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Abstract 

One strand of the research on mathematics education is the study of 

identity (teacher identity, ethnic identity, etc.). In this strand, I have 

focused on mathematical identity. Over the past decades, the number of 

studies on mathematical identity has increased, and these studies have 

illustrated how the construct can be applied to understand both personal 

and social aspects of how humans relate to mathematics. 

While it is recognised that the construct is important, studies on 

mathematical identity suffer from some challenges. One problem is that 

it has proven difficult to measure mathematical identity, mainly, due to 

methodological and theoretical issues. This particular problem is the 

topic of this thesis. 

A better understanding of the measurement of mathematical identity 

would be beneficial for several reasons. For instance, measurement has 

been an important tool in the history of science. Hence, an instrument for 

measuring mathematical identity that is compatible with principles of 

measurement could assist researchers, for example, in understanding 

identity development. Moreover, a theoretical perspective on 

mathematical identity that is consistent with measurement would 

contribute to a better understanding of the construct as such. 

To address these issues, I have taken a mixed-methods approach. 

Rasch Measurement Theory was applied to develop and validate an 

instrument for measuring mathematical identity. Rasch Measurement 

Theory is a psychometrical theory that claims to be consistent with 

principles of interval measurement. From a sample of 133 students in 

teacher education (TE) and 185 science, technology, engineering, and 

mathematics (STEM) students, 20 items have been concluded to be 

productive for measurement. Also, qualitative data provide illustrative 

examples of the characteristics. 

Informed by the obtained measures, I have sought a theoretical 

perspective on mathematical identity. A premise of the theorisation is 

that it is possible to measure mathematical identity. That is, within 

specific contexts, it is possible for some persons to relate more strongly 

with mathematics than others. 

In addition to this premise, the theorisation builds on two 

assumptions. First, mathematical identity is assumed to be relational 

since measures, in general, are relational. Second, the locus of identity—

whether mathematical identity is mostly situated or context-free—is an 

empirical question that can be studied from the process of measurement. 

From these assumptions, mathematical identity is defined to be a 

relative position between persons and the social structure of being 

mathematical within the activity in which they participate and to which 
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they contribute. The social structure is a set of characteristics and its 

internal structure, and the social structure is defined to be person-

independent.  

From these definitions, some theoretical insights follow. First, 

arguments are made that the distinction between structural and personal 

change is an arbitrary point of perspective. In short, the process of 

measurement cannot distinguish between structural and personal identity 

development. Second, the comparison of mathematical identities does 

not require structural equivalence. What is required is that, if 

mathematical identity is to be compared between two contexts, there 

must exist a subset of characteristics that are approximately equal, in 

content and structure, between the contexts. The relative size of the 

subset is of little importance. Third, mathematical identities do not exist 

in isolation. Consequently, it is possible for one person to relate more 

strongly and, at the same time, more weakly to mathematics than another 

person, without contradiction. 

A measuring perspective on mathematical identity is a unifying 

framework, that is, a framework that captures social (structural) and 

personal aspects of identity simultaneously. As an illustration of the 

social aspect, structural differences between the STEM and TE contexts 

have been studied. The results point to some particular structural 

differences, although the overall conclusion is that mathematical identity 

is ‘practically context-free’ between these contexts. ‘Practically context-

free’ means that, while the structural differences are interesting in 

themselves, they hardly affect personal measures when they are not 

accounted for. 

As an example of the personal aspect, I have studied the association 

between self-reported mathematical identities and average grades in 

university mathematics courses. The result indicates that the variables 

correlate poorly. Nevertheless, there seems to be an association, as the 

average grade of persons with ‘strong’ mathematical identities was 

reported to be about one grade higher than amongst students with ‘low’ 

mathematical identities. 

The most significant contribution of this study is that the theorisation 

of mathematical identity has led to the conclusion that, when it is 

measured, mathematical identity is a relative position rather than 

something people have. Moreover, mathematical identity implies the 

existence of a social structure. This structure can be measured, and it is 

not assumed to be static. It is true that at least one point must be static, 

but this point is arbitrary. From this, I conclude that there is no 

ontological or epistemological difference between the development of 

structural and personal identities. 
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1 Introduction 

1.1 Rationale and background 
In this introduction, I present the rationale and background for my 

research. I also describe my research process, which has undergone 

fundamental changes. 

The starting point for this PhD was to conduct research on students’ 

transitions from being students at the university to becoming 

professionals in the world of work. Doing research into this should assist 

in better understanding, and promoting participation and engagement in 

mathematics education in higher education, for example, in fields of 

teacher education (TE) and university disciplines such as science, 

technology, engineering, and mathematics (STEM). In particular, I 

initially aimed at doing research on the negotiating of identities in 

students’ transitions to the world of work. At a later point in this chapter, 

I explain more about this, but at this stage, it suffices to say that in my 

research I focus on student identities in higher education. Moreover, I 

concentrate on two populations: (1) TE students, and (2) STEM students.  

A person can ‘have’ many different identities: a national identity, a 

religious identity, a gender identity, and so forth (e.g., Gee, 2000). In my 

research, I have focused on mathematical identities. With “having a 

mathematical identity” I roughly mean: having a research 

mathematician’s identity, for instance, being seized by yet unsolved 

mathematical problems and trying to invent own methods to solve such 

problems (Burton, 1998; Nardi, 2007; Wood, Petocz & Reid, 2012). 

Initially, I intended to use measurement as a tool for studying how 

students’ mathematical identities changed in the transition to the world 

of work. Thus, early on, I searched instruments for measurement in the 

research literature about identities.  

However, I experienced two problems. First, I did not find 

instruments that could measure mathematical identity on a single 

dimension. No existing instrument would allow some persons to identify 

more strongly with mathematics than others, it appeared. This problem 

led to the development of an instrument that I discuss in the first paper of 

this thesis. During the process of instrument validation, I experienced a 

second, more pressing, problem, namely, with theorising the outcomes of 

the measurements in line with existing theories on identity (e.g., Gee, 

2000; Holland, Lachicotte, Skinner, & Cain, 2001; Sfard & Prusak, 

2005; Wenger, 1998). I explain these problems in more detail later, but 

in short, they caused a shift in emphasis for my study. From a focus on 

studying student transition empirically, and using measurement as a tool, 

my research changed to developing better understandings of theoretical 
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and methodological underpinnings of the measurement of mathematical 

identity. 

 

I did not start this research with a clean sheet. Rather, the first move 

in my study was highly influenced by cultural-historical factors. To be 

specific, in 2012 I applied for a position as a PhD student in a project 

that aimed at better understanding Norwegian TE and STEM students’ 

transitions from compulsory school to higher education, and further, 

from higher education to the world of work. This Norwegian transition 

project was closely connected to the TransMaths-project in the UK (see 

www.transmaths.org), which had produced significant insights into 

students’ trajectories in and through mathematics programmes (e.g., the 

special issue in ‘Research in Mathematics Education’, introduced by 

Wake (2011)).  

Outcomes of the TransMath project in the UK include an 

understanding of how different classroom experiences relate to 

mathematical identities, how leading identities shape students’ motives 

for mathematical activities (Black et al. 2010), and the association 

between relevant variables—disposition, perceived support, perceived 

transitional gap, and pedagogy—in the transition to university (Pampaka, 

Pepin, & Sikko, 2016). The TransMaths project followed a mixed-

methods design, and several instruments were constructed and validated 

for measuring relevant variables (e.g., Pampaka et al., 2013). 

Theoretically, the project mainly took a sociocultural stance, and my 

study has been influenced by both the methodological approaches to 

measurement and the sociocultural theories of identity. It is the tension I 

experienced between sociocultural theories and theories on measurement 

that later caused the shift in my research.  

1.2 An introduction to identity 

1.2.1 Identity 

On the personal aspect of learning, the construct of identity has gained 

increased attention over the last decades. Sfard and Prusak (2005, p. 15) 

claimed “that the notion of identity is a perfect candidate for the role of 

‘the missing link’ in the researchers’ story of the complex dialectic 

between learning and its sociocultural context”. However, there are 

considerable differences on how to conceptualise identity. These 

differences were explained by Darragh (2016) who made an approximate 

distinction between those who perceive identity as an action (often 

situated in a context) and those who see it as an acquisition. Similarly, 

Cote and Levine (2014) distinguished between theories that perceive 

identity as context-free and those that regard it as mostly situated.  
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Hannula et al. (2016) and Darragh (2016) documented that many 

recent studies on identity in the field of mathematics education rely on 

sociocultural theories, that is, theories on the situated end of the 

spectrum. One recent example is the study by Williams (2011) who 

applied Holland et al.’s (1998) framework of figured worlds to 

understand the narratives of two teachers who were teaching students 

before their transitions to higher education. 

1.2.2 Measuring mathematical identities 

As described above, my research was situated within an emerging 

research area of transition and identity studies, which, again, was 

situated within the broader field of sociocultural studies. Hence, the 

point of departure of my research was influenced by the documented 

challenges regarding TE and STEM students’ transitions to the world of 

work. In particular, studies on negotiations of personal identities in 

transition, documented by the TransMaths project (e.g., Black et al., 

2010; Hernandez-Martinez et al., 2011; Williams, 2011), inspired the 

research. Accordingly, the original research question of the study was: 

“How are identities negotiated in STEM and TE students’ transitions to 

the world of work?” 

My approach to this question was to explore the possibility of using 

measurements, and accordingly, an instrument for measuring 

mathematical identity was sought. Specifically, the development of the 

instrument relied on three primary sources: (1) related instruments, in 

particular the Approaches and Study Skills Inventory for Students 

(ASSIST) (Entwistle, 1997), (2) existing literature on the understanding 

of mathematics (e.g., Hiebert, 1986; Skemp, 1987), and (3) members of 

mathematical communities (e.g., PhD students in STEM-related 

subjects). A more detailed description of these sources will be discussed 

later. 

As a result of these influences, an instrument for measuring the 

extent to which students are working conceptually with mathematics 

(i.e., how deeply they are working with mathematics) was validated. The 

technical validation is discussed in detail in the first paper of this thesis.  

1.2.3 Theorising measured identities 

When I was working on the second paper, I was exploring mathematical 

identities beyond technical validity. Then, I experienced a problem, 

namely, how measures (i.e., outcomes of a technically valid 

measurement through a questionnaire) could be conceptualised as 

identities. Specifically, most sociocultural theories conceptualise identity 

as ‘complex’, which obviously complicates the measurement of identity 

since measures are required to be uni-dimensional (e.g., Thurstone, 

1954). Another aspect is that identities are, in some frameworks, 

conceptualised as motions, for example, in communities of practice 
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where identity is seen as “a constant becoming” (Wenger, 1998). In 

contrast, classical psychometrical techniques produce static, in-the-

moment measures. Moreover, identities in sociocultural theories are, for 

the most, seen as situated. However, Thurstone (1954) required measures 

to be invariant. 

On the surface, measures of mathematical identities seemed to fit 

within an acquisition interpretation of identity. However, my data 

rejected an acquisition perspective on identity as, for instance, the 

analysis of mathematical identities indicated that identity is not entirely 

context-free. That is, the characteristics of being mathematical, 

represented by the items, structured differently in the STEM and TE 

contexts. This result supported a sociocultural perspective. In the thesis, I 

refer to a set of characteristics of being mathematical and its internal 

structure as ‘a social structure of being mathematical’. Later, I will 

explain more about the social structure and its properties. 

In conclusion, I experienced the relationship between data and 

theories of identity as problematic. Accordingly, the emphasis of the 

research changed from empirical to theoretical and methodological. A 

fair summary is, therefore, to say that the study has moved dialectically 

between empirical data collection, analysis, methodology, theory, and 

writing. 

Other contributors to the shifting emphasis are elements in the 

research community such as papers and books, persons with whom I 

have collaborated, other people that I have met at conferences and 

seminars, and reactors/reviewers. Of particular influence was one 

reviewer of the second paper who offered profound suggestions and 

questions about the philosophical foundation of measured mathematical 

identities. 

When I was engaging in theoretical issues regarding mathematical 

identity, I realised that method is an integral part of a theory. As I 

explain in more detail later, there exist several, incommensurable 

methods for measurement in the social sciences. These methods have 

been developed within different paradigms, that is, in communities that 

perceive philosophies of measurement differently. Thus, in the thesis, I 

explain the relationship between principles of measurement and 

principles of mathematical identity. 

One consequence of the shifting emphasis is a shift in the scope of 

the study. Initially, the study was situated firmly within mathematics 

education. In the present form, although my results are anchored in 

illustrations from mathematics education, the scope has shifted, and I 

consider the thesis to contribute also to general education knowledge, 

including research methodology and, in particular, educational 

measurement, and the more general field of identity research.  
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1.3 Research questions 
After having gone through a dialectical, non-linear, research process, and 

after having faced difficulties in conceptualising the results from the 

beginning of my study, I was guided by the research questions stated 

below. The overarching research question is: 

 

How can mathematical identity be measured and theorised? 

This research question is subdivided into the following sub-questions: 
1. How do theories on measurement inform a measuring perspective on 

mathematical identity? 

2. What is a paradigmatic method for measuring mathematical identity? 

3. What are theoretical principles of mathematical identity? 

4. Which empirical questions can be asked within a framework for 

measuring mathematical identity? 

a. What are characteristics of mathematical identity in Norwegian 

TE and STEM contexts? 

b. How can mathematical identity measures provide information 

on how much the social structure of being mathematical differs 

across the STEM context and the TE context? 

c. What is the association between STEM students’ self-reported 

mathematical identities and average grades in mathematics 

courses? 

1.4 Short overview of the thesis 
The four sub-questions answer the main research question. The sub-

questions are answered throughout the thesis with the support of three 

papers, Papers I, II, and III (Kaspersen, 2015; Kaspersen, Pepin, & 

Sikko, 2016; Kaspersen, Pepin, & Sikko, in print). The papers are 

comprehensively summarised later, and they are included in the 

Appendices.  

In chapter 2, I review and summarise theories on identity. I have 

chosen to focus on a limited selection that I believe represent studies on 

mathematical identities. The selection has been influenced by Darragh’s 

(2016) review and includes identities in cultural worlds (Holland et al., 

2001), identities in communities of practice (Wenger, 1998), discursive 

theories on identity (Gee, 2000), narrated identities (Sfard & Prusak, 

2005), and identities in cultural-historical activity theory (CHAT) (e.g., 

Stetsenko & Arievitch, 2004). 

In this thesis, I argue that a theoretical perspective on measured 

mathematical identities must be compatible with theories on 

measurement in general. Thus, in chapter 3, I present general principles 

of measurement as formulated by Thurstone (e.g., 1954). In short, I 

conclude that a measuring perspective on mathematical identity must 

consider: dimensionality, additivity, invariance, and relativity. Moreover, 
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I connect these principles with existing theories on identity, that is, those 

presented in chapter 2. I conclude that there is a need for a framework on 

mathematical identity that addresses principles of measurement 

explicitly. In this chapter, I answer research question 1. 

The need for a measurable mathematical identity, however, is not a 

claim that existing theories are ‘false’. I discuss the notion of ‘truth’ 

more closely in the first part of chapter 4 where I situate the study within 

a (neo)-pragmatist philosophy, mainly influenced by Putnam (e.g., 

1981). In short, I postulate that theory-pluralism is no more of a problem 

than the co-existence of multiple geometries. 

Later in chapter 4, I discuss philosophical differences between two 

commonly applied theories of measurement—Rasch Measurement 

Theory (RMT) and Item Response Theory (IRT). Specifically, I show 

how proponents of RMT see principles of measurement as requirements, 

as opposed to those of IRT who regard them as assumptions. Moreover, I 

explain how I interpret principles of mathematical identity as 

requirements. On this ground, I answer research question 2 when I 

conclude that the application of RMT is a paradigmatic method for the 

measurement of mathematical identity. 

In chapter 5, I describe the design of the study and methods of data 

collection and analysis. Moreover, I discuss issues of validity and ethics.  

In chapter 6, I present the papers in this thesis. First, I summarise 

Paper I, which reports on the validation of an instrument for measuring 

the extent to which students work conceptually with mathematics. 

Evidence for invariance was sought between TE and STEM students. In 

the paper, I answer research question 4a when I discuss 20 

characteristics1 of mathematical identity. 

 In Paper II, I address research question 3 when I discuss theoretical 

principles of mathematical identity. I then provide some empirical 

examples and illustrate a key result of the theorisation, namely, the 

person-independent property of the social structure2 of identity. I also 

provide some qualitative examples of mathematical identities, and I 

discuss research question 4b, that is, structural differences between TE 

and STEM students’ mathematical identities.  

                                           
1 There is a strong connection between ‘item’ and ‘characteristic’. In this thesis, I define a 

characteristic to be an ideal feature or quality. An item, in this thesis, is the translation from a 

characteristic to a statement in a questionnaire to which persons respond. Consequently, 

mathematical identities are inferred indirectly from persons’ answers to the questionnaire.   
2 The word ‘structure’ appears repeatedly throughout the thesis. I use this word generically, 

and it must, therefore, be understood in the context in which it is applied. For example, a 

‘structure’ in community of practice explains how a community builds meaning, and this is a 

different structure than the ‘structure’ of mathematical identity, which is based on ordering 

questionnaire items.   
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In Paper III, I discuss the association between self-reported 

mathematical identities and average grades in university mathematics 

courses. From measures obtained by the instrument validated in Paper I, 

361 STEM students were categorised as having a ‘low’, ‘medium’, or 

‘high’ mathematical identity, and the paper illustrates how the mean 

average grade of students with high mathematical identities was 

significant and about one grade higher than students with lower 

mathematical identities. In the paper, I answer research question 4c. 

In the last chapter, following a brief summary, I discuss the 

theoretical insights of the research. I claim: (1) that the distinction 

between structural and personal change is an arbitrary point of 

perspective, (2) that the comparison of mathematical identities does not 

require structural equivalence, and (3) that mathematical identities do not 

exist in isolation. The third claim implies the possibility of one person 

having both a stronger and a weaker mathematical identity than another 

person, without contradiction.  

Subsequently, I position mathematical identity between two 

extremes, one that postulates that identity can never be measured and the 

other that claims that identity can always be measured. Thereafter, I 

discuss limitations and challenges of the study, before I conclude the 

thesis. 

Writing is, inevitably, linear—one sentence after another—and 

therefore, it has been a challenging task to describe, in words, a process 

that has not been linear. Data collection and analysis, reading and 

writing, and research questions and findings: All have evolved 

dialectically in a non-linear way. In particular, chapter 4 and 6 connect 

so tightly that I wish the reader could read both chapters simultaneously. 

Specifically, in a few cases in chapter 4, I have found it necessary to 

bring forward some of the results that I later explain in chapter 6. 

Although I have made my best efforts in making the argument as linear 

as possible, my suggestion for the reader is to read the papers, in their 

order of appearance, before the full thesis.  
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2 Literature 

In this chapter, I summarise some of the most influential theories of 

identity that have been applied in mathematics education research. There 

exist many theories on identity, and it would be impossible to summarise 

them all. Thus, inspired by Darragh (2016), I have relied on a limited 

number of theories, all of which have been used extensively in 

mathematics education studies. First, I discuss two theoretical 

frameworks which Darragh (2016) highlighted as representatives of 

participative perspectives on identity: identities in cultural worlds 

(Holland et al., 2001) and identities in communities of practice (Wenger, 

1998). Subsequently, I summarise Gee’s (2000) discursive perspective 

and Sfard and Prusak’s (2005) narrated identities. Finally, I discuss 

identities in CHAT. 

This chapter aims to identify and review common perspectives on 

identity, not to compare them—that I do in the next chapter. Therefore, I 

present the following perspectives separately, although many of them are 

related.    

2.1 Identities in cultural worlds 
In their seminal book, Identity and Agency in Cultural Worlds, Holland 

et al. (2001) discussed a theory on identity that was influenced by 

Marxist theories (e.g., Bakhtin, 1981; Vygotsky, 1978). Holland et al. 

(2001) defined identity in the following way:  
 

People tell others who they are, but even more important, they tell themselves 

and then try to act as though they are who they say they are. These self-

understandings, especially those with strong emotional resonance for the teller, 

are what we refer to as identities. (p. 3) 

  

Holland et al. (2001) acknowledged both the cultural and the 

personal aspects of identity, and the authors presented four contexts in 

which identities are produced: figured worlds, the negotiation of 

positions, the space of authoring selves, and the play worlds. 

The first of these contexts, the figured world, was defined as an ‘as 

if’ realm. The authors used the example of virtual reality as one way of 

understanding figured worlds. In a game—for example, a computer 

game—the players act in a virtual ‘as if’ world, which is constrained by 

artefacts, rules and possibilities. These cultural artefacts exist both within 

the software and in the social world of multiple players. Just like the ‘as 

if’ world of computer games have their own distinct rules and cultural 

artefacts, so do other figured worlds, for example, the figured world of 

mathematics.  
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One feature of figured worlds is that they are abstractions. They are 

simplified “realms of interpretation in which particular characters and 

actors are recognised, significance is assigned to certain acts, and 

particular outcomes are valued over others” (Holland et al., 2001, p. 52).  

Moreover, although figured worlds are distinct from activities, they 

share the property of being socio-historic, and hence, constantly 

reproduced. The simplified abstractions of interpretation are constantly 

negotiated, and the reproduction of figured worlds might be affected by 

the reproduction of activities. For example, the emergence of computers 

has changed mathematical activities, but it has also changed the figured 

world of mathematics, such as the discourse over what it means to be 

mathematical or what counts as a legitimate proof.  

Alternative notions of the abstract structure are ‘figurative worlds’ 

and ‘narratized/dramatized worlds’. Holland et al. (2001) referred to the 

Webster’s Third International Dictionary meaning of figurative, that is, 

“transferred in sense from literal or plain to abstract or hypothetical; 

representing or represented by a figure” (p. 52). This notion illustrates 

how figured worlds are shaped by real activities and, subsequently, 

abstracted into a hypothetical and abstract realm. The 

narratized/dramatized notions link to the fact that the world is a 

narrative, often with some standard plots. One example was provided in 

Skinner’s (1990) studies in Naudada, a Hindu community in central 

Nepal. For the women in Naudada, a narrated image of ‘good women’ 

existed. 
 

Girls are good, hard-working, and obedient daughters. 

Eventually they marry, leaving their natal homes (maita) for the homes of their 

 husbands (ghar). 

At their ghark, good daughters-in-law are obedient, respectful, and diligent in 

 their household and agricultural duties, laboring from dawn to dark for their 

 in-laws. 

As wifes, women devote themselves to their husbands, seeing to their needs and 

 obeying their demands. 

A good woman bears sons to carry the patriline. 

As she gives birth to and raises sons, she attains more status in the household. 

After the marriage of her own sons, she directs the activities of the daughter-in-

 law. 

A good woman dies before her husband does. (Holland et al., 2001, p. 54)   

 

The second aspect of identification is the idea of positional identities, 

which has to do with the ways in which people position themselves 

relative to socially identified others, their sense of social place, and 

entitlement. 
 

Relational identities have to do with behavior as indexical claims to social 

relationships with others. They have to do with how one identifies one’s position 
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relative to others, mediated through the ways one feel comfortable or 

constrained, for example, to speak to another, to command another, to enter into 

the space of another, to touch the possessions of another, to dress for another, 

or…to enter the kitchen of another. (Holland et al., 2001, p. 127) 

   

Regarding the situatedness of relational identities, Holland et al. 

(2001) took no firm position. Sometimes, relational identities are bound 

to specific contexts, and at other times, they cut across several activities. 

Holland and colleagues rejected reducing the significance of identity to 

only the cultural or only the personal element.  

Positional identities develop over time, and just like figured worlds 

are both structuring and being structured, so are people’s positions. 
 

The development of social position into a positional identity—into dispositions 

to voice opinions or to silence oneself, to enter into activities or to refrain and 

self-censor, depending on the social situation—comes over the long term, in the 

course of social interaction. (Holland et al., 2001, pp. 137-138)  

 

The third context in which identities develop is the space of 

authoring selves, a construct that draws upon Bakhtin’s dialogism (e.g., 

1981). In effect, people are authoring their identities. However, the 

means of authoring are culturally bound. That is, the social context 

provides individuals with both constraints and opportunities for their 

narratives. 

The fourth context in which identities are produced is the play world. 

Holland et al. (2001) argued that play consists of culturally shaped 

artefacts and positions. When people act in play, the cultural world 

becomes internalised, from the interpersonal to the intrapersonal. This 

perspective relates to Vygotsky’s (1978) idea that “every function in the 

child’s cultural development appears twice: first on the social level, and 

later, on the individual level; first between people (interpsychological), 

and then inside the child (intrapsychological)” (p. 57).  

2.2 Identities in communities of practice 
In the previous paragraph, I summarised the participative perspective on 

identity in cultural worlds from Holland et al. (2001). Another 

participative perspective to identity is Wenger’s (1998) theory of 

identities in communities of practice. The theory builds upon four 

explicit propositions. 
 

1. We are social beings. Far from being trivially true, this fact is a central aspect 

of learning. 

2. Knowledge is a matter of competence with respect to valued enterprises—

such as singing in tune, discovering scientific facts, fixing machines, writing 

poetry, being convivial, growing up as a boy or a girl, and so forth.  
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3. Knowing is a matter of participating in the pursuit of such enterprises, that is, 

of active engagement in the world. 

4. Meaning—our ability to experience the world and our engagement with it as 

meaningful—is ultimately what learning is to produce. (Wenger, 1998, p. 4) 

 

From these propositions, Wenger (1998) conceptualised identity as 

being relative to ‘communities of practice’. A community of practice is 

the relation between practice and community on three dimensions, as 

illustrated in Figure 1. 

 

 

 

 
 

Figure 1. Dimensions of practice as the property of a community 

The first dimension is mutual engagement amongst participants in a 

concrete practice. Such practices are not abstractions; rather, they exist 

in the concrete communities in which participants negotiate meaning. 

The second dimension is joint enterprise. The joint enterprise comprises 

instrumental aspects, such as the making of physical products, but also 

personal aspects—being productive, having fun, making a career, and so 

forth. Joint enterprises are not static. They are constantly negotiated in 

the community of practice. The third dimension is the shared repertoire, 

which includes “routines, words, tools, ways of doing things, stories, 

gestures, symbols, genres, actions, or concepts that the community has 

produced or adopted in the course of its existence, and which have 

become part of its practice” (p. 83). 
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Wenger considered identity as a concept that connected the 

individual with the social. Specifically, identity in communities of 

practice involves a focus on people; however, the focus comes from a 

social perspective.   

Wenger discussed four issues of identity. First, there is a clear 

connection between practice and identity, as practice involves the 

negotiation of being a person in that community. Thus, the negotiation of 

meaning is also a negotiation of identity. Accordingly, Wenger proposed 

five characterisations of identity. 
 

 Identity as negotiated experience. We define who we are by the ways we 

experience our selves through participation as well as by the ways we and 

others reify our selves. 

 Identity as community membership. We define who we are by the 

familiar and the unfamiliar. 

 Identity as learning trajectory. We define who we are by where we have 

been and where we are going. 

 Identity as nexus of multimembership. We define who we are by the ways 

we reconcile our various forms of membership into one identity. 

 Identity as a relation between the local and the global. We define who 

we are by negotiating local ways of belonging to broader constellations 

and of manifesting broader styles and discourses. (Wenger, 1998, p. 149) 

 

As can be seen from these characterisations, identities in communities of 

practice are not static traits, like personal characteristics, but rather a 

constant process of becoming. 

The second issue is that the negotiation of identity includes both 

participation and non-participation. Wenger distinguished between two 

forms of non-participation: peripherality and marginality. One way of 

distinguishing the two is to consider their trajectories. Peripherality often 

has an inbound path; newcomers who have not yet learned the discourse 

of the community. By contrast, marginality has an outbound path, in 

which some participants are marginalised by others (Wenger, 1998, p. 

166). 

The mix of participation and non-participation shapes fundamental 

aspects of our lives, such as: 
 

1. how we locate ourselves in a social landscape 

2. what we care about and what we neglect 

3. what we attempt to know and understand and what we choose to ignore 

4. with whom we seek connections and whom we avoid 

5. how we engage and direct our energies 

6. how we attempt to steer our trajectories. (Wenger, 1998, pp. 167-168) 
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Third, to understand identity, Wenger argued that identity can be 

considered as three modes of belonging. Engagement is the ongoing 

negotiation of meaning, the formation of trajectories, and the unfolding 

of histories of practice (p. 174). Imagination is “looking at an apple seed 

and seeing a tree. It is playing scales on a piano, and envisioning a 

concert hall. It is entering a temple and knowing that the ritual you are 

performing is performed and has been performed by millions throughout 

the world” (p. 176). Alignment means to connect to participants in the 

community, to connect and coordinate energy on the broader enterprise. 

Finally, a crucial aspect of identity is that identity formation is a 

process of both identification and negotiability. The ecology of identity 

was illustrated by Wenger (1998, p. 190) as in Figure 2. 

 

 

 identity  

    

identification  negotiability 

     

identities of 

participation 

identities of 

non- 

participation 

mode of 

belonging 

identities of 

participation 

identities of 

non- 

participation 

close circle of 

friends doing 

everything 

together 

experience of 

boundaries 

through a 

faux-pas 

engagement having one’s 

ideas adopted 

marginality 

through having 

one’s ideas 

ignored 

affinity felt by 

the readers of 

a newspaper 

prejudice 

through 

stereotypes 

imagination vicarious 

experience 

through 

stories 

assumption 

that someone 

else 

understands 

what is going 

on 

allegiance to a 

social 

movement 

submission to 

violence 

 

 

alignment persuasion 

through 

directed 

experience 

literal 

compliance as 

in tax returns 

forms of membership  ownership of meaning 

     

communities  economies of meaning 

    

 structure  

 

Figure 2. Social ecology of identity 
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2.3 A discursive theory on identity 
Another perspective that has gained much attention is the discursive 

perspective to identity. Gee (2000, p. 99) is a representative of this 

position, and he defined identity as “being recognized as a certain ‘kind 

of person’, in a given context”. He proposed four different, yet related, 

forms of identity; namely, (N)ature-, (I)nstitution-, (D)iscourse-, and 

(A)ffinity-identity. Gee (2000, p. 100) summarised these forms of 

identity as in Table 1. 

Table 1. Four ways to view identity 

Process Power Source of power 

1.Nature identity:    

   a state developed from forces in nature 

2.Institution-identity:    

   a position authorized by authorities within institutions 

3.Discourse-identity:  the discourse/ of/with ‘rational’ 

   an individual trait recognized in dialogue individuals 

4.Affinity-identity:   of ‘affinity 

   experiences  shared in the practice groups’  

 

N-identity is “a state developed from forces in nature”. One example 

is to be recognised as a mathematical genius. In literature, or in the 

movies, mathematical geniuses are often portrayed as if they were born 

with some inhuman ‘feel for numbers’. Being a mathematical genius, in 

this sense, is an identity that develops from biology. A person does not 

choose to be a mathematical genius; he or she is born as such. 

However, being a mathematical genius is an N-identity only as far as 

it is recognised as such. For instance, some discourses, or some 

communities, might reject the assertion that the genius characteristics 

have developed only from biology. Some might even claim that biology 

plays a marginal role, and therefore, that mathematical genius is not a 

nature-given identity.  

I-identity is a “position authorised by authorities within institutions”. 

One example, discussed by Gee (2000), is to be recognised as a 

professor. Being a professor is a position that has been authorised by 

authorities within the academic community, predominantly other 

professors. No one is born as a professor, and one cannot appoint oneself 

to be one.  

Gee (2000) argued that the I-identity can be seen as a continuum 

regarding the extent to which people consent to their identities. Some 

people feel the identity as a calling, for instance, someone who has long 

strived to become a professor, and finally has been accepted. Others 

might feel that the identity has been imposed on them, and Gee used the 

examples of prisoners or people who have been diagnosed with ADHD.  
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D-identity is an “individual trait recognised in the discourse/dialogue 

of/with ‘rational’ individuals”. One example is to be recognised as being 

mathematical. As a D-identity, being mathematical is a trait. However, it 

is not a trait that a person is born with, nor is it something that has been 

authorised. Rather, the trait is something that is recognised by other 

members—rational individuals—in a community. 

Arguably, several discourses in different communities exist. As such, 

someone who is recognised as being mathematical in one context might 

not be recognised as such in another. Therefore, being mathematical as a 

D-identity is a relative identity. Accordingly, two people who are both 

recognised as being mathematical within different contexts do not 

necessarily share the same set of characteristics.  

A-identity is “the set of experiences shared in the practice of ‘affinity 

groups’”. For example, being a member of a mathematical community is 

one A-identity. In this community, members share a set of experiences, 

such as being intrigued by specific problems, visiting the same internet-

forums, sharing stories, a way of talking, and so forth.  

It might seem that A-identity is distinct from N-, I-, and D-identities 

in the way that people can, to a larger extent, choose who they want to be 

recognised as. However, Gee (2000) stressed that A-identities could be 

affected by others—for instance, companies which try to bond their 

customers into certain A-identities. 

 

These different forms of identity do not exist in isolation. It is not the 

case that some identities are N-identities, some are A-identities, and so 

forth. Instead, the forms of identity blend, and are constantly negotiated. 

Again, Gee (2000) used the example of ADHD. Being recognised as 

ADHD can be seen as an N-identity, as something people are born with. 

Alternatively, ADHD can be regarded as an I-identity, something 

imposed on a person by an authority, based on some test or observation. 

Moreover, ADHD is a D-identity when people, in their discourse, 

recognise a person as such. Finally, a person can identify him or herself 

with some affinity group of ADHD. 

Gee (2000) discussed some historical aspects of identity. That is, in 

pre-modern societies, there was an emphasis on I-identities. These 

identities were often connected with N-identities. The authorities—often 

the church—decided who should have which position. These positions 

were often God-given. In ‘modern’ societies, people relied less on 

identities authorised by others or by nature, and more on D-identities. 

However, the search for a D-identity was more available for the elite 

than for people without time and resources who were still constrained to 

their I-identities. In ‘postmodern’ societies, the A-identity has become 

more important, due to changes (e.g., socioeconomic changes) in society. 
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2.4 Narrated identities 
The perspectives on identity mentioned so far have been criticised for 

lacking consensus and clarity. Specifically, Sfard and Prusak (2005) 

complained that the definitions of identity in the literature were vague. 

As a solution, they proposed identity to be a series of narratives, instead 

of narratives being representations of identities. 
 

We suggest that identities may be defined as collections of stories about persons 

or, more specifically, as those narratives about individuals that are reifying, 

endorsable, and significant. (Sfard & Prusak, 2005, p. 16) 

  

The reifying quality comes with the use of verbs such as be, have, or can rather 

than do, and with the adverbs always, never, usually, and so forth, that stress 

repetitiveness of actions. A story about a person counts as endorsable if the 

identity-builder, when asked, would say that it faithfully reflects the state of 

affairs in the world. A narrative is regarded as significant if any change in it is 

likely to affect the storyteller’s feelings about the identified person. The most 

significant stories are often those that imply one’s membership in, or exclusions 

from, various communities. (Sfard & Prusak, 2005, pp. 16-17) 

 

Sfard and Prusak (2005) argued further that, if identity is a story, then 

every identity can be represented as the triplet BAC. In this 

representation, A is the identified person, B the author, and C the 

recipient. Accordingly, Sfard and Prusak (2005) summarised the 

individual’s different identities in the following way. 
 

AAC = an identifying story told by the identified person herself. This story we 

      call A’s first-person identity (1st P). 

BAA = an identifying story told to the identified person. This story we call A’s 

      second-person identity (2nd P). 

BAC = a story about A told by a third party to a third party. This story we call A’s 

      third-person identity (3rd P). (Sfard & Prusak, 2005, p. 17) 

 

In this framework, AAA—the reifying, endorsable, and significant 

story that people tell themselves about themselves—is defined as 

‘identity’, when no further specifications are made.  

Sfard and Prusak (2005) proposed some consequences of perceiving 

identities as narratives. First, when identities are seen as stories, the 

researcher overcomes the problem of representations. That is, narratives 

are not approximate representations of ‘something else’, narratives are 

identities. In this way, Sfard and Prusak (2005) explicitly distinguished 

themselves from Wenger (1998) who saw identity as an experience.  

Another consequence of narrated identities is that people might tell 

different stories—the BAA and the AAC identities, for instance, might look 

very different. On this issue, Sfard and Prusak (2005) showed little 

concern, since they claimed that the process of identification is the aim 
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of the research, not the identities themselves. With this objective in 

mind, each story is valuable, they asserted.  

Sfard and Prusak (2005) distinguished between ‘actual’ and 

‘designated’ identities. Actual identities are narratives that present the 

current state of things. Designated identities are stories about what is 

expected, for instance in the future. From this, learning is the process of 

closing the gap between the actual and designated identities, Sfard and 

Prusak (2005) claimed. 

In sum, like the other perspectives I have discussed so far, Sfard and 

Prusak (2005) rejected the idea of identity as a ‘thing in the world’ (p. 

21). The greatest distinction between Sfard and Prusak (2005) and the 

former theoretical frameworks, then, is how identities, in the narrative 

perspective, is equated with narratives. Stories do not represent 

identities, they are identities. 

2.5 Identities in cultural-historical activity theory 
All generations of CHAT are related to Vygotsky (e.g., 1978) who built 

a psychology that explained individuals and the social context by a 

unifying framework. In doing so, stimulus-response processes were 

replaced with complex mediated acts, whereby signs and tools served as 

mediating links. 

According to this psychology, the origin of signs and tools is the 

external world. That is, Vygotsky (1978) explained how external tools 

become psychological tools from the process of ‘internalisation’. My 

understanding of this process is that every conscious psychological tool 

has an external version. For instance, if someone applies some conscious 

psychological representation to solve the task 
1

2
+

1

3
, then this 

representation can be explained or illustrated externally (e.g., in words or 

as a drawing). This is because the representation, whatever it is, has its 

origin in the external world. However, the reverse is not true: To say that 

all psychological tools have an external version is not the same as saying 

that all external tools have a psychological version. For instance, I can 

visualise that I press the buttons ‘17’ and ‘√’ on a calculator, but when I 

do, I see no output, for example, the fifth decimal to √17. This is 

because I have not internalised the functioning of a calculator. To me, 

and probably most others, a calculator is an external tool exclusively. 

Vygotsky did not emphasise identity or related constructs such as 

‘the self’ or ‘personality’ (these constructs were picked up in later 

generations of CHAT). Nonetheless, a plausible inference of his 

psychology is that identity—insofar as it is a conscious, mediating, 

construct—originates in the external world. 
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In continuing the work of Vygotsky, Leont’ev (1978) had a more 

collective view of activity and used the collective hunt as a metaphor. 

Specifically, Leont’ev (1978) defined activity as 

 
the non-additive, molar unit of life for the material, corporeal subject. In a 

narrower sense (i.e., on the psychological level) it is the unit of life that is 

mediated by mental reflection. The real function of this unit is to orient the 

subject in the world of objects. (p. 3) 

  

Leont’ev (1978) did mention ‘personality’ relative to the activity, and 

when he did, he continued the thoughts of Vygotsky, namely, that the 

direction of personality development is in the order from the external to 

the psychological, that is, from the activity to the subject. Consequently, 

in order to understand personality, the chief task is to understand the 

activity, Leont’ev (1978) asserted. 

Later, Engeström (1987) developed a framework for understanding 

the activity (Figure 3), clearly being influenced by Vygotsky and 

Leont’ev. This framework provides a tool for structuring important 

aspects of the activity, and relationships between them, in addition to the 

relationships between multiple activities.  

 

 
Figure 3. The structure of an activity system as presented in Engeström (1987, p.78) 

 

Stetsenko and colleagues (e.g., Stetsenko, 2013; Stetsenko & 

Arievitch, 2004; Vianna & Stetsenko, 2011) endorsed the efforts of 

Vygotsky, Leont’ev, Engeström, and others, to overcome the Cartesian 

view of identity. However, they—Stetsenko and colleagues—claimed 

that the resilience to the Cartesian view had marginalised human agency. 

Notably, Stetsenko and Arievitch (2004) criticised how identity 
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development previously had been portrayed more or less unidirectional, 

that is, from the activity to the subject. 

In response to this critique, Stetsenko and Arievitch (2004) 

maintained that identity development is dialectical: Humans change 

activities and activities change humans. Accordingly, identities do not 

develop in relatively passive participation, but rather, in the relatively 

agentic process of activity transformation. In short, Stetsenko and 

Arievitch (2004) valued contribution more than participation. 

Common to all generations of CHAT is the materialist view, with 

explicit roots to Karl Marx. Consequently, structures of activities are 

always centred around real objects—there exists no activity without an 

object (Leont’ev used the example of a prey in the collective hunt). Since 

identity can be understood only in relation to the structure of the activity, 

for instance, as modelled by Engeström (1987), identity is, inevitably, 

situated in a cultural-historical context.  

Another common theme in CHAT is that uniqueness is a property of 

subjectivity (e.g., identity, personality, or the self). This property was 

explicitly expressed by Stetsenko and Arievitch (2004, pp. 476-477) 

when they claimed that their interpretation of the self in CHAT allows 

‘us’, amongst others, “to define the self as a subject of unique 

constellation of activities in the real world reflected in a person’s 

‘leading activity’”. 

2.6 Concluding remarks 
In this chapter, I have summarised key theoretical perspectives on 

identity. I have focused the summary on theories that are frequently 

applied in mathematics education research, and for the most, these 

theories perceive identity as more or less socially constructed. This 

chapter has been descriptive. In the next chapter, I will compare the 

different perspectives, albeit not directly, but by relating them to theories 

of measurement.  
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3 Theoretical framework 

In this chapter, I discuss fundamental principles in theories of 

measurement as they were presented by Thurstone (1928, 1954, 1959). 

These principles guided the development of RMT and related 

approaches, such as IRT, but also assisted me in developing the 

theoretical perspective on mathematical identity that I, later on, describe 

in this thesis. Subsequently, in this chapter, I discuss existing theories on 

identity—those presented in the former chapter—in light of Thurstone’s 

requirements. With this chapter, I address research question 1: How do 

theories on measurement inform a measuring perspective on 

mathematical identity? 

3.1 Principles of measurement 
Thurstone (e.g., 1959) claimed that principles of measurement should be 

the same regardless of the nature of the constructs being measured, for 

instance, whether they are physical or psychological. Consequently, 

Thurstone advocated requirements of measurements in the social 

sciences that, he claimed, were identical to those in the natural sciences. 

Thurstone never managed to operationalise his requirements. This 

accomplishment was made some years later, first by Rasch (1960, 1961) 

followed by other researchers, such as Wright and Stone (1979) and 

Andrich (1978). 

In this chapter, however, I do not dwell on methodical issues—these 

I discuss later. Instead, I return to Thurstone’s general accounts on 

measurement. Specifically, I consider three proposed requirements: uni-

dimensionality, additivity, and invariance—the same conditions that 

Andrich (1989) applied when he considered “the distinction between 

assumptions and requirements in measurement in the social sciences”. 

Moreover, I discuss the property of measures as relational. 

3.1.1 Uni-dimensionality 

When X and Y are measured successfully, the interpreter concludes that 

X is either more than Y, less than Y, or about equal to Y. Moreover, the 

observer can conclude that there is some measured difference between X 

and Y. Accordingly, a measure is not about ‘pure difference’, rather, it is 

a certain magnitude of difference. A measure is about sameness and 

distinction; it is about more and less, higher and lower, stronger and 

weaker.  

Such distinctions, Thurstone claimed, are sensible only when the 

measured constructs—weight, depression, IQ, and so forth—are uni-

dimensional.  
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When we discuss opinions, about prohibition for example, we quickly find that 

these opinions are multidimensional, that they cannot all be represented in a 

linear continuum. The various opinions cannot be completely described merely 

as ‘more’ or ‘less’. They scatter in many dimensions, but the very idea of 

measurement implies a linear continuum of some sort, such as length, price, 

volume, weight, age. (Thurstone, 1954, p. 534) 

 

No measure, however, is observed directly—not even height. Instead, 

measures are inferred indirectly from multiple observations, each 

supposed to belong to the same, latent, dimension. And in the end, each 

observation is reduced to a dichotomous, ‘yes’ or ‘no’ judgement.  

For instance, when we measure the height of a person, we compare 

the person with a ruler that consists of a finite number of marks, each 

supposed to belong to the same, abstract, dimension ‘length’. And 

although we might think that we make a direct comparison between the 

person and the ruler, the comparison is, actually, a series of indirect, 

dichotomous, judgements: For each mark, we make a ‘taller than/shorter 

than’ opinion, appreciating that, occasionally, we make some mistakes.  
 

In almost every situation involving measurement there is postulated an abstract 

continuum such as volume or temperature, and the allocation of the thing 

measured to that continuum is accomplished usually by indirect means through 

one or more indices. Truth is inferred only from the relative consistency of the 

several indices, since it is never directly known. (Thurstone, 1928, p. 533) 

 

It is clear that the linear continuum which is implied in a ‘more and less’ 

judgement may be conceptual, that it does not necessarily have the physical 

existence of a yardstick. (Thurstone, 1928, p. 535) 

 

No construct is truly uni-dimensional since the concept of linearity is 

merely an abstract idea. Consequently, one is forced to decide as to 

whether the construct is ‘sufficiently’ linear, and this decision depends 

on the problem at hand. For some purposes, a ‘straight line’ drawn with a 

pencil is sufficiently linear to be called a straight line, although we know 

for sure that what we have drawn is not a perfectly straight line when we 

observe it carefully. For other purposes, the same ‘line’ is too thick, or 

too curved to be called a straight line. 

The same goes for all theoretical constructs, Thurstone argued. If the 

construct is concluded to be sufficiently linear for the problem at hand, it 

can be measured. Otherwise, the construct must be separated into 

multiple dimensions and measured one at a time. 
 

It will be conceded at the outset that an attitude is a complex affair which cannot 

be wholly described by any single numerical index. For the problem of 

measurement this statement is analogous to the observation that an ordinary table 

is a complex affair which cannot be wholly described by any single numerical 
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index. So is a man such as a complexity which cannot be wholly represented by 

a single index. Nevertheless we do not hesitate to say that we measure the table. 

The context usually implies what it is about the table that we propose to measure. 

We say without hesitation that we measure a man when we take some 

anthropometric measurement of him. (Thurstone, 1928, pp. 530-531) 

 

Thus, the only situations when a construct is theoretically 

unmeasurable, not considering methodical or ethical difficulties, would 

be cases when the talk about finite dimensions is nonsense, that is, when 

the construct is nonlinear and at the same time too complex or too fluid 

to be split into a finite number of dimensions. 

3.1.2 Additivity 

If A, B, and C are measured to be 1.0, 2.0, and 4.0, respectively, then the 

distance between B and C is, exactly, twice the distance between A and 

B, ignoring measurement errors. This is the additivity requirement 

proposed by Thurstone (e.g., 1959).  

What has been proven particularly problematic, however, is that 

counts are not additive. Consider, for example, the following 

mathematics test.  

 

1. 3 + 4 = 

2. 9 + 7 = 

3. 12 – 32 = 

4. Prove Fermat’s last theorem. 

 

Imagine, that person A got 1 point on this test (perhaps he solved the 

first task correctly), person B got 2 points (she solved the first and the 

second task correctly), and person C got 4 points.  

The difference in raw score between B and C is, indeed, twice the 

distance between A and B. Nevertheless, from what we can infer from 

the limited data, most would agree that the real distance between B and 

C is probably more than twice the distance between A and B. This can be 

seen from the fact that just about anyone would get from 1 to 2 in a 

relatively short amount of time. As we know, hardly anyone would ever 

get from 2 to 4, no matter how hard they tried. This example illustrates 

how raw scores are not measures. 

3.1.3 Invariance 

The third requirement of measurement is that of invariance. In essence, 

this requirement means that an instrument should not be affected by who 

or what it measures.  
 

A measuring instrument must not be seriously affected in its measuring function 

by the object of measurement. To the extent that its measuring function is so 

affected, the validity of the instrument is impaired or limited. If a yardstick 
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measured differently because of the fact that it was a rug, a picture, or a piece of 

paper that was being measured, then to that extent the trustworthiness of that 

yardstick as a measuring device would be impaired. Within the range of objects 

for which the measuring instrument is intended, its function must be independent 

of the object of measurement. (Thurstone, 1928, p. 547) 

 

In practice, most productive instruments function in a limited range 

only. A ‘regular’ ruler, for example, is fit for measuring the length of 

certain planks but unfit for measuring the size of an electron or the 

distance to the nearest star. Likewise, instruments that measure cosmic 

distances might be unsuitable for measuring the length of a plank.  

It is worth noting, however, that these differences could be due to 

practical shortcomings only. That is, a regular ruler is impractical for 

measuring the distance to the nearest star. But the fact that an instrument 

is impractical is not a violation of invariance. 

3.1.4 Measures as relational 

The requirements of measurement, discussed so far, build on the 

assumption that measures in the social sciences are, methodologically, 

equivalent to physical measures. Consequently, since physical measures 

are relational, so are measures in the social sciences (later, I make a 

similar claim, when I argue that mathematical identity must be 

relational).  

The relational assumption means that the value of a person means 

nothing unless we specify the qualitative nature of this measure, its 

origin and unit length. Consequently, the height of a person is a value 

relative to the structure of the marks on the ruler, just as a 

psychometrical measure is a measure relative to the marks (e.g., attitude 

statements) on the instrument.  
 

The only way in which we can identify the different attitudes (points on the base 

line) is to use a set of opinions as landmarks, as it were, for the different parts or 

steps of the scale. The final scale will then consist of a series of statements of 

opinion, each of which is allocated to a particular point on the base line.  

(Thurstone, 1928, p. 540) 

 

Hence, there must also exist a zero-point and a unit length, and these 

values are arbitrary.  
 

Before we can put numbers into these parameters, we must define an arbitrary 

origin which may be taken as the mean value that one of the stimuli projects on 

the continuum. As a unit of measurement we may choose arbitrarily the standard 

deviation of the dispersion which that stimuli projects on the subjective 

continuum. When that has been done, similar numerical values can be assigned 

to all of the other specimens that have entred into the comparative judgements. 

(Thurstone, 1954, p. 49) 
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Since items take the form of marks on a ruler, there might be some 

discrepancies between empirical and ‘true’ measures. This 

approximation was also acknowledged by Thurstone. 
 

It must be recognized that there is a discrepancy, some error of measurement as 

it were, between the opinion or overt action that we use as an index and the 

attitude that we infer from such an index. But this discrepancy between the index 

and the ‘truth’ is universal. When you want to know the temperature of your 

room, you look at the thermometer and use its reading as an index of temperature 

just as though there were no error in the index and just as though there were a 

single temperature reading which is the ‘correct’ one for the room. (Thurstone, 

1928, p. 532) 

 

Furthermore, when these approximate measures are compared with a 

theory, there will always be some discrepancies between theory and 

measure. Then, the question is whether such divergences are due to 

theory-data misfit or due to measurement errors. If there were a theory-

data misfit, then researchers would question the theories. If there were 

measurement errors, one would accept the errors as within the 

‘acceptable range’ and, possibly, make efforts to improve the instrument.  

One problem, however, is to distinguish measurement errors from 

theory inaccuracies, and, unfortunately, the history of science provides 

no external criterion for deciding which is which. 
 

Scientific practice exhibits no consistently applied or consistently applicable 

external criterion. ‘Reasonable agreement’ varies from one part of science to 

another, and within any part of science it varies with time. What to Ptolemy and 

his immediate successors was reasonable agreement between astronomical 

theory and observation was to Copernicus incisive evidence that the Ptolemaic 

system must be wrong. Between the times of Cavendish (1731-1810) and 

Ramsay (1852-1916), a similar change in accepted chemical criteria for 

‘reasonable agreement’ led to the study of the noble gases. (Kuhn, 1977, p. 185) 

 

So far, I have summarised Thurstone’s (1928, 1954, 1959) 

requirements of measurement. In short, Thurstone argued that these 

requirements are general. Measures of length, weight, attitude, or level 

of anxiety are, methodologically, the same thing. Therefore, these 

requirements will be essential when I, in later chapters, discuss the 

measurement of mathematical identity. For now, I link Thurstone’s 

requirements to those theories of identity that were discussed in the 

former chapter.  

3.2 The compatibility between theories of identity and 

principles of measurement 
Since I aim at a deeper understanding of how mathematical identities can 

be measured, it would be helpful to understand how existing frameworks 
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relate to theories of measurement. Therefore, in this section, I compare 

theories of identity with Thurstone’s requirements of measurement. For 

the most, I have chosen to focus on theories described in the previous 

chapter since these are the most commonly applied frameworks in 

mathematics education research.  

The easiest way to assess compatibility between theories is 

proposition-by-proposition. When their underlying propositions agree, 

theories are compatible, even if they focus on different consequences. If 

on the other hand, propositions contradict each other, the theories are 

considered incompatible, even if some of the consequences happen to 

coincide (Euclidean and elliptic geometries, for example, are 

incompatible although there exist results that are true in both). On a 

general note, since consequences do not imply propositions, there is 

nothing wrong with the coexistence of multiple, incompatible, theories 

that all have the consequences that identity can be measured.  

However, as Sfard and Prusak (2005) pointed out, theories on 

identity suffer from vaguely stated propositions and definitions. Thus, in 

some cases, it has been difficult to compare theories on identity with 

principles of measurement directly. In some cases, I have, therefore, 

compared requirements of measurement with general descriptions of 

identity, and not their underlying assumptions.  

3.2.1 Identity and uni-dimensionality 

Commonly applied theories in mathematics education tend to treat 

identity as something multidimensional. Nonetheless, most of these 

theories portray identity as being about sameness and distinction, as 

opposed to the unique aspects of people. One specific example was 

expressed by Gee (2000). 
 

When any human being acts and interacts in a given context, others recognize 

that person as acting and interacting as a certain ‘kind of person’ or even several 

different ‘kinds’ at once…. A person might be recognized as being a certain kind 

of radical feminist, homeless person, overly macho male, ‘yuppie,’ street gang 

member, community activist, academic, kindergarten teacher, ‘at risk’ student, 

and so on and so forth, through countless possibilities. (Gee, 2000, p. 99) 

 

Being recognised as ‘a certain kind of person’, I argue, is compatible 

with the uni-dimensional requirement of measurement, insofar as it is 

possible to be more or less similar to the abstract ‘kind’ (e.g., if one 

could say that person A is ‘a radical feminist’ but not as radical as person 

B). That is not to say that such identities are uni-dimensional. Rather, it 

means that some persons are more alike than others, for example, that 

two individuals are the same ‘kind of person’, and therefore, that identity 

must consist of a finite number of dimensions.  
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This point of sameness and distinction was also expressed by Wenger 

(1998), although more implicitly. 
 

An identity, in this sense manifests as a tendency to come up with certain 

interpretations, to engage in certain actions, to make certain choices, to value 

certain experiences—all by virtue of participating in certain enterprises. 

(Wenger, 1998, p. 153) 

 

However, Wenger (1998) also provided some pointers that identities 

might not be about sameness and distinction, specifically when he 

argued that identities are non-categorical. 
 

Identity is not merely a category, a personality trait, a role, or a label; it is more 

fundamentally an experience that involves both participation and reification. 

Hence, it is more diverse and more complex than categories, traits, roles, or 

labels would suggest. (Wenger, 1998, p. 163) 

 

When Wenger’s statements are compared in isolation, they appear to 

contradict each other. That is, it is hard to see how identity can be a 

tendency but not a category3. Thus, I agree with Sfard and Prusak (2005) 

that Wenger could have been more explicit on his account of identity. 

Nonetheless, I find Wenger’s last description—that identity is non-

categorical—to be more representative when I interpret his theory as a 

whole. If this interpretation is accurate, then Wenger’s perspective would 

be incompatible with the uni-dimensional requirement of measurement. 

 

Most theories perceive identity as multidimensional, although they 

describe this multiplicity differently. One specific example is how 

Axelsson (2009) recognised mathematical identity to comprise four 

dimensions: self-perceived mathematical knowledge, ability, motivation 

and anxiety (p. 387).  

More than being multidimensional, most theories acknowledge that 

people have multiple identities. Black et al. (2010), for example, argued 

that people “have a collection of identities upon which to draw at any 

one moment” (p. 58). Gee (2000) also claimed multiplicity when he 

argued that each identity has four strands: nature, institution, discourse, 

and affinity.  

In addition, Sfard and Prusak (2005) explained ‘multiplicity’ on the 

identified person, the author, and the recipient. 
 

                                           
3 The word ‘category’ appears repeatedly throughout the thesis. I emphasise that the word is 

generic, and it must, therefore, be understood in the context in which it is applied. For 

example, a ‘category’ Wenger talked about is different from a response ‘category’ or Kant’s 

description of ‘categories’ as pure, a priori, knowledge. 



42   On measuring and theorising mathematical identity 

As a narrative, every identifying story may be represented by the triple BAC, 

where A is the identified person, B is the author, and C the recipient. Within this 

rendering it becomes clear that multiple identities exist for any person. (Sfard & 

Prusak, 2005, p. 17) 

 

In sum, I do not consider ‘multiplicity’ to contradict measurement, 

insofar as multiplicity can be conceptualised as a set of dimensions, each 

of which can be measured. For natural reasons—namely, that theories on 

identity were not conceptualised for measurement—few theories discuss 

the nature of the multiplicity in terms of measurement. Therefore, it is 

difficult to say whether the selected set of theories contradict the uni-

dimensional requirement. Nonetheless, it seems that Wenger’s (1998) 

perspective is the one that would be most difficult to force into a set of 

single dimensions.  

3.2.2 Identity and additivity 

Identities are frequently conceptualised as positions, for example, as 

expressed by Holland et al. (2001). 
  

It is important, in understanding positioning, to pay attention to the fact that 

positional identities develop heuristically over time. (Holland et al., 2001, p. 

137) 

 

However, some contrasting views exist, for example, in the writings 

of Wenger (1998), who conceptualised identity as a trajectory as 

opposed to a position. 
 

A community of practice is a field of possible trajectories and thus the proposal 

of an identity. It is a history and the promise of that history. It is a field of 

possible pasts and of possible futures, which are all there for participants, not 

only to witness, hear about, and contemplate, but to engage with. (Wenger, 1998, 

p. 156) 

 

Few authors address additivity explicitly—again, probably because 

they were not constructed for the purpose of measurement. Nevertheless, 

I argue that theories that conceptualise identities as positions, in one 

form or another, might be compatible with the requirement of additivity. 

In contrast, I consider Wenger’s (1998) conceptualisation as 

incompatible with the additive requirement.  
 

In the same way that meaning exists in its negotiation, identity exists—not as an 

object in and of itself—but in the constant work of negotiating the self. (Wenger, 

1998, p. 151) 

 

As such, it [identity] is not an object, but a constant becoming. (Wenger, 1998, 

pp. 153-154) 
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Although I believe that theories that see identities as positions might 

be compatible with the additivity requirement of measurement, I do not 

consider the fact that positions constantly change to be a theoretical 

problem (although I, in the last chapter, argue that it might have 

methodical implications). However, a theory must allow identity to be a 

static picture of this movement. Change would then be a change of 

positions and require at least two observations. On this point, Sfard and 

Prusak (2005) were quite explicit when they claimed that “identifying is 

an attempt to overcome the fluidity of change by collapsing a video clip 

into a snapshot” (p. 16). 

3.2.3 Identity and invariance 

The requirement of invariance is highly connected with the 

structural/agency debate, that is, the debate on the situatedness of 

identity. In effect, measures require some overlap in the structures—they 

require that the structure of what is being measured is not entirely 

situated. Thus, any theory on identity that claims no such overlap to exist 

would be theoretically incompatible with measurement. To be 

compatible with the requirement of invariance, a theory must, as a 

minimum, acknowledge that situatedness is an empirical question. 

This point was most explicitly addressed by Holland et al. (2001) 

who claimed that the situatedness of identity varies.   
 

Relational identities and the cultural artefacts through which they are claimed 

may be specific to a figured world. They may have to do with one’s honor in the 

Algerian peasant village Bourdieu tells us about, or one’s attractiveness in the 

sphere of gender relations on college campuses in the United States, or one’s 

machismo in the Nicaraguan village. Other positional identities and markers 

may, however, be less specific and cut across such worlds. (Holland et al., 2001, 

pp. 129-130) 

 

The existence of identities that cut across figured worlds, I believe, is 

one significant distinction between Holland et al. (2001) and identities in 

CHAT that are defined to be entirely situated within the concrete 

activity. On this issue, Wenger (1998) agreed with Holland et al. (2001), 

it seems, when he emphasised ‘communities’ as the structural frame of 

reference, however, without the requirement of material objects at the 

centre. 

I continue the discussion on invariance in the last chapter. For now, I 

suffice to conclude that any theory that acknowledges that there might 

exist an intersect between social structures across activities, no matter 

how small, might be compatible with the invariance principle.  
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3.2.4 Identity and relativity 

Most theories on identity in the field of mathematics education 

conceptualise identity as relational, for instance, as expressed by Holland 

et al. (2001), Gee (2000), and Wenger (1998).  
 

We have attempted to articulate the relation of person and society in a way that 

makes light of neither social life nor the world of the psyche. At the same time, 

we reject a dichotomy between the sociological and the psychological. ‘Person’ 

and ‘society’ are alike as sites, or moments, of the production and reproduction 

of social practices. But there is a substantiality to both sides. We object to an 

anti-essentialism that rotely rejects any sense of durability or predisposition in 

social life. (Holland et al., 2001, p. 270) 

 

At one period of history, or in one society, certain combinations result in 

recognition of a certain sort, while at a different period of history, or in a 

different society, the same combinations would be unrecognizable or recognized 

differently…. The combinations (words, deeds, ways of interacting, values, 

beliefs, etc.) that got one recognized as a saint in the medieval church would, 

today, in many places, get one institutionalized as a mental patient. (Gee, 2000, 

p. 110) 

 

The concept of identity serves as a pivot between the social and the individual, 

so that each can be talked about in terms of the other. (Wenger, 1998, p. 145) 

 

However, one consequence of a relational perspective on identity is 

hardly discussed in the literature, namely, that for something to change, 

something else must be held constant. This is a property that Durkheim 

recognised.  
 

For objectivity depends upon the existence of a constant and identical point of 

reference to which the representation can be referred, and which makes it 

possible to eliminate everything that is variable and subjective. (Durkheim, 1972, 

pp. 65-66) 

 

It should be noted here that measurements require one point to be 

held constant, not that it is constant. I believe that this difference implies 

some consequences for how identity can be interpreted, and I will come 

back to this issue in the last chapter. 

 

Several authors claim that there is an analytical difference between 

studying social structure and personal positions within the structure, 

although these facets must be understood relative to each other. Some 

specific examples were provided by Holland et al. (2001). 
 

Another facet of lived worlds, that of power, status, relative privilege, and their 

negotiation, and another facet of lived identities, that of one’s self as entitled or 

as disqualified and inappropriate, must also receive theoretical attention. In order 
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to highlight these facets, we make an analytical distinction between aspects of 

identities that have to do with figured worlds—storylines, narrativity, generic 

characters, and desire—and aspects that have to do with one’s position relative to 

socially identified others, one’s sense of social place, and entitlement. (Holland 

et al., 2001, p. 125) 

 

The first context of identity is the figured world…. The second context, then, is 

positionality. It is less a separate ‘second context’ than a (separable) counterpart 

of figuration. (Holland et al., 2001, p. 271)  

 

In contrast, Wenger (1998) warned against focusing on either the 

person or the social structure. 
 

Issues of identity are an integral aspect of a social theory of learning and are thus 

inseparable from issues of practice, community, and meaning. (Wenger, 1998, p. 

145) 

 

It is therefore a mistaken dichotomy to wonder whether the unit of analysis of 

identity should be the community or the person. The focus must be on the 

process of their mutual constitution…. In a duality it is the interplay that matters 

most, not the ability to classify. (Wenger, 1998, p. 146) 

 

In sum, I consider Thurstone’s requirements as more compatible with 

Holland et al. (2001) than with Wenger (1998) on this issue.  

3.3 Concluding remarks 
In this chapter, I have addressed research question 1. Specifically, I 

advocate that a measuring theory on mathematical identity, that is, a 

theory that allows some persons to identify more strongly with 

mathematics than others, must consider four aspects: dimensionality, 

additivity, invariance, and relativity.  

It is evident that few theories of identity were constructed for the 

purpose of measurement. Therefore, the fact that such theories avoid 

addressing Thurstone’s requirements of measurement is by no means a 

complaint. Nonetheless, I have experienced that it is difficult to decide 

whether existing theories of identity are compatible with measurement.  

However, even if it is difficult to compare theories proposition-by-

proposition, I conclude that some ideas on identity are incompatible with 

theories of measurement. The way Wenger’s (1998) conception of 

identity as a ‘constant becoming’ challenges measures as static positions 

is one such example. Other theories seem more compatible. The theory 

of Holland et al. (2001), in particular, appears more consistent with 

Thurstone’s requirements than Wenger’s (1998) theory, although 

Holland et al. (2001) did not address measurement explicitly. 
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In summary, I claim that a perspective on mathematical identity that 

addresses requirements of measurement explicitly is desirable. This will 

be the topic of the following chapters. 
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4 Methodology 

The argument in this chapter is influenced by a (neo)-pragmatic 

philosophy on truth and theory, which I describe in the first section. In 

this first section, I discuss theory-pluralism, and I explain the existence 

of objective truth relative to a defined theoretical frame. 

In this chapter, I address research question 2: What is a paradigmatic 

method for measuring mathematical identity? If we accept the existence 

of objective truth, then I claim that some methods of measuring 

mathematical identity are truly better than others, insofar as the 

theoretical frame is defined. This issue, I discuss in the subsequent 

sections. First, I describe two commonly applied theories of 

measurement—RMT and IRT—both of which relate to principles of 

interval measurement. I then explain the incommensurability thesis, 

before I build on Andrich (2004) when I claim that RMT and IRT are 

situated in incommensurable paradigms. The main philosophical 

difference is the interpretation of principles of measurement: IRT sees 

them as assumptions, RMT as requirements. 

In the final section, I explain how I perceive the principles of 

measurement as requirements, and, therefore, I conclude that the 

application of RMT is a paradigmatic method for measuring 

mathematical identity. 

4.1 Pragmatism, truth, and theory 
Quite early in my study, I was intrigued by Charles S. Peirce, William 

James, and John Dewey, frequently referred to as the classical 

pragmatists. Later, I was influenced by Thomas Kuhn and Hilary 

Putnam. Amongst these philosophers, James was the first to use the term 

‘pragmatism’, and he proposed the following maxim: 
 

To attain perfect clearness in our thoughts of an object, then, we need only 

consider what conceivable effects of a practical kind the object may involve—

what sensations we are to expect from it, and what reactions we must prepare. 

Our conception of these effects, whether immediate or remote, is then for us the 

whole of our conception of the object, so far as that conception has positive 

significance at all. (James, 1977, pp. 377-378) 

 

This maxim was the extension of one presented by Peirce some years 

earlier. 
 

Consider what effects, that might conceivably have practical bearings, we 

conceive the object of our conception to have. Then, our conception of these 

effects is the whole of our conception of the object. (Peirce, Hartshorne, & 

Weiss, 1935, p. 1) 

 



48   On measuring and theorising mathematical identity 

From these theses, it is evident that a pragmatic view connects 

validity with practical consequences of knowledge and theory. To 

illustrate with two extreme and hypothetical examples: A theory can be 

perfectly logical, and, yet, the theory will be useless, and hence, 

according to the maxims, no true theory at all, if accepting/rejecting the 

theory does not lead to some practical consequences. Conversely, a 

theory might be proven incomplete, and nevertheless, it can in some 

sense be true if it is found to be useful (Newton’s theory of gravity is an 

example of this kind).  

It is worth noting that Putnam claimed that he was no pragmatist, 

although he was, admittedly, inspired by this philosophy. Likewise, 

Peirce refused James’ extension, and therefore, claimed that he, Peirce, 

was no pragmatist either (he preferred the term pragmatisism to make the 

difference). The aim of this chapter, however, is not to provide a 

historical description of pragmatism as such. Therefore, I will not pursue 

the Peirce/James controversy, nor other controversies in the pragmatic 

discussion any further. Instead, I will interpret the word ‘pragmatism’ in 

the broader sense when I describe some ideas on truth and theory that 

have had a practical impact on my study. In particular, I have been 

influenced by Putnam’s pragmatic realism. 

 

Before the classical pragmatists, Kant proposed a philosophy that 

introduced a human element to knowledge. His Critique of Pure Reason 

is immensely difficult to read—even harder to understand—and, thus, I 

will not pretend that I follow his arguments in length. It is evident, 

however, that his ideas of categories have influenced some of the 

pragmatic thinkers. 

In essence, Kant believed that humans have a priori knowledge, that 

is, categories of interpretation that precede experience. These categories 

shape the way we understand the world. This view—that knowledge 

implies a great deal of human interpretation—is particularly visible in 

Putnam’s writings. That is, Putnam rejected the extreme realist 

perspective in which knowledge is seen as a ‘copy’ of an external reality 

and, consequently, that the role of science is to document natural facts as 

they present themselves. If we turn the attention to mathematical 

identity, I agree with Putnam when I claim that science cannot represent 

identity as it is; the signs we use to represent mathematical identity do 

not correspond to some unrelated object. 
 

In an internalist view also, signs do not intrinsically correspond to objects, 

independently of how those signs are employed and by whom. But a sign that is 

actually employed in a particular way by a particular community of users can 

correspond to particular objects within the conceptual scheme of those users. 

‘Objects’ do not exist independently of conceptual schemes. We cut up the world 
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into objects when we introduce one or another scheme of description. Since the 

objects and the signs are alike internal to the scheme of description, it is possible 

to say what matches what. (Putnam, 1981, p. 52) 

 

An extreme relativist, then, might claim: If the world does not reveal 

itself as it is, that is, if knowledge and theories are merely human 

constructions that depend on our categories of interpretations, innate or 

culturally appropriated, then anyone could propose just about any theory. 

Moreover, since we do not have access to the external reality, any such 

theory would be equally valid.  

However, in agreement with Putnam (1981), I do not believe that a 

rejection of extreme realism implies the endorsement of radical 

relativism. It is certainly true, most pragmatists would agree, that there 

exists no objective rule for determining when a theory is right and when 

it is wrong. Identity, for example, is not, in its absolute existence, a 

narrative, as Sfard and Prusak (2005) proposed. Nor is it a constant 

becoming as described in the theory of communities of practice 

(Wenger, 1998), or, what I later propose in this thesis, a relative position.  

Nevertheless, even if any argument that tries to decide which 

perspective that mirrors reality most accurately is doomed to fail, it is not 

the case that every theory should be valued equally. This is because, 

according to most pragmatists, knowledge is not entirely a human 

construction. There also is a contribution from nature. It is evident, for 

example, that Euclidean geometry is a human construct. However, the 

fact that houses do not collapse is an indication that there also must be 

something fundamentally right about this geometry, and we can make 

this claim without asserting that the universe is Euclidean, just as we can 

make a similar argument to advocate that there is something 

fundamentally right about other geometries, that is, in situations when 

they work.  

To discuss an example closer to our field: When people remember 

mathematical constructs—algorithms for example—more readily when 

they understand the algorithms than when they have learned them by 

rote, it indicates that there is something fundamentally right about 

principles of reform mathematics, although these principles were 

constructed by humans.  

This is why I, in this thesis, claim that mathematical identity, seen as 

a relative position, is not entirely a human construction. When we 

observe that there exist characteristics that align on a single dimension, 

and that some of these characteristics are person-independent, it means 

that there is also something fundamentally right about perceiving 

mathematical identity in this way.  
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The rejection of the extreme realist and the extreme relationalist 

positions implies that knowledge is a collection of theories that evolves 

relative to human experience, as opposed to a growing body of facts. 

This evolutionary perspective was mainly advocated by Kuhn and 

Dewey, for example, when Dewey discussed the method of science.  
 

[The method of science] (1) regards all statements as provisional or hypothetical 

till submitted to experimental test; (2) endeavours to frame its statements in 

terms which will themselves indicate the procedures required to test them; and 

(3) never forgets that even its assured propositions are but the summaries of prior 

inquiries and testings, and therefore subject to any revision demanded by further 

inquiries. (cited in Bacon, 2012, p. 54)  

 

As I discussed in chapter 2, the field of identity research consists of a 

variety of incompatible theories. From my perspective, such multiplicity 

of theories is no more of a problem than the co-existence of multiple 

geometries, each usable in certain situations. What is most important is 

that we have enough geometries to answer our needs, that is, to build 

bridges, travel to the moon, understand gravity, and so forth. Likewise, I 

believe that it is more important to have enough theories on 

mathematical identity to answer relevant questions regarding how 

students, or people in general, relate to mathematics than it is to unite 

around one theory of everything. This is why I claim that a theoretical 

perspective on measured mathematical identities is not taking the place 

of other theories, but rather, extending the kind of questions that can be 

asked. If we choose to see identity as relative positions, then both 

personal identities and social structures can be measured, I claim.  

 

Although practical consequence—what a theory ‘can do’—is highly 

valued amongst pragmatists, internal consistency is also an ideal. In 

effect, this means that incomplete theories are acceptable as far as they 

are found useful in one way or another. However, such incompleteness 

will usually leave a feeling of unease—the theories are accepted, but 

only in anticipation of better theories. Thus, I partly agree with Sfard and 

Prusak’s (2005) criticism that theories of identity, in general, are too 

vague, for example, when they lack precise definitions. However, since 

the value of a theory is a function of both internal consistency and 

practical consequence, I am not willing to discard every theory that 

applies vague definitions. Wenger’s (1998) framework, for example, was 

particularly criticised by Sfard and Prusak (2005), but nevertheless, has 

been proven to be extremely useful in many settings. 

 

The evolutionary nature of theory development means that 

knowledge evolves dialectically, for instance, between theories, 
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experience, technology, and categories of interpretation. To illustrate, it 

is no coincidence that Rasch measurement increased in popularity 

parallel to the rapid development of personal computers since many of 

the analyses (e.g., maximum likelihood estimations) rely on fast 

computer calculations. Moreover, without technical possibilities of 

measuring mathematical identities, I doubt that I would be looking for a 

theoretical perspective that allowed it to be. But that is not all. From my 

prior education, I have gained sociocultural categories of interpretation. 

That is, I have been, and I still am, inclined to interpret experiences in a 

sociocultural frame. I believe this is one of the reasons why I see 

mathematical identity as relational as opposed to a static personal trait.  

 

Since multiple theories are accepted, truth cannot exist in isolation. 

Instead, truth exists relative to some theory, and when it does, I agree 

with Putnam (1981) that it takes an objective nature. This means that 

there exists some truth to the sum of angles in a triangle. However, this 

truth is related to some particular geometry. When the geometry, say, the 

Euclidean geometry, is selected, then truth no longer depends on what 

people might think, that is, the truth is no longer conventional (although 

the choice of geometry might be). If for instance, the majority believed 

that the sum of angles in a Euclidean triangle was equal to three right 

angles, then the majority would simply be wrong, convention or not.  

In the extension of this argument, I claim that some methods are truly 

better than others. Likewise, some research questions truly do make 

sense, however, only relative to a theoretical frame. Questions about the 

strength of mathematical identity, for instance, are not meaningful or 

meaningless in themselves. Since there exist multiple theories on 

identity, such questions can be meaningful relative to some theories and 

meaningless relative to others. 

 

Some of these ideas were also discussed more recently by Radford 

(2008, p. 322) (although I have not seen that he relates himself explicitly 

to pragmatism) who argued that a theory is a flexible triplet τ = (P, M, 

Q) consisting of principles, methodologies, and paradigmatic research 

questions. The principles of a theory (P) was considered by Radford 

(2008) as a relational system, as opposed to a set. Moreover, the 

associated methodologies (M) support the underlying philosophies of 

(P). Finally, a theory is defined by the range of questions, (Q), which can 

be asked. Moreover, the triplet is interrelated in a specific way. For 

instance, the methodology must be compatible with the basic principles, 

and suitable for answering the research question. Likewise, the research 

question must be formulated in a way that is consistent with the 
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principles, and in a way that can be answered from the associated 

methodology. 

4.2 Philosophy of measurement 
The pragmatic stance I have discussed so far affects how I regard the 

nature of the questions that I ask and their associated answers. That is, to 

the question of a paradigmatic method of measuring mathematical 

identity, there exists no absolute answer detached from theoretical 

frames. However, when theoretical boundaries are made explicit, then an 

answer does exist, and when it does, the answer is objective. This means 

that the truth value of the answer depends on rational reasoning, not 

convention. 

The key to understanding a paradigmatic method for the 

measurement of mathematical identity, then, is to understand the basic 

principles of two theories: (1) a theory of measurement, and (2) a theory 

of mathematical identity. A paradigmatic method for measuring 

mathematical identity must be compatible with both.  

In this section, I consider the first relationship, that is, the 

relationship between theory and methods of measurement. Specifically, I 

discuss two commonly applied methods for measurement in the social 

sciences, the application of RMT and IRT, both claiming to be consistent 

with Thurstone’s principles of measurement. After a description of RMT 

and IRT, I explain how these theories differ in philosophy, that is, how 

they interpret Thurstone’s principles differently. This difference has 

significant consequences, much deeper than technical accuracy, when I 

in later chapters discuss the second relationship, that is, between the 

method of measurement and principles of mathematical identity.  

4.2.1 Rasch measurement theory 

RMT is a psychometrical theory that claims to be consistent with 

requirements of interval measurement. That is, Rasch (1960, 1961) 

formulated a model that was additive as opposed to ordinal. This 

additive property means that a person, or an item, that is measured to be 

two units is not ‘somewhere in between’, rather, ‘exactly in the middle’ 

of one and three units, if we exclude measurement errors. Moreover, the 

model requires the data to be uni-dimensional. As such, standardised 

residuals between data and model are considered to be random noise 

when data from an instrument fit the Rasch model. Also, Rasch 

demonstrated how persons and items could be conditionally separated 

and, consequently, how person measures and item measures could be 

estimated independently. 

In effect, Rasch measurement is analogous to physical measurement. 

Thus, anything that, in general, is true for physical measures must, in 

theory, be true for psychometrical measures. A few examples illustrate 
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this point. If the physical height of a person A is measured with a ruler, 

using even numbers only (including one arbitrary odd number, say 1), 

and the height of another person B is measured with a ruler using odd 

numbers only (including one arbitrary even number, say zero), then one 

can compare the heights of person A and B directly, even if there exist 

only two common points of reference, that is, zero and one. Equally 

important: Changing instruments—measuring person A on the odd ruler 

and person B on the even ruler—does not affect our conclusion, again, 

ignoring measurement errors.  

If we continue this analogy, some more points become apparent. The 

inclusion or exclusion of marks on the ruler does not affect the height of 

the person, only the precision of the measure. Moreover, if we measure 

the height of individuals, the inclusion or exclusion of marks in the range 

1-2 meters would affect the accuracy more than what marks in the range 

2-3 meters would. 

In the Rasch paradigm, every argument in this analogy is true. 

Accordingly, both items and people appear on the same variable—items 

being analogous to marks on the ruler. Moreover, just like marks on the 

ruler have a thickness—sometimes quite thin, like the rulers in students’ 

pencil cases, other times thicker, like the ones teachers use on the 

blackboard—so does each item have a thickness that represents the 

standard error of its location.  

Moreover, there is a distance between each pair of adjacent items, 

and this distance is not required to be uniform. At this point, however, a 

digression is appropriate. On a ruler, the one in your pencil case, for 

example, the distances between the marks are as close to uniform as the 

manufacturers managed to make them. While this might be something of 

an ideal in psychometrics, it is practically difficult to add, say, one unit 

to an existing item. Consequently, the items in psychometrical 

instruments often have a non-uniform distribution. The practical 

consequence of this distribution can be understood as similar to the 

hypothesised impact of erasing some marks on a (physical) ruler. 

 

If we were to decide whether a person, measured with a ruler, was 

shorter or taller than, for example, 1.60m, then the likelihood of our 

conclusion being ‘taller’ would be a function of the distance between 

1.60 and the true height of the person. If the true height of the person 

were exactly 1.60, then the likelihood of our conclusion being ‘taller’ 

would be the same as being ‘shorter’, namely, 50%. The taller the 

person, relative to 1.60, the more likely we would conclude the person to 

be taller than 1.60. The shorter the person, relative to 1.60, the less likely 

we would be to conclude her to be taller than 1.60.  
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The dichotomous Rasch model expresses this relationship: If 𝛿 is the 

measure of an item, then, the likelihood of the person, of measure 𝛽, 

exceeding—answering correctly, agreeing, or the like—to the item is: 

 

P(X = 1) =
exp(𝛽 − 𝛿)

1 + exp(𝛽 − 𝛿)
     (1) 

 

When 𝛽 = 𝛿, the likelihood equals 50%. As 𝛽 increases, relative to 𝛿, 

the probability gets closer to one. When 𝛽 decreases, the likelihood gets 

closer to zero. 

Andrich (1978) extended the Rasch model to rating scale data and 

formulated the probability of a person, with measure 𝛽, responding in 

category x, on an item with measure 𝛿, and m inter-category 

thresholds—τk being the kth threshold location. This is known as the 

Rating Scale Model (RSM). By convention ∑ 𝜏𝑘
𝑚
𝑘=0 = 0. 

 

P(X = 𝑥) =
exp(𝑥(𝛽 − 𝛿) − ∑ 𝜏𝑘

𝑥
𝑘=0 )

∑ exp(𝑛(𝛽 − 𝛿) − ∑ 𝜏𝑘
𝑛
𝑘=0 )𝑚

𝑛=0

     (2) 

 

In addition to the RSM, there exist multiple variations of the Rasch 

model, including the partial credit model (PCM) (Masters, 1982) and 

multi-faceted models (Linacre, 1989). However, since I, in my study, 

have relied on the RSM, none of these alternatives will be discussed in 

depth.  

There are multiple algorithms for estimating the parameters in the 

model. Such algorithms include the Normal Approximation algorithm, 

Conditional Maximum Likelihood estimation, and Joint Maximum 

Likelihood Estimation (JMLE). 

Since the choice of algorithm, in most cases, has little practical 

consequence (Linacre, 1999), I made the selection based on 

convenience—the data in the study was calibrated from JMLE which 

happened to be implemented in the Winsteps software, that is, the 

software I used in the analysis. The algorithm can be studied in detail in 

Wright and Masters (1982). Thus, for now, I sketch an intuitive 

explanation only.  

The JMLE process is successful when, for each item and person, the 

observed score and the expected score based on the current parameter 

estimates are the same. This is obtained by improving the parameter 

estimates by means of Newton-Raphson iteration. Initial estimates for 

the parameters are established by, for example, setting every parameter 

to zero, or using the Normal Approximation algorithm with the original 

data matrix to calculate approximate, initial, values. Moreover, a 
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constraint must be introduced, for example, shifting the values so that the 

mean item difficulty is zero. Subsequently, an expected matrix, a 

variance matrix, and a residual matrix are constructed from the initial 

Rasch estimates. For each item and each person, new values are 

estimated by correcting the initial values by the sum of residuals divided 

by the sum of the model variances of the expected observations. The true 

logic of this procedure lies in the Newton-Raphson algorithm. However, 

intuitively, a person’s (or an item’s) initial value is corrected so that, if 

he, in general, score higher than what is expected by the initial value, the 

value is shifted to be slightly less, and vice versa. When every persons’ 

and every items’ measures are corrected, the original constraint is again 

made (e.g., setting the item mean to zero again), and the procedure 

continues until the corrections are ‘small enough’, where the criterion for 

‘small enough’ is set by the researcher, usually too small to be visible on 

any graphical output. 

4.2.2 Item Response Theory 

IRT developed parallel to RMT. Both theories responded to problems 

with ‘raw score measurement’ (e.g., classical test theory). Three models 

are typically used within the IRT-paradigm: 3PL, 2PL, and 1PL, 

whereby 1PL and 2PL are special cases of the 3PL model. 

In dichotomous cases, the 3PL model expresses the likelihood of 

person j, with measure ϴj, getting a score of 1 (e.g., answering correctly 

to an ability test, or agreeing with some statement) on item i, with 

measure bi. 

 

P(X = 1) = 𝑐𝑖 + (1 − 𝑐𝑖)
exp[1.7𝑎𝑖(ϴ𝑗 − 𝑏𝑖)]

1 + exp[1.7𝑎𝑖(ϴ𝑗 − 𝑏𝑖)]
     (3)  

 

The constant, 1.7, is a scaling parameter that eases the interpretation 

of a for those who are familiar with the normal ogive metric. However, 

there are no other reasons for including this constant, and thus, it can be 

omitted easily (DeMars, 2010, p. 14). 

The b parameter is the item difficulty, analogous to the δ parameter 

in the Rasch model. Figure 4 illustrates the case of two items with 

different b but similar a and c.  
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Figure 4. Two items with different difficulties, b  

The a parameter is the item discrimination, that is, the slope of the 

item characteristic curve (ICC). When a=0, there is no discrimination, 

and the item is, therefore, equally difficult for all ‘ability levels’. When a 

is sufficiently large, the discrimination is perfect, in the sense that 

(almost) every person with a measure below b will ‘fail’ and (almost) 

every person with a measure higher than b will ‘succeed’ on this item. 

Figure 5 illustrates these hypothetical examples.  

In practice, however, the value of a typically ranges from 0 to 3 

(DeMars, 2010, p. 21). Figure 6 illustrates a realistic variety of 

discriminations to three items with similar b and c. Notice how the order 

of the difficulties changes when person measures go from weak to 

strong.  
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Figure 5. No discrimination vs ‘perfect’ discrimination 

 

Figure 6. Items with different discrimination, a 
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The c parameter is the lower asymptote parameter, and it is 

frequently referred to as the ‘guessing parameter’. This is because it 

accounts for guessing on a test, or any phenomena that cause similar 

shapes of the ICCs. To illustrate, consider two items on a mathematics 

test. One item is an open question with little chance of guessing the 

correct answer if one does not know it, and the other item is a multiple 

choice item. If students were graded on this test, then it is likely that 

some of them would guess on some of the questions for which they did 

not know the answer (and, for the sake of the argument, we assume that 

everyone who did not know the answer guessed on every item for which 

they did not know the answer). Then, both items in the example could be 

equally difficult and discriminate equally—they would have the same a 

and b parameters. Nonetheless, persons with low abilities (these are the 

ones most likely to guess) would be more likely to answer correctly to 

the multiple choice item than the open question. Figure 7 illustrates the 

case of guessing. Notice how every person is more likely to answer 

correctly to the items which allow for guessing, although the difficult 

parameter, b, is similar. Moreover, the difference in probability of 

answering correctly is greatest amongst persons with low measures, 

since they are more likely to guess than persons with high measures.  

 

 

Figure 7. Item with no guessing vs item with some guessing 
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It has been argued that IRT modelling is sometimes more productive 

when no more parameters than necessary are included (DeMars, 2010, p. 

29). Thus, when there are few indicators of guessing, the c parameter can 

be constrained to 0, leading to the 2PL model: 

 

P(X = 1) =
exp[1.7𝑎𝑖(ϴ𝑗 − 𝑏𝑖)]

1 + exp[1.7𝑎𝑖(ϴ𝑗 − 𝑏𝑖)]
     (4)  

 

Finally, when the discrimination, a, is constrained, the 1PL becomes: 

 

 

P(X = 1) =
exp[1.7(ϴ𝑗 − 𝑏𝑖)]

1 + exp[1.7(ϴ𝑗 − 𝑏𝑖)]
     (5)  

 

 

The intuitions behind IRT and RMT fit statistics are quite similar. 

Specifically, in each paradigm, the discrepancies between data and 

model are analysed. A common technique in the IRT paradigm is to 

group persons with approximately similar ϴ and assess residuals 

between actual and expected responses.  

In the RMT paradigm, the sum of squared standardised residuals is, 

most frequently, assessed over individuals’ 𝛽 (for interpretive reasons, 

this sum is divided by the number of persons). Moreover, an alternative 

to this fit statistic is the information-weighted statistic that puts less 

emphasis on residuals when |𝛽 − 𝛿| is relatively large and more 

emphasis on residuals when |𝛽 − 𝛿| is close to 0 (e.g., Wright & Stone, 

1979).  

Mathematically, the 1PL model is equivalent to the Rasch model, 

except for the constant 1.7 which is arbitrary, and thus, does not have 

any practical consequence other than interpretation. Nevertheless, the 

Rasch model and the 1PL model differ in philosophy. Andrich (1989, 

2004) applied Kuhn’s notion of paradigms (Kuhn, 1970) and the role of 

measurement in science (Kuhn, 1977) to discuss these philosophical 

differences. In the following sections, I draw on this argument to 

illustrate how RMT and IRT are incommensurable theories.  

4.2.3 Paradigms and the incommensurability thesis 

In effect, a paradigm is a set of generalisations, beliefs, and values of a 

community of specialists. Typically, persons within a paradigm share 

philosophical principles such as ontologies, epistemologies, ethics, and 

methodologies (Creswell & Clark, 2011, p. 39). Kuhn (1970, p. 110) 

pointed out that “since no two paradigms leave all the same problems 
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unsolved, paradigm debates always ask which problems are more 

significant to have solved”. 

Sometimes, from the starting point of a paradigm, a revolution 

generates a new paradigm that is incommensurable with the old one 

(Kuhn, 1970, p. 103). Three aspects of the incommensurability between 

paradigms were discussed by Kuhn (1970). 

First, there are often disagreements on which problems to solve. 

When paradigm A works with the problems a1, a2, a3, and paradigm B 

considers problems b1, b2, b3, it is hard to agree on which paradigm 

works best, since there are no shared problems. If both paradigms 

recognise the differences in these problems, the paradigms can live 

‘peacefully’ side-by-side, each respecting (though not agreeing with) the 

other paradigm as a legitimate one. Sometimes, however, the different 

paradigms can have the false impression that they are working on the 

same problems. For instance, paradigm A can believe that problem b1 is 

the same as a1, and vice versa. This is likely to happen if one of the 

paradigms—say paradigm B—is extricated from another paradigm—say 

paradigm A (Kuhn, 1970, p. 148). 

Indeed, when one paradigm is derived from another, the second 

aspect of incommensurability is likely to appear, that is, the problem 

with equal terminology used in different ways. Specifically, when a new 

paradigm emerges, the terminology is often transferred from the old 

paradigm. Since the new paradigm has a different worldview than the 

old one, however, the meanings of this terminology can change (Kuhn, 

1970, p. 148). 

The third aspect of the incommensurability thesis is that different 

paradigms practice their trades in different worlds. Consequently, not 

only do they perceive the world differently, but they also perceive 

relationships differently (Kuhn, 1970, p. 150). 

 

A lot has been said about how research communities deal with 

controversies. Collins (1975), for instance, argued that not only evidence 

but also rhetoric is necessary to reach consensus. Moreover, Engelhardt 

and Caplan (1987) asserted that closure could take place via loss of 

interest, force, consensus, sound argument, and negotiation (Hess, 1997, 

p. 99). Kuhn (1970) described ‘resolutions of revolutions’ to be difficult 

because different paradigms dictate which problems are important and 

which criteria to use to decide which methods work best to solve them: 
 

If there were but one set of scientific problems, one world within which to work 

on them, and one set of standards for their solution, paradigm competition might 

be settled more or less routinely by some process like counting the number of 

problems solved by each. But, in fact, these conditions are never met completely. 



On measuring and theorising mathematical identity   61 

The proponents of competing paradigms are always at least slightly at cross-

purposes. (Kuhn, 1970, pp. 147-148) 

 

However, people do convert to new paradigms for different reasons, 

for instance, the promise to solve problems that led to the ‘crisis’, better 

precision, simplicity, prospective consequences, or, inevitably, faith 

(Kuhn, 1970). 

4.2.4 Kuhn’s incommensurability thesis—the case of IRT and 

RMT 

Although IRT and RMT seem very similar, even equivalent in the case 

of 1PL, there are fundamental, philosophical differences. One difference 

is the ontology of Thurstone’s (1959) principles of measurement: uni-

dimensionality, additivity, and invariance. In IRT these are referred to as 

assumptions (e.g., DeMars, 2010), as opposed to RMT where they are 

known as requirements (e.g., Rasch, 1960). The distinction between 

assumptions and requirements is fundamental. Requirements must exist 

while assumptions do exist and should be accounted for if they are 

violated. This distinction was explicitly discussed by Andrich (1989).   

Consequently, the ontologies of data and model are also different. In 

the case of IRT, the 1PL is one of many possible models. As such, it is 

something amendable. In the case of the RMT, the Rasch model is not a 

model that explains the data but a definition of measurement, and 

therefore cannot be changed. 

Again, these different interpretations have epistemological 

consequences when there are discrepancies between the data and the 

model. In effect, IRT conforms to traditional modelling and works with 

the model (holding the data sacred), whereas RMT works with the data 

(holding the model sacred). 

 

In summary, it can be argued that IRT and RMT are anchored in two 

different paradigms. To understand why proponents of IRT and RMT 

never managed to agree, I will discuss both traditions in terms of the 

three aspects of the incommensurability thesis (Kuhn, 1970). A more 

extensive account can be found in Andrich (2004).  

First, proponents of RMT and proponents of IRT seem to be working 

on different problems, typical for contrasting paradigms: 
 

The proponents of competing paradigms will often disagree about the list of 

problems that any candidate for paradigm must resolve. Their standards or their 

definitions of science are not the same. (Kuhn, 1970, p. 148) 

 

Many of these problems, however, seem to be ‘translations’ of 

problems that yield both paradigms. The problem with ‘guessing’ and 

similar phenomena illustrate the point. This issue is evident, regardless 
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of whether the researcher chooses the IRT or the RMT. If we consider 

how the problem is formulated in the literature, however, we find 

problems that appear to be ‘translations’ of the problem with guessing. 

In the case of IRT, the problem with guessing is an expression of the 

kind: How can we account for guessing? In the RMT, the problem is a 

formulation of the kind: How can we eliminate guessing? Both 

paradigms agree that guessing is a problem, but neither of them accepts 

how the problem is formulated by the conflicting paradigm.  

To account for guessing means that guessing is allowed to appear in 

the data. This is a violation of the requirement of invariance and, 

according to RMT, cannot happen if the numbers are to be called 

measures. Conversely, to eliminate guessing means ‘fixing the data to fit 

the model’, which, according to IRT, is not an option as this is merely 

cheating with the data. 

As we have seen, in IRT, the c parameter is included when guessing 

is observed. In contrast, Waller (1976) proposed a solution in which the 

data can be reduced in such a way that all responses to items ‘too hard’ 

for the respondents are removed. On the assumption that persons only 

guess on hard items, Waller (1976) asserted that most of the guessing 

would disappear from the data through this procedure. Another account 

of ‘guessing’ in the RMT was discussed by Andrich, Marais, and 

Humphry (2012).  

 

A second issue with conflicting paradigms is the interpretations of 

vocabulary. 
 

Since new paradigms are born from old ones, they ordinarily incorporate much 

of the vocabulary and apparatus, both conceptual and manipulative, that the 

traditional paradigm had previously employed. But they seldom employ these 

borrowed elements in quite the traditional way. (Kuhn, 1970, p. 149) 

 

Much of the vocabulary in the ‘new’ paradigm (RMT) also appears 

in the ‘traditional’ paradigm (IRT). The best example is the Rasch 

model, which is formulated equivalently to the 1PL model but employed 

differently. What in IRT is ‘one possible model’, is in RMT ‘a definition 

of measurement’.  

Another example is ‘fit statistics’. In IRT ‘fit statistic’ is an indicator 

of how well the model fits the data. In RMT ‘fit statistic’ is an indicator 

of how well the data fits the model. The vocabulary is so similar that it is 

hard to see the difference, but the consequences of bad fit statistics are 

quite different: In IRT, if the model does not fit the data, one has to fix 

the model; in RMT, if the data does not fit the model, one has to fix the 

data.  
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The problem used to be that proponents of IRT frequently referred to 

the Rasch model as a particular case of the IRT models. From this 

stance, not recognising the philosophical differences, it may seem 

strange why proponents of RMT were so hesitant to include more 

parameters in the model. Divgi (1986) reflected this view when he 

considered the Rasch model as “a special case of a more general model” 

(p. 284). Furthermore, Traub (1983) reacted on the a priori 

considerations that proponents of the RMT were making. However, 

when Traub (1983) reacted to the Rasch model, he referred to uni-

dimensionality, invariance, and additivity as assumptions, but these are 

assumptions only in the IRT paradigm. In the RMT paradigm, they are 

requirements; proponents of RMT do not hope that they occur, they 

require them to do so. This serves as an example of how slightly 

different words, but with fundamentally different meanings, can make 

competing paradigms ‘talk through each other’. Today, these 

philosophical differences are much more transparent. 

 

A third issue of the incommensurability thesis is how paradigms 

operate in different worlds.  
 

In a sense that I am unable to explicate further, the proponents of competing 

paradigms practice their trades in different worlds…. In some areas they see 

different things, and they see them in different relations one to the other. (Kuhn, 

1970, p. 150) 

 

I assert that this aspect is closely related to the different ontologies. 

When IRT sees assumptions, RMT sees requirements. When IRT sees a 

model as something amendable, RMT sees it be a definition of 

measurement. When IRT sees data as sacred, RMT sees it as something 

that can be modified.  

Moreover, the relationship between model and data is entirely 

different in the competing paradigms. It is as if they stand on different 

positions, looking at each other. Proponents of IRT ‘stand on the data’ 

and look for an appropriate model, whereas proponents of RMT ‘stand 

on the model’ and look for relevant data.  

Over the past years, it seems as if the controversy has settled to an 

‘agreement to disagree’. This is evident in more recent publications 

where authors from both traditions have contributed (e.g., Nering & 

Ostini, 2010). Why none of the paradigms has managed to persuade the 

whole field is difficult to answer. One reason might be that the case is 

not settled. Kuhn (1970) suggested that a paradigm shift can last for a 

generation, so it is possible that only one of the paradigms will survive in 

the future (until it is replaced by yet another one). 
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In this section, I have explained philosophical differences between 

RMT and IRT. In the next section, I build on these differences when I 

discuss what I consider to be the paradigmatic method for measuring 

mathematical identity.  

4.3 A paradigmatic method for the measurement of 

mathematical identity 
If ‘truth’ exists relative to a theoretical frame, then, to understand a 

paradigmatic method of measuring mathematical identity, we must 

specify the interpretation of the principles of measurement. According to 

the description in the former section, the decisive matter is whether the 

principles are assumptions or requirements. In this thesis, I interpret the 

principles as requirements for two reasons. First, in Thurstone’s original 

writings, the principles were referred to as requirements and not 

assumptions. This is a common argument in the RMT paradigm. More 

importantly, the analysis of the empirical data rejected the assumption 

that mathematical identity is entirely context-free. This, and similar 

results, I believe, should be visible from the process of measurement, 

and not hidden in model parameters. On this ground, I answer research 

question 2 when I conclude that the application of RMT is a 

paradigmatic method for the measurement of mathematical identity.  

However, although I am much in favour of the logical arguments 

posed by proponents of the RMT, I appreciate that, at the time this thesis 

is written, there is no consensus on the interpretation of Thurstone’s 

principles. Accordingly, I maintain that the interpretation is arbitrary. 

Hence, when I say that the application of RMT is a paradigmatic method 

for measuring mathematical identity, this assertion is not absolute, 

rather, a premise for the subsequent theorisation of principles of 

mathematical identity. Specifically, the interpretation of Thurstone’s 

principles does not only lead to a specific method of measurement, but 

also forces specific theoretical interpretations of mathematical identity. 

To illustrate with a concrete example: In Paper II, I argue that there 

exist social structures of being mathematical and that these structures are 

person-independent (I will explain more about this in chapter 6). The 

‘choice’ of method, that is, the interpretation of Thurstone’s principles 

affects how the person-independence is understood—whether it is an 

assumption or requirement.  

If the principle is an assumption, then empirical contradictions will 

force actions to account for the discrepancies or, alternatively, lead to the 

conclusion that mathematical identity cannot be measured after all, 

insofar as the assumption is proven false. If on the other hand, the social 

structure is required to be person-independent, then empirical 

‘contradictions’ will cause a reduction of the structure. 
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When I assert that the application of RMT is the paradigmatic 

method for measuring mathematical identity, it follows that the social 

structure of being mathematical is required, not assumed, to be person-

independent. Consequently, in Paper II, I define the social structure of 

being mathematical as the person-independent subset of every 

characteristic of being mathematical. Thus, any ‘contradiction’ is not a 

contradiction at all but an indication that some elements are not socially 

structured. 

A consequence of the latter interpretation is that the social structure 

is not assumed to be equal across contexts, for example, between 

countries or institutions. What is required is that, if one is to compare 

measures across context A and B, there must exist a subset of structure A 

that is similar—in content and structure—to a subset of structure B, 

whereas the relative size of these subsets is of little importance. In Paper 

II, I advocate that, when no such subset exists, then mathematical 

identity is entirely situated between contexts A and B. When structure A 

is equivalent to structure B, mathematical identity is entirely context-

free. 

4.4 Concluding remarks 
In this chapter, I have discussed research question 2. I have asserted that 

the measurement of mathematical identity must be compatible with both 

principles of measurement and principles of mathematical identity. 

However, there are two theories of measurement that are frequently 

applied in the social sciences, RMT and IRT, both of which claim to be 

consistent with principles of measurement. The main philosophical 

difference between these two approaches is how IRT sees the principles 

as assumptions, whereas RMT sees them as requirements. Since I 

interpret Thurstone’s principles to be required, as opposed to assumed, I 

claim that the application of RMT is a paradigmatic method for the 

measurement of mathematical identity. 

There are theoretical consequences of perceiving principles of 

measurements as requirements, as opposed to assumptions. This is 

something that will be discussed in chapter 6 and 7. Before that, I will, in 

the next chapter, present the methods that I have applied in this study. 
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5 Methods 

In this chapter, I describe the methods I have applied in the empirical 

parts of the study. First, I describe the research design and data 

collection. I then present quantitative and qualitative methods and issues 

of validity. I end the chapter with a discussion on ethical issues.  

5.1 Design and data collection 
The empirical part of my study had a mixed-methods design, whereby 

the study is not a mixture of quantitative and qualitative data only, but 

also one of research site and theory. Methodological textbooks (e.g., 

Creswell & Clark, 2011) present a variety of mixed-methods designs, all 

depending on the weight of quantitative and qualitative data, the 

sequence of the study, and method of merging the data. I find it difficult, 

however, to position this study within any broad category. In the end, the 

study has moved dialectically between quantitative and qualitative data 

and also between theory and data. 

5.1.1 Sources for instrument development 

The development of an instrument for measuring mathematical identities 

relied on three primary sources. First, related instruments were 

examined, and I was mainly influenced by the ASSIST instrument 

(Entwistle, 1997) that identifies three learning styles: the deep approach, 

the surface apathetic approach, and the strategic approach. Concrete 

examples of items that were influenced by the ASSIST instrument are:  

 

 I struggle with putting math problems aside, and   

 when I work with a problem, I pause along the way to reflect on 

what I am doing. 

 

A second source was the literature on the understanding of 

mathematics. That is, in their classical writings, Skemp (e.g., 1987) and  

Hiebert (e.g., 1986) discussed ways of knowing and understanding 

mathematics, for instance, relational (or conceptual) and instrumental (or 

procedural) understanding/knowledge, and how these ways of 

understanding are related. Subsequently, much has been said about 

teaching and learning mathematics for understanding. For example, 

Kilpatrick, Swafford, and Findell (2001) identified five strands of 

mathematical proficiency:  

 

 conceptual understanding, 

 procedural fluency, 

 strategic competence, 
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 adaptive reasoning, 

 productive disposition. (Kilpatrick et al., 2001, p. 5) 

 

Another example is Carpenter and Lehrer (1999) who proposed five 

mental activities that promote understanding:  

 

 constructing relationships, 

 extending and applying mathematical knowledge, 

 reflecting about experiences, 

 articulating what one knows, and 

 making mathematical knowledge one’s own. (Carpenter & Lehrer, 

1999, pp. 20-21) 

 

Examples of items informed by the literature are:  

 

 I take the initiative to learn more about math than what is required at 

school/work, and 

 math ideas I hear or learn about help me inspire new trains of 

thoughts. 

 

In addition to external instruments and the literature on mathematical 

knowledge, information was sought amongst members of mathematical 

communities. That is, characteristics of working ‘deeply with 

mathematics’ were discussed with colleagues of mine at the University. 

In addition, I corresponded with mathematicians and PhD students in 

STEM-related subjects (pure mathematics in particular). An example of 

a response from a lecturer in STEM-related courses is presented below: 

 
Students who work ‘deeply’ with mathematics often try to solve the problem in 

different ways, and they also pursue methods that do not work to find out why they 

fail. Students who work ‘on the surface’ are happy when the task is solved. In fact, 

they avoid multiple solutions since this will only cause unnecessary confusion. To a 

great extent, these students search ‘recipes’ that (they believe) can be used in every 

situation…. Regarding formulas, those who work ‘deeply’ with mathematics are 

curious about where the formula comes from. Those who work on the surface do not 

consider this at all…. Another impression I have is that students who work ‘deeply’ 

are more likely to visualise and make sketches, diagrams, etc., as aids for 

understanding the problem….  

 

Examples of items that were suggested by members of mathematical 

communities are: 
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 when I try to use a method that doesn’t work, I spend time to find 

out why it didn’t work, and 

 if I forget a formula or method, I try to derive it myself. 

   

It should be noted that most items could be related with multiple sources. 

5.1.2 Rounds of piloting and participants in the study 

Rounds of piloting were conducted to increase validity and reliability. In 

the first pilot, 50 items were administered to 88 TE students in their 

second year of education. The students were studying to become teachers 

in grades 1 to 10 (elementary and lower secondary school). I will not 

discuss the analysis of this pilot in detail but suffice to say that it 

followed the same framework as the final analysis, a framework that will 

be discussed later. As a result of the first analysis, and in particular, as a 

consequence of the items’ locations on the variable, nine new items were 

formulated intended to fill the greatest gaps on the variable. 

Subsequently, another pilot was conducted with 45 TE students in their 

third year of education, before a final set of 30 items were chosen.  

Table 2. Participants in the study 

Pilot 1     

 88 TE    

Pilot 2     

 45 TE    

DP 1     

 185 STEM    

  72 Calculus 2 –1 N/A grade  

  48 Pre-calculus –1 N/A grade  

  65 Calculus 3   

DP 2      

 187 STEM    

  125 (Norm.) final year 

students 

–6 N/A grade  

  12 Cryptography –1 N/A grade  

  50 Calculus 3 –2 N/A grade  

Total 505    

Note. N/A did not report grades. DP = Data point. (Norm.) final year students means students who 

started their education in 2010 

 

Following the rounds of piloting, the instrument was administered to 

a convenient sample of 185 STEM students at a Norwegian university. 

For the last sub-study (Paper III), an additional sample of 187 STEM 

students was selected. In Table 2, I explain which courses the students 

attended. It should be noted that students in the same courses attended a 

variety of study programmes. I discuss more about this in the last 

chapter. 
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Missing data include 11 respondents who did not report their grades. 

Therefore, the sample in Paper III is reported to be 361. The sample is 

summarised in Table 2. 

5.1.3 Comparing web-based and paper-based questionnaires  

Most respondents answered to a traditional paper questionnaire, except 

the subsample of 125 students in their normalised final year of education 

who, for practical reasons, responded to a web-based version of the 

instrument. To study whether the difference between web-based and 

paper forms affected the structure of the responses significantly, the 

measures of the final year subsample were analysed twice: first relative 

to the structure of mathematical identity calibrated on all STEM 

students, and then relative to the structure calibrated on final year 

students only. Thus, the normalised final year students (n = 125) were 

compared with themselves relative to two structures: one in which paper-

based responses were included and one in which paper-based responses 

were excluded. The correlation between students’ measures relative to 

these two structures was r = 1.00. Thus, from this analysis, there is no 

evidence that the form of the instrument affected personal responses 

significantly.  

 

 
Figure 8. Person measures of the 125 students taking the web-based questionnaire relative to: 

‘full structure’ vs ‘final year structure’ 

 

The items were administered in random order. Due to missing data 

being relatively unproblematic in the RMT paradigm (i.e., relative to 

other statistical techniques), as it is evident in the calibration algorithm 
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(see, e.g. Wright & Stone, 1979), the pilot data were included in the 

subsequent full analysis. 

5.1.4 Methods for the qualitative study of four STEM students and 

their mathematical identities 

Four STEM students were interviewed and asked about how they 

perceived their time at the University, which project they were currently 

engaged in, how they worked with mathematical problems, and how they 

learned new mathematics. Two of the interviewees were selected on the 

basis of having high, the other two on the basis of having lower 

measures. All interviews lasted for 60-90 minutes, and the interviews 

were conducted in the University canteen, as all interviewees preferred 

this location. The design of the interview, including the forms of the 

questions, was influenced by guidelines presented by Kvale and 

Brinkmann (2009). Specifically, the interviews aimed to get some 

detailed illustrations on characteristics of mathematical identity, rather 

than a broad narrative. The interview-guide is presented in Appendix G. 

The first student, called ‘student A’ in Paper II, studied pure 

mathematics. He attended the University straight from upper secondary, 

and he claimed that he was “very motivated”, although he had 

experienced a slight drop in motivation the last year. In lower secondary, 

he attended a “special maths class” that consisted of students that were 

especially interested in mathematics. At the time of the interview, he was 

working on a project with the aim of improving the validity of 

mathematical models when there is significant uncertainty in empirical 

observations. 

The second student, ‘student B’, started his higher education as a TE 

student before he shifted to pure mathematics. His interest in 

mathematics was influenced by activities in TE, he said. At the time of 

the interview, he was working on a project on the modelling of efficient 

maintenance of machines (e.g., in oil platforms).  

The third student, ‘student Y’, was studying physics. He claimed that 

he got very high grades in upper secondary, but that he was shocked 

when he faced university mathematics. During the interview, he referred 

to mathematics as “a necessary evil” and “a tool for solving physical 

problems”. When the student talked about his friends, he characterised 

them as “more clever than him”. 

The fourth student, ‘student Z’, was studying computer science. He 

told that he had “never been particularly bright in mathematics”, but in 

upper secondary, he got an interest in computer programming. On his 

spare-time, he was involved in sports, and this occupied much of his 

time and energy, he said. He explained how he found it difficult to start 

studying mathematics when he came home from training. At the time of 

the interview, he was working on a project with the aim of developing a 
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web application. There were five students in the project, and ‘student Z’ 

was responsible for what he called “the basic programming”. He said 

that it was much to do, but nothing particularly demanding. Moreover, 

the student explained how “the others” were able to apply mathematics 

to construct more efficient scripts, whereas his main strategy was to find 

solutions on the internet. 

In this study, I consider the profiles of the respondents to be of little 

importance. This is because the aim of the interviews was not to 

understand individuals as such, rather, to find qualitative illustrations of 

the characteristics, for example, what ‘struggling with putting 

mathematics aside’ might ‘look like’ in practice. When I make this 

claim, I am making the assumption that the meaning of, say, ‘struggling 

with putting mathematics aside’, does not depend on the profile of 

individuals, for example, whether they are males or females, or if they 

have high or low measures. When I, later, discuss differences between 

TE and STEM students, I illustrate how this assumption is not always 

true. Thus, future studies might assess which aspects—gender, 

nationality, age, and so forth—that affect the meaning of characteristics.  

5.2 Quantitative analysis and validity 
In my study, I have relied on a framework for validity, presented by 

Wolfe and Smith (2006a, 2006b) who extended Messick’s (1995) 

validation framework with two aspects of evidence put forth by the 

Medical Outcomes Trust (MOT). I indicate this as a technical validity, 

because the analysis is done through calculations and checks against 

criteria for the different types of validity: content validity, substance 

validity, generalisability, structural validity, external validity, and 

responsiveness. In this section, I explain the methods I have applied, not 

their results. The results will be discussed in the next chapter and Paper I 

(pp. 128-134). 

To ensure content validity, Infit and Outfit Mnsq and Zstd were used 

to assess data-to-model fit. Outfit Mnsq is a statistic based on the mean 

of squared standardised residuals, and Infit Mnsq is an information-

weighted sum (Bond & Fox, 2003, p. 238).  

When person n responds to item i, the standardised residual of this 

response is defined to be: 

 

𝑧𝑛𝑖 =
(𝑥𝑛𝑖−𝐸(𝑋𝑛𝑖))

(𝑉𝑎𝑟(𝑋𝑛𝑖))
1/2         (6) 

 

where,  

𝑥𝑛𝑖 is the observed response, 

𝐸(𝑋𝑛𝑖) is the expected response, and 
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𝑉𝑎𝑟(𝑋𝑛𝑖) is the variance (e.g., Wu & Adams, 2012, p. 341). 

 

Following from this, the Outfit Mnsq statistic is defined to be: 

 

Outfit Mnsq =
∑ 𝑧𝑛𝑖

2
𝑛

𝑁
 

              =  
1

𝑁
∑

(𝑥𝑛𝑖−𝐸(𝑋𝑛𝑖))
2

𝑉𝑎𝑟(𝑋𝑛𝑖)𝑛 ,    (7) 

 

where N is the number of respondents (p. 341).  

The Infit Mnsq statistic is defined to be: 

 

Infit Mnsq =
∑ 𝑧𝑛𝑖

2 𝑊𝑛𝑖𝑛

∑ 𝑊𝑛𝑖𝑛
,      (8) 

 

where 𝑊𝑛𝑖 is the variance for the response of person n on item i. Infit 

Mnsq is weighted so that the statistic is less affected by outliers, as 

compared to the Outfit Mnsq. 

   

If every response equals the expected response, then Outfit Mnsq and 

Infit Mnsq will be zero. In practice, however, few responses equal the 

expected value. Thus, given 1.0 as the modelled expected value, every 

Outfit Mnsq/Infit Mnsq below 1.0 is considered to be over-fitting, and 

every value over 1.0 under-fitting.  

  From the formulas presented by Smith, Schumacker, and Busch 

(1998, p. 78), critical values for Infit Mnsq and Outfit Mnsq were set to 

1.1 and 1.3 respectively. By convention, critical values for |Zstd| were 

set to 2.0, and the cut-value for item-measure correlation was set to .40. 

To find evidence for substantive validity, Linacre’s (2002) eight 

aspects for well-functioning rating scales were evaluated. 

 

1. Each rating scale category should contain more than 10 

observations,  

2. the shape of each rating scale distribution should be smooth and 

unimodal, 

3. the average respondent measure associated with each category 

should increase with the values of the categories, 

4. the category Outfit Mnsq fit statistics should be less than 2.0, 

5. step calibrations should advance, 

6. ratings should imply measures, and measures should imply 

ratings, 

7. step difficulties should advance by at least 1.4 logits, and  

8. step difficulties should advance by less than 5.0 logits. 
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Furthermore, several post hoc categorisations were considered to 

assess the empirical consequences of merging response categories. In 

addition, person fit statistics, and qualitative judgements about items’ 

placements on the variables were evaluated.  

To find evidence for the generalisability aspect of validity, analysis 

of invariance was conducted through differential item functioning (DIF): 

“the loss of invariance of item estimates across testing occasions” (Bond 

& Fox, 2003, p. 309). That is, the comparison between two items should 

be independent of which persons are being used in the calibration 

(Rasch, 1961, pp. 331-332). Specifically, DIF analysis was conducted to 

test the hypothesis that item measures remained invariant between 

institutions (TE and STEM), personal positions, and data points.  

Evidence for structural validity was sought in the examination of the 

dimensionality of the items by principal components analysis (PCA) of 

standardised residuals. Moreover, person measures based on items from 

different sub-dimensions were correlated to examine the impact on those 

dimensions, and the degree of local dependency between items was 

assessed. 

As evidence of external validity, theory-based predictions were 

evaluated. Specifically, measures from the mathematical identity 

instrument were compared with self-reported average grades on 

mathematics courses with the prediction that high measures are 

positively related to attainment. This study is discussed in Paper III. 

To seek evidence for responsiveness validity, the person-item map 

was examined to assess whether the items were well targeted for the 

sample. 

 

The Winsteps (Linacre, 2006) software was used in the analysis. An 

additional analysis was conducted using the RUMM2030 software 

(Andrich, Sheridan, & Luo, 2010) to ensure that the choice of software 

did not have any practical effect on the outcome. I will not discuss the 

RUMM2030 analysis any further, but I conclude that the consequences 

of choosing Winsteps are at the level of presentation, that is, the kind of 

statistics, graphs, and tables that are presented in the papers. 

5.3 Qualitative analysis, trustworthiness, 

generalisability, and importance 
The analysis of the interview data was conducted using codes from the 

quantitative data (i.e., the characteristics of mathematical identity) in 

addition to general theoretical codes, that is, tools, rules, community, 

division of labour, and objective (Engeström, 1987). The NVIVO 

software was used in the qualitative analysis. 
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Since Wolfe and Smith’s (2006a, 2006b) aspects of validity are 

mostly related to quantitative studies, a supplementary framework was 

considered to find evidence for validity of the qualitative data, namely, 

Schoenfeld’s (2007) aspects of trustworthiness, generalisability, and 

importance. In this section, I discuss these aspects.  

First, Schoenfeld addressed the descriptive power of research, which 

is “the capacity of theories or models to represent ‘what counts’ in ways 

that seem faithful to the phenomena being described” (p. 83). He 

illustrated this issue with an example. 
 

Consider a typical related-rates problem that involves a ladder sliding down the 

side of a building. The building is assumed to be (or explicitly stated to be) 

vertical and the ground horizontal. In the diagram representing the situation, the 

ladder, the building, and the ground are represented as lines that comprise parts 

of a right triangle. What matters for the purposes of the desired analysis are their 

lengths, and the way the ladder is moving. That information, properly 

represented and analyzed, enables one to solve the given problem; that 

information and nothing else is represented in the diagram and the equations one 

derives from it. What does not matter (indeed, what would be distracting in this 

context) includes how many rungs are on the ladder or how much weight it 

might support. In a different context, of course, such things would matter quite a 

bit. (Schoenfeld, 2007, p. 83) 

 

In my study, I propose a measuring perspective on mathematical 

identity. I am, therefore, emphasising issues related to measurement, 

including the dimensionality of mathematical identity. Consequently, I 

am ignoring other aspects that I consider of less importance regarding 

measurement. Such elements include uniqueness of data, that is, data that 

happen only once and which describe unique qualities of individuals or 

activities. When I do this, I am not disregarding their importance. 

However, regarding measurement, these aspects are like rungs on the 

ladder. 

On another note on the descriptive power: In Schoenfeld’s example, 

the reduction is not an exclusion of redundant information only, but also 

a simplification of the information that matters. When he said, for 

example, that the building is assumed to be vertical, this assumption is 

clearly false since no building is perfectly vertical. Nonetheless, the 

assumption—that is, the simplification—is warranted insofar as not 

making the assumption would disrupt the analysis without any practical 

gain.  

In my study, I make similar simplifications. For instance, when I 

claim that mathematical identity consists of a finite number of invariant 

dimensions, I am aware that this assumption, strictly speaking, must be 

wrong. This is because linear dimensions are nothing but abstract 

ideas—they can never be shown. The only time we can ‘see’ a line is 
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when it is not a line (this holds for a psychometrical dimension as well—

it can only be seen when it is multidimensional). Nonetheless, I claim 

that this simplification is warranted, because, if the multidimensionality 

has practical significance, I propose the inclusion of more dimensions to 

capture this complexity. 

Another simplification is the idea of social structure as person-

independent. I will explain this point later, but in short, it means that a 

social position does not depend on personal positions. This idea is 

clearly a reduction since no social positions are fully person-

independent. 

 

Schoenfeld proposed one more issue related to trustworthiness, 

namely, explanatory power—“the degree to which a characterization of 

some phenomenon explains how and why the phenomenon functions the 

way it does” (p. 83). This thesis is, admittedly, more descriptive than it 

has explanatory power. I explain key elements of mathematical identity, 

but the perspective provides few clues to why mathematical identity 

develops the way it does.  

However, I do believe that descriptive and explanatory powers relate. 

That is, I consider the conceptualisation of a measurable mathematical 

identity to be a potential tool for further explorations on how identities 

develop. In effect, I agree with Kuhn (1977) that the role of 

measurement in scientific work is to describe phenomena—not explain 

them. Measures, in general, provide little information on the nature of 

the measures, that is, explanatory power. To this end, qualitative work is 

usually necessary.  
 

Only a minuscule fraction of even the best and most creative measurements 

undertaken by natural scientists are motivated by a desire to discover new 

quantitative regularities or to confirm old ones. (Kuhn, 1977, p. 187). 

 

New laws of nature are…very seldom discovered simply by inspecting the 

results of measurements made without advance knowledge of those laws.... 

Because nature itself needs to be forced to yield the appropriate results, the route 

from theory or law to measurement can almost never be travelled backwards. 

(Kuhn, 1977, p. 197) 

 

One particular case illustrates this point. I will later show how the 

characterisic ‘taking the time to find better methods’ was structured 

differently in the TE and STEM contexts. This result was shown by 

measures. However, the measures provided no clue as to why this 

characteristic was structured differently. Qualitative interpretations, 

however, suggested one explanation: TE students were expected to 

search for multiple methods whereas tasks in the STEM context often 
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required one particular method, either explicitly (“use Newton’s method 

to solve…”) or implicitly, as described by one of the participants. 
 

Y: Here is another thing I don’t like about mathematics. Usually, it is given what 

method you should use. And, if you use other methods, well, you rarely have 

multiple options, it’s only one. 
 

Kuhn (1977) explained further how measurements have been 

particularly significant in cases when they show anomalies to existing 

theories. 
 

To the extent that measurement and quantitative technique play an especially 

significant role in scientific discovery, they do so precisely because, by 

displaying serious anomaly, they tell scientists when and where to look for a new 

qualitative phenomenon. To the nature of that phenomenon, they usually provide 

no clues. (Kuhn, 1977, p. 205) 

 

In sum, I consider this thesis to have descriptive power, and that it 

also has the potential of explanatory power when it is connected with 

qualitative interpretations. 

 

Another aspect of trustworthiness, as explained by Schoenfeld 

(2007), is prediction and falsification. Drawing on Popper (1963), every 

good theory should be testable: It should be possible to prove a theory 

wrong.  

The theoretical result that I present in this thesis is more a collection 

of theoretical definitions, concepts, and principles than it is a falsifiable 

theory. However, I believe that the proposed perspective relates to 

falsification, and the empirical results illustrate this. For example, when I 

claim that “taking the time to find better methods is structurally easier in 

the TE context than in the STEM contetxt”, this claim is falsifiable by 

applying the theoretical framework and the associated methods in this 

thesis. Another researcher could replicate the study to prove this general 

claim to be false. 

Earlier in this chapter, I argued that ‘truth’ exists only in relation to a 

theoretical frame. For example, there exist results that are true in 

quantum theory but false in Einstein’s general theory, and vice versa. 

Likewise, there are results that are true in Euclidean geometry but false 

in elliptic geometry. Hence, since a claim can be both true and false, I 

consider ‘falsification’ of truth claims to be situated. That is, a claim can 

be falsifiable as long as it is either tested within the same theoretical 

framework as the original claim or tested against practical consequences. 

 

Schoenfeld (2007) distinguished between four forms of 

generalisability. Claimed generalisability is “the set of circumstances in 
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which the author of that work claims that the findings of research apply”. 

Implied generalisability is “the set of circumstances in which the authors 

of that work appear to suggest that the findings of the research apply”. 

Potential generalisability is “the set of circumstances in which the results 

of the research might reasonably be expected to apply”. Warranted 

generalisability is “the set of circumstances in which the authors have 

provided trustworthy evidence that the findings do apply” (p. 88). 

My claimed generalisability in this thesis is that there exist person-

independent social structures of being mathematical in at least two 

contexts—the TE and the STEM context. I also claim that the structure 

of mathematical identity is relatively stable between these contexts. 

These claims, I believe, are warranted, since I provide evidence of the 

findings. 

A potential generalisability, one that is not supported with evidence, 

is that the proposed framework in this thesis is applicable in the broader 

field of identity research. For any identity to which some persons relate 

more strongly than others, the results in this thesis might apply. When 

this is true, personal identities and social identities are measured 

simultaneously. 

 

The aspect of importance is related to the question “why should one 

care?” (Schoenfeld, 2007). In effect, this aspect is something that has 

evolved together with the study itself. As I was studying the most 

commonly applied theories on identity (e.g., Sfard & Prusak, 2005; 

Wenger, 1998), I experienced difficulties in measuring such identities. 

Thus, the importance aspect is related to the experienced 

incompatibilities between theories on identity and theories on 

measurement. 

One reason why I perceived this to be a problem was less scientific, I 

admit. Namely, at an early stage, at the time when I was working on 

Paper I, my ‘common sense’—my predisposed categories of 

interpretation—told me that some persons relate to mathematics more 

strongly than others. This is because, without any particular theory in 

mind, I could think of people I knew whom I was quite sure identified 

strongly with mathematics. Correspondingly, I could think of people 

whom I assumed identified poorly with mathematics. If this intuition was 

right, there should be a theoretical perspective that allowed it to be.  

On this thought, it should be noted that a consequence of the 

subsequent theorisation is that it is not possible for one person to have a 

stronger mathematical identity than another. The theoretical perspective 

rejects the common sense view that initiated it (this will be discussed in 

more detail in the last chapter). One important aspect of this thesis, 
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therefore, is that it provides a measuring perspective on mathematical 

identity without implying that identity is something we have.  

5.4 Ethical considerations 
Ethical considerations were, in this study, grounded in national 

guidelines for research (Kalleberg et al., 2006). The guidance consists of 

46 aspects, which I will not recite in full. 

Written and oral consent was gathered at each data point. Appendix 

D shows the written form. I emphasised that the participants could 

withdraw their interviews at any time without giving any reason or 

excuse. If they did, I promised that all data would be deleted and that 

they would not be mentioned in any form. In addition, I informed the 

participants that they would be anonymous, but I could not promise that 

no one would recognise who they were (for example, friends might ‘see’ 

that it was them by the way they talked or the way they were described). 

The data collection has been reported and approved by the Norwegian 

Centre for Research Data. According to this report, all data that can be 

linked to individuals will be deleted after the project. 

All interviewees volunteered for participation. That is, in the 

questionnaire, they replied that they were willing to be interviewed. One 

benefit of this is that it is likely that the respondents were particularly 

motivated for participation. A drawback is that the options for sample 

selection were few. Consequently, the profiles of the interviewees were 

quite similar: All of them were Norwegian, male students in their early 

or mid-20’s. 

One critical issue, which I consider to be a general problem, is that 

the focus of the study has changed. Accordingly, the information that 

was provided on the consent forms and informed orally did not represent 

the final thesis adequately. Hence, initially, the respondents never 

exactly knew what they agreed—neither did I. Consequently, at the end 

of the study, I sent an e-mail to the interviewees in which I explained the 

shift of focus.  

5.5 Concluding remarks 
In this chapter, I have described methods of data collection and analysis. 

Moreover, I have discussed ethical issues. The aim is that readers should 

be able to replicate, and possibly falsify general claims I make in this 

thesis. 
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6 Summary of the papers 

In this chapter, I summarise three papers: (1) Paper I is a journal paper 

on the validation of an instrument for measuring mathematical identity, 

(2) Paper II is a journal paper on the theorisation of mathematical 

identity, and (3) Paper III is a conference paper that discusses the 

association between STEM students’ self-reported mathematical 

identities and average grades in mathematics courses. 

6.1 Using the Rasch model to measure mathematical 

identity (summary of Paper I) 
In Paper I, I address research question 4a, which asked: What are 

characteristics of mathematical identity in Norwegian TE and STEM 

contexts? To answer this question, I discuss the technical validation of 

an instrument for measuring mathematical identity. (See also paragraph 

5.2.) At the time the paper was written, I used the term “the degree to 

which students’ are working conceptually with mathematics”. Later, I 

realised that the latent variable was broader than ‘working conceptually’. 

Thus, in this section, I refer to the measures as mathematical identities. 

In the initial phase, the instrument development was informed by the 

literature (e.g., Carpenter & Lehrer, 1999), persons with expected 

knowledge about the variable (e.g., teacher-educators), and existing 

instruments (Entwistle, 1997). These sources were discussed in the 

previous chapter, paragraph 5.1. 

Two parameterisations of the polytomous Rasch model, the PCM 

(Masters, 1982; Masters & Wright, 1997), and RSM (Andrich, 1978), are 

typically used when items have more than two options. In short, the 

RSM assumes that distances between thresholds do not depend on the 

item. That is, the distance between, for example, ‘sometimes’ and ‘often’ 

does not depend on the question asked. The PCM does not make this 

assumption. I followed guidelines presented by Linacre (2000, p. 768), 

and the RSM was chosen for three reasons: 

 

1. All items in the instrument were intended to share the same 

scoring structure.  

2. If the PCM had been selected, some of the items would have had 

less than ten responses to some of the categories, which is 

considered to be problematic. 

3. The correlation between person measures, when the different 

approaches were tested, was close to 1––leaving little room for 

argument as to whether to reject the RSM.  
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From the JMLE, item and person measures were estimated, and the 

results are shown in Figure 9 and Table 3.  

 

 Figure 9. Person-item map 

The person reliability (analogous to Cronbach’s alpha) was 

concluded to be .86. This index is primarily affected by the same 

principles that increase precision on a physical instrument (e.g., a ruler). 

Thus, from Figure 9, we can hypothesise how reliability might improve. 

If items on the right-hand side are analogous to marks on a ruler, then it 

appears that there would be some measurement errors when measuring 
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persons in the range –2 to –1 logits. The same can be said about persons 

at both extremes. Thus, including more items in these locations would, 

most likely, improve reliability. We also see that adding items in the 

range –1 to 1 logits would hardly affect reliability since persons in this 

range are already measured precisely. 

In addition to the possible improvement of reliability, Figure 9 

provides information on the responsiveness validity, that is, the ability to 

measure persons in the future. It is evident that, if a sample with greater 

variance is being measured, then more items at both extremes would 

improve precision.  

  Table 3. Item statistics 

 INFIT OUTFIT  
Measure MNSQ ZSTD MNSQ ZSTD Item 

  1.71   .93   –.7   .86 –1.3   1. Takes the initiative to learn more. 
  1.69   .89 –1.3   .86 –1.5   2. Takes time to find better methods. 
  1.42   .98   –.2   .93   –.7   3. Thinks of times when methods don’t work. 
  1.10 1.23   2.7 1.21   2.4   4. Struggles with putting problems aside. 
    .58 1.09   1.2 1.11   1.4   5. Derives formulas. 
    .55 1.12   1.4 1.12   1.3   6. Likes to discuss math. 
    .54   .99   –.1   .99   –.1   7. Makes his/her own problems. 
    .45   .91 –1.0   .89 –1.3   8. New ideas lead to trains of thoughts. 
    .19 1.25   2.9 1.25   2.9   9. (x) Likes to be told exactly what to do. 
    .08 1.23   2.7 1.20   2.4   10. Finds out why methods wouldn’t work. 
  –.06   .89 –1.4   .88 –1.5   11. Finds out why formulas/algorithms work. 
  –.21   .94   –.7   .94   –.7   12. Studies proofs until they make sense.  
 –.24   .71 –4.1   .72 –3.9   13. Considers different possible solutions. 
 –.27   .84 –2.0   .86 –1.8   14. Moves back and forth between strategies. 
 –.35 1.08   1.0 1.08   1.0   15. Wants to learn more things. 
 –.51   .96   –.4   .99   –.1   16. Pauses and reflects. 
 –.82 1.22   2.3 1.22   2.3   17. Visualizes problems. 

  –1.20   .75 –3.4   .78 –3.0   18. Can explain why solutions are correct. 
  –2.27   .98 –.2 1.02     .3   19. Connects new and existing knowledge. 
  –2.38 1.06   .7 1.04     .5   20. Keeps trying. 

Note. Item 9 reversely coded 

 

The increase of n would affect reliability indirectly. That is, items at 

both ends have greater measurement errors than items around zero due to 

the person distribution. The increase of persons with extreme measures 

would increase the precisions of these items, and hence, increase 

reliability.  

The analysis of fit-statistics (content validity) showed that four items 

(4, 9, 10, and 17) were slightly under-fitting with Infit Mnsq in the range 

of 1.22–1.25 logits, and the PCA (structural validity) showed 1.7 

unexplained variance (Eigenvalue units) in a second dimension. 

Moreover, analysis of the ICCs indicated some problems with the 
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category structure. This was confirmed in a rating scale analysis 

(substantive validity). Specifically, empirical responses tended to deviate 

from the modelled responses when person measures were high. Figure 

10 provides one illustrative example in which individuals with measures 

around 4 logits stronger than the measure of item 13 gave unexpectedly 

low responses on this item. One possible solution to this problem is to 

change the last category from ‘always/almost always’ to ‘always’. A 

more detailed analysis, including ICCs of all items, is presented in 

Appendix A. 

Two items, ‘taking the time to find better methods’ and ‘connecting 

new and existing knowledge’, were found to have DIF between TE and 

STEM students (generalisability validity). In the psychometrical 

tradition, DIF is regarded problematic. However, this problem is based 

on the idea that the variable that is being measured is context-free. In my 

thesis, I claim that the measure of mathematical identity is the measure 

of both persons and social structure. Thus, the DIF between TE and 

STEM students point at specific structural differences between the TE 

and the STEM context. 

 

 

Figure 10. Item Characteristic Curve for Item 13 

The final items, in the language they were administered, are provided 

in Appendix F. The English translation is presented in Appendix E.  

It is worth noting that the characteristics discussed in this paper are 

not concluded to be exclusive, nor static. Later, I discuss these properties 

further when I explain how structural flux is a general property of 

mathematical identity.  
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6.2 Theorising the measuring of mathematical identity 

(summary of Paper II) 
In Paper II, I address research questions 3 and 4b. In the paper, I present 

three problems with the measurement of mathematical identity. First, 

there is no consensus on philosophical issues on identity. Thus, it seems 

impossible to measure identity as such. Identity is not measurable, nor is 

it unmeasurable. The second problem is that most theories conceptualise 

identity as complex. However, as I have discussed in chapter 4, in the 

RMT paradigm, a measure is required to be uni-dimensional. In the IRT 

paradigm, measures are assumed to be uni-dimensional. The third 

problem is that most theories conceptualise identity as more or less 

situated, whereas measures are required (or assumed) to be invariant. 

According to these perceived problems, I question: (1) which 

theoretical perspective on identity that is consistent with the 

requirements of measurement; (2) what the characteristics of STEM 

students’ mathematical identities are; and (3) how measures of 

mathematical identity can provide information on how much the social 

structure of being mathematical differ across the STEM context and the 

TE context.  

In effect, the theorisation is based on the following question: “If 

mathematical identity can be measured, then what are the principles of 

mathematical identity?” That is, a premise of the theorisation is that 

mathematical identity can be measured: Mathematical identity is, 

therefore, about sameness and distinction as opposed to the unique 

qualities of individuals. 

From this, I have grounded the theorisation on the assumption that 

mathematical identity is relational. This assumption is based on the fact 

that measures, in general, are relational. Hence, if mathematical identity 

can be measured, it must consist of both individuals and some structured 

background, I argue. Consequently, I have been searching theoretical 

concepts that can describe the body of reference that personal identities 

are measured relative to. An initial attempt was to use the collective and 

object-oriented ‘activity’ as described in CHAT and summarised in 

section 2.5.  

 

One dispute in identity research is the locus of identity, that is, 

whether it is mostly context-free or context-bound. My response to this 

argument is that no measures can be assumed to be context-free. 

Invariance is an empirical question, and thus, there is no general law that 

dictates the locus of identity—the locus is not positioned on some 

particular point between context-free and context-bound. Consequently, I 

assume the locus of identity to be an empirical question that can vary 

between activities, or even within the same activity. 
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If this assumption is true, then the situatedness of identity is, itself, 

situated. Therefore, we need empirical data on at least two contexts 

before we can make any conclusion on the situatedness4 of mathematical 

identity. 

One problem, then, is the following: If it is true that identities are 

measured in context, and if we need measures from at least two contexts 

for studying the level of invariance, then the initial attempt of using ‘the 

activity’ as the structured background is problematic, insofar as an 

activity is something specific and, by definition, situated. 

My proposed solution is to use a more general structure—something 

that, at least hypothetically, can be similar across contexts. Accordingly, 

I define mathematical identity to be where persons position themselves 

relative to the social structure of being mathematical within the activity 

in which they participate and contribute. I then define the social 

structure of being mathematical as a person-independent set of 

characteristics (of being mathematical) and its internal structure. The 

‘internal structure’ means the relative distances between each 

characteristic and the arbitrary zero point within each dimension, 

applying the arbitrary unit length. The social structure is, therefore, 

another empirical question—its content and structure must be proven 

person-independent. Also, the structure can be multidimensional, 

although I, in this paper, consider a uni-dimensional case only.  

The methodology paragraph of the paper builds on Paper I, and I 

will, therefore, not discuss it much further. In addition to quantitative 

data, four STEM students were interviewed and asked about: how they 

perceived their time at the university; which project they were currently 

engaged in; how they worked with mathematical problems; and how 

they learned new mathematics. Transcripts of the data were analysed 

using the item characteristics in addition to concepts described in CHAT. 

Unlike Sfard and Prusak (2005), I do not consider identity to be 

narratives. Instead, what people say are indications of a latent variable. 

From this, relative positions are determined by the researcher using 

techniques of objective measurement. Consequently, when I say “the 

positioning of individuals”, I do not mean this literally (unless someone 

analysed themselves). 

 

                                           
4 When I, in this thesis, discuss ‘situatedness’, I consider structural and not personal 

situatedness. That is, situatedness is the degree to which the structure of being mathematical 

is similar across activities. I believe that the relationship between structural and personal 

situatedness is yet another empirical question. Therefore, I consider situatedness, in general, 

to be a function of both structure and persons. 
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In the article, I discuss the person-independent feature of the social 

structure, and this is illustrated in Figure 11. That is, 40 persons with the 

strongest mathematical identities were, in the second column, removed 

from the analysis. In the third column, 40 persons with the weakest 

identities were removed. The figure illustrates how the social structures 

of mathematical identity are more affected by the change of activity than 

the change of individuals. This is a property that is required, and not 

assumed, by the theoretical frame. Additional examples of this property 

are discussed in Appendix B.

 

Figure 11. Persons and item measures on the same variable 

Further, in the paper, I discuss three levels of the characteristics of 

being mathematical. Characteristics on the lower end seem to be related 

to working with mathematical problems, such as visualising problems, 

being able to explain solutions, connecting new and existing knowledge, 

and so forth. 
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Y: Em, when I first started to look at Padè approximation, I was reading an article 

that was quite mathematical. And I realised, wow, I cannot remember any of this. So, 

I looked up in some of the books we had in the basic courses, where we had about 

sequences. Took a quick look. It wasn’t very deep, just a recap on the concepts. 

When I had a basic understanding, I went back on the article.  

  

Characteristics around zero include making his/her own problems, 

disliking being told exactly what to do, finding out why methods would 

not work, studying proofs until they make sense, deriving formulas, and 

so forth. 
 

B: One typical thing is integration by parts, which I have derived a million times in 

my life. You can learn the formula by heart, but I never bothered. So, it’s like, we 

have U and we have V, and…[writes]…there you go. And I often do this with other 

problems too.   

 

Characteristics on the higher end include struggling with putting 

problems aside, thinking of times when methods would not work, taking 

the time to find better methods, and so forth. A general impression is that 

positive affective elements (e.g., joy) appeared on this end of the 

variable. 
 

A: I have had the problem [with a simulation algorithm] for a while, three weeks 

maybe. I think about the problem everywhere. I think about it when I am at home, on 

my spare time, and when I relax...Yesterday, I was at a café with my girlfriend...We 

were talking about something, and then I just started to think about it. 

  

The paper ends with two remarks, one on the issue of missing data, 

the other on directions for future research. I consider the latter to be of 

most importance. That is, measured mathematical identities are most 

frequently concerned with persons (e.g., Axelsson, 2009). However, I 

have argued in this study that the social structure of being mathematical 

also can be measured. In fact, an implication of the proposed framework 

is that it is impossible to measure people without the consideration of a 

person-independent social structure. Consequently, I believe future 

research could benefit from measuring and comparing structures of being 

mathematical across contexts. 

6.3 The association between engineering students’ self-

reported mathematical identities and average grades in 

mathematics courses (summary of Paper III) 
Paper III is an 8-page conference paper, and in the paper I answer 

research question 4c: What is the association between STEM students’ 

self-reported mathematical identities and average grades in mathematics 
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courses? The study attempts to shed light on how conventional means for 

assessing students (i.e., exams) reflect mathematical identities. 

The rationale for this short study is that specific mathematical 

competencies are transferred poorly, for example, from higher education 

to the world of work (e.g., Rystad, 1993). One reason might be that the 

mathematics is hidden in ‘black boxes’ more frequently in workplaces 

than in educational settings (Williams & Wake, 2007). Thus, a common 

argument is that students need to develop more general characteristics 

that relate to mathematics (e.g., Hoyles, Wolf, Molyneux-Hodgson, & 

Kent, 2002), and I hypothesise mathematical identity to be one 

representation of such characteristics. 

 

The sample in the study included 361 Norwegian STEM students. 

The classification of these students is listed in Table 4. 

Table 4. STEM sample 

Course n 

Introductory mathematics course 47 

Calculus 2 71 

Calculus 3 113 

Cryptography 11 

Variety of courses (final year) 119 

Total 361 

 

The participants responded to the instrument discussed in Paper I, 

and after the validation of the instrument, the respondents were 

categorised as having either low (measures lower than -1), medium 

(measures between -1 and 1), or high (measures above +1) mathematical 

identities (all measures were reported in logit units). Subsequently, a 

Welch’s ANOVA (analysis of variance) was conducted to compare the 

association between mathematical identities and self-reported average 

grades in mathematics courses at the university (from grade F=1 to grade 

A=15).  

 

The Welch’s ANOVA showed that the association between 

mathematical identity and self-reported average grade was significant, 

F(2, 110.79)=31.966, p=0.000. Moreover, the mean of the self-reported 

average grade amongst students with high mathematical identities was 

about one grade higher than those with low mathematical identities. The 

Games-Howell test showed that the difference was significant between 

all groups with low-medium as the least significant (p=0.001).  

Moreover, Figure 12 shows how there was an unequal variance 

between the groups. That is, the variances decreased with the increase of 

mathematical identity, which means that high mathematical identities are 
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associated with high self-reported average grade, whereas there seems to 

be no limit to how low mathematical identities students can have and 

still get high grades. Additions to the analysis are presented in Appendix 

C. 

 

 

 

Figure 12. The relationship between self-reported mathematical identity and average grade in 

university mathematics course 

The paper concludes with some obvious limitations, namely that the 

average grades were self-reported and, most certainly, biased. Thus, I 

suggest a replicate of the study using actual grades. Moreover, I propose 

that future studies examine the causal relationship between grades and 

mathematical identity.  

Finally, I suggest that replicates of the study could exchange ‘grade’ 

with other institutional measures such as PISA or TIMSS results. 

Specifically, such studies could provide some clue to the question of 

whether some countries ‘teach to the test’, in which case one might 

hypothesise that a relatively great proportion of students in these 

countries would appear at the ‘top left corner’—that is, students with 

weak mathematical identities, yet, high measures of attainment.  

6.4 Concluding remarks 
In this chapter, I have summarised three papers, one mostly methodical, 

one mostly theoretical, and one mostly empirical. I have argued that 
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mathematical identity is a relationship between personal and social 

positions, and that this relationship can be measured. Moreover, I have 

claimed that structural positions do not depend on personal positions, 

and personal positions do not depend on structural positions. I have also 

discussed the method of measuring mathematical identity. Finally, in an 

empirical study, I have suggested that mathematical identity is related, 

yet poorly correlated, with attainment. That is, strong mathematical 

identity seems to imply high achievement, whilst the reverse is not true. 
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7 Discussion and conclusion 

In this chapter, I first present a summary of this thesis. In this summary, I 

answer the research questions that I raised in the first chapter. 

Subsequently, I discuss the results: their implications, how they relate to 

the wider context, some limitations and challenges; and, finally, I 

provide some suggestions for further research.  

7.1 Summary 
In this thesis, I have addressed and answered four research questions, all 

related to the overarching question: How can mathematical identity be 

measured and theorised? 

First, I have argued that a measuring perspective on mathematical 

identity must be compatible with theories on measurement in general. 

Thus, in chapter 3, I claimed that a framework of mathematical identity 

must consider four aspects explicitly: dimensionality, invariance, 

additivity, and relativity.  

Second, in chapter 4, I built on a pragmatic philosophy when I 

claimed that, within a defined theoretical framework, some methods are 

truly better than others. Subsequently, I have followed the argument of 

Andrich (2004) and discussed philosophical differences between two 

theories of measurement in the social sciences: RMT and IRT. I have 

shown how the ontology of principles of measurement—whether they 

are assumptions or requirements—distinguishes RMT and IRT. The 

principles of measurement in this study were interpreted as Thurstone’s 

(e.g., 1954) original account, namely, that the principles are 

requirements and not assumptions. For this reason, I have concluded that 

the application of RMT is a paradigmatic method of the measurement of 

mathematical identity. 

Third, informed by theories of measurement and empirical data, I 

have proposed a framework of measured mathematical identities. In 

addition to the premise that mathematical identity can be measured, I 

have argued that there are two underlying assumptions of mathematical 

identity: (1) identity is relational, and (2) the locus of identity is an 

empirical question—the locus is not fixed at some point between entirely 

context-free and completely context-bound. Nor is the locus static. 

The first assumption implies the need for a body of reference—what 

I call a social structure. The second assumption implies that, although 

invariance is required, this principle is not absolute. I am not assuming 

that there exists one universal structure that is invariant across all 

contexts. On the contrary, I acknowledge that mathematical identity is in 

flux and that this applies to both persons and social structure.  
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From these assumptions, I have defined mathematical identity to be 

where persons position themselves relative to the social structure of 

being mathematical within the activity in which they participate and 

contribute. Following this definition, I have argued that the social 

structure of being mathematical is required, and not assumed, to be 

person-independent. In Paper II, this principle is illustrated with an 

empirical example. 

Finally, the empirical data and analyses in this study have 

contributed, not only to inform methodology and theory but also with 

examples of the range of research questions that can be asked within the 

framework. 

In Paper I, I have validated an instrument for measuring 

mathematical identity. More than technical validity, this paper 

contributes to a qualitative understanding of the characteristics of 

mathematical identity. These characteristics were explored further in 

Paper II, where I provided qualitative and empirical illustrations. 

Furthermore, in Paper II, I have discussed how a measuring 

perspective on mathematical identity measures both persons and social 

structure. Technically, there is no difference between persons and 

characteristics in the process of measurement. Consequently, 

comparisons are comparisons of positions, and these positions can be 

held by persons or characteristics. Specifically, I have shown how RMT 

can identify structural differences between the TE and the STEM 

context. 

In Paper III, I have suggested that mathematical identity might be 

related to attainment (grades) although the two variables correlate 

poorly. 

7.2 Theoretical insights 
In this section, I put forward three claims: I argue (1) that the distinction 

between structural and personal change is an arbitrary point of 

perspective, (2) that the comparison of mathematical identities does not 

require structural equivalence, and (3) that mathematical identities do not 

exist in isolation.  

 

(1) The distinction between structural and personal change is an 

arbitrary point of perspective. 

In 1929 Edwin Hubble discovered that the universe is expanding in 

every direction. A consequence of this discovery is that the earth is the 

centre of the universe. However, if an alien made the same observation 

from another planet, in another galaxy, it would draw a similar 

conclusion, namely, that this other planet was at the centre of the 

universe. This is because the universe has no stationary absolute—the 
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centre is not at one particular point in space, it is everywhere. It is all a 

matter of perspective.  

One implication of this study is that mathematical identity exhibits a 

similar property. That is to say, if identity is in constant flux, as many 

theories suggest (e.g., Wenger, 1998), then this motion must be seen as 

relative to something else. There must, therefore, exist one point that is 

static. However, there is no external criterion for determining whether 

something is constant without introducing another constant. 

Accordingly, the static point of reference is arbitrary; it is everywhere, it 

is all a matter of perception. 

If this is true, then the choice of the static point can affect whether a 

change is interpreted as a personal or as a structural one. If we constrain 

the point to be at the centre of a group of people at any given time, then 

what we typically perceive as the development of people will be 

interpreted as a structural change. At the same time, if we choose the 

point to be at the centre of the structure, then the same movement will be 

construed as personal development. Since the static point is arbitrary, we 

must allow both interpretations without contradiction. A consequence of 

this study is, therefore, that the only measurable difference between 

personal change and the change of social structure is the arbitrary point 

of perception. 
 

(2) The comparison of mathematical identities does not require 

structural equivalence. 

Another implication of the study is that mathematical identity 

development is the movement of both people and structure relative to the 

same static point of reference. Consequently, since people are not 

measured in relation to a structure as a whole, but rather to one point in 

the structure, there is no need for structures to be equivalent across time 

and space to compare identities.  

To illustrate this point, we can imagine that we were to compare the 

locations of two persons in a physical structure, for example, a city. 

Then, for each dimension, we would need one common point of 

reference and one standard unit length.  

Imagine, further, that person A was standing at one end of the city, 

say the east end, and that we knew his location based on a map that 

covered the east end and the centre of the city. Imagine also that person 

B stood on the opposite end, that is, the west end of the city, and we 

knew her position based on a map that covered the west end and the 

centre of the city. Consequently, since there was an overlap between map 

A and map B (the centre of the structure), positions of person A and 

person B could be compared directly, even if map A and map B were 

different. Moreover, the relative size of the intersect would be of little 
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importance. What would be more important is that each map was as 

detailed as possible. 

This analogy holds for social structures of being mathematical. If a 

researcher is to compare personal positions, there must be some overlap 

in social structures, but in principle, one shared point of reference and 

one standard unit length are sufficient for each dimension. 

At this point, a methodical comment is necessary. That is, due to the 

nature of social structures and the means that are used to assess them, the 

relative errors of measurements of social structures are, typically, greater 

than those of physical structures, although one could find exceptions to 

this assertion. Consequently, when I say that one common point of 

reference is sufficient, this claim holds true only when the location of 

this point contains no measurement error.  

In practice, however, measurement errors do occur, and therefore, 

more common points of reference are appropriate, although the only 

reason is to reduce the effect of measurement errors. There is nothing 

fundamentally wrong with comparing personal mathematical identities, 

even when most of the elements in the social structures are different. 

  
(3) Mathematical identities do not exist in isolation. 

So far, I have discussed two implications: First, persons (and 

characteristics in a social structure) are compared in relation to a point 

and not a structure as a whole; second, the choice of this shared point of 

reference is arbitrary.  

If we accept these implications, I claim that there is a third 

consequence. Namely, in the comparison of mathematical identities from 

one point in time or one activity to another, we can choose different 

points of references and different unit lengths. In some—perhaps most—

cases, the choices will lead to no practical consequence; it will be what 

Celsius and Fahrenheit are to the measurement of temperature. However, 

there might be particular cases in which different conclusions can be 

made, all depending on our choices. Hence, at least hypothetical cases 

exist in which person A has, at the same time, a stronger and a weaker 

mathematical identity than person B. According to the proposed 

framework, this result is not a contradiction. 

This last consequence turns the argument back to the original starting 

point. That is, the theorisation of mathematical identity started with the 

intuition that it is possible for one person to have a stronger 

mathematical identity than another. Subsequently, a theoretical 

perspective was proposed. An implication of this view, however, is that 

it is possible, at least in some special cases, to make different 

conclusions, all equally valid, without changing anything but the 

arbitrary point of perception.  
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To conclude, I agree with critics who refute that a person can have a 

mathematical identity in isolation. This critique, however, does not affect 

the discussion of whether mathematical identity can be measured. The 

fact that “no one has a mathematical identity” merely means that no 

stationary absolute to mathematical identity exists, and, although a zero 

point is a requirement of measurement, this point is not required to be 

absolute. Accordingly, a person has a mathematical identity no more 

than a planet has a location in the universe. Nonetheless, the position of 

both can be estimated. 

7.3 A synthesis of two extremes 
I have defined mathematical identity to be a relational position between 

people and social structure. Moreover, I have defined the social structure 

to include the person-independent subset only. That is, an element in the 

social structure should not depend on the position of individuals. If it 

does, it is not an element in the social structure after all. 

If we accept this definition, then the status of an element is unknown 

before the analysis. The element could either be included in the person-

independent subset or not. In an empirical study, it is possible that a 

researcher concludes—let us assume rightly—that no items are person-

independent. If this is the case, it is true that mathematical identity, in 

this particular situation, cannot be measured. 

It is worth noting that this conclusion rests on the fact that the 

measures of the items change significantly when different subsets of the 

population are used in the analysis. Hence, it is the process of measuring 

mathematical identity that leads to the conclusion that the construct, in 

this particular case, cannot be measured in the first place.  

Accordingly, I consider the perspective discussed in this thesis to be 

a synthesis of two extremes: (one) that mathematical identity can never 

be measured, and (two) that the construct can always be measured. From 

the perspective of this study, measurability of mathematical identity 

depends on results from the process of measurement, and the conclusion, 

whatever it is, is fluid and empirical. 

At this point, a distinction can be made between theory and practice. 

In theory, most practitioners of Rasch measurement would agree that 

both people and structures are measured. In practice, however, 

individuals and structures are treated differently. Most frequently, the 

measures of structures are matters of validity while measures of 

individuals are issues of results. 

In Paper I, I complied with this tradition. However, I no longer 

believe that structure represents the instrument and persons are whom we 

measure. On the contrary, I perceive the measurement of mathematical 

identity as the measurement of the relation between individuals and 
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social structure. Therefore, I find the process of measurement to be a 

powerful tool even—or perhaps, in particular—in cases when 

measurements should ‘fail’ in the traditional sense. If for example, 

mathematical identity is situated between two activities, say, STEM 

activities in Norway and Japan, then there will be structural differences 

between these activities, and some of these differences can be shown by 

measure. Hence, ‘failure’ of comparing measures across activities will be 

an indication that there is something qualitatively different between the 

activities, and the measures of the structures indicate what these 

structural differences are. 

7.4 Implications for research 
This thesis is mostly theoretical and methodological. However, the 

questions that I have answered were initiated from empirical problems 

related to transitions of mathematical identities. I this section, I explain 

how the result of this thesis is relevant for future research and studies on 

transitions in particular. 

One theoretical insight of the thesis is that the distinction between 

structural and personal change is an arbitrary point of perspective. This 

is important because the study of the development of measured 

mathematical identities, for example in transition, cannot make absolute 

claims about personal and structural change. From the theoretical 

perspective in this thesis, there is no philosophical difference between 

structural and personal change. Technically, this point is evident in the 

symmetry of the Rasch model, as the model cannot distinguish between 

persons and items. 

When the arbitrary zero point is chosen, the measurement of 

mathematical identity is the measurement of both individuals and 

structure. Future studies of transition could benefit from this and map the 

structure of mathematical identity in multiple contexts. As I conclude in 

Paper II, a critical analysis of education could examine how the structure 

of school mathematical identities is structured relative to mathematical 

identities in other contexts. 

Another theoretical insight is that the comparison of mathematical 

identities does not require structural equivalence. This insight is of 

practical importance for two reasons. First, mathematical identities 

between contexts can be compared even when there exists evidence that 

the contexts are structurally different. Second, structural differences is 

not a limitation, rather, the outcome of the measurement of mathematical 

identity. Thus, the claim that context A is structurally different from 

context B is an empirical claim that can be addressed by the process of 

measurement.  
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The third theoretical insight is that mathematical identities do not 

exist in isolation. It is theoretically possible, without contradiction, for 

one person to have both a stronger and a weaker mathematical identity 

than another person. Even if such cases might be rare, I believe that 

empirical evidence of this point would be valuable because it would 

illustrate the relational property of mathematical identity. 

 

The measurement of mathematical identity is not only a measure of 

position, but also one of the level of misfit. Studies on identities in 

development and transition can benefit from this. For instance, when 

persons transfer from context A to context B, assuming that the 

structures of mathematical identities are not equivalent in the two 

contexts, it is possible to examine how people negotiate their positions 

relative to the two contexts. One hypothesised situation is that people, 

regardless of their identities, adapt to new situations rather quickly. In 

such cases, when persons (transferring from context A to context B) are 

measured in context B, they will, most probably, show less misfit 

relative to the structure in context B than if their responses were 

measured relative to the ‘old’ context A. Another hypothetical situation 

is that people adapt to the new context rather slowly, or possibly, not at 

all. In these cases, when persons (transferring from context A to context 

B) are measured in context B, they will, most probably, show more 

misfit relative to the structure in context B than if their responses were 

measured relative to the ‘old’ context A. Accordingly, a hypothesis 

worth following is that, while measures inform the ‘strength’ of 

mathematical identity, the study of misfit provides information to which 

structure persons are positioned. 

7.5 Implications for practice 
The intended audience of this study is researchers in mathematics 

education. Consequently, most implications are implications for 

research. Nevertheless, some results have potential impact for teachers. 

First, there is an increased focus on research-based teaching, that is, 

on teachers doing research on their practice. One particular example is a 

selection of Norwegian schools (called ‘university schools’) which 

collaborate closely with universities. From this collaboration, teachers 

get insights into the practices of research. When teachers do research in 

this context, the main outcome is improved practice, not published 

papers.  

For teachers doing research on their practice, results from this thesis 

might be useful. For example, teachers could compare their students’ 

grades with their mathematical identities and possibly observe how a 

‘high performer’ is not, necessarily, the same as another ‘high 
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performer’. Such observations might add to teachers’ reflections about 

the outcome of teaching and learning and also to the awareness that 

standard tests in mathematics do not measure ‘everything’. 

Second, teachers could gain from the qualitative parts of this thesis. 

Specifically, the thesis suggests that affective characteristics—struggling 

to put mathematics aside, liking to discuss mathematics, and so forth—

are structured on the higher end of mathematical identity. These are 

characteristics that distinguish persons with ‘strong’ from persons with 

‘medium’ mathematical identities. Thus, if one aim of education is that 

students should develop strong mathematical identities, then teachers 

would gain from an awareness of the qualitative nature of strong 

mathematical identities. 

Third, a property of persons with strong mathematical identities is 

how they frequently talked about problems as something of a positive 

value—something you would rather have than not have, something you 

would be happy to share with your friends, like sharing a game or a 

puzzle. In contrast, persons with lower mathematical identities 

frequently talked about problems as something with a negative value—

something you would rather not have, like weeds in your garden, and 

thus, something you would be happy to remove from your friends’ 

shoulders. Hence, one possible implication of this thesis is that students 

need to learn how to appreciate having problems and not only having 

solved them. Moreover, I hypothesise that, for some students, it would 

be valuable to learn about solved and unsolved mathematical problems. 

In many cases, mathematical problems are relatively easy to understand, 

although a solution is difficult. For example, a special case of the 

millennium-prize ‘P versus NP problem’, which asks whether every 

problem that can be verified quickly (in polynomial time) can also be 

solved quickly, is the following: If someone proposes a solution to a 

Sudoku-problem, we can check the answer relatively quickly, but there 

are no known algorithms that can solve a Sudoku quickly. 

7.6 Generalisations, limitations and challenges 
A general claim in this thesis is that there exist social structures of being 

mathematical in at least two contexts—the TE and the STEM context, 

and that the structure of mathematical identity is relatively stable 

between these contexts. Future studies could improve generalisability in 

two ways. First, I suggest that future studies measure mathematical 

identities in a broader range of contexts, for example, in different 

workplaces or countries. Second, additional research could apply more 

fine-grained analyses of the contexts that I have already studied. For 

instance, in this study, I have measured identities in the TE and the 

STEM context. There is no limit to how many sub-contexts these, or any 
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other context, consist of. A simple example is how the STEM context 

consists of pure mathematicians, civil engineers, computer scientists, and 

so forth. Existing studies have documented particular problems that 

engineering students encounter when studying pure mathematics (e.g., 

Harris, Black, Hernandez-Martinez, Pepin, & Williams, 2015), and it is, 

therefore, worth studying whether there are structural differences in 

mathematical identities between such sub-groups. 

 

This thesis is a response to particular problems with the measurement 

of mathematical identity. However, the implications have the potential of 

being applicable to studies of identities in general. A potential 

generalisability, therefore, is that the properties of mathematical identity 

apply to every identity to which some persons relate more strongly than 

others. To illustrate with one example posed by Gee (2000). If ‘being a 

feminist’ is an identity, if it is true that some persons are more or less 

‘radical feminists’ than others, and if we interpret principles of 

measurement as requirements, then, it follows that the principles of 

mathematical identity discussed in this thesis apply to feminist identities. 

Hence, being a feminist, in this case, is a relational position, and the 

study of feminist identities is the study of both social structure and 

personal positions. 

 

Some constraints in this research relate to the empirical data. An 

obvious example is how ‘grades’ in Paper III were self-reported, and as a 

consequence, the results of this sub-study are only suggestive. Another 

example is sample size. From a relational perspective on identity, there 

are two samples: persons and characteristics in the structure. In future 

studies, an increase of both will most likely improve reliability.  

Another limitation is that the focus of the study shifted as the 

theoretical problems with the measurement of mathematical identities 

became increasingly prevalent. While it can be argued that such a change 

of focus is a general feature of research, it nonetheless had an effect. 

Specifically, much of the data were gathered to understand mathematical 

identities in transition and not the nature of mathematical identities as 

such.  

In the rest of this section, I will turn the attention to more general 

challenges that follow as a consequence of the results of the study. I do 

propose possible explanations to some of these challenges, but they are 

not connected with empirical data. They must, therefore, be considered 

as suggestions for further investigation. 

7.6.1 Face validity 

The instrument that was validated in Paper I consists of 20 items. These 

items—their qualitative content and internal structure—are indicators of 
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mathematical identity. In effect, the items show a fragmented picture of 

‘reality’. Accordingly, it is clear that 20 items do not ‘fully represent’ 

mathematical identity. This apparent problem cannot be solved easily 

since the inclusion of any set of items would lead to the same 

conclusion. Mathematical identity can never be fully represented. 

This conclusion does not imply that the search for more 

characteristics is worthless, and I assert two main reasons why I 

encourage future studies to search for more characteristics and locate 

them in the structure.  

First, the precision of a measure is more accurate when the structure 

is relatively detailed than when it is relatively fragmented. This is 

particularly true when the object of measurement is positioned close to 

elements that appear only in the detailed structure. In the RMT, this 

analogy is mathematically accurate: The inclusion of an item increases 

person reliability and decreases measurement errors, in particular when 

the item is located close to individuals and when there are few other 

items nearby. 

Second, items that appear on the detailed map but not on the 

fragmented map do not increase precision only, they also provide 

qualitative information about the ‘real’ world. For instance, every new 

item would improve our qualitative understanding of mathematical 

identity. 

I emphasise that mathematical identity is fluid. Hence, it is entirely 

probable that the qualitative nature of a structure in one context is 

different from that in another. A set of items can, therefore, never 

represent mathematical identity as it is, only how it appears in the 

observed context.  

7.6.2 Mathematical identity and common sense 

One of the most pressing challenges of this study is that mathematical 

identity is relational. This feature is a challenge because humans appear 

to often think in absolute, and not relational, terms (in contrast to his 

own laws of physics, Isaac Newton maintained that there had to be a 

universal absolute). By common sense, it is hard to accept that a person 

can have both a stronger and a weaker mathematical identity than 

another person. Likewise, it is difficult not to think of development as a 

separation of individuals and social structure. However, this study 

implies that there are no means of distinguishing personal and structural 

change. Therefore, before an arbitrary stationary is defined, 

mathematical identity development is not personal and structural, but 

rather person-structural. 

7.6.3 Exposure time 

When I look back at the data collection in this study, I see that measures 

of social positions might be affected by a phenomenon similar to the 



On measuring and theorising mathematical identity   103 

exposure time of a camera. That is to say, instruments of measurement 

try to determine the position of a subject at a given time, t. However, 

instruments are not exposed to data at a singular point in time, but rather 

an interval including t. The length of this interval can be thought of as 

the exposure time of the instrument.  

To be concrete: In the case of this study, when people responded to 

the frequency—from never to always—of a set of characteristics, they 

must have thought of a time interval for these features to yield (if not, 

they would have replied ‘never’ to virtually any characteristic since, at 

the time of data collection, they were responding to a questionnaire and 

not working with mathematics). If the average interval was, say, the last 

month, then we could say that the exposure time of the instrument was 

one month. 

The fact that the exposure time in this study is unknown, and 

possibly varying between individuals, is a problem that could have been 

solved by including a preface such as ‘During the last month…’ to every 

item in the instrument. This solution, however, would not affect the core 

of the problem, namely, that there is an exposure time, and that it might 

be quite high, possibly weeks or months.  

I hypothesise some consequences of exposure time that future 

research might consider. In general, I believe that the effects of the 

phenomenon can be explained similarly to those in physical experiments. 

If that is so, the problem is a function of exposure time and the pace of 

mathematical identity development. Put briefly; I suspect that when 

people (or structure) remain relatively stable and the exposure time is 

short, people are measured more accurately than if they undergo rapid 

development and are measured with an instrument with longer exposure 

time.  

Another possible effect is that the change between several data points 

might look smoother when the exposure time is long in relation to what 

it would look like if the exposure time were shorter. Hence, it might be 

that mathematical identity development by measure looks more 

continuous than it is. Figure 13 illustrates this with a synthetic example. 

 

 
 

Figure 13. In the first row, a person with a sudden mathematical identity development has 

responded to an item based on an overall impression of the last week. In the second row, the 

same person responded based on an overall impression (in this example, the mean) of the last 

three weeks. The development looks smoother in the latter case 
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7.6.4 The measurement of mathematical identity in motion 

There is another aspect of the measurement of moving objects (or 

subjects) that is scarcely discussed in the literature; something that is 

relevant if we assume that mathematical identities are measured in 

motion. That is, in ‘perfect’ (i.e., synthetic) data which fit the Rasch 

model, the expected response string of people is, in the dichotomous 

case, a string of 1’s followed by an interval of scattered responses, 

followed by a string of 0’s (including occasional unexpected responses). 

The scattered area of uncertainty is expected, but only to a certain extent. 

However, when observations fit the Rasch model perfectly, for 

example in synthetic data, there is an implicit assumption that the objects 

of measurement ‘remain still’ at the time of observation. If the objects of 

measurement do move, this assumption holds true if the motion is 

practically continuous and relatively slow. If the exposure time of the 

instrument is close to zero, the assumption holds true when the motion is 

continuous, never mind the pace. 

A problem is that sociocultural theories tend to emphasise how 

development is scattered and contradictory (e.g., Engeström, 1987). If 

this is true, then mathematical identity development might not be a 

continuous change of position. Consequently, if participants are 

measured as they undergo rapid change, one might expect more 

contradictory observations than if the individuals were relatively stable 

at the point of measurement. 

If it is true that individuals in motion respond more contradictorily 

than relatively stable persons, then the area of uncertainty will likely 

increase (if this is not the case, it would suggest that mathematical 

identity development is not contradictory by nature after all). 

Since the area of uncertainty affects the person fit statistics, one 

hypothesis that is worth following is that, all else being equal, the fit 

statistics of individuals in rapid development are greater than amongst 

those who change more slowly. If this hypothesis can be verified, 

researchers can get valuable, albeit inaccurate, information about motion 

from single observations. 
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Figure 14. (a) When the data fit the Rasch model, Infit Mnsq = 1, caused by the scattered 

area of uncertainty. (b) When there are more contradictory responses than expected, the 

scattered area is likely to be larger, producing larger Infit Mnsq. (c) When there are less 

contradictory responses than expected, the scattered area is likely to be shorter, producing 

smaller Infit Mnsq. Measures in (c) are most accurate. There might be occasional ‘holes’ in 

the strings at both ends, but these have little effects on the Infit Mnsq statistic 

7.7 Concluding remarks 
In this study I have explored a measuring perspective on mathematical 

identity. In short, I have worked from the premise that it is possible for 

one person to relate more strongly to mathematics than another person. 

From this I have presented definitions and principles of mathematical 

identity, a paradigmatic method for the measurement of identity, and 

some empirical results that illustrate the range of questions that can be 

asked within the framework. 

The most significant contribution of this study is that the theorisation 

of mathematical identity has led to some very specific properties. When 

it is measurable, mathematical identity is a relative position rather than 

something people ‘have’. Moreover, mathematical identity implies the 

existence of a social structure. Neither the social structure nor individual 

positions are assumed to be static. Instead, a defined static point of 

reference is required, but this point is arbitrary. As a consequence, there 

is no ontological or epistemological difference between the development 

of structural and personal identities. 
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8 Appendices 

8.1 Appendix A: Additional analyses, Paper I 
ICCs of the items in the first study are presented in the following 

Figures. Most deviations from the model appear when person measures 

relative to item measures are high.  
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Figure 15. Item Characteristic Curves, Paper I 

 

The category statistics are summarised in Table 5. 

Table 5. Category statistics 

Category Observation Infit mnsq Outfit mnsq Threshold MC CM 

1 1147 0.92 0.93 None 0.76 0.42 

2 2175 0.96 0.92 -2.13 0.56 0.74 

3 1457 0.98 1.00 0.10 0.52 0.56 

4 515 1.19 1.20 2.03 0.63 0.28 
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In the paper, I questioned the low CM value of 0.28 in the fourth 

category. The recommended cut-value is 40% (Linacre, 2002). After the 

publication, however, I have questioned this static cut-value (Kaspersen, 

Pepin, & Sikko, 2016) for the following reason: 

MC(x) is the percentage of measures expected to produce 

observations in category x that are observed in this category. When the 

data fits the Rasch model perfectly, we expect random deviations from 

the expected observations. For the most, unexpected observations occur 

in adjacent categories. Then, the likelihood of making an unexpected 

observation in category c is a function of the distance between c and the 

expected observation. In general, distances from the extreme categories 

to other categories are greater than distances from categories in the 

centre to other categories. Thus, in most cases, the expected MC 

should be greater in extreme categories than in categories around the 

centre.  

CM(x) is the percentage of observations in category x that belong 

to measures that were expected. Roughly, we expect that some persons 

drift to unexpected—for the most adjacent—categories. Considering two 

categories, for example, 3 and 4, we expect that a proportion of persons 

expected to respond in category 3 actually respond in the fourth 

category, and vice versa. Therefore, the CM depends on the 

distribution of observations. When there are more observations in 

category 3 than in category 4, there will be more drifters from 3 to 4 than 

the other way around if the proportion of drifters is equivalent between 

the categories. Consequently, the CM is expected to be relatively low 

in categories with relatively few observations.  

These inferences imply that category statistics should be compared 

with their expected values, not the static cut value of 40%. To produce 

the expected values, I have conducted 1000 simulations in R (R Core 

Team, 2017). That is, for each person and each item, an observation was 

simulated based on the RSM. From the simulated matrix, an analysis was 

conducted, and category statistics were stored. This procedure was 

replicated 1000 times leading to the results in Table 6 and 7. 

The simulated values confirm that expected values vary: The MC 

values are, indeed, greater in the extreme categories, and the CM 

values are affected by the observation distribution. 

If we compare the empirical results in Table 5 with the expected 

values, we see that the empirical CM value of 0.28 in the fourth 

category is not as bad as it seemed at first, although the value is still less 

than expected. Moreover, the empirical MC value of 0.63 in the same 

category is not as good as it seemed (compared with 0.40) with estimated 
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p-value less than 0.05. The conclusion is that the last category is the 

most problematic.  

Table 6. Simulated MC 

Category Mean Min Max 5% 95% 

1 0.70 0.66 0.74 0.68 0.72 

2 0.56 0.54 0.59 0.55 0.58 

3 0.53 0.49 0.57 0.51 0.55 

4 0.71 0.64 0.78 0.67 0.75 

Table 7. Simulated CM 

Category Mean Min Max 5% 95% 

1 0.44 0.39 0.49 0.41 0.47 

2 0.72 0.68 0.75 0.70 0.73 

3 0.56 0.51 0.60 0.54 0.58 

4 0.35 0.28 0.42 0.32 0.39 

      

Critical values for Infit Mnsq and Outfit Mnsq were estimated based 

on the formula presented in (Smith et al., 1998, p. 78): 

 

𝑀𝑆(𝑊𝑇) = 1 +
2

√𝑥
       (9), and 

𝑀𝑆(𝑈𝑇) = 1 +
6

√𝑥
    (10), 

 

where x = sample size. Consequently, critical values were set to Infit 

Mnsq = 1.1 and Outfit Mnsq = 1.3. However, Smith et al. (1998) 

illustrated how the Type I error rate is affected by contextual factors 

(e.g., sample size). Thus, I have conducted 1000 simulations to test the 

critical values that were published in the paper. For each analysis, the 

minimum and maximum Infit Mnsq and Outfit Mnsq values were 

recorded. The results, summarised in Table 8, indicate that at least one 

Infit Mnsq value above 1.26 and at least one Outfit Mnsq value above 

1.24 are expected in 5% of the times when data fit the Rasch model 

perfectly. In conclusion, the cut value of 1.1 that was reported in Paper I 

is good for ‘flagging’, but not sufficient evidence of true misfit.  

Table 8. Simulated fit statistics 

  Mean Min Max 5% 95% 

Infit Min 0.85 0.72 0.95 0.79 0.90 

Mnsq Max 1.17 1.05 1.50 1.09 1.26 

Outfit Min 0.85 0.70 0.95 0.79 0.90 

Mnsq Max 1.16 1.06 1.40 1.10 1.24 
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8.2 Appendix B: Additional analyses, Paper II 
In Paper II, I illustrated the person-independent property of mathematical 

identity from a reduction of the sample. That is, I removed 40 persons 

with strongest measures, and subsequently, 40 persons with lowest 

measures from the analysis, and showed how the structure of identity 

remained relatively stable. 

After the publication, I have conducted more extreme reductions. 

First, I have reduced the sample to include the ‘bottom half’ only, except 

four persons, uniformly spread in the ‘upper half’ that were kept in the 

analysis to prevent a serious drop in reliability. The reduced sample is 

illustrated in Figure 16.  

 

  
 
Figure 16. Reduced sample: ‘Upper half’ removed. M = mean, S = one standard deviation, T 

= two standard deviations 

 

Figure 17 shows that, except item 3, there was no significant 

difference in the structure of mathematical identity between the full 

STEM sample and the reduced sample. A similar conclusion was made 

when the ‘lower half’ was removed. 
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Figure 17. The structure of mathematical identity calibrated on the full STEM sample and a 

reduced sample with ‘upper half’ removed 

 

To explore person-independence further, I have made a reduction 

based on size. That is, if my inferences in this thesis are correct, then the 

structure of mathematical identity should not be affected by sample size, 

if we ignore random measurement errors. To assess this hypothesis, I 

have reduced the sample to include a small sample of 30 persons only. 

The sample was uniformly spread along the variable, as illustrated in 

Figure 18.  

 

 
Figure 18. Person-item map, reduced sample  
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Figure 19 shows that there was no significant difference in the 

structure of mathematical identity between the full STEM sample and 

the reduced sample. 

 

 
Figure 19. Differential test functioning. Full sample vs reduced sample 

 

To assess the importance of the difference, the reduced sample was 

measured twice: first relative to the ‘global structure’ (from the full 

sample), and then relative to the ‘local structure’ (from the reduced 

sample). Figure 20 illustrates a convenient consequence of the person 

independent property of the structure of mathematical identity: 

individual measures hardly depend on sample size.  

 

 
Figure 20. Person measures relative to: full sample structure vs reduced sample structure 
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8.3 Appendix C: Additional analyses, Paper III 
The analysis in Paper III is based on an extended sample of STEM 

students, 361 in total. In effect, the item measures presented in Paper III 

(p. 5) are not equivalent to those in Paper I. To see if this divergence is 

due to chance or a flux in the structure of identity, I have conducted a 

differential test analysis in which item measures based on STEM 

responses in Paper I are plotted against their measures in Paper III.  

 

 
Figure 21. Differential test functioning 

 

In sum, differences in the structures are within the expected range, 

except for the case of item 10: “Finding out why methods do not work”. 

Moreover, the impact of the differences is negligible. That is, the 

differences in positions hardly affect the estimation of personal 

positions, as can be seen in Figure 22. 

The category statistics are presented in Table 9. The general 

impression is the same as for Paper I: CM in the fourth category is 

much lower than 40%, but this is expected due to the distribution of 

observations. 
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Figure 22. Person measures relative to: Paper I structure vs Paper III structure 

 

Table 9. Category statistics, fourth paper 

Category Obs. Infit mnsq Outfit mnsq Thr.hold MC|exp. CM|exp. 

1 1397 0.93 0.95 None 0.72|0.68 0.35|0.32 

2 2715 0.96 0.93 -1.81 0.52|0.56 0.69|0.71 

3 2152 0.96 0.98 0.10 0.48|0.53 0.58|0.61 

4 962 1.13 1.13 1.71 0.61|0.69 0.25|0.28 
Note. The expected values are estimated based on 1000 simulations 

 

The ICCs from the third study are presented in Figure 23. The main 

impression is that category 4 is the most problematic, as it was indicated 

in Paper I.  

 

 

 
 



On measuring and theorising mathematical identity   117 

 
 

 
 

 
 

 
 



118   On measuring and theorising mathematical identity 
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Figure 23. Item Characteristic Curves, Paper III 
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8.4 Appendix D: Letter of consent 
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8.5 Appendix E: Instrument, English translation 
 

Never/almost never(1), Sometimes(2), Often(3), Always/almost always(3), Don’t know(9) 

 

1. I take the initiative to learn more about math than what is 

required at school/work. 

1 2 3 4 9 

2. When I learn a new method, I take time to find out if I can find a 

better method. 

1 2 3 4 9 

3. When I learn a new method, I try to think of situations when it 

wouldn’t work. 

1 2 3 4 9 

4. I struggle with putting math problems aside. 1 2 3 4 9 

5. If I forget a formula or method, I try to derive it myself. 1 2 3 4 9 

6. I get engaged when someone starts a mathematical discussion. 1 2 3 4 9 

7. When I learn something new, I make my own problems. 1 2 3 4 9 

8. Math ideas that I hear or learn about help me inspire new trains 

of thoughts. 

1 2 3 4 9 

9. When I learn a new method, I like to be told exactly what to do.  1 2 3 4 9 

10. When I try to use a method that doesn’t work, I spend time to 

find out why it didn’t work. 

1 2 3 4 9 

11. When I learn a new formula/algorithm, I try to understand why 

it works. 

1 2 3 4 9 

12. When I face a proof, I study it until it becomes meaningful. 1 2 3 4 9 

13. When I face a math problem, I consider different possible ways 

I can solve it. 

1 2 3 4 9 

14. When I work with a math problem, I move back and forth 

between various strategies. 

1 2 3 4 9 

15. When I learn something new, it makes me want to learn more 

things. 

1 2 3 4 9 

16. When I work with a problem, I pause along the way to reflect 

on what I am doing. 

1 2 3 4 9 

17. If I get stuck on a problem, I try to visualize it. 1 2 3 4 9 

18. I can explain why my solutions are correct. 1 2 3 4 9 

19. I try to connect new things I learn to what I already know. 1 2 3 4 9 

20. If I immediately do not understand what to do, I keep trying. 1 2 3 4 9 
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8.6 Appendix F: Instrument, Norwegian translation 
 

Aldri/nesten aldri(1), Noen ganger(2), Ofte(3), Alltid/nesten alltid(3), Vet ikke(9) 

 

1. Jeg tar initiativ til å lære mer om et matematisk emne enn 

skole/jobb legger opp til. 

1 2 3 4 9 

2. Når jeg lærer en ny metode, bruker jeg tid på å se om jeg kan 

finne en bedre metode. 

1 2 3 4 9 

3. Når jeg lærer en ny metode, prøver jeg å finne situasjoner hvor 

denne ikke virker. 

1 2 3 4 9 

4. Jeg har problemer med å legge fra meg matematiske oppgaver. 1 2 3 4 9 

5. Dersom jeg har glemt en formel/metode, prøver jeg å utlede den 

selv. 

1 2 3 4 9 

6. Jeg blir engasjert når noen starter en matematisk diskusjon. 1 2 3 4 9 

7. Når jeg lærer noe nytt, stiller jeg meg selv egne spørsmål som jeg 

jobber med. 

1 2 3 4 9 

8. Matematiske ideer jeg leser eller hører om setter meg på sporet 

av egne tankerekker. 

1 2 3 4 9 

9. Når jeg lærer en ny matematisk metode, liker jeg å bli fortalt 

nøyaktig hva jeg skal gjøre. 

1 2 3 4 9 

10. Hvis jeg prøver på en metode som ikke fører frem, bruker jeg 

tid på å finne ut hvorfor denne ikke virker. 

1 2 3 4 9 

11. Når jeg lærer en ny metode/algoritme, prøver jeg å finne ut 

hvorfor den virker. 

1 2 3 4 9 

12. Når jeg kommer over et matematisk bevis/forklaring, studerer 

jeg det til det gir mening. 

1 2 3 4 9 

13. Når jeg møter et matematisk problem, tenker jeg over om det 

finnes flere måter å løse oppgaven på. 

1 2 3 4 9 

14. Når jeg jobber med et matematisk problem hopper jeg mellom 

ulike strategier. 

1 2 3 4 9 

15. Når jeg lærer noe nytt, fører det til at det er flere ting jeg ønsker 

å finne ut. 

1 2 3 4 9 

16. Når jeg jobber med en oppgave, stopper jeg opp underveis og 

reflekterer over hva jeg gjør. 

1 2 3 4 9 

17. Hvis jeg står fast, prøver jeg å visualisere problemet. 1 2 3 4 9 

18. Jeg kan forklare hvorfor løsningen min er rett. 1 2 3 4 9 

19. Jeg prøver å koble det jeg lærer opp mot det jeg vet fra før. 1 2 3 4 9 

20. Jeg fortsetter å prøve meg frem selv om jeg ikke får det til med 

en gang. 

1 2 3 4 9 
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8.7 Appendix G: Interview guide 
 

1. Introduction 

a. Explain the purpose of the study. 

b. Explain anonymity and how the interviewee can withdraw the 

interview at any time. 

c. Explain that the estimated time is 60-90 minutes. The 

interviewee can abort at any time. 

d. Ask if the interviewee has any questions about the study or the 

interview. 

e. Written and oral consent 

 

2. Introductory questions [approximately 15-20 minutes each] 

a. Can you start by telling me how you have perceived your time 

here at the University? 

b. Are you currently engaged in any projects? Can you tell me 

about it? 

c. Can you tell me how you go about when you work with 

mathematical problems? 

d. Can you tell me how you go about when you learn new 

mathematics? 

 

3. Probing questions [when interviewee makes general statements] 

a. Do you have a concrete example? 

b. Could you say something more about that? 

c. Do you have further examples? 

 
4. Specifying questions 

a. [when interviewee explains something loosely] 

Going back to this [e.g., situation], could you explain it once 

again, now as detailed as possible? Any detail could be 

important. 

b. [pick up on notes] 

You talked (earlier) about […]. Can you say something more 

about that? 

 
5. Interpreting questions [when something is unclear] 

a. You then mean that…? 

b. Is it correct that…? 

c. I did not quite understand […]. Could you explain it again? 
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1 Introduction

Much has been said about what it means to be a successful mathematics student. The early
writings of Skemp (1987, 1989) and Hiebert (1986) emphasised understanding and knowl-
edge, whereby a combination of conceptual knowledge/relational understanding and pro-
cedural knowledge/instrumental understanding was perceived to be a characteristic of
successful mathematics students. Subsequently, research in mathematics education has
had a tradition of focusing on the teaching and learning for relational understanding (e.g.
Carpenter & Lehrer, 1999).

Another line of research goes beyond the cognitive aspects of learning and focuses on
learning as a process of identification with certain practices or activities (e.g., Holland,
Lachicotte, Skinner, & Cain, 2001; Wenger, 1998). From this perspective, being a successful
mathematics student is not determined by cognitive aspects alone, but also by how persons are
identifying with mathematical practices (Boaler, Wiliam, & Zevenbergen, 2000; Sfard &
Prusak, 2005).

Although the mainstream in identity research seems to follow a qualitative tradition
(e.g., Black et al., 2010; Hernandez-Martinez et al., 2011; Hossain, Mendick, & Adler,
2013; Solomon, 2007), some quantitative studies on mathematical identities, and related
concepts, such as students’ views on themselves as learners, exist (e.g., Alexander, 2015;
Roesken, Hannula, & Pehkonen, 2011). It appears problematic, however, to measure
mathematical identity based on basic requirements of measurement, for instance, as
formulated by Thurstone (1959), and we will in this paper address three particular problems
of measuring mathematical identity.

The first problem is that there is no consensus on philosophical aspects of identity in
general, and mathematical identity in particular. As such, it seems impossible to construct a
measure of mathematical identity that is consistent with all conceptualisations of identity.
The second problem is that selected quantitative studies have suggested multiple dimen-
sions to mathematical identity, like knowledge, ability, motivation, and anxiety (e.g.,
Axelsson, 2009). However, the nature of any measure is uni-dimensional, that is, one can
measure only one dimension at a time (Thurstone, 1959). The third problem is that
measurements are required to be invariant across contexts (Thurstone, 1959). That is, in
the case of mathematical identity, Bwhat it means to be mathematical^–what we will refer to
as the social structure of being mathematical–has to be identical (ideally) or similar enough
(practically) across contexts for cross-contextual comparisons of measurements to make
sense. However, a great proportion of studies conceptualise mathematical identity as
something more or less situated, which obviously violates the requirement of invariance.
Accordingly, although measurements have been proven to be extremely potent in the
history of science (Kuhn, 1977), serious threats to meaningful measurements can be found
in a lack of theoretical consensus, in the requirement of uni-dimensionality, and in the
requirement of invariance.

The problem with a lack of consensus is not a new one. Rather, the state of identity
research seems to have many resemblances to what typically is found in pre-paradigmatic
phases. Kuhn (1970) described these phases as filled with confusion and a lack of
consensus, but not incompatible with significant discoveries and inventions. Thus, the
negotiations, confusions, and disagreements of ontological, epistemological, and method-
ological issues seem inevitable, if identity research is perceived as an emerging paradigm.
Moreover, the uni-dimensional and invariance issues are also known problems in the
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history of science. That is, uni-dimensional and invariant constructs are only theoretical
ideas, just like a line in Euclidean geometry. In practice, every construct is multidimen-
sional, and every dimension is situated. Thus, when studies conclude that a construct, like
identity, consists of a finite number of invariant dimensions, none of these will be truly uni-
dimensional nor completely invariant.

Accordingly, in this paper, we claim that questions about how many dimensions mathe-
matical identity comprises of, and how situated mathematical identity is, are pragmatic ones.
When instruments are used to measure constructs such as motivation, ability, and anxiety,
researchers have decided that those instruments capture Benough^ of what one tries to
measure, and that these constructs are invariant enough for practical purposes, whilst appre-
ciating that the measures that are produced are only approximations. We claim that the same
decisions must be made when mathematical identity is measured.

As such, mathematical identity (as a unit) can be measured, if it is perceived to capture
Benough^ of what one wants to study. Moreover, measures across contexts can be compared, if
the social structure of being mathematical is perceived similar Benough^ in these contexts.
However, to make such decisions, one needs to know how much information one main
mathematical identity dimension covers, and how much the structure differs (if measures are
to be compared across contexts). Furthermore, from a measurement perspective, this kind of
information can be obtained only from a well-defined and, most importantly, measurable
perspective on mathematical identity.

Although some of our arguments in this paper are general, we will focus specifically on
Science, Technology, Engineering, and Mathematics (STEM) students’ mathematical identi-
ties. Moreover, when the problem of invariance is discussed, a second sample consisting of
student teachers has been chosen for illustrative purposes. Thus, the questions that guide this
research, all of which are related to the three problems discussed above, are:

(1) Which theoretical perspective on mathematical identity is consistent with basic require-
ments of measurement?

(2) What are the characteristics of STEM students’ measured mathematical identities?
(3) How can mathematical identity measures provide information on how much the social

structure of being mathematical differs across the STEM context and the student teacher
context?

The study is influenced by the TransMaths project (TransMaths.org), and builds on
data from a previous study that validated a Rasch-calibrated instrument for measuring
the extent to which Norwegian STEM students and student teachers are working
conceptually with mathematics (Kaspersen, 2015). Although these measures initially
were conceptualised as static traits, subsequent analyses suggested that the measures
could only be understood in relation to the context in which the observations were
made. As such, we will outline in this paper a theoretical perspective on identity that,
we argue, is both contextual and measurable. Thus, concepts from cultural-historical
activity theory (CHAT) are adopted to account for the structure of the activity.
Specifically, Bthe social structure of being mathematical^ is outlined as the invariant
background in which individuals are measured. Subsequent quantitative and qualitative
analysis will exemplify how mathematical identities are characterised in the STEM
context and discuss the invariance of identities across the STEM context and the
student teacher context.
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2 Theoretical background

The field of identity research has been claimed to lack a consensus on the meaning of identity
(e.g., Beijaard, Meijer, & Verloop, 2004). To illustrate, Gee (2000) defined identity as Bbeing
recognized as a ‘certain kind of person’, in a given context (…)^ (p. 99), whereas Holland
et al. (2001) conceptualised identity as narrated/authored, and Bidentities-in-practice^. Sfard
and Prusak (2005) criticised these definitions, as they both emphasised Bwho one is^, as if
identity is independent of one’s actions. Instead, Sfard and Prusak (2005, p. 14) conceptualised
identity as Bdiscourse^ constituted as stories and, thus, defined identity to be Ba set of reifying,
significant, endorsable stories about a person^.

However, although little consensus has been found regarding critical issues on identity,
some similarities are described in the literature. In particular, the locus of identity, or the
Bstructure-agency^ debate, distinguishes those who see identity as primarily context-free (i.e.,
within the individual) from those who see it as primarily individual-free (i.e., identity can only
be understood in context) (Cote & Levine, 2014). Accordingly, identity research can be said to
be in a pre-paradigmatic phase. One characteristic of research in pre-paradigmatic fields is the
relationship between data and theory (Kuhn, 1970). Researchers that are working in well-
established paradigms often try to Bforce^ the data to fit some commonly accepted theory. The
situation is quite the opposite in pre-paradigmatic fields, where the data at hand often guide the
choice of theory. Indeed, the choice of theoretical perspective in this study has not been pre-
determined—we have not adopted any ready-made interpretation of identity (e.g., those
mentioned above). Rather, we have started with a few basic assumptions of identity and,
based on the argument to follow, chosen a perspective that fits our purpose of how identity can
be measured.

So, our fundamental assumption about identity in general, and mathematical identity in
particular, is that identity is relational by nature (unless proven otherwise). This assumption is
based on the fact that most concepts, even physical ones, are relational (the speed of light
would be an exception). Thus, identity, like physical concepts, such as speed and weight, can
be assessed (e.g., measured) only relative to a context. Accordingly, theoretical concepts are
needed to account for the context, and we will ground these concepts in CHAT. It is important
to note, however, that we do not assume that the context/activity itself is static—it most likely
is not. Just like the speed of a car is only a measure of how fast the car is moving relative to the
earth, and does not take into account that the earth itself is moving, so we claim that any
measure of identity would only be a measure relative to the activity in which it is situated.

2.1 Cultural—historical activity theory

The origin of CHAT can be traced back to Vygotsky (e.g., 1978) who built a psychology on
Marxist ideas. In doing so, individuals and the social context were incorporated into a unifying
framework for understanding the human psyche. As a response to theories of behaviour as a
direct relationship between the subject and the object, Vygotsky (1978) replaced stimulus-
response processes with complex mediated acts, where signs and tools served as mediating
links. Moreover, Vygotsky (1978) distinguished between externally oriented tools and inter-
nally oriented signs. Externally oriented tools lead to real changes on the object, much like
Marx described the way man uses tools as Bforces that affect other objects in order to fulfill his
personal goal^ (p. 54). Internally oriented signs, by contrast, change nothing on the external
object, but work as mental auxiliaries.
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In what has been called the second generation of CHAT (Engeström, 2001), Leont’ev
(1978) continued the work of Vygotsky by taking up a more collective view on activity. At a
general level, activity is directed towards a collectively motivated object. Actions, in contrast,
are directed toward goals. From Leont’ev’s (1978) point of view, one cannot talk about
individual activity, but one may speak of the activity of the individual. Only actions and
operations are individual. Moreover, as the smallest unit of analysis, one cannot analyse activity
without actions, and vice versa. This is because activity is a sum of actions, and the same action
can bear different meanings depending on the activity into which it is incorporated. As such,
one cannot study personal characteristics related to working with mathematics without taking
into account what any particular characteristic means in the activity in which it is observed.

Later, Engeström (1987) formulated Leont’ev’s ideas in a framework that represents the
activity system in a triangle (Fig. 1). The mediating triangle (Vygotsky, 1978) on the top is
extended with rules, community, and division of labour. As such, Engeström’s (1987) frame-
work takes a less personal position than the original works of Vygotsky and puts more
emphasis on the structure of the activity. Moreover, in what is called the third-generation
CHAT, Engeström provided conceptual tools to analyse multiple activity systems and their
interactions, for instance, though linking boundary persons/objects.

2.2 Mathematical identity

CHAT is not a unified framework, and one of the arguments is related to the notion of identity.
Instead of going into detail about different interpretations of identity in CHAT and related
theoretical frameworks, such as the theory of communities of practice (Wenger, 1998), we will
address these controversies at a more general level, in what has been referred to as the
structure-agency debate (e.g., Cote & Levine, 2014).

In contrast to more cognitive traditions, cultural–historical approaches often view identity
as mainly a social phenomenon. Yet, there seem to be disagreements regarding the locus of
identity: how context-bound it is. Leont’ev (1978), for instance, asserted that the chief task is
to understand consciousness as a subjective product of activity, whereas Stetsenko and
Arievitch (2004) suggested a middle ground and asserted the self as a leading activity.

We have already assumed that identity is relational by nature, but to address this issue, we
need two more assumptions: (a) we assume that the locus of identity question is not a
dichotomous one, which means that identity does not have to be either completely context-
free, or completely context-bound (though it might be located closer to one end than the other);
and (b) the locus of identity does not have to be static (we believe that it probably is not),

Tools and signs

Subject

Rules Community Division of labor

Object

OutcomeSense
Meaning

Fig. 1 The structure of an activity
system as presented in Engeström
(1987, p.78)

Measuring STEM students’ mathematical identities 167



which means that there is not one universal answer to the question on how context-bound/free
mathematical identity is. As such, we assert that any general claim that attempts to locate
identity at any Bmagical^ position between context-free and context-bound is a distraction
from the debate. Rather, the locus of identity question should be empirical, not theoretical.

Accordingly, we suggest that researchers need information about at least two different
activities before making any judgements about whether mathematical identity is regarded as
relatively situated or relatively context-free, though these activities do not have to be complete-
ly isolated from each other (they could, for example, be connected by some boundary objects
or boundary agents). From this, one problem immediately emerges. If identity can be measured
only in context, and we need different contexts to get access to how situated mathematical
identity is, then it seems that we have lost the common point of reference that makes
comparisons of cross-contextual measurements possible. As such, although it initially looked
promising, the activities per se cannot be used as the common point of reference that identity is
measured against if we want to compare measures across activities.

To resolve this problem, we need a common point of reference, one common background
that can, at least hypothetically, be similar across different activities, and we propose the social
structure of being mathematical as such a background. That is, we define mathematical
identity to be where persons position themselves relative to the social structure of being
mathematical within the activity in which they participate and contribute.

According to fundamental requirements of measurement (Thurstone, 1959), it is essential
that the background of the persons acting stays invariant. Consequently, the social structure of
being mathematical in any given activity is required not to change if persons are added or
removed from the analysis. An important note is that this property of the social structure of
being mathematical is a requirement as opposed to an assumption. Thus, we appreciate that
there exists multiple characteristics of being mathematical within any activity, some of which
are variant and others that are not. However, the social structure of being mathematical is
required to contain the invariant characteristics only, without assuming that others do not exist.
If no such structure can be established, then measures cannot be compared.

Following from this, the social structure of being mathematical is, in theory, the person-
independent (i.e., invariant) subset of the complete set of possible positions a person can
occupy within a given activity. That is, the social structure of being mathematical is the subset
of positions designated by the activity alone, whereby any two positions are distinguished by
at least one invariant characteristic of being mathematical. Accordingly, we argue that in any
activity, at any given time, there is a set of positions, and their associated characteristics, that
exists independently from individuals within or without the activity (including researchers).
Surely, any person can hypothesise characteristics that belong to the social structure of being
mathematical, but some empirical evidence of person-independence is needed before such
characteristics are included in the social structure.

To say that a position is person-independent, however, is not the same as saying that it is
person-free (clearly, any activity consists of persons). Rather, it means that any position in the
social structure exists regardless of whether individuals occupy this position or not. Therefore,
the results of an analysis of the social structure of being mathematical should, in theory,
depend on which activity is being observed only, and not on which positions persons happen to
take in this structure. However, in practice, the theoretical social structure of being mathemat-
ical can never be completely observed, nor is it entirely person-independent. Thus, we define
the empirical social structure of being mathematical to be a fragmented and approximately
person-independent representation of the theoretical invariant structure.
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Furthermore, the requirement of invariance is not a requirement for the structure to be static.
Indeed, a change of the level of invariance over time is an indicator of where the structure is
being negotiated. Likewise, the requirement of invariance is not a requirement of the structure
to dictate human action. The structure of being mathematical is an invariant abstraction and not
a description of the complete set of possibilities a person has. Any person has agency and can
move freely between each position. Moreover, any person can choose to take positions not
included in the social structure, and there are many reasons for them to do so (or not). One
reason is to negotiate the social structure. Another reason is that persons contribute in many
activities, and therefore, what seems to be an outlying position in one activity might, in fact, be
a common/firm position in another.

To sum up, considering a simple case with only two activities, if the social structure of
being mathematical in activity A is about the same as the social structure of being mathemat-
ical in activity B, then mathematical identity is more or less context-free between activity A
and activity B—here it does make sense to compare measures between these activities. As the
structure across these contexts diverges, mathematical identity becomes more situated, until a
hypothetical example where the social structure of being mathematical is completely different
between the activities in which we would conclude that mathematical identity is completely
situated between activity A and B—here it would no longer make sense to compare mathe-
matical identities across these activities.

3 Methodology

The starting-point of this study is a Rasch-calibrated instrument (Appendix 1) that
measures the extent to which students are working conceptually with mathematics
(Kaspersen, 2015). Rasch measurement (Rasch, 1961, 1980) is based on fundamental
requirements for measurement as formulated by Thurstone (Andrich, 1989), and a key
feature of the Rasch model is that persons and items are not discriminated, which means
that they can be measured on the same scale (Wright & Stone, 1979). That is, a Rasch
measure is a relational measure, which makes it suitable for relational concepts such as
identity. In the simplest dichotomous version, the probability that a person agrees with an
item is a function of the distance between the person and the item. The greater the person
measure in relation to item measure, the closer to 1 the probability gets. Conversely, the
greater the item measure relative to person measure, the closer to 0 the probability gets
(Wright & Stone, 1979).

Validation of the instrument has been extensively discussed elsewhere (Kaspersen, 2015),
and therefore it will only be summarised in this paper. As a means for finding evidence of
validity, the study relies upon a framework formulated by Wolfe and Smith (2006), who
perceived validity not as a unified concept, but rather as a collection of evidence on different
aspects of validity. From a sample of 133 student teachers and 185 STEM students, a group of
20 items was in Kaspersen (2015) concluded to be productive for measurement (Table 1).

Invariance, additivity, and uni-dimensionality have been formulated as the basic require-
ments of quantitative measurement (Thurstone, 1959). The last requirement, that is uni-
dimensionality, means that one could measure only one dimension at a time, and thus,
mathematical identity as a unit could be measured only if it was considered to be sufficiently
uni-dimensional. If, on the contrary, mathematical identity was perceived to be multidimen-
sional, multiple instruments would be needed.
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From a theoretically uni-dimensional case, any deviation from the model is considered to be
random noise. Therefore, a principal component analysis (PCA) of the standardised residuals
is one way of finding multidimensionality in the data. Since residuals, in a theoretically uni-
dimensional case, are random noise, unexpected responses should not correlate across items.

However, any instrument, psychometrical or physical, is in practice multidimensional.
Consequently, the question is not really about the instrument being uni-dimensional or not,
but how multidimensional it is, and how much it matters. This is an empirical question and
depends on the context in which the study is conducted. What in one case is sufficiently uni-
dimensional might not be in another. A general guideline on the Rasch paradigm, however, is
to use 2.0 in Eigenvalue units as a threshold on second dimensions when PCA on standardised
residuals is used to assess multidimensionality. Eigenvalues below 2.0 indicate that, although
there are multiple dimensions in the data, the sub-dimensions are in most purposes measuring
the same thing (Linacre, 2015, p. 391).

Accordingly, a PCA of the residuals was conducted on the original instrument to
find sub-dimensions that were likely to be connected. In Kaspersen (2015), 1.7 unex-
plained variance (in Eigenvalue units) was found in a second contrast. Thus, any sub-
dimensions that appear in the PCA analysis are likely to be highly correlated. Yet,
although an Eigenvalue of 1.7 indicates highly correlated sub-dimensions, the relation-
ships between the dimensions will be discussed by comparing person measures from

Table 1 Item statistics: measure order

Measure INFIT OUTFIT Item

MNSQ ZSTD MNSQ ZSTD

1.71 .93 –.7 .86 −1.3 1. Takes the initiative to learn more.

1.69 .89 −1.3 .86 −1.5 2. Takes time to find better methods.

1.42 .98 –.2 .93 –.7 3. Thinks of times when methods do not work.

1.10 1.23 2.7 1.21 2.4 4. Struggles with putting problems aside.

.58 1.09 1.2 1.11 1.4 5. Derives formulas.

.55 1.12 1.4 1.12 1.3 6. Likes to discuss math.

.54 .99 –.1 .99 –.1 7. Makes his/her own problems.

.45 .91 −1.0 .89 −1.3 8. New ideas lead to trains of thoughts.

.19 1.25 2.9 1.25 2.9 9. (x) Likes to be told exactly what to do.

.08 1.23 2.7 1.20 2.4 10. Finds out why methods would not work.

–.06 .89 −1.4 .88 −1.5 11. Finds out why formulas/algorithms work.

–.21 .94 –.7 .94 –.7 12. Studies proofs until they make sense.

–.24 .71 −4.1 .72 −3.9 13. Considers different possible solutions.

–.27 .84 −2.0 .86 −1.8 14. Moves back and forth between strategies.

–.35 1.08 1.0 1.08 1.0 15. Wants to learn more things.

–.51 .96 –.4 .99 –.1 16. Pauses and reflects.

–.82 1.22 2.3 1.22 2.3 17. Visualises problems.

−1.20 .75 −3.4 .78 −3.0 18. Can explain why solutions are correct.

−2.27 .98 –.2 1.02 .3 19. Connects new and existing knowledge.

−2.38 1.06 .7 1.04 .5 20. Keeps trying.

Item 9 negatively coded
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the full instrument with person measures when different sub-dimensions are excluded
from the instrument. The purpose is to validate that the sub-dimensions can be treated
as strands highly connected with the main mathematical identity dimension, instead of
as independent dimensions.

In addition to the PCA analysis, the data consist of semi-structured interviews
conducted with four purposefully selected STEM-students: two students (A and B) with
high measures and two students (Y and Z) with lower measures. These students were
asked: how they perceived their time at the university; which project they were currently
engaged in; how they worked with mathematical problems; and how they learned new
mathematics. Transcripts of the data were subsequently analysed using the item charac-
teristics in addition to concepts described in CHAT: objective, tools, rules, communities,
and division of labour.

Finally, the relationship between data and our ontological perspective on identity needs
some attention. That is, we assert that identity is how people respond to the activities in
which they engage, and not how they answer to a questionnaire. Yet, our data consist of
what people say. The choice of data has some obvious benefits (one can collect much data
on a short amount of time; one can Blook back in time^; etc.). However, an implicit
assumption is that what students say is a reasonable representation of how they respond
to the activity. Thus, our data consists of indirect observations of mathematical identities.
As such, we claim that there is no best way to represent identity, and future research might
use different kinds of data.

4 Results

In this section, a quantitative description of STEM students’ mathematical identities is
presented and arguments are made that the social structure of being mathematical is mostly
affected by the activity, in which the measure is conducted, however practically unaffected by
the individuals’ identities. Moreover, statistical arguments make the point that three dimen-
sions are discovered in the data, but that these are all highly connected with the main
mathematical identity dimension. Finally, qualitative data will provide illustrative examples
of characteristics along this variable.

4.1 Students’ mathematical identities

STEM students’ measured mathematical identities can be found in the first column of Fig. 2.
An approximate and fragmented representation of the social structure of being mathematical is
displayed on the right-hand side, and individuals’measures are displayed on the left-hand side.
Roughly, most persons Bagree^ with characteristics much lower than their measure and
Bdisagree^ with characteristics much higher than their measure. For instance, a person with
measure 0.5 would most likely Bagree^ with most items 10–20 and Bdisagree^ with most items
1–5 (see Wright and Stone (1979) for a more thorough description of the relationship between
persons and items).

We have claimed that the social structure of being mathematical is theoretically inde-
pendent of individuals’ mathematical identities. This is illustrated in the second and third
column of Fig. 2, where we have conducted artificial changes to the sample distribution. In
the second column, we have removed 40 persons with strongest mathematical identities

Measuring STEM students’ mathematical identities 171



from the analysis. In the third column, we have removed 40 persons with weakest identities.
This illustrates how the social structure of being mathematical, as represented by the items’
locations along the variable, is more or less unaffected by which persons we include in the
analysis (Item 14, Bmoving back and forth between strategies^, would be an exception
where there is a slight person dependency). We can observe how positions on the higher end
of the variable are quite accurately described, even when persons that typically occupy
these positions are removed from the analysis (column 2), and the same can be said about
positions on the lower end (column 3).

In this part of the analysis, we also have included the student teacher sample (column 4) for
illustrative purposes. Accordingly, we make two conclusions: First, the social structure of
being mathematical is more affected by the change of activity, that is, from the STEM context
to the student teacher context, than the change of sample distribution. One example is Item 2
(Bsearching for better methods^), which is a stronger characteristic in the STEM context than
in the student teacher context. This has previously been explained by the fact that teacher
education emphasises the search for and comparison between methods, whereas the tasks at

Fig. 2 Persons and items measured on the same variable
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the technical university that the STEM students attended seemed to emphasise specific
methods to a greater extent than teacher education, making it naturally harder for STEM
students to search for other methods (Kaspersen, 2015).

Our second conclusion is that, although the social structure of being mathematical differs
between the STEM context and the student teacher context, the structures are close enough for
comparisons of measures to make sense. That is, student teachers’ measures are almost
identical (r = 1.00) regardless of whether they are measured relative to the social structure of
being mathematical in the student teacher context or relative to the social structure of being
mathematical in the STEM context (i.e., forcing the items to be identically calibrated as in the
STEM context).

4.2 Dimensionality

The standardised residual plot (Fig. 3) for the second contrast, that is, after the main dimension
is accounted for, indicates that the instrument consists of three sub-dimensions. The items that
do not load to this second contrast can be said to belong entirely to the main dimension.
Furthermore, the items that load positively and negatively to this contrast can be thought of as
separate from the main dimension.

One way of seeing whether these sub-dimensions are to be considered as strands highly
connected with the overarching mathematical identity dimension or as independent dimensions
is to split the items into three dimensions and to examine person measures when different sub-
dimensions are omitted from the instrument. This procedure illuminates whether a person’s
mathematical identity measure changes significantly when one sub-dimension is chosen in
favour of another.

In all cases, the dis-attenuated correlation, that is, the correlation between person measures
when measurement error is accounted for, is close to 1. This result indicates that, in most cases,
choosing items from the second dimension or items from the third dimension does not have a
significant effect on persons’ measures. Thus, the practical consequences of perceiving
mathematical identity as uni-dimensional or three-dimensional are in most cases insignificant.
This means that the three dimensions can be considered to be strands of the same construct,
and not independent dimensions that need separate instruments.

Fig. 3 Standardised residual plot
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4.3 STEM students’ mathematical identities—a qualitative analysis

In the following section, we provide some qualitative examples of how STEM students’
mathematical identities differ across the variable. We have chosen concepts from CHAT in
addition to the item characteristics as analytical categories. As such, those characteristics that
were found using concepts from CHAT but not included in the items are considered as
suggestive for future research.

4.3.1 Characteristics in the lower end

Characteristics on the lower end of mathematical identity are the ones that most STEM
students do, except for students with extremely weak mathematical identities, and they seem
to be related to working with mathematical problems, such as visualising problems, being able
to explain solutions, connecting new and existing knowledge, and so forth. One example is
one of the students with lower identity who looked up on his calculus when he faced a more
advanced problem:

Y: Em, when I first started to look at Padè approximation, I was reading an article that
was quite mathematical. And I realised, wow, I cannot remember any of this. So, I
looked up in some of the books we had in the basic courses, where we had about
sequences. Took a quick look. It wasn’t very deep, just a recap on the concepts. When I
had a basic understanding, I went back on the article.

4.3.2 Medium characteristics

Characteristics around zero are the ones that most persons with medium and high mathe-
matical identities do, in contrast to persons with low identities. These characteristics
include making his/her own problems, disliking to be told exactly what to do, finding out
why methods would not work, studying proofs until they make sense, deriving formulas,
and so forth. One example is one of the students with lower identity who expressed that he
had problems working on proofs:

Z: I never did a proof until I had been here for 2-3 years. I was…I didn’t get it. I didn’t
have… I didn’t have a chance. I always ended up with going to an assistant, and they
helped me solving the proofs-tasks we had on the assignments.

Another example is how one of the students with stronger mathematical identity derived
some formulas instead of remembering them:

B: One typical thing is integration by parts, which I have derived a million times in my
life. You can learn the formula by heart, but I never bothered. So, it’s like, we have U
and we have V, and… [writes]… there you go. And I often do this with other problems
too.

4.3.3 Characteristics on the higher end

Characteristics on the higher end are what mostly students with high mathematical
identities do—it is what distinguishes those with high identities from those with medium
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mathematical identities, and includes struggling with putting problems aside, thinking of
times when methods would not work, taking time to find better methods, and so forth.
Some of these items seem to be related with extending mathematics beyond the
institutionalised community. One example is one of the students with stronger mathe-
matical identity who repeatedly talked about how he was struggling to stop thinking
about mathematical problems:

A: I have had the problem [with a simulation algorithm] for a while, three weeks maybe.
I think about the problem everywhere. I think about it when I am at home, on my spare
time, and when I relax. […] Yesterday, I was at a café with my girlfriend. […] We were
talking about something, and then I just started to think about it.

4.3.4 Suggestive characteristics

When categories from the CHAT framework were used to analyse the data, some
additional characteristics of mathematical identity in the STEM context were found.
One of those was Bbeing mathematically entertained^, that is, enjoying mathematically
entertaining problems, results, or stories about other mathematicians, and was, for the
most part, addressed outside the institutional setting. One of the students with weaker
mathematical identity talked about how he had been interested in Cesàro sums at a
social gathering:

Y: When I was at a ‘waffel night’, one in the group had read about Cesàro sums. It is one
of those classic proofs where you can prove that […] if you have an infinite sum of one
minus one plus one minus one, you will get a half. And if you assume that this is right,
you can do some other funny proofs, so, you can prove that the sum of all natural
numbers equals minus one-twelfth. And we ended up discussing that. […] It was quite
exciting.

In this study, this characteristic was discovered in a form hypothesised to belong on
the lower end of the variable, that is, it is likely to discriminate students with low
identities from students with extremely low identities in the STEM context (if this
characteristic aligns with mathematical identity). All the interviewed students—even
the two students with low measures—talked about some aspect of mathematics as being
entertaining or amusing.

Another characteristic is Busing internalised version of complex tools^, which has been
described in Vygotsky (1978). This characteristic was addressed by one of the students with
strong mathematical identity when he was describing a friend who was Bmore clever than
him^. As such, this is a characteristic that we hypothesise to be on the higher end of the
variable:

B: It was very fascinating to see how he could imagine… spatial understanding. […] It
was like, you could give him an equation in three dimensions, and it was like he could
imagine the behaviour. What would this look like? Would it look like a vase, would it
look like a ball? He was very much like this. I don’t know how he did it.

Another characteristic that was found was the role of mathematics in the activity. That is, the
person with weakest mathematical identity expressed the role of mathematics as a Brule^—
something he had to do to get on with his education. The person with the second weakest identity
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expressedmathematics as being both something he had to do, but also as a Btool^ for solving non-
mathematical problems:

Y: [Learning mathematics] is very targeted to solve a problem. For me, mathematics is
more of a tool than something I immerse in. […] It is means to an end. Something I use
to solve a different problem.

The two students with strongest identities both expressed mathematics as a Brule^, as a
Btool^, and as the Bobjective^.

5 Conclusion and discussion

In this paper, we have argued that personal mathematical identities can be measured relative to
the social structure of being mathematical within the activity in which persons participate and
contribute. Moreover, we have discussed characteristics that belong to a one-dimensional
mathematical identity in the STEM context. That does not mean that multiple dimensions,
or multiple identities, do not exist—they certainly do. But, if meaningful measures are to be
conducted, only highly correlated sub-dimensions can be included. Other dimensions of
mathematical identity or other identities that researchers find relevant for their study will need
separate instruments.

We will end with two remarks. The first one is the problem with missing data. Most studies
tend to refer to missing data as relative to the empirically complete data set, for instance
missing responses in a survey or unclear voices in an interview. This is, however, only a subset
of the theoretically complete set of missing data, which includes every question we did not ask,
everything the interviewees did not say but could have, and so forth. As such, when we
conclude that the social structure of being mathematical is invariant enough between the
STEM context and the student teacher context for practical purposes, we do so well knowing
that most data are missing. Consequently, future research could deliberately search for
characteristics that belong to student teachers’ mathematical identities but not to STEM
students’ identities, or indeed, any other activity. We believe that measurements can be
valuable tools in this search, since such characteristics would be the ones that align with the
identity items in one context but not the other. Additionally, future studies might even find
characteristics that are bipolar across activities—characteristics that are considered as mathe-
matical in some context, whilst considered as anti-mathematical in other contexts. Such
characteristics would correlate in opposite direction across such contexts.

This leads to our final remark. We have shown how one can measure not only
personal identities but also the social structure of being mathematical within an activity.
Thus, it seems probable that there exist some trajectories of invariance—clusters of
activities where the social structure of being mathematical is quite similar. Moreover, it
seems equally probable that there exist trajectories of variance—clusters of activities
where the social structure of being mathematical is so different that comparisons do not
make sense. Accordingly, we suggest future research to measure and compare the social
structure of being mathematical along different trajectories, all starting from school
mathematics. If it can be statistically verified that some trajectories are invariant whereas
other are not, it seems likely that students who travel through these trajectories of
invariance benefit more from participating in school mathematics than those who travel
through trajectories of variance.
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Appendix 1

The Mathematical Depth Instrument (English version)

Never/almost never (1), Sometimes (2), Often (3), Always/almost always (4), Don’t know (9)

1. I take the initiative to learn more about math 1 2 3 4 9i
than what is required at school/work.

2. When I learn a new method, I take time to find 1 2 3 4 9i
out if I can find a better method.

3. When I learn a new method, I try to think of 1 2 3 4 9i
situations when it wouldn't work.

4. I struggle with putting math problems aside. 1 2 3 4 9i

5. If I forget a formula or method, I try to derive it myself. 1 2 3 4 9i

6. I get engaged when someone starts a mathematical 1 2 3 4 9i
discussion.

7. When I learn something new, I make my own problems. 1 2 3 4 9i

8. Math ideas that I hear or learn about help me inspire 1 2 3 4 9i
new trains of thoughts.

9. When I learn a new method, I like to be told exactly 1 2 3 4 9i
what to do.

10. When I try to use a method that doesn't work, I spend 1 2 3 4 9i
time to find out why it didn't work.

11. When I learn a new formula/algorithm, I try to 1 2 3 4 9i
understand why it works.

12. When I face a proof, I study it until it becomes 1 2 3 4 9i
meaningful.

13. When I face a math problem, I consider different 1 2 3 4 9i
possible ways I can solve it.

14. When I work with a math problem, I move back 1 2 3 4 9i
and forth between various strategies.

15. When I learn something new, it makes me want 1 2 3 4 9i
to learn more things.

16. When I work with a problem, I pause along the way 1 2 3 4 9i
to reflect on what I am doing.

17. If I get stuck on a problem, I try to visualize it. 1 2 3 4 9i

18. I can explain why my solutions are correct. 1 2 3 4 9i

19. I try to connect new things I learn to what I 1 2 3 4 9i
already know. 

20. If I immediately do not understand what to do, 1 2 3 4 9i
I keep trying.
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Arguments have been made that one purpose of learning mathematics successfully is for 

students to develop mathematical identities. Thus, since students are frequently evaluated with 

grades in university mathematics courses, a relevant question is how mathematical identities 

are associated with average grades. This study has measured engineering students’ 

mathematical identities and compared these measures with grades in university mathematics 

courses, and a Welch’s ANOVA conclude that the mean average grade amongst students with 

high mathematical identities is significant, and about one grade higher than students with low 

mathematical identities. Moreover, the variance is greater amongst students with low 

mathematical identities, which indicates a strong association between mathematical identity 

and average grade only when mathematical identities are high.  

Keywords: Mathematical identity, Rasch, ANOVA. 

INTRODUCTION 

The transfer of mathematical knowledge from university to the world of work seems 

problematic. Specifically, evidence has been provided that “attainment” in university 

mathematics courses is poorly transferred. One example is an experiment that illustrated how 

17 students and researchers all failed a mathematics examination they had previously passed, 

even the students who had recently passed the original exam with an “A” (Rystad, 1993). 

Moreover, selected studies illustrate how the mathematics is often hidden in “black-boxes” (e.g. 

Williams & Wake, 2007) in the world of work, and consequently, arguments have been made 

that the world of work seeks more general mathematical characteristics than what is typically 

assessed in standard exams (e.g. Hoyles, Wolf, Molyneux-Hodgson, & Kent, 2002). On a 

general note of education, Wenger (1998) argued that learning is about developing identities in 

communities of practice. In general, over the last decades, there has been an increased attention 

towards the construct of identity, and mathematical identity in particular (e.g. Axelsson, 2009; 

Black et al., 2010; Wenger, 1998). Thus, if the world of work seeks general characteristics of 

working mathematically, a relevant question is how mathematical attainment in university 

mathematics courses, as represented by average grades, is associated with mathematical 

identity. This paper addresses this question.  

This study has examined the association between self-reported mathematical identities and 

average grades in university mathematics courses. From a Rasch calibrated instrument, 

previously validated in Kaspersen (2015), the students were categorised as having a “low,” 

“medium,” or “high” mathematical identity, and the paper will illustrate how the mean average 
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grade of students with high mathematical identities was significant and about one grade higher 

than students with low mathematical identities. Moreover, the variance amongst students with 

low mathematical identities was higher than amongst students with high mathematical 

identities, although the difference was not significant (p=0.06). The paper concludes that high 

mathematical identities are associated with high average grades in university mathematics 

courses. However, the same conclusion is not true amongst students with lower mathematical 

identities.  

THEORETICAL FRAMEWORK 

The construct of identity suffers from a lack of consensus on general philosophical issues (Cote 

& Levine, 2014). Specifically, identity is defined differently across different studies and 

paradigms, such as “a certain kind of person” (Gee, 2000, p. 99), “those narratives about 

individuals that are reifying, endorsable and significant” (Sfard & Prusak, 2005, p. 44), and 

“self-perceived mathematical knowledge, ability, motivation and anxiety” (Axelsson, 2009, p. 

387).  

This lack of consensus is typical in pre-paradigmatic fields (Kuhn, 1970). Unlike firm 

paradigmatic fields where well-established theories tend to guide the analyses, research in pre-

paradigmatic areas has a more dialectical relationship between data and theory (Kuhn, 1977). 

This description is a fair representation of how the theoretical perception in this study was 

chosen. That is, no ready-made theory was chosen on pure faith. Rather, a definition of identity 

was established that was consistent with measurement (i.e., consistent to conclude some persons 

to have stronger mathematical identities than others), yet, influences by fragments of multiple 

existing theories. The following theoretical perspective and a wider discussion on practical 

significance has been provided in more detail in Kaspersen, Pepin, and Sikko (2017).  

On another note, we do not regard theories as mirrors of some true reality. Thus, we do not 

believe that some theories are true, and that others are false. When we propose the following 

theoretical perspective, therefore, we are not refusing other perspectives, for instance, a 

narrative view on identity. Rather, we claim that if we choose the following perspective, then 

the practical consequence is that mathematical identity can be measured.  

The perspective of mathematical identity relies on two assumptions. First, we assume that 

identity (originated from the Latin idem) is about sameness and distinction. As such, the 

position in this study juxtaposes perspectives that consider persons to have their unique identity. 

That is, persons are indeed unique. However, they can be defined as identical with respect to a 

set of characteristics, just like mathematical objects can be identified by certain characteristics 

while remaining unique on others. Moreover, since there exists an infinite number of 

characteristics, identities have a varying degree of complexity. That is, mathematical identity 

can be binary, linear, or multidimensional, and we argue that there is no ontological limit to the 

number of dimensions. Consequently, there exists no set of criteria that dictates when 

researchers have arrived at the final dimension. Hence, the choice of complexity can be nothing 

but pragmatic, and in this study, we have chosen a one-dimensional perspective on 

mathematical identity, whereby persons are distinguished on a continuum from having a low to 

having a high mathematical identity within the engineering education context.  
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Furthermore, if we accept that persons participate and contribute in multiple activities, a 

consequence is that each person has multiple identities, a position that is shared by many 

authors, for example Black and colleagues (2010) who, inspired by Leont'ev (1981), presented 

the idea of “leading identity.” Since there is no limit to how many ways persons can be 

distinguished, we argue that there exists no limit to the number of identities, although the 

number of identities that individuals are consciously aware of is likely to be finite. Moreover, 

in this study, we take no definite position on the relationship between identities. Thus, when 

we later will conclude that selected persons have (more or less) the same mathematical identity, 

we do not make claims about how these are related to the multiplicity of identities–for instance, 

whether they are central/leading or peripheral identities.   

Second, we assume that identity is relational by nature. That is, persons can be concluded to be 

identical relative to a set of characteristics, only if the structure of these characteristics is person-

independent. Thus, in quantitative studies, we reject the assumption that persons with the same 

score on some test or questionnaire are identical unless statistical evidence is provided that the 

items stay invariant across relevant subgroups. Hence, there likely exist contexts that are so 

different that comparisons of identities across these contexts do not make sense. Consequently, 

we argue that the methods that are applied to capture identities should also capture the level of 

invariance. 

In conclusion, we define mathematical identity to be where persons position themselves relative 

to the social structure of being mathematical within the activity in which they participate and 

contribute. From a one-dimensional perspective, “the social structure of being mathematical” 

is a person-independent set of characteristics and their internal structure (i.e., their relative 

distance) that distinguishes persons on a continuum from having a “low” to having a “high” 

mathematical identity. “Where persons position themselves” is persons’ positions relative to 

the social structure.  

METHOD 

To test the relationship between engineering students’ self-reported mathematical identities and 

average grade in mathematics courses, a convenience sample consisting of Norwegian 

engineering students (N=361) was selected. 47 students attended an “Introductory course in 

mathematics,” 71 students attended a “Calculus 2” course, 113 attended a “Calculus 3” course, 

11 a “Cryptography” course, and 119 were students from a variety of courses in their normalised 

final year of education. The participants responded to a Rasch-calibrated instrument (Rasch, 

1960), previously validated in Kaspersen (2015), that measures persons on a continuum from 

having a low to having a high mathematical identity relative to 20 uni-dimensional 

characteristics. The items in the instrument were collected from three sources: the literature, 

other related instruments, and from persons contributing in mathematical activities (e.g., 

students and lecturers). The validation of the instrument will not be discussed in depth, as details 

can be found in Kaspersen (2015). The person reliability, analogous to Cronbach’s alpha, was 

0.87. Moreover, from principal component analysis of residuals, the instrument was found to 

be sufficiently uni-dimensional for the purpose of measurement with a 1.99 unexplained 

variance (in Eigenvalue units) in a second contrast. Furthermore, the mean of the squared 
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standardised residuals (outfit mnsq) and the information-weighted version (infit mnsq) (see e.g., 

Bond & Fox, 2003, p. 238 for a detailed description) indicated a sufficient data-model fit, with 

Item 6 and Item 15 as the most underfitting items (Table 1).  

Rasch measurement requires additivity, uni-dimensionality, and invariance, and the probability 

of an observation is a function of the difference between a person’s measure and a 

characteristic's measure (e.g. Wright & Stone, 1979). Thus, most response strings follow a 

Guttman-like structure with most deviations around the measure of the person. Consequently, 

persons with approximately the same measures, except those with large misfit, have, not only 

the same measures but also approximately the same combination of self-reported characteristics 

(and thus concluded to be identical with respect to these characteristics).  

After the validation of the instrument, the respondents were categorised as having either low 

(measures lower than -1), medium (measures between -1 and 1), or high (measures above +1) 

mathematical identities (all measures are in logit units). The distance from the “low”/”medium” 

to the “medium”/”high” thresholds was about the same distance as one response category. 

Consequently, persons with “high” mathematical identities were expected to respond at least 

one category higher on each characteristic than persons with “low” mathematical identities.  

Subsequently, a one-way ANOVA was conducted to compare the association between 

mathematical identity and the self-reported average grade in mathematics courses at the 

University (from grade F=1 to grade A=15). However, since the Levene’s (1960) test barely 

accepted the null hypothesis of homogeneity of variances (p=0.06), and the sample sizes across 

categories were unequal, the Welch’s ANOVA was chosen since it is more robust to unequal 

sample size and variance.  

Moreover, the assumption of normality was violated, and the grades were ordinal as opposed 

to interval measures. Since Welch’s ANOVA assumes normal and interval measures, 10,000 

simulations were made in R (R Core Team, 2015) to assess how these violations affected the 

robustness of the analysis. To ease this part of the analysis, we considered a transformed data 

set which had no difference in the mean across groups but was otherwise identical to ours–the 

assumptions of Welch’s ANOVA were violated equally in the empirical study and the simulated 

studies.  This transformation eased the interpretation since we could compare the results with 

the statistical ideal situation (perfectly normal interval data, equal sample size and variance). If 

our data set was as good as the ideal situation, we would expect the Welch’s ANOVA to show 

a significant difference in about 5% of the simulations.  

Specifically, from the empirical data frame, M, a new data frame, M', was made whereby each 

grade in the medium and high groups was shifted so that the mean of all three categories in M' 

were equal (i.e., keeping the sample sizes and distributions, but aligning the means). From M', 

10,000 data frames, M1 – M10,000, were randomly sampled whereby the sample sizes in the three 

groups were equal to the original M. Subsequently, Welch’s ANOVA was conducted on each 

simulated data frame. Since the result showed that 5.2% of the p-values in the simulations were 

less than .050, it was concluded to ignore violations of Welch’s ANOVA’s assumptions since 

they had only a trivial negative effect on the robustness.  
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RESULT 

Mathematical identities 

Due to the Guttman-like response strings, a rough interpretation of Table 1 is that most students 

with low mathematical identities (measures lower than -1) agreed with characteristics much 

lower than -1, and disagreed with those much higher than -1. That is, students with low 

mathematical identities often keep trying when they get stuck, but they rarely study proofs until 

they make sense (to them), they rarely like to discuss mathematics, they rarely derive formulas, 

etc. Likewise, students with medium mathematical identities (measures between -1 and 1) 

frequently keep trying, connect new and existing knowledge, and can explain why their 

solutions are correct, but rarely take the initiative to learn more than expected, rarely take the 

time to find better methods, etc. Students with high mathematical identities (measures above 

+1) agree with most characteristics in the instrument. A more thorough discussion is discussed 

in Kaspersen, Pepin, and Sikko (2017). 

Table 1: Characteristics of mathematical identities amongst Norwegian Engineering students 

Item statistics: Measure order 

Measure INFIT MNSQ OTFIT MNSQ                       Item 

  1.91   .81   .83 1. Takes time to find better methods 

  1.58 1.08   .99 2. Takes the initiative to learn more 

  1.24   .91   .86 3. Thinks of times when methods don’t work 

    .55 1.22 1.20 4. Struggles with putting problems aside 

    .51 1.05 1.07 5. Derives formulas 

    .45 1.36 1.37 6. (x) Likes to be told exactly what to do 

    .41   .96   .95 7. New ideas lead to trains of thoughts 

    .32 1.05 1.05 8. Likes to discuss math 

    .20 1.07 1.07 9. Makes his/her own problems 

    .05   .99   .99 10. Studies proofs until they make sense 

    .04   .86   .88 11. Moves back and forth between strategies 

  –.10   .87   .86 12. Tries to understand formulas/algorithms  

  –.20   .72   .74 13. Considers different possible solutions 

  –.26  1.03 1.05 14. Pauses and reflects 

  –.38  1.32 1.31 15. Finding out why methods do not work 

  –.47    .86   .86 16. Wants to learn more things 

  –.77  1.20 1.20 17. Visualises problems 

   –1.19   .71   .76 18. Can explain why solutions are correct 

   –1.83   .83   .88 19. Connects new and existing knowledge 

   –2.05  1.02 1.06 20. Keeps trying 

Note. Item 6 was negatively coded 

Items in their entirety in https://www.researchgate.net/publication/309740755_math_identity_questionnaire 

https://www.researchgate.net/publication/309740755_math_identity_questionnaire
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Moreover, it is evident from Table 1 how the identities in this study were situated amongst the 

engineering student context. That is, persons with measures, say, around 0.5 in other contexts 

would be identical to engineering students with the same measures, only if the same set of 

characteristics were proven to be invariant (i.e., calibrated to have the same structure) in both 

contexts. 

The relationship between self-reported mathematical identities and average grade 

Figure 1 illustrates the relationship between self-reported mathematical identity and average 

grade in university mathematics courses. The Welch’s ANOVA showed that the association 

between mathematical identity and self-reported average grade was significant, F(2, 

110.79)=31.966, p=0.000. Moreover, the mean of the self-reported average grade amongst 

students with high mathematical identities was about one grade higher than those with low 

mathematical identities. The Games-Howell test showed that the difference was significant 

between all groups with low-medium as the least significant (p=0.001).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: The relationship between self-reported mathematical identity and average grade in 

university mathematics courses 

The unequal variance is also illustrated in Figure 1. Specifically, the variances decreased with 

the increase of mathematical identity. That is, high mathematical identities are associated with 

high self-reported average grade. However, there seems to be no limit to how low mathematical 

identities students can have and still get high grades.  

CONCLUSION AND DISCUSSION 

In this paper, we have argued that the average grade in university mathematics courses amongst 

students with high mathematical identities is about one grade higher than amongst students with 

low mathematical identities, and the difference is significant. Moreover, we have shown that 

the variance of self-reported average grades amongst students with low mathematical identities 
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is higher than amongst students with high mathematical identities. That is, students with high 

identities get, for the most, high grades. However, the grades of students with lower identities 

are more uncertain.  

We have in this study examined the association, and not the causal relationship, between self-

reported mathematical identities and average grades, and therefore we argue that the 

significance of the result is that it points the direction for future research. Specifically, we 

suggest future research to address the following: 

First, replicates of this study should seek more precise measures. That is, the precisions of the 

mathematical identity measures can be improved by including more response categories (as 

long as they are sufficiently validated) and more items, particularly near the “gaps” (e.g., 

between 0.5 and 1.2 logits). Moreover, the precision of the average grade would most likely be 

improved if self-reported average grades were substituted with actual average grades.  

Second, future research should seek a more causal relationship between identities and grades. 

Specifically, this study does not conclude that an increase in mathematical identity infers an 

increase in attainment.  

Third, future research could study the significance of mathematical identity versus the 

significance of attainment. For instance, students can be categorised as having “low identities 

and low grades,” “low identities and high grades,” or “high identities and high grades,” and 

subsequently studied with respect to other variables, for example, in the transition from 

university to the world of work.  

Fourth, we argue that future research can transfer the design of this study to other samples and 

forms of testing students’ attainment. For example, relationships between mathematical identity 

and measures on international standardised tests, such as PISA and TIMSS, can be tested. 

Accordingly, we argue that future research can nuance the debate on the significance of these 

tests. If some districts/countries are “teaching to the test,” then one might hypothesise that a 

relatively great proportion of students in these districts/countries are in the “top left corner”–

that is, students with low mathematical identities, yet, high measures of attainment.  
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