]

−(1+𝜈)
2

+
2Κ2(𝜈)𝜆(𝑥 − 𝜇)

𝜎2
 𝐹12

 (
1

2
,
1 + 𝜈

2
;
3

2
; −

𝜆2(𝑥 − 𝜇)2

𝜎2𝜈
) 

for 𝑥 ∈ ℝ, 𝜇 ∈ ℝ , 𝜆 ∈ ℝ, 𝜎 > 0 and 𝜈 > 0, where 𝐹12
 (𝑎, 𝑏; 𝑐; 𝑥) = ∑

(𝑎)𝑘(𝑏)𝑘

(𝑐)𝑘

𝑥𝑘

𝑘!

∞
𝑘=0 , where 

𝑒𝑘 = 𝑒(𝑒 + 1) … (𝑒 + 𝑘 − 1) denotes the ascending factorial; 

VIII. Generalised t distribution (McDonald & Newey, 1988): 

𝑓(𝑥; 𝜇, 𝜎, 𝜈, 𝜏) =
𝜏

2𝜎𝜈1/𝜏Β(𝜈, 1/𝜏)
[1 +

1

𝜈
|
𝑥 − 𝜇

𝜎
|]

−(𝜈+1/𝜏)

 

for 𝑥 ∈ ℝ, 𝜇 ∈ ℝ, 𝜎 > 0, 𝜈 > 0 and 𝜏 > 0; 
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IX. Hyperbolic distribution (Barndorff-Nielsen, 1977): 

𝑓(𝑥; 𝜇, α, 𝛽, δ) =
√𝛾 𝑒𝛽(𝑥−𝜇)

√2𝜋𝛼 𝛿 𝐾1(𝛿𝛾)
 
𝐾1/2(𝛼√𝛿2 + (𝑥 − 𝜇)2)

(√𝛿2 + (𝑥 − 𝜇)2)
−

1
2

 

for 𝑥 ∈ ℝ, 𝜇 ∈ ℝ, δ > 0, α > 0 and 𝛽 > 0, where 𝛾 = √𝛼2 − 𝛽2 and 𝐾𝑣(∙) denotes the 

modified Bessel function of the second kind of order v defined 

𝐾𝑣(𝑥)  = {

𝜋 csc(𝜋𝜈)

2
[𝐼−𝜈(𝑥) − 𝐼𝜈(𝑥)],          𝑖𝑓 𝜈 ∉ ℤ

lim
𝜇→𝜈

 𝐾𝜇(𝑥) ,                                       𝑖𝑓 𝜈 ∈ ℤ
 

where 𝐼𝜈(∙) denotes the modified Bessel function of first kind of order 𝜈 defined 

𝐼𝜈(𝑥) = ∑
1

Γ(𝑘 + 𝜈 + 1)𝑘!
(

𝑥

2
)

2𝑘+𝜈
∞

𝑘=0

; 

X. Generalised hyperbolic distribution (Barndorff-Nielsen, 1977): 

𝑓(𝑥; 𝜇, α, 𝛽, δ, λ) =
(𝛼2 − 𝛽2)𝜆/2  𝑒𝛽(𝑥−𝜇)

√2𝜋 𝛼𝜆−
1
2 𝛿𝜆 𝐾𝜆(𝛿𝛾)

 

𝐾
𝜆−

1
2

(𝛼√𝛿2 + (𝑥 − 𝜇)2)

(√𝛿2 + (𝑥 − 𝜇)2)
1/2−𝜆

 

for 𝑥 ∈ ℝ, 𝜇 ∈ ℝ, λ ∈ ℝ, δ > 0, α > 0 and 𝛽 > 0.  

Most of these distributions are related or similar in many ways. If we, for instance, consider 

the family of skewed generalised t distributions, illustrated in picture 5 as done in the paper by 

Hansen, McDonald, and Newey (2010), it is clear that there are eight special cases that can be 

derived from the skewed generalised t distribution, which is a five-parametric distribution 

described by Theodossiou (1998) to be 

𝑓(𝑥; 𝜇, 𝜎, 𝜆, 𝑝, 𝜈) = 𝑝 [2𝑐𝜎𝜈
1
𝑝𝐵 (

1

𝑝
, 𝜈) (

|𝑥 − 𝜇 + 𝑚|𝑝

𝜈(𝑐𝜎)𝑝(𝜆𝑠𝑖𝑔𝑛(𝑥 − 𝜇 + 𝑚) + 1)𝑝
+ 1)

1
𝑝

+𝜈

]

−1

, 

for 𝑥 ∈ ℝ, 𝜇 ∈ ℝ, 𝜆 ∈ ℝ, 𝜎 > 0, p > 0, 𝜈 > 0, and where B is the beta function. We also have 

that 𝑐 = 𝜈
−

1

𝑝 [√(3𝜆2 + 1)
𝐵(

3

𝑝
,𝜈−

2

𝑝
)

𝐵(
1

𝑝
,𝜈)

− 4𝜆2
𝐵(

2

𝑝
,𝜈−

1

𝑝
)

2

𝐵(
1

𝑝
,𝜈)

2 ]

−1

 and 𝑚 =
2𝑐𝜎𝜆𝜈

1
𝑝𝐵(

2

𝑝
,𝜈−

1

𝑝
)

𝐵(
1

𝑝
,𝜈)

, and are not 

parameters themselves.  
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This superclass distribution has not been included in previous studies, but we would like to 

include this as the eleventh distribution, because we believe it is reasonable to see if this five-

parametric distribution can provide a better fit than its limited cases. Theodossiou (1998) 

himself also fitted this distribution to the exchange rate of Canadian Dollar and Japanese Yen 

to USD. Even though this is not necessary a very much used distribution in previous financial 

studies, it would be interesting to see how it performs in comparison to the other distributions. 

From the skewed generalised t distribution we can represent the generalised t distribution if 

we set 𝜆 = 0; skewed student’s t if 𝑝 = 2; skewed exponential power if 𝜈 → ∞; student’s t if 

𝑝 = 2 𝑎𝑛𝑑 𝜆 = 0; exponential power if 𝜈 → ∞ 𝑎𝑛𝑑 𝜆 = 0; skewed normal if 𝜈 → ∞ 𝑎𝑛𝑑 

𝑝 = 2; Laplace if 𝜈 → ∞, 𝜆 = 0, 𝑎𝑛𝑑 𝑝 = 1; normal if  𝜈 → ∞, 𝑝 = 2, 𝑎𝑛𝑑 𝜆 = 0. These 

connections are illustrated in figure 5 (𝑞 ≡ 𝜈). 

Also, we have that the generalised hyperbolic distribution can represent the hyperbolic if  

𝜆 = 1. Incidentally, the generalised hyperbolic is originally not a financial distribution, but 

rather one from physics. In the 70s, Barndorff-Nielsen studied the physics of blown sand, 

resulting in this particular distribution. It is somewhat commonly used in finance when 

modelling markets. This shows that it is necessary to retrieve knowledge from other fields in 

order to describe phenomena that are not possible to describe with known but limiting 

techniques. 

From our set of distributions, there are light tailed distributions represented by the normal, 

logistic, Laplace, exponential power and skew normal distribution. A set of heavy tailed 

distributions are also represented by the Student’s t, skew t, generalised t, skew generalised t, 

hyperbolic, and generalised hyperbolic distribution. The difference between light and heavy 

Figure 10 - Family of skewed generalised t distributions (Hansen, McDonald, & Newey, 2010) 
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tailed distributions is that the heavy tailed distributions goes to zero much slower than the light 

tailed. We will experience many more outliers in the heavy tailed distribution that is holding 

more extreme values than what would normally be expected. 

 Maximum likelihood estimation 

When estimating the fit of the distributions, we are using the method of maximum likelihood 

estimation (MLE). This method is used to maximise the likelihood function for the given data. 

The continuous distributions’ likelihood is given by 𝐿(Θ) = ∏ 𝑓(𝑥𝑖; Θ)𝑛
𝑖=1  or for the log-

likelihood, that we require, ln 𝐿(Θ) = ∑ ln 𝑓(𝑥𝑖; Θ)𝑛
𝑖=1 , where Θ is the models parameter that 

maximises the function. Because the true value of the parameter is unknown, an estimate, Θ̂, is 

used. We have that Θ̂ = (Θ̂1, Θ̂2, … , Θ̂𝑘)′, that is the denoted maximum likelihood estimate. 

When 𝑛 is large enough, we have that Θ̂ converges to its true value Θ0, which implies 

consistency with arbitrary precision. 

In our process of estimating the MLE, we are using the mle estimation procedure in R, 

included in the basic stats4 package. The coding is shown in appendix B. 

 Model selection criteria 

Because some of the selected distributions are nested and others are not, we have to 

discriminate among them. This is done to be able to select the best distribution of choice 

regardless of one being very similar to another in other comparative terms. We have selected 

five criteria and two statistics in addition to the log-likelihood, whereas all of these are 

commonly used in model selection. In all criteria, the variable 𝑘 is the number of independently 

estimated parameters within the model, or the so-called dimension. They are presented 

accordingly. 

I. Akaike information criterion (AIC), defined by Akaike (1974): 

𝐴𝐼𝐶 = 2𝑘 − 2 ln 𝐿(Θ̂) ; 

II. Bayesian information criterion (BIC), defined by Schwarz (1978): 

𝐵𝐼𝐶 = 𝑘 ln 𝑛 − 2 ln 𝐿(Θ̂) ; 

III. Consistent Akaike information criterion (CAIC), defined by Bozdogan (1987): 

𝐶𝐴𝐼𝐶 = −2 ln 𝐿(Θ̂) + 𝑘(ln 𝑛 + 1) ; 

IV. Corrected Akaike information criterion (AICc), defined by Hurvich and Tsai (1989): 

𝐴𝐼𝐶𝑐 = 𝐴𝐼𝐶 +
2𝑘(𝑘 + 1)

𝑛 − 𝑘 − 1
; 
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V. Hannan-Quinn criterion (HQC), defined by Hannan and Quinn (1979): 

𝐻𝑄𝐶 = −2 ln 𝐿(Θ̂) + 2𝑘 ln ln 𝑛 ; 

VI. Kolmogorov-Smirnov statistic (KS), defined by Kolmogorov (1933) and Smirnov 

(1948): 

𝐾𝑆 = 𝑠𝑢𝑝
x

|
1

𝑛
∑ 𝐼[−∞,𝑥](𝑋𝑖)

𝑛

𝑖=1

− 𝛷(𝑥)|, 

where sup is the supremum of the set of distances, 𝐼[−∞,𝑥](𝑋𝑖) is the indicator function, 

and 𝛷(𝑥) is the MLE of 𝐹(𝑥), the cumulative distribution function; 

VII. Anderson-Darling statistic (AD), defined by Anderson and Darling (1954): 

𝐴𝐷 = −𝑛 −
1

𝑛
∑(2𝑖 − 1){ln 𝛷(𝑥𝑖) + ln[1 − 𝛷(𝑥𝑛−𝑖+1)]}

𝑛

𝑖=1

, 

where 𝑥1 ≤ 𝑥2 ≤ ⋯ ≤ 𝑥𝑛 are the observed dataset in a sequence of increasing values. 

The two last statistics, KS and AD, are different from the criteria. These will be evaluated by 

their respective p-values, which should be larger the higher chance the data are drawn from the 

distribution that is evaluated. 

The log-likelihood is working somewhat different than the criteria because it is better used to 

discriminate amongst the distributions that are nested. The test, which is called the likelihood 

ratio test, was defined by Wilks (1938) and Cox and Hinkley (1974), and is performed for 

discrimination of distributions as follows: 

Suppose we have two models – an alternative model that has a set of parameters, 𝑘1, and a 

null model that has a set of parameters, 𝑘2, where 𝑘2 < 𝑘1. The null is a particular case of the 

alternative. Their log-likelihood is denoted 𝐿1 and 𝐿2, respectively. We can estimate the test 

statistic 𝐷 by the double of the difference in log-likelihoods: 

𝐷 = −2 ln (
𝐿2

𝐿1
) ⋛ 𝜒𝑘1−𝑘2,0.05

2 , 

where the degrees of freedom of the chi-square is the difference in number of parameters 

between the models and the significance level is chosen to be 5%. We use the 𝜒𝑟,𝛼
2  distribution 

to discriminate by choosing the alternative model if the chi-square is smaller than the test 

statistic, because if tested, the log-likelihood under the null (no difference in the models) is 

distributed like chi-square with 𝑘1 − 𝑘2 degrees of freedom (Wilks, 1938).  
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When presenting the values of the log-likelihood and the criteria in part 6.4, it is the 

distribution with the lowest values that provides the best modelling of the data. For the two 

statistics, that are evaluated by their respective p-values, it is the highest p-value that indicates 

the best modelling of the data. By using these criteria, we should have substantial proof to back 

our selection of distribution. 

 Value at risk and expected shortfall 

After the best fitted distribution is selected will this distribution be assessed in an evaluation 

of the potential financial risk one is exposed to if one acquires bitcoins and holds them for a set 

period of time. We will in this evaluation look at two distinguished measures, the value at risk 

(VaR) and expected shortfall (ES). VaR is a model-dependent measure which is based on 

quantiles of a distribution and explained thoroughly and in context by Artzner et.al. (1998). ES, 

as proposed by Rockafellar and Uryasev (2000), uses the VaR to set a point on the distribution 

for so to measure the area below the point. As ES is a function of VaR is it natural to present 

them accordingly: 

𝑉𝑎𝑅𝜁(𝑋) = − inf{𝑥 ∈ ℝ: 𝐹𝑋(𝑥) > 𝜁}, 

where 𝜁 ∈ (0,1) is the confidence level set and 𝐹𝑋 is the cdf of variable 𝑋. 𝜁 is also setting 

the 𝜁𝑡ℎ quantile of the random variable. From this we can define the ES: 

𝐸𝑆𝛽 = −
1

𝛽
∫ 𝑉𝑎𝑅𝜁(𝑋)𝑑𝜁

𝛽

0

= −
1

𝛽
(𝐸 [𝑋 1{𝑋≤𝑥𝛽}] − 𝑥𝛽(𝑃[𝑋 ≤ 𝑥𝛽] − 𝛽)), 

where 0 < 𝛽 < 1, 𝑥𝛽 = inf{𝑥 ∈ ℝ: 𝑃(𝑋 ≤ 𝑥) ≥ 𝛽} is the lower 𝛽-quantile and  

1𝐵(𝑥) = {
1 𝑖𝑓 𝑥 ∈ 𝐵
0 𝑒𝑙𝑠𝑒       

 is the indicator function. 

We will perform these measurements with different values of 𝜁 so that we can get some 

indication of possible outcomes both in normal, extreme or highly unlikely (but possible) 

situations.  

Now that we have presented the necessary prerequisites, we will continue in the next chapter 

by presenting our findings and results in terms of what we have presented above. These will 

also be discussed consecutively. 
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6. MLE estimations  
All codes for the estimation procedures are shown in the appendix B. 

 Results of randomness tests 

All p-values of the randomness tests are shown in table 2 as a comparison to the article by 

Chu, Nadarajah, and Chan. This is done to study the development in the log-returns of the 

exchange rate. All tests, except the Ljung-Box test, are non-parametric, as we have no 

assumption about distribution for now. All the tests are performed in R, with the tests Bartels, 

Cox-Stuart, difference sign, rank and turning point from the package randtests (Caeiro & 

Mateus, 2014), the Wald-Wolfowitz from the package spgs (Hart & Martínez, 2017), and 

Ljung-Box from the package trend (Pohlert, 2018). 

The test statistics’ p-values that are tested for here are summarized in the following table: 

Test C, N&C (2015) N&F (2018) 

Bartels (1982) 0.123 0.203 

Cox and Stuart’s sign (1955) 0.613 0.601 

Difference sign 0.238 0.176 

Rank 0.352 0.840 

Wald and Wolfowitz’ run (1940) 0.243 0.337 

Turning point 0.129 0.188 

Ljung and Box (1978) 0.302 (B&P) 0.324 

Table 2 – P-values from the tests for randomness 

First, we would like to digress and point out a matter regarding the Wald and Wolfowitz’ test. 

It was, in the compared article, referred to Wald and Wolfowitz’ paper, “On a test whether two 

samples are from the same population” (1940). This test and the one we have referred to in part 

4.5 are in fact two quite different tests in terms of what they are actually testing for. In their 

tests from 1940, Wald and Wolfowitz are testing if two different independent variables are 

taken from the same distribution, while in the test from 1943 it is tested whether a sequence of 

variates satisfy the condition of randomness – which is exactly what we actually wish to test 

for. It is not mentioned explicitly how this test is performed by Chu, Nadarajah, and Chan, or 

what their test statistics are, so the procedure is uncertain. It may have been a mis-reference, a 

package or command in the program they got their results from giving both tests’ results, that 

they deemed this test for being fit in this context, or just the wrong test performed. We can only 
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speculate, but it is so that we have used the randomness test of 1943 nonetheless, and the 

comparison of those results may be somewhat erred. 

All these tests are pointing towards the same conclusion of the log-returns being not 

significantly different from randomness. This have strengthened our belief of the dataset being 

iid. When comparing, we observe most p-values being relatively similar in both cases, but in 

particular the Cox and Stuart’s sign test and the rank test stand out for being much more 

different – considerably more than 0.1 points in difference. The reason behind this is debatable, 

but both the Cox-Stuart test and the rank test do suggest that our more recent dataset has much 

more tendencies towards randomness than the shorter dataset. The other tests, except for Bartels 

and the difference sign test, also indicate this in our favour. Ergo, time is an insignificant factor 

for each observation. 

By comparing all our findings on the log-returns of Bitcoin, both in terms of autocorrelation, 

randomness and heteroskedasticity, we will stand assured that the dataset does not have serial 

correlation and is both random and homoscedastic. This means that we can assume the data 

being independent and identically distributed (iid), because it lacks evidence against it. All these 

properties are necessary to be fulfilled for us to be able to attempt to fit a distribution to the 

exchange rate. Because of the behaviours of exchange rates in general, of them normally being 

skewed and heavy-tailed, we believe that there is needed a distribution that is somewhat more 

advanced than, say, a simple two-parametrical distribution as the normal or logistic. This was 

for instance done in a paper by Corlu & Corlu (2015), where they attempted to fit nine different 

currencies’ exchange rate to the USD through four different flexible distributions, whereas one 

of these will be used in our fitting process in the next part. Their paper concluded that the 

generalised lambda distribution can be a good alternative for modelling. 

 Estimations of candidate distributions 

It was necessary to utilise different packages and approaches to some distributions because of 

flexibility, possibilities in syntaxes and to get the right parameterisation.  

We compared a restricted part of our dataset, set to 951 observations, to compare our method 

of work to the results presented in the article by Chu, Nadarajah, and Chan. This has proven in 

most cases to be sufficient, although some differences have shown to be substantial, both when 

we have given the start values of the MLE procedure to be the initials as in a standard case in 

each distribution, for instance in the normal distribution with a mean of 0 and standard deviation 

of 1, and when the start values were the presented results in the reference article. By observing 
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this, we will have to emphasise that there is probably some difference in our approach to the 

estimation procedure and may therefore result in some estimations being very different from 

each other, even though the consistency of the estimated parameters is abided. We may be sure 

of the consistency because the log-likelihoods we got from our estimations are pretty much 

similar, deviating only by +10 to −12 at most in log-likelihoods at values at around −1,500. 

To clarify, similarity was only desirable when comparing the restricted dataset, not when 

estimating with the full dataset. 

There are several possible explanations for this deviation. It is mentioned in the article when 

presenting the maximum likelihood estimation that “[t]he maximization was performed using 

the routine nlm in the R software package”. This routine is different than our previously 

mentioned routine, mle, in terms of field of application. While nlm is an all-purpose routine 

in minimisation/maximisation processes that needs a thorough and explicit syntax in order to 

run the procedure, mle is, as its name suggests, a routine that is optimised for just maximum 

likelihood estimation. Both functions are included in two fundamental packages in R, nlm is 

found in the stats package while mle is found in the stats4 package. There is nothing that 

implies any of the functions to be miss-coded in the source. We choose to believe that the 

method we have selected, that is optimised for MLE, is the method that provides the best and 

most accurate results for the procedure we are following. 

Parameter estimations from all distributions are presented in table 3. They are shown in a 

comparison to the results from the article by Chu, Nadarajah and Chu, with each parameters’ 

standard deviation in the brackets where it is found. The parameters are only compared to see 

the difference in distributions as a result of a progression in time, not as an attempt to check 

whether the results are similar or not. 

From these estimates we see that there are many differences in the scaling in most of the 

estimations of the parameters in each distribution, but there is also much similarity in some 

cases. For instance, the estimate of the lambda in the skew normal distribution, which is an 

indicator for the shape of the distribution, was estimated to be practically zero, but we found it 

to be −0.0069 with a substantially smaller standard deviation of the parameter, while both 

sigma in the Laplace distribution are almost identical, with only a somewhat smaller standard 

deviation of the parameter. 
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Distribution C, N&C (2015) N&F (2018) 

Normal �̂� = 4.534 ∗ 10−3(2.228 ∗ 10−3) 

�̂� = 6.868 ∗ 10−2(1.581 ∗ 10−3) 

�̂� = 2.968 ∗ 10−3(1.089 ∗ 10−3) 

�̂� = 5.304 ∗ 10−2(7.688 ∗ 10−4) 

Logistic �̂� = 5.391 ∗ 10−3(1.540 ∗ 10−3) 

�̂� = 2.892 ∗ 10−2(8.345 ∗ 10−4) 

�̂� = 3.517 ∗ 10−3(7.810 ∗ 10−4) 

�̂� = 2.298 ∗ 10−2(4.104 ∗ 10−4) 

Laplace �̂� = 3.753 ∗ 10−3(1.170 ∗ 10−3) 

�̂� = 3.804 ∗ 10−2(1.241 ∗ 10−3) 

�̂� = 2.242 ∗ 10−3(5.580 ∗ 10−4) 

�̂� = 4.307 ∗ 10−2(8.831 ∗ 10−4) 

Student t 𝑣 = 1.389 (1.026 ∗ 10−1) 

�̂� = 3.858 ∗ 10−3(9.195 ∗ 10−4) 

�̂� = 2.134 ∗ 10−2(1.197 ∗ 10−3) 

𝑣 = 1.002 (1.090 ∗ 10−4) 

�̂� = 3.054 ∗ 10−3(5.551 ∗ 10−4) 

�̂� = 4.321 ∗ 10−1(1.445 ∗ 10−2) 

Exponential power �̂� = 3.996 ∗ 10−3(1.490 ∗ 10−4) 

�̂� = 2.819 ∗ 10−2(1.368 ∗ 10−3) 

�̂� = 5.871 ∗ 10−3(2.982 ∗ 10−2) 

�̂� = 1.642 ∗ 10−3(4.252 ∗ 10−4) 

�̂� = 4.981 ∗ 10−2(1.627 ∗ 10−3) 

�̂� = 6.266 ∗ 10−1(2.079 ∗ 10−2) 

Skew normal �̂� = 4.534 ∗ 10−3(3.256 ∗ 10−1) 

�̂� = 6.868 ∗ 10−2(1.597 ∗ 10−3) 

�̂� = 6.006 ∗ 10−9(5.942) 

�̂� = 1.415 ∗ 10−3(1.149 ∗ 10−3) 

�̂� = 5.290 ∗ 10−2(7.674 ∗ 10−4) 

�̂� = −6.858 ∗ 10−2(1.608 ∗ 10−2) 

Skew t �̂� = 9.774 ∗ 10−4(1.865 ∗ 10−3) 

�̂� = 2.133 ∗ 10−2(1.206 ∗ 10−3) 

�̂� = 1.639 ∗ 10−1(9.492 ∗ 10−2) 

𝑣 = 1.379 (1.015 ∗ 10−1) 

�̂� = 4.015 ∗ 10−3(9.628 ∗ 10−4) 

�̂� = 1.733 ∗ 10−1(2.906 ∗ 10−2) 

�̂� = 2.716 ∗ 10−2(2.306 ∗ 10−2) 

𝑣 = 1.016 (5.425 ∗ 10−3) 

Generalised t �̂� = 3.026 ∗ 10−3(1.186 ∗ 10−3) 

�̂� = 2.310 ∗ 10−2(3.695 ∗ 10−3) 

�̂� = 9.471 ∗ 10−1(1.541 ∗ 10−1) 
𝑣 = 3.042 (1.423) 

�̂� = 2.000 ∗ 10−3(4.721 ∗ 10−4) 

�̂� = 5.919 ∗ 10−2(5.189 ∗ 10−3) 

�̂� = 1.003(7.785 ∗ 10−2) 

𝑣 = 3.190 (7.124 ∗ 10−1) 

Skewed exponential 
power 

�̂� = 4 ∗ 10−3(1.507 ∗ 10−4) 

�̂� = 2.812 ∗ 10−2(1.366 ∗ 10−3) 

�̂� = 5.842 ∗ 10−1(2.963 ∗ 10−2) 

�̂� = 4.936 ∗ 10−1 (1.298 ∗ 10−2) 

�̂� = 4.547 ∗ 10−3(3.450 ∗ 10−4) 

�̂� = 5.040 ∗ 10−2(8.769 ∗ 10−4) 

�̂� = 7.511 ∗ 10−2(1.194 ∗ 10−3) 

�̂� = 6.151 ∗ 10−1 (2.456 ∗ 10−3) 

Hyperbolic �̂� = 3.023 ∗ 10−3(6.032 ∗ 10−4) 

𝛿 = 1.068 ∗ 10−5(9.945 ∗ 10−3) 

�̂� = 2.628 ∗ 101(1.207 ∗ 101) 

�̂� = 5.185 ∗ 10−1(3.492 ∗ 10−1) 

�̂� = 1.734 ∗ 10−3 

𝛿 = 4.335 ∗ 10−6 

�̂� = 3.285 ∗ 101 

�̂� = 6.644 ∗ 10−1 

Skewed generalised t  �̂� = 4.452 ∗ 10−3(6.384 ∗ 10−4) 

�̂� = 5.877 ∗ 10−2(3.138 ∗ 10−3) 

�̂� = 5.672 ∗ 10−2(9.101 ∗ 10−3) 

�̂� = 9.747 ∗ 10−1(3.202 ∗ 10−2) 

𝑣 = 3.409(1.637 ∗ 10−1) 

Generalised 
hyperbolic 

�̂� = 2.948 ∗ 10−3(8.964 ∗ 10−4) 

𝛿 = 1.217 ∗ 10−2(2.578 ∗ 10−3) 
�̂� = 7.731(1.517) 

�̂� = 3.447 ∗ 10−1(5.186 ∗ 10−1) 

�̂� = −1.39 ∗ 10−1(1.112 ∗ 10−1) 

�̂� = 2.027 ∗ 10−3 

𝛿 = 1.015 ∗ 10−2 

�̂� = 1.219 ∗ 101 

�̂� = 3.769 ∗ 10−1 

�̂� = −5.255 ∗ 10−2 

Table 3 - Comparison of the fitted distributions: estimated parameters and their standard errors.          

Left side has the sample period from 13/09/2011 to 08/05/2014 while the right side is from 13/09/2011 to 01/04/2018. 
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These observations imply that even though some estimated parameters are consistent in terms 

of relative scale to each other, many estimations show that the behaviour of the exchange rate 

has changed during the last four years. 

 Model selection criteria and fit 

The estimated results for the criteria are presented in table 4.  

If the three two-parametric distributions are considered, it is clear that the Laplace distribution 

is the best choice over the normal and logistic, with the best values in both log-likelihood, AIC, 

BIC, AICc, CAIC, and HQC, and the highest p-values. In the case of the three three-parametric 

distributions, we see the same is the case for the exponential power distribution, which is only 

challenged by the Student’s t. The skewed normal distribution does not show a good fit, which 

was to be expected due the poor fit of the normal distribution as well. In the case of the four 

four-parametric distributions there is a close fit by both the generalised t and the skew 

exponential power distribution, while the skew t and hyperbolic are considered inferior to the 

two former ones. Although they are very similar, it is clear that the generalised t is providing 

the best fit with the lowest -ln L, AIC, BIC, AICc, CAIC, and HQC, while the generalised t has 

the highest AD and skewed exponential power has the highest KS. Lastly, in our two five-

parametric cases, the skew generalised t distribution is showing lower values in all criteria and 

higher p-values compared to the generalised hyperbolic distribution.  

It is clear, when comparing all distributions collectively, that the distributions with more 

parameters are most often to be favoured to the ones with fewer parameters because of their 

flexibility and applicability. Three exceptions are the skewed normal, which gives a poorer fit 

than both the logistic and Laplace, the skewed t, that is approximately as good as the Student’s 

t (which makes it worse because of parsimony), but worse than the exponential power, and the  
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Figure 11 - Bar chart of estimated criteria 
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hyperbolic, which performs even poorer than the Laplace. The distribution that have proven to 

provide the over-all best fit to the log-returns of Bitcoin’s exchange rate to USD is the skewed 

generalised t distribution. The criteria are compared visually in figure 11. 

It is not possible to compare the criteria to any other results directly, because they are 

dependent on the number of observations in the dataset. If a dataset contains more observations, 

this will have a greater impact on the criteria. This is reassuring to observe if we actually do 

compare, because one would expect that a larger number of observations will be able to explain 

the phenomenon better than with fewer numbers of observations. This is what we have proven 

to have an example of here. What is actually comparable is the relative difference between the 

values of the evaluated distributions. We see that the pattern of distributions that provides the 

poorest fit is similar. The normal and skew normal distributions have the worst fits, followed 

by logistic, Laplace and hyperbolic, then Student’s t and skewed t. These are distributions with 

noticeable worse performance than the last five ones, meaning they are pretty much out of the 

equation in describing the data, unless strict parsimony is desired. We see the same tendencies 

when comparing, only seeing the hyperbolic performing somewhat worse compared to the 

Laplace, because of stronger penalties from the larger sample size. Besides this, most 

observations seem to be relatively similar. 

By separating all nine estimated distributions in the skewed generalised t family and organise 

them in groups by number of parameters, there is an apparent difference in how well the 

distribution is fitted depending on which branch that is looked at. If we consider figure 10, we 

can see that the most well-fitted distributions are located to the left rather than the right. This 

would imply that the parameter from the skewed generalised t distribution that has the least 

impact on how well the distribution fits is mainly lambda, the skewness parameter.  

The logistic distribution is not nested to any of the other estimated distributions, as it is related 

to secant distributions instead of skewed generalised t or generalised hyperbolic distributions. 

The generalised hyperbolic distributions are harbouring the student’s t distributions if we set 

𝜆 = −
𝜈

2
, 𝛿 = √𝜈 and 𝛼 = 𝛽 = 0, or the Laplace with scale parameter 1 if 𝜆 = 𝛼 = 1 and  

 𝛽 = 𝛿 = 0, but we disregard these connections when considering nesting, for simplicity. The 

criteria have discriminated amongst these distributions well. 
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In the figure 11 is a histogram with the fitted probability density function of the skewed 

generalised t distribution superimposed to show visually how the estimated distribution fits the 

observed data. In figures 12 and 13 are also the probability plot and the quantile plot included. 

 

Figure 12 - Skewed generalised t fitted to the log-returns of the exchange rate from 13/09/2011 to 01/04/2018 

Figure 13 - QQ-plot Figure 14 - PP-plot 
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From these figures, it is clear that the model is reasonably fitted. In the histogram, the fitted 

distribution is covering the shape of the figure quite well, with a few outliers seen in the tails 

for the most part. This is also seen in the two plots, especially in the QQ-plot, which is better at 

pointing out how the distribution fits to the tails. There are some disturbances in the edges of 

the plot, especially on the topside, so this must be taken into consideration if we are to evaluate 

extreme observations through this distribution. The line in the quantile plot is drawn through 

quantiles 0.01 and 0.99. We see that the most observations are found on the line. Somewhat 

surprising do we see that the minimum of the dataset is found on the quantile line, so the 

observation may not be as farfetched as one probably would suspect. The simple PP-plot is 

showing that, for simple probabilities, the skewed generalised t distribution is performing well, 

since the (0,1)-line is not deviating from the observed probabilities. 

The key estimations of financial risk are given in the next chapter. 
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7. Value at risk and expected shortfall 
The measures of financial risk, VaR and ES, will be estimated and evaluated through the best 

fitted distribution and checked by the probability 𝜌 through 

�̂�
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. The two measures are plotted against p in figures 14 and 15. The estimated 

values themselves at different selected p-levels are presented in table 5. We choose to focus on 

the outlying cases, as these give better indication on the degree of volatility. 

The VaR and ES show that the data are behaving as it is to be expected. The VaR has a sharp 

and steep decline and incline at the extreme probability levels at each side that follows from 

data with high volatility. This is clear both from the plot, and also by looking at the table, that 

the financial risk involved is drastically increasing in the extreme cases. For instance, from 

 𝑝 = 0.1 to 𝑝 = 0.01 there is a difference of 0.10975, while from 𝑝 = 0.0001 to 𝑝 = 0.00001 
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the difference is 0.8882.The plotted ES shows also that there is a sharp decline in the left side 

of the asymtotic function, and an increasing, but flattening, value to the right that is expected 

to fall short if bad comes to worse.  

It is important to remember that all these estimations are done with the log-returns and does 

not represent any concrete form of currency themselves.  

Now that we have presented our results, we will sum up our findings in the conclusion and 

give some remarks on these. There will also be some proposals for how to use this thesis as a 

base for future research, or if these findings will be described better by other methods when the 

data series has grown even larger.   

Table 5 - VaR and ES estimates for the skewed generalised t distribution for the given exchange rate and sample period 

P VaR ES 

0.1 −3.915 ∗ 10−2 −1.001 ∗ 10−1 

0.01 −1.489 ∗ 10−1 −1.921 ∗ 10−1  

0.001 −3.700 ∗ 10−1 −2.852 ∗ 10−1 

0.0001 −8.138 ∗ 10−1 −3.790 ∗ 10−1 

0.00001 −1.702 −4.733 ∗ 10−1 

0.9 5.011 ∗ 10−2 −8.024 ∗ 10−3 

0.99 1.772 ∗ 10−1 2.276 ∗ 10−3 

0.999 4.338 ∗ 10−1 4.132 ∗ 10−3 

0.9999 9.483 ∗ 10−1 4.409 ∗ 10−3 

0.99999 1.979 4.447 ∗ 10−3 

Figure 16 - Fitted ES to p-values Figure 15 - Fitted VaR to p-values 
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8. Conclusions 
The exchange rate of Bitcoin to the USD has now been analysed and modelled by eleven 

frequently used distributions in finance. We found that the skew generalised t distribution gives 

the best fitted model of the data, decided by its favourable values in log-likelihood, AIC, AICc, 

and especially in the p-values of the Kolmogorov-Smirnov and Anderson-Darling statistics. It 

is challenged by the generalised t distribution on the statistics BIC, CAIC and HQC, but since 

these criteria are not decisive when evaluating nested distributions very well, these are 

overruled by the log-likelihood in this case. It is also clear, from the p-values of the statistics, 

that after the skewed generalised t, the generalised hyperbolic distribution is the only 

distribution providing a satisfying fit of the model above the significance level of 5% in both 

statistics, while the generalised t and skewed exponential power distributions are significant in 

only one statistic each. 

Predictions of the financial risk by Value at Risk and Expected Shortfall have also been 

calculated and shown in table 5. Here we see for instance that there is a probability of 1 percent 

that the log-returns of the exchange rate will be either smaller than −0.1489, or, by the same 

probability, be larger than 0.1772. We see that it is highly unlikely, but possible, to observe a 

log-return smaller than -1.702 or larger than 1.979. This would be formidable, especially since 

the most extreme values observed by today have “only” been -0.644 at the lowest and 0.446 at 

the highest, and these were observed at an early, and very volatile, period of Bitcoin. 

We will present our findings in a relevant and empirical context, where we can compare our 

results to some other perspectives of the topic.  

There have been many occasions where prominent financial or economical persons have 

deemed Bitcoin a fraud or a failed currency experiment, as CEO of JPMorgan, Jamie Dimon 

(Martin, 2018), or Nobel-winning economist Robert Shiller (Rooney, 2018). On the other side 

we see a bank in Argentina using bitcoins as cross-border payments (De, 2018) or a crypto 

mining rig supplying company from Beijing, Canaan Inc, attempting to raise $2 bn., supposedly 

for innovations and development in AI and blockchain (John & Hughes, 2018).  

There are plenty of examples of sides taken in the act of speculations around Bitcoin. 

Obviously, this is part of whether we would think of a person as risk-averse or risk-seeking. 

Because of Bitcoins extreme volatility, there are many persons who are willing to risk money 

in order to have the chance of gaining more, while others keep away from this probable 
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uncertainty to their wealth. It is still such that most people see Bitcoin as an asset, an investment 

opportunity rather than a currency. Although unclear for now, this might change in the near 

future. 

According to analysts at Barclays are Bitcoin’s development similar to that of a disease – it 

had an outbreak and became spread through the spoken or written word about it, but as it peaked 

in late-2017 it reached the immunity threshold and the potential host population has decreased 

in size as most people now know about it, and the majority of “infections” has reached its high 

(Lam, 2018). 

Bitcoin have many different aspects that may seem contradictory, but essentially it is 

uncertainty that reigns, and peoples attitude towards the new and unknown. At the same time, 

it seems that the value of Bitcoin is kept somewhat stable, over the last weeks at least, and may 

have achieved some sort of equilibrium, at least temporary. Still, the dynamic rate requires a 

more complex explanation than most other currencies it can be compared to if it is to be 

considered a currency rather than an asset.  

A proposal for future work to use non-parametric distributions or semiparametric distributions 

still stands, but it would also be interesting to check whether other parametric distributions 

would have a better fit if later dynamics of the exchange rate start behaving unpredictably. 

GARCH models have already been assessed to the rate, but only for a short time period. This 

could be done more in-depth, with focus on Bitcoin rather than several cryptocurrencies at once. 

Besides exercising this fitting procedure repeatedly, one may use the information provided 

here to perform newer predictions for the exchange rate and further study the dynamics and 

development, as it is sure not to be disregarded or overlooked for the foreseeable future. 

Bitcoin as a phenomenon may not necessarily be in the early phase any longer, but the concept 

and mechanics of the blockchain has still much potential to obtain. A concluding remark by 

Nassim Taleb stands as strong today as it did five years ago: 

«Bitcoin is the beginning of something great: a currency without a 

government, something necessary and imperative. But I am not familiar 

with the specific product to assert whether it is the best potential setup. And 

we need a long time to establish confidence…» 

(Taleb, 2013)  
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10. Appendices 

 Appendix A – BTC transactions by currency 
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Figure A 2 - Bitcoin trading volume, all currencies (Cieśla, 2018) 

Figure A 1 - Bitcoin trading volume, currencies except Chinese Yuan (Cieśla, 2018) 
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 Appendix B – R script 

####Importing and preparing the dataset 

library("haven") 

library("stats4") 

dataset_full <- read_dta("~/data_full.dta") 

View(data_full) 

attach(data_full) 

data_full<-data_full[-1, ] ##Remove first line with no log-ret, so no 

missing values. 

 

####Tests for randomness 

library("randtests") ##provides bartel.rank-, cox.stuart-, 

difference.sign-, rank-, and turning.point.test 

bartels.rank.test(lncl) 

cox.stuart.test(lncl) 

difference.sign.test(lncl) 

rank.test(lncl) 

turning.point.test(lncl) 

detach("package:randtests", unload=TRUE) 

library("spgs") ##provides lb test 

lb.test(lncl) 

detach("package:spgs", unload=TRUE) 

library("trend") ##provides ww test  

ww.test(lncl) 

detach("package:trend", unload=TRUE) 

 

####Fits on distribution 

##Setting up functions 

library("sgt") 

NLL.sgt <- function(m, s, l, p1, q1) { 

     -sum(dsgt(lncl, mu=m, sigma=s, lambda=l, p=p1, q=q1, log=TRUE)) 

    } 

NLL.logis <- function(mu, s) { 

     -sum(dlogis(lncl, location=mu, scale=s, log=TRUE)) 

    } 

detach("package:sgt", unload = TRUE) 

 

##Making MLE variables 

library("sgt") 

library("stats4") 

fit.norm <- mle(minuslogl = NLL.sgt, start = list(m=0.004534, s=0.06868), 

method = "Nelder-Mead", fixed = list(l=0, q1=Inf, p1=2)) 

fit.studt <- mle(minuslogl = NLL.sgt, start = list(m=0.003858, s=0.02134, 

q1=1.389), method = "Nelder-Mead", fixed = list(l=0, p1=2)) 
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fit.logis <- mle(minuslogl = NLL.logis, start = list(mu=0.005391, 

s=0.02892), method = "Nelder-Mead") 

fit.lapl <- mle(minuslogl = NLL.sgt, start = list(m=0.003753, s=0.03804), 

method = "Nelder-Mead", fixed = list(l=0, q1=Inf, p1=1)) 

fit.exppow <- mle(minuslogl = NLL.sgt, start = list(m=0.003996, s=0.02819, 

p1=0.5871), method = "Nelder-Mead", fixed = list(l=0, q1=Inf)) 

fit.skewnorm <- mle(minuslogl = NLL.sgt, start = list(m=0.004534, 

s=0.06868, l=0.000000006006), method = "Nelder-Mead", fixed = list(q1=Inf, 

p1=2)) 

fit.skewt <- mle(minuslogl = NLL.sgt, start = list(m=0.0009774, s=0.02133, 

l=0.1639, q1=1.379), method = "Nelder-Mead", fixed = list(p1=2)) 

fit.gent <- mle(minuslogl = NLL.sgt, start = list(m=0.003026, s=0.0231, 

p1=0.9471, q1=3.042), method = "Nelder-Mead", fixed = list(l=0)) 

fit.skexppow <- mle(minuslogl = NLL.sgt, start = list(m=0.004, s=0.02812, 

l=0.4936, p1=0.5842), method = "Nelder-Mead", fixed = list(q1=Inf)) 

fit.skgent <- mle(minuslogl = NLL.sgt, start = list(m=0, s=1, l=0, p1=2, 

q1=3), method = "Nelder-Mead")detach("package:sgt", unload = TRUE) 

detach("package:stats4", unload = TRUE) 

 

##Estimating the paramters and the distribution's log-likelihood 

summary(fit.norm) 

summary(fit.logis) 

summary(fit.lapl) 

summary(fit.studt) 

… 

 

##Criterions 

 

AIC(fit.norm) 

AIC(fit.logis) 

etc... 

#NB: Rest criterions were calculated by hand 

 

##KS and AD-test 

ks.test(unique(lncl), psgt, mu=0.002968, sigma=0.05304, lambda=0, p=2, 

q=Inf) #Normal 

ks.test(unique(lncl), plogis, location=0.003517, scale=0.02298) #Logistic 

ks.test(unique(lncl), psgt, mu=0.002242, sigma=0.04307, lambda=0, p=1, 

q=Inf) #Laplace 

ks.test(unique(lncl), psgt, mu=0.003054, sigma=0.4321, lambda=0, p=2, 

q=1.002) #Student  t 

… 

 

ad.test(unique(lncl), psgt, mu=0.002968, sigma=0.05304, lambda=0, p=2, 

q=Inf) #Normal 

ad.test(unique(lncl), plogis, location=0.003517, scale=0.02298) #Logistic 
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ad.test(unique(lncl), psgt, mu=0.002242, sigma=0.04307, lambda=0, p=1, 

q=Inf) #Laplace 

ad.test(unique(lncl), psgt, mu=0.003054, sigma=0.4321, lambda=0, p=2, 

q=1.002) #Student  t 

… 

 

##VaR and ES 

 

library("cvar") 

VaR(qsgt, x=c(0.1, 0.01, 0.001, 0.0001, 0.00001, 0.9, 0.99, 0.999, 0.9999, 

0.99999), mu=0.004452, sigma=0.05877, lambda = 0.05672, p=0.9747, q=3.409) 

ES(qsgt, x=c(0.1, 0.01, 0.001, 0.0001, 0.00001, 0.9, 0.99, 0.999, 0.9999, 

0.99999), mu=0.004452, sigma=0.05877, lambda = 0.05672, p=0.9747, q=3.409) 

detach("package:cvar", unload = TRUE) 

 

##Plotting a skewed generalised t distribution 

par(mfrow=c(1,2)) 

hist(lncl, col = "mediumaquamarine",breaks = 160, freq=FALSE, xlim = c(-
0.4,0.4), main = "") 

curve(dsgt(x, mu=0.004452, sigma=0.05877, lambda=0.05672, p=0.9747, 
q=3.409), add=TRUE, lwd=2, col="navy") 

qqnorm(dsgt(lncl, mu=0.004452, sigma=0.05877, lambda=0.05672, p=0.9747, 
q=3.409), main="", col="navy") 

qqline(dsgt(lncl, mu=0.004452, sigma=0.05877, lambda=0.05672, p=0.9747, 
q=3.409), col="royalblue") 

 

##Plotting VaR and ES 

plot(probs, VaRvals, pch=20, ylab="VaR", xlab= "p-values") 

lines(smooth.spline(probs, VaRvals, df=14), col="darkblue", lwd=2) 

plot(probs, ESvals, pch=20, ylab="ES", xlab= "p-values") 

lines(smooth.spline(probs, ESvals, df=14), col="darkblue", lwd=2)  
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 Appendix C – Stata DO-file 

import excel "C:\Users\Joaki\OneDrive\Master\BTC2.xlsx", sheet("Sheet1") 

firstrow 

 

//Labeling and renaming 

ren BCHARTSBITSTAMPUSDCLOSE Close 

ren BCHARTSBITSTAMPUSDHIGH High 

ren BCHARTSBITSTAMPUSDLOW Low 

ren BCHARTSBITSTAMPUSDOPEN Open 

ren BCHARTSBITSTAMPUSDVOLUMEBTC Volume_BTC 

ren BCHARTSBITSTAMPUSDVOLUMECURR Volume_USD 

ren BCHARTSBITSTAMPUSDWEIGHTEDPRI Wgh_price 

ren DATE Date 

la var Close "Close price" 

la var High "High price" 

la var Low "Low price" 

la var Open "Open price" 

la var Volume_BTC "Volume in BTC" 

la var Volume_USD "Volume in USD" 

la var Wgh_price "Weighted price" 

la var Date "Date from 13. Sept 2011" 

 

tsset Date //Applying time format to "Date"-variable 

 

format Date %dd/n/CY //Formating dates to non-US standard 

 

drop if Close==0 //Remove values that are lacking for non-trading days 

 

//Generating time variable for configuring log-returns 

gen lncl = ln(Close [_n]) - ln(Close [_n-1]) 

 

//Labeling and renaming for convenience 

la var lncl "Log-return CL" 

twoway line lncl Date 

 

sum lncl, d //Detailed summarize of lnop's statistical properties 

 

//Calculating the autocorrelation and partial autocorrelation of lncl 

 

ac lncl, lags(20) //Insufficient? 

pac lncl, lags(20) 

 

//Use and "manipulate" syntax _asrol_ for calculating cumulative  

//(variance, skewness,) and kurtosis of lncl 

 

asrol lncl, stat(sd) w(Date 2372) //var sd2372_lncl is generated 

gen var_lncl = (sd2372_lncl)^2  

twoway line var_lncl Date 

 

//Import calculated skewness and kurtosis from excel 

twoway line skw_lncl Date 

twoway line krt_lncl Date 
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 Appendix D – Reflection notes: Joakim Nilgard 

This reflective note is done over the thesis Filip and I have written together this semester, 

which has been a challenging and demanding, but also rich, learning and very interesting to 

work on. The thesis is about Bitcoin, both the concept and the money itself, and our path of 

finding a distribution that may fit its logarithmic returns on the exchange rate to USD. At first 

it may seem a little farfetched, trying to fit something non-stationary into something that 

requires stationarity, but as we have come to understand – it is just more to it than to throw the 

data into an ARCH or GARCH model, which would probably be intuitive for some. What we 

wanted to do, was to find an underlying distribution of said log-returns, apply some information 

to our findings, and propose a fundament or starting point for further research on the topic. We 

found that the best distribution to describe the data was the skew generalised t distribution, 

which is a complex, five-parametric model. We applied this estimated model to two financial 

measurements, which gave indications on how volatile the exchange rate has been and still is. 

Before embarking on the following sections where I will link the thesis topic to three themes, 

I must specify what exactly is the topic of the thesis to discuss. Although general, I will do these 

evaluations with regard to Bitcoin as a concept because I do not find it reasonable to discuss 

either internationality, innovation or responsibility in terms of exchange rate, statistical tests or 

distributions. Technology or currencies will be too broad, and the blockchain or cryptography 

is not the studied topic (even if it would be interesting to study this further on). 

Bitcoin relates to international trends and is affected by (and probably affects as well) many 

factors, such as technology, politics, the markets demand, ideology, media, sociological, and 

legal forces. From what I have seen, there is a lot going on concerning Bitcoin already from the 

day Satoshi Nakamoto proposed the concept of virtual, cryptographic money. As it is partially 

discussed in the thesis, it is important to separate between Bitcoin itself and its code, and the 

blockchain, even though Bitcoin is built upon the blockchain and cannot exist without it. With 

this in mind is it easier to remove technology as a related factor, because it is only the blockchain 

that is a technological breakthrough, while Bitcoin is only another currency/mean of 

trading/asset etc.  

There have been many political debates about Bitcoin, and many policies have taken form 

with it in regard. Policies restricting availability, trading opportunities, exchange mediums have 

been adopted. Taxation has been introduced if you are at all allowed by your bank to trade in 

cryptocurrencies. There have been many cases of fraud, embezzlement, Ponzi schemes and 

cheating with Bitcoin, although it seems for me that it has been seen at like more severe cases 
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of the crime than if one were to use fiat-money. There has also been a case where a politician 

in the US suggested a policy about establishment of crypto-exchanges that were adopted, for 

then only to quit as a politician and establish a consulting firm that specialised in this subject 

and earned a lot of money on this. Most of the men that were in the core of the development if 

Bitcoins code have been arrested, being accused of many different things (whereas not all 

accusations are completely credible). Why is this? Is it because the Bitcoin-community tried 

and are trying to change something fundamental in the governmental system like relieving the 

need for banks or third-parties in transactions and thus removing enormous funding for the 

state? Is it because of the insecurity about the new phenomenon that has arisen, and not being 

sure about how to handle it? Is it because of an ideological cause that don’t support the 

“omniscience” of the government and the wish for a freer world with less surveillance and 

power to politicians? Is it because of the hardship of traceability of transactions that may induce 

criminality and an attempt to limit this? There are many interesting aspects regarding the scope 

this comprises internationally, but as this can be discussed indefinitely, I’ll leave it at this. 

When one would think of innovation as something Bitcoin can offer, I fail to see exactly how 

this would be a topic to discuss. This is because, as it is discussed more in detail in the thesis, 

Bitcoin is not a new innovation itself – the blockchain is! Bitcoin is only based on this new, 

innovative technology, but is not new itself, because it can be perceived as something between 

a currency and an asset. That is not innovative and does not possess the ability to grow into 

something innovative either. Bitcoin may indirectly offer some innovative solutions, for 

instance in terms of money transfers or online and store payments, but this is still due the 

technology of the blockchain and could be done with most other digital money if the need was 

present. I see innovation as a description that is closely related to inventions, creative or 

practical solutions to problems or conveniences, or to make either something completely new 

or remaking already existing innovations into something different. It is something that is needed 

for a society to be progressive and developing, to bring out a competitive edge, to stimulate 

demand, to modernise and bring technology forth. What fulfils these requirements is the 

blockchain, which is applicable to almost any instance by configuration, not another type of 

asset or currency, which we already have countless examples of from before. Therefore, I do 

not see innovation as a relevant topic for Bitcoin. 

The same applies for responsibility, I cannot see that responsibility is a topic to discuss 

regarding something that is not personal, organisational or in any kind a legal entity that has 

any responsibilities itself. Bitcoin is a software that may be used by practically anyone that has 
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a computer connected to the internet. To have something to discuss, I will take a step back and 

view the usage of Bitcoin as a topic. As the term responsibility involves aspects like duty, 

accountability, and control, it is not something that Bitcoin itself can be described as, but rather 

those who use it. 

The use of Bitcoin is to some extent discussed in the thesis, in chapter 2, where different kinds 

of mis-use of the technology has been attempted. Mis-use involves for instance hacking, 

embezzlement, scamming, and exploitation. It is most often much uncertainty regarding new 

phenomena such as Bitcoin, and with it comes different ideas on how to exploit this for own 

profit. Because Bitcoin, as a precursor to cryptocurrencies, had to stand for the adaption of those 

to the modern world, there have been difficulties in this process. It has followed that several 

legislatives in many countries were adapted or founded, and many regulations have been 

narrowing the applied freedom that were originally intended for Bitcoin, at least juridically.  

It is also another aspect that should be addressed, and that is who is it actually that the users 

of Bitcoin should be responsible towards? Bitcoin was founded partially as a rebellion towards 

the existing monetary system, so it would be weird that one should be held accountable by the 

governing system one is rebelling against. Responsibility should at least be exercised when it 

comes to cyber security for your own money, because there is no one else to watch over them 

for you. This applies also for exchange companies that are holding money on behalf of others. 

It is suggested that a discussion of the thesis findings and conclusions related to the core areas 

is included in this note. I don’t think it is anything that is relatable between a statistical analysis 

and internationalisation, innovation or responsibility, maybe except being accountable for 

having all calculations done properly such that false information is not spread. 

As a concluding remark, I would like to express my partial confusion, and mild frustration, 

over having to write this note, because, in my opinion, this is not aimed for students of finance 

to dwell on. To reflect on these topics is more in line for students studying concepts that are 

more organisational, empirical, or more physical in certain ways, not for those who are only 

studying on the theoretical plane. It does make little sense discussing this in our case, to reflect 

generally over the thesis, or have other, more relevant, topics to discuss would be much more 

informative and constructive for the student and the school. 
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 Appendix E – Reflection notes: Filip Filipovic 

This reflection note explains how this thesis is connected to the themes School of Business 

and Law at the University of Agder thinks are highly valued and relevant for students coming 

out from school to professional life. These themes are internalisation, innovation and 

responsibility, which is understandable considering worlds development in general where pretty 

much no borders exist anymore, looking in technological and innovative way.  

The theme for this master thesis is Bitcoin and the analysis of its logarithmic returns on 

exchange rate against American dollar. There have not been many attempts in financial world 

to try and make a type of analysis we have conducted, so our goal was to make a model that 

can be used for further analysis in this field, since the concept of Bitcoin is relatively new and 

there are many aspects of it that have not been conceptualized and discovered yet. In the thesis 

we present different statistical distribution we used to fit the data to, and by the help of different 

criteria we chose the best fitted model. After all tests skew generalized t distribution showed up 

to be the best fit for our data set. I like to think that the results presented are more precise then 

the few other analyses, because we use the samples from the begging of Bitcoins trading start 

until April first of this year. It is by far the biggest data set looked at in this type of research, 

that we know of.  

Bitcoin is very special phenomenon that most people haven’t got enough knowledge to 

comprehend. The whole concept of Bitcoin is built on the one of the biggest innovations of our 

time, the blockchain. Bitcoins in its self is not that big of an innovation, because the virtual 

currency has existed for last thirty years. From innovative standpoint bitcoins cryptography part 

combined with blockchain makes it a ‘’bulletproof’’ technology that can make life easier in 

many countries with underdeveloped economy and it can be used as a prevention against 

corruption. Since the bitcoin is still in its relatively early phases the full potential is probably 

still unknown, but possibilities are many. One thing is pretty sure though, and that it that bitcoin 

is not what is it without blockchain and that’s why bitcoin from a standalone point can’t lead 

towards innovation on its own but rather is an innovation.  

Internalisation wise bitcoin can be regarded as an important tool in removing barriers in 

financial and banking world. Specially today when deals are made internationally across 

continents. Bitcoin reduces the speed of transactions and transaction cost and negates the middle 

man concept. The bitcoin makes everything more efficient and safe compared to banking, even 

though banking is considered safe, but the impact on internalisation might not be of the 

importance. 
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When it comes to responsibility, there is a big discussion regarding bitcoin. The biggest issues 

in the beginning were where people used bitcoin to order illegal substances and other illegal 

services on dark web without anyone being able to trace it back. Some of the bitcoin wallets 

have been traced back and connected (allegedly) to some firms and private persons but that is 

not an easy job. Governments have shut down some of the dark web sites, but it is not easy to 

completely block all of them and new ones pop up all the time. Here is where personal 

responsibility comes in, for everyone to not miss use the anonymity bitcoin provides.  

Further issues have come up when European directive for personal information database has 

come out, where private persons can get all information saved about them by different 

companies and web sites deleted. The problem is that everything happening while using bitcoin 

gets registered in the blockchain and saved permanently so here is the problem for another 

discussion that must be solved regarding bitcoin.   

This whole concept is still new considering financial world, and people have just touched tip 

of the iceberg in discovering his phenomenon. Governments and financial institutions should 

get together and make regulations and directives regarding the subjectivity of bitcoin and plan 

if or how to implement its use in the everyday life as easy as possible. For now, most of the 

world looks at the bitcoin as an asset instead of currency so maybe they should start there and 

regulate it as an acceptable currency.  

These reflections are made within a context of bitcoin, so the standpoint view is different than 

usual, and it could be connected to some other values than the one mentioned. Through the 

study program with specialisation in finance I have learned to look at everything from different 

positions because things are always different and should be taken on with critical view. The 

society has a long and hard path to uncovering this exciting world of bitcoin and a lot of research 

must be done to establish theoretical theory that supports this whole concept. Maybe in some 

years the whole different story can be written considering these same values.  

 


