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Abstract—This paper is concerned with the enhancement of
the resolution of the spectrogram of non-stationary mobile radio
channels using massive multiple-input multiple-output (MIMO)
techniques. By starting from a new generic geometrical model for
a non-stationary MIMO channel, we derive the complex MIMO
channel gains under the assumption that the mobile station (MS)
moves with time-variant speed. Closed-form solutions are derived
for the spectrogram of the complex MIMO channel gains by
using a Gaussian window. It is shown that the window spread
can be optimized subject to the MS’s speed change. Furthermore,
it is shown that the spectrogram can be split into an auto-term
and a cross-term. The auto-term contains the useful time-variant
spectral information, while the cross-term can be identified
as a sum of spectral interference components, which restrict
considerably the time-frequency resolution of the spectrogram.
Moreover, it is shown that the effect of the cross-term can be
drastically reduced by using massive MIMO techniques. The
proposed method is not only important for estimating time-
variant Doppler power spectra with high resolution, but it also
pioneers the development of new passive acceleration/deceleration
estimation methods and the development of new non-wearable
fall detection systems.

I. INTRODUCTION

The prospects that massive multiple-input multiple-output
(MIMO) techniques will be a key component of 5G have
boosted the research activities in the area of large-scale an-
tenna systems. Over the past few years, the benefits of massive
MIMO techniques have triggered studies on energy and spec-
tral efficiency [1], [2], joint spatial division and multiplexing
[3], channel estimation [4], performance evaluation [5], and
5G channel modelling [6].

In this paper, we propose another application of large-scale
antenna systems aiming to enhance the spectral resolution
of the spectrogram of non-stationary MIMO channels. A
spectrogram is a mathematical tool that provides a time-
frequency portrait of signals or stochastic processes. The
spectrogram has been extensively used in speech analysis [7],
classification of musical instruments [8], sonar detection of
ships [9], radar [10], seismology [11], and remote sensing
[12]. Applications of the spectrogram in the area of mobile
radio channel modelling have first been introduced in [13],

where the Doppler power spectral density of a multipath
fading channel has been estimated by applying the concept
of the spectrogram. The proposed procedure has recently been
extended in [14] to the time-frequency analysis of single-input
single-output (SISO) multipath fading channels under speed
variations of the mobile station (MS). In [14], it was shown
that the multipath components of the received signal cause
spectral interferences, which limit the frequency resolution of
the spectrogram considerably. The reduction of the spectral
interference is a general problem in time-frequency signal
analysis [15]. Although many attempts have been made to
reduce the effects caused by spectral interferences (see., e.g.,
[16]–[21] and the references therein), none of the proposed
methods have been completely successful. In this paper, we
show how this problem can be solved by using massive MIMO
techniques.

Our paper starts with the introduction of a new generic
geometrical model for a MIMO channel in which the locations
of the scatterers are not restricted to any particular geometry.
From the proposed generic geometrical model, we derive the
complex MIMO channel gains under the realistic assumption
that the MS can change its speed. It turns out that the complex
MIMO channel gains of all subchannels can be represented
by a sum-of-chirps process, which does not fulfil the wide-
sense stationary conditions. The spectrogram of the complex
MIMO channel gain is derived in closed form and presented
as a sum of an auto-term and a cross-term. While the auto-
term reveals how the Doppler spectrum evolves over time,
the cross-term restricts the resolution of the spectrogram
by undesired spectral interference components. It is shown
how massive MIMO techniques can be used to suppress the
cross-term, which enhances the resolution of the spectrogram
considerably.

The remainder of the paper is organized as follows. In
Section II, the non-stationary MIMO channel model is derived
by starting from a general geometrical model and taking into
account that the velocity of the MS can change with time.
Section III presents a closed-form solution of the spectrogram
of the complex MIMO channel gains by using a Gaussian
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window. The numerical results illustrating our main findings
are presented in Section IV. Finally, the conclusion is provided
in Section V.

II. DERIVATION OF THE NON-STATIONARY MIMO
CHANNEL MODEL

A. A Generic Geometrical Model

The starting point for the derivation of the non-stationary
MIMO channel model is the generic geometric model shown
in Fig. 1. This figure presents the downlink of a typical non-
line-of-sight (NLOS) multipath propagation scenario in which
the base station (BS) (transmitter) and the MS (receiver) are
equipped with uniform linear antenna arrays consisting of MT

transmit and MR receive antennas, respectively. The distance
between the BS and the MS is denoted by D. In Fig. 1, the
symbols δT (δR) and βT (βR) designate the antenna element
spacing and the tilt angle of the transmitter (receiver) antenna
array, respectively. The BS is supposed to be elevated and
unobstructed by objects, while the MS is surrounded by N
local scatterers Sn (n = 1, 2, . . . , N). The location of the
nth scatterer Sn is determined by its distance rn from the
MS’s origin as well as by the angle of arrival (AOA) αRn .
Depending on the modelling assumptions, the distances rn
and AOAs αRn can be either random variables or constants
or a combination of both. For example, if rn = R holds
for all n = 1, 2, . . . , N , where R is a constant, and if the
AOAs αRn are independent and identically distributed (i.i.d.)
random variables, each of which is uniformly distributed over
(0, 2π], then the geometrical model in Fig. 1 represents the
well-known geometrical one-ring scattering model [22], [23],
[24, Sect. 8.2.1] for an MT × MR MIMO channel in an
isotropic propagation environment. Furthermore, it is assumed
that the distance D is large compared to rn, and that rn in turn
is large in comparison to the lengths of the antenna arrays,
i.e., D � rn � max {(MT − 1)δT , (MR − 1)δR} for all
n = 1, 2, . . . , N . As indicated in Fig. 1, the MS moves with
a time-variant velocity ~v(t) in a given direction determined
by a fixed angle of motion (AOM) αv. This implies that the
speed v(t) = |~v(t)| changes with time during the observation
interval. Finally, we suppose that the distance which the MS
moves during the observation interval is sufficiently small such
that the AOAs αRn can approximately be considered as time
invariant.

B. Modelling the Time-Variant Doppler Frequencies

In kinematics, acceleration and deceleration are two of
the most important terms. The main difference between these
terms is that acceleration refers to the rate of change of veloc-
ity, which can be either positive or negative, while deceleration
refers to a negative rate of change of velocity. It is also known
from kinematics that the velocity ~v(t) = v(t) exp{jαv(t)} is
a vector, where its magnitude |~v(t)| = v(t) is called speed,
and αv(t) represents the AOM. In general, acceleration can
be caused by a change in speed v(t) and/or a change in the
AOM αv(t).
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Fig. 1. Generic geometrical model for a non-stationary MT ×MR MIMO
channel with local scatterers Sn located irregularly around an MS (receiver)
which moves with time-variant velocity ~v(t).

In the following, we assume that the AOM is constant during
the observation period of the channel, i.e., αv(t) = αv, and
that the speed changes with a constant rate, denoted by a0.
For ease of terminology, we call a0 acceleration if a0 > 0 and
deceleration if a0 < 0, although strictly speaking acceleration
can imply both a0 > 0 and a0 < 0. For constant values of a0,
it is obvious that the speed v(t) changes with time according
to

v(t) = v0 + a0t (1)

where v0 denotes the initial speed at t = 0, i.e., v0 = v(0). As
a consequence of the time-variant speed v(t), the maximum
Doppler frequency fmax(t) changes also with time according
to the relation

fmax(t) =
f0
c0

v(t) =
f0
c0

(v0 + a0t) (2)

where the symbols f0 and c0 are denoting the carrier frequency
and the speed of light, respectively. By using (2), the instan-
taneous Doppler frequency fn(t) of the nth path, defined as
fn(t) = fmax(t) cos(αRn − αv), can be expressed as [25]

fn(t) = fn + knt (3)

where

fn =
f0
c0

v0 cos(αRn − αv) (4)

kn =
f0
c0
a0 cos(αRn − αv) . (5)

By invoking the phase-frequency relationship [15,
Eq. (1.3.40)]

fn(t) =
1

2π

dθn(t)

dt
(6)

it has been shown in [25] that the instantaneous phase θn(t)
of the nth path can be presented in the following form

θn(t) = θn + 2π

(
fnt+

kn
2
t2
)

(7)



where the initial phases θn = θn(0) are modelled by i.i.d.
random variables, each of which is characterized by a uniform
distribution over the interval from 0 to 2π, i.e., θn ∼ U(0, 2π].

C. Modelling of the Complex MIMO Channel Gains

Let hk`(t) denote the complex channel gain of a narrowband
MT × MR MIMO channel describing the link from the
`th transmitter antenna AT` (` = 1, 2, . . . ,MT ) to the kth
receiver antenna ARk (k = 1, 2, . . . ,MR). By starting from the
geometrical model in Fig. 1 and applying the design steps of
the generalized principle of deterministic channel modelling
[24, Sect. 8.1], it can be shown that the complex MIMO
channel gains hk`(t) can be expressed as (without proof)

hk`(t) =

N∑
n=1

gk`n e
j[2π(fnt+ kn

2 t2)+θn] (8)

for k = 1, 2, . . . ,MR and ` = 1, 2, . . . ,MT , where

gk`n = a`n bkn cn dn (9)

a`n = e jπ(MT−2`+1)
δT
λ0

[cos(βT )+ rn
D sin(βT ) sin(α

R
n )] (10)

bkn = e jπ(MR−2k+1)
δR
λ0

cos(αRn−βR) (11)

dn = e−j
2π
λ0
{D+rn[1+cos(αRn )]} (12)

and cn denotes the path gain of the nth path. Depending on
the design objectives, each of the model parameters cn, αRn , θn,
and rn can be a random variable or a constant. If at least one of
these model parameters is a random variable and N is infinite
(finite), then hk`(t) in (8) represents a stochastic reference
(simulation) model for a non-stationary MIMO channel. On
the other hand, if all model parameters cn, αRn , θn, and rn are
constant and N is finite, then hk`(t) describes a deterministic
simulation model. For the computation of the path gains cn
and AOA αRn (or alternatively, the initial Doppler frequencies
fn), a variety of parameter computation methods have been
developed (see, e.g., [24, Sect. 5.4]). The phases θn are
usually assumed to be either i.i.d. random variables with
uniform distribution or outcomes (realizations) of uniformly
distributed random variables, which implies that the phases
θn are constants in such cases. Finally, the distances rn can
be computed in accordance with any given delay profile by
using the procedure presented in [26].

The non-stationary MIMO channel model described by (8)
includes a variety of other channel models as special cases.
For example, if the acceleration a0 is zero and if all the
scatterers Sn are located on a ring of radius R, i.e., rn = R
for n = 1, 2, . . . , N , then the non-stationary complex channel
gain hk`(t) in (8) reduces to the wide-sense stationary complex
channel gain of the well-known one-ring model [22], [23], [24,
Sect. 8.2.2]. Furthermore, for the special case of a single-input
single-output (SISO) channel, where MT = MR = 1 holds, it
follows that the phase terms a`n [see (10)] and bkn [see (11)]
are equal to 1, and thus the complex channel gain hk`(t) in
(8) reduces to that of the non-stationary SISO channel model
introduced in [25].

In a nutshell, we can say that if an MS increases or decreases
its speed linearly with time, then the complex channel gain
hk`(t) of an MT ×MR MIMO channel can be modelled by
a sum of chirps, as presented in (8). From the expression in
(8), it is important to realize that the instantaneous Doppler
frequencies fn(t) = fn+knt of hk`(t) are the same for all sub-
channels, i.e., for all k = 1, 2, . . . ,MR and ` = 1, 2, . . . ,MT .
For random phases θn and fixed values of cn, fn, and kn,
we would intuitively expect that the Doppler power spectral
density of hk`(t) is time variant and given by

Shk`(f, t) =

N∑
n=1

c2n δ(f − fn − knt) , (13)

where δ(·) denotes the Dirac delta function. In the next section,
we will show how the time-variant spectral characteristics
of hk`(t) can be estimated by using the concept of the
spectrogram.

III. SPECTROGRAM OF THE NON-STATIONARY MIMO
CHANNEL MODEL

A. Review of the Spectrogram

The basic idea of the spectrogram is to break a time-
varying signal up into overlapping short-time signals. The
spectrogram is then defined as the squared magnitude of the
Fourier transform of the overlapping short-time signals. The
concept of the spectrogram is widely used for gaining insight
into how the spectral characteristics of a signal or stochastic
process vary over time.

The short-time signal xk`(t
′, t) of the complex MIMO

channel gain hk`(t) is obtained by multiplying hk`(t) by a
window functions w(t) centred at t, i.e.,

xk`(t
′, t) = hk`(t)w(t′ − t) (14)

where t′ denotes the running time, and t represents the
observation time being a fixed point in time at which we are
interested in the local spectral characteristics of hk`(t). An
example for a short time signal is shown in Fig. 2 for the case
of a Gaussian window function

w(t) =
1√√
πσw

e
− t2

2σ2w (15)

where σw denotes a real-valued constant called the window
spread parameter. It should be noted that the window func-
tion w(t) is even and positive and has unit energy, i.e.,∫∞
−∞ w2(t) dt = 1. The short-time Fourier transform (STFT)
Xk`(f, t) of the complex MIMO channel gain hk`(t) is defined
as the Fourier transform of the short-time signal xk`(t′, t) with
respect to the running time t′, i.e.,

Xk`(f, t) =

∞∫
−∞

xk`(t
′, t) e−j2πft

′
dt′ . (16)

Finally, from the STFT Xk`(f, t), the spectrogram Shk`(f, t)
of hk`(t) is obtained as

Shk`(f, t) = |Xk`(f, t)|2 . (17)



The time resolution and frequency resolution of the spectral
components of Shk`(f, t) depend on the window spreading
parameter σw. A larger value of σw enhances the resolution
in frequency, but worsens the resolution in time and vice versa.
An optimum solution to this trade-off problem is presented in
the next subsection.
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Fig. 2. Example of a fading signal hk`(t), which is supposed to be unlimited
in time, and the corresponding short-time signal xk`(t′, t) obtained by using
a Gaussian window w(t) with window spread parameter σw .

B. Derivation of the Spectrogram

Substituting the complex MIMO channel gain hk`(t) [see
(8)] and the Gaussian window function w(t) according to
(15) in (14) and computing the Fourier transformation of
xk`(t

′, t) with respect to t′ according to (16) results after
several mathematical manipulations in the following closed-
form solution of the STFT (without proof)

Xk`(f, t) =
e−j2πft√√

πσw

N∑
n=1

G(f, fn(t), σ2
x)hk`n(t) (18)

where

G
(
f, fn(t), σ2

x

)
=

1√
2πσx

e
− (f−fn(t))2

2σ2x (19)

σ2
x =

1− j2πσ2
wkn

(2πσw)2
(20)

hk`n(t) = gk`n e
j[2π(fnt+ kn

2 t2)+θn] . (21)

In the equations above, fn(t), fn, kn, and gk`n are given by
(3), (4), (5), and (9), respectively. After substituting the STFT
Xk`(f, t) according to (18) in (17) and performing some
mathematical manipulations, we obtain the following closed-
form solution of the spectrogram (without proof)

Shk`(f, t) = S
(a)
hk`

(f, t) + S
(c)
hk`

(f, t) (22)

where

S
(a)
hk`

(f, t) =

N∑
n=1

c2nG
(
f, fn(t), σ2

n

)
(23)

S
(c)
hk`

(f, t) =
2√
πσw

N−1∑
n=1

N∑
m=2
m>n

Re
{
G
(
f, fn(t), σ2

x

)
G∗(f, fm(t), σ2

x)hk`n(t)h∗k`m(t)
}

(24)

and

σ2
n =

1 + (2πσ2
wkn)2

2(2πσw)2
. (25)

The first term in (22) is called the auto-term, while the second
term is said to be the cross-term.

The auto-term S
(a)
hk`

(f, t) contains the desired spectral infor-
mation. The result in (23) states that the auto-term S

(a)
hk`

(f, t)
equals a sum of Gaussian functions, each of which is weighted
by the squared path gain c2n and centred at the corresponding
instantaneous Doppler frequency fn(t). The spread of the
instantaneous Doppler frequency fn(t) is determined by the
variance σ2

n in (25). In the limit σ2
n → 0, the Gaussian

function G(f, fn(t), σ2
n) tends to the Dirac delta function

δ(f − fn(t)), and thus the auto-term S
(a)
hk`

(f, t) of the spec-
trogram approaches to the intuitively expected time-variant
Doppler power spectrum Shk`(f, t) in (13). Unfortunately, the
variance σ2

n cannot be set to zero, as σ2
n is a function of the

window spread parameter σw and the quantity kn [see (25)].
However, the variance σ2

n can be minimized by computing
dσ2

n/dσ
2
w and setting the result to zero. This results in the

following optimum value of the window spread parameter

σw,opt =
1√

2π|kn|
(26)

which in turn leads to the smallest possible value of the spread
of fn(t)

σn,min =

√
|kn|
2π

. (27)

An interesting observation is that the product of σw,opt and
σn,min is constant, namely σw,optσn,min = 1/(2π). This
equation states that a larger window spread results in a smaller
spread of the nth spectral component around the instantaneous
Doppler frequency fn(t).

The cross-term S
(c)
hk`

(f, t) in (24) can be interpreted as
an undesired interference term consisting of N(N − 1)/2
components. From (24), it is obvious that the cross-term
S
(c)
hk`

(f, t) is real-valued but not necessarily a positive function.
Especially the latter property prevents the interpretation of
S
(c)
hk`

(f, t) as a power spectral density. In the next subsection,
we will introduce two methods for reducing the cross-term
S
(c)
hk`

(f, t).



C. Methods for Reducing the Cross-Term of the Spectrogram

1) Reducing the Cross-Term by Phase Averaging: By com-
paring (23) with (24), we notice that the auto-term S

(a)
hk`

(f, t)
is independent of the phases θn, whereas the cross-term
S
(c)
hk`

(f, t) depends on θn. In fact, if the phases θn are i.i.d.
random variables with uniform distribution (0, 2π], then the
cross-term S

(c)
hk`

(f, t) can be removed completely from the
spectrogram Shk`(f, t) by averaging over θn, i.e.,

E {Shk`(f, t)}
∣∣
θn

= E
{
S
(a)
hk`

(f, t)
} ∣∣∣

θn
+ E

{
S
(c)
hk`

(f, t)
} ∣∣∣

θn

= S
(a)
hk`

(f, t)

=

N∑
n=1

c2nG
(
f, fn(t), σ2

n

)
(28)

where E{} denotes the expected value operator. Note that in
(28), we have used the properties E{S(a)

hk`
(f, t)} = S

(a)
hk`

(f, t)

and E{S(c)
hk`

(f, t)} = 0.
This method is obviously very effective in laboratory exper-

iments, where multiple fading signals hk`(t) can be generated
by means of computer simulations using the same key param-
eters influencing (8) but different realizations (outcomes) of
the phases θn.

2) Reducing the Cross-Term by Using Massive MIMO Tech-
niques: The second method uses massive MIMO techniques
to reduce the spectral interference caused by the cross-term
S
(c)
hk`

(f, t). This method is motivated by the fact that two
different complex MIMO channel gains hk`(t) and hk′`′(t)
have the same auto-term but different cross-terms if k 6= k′

and/or l 6= l′. This follows from the antenna steering factors
a`n and bkn in (10) and (11), respectively, which have dif-
ferent phases for different values of ` = 1, 2, . . . ,MT and
k = 1, 2, . . . ,MR. Hence, the basic idea of the second cross-
term reduction method is to compute the average of the cross-
term S

(c)
hk`

(f, t) in the spatial domain. Let S̄(c)
hk`

(f, t) denote
the (spatial) sample mean of the cross-term, defined by

S̄
(c)
hk`

(f, t) =
1

MRMT

MR∑
k=1

MT∑
`=1

S
(c)
hk`

(f, t) (29)

then a quantitative measure of the effectiveness of this method
is the area under the absolute value of S̄(c)

hk`
(f, t), i.e.,

P
(c)
X =

Tobs∫
0

∞∫
−∞

∣∣∣S̄(c)
hk`

(f, t)
∣∣∣ df dt (30)

which is called the cross-power, where Tobs denotes the
observation interval. It is obvious that the spatial averaging
does not affect the auto-term S

(a)
hk`

(f, t), as (23) reveals that
S
(a)
hk`

(f, t) is independent of the number of transmit and receive
antennas.

The second proposed method is of great advantage for the
estimation of the spectral characteristics of measured mobile
radio channels under non-stationary conditions if only single
and not reproducible snapshot measurements of the complex

channel gains hk`(t) are available. This is in general the
case when channel measurements are taken under real-world
propagation conditions.

IV. NUMERICAL RESULTS

This section presents some selected numerical results to
visualize the key results of our findings. We consider a car
braking scenario, in which the driver suddenly applies the
brake to avoid an accident that could happen if a child
suddenly runs into the street or a cyclist runs a stop sign.
To simulate such a scenario, we set the initial speed v0 to
v0 = 30 km/h and the speed deceleration parameter a0 to
a0 = −4.166 m/s2. In the considered propagation scenario,
we have set the number of multipath components N to 10.
The extended method of exact Doppler spread (EMEDS) [27]
has been used to compute the path gains cn and AOAs αRn
according to

cn = σ0

√
2

N
, αRn =

2π

N

(
n− 1

4

)
+ αv (31)

with parameter σ0 = 1 and AOM αv = 0◦. The phases θn
have been considered as constant quantities obtained from the
outcomes of a random generator with uniform distribution over
(0, 2π]. The carrier frequency f0 was chosen to be 5.9 GHz,
which corresponds to a wavelength of λ0 = 5.0812 cm and
results in an initial maximum Doppler frequency of fmax0

=
fmax(0) = 164 Hz. The antenna element spacings were set
to δT = δR = λ0/2, and the antenna tilt angles were equal
to βT = βR = π/2. The distance D between the transmitter
and the receiver was supposed to be 500 m. Regarding the
distribution of the scatterers Sn, we have assumed that they
are located on a ring of radius R = 50 m, i.e., rn = R = 50 m
for n = 1, 2, . . . , N . For the window spread parameter σw, we
have chosen the optimum value that follows from σw,opt =
1/
√

2π|k1|. Finally, we choose an observation interval Tobs
of 2 s during which the speed of the car slows down from
30 km/h to 0 km/h.

Fig. 3 shows the spectrogram Shk`(f, t) of the complex
channel gain hk`(t) for a 2× 2 MIMO channel described by
(8) for k = ` = 1. This figure visualizes that the spectral
components approach rapidly to zero during the full brake
application lasting two seconds. The corresponding auto-term
S
(a)
hk`

(f, t) and cross-term S
(c)
hk`

(f, t) are depicted in Figs. 4 and
5, respectively. As can be seen in Fig. 3, the two largest and
smallest spectral components cannot be resolved. The limited
resolution of the spectrogram Shk`(f, t) is due to the strong
interference components of the cross-term S

(c)
hk`

(f, t) presented
in Fig. 5. A perfect removal of the cross-term S

(c)
hk`

(f, t)

would result in the auto-term S
(a)
hk`

(f, t) which resolves the two
largest (smallest) instantaneous Doppler frequencies fn(t),
as can be seen in Fig. 4. A significant reduction of the
spectral interferences caused by the cross-term S

(c)
hk`

(f, t)
can be achieved by spatial averaging using massive MIMO
techniques. This statement is supported by the results shown
in Fig. 6, which renders the cross-power P (c)

X as a function of



the number of transmit and receive antennas for MISO, SIMO,
and MIMO systems with MT = MR = M . The behaviour of
the cross-power P (c)

X clearly shows that the resolution of the
spectrogram of non-stationary mobile radio channels can be
enhanced considerably by using massive MIMO techniques.

V. CONCLUSION

In this paper, we have analysed the spectrogram of non-
stationary MIMO mobile radio channels. Starting from a
generic geometrical model for a MIMO channel with irreg-
ularly distributed local scatterers around the MS, we have
derived a new non-stationary model for the complex MIMO
channel gains under the realistic assumption that the MS can
change its speed. It has been shown that the spectrogram of
the complex MIMO channel gain can be separated into two
parts comprising an auto-term, which contains an desired time-
variant spectral information, and an undesired cross-term. For
both terms, closed-form solutions have been presented. One
of our key results was that the influence of the cross-term can
drastically be reduced by using massive MIMO techniques.

The proposed method will enable a wide range of new appli-
cations, ranging from enhanced spectral estimation techniques
for non-stationary mobile radio channels over passive accelera-
tion/deceleration estimation methods for collision avoidance to
the development of new non-wearable fall detection systems.

Fig. 3. Spectrogram Shk` (f, t) of the complex channel gain hk`(t) designed
by using the EMEDS with N = 10 for k = ` = 1.

REFERENCES

[1] H. Q. Ngo, E. G. Larsson, and T. L. Marzetta, “Energy and spectral effi-
ciency of very large multiuser MIMO systems,” IEEE Trans. Commun.,
vol. 61, no. 4, pp. 1436–1449, Apr. 2013.

[2] E. Björnson, E. G. Larsson, and T. L. Marzetta, “Massive MIMO for
maximal spectral efficiency: How many users and pilots should be
allocated?” IEEE Trans. Wireless Commun., vol. 15, no. 2, pp. 1293–
1308, Feb. 2016.

Fig. 4. Auto-term S
(a)
hk`

(f, t) of the spectrogram Shk` (f, t) of the complex
channel gain hk`(t) designed by using the EMEDS with N = 10 for k =
` = 1.

Fig. 5. Cross-term S
(c)
hk`

(f, t) of the spectrogram Shk` (f, t) of the complex
channel gain hk`(t) designed by using the EMEDS with N = 10 for k =
` = 1.

[3] A. Adhikary et al., “Joint spatial division and multiplexing for mm-
wave channels,” IEEE J. Select. Areas Commun., vol. 32, no. 6, pp.
1239–1255, Jun. 2014.

[4] H. Yin, D. Gesbert, M. Filippou, and Y. Liu, “A coordinated approach
to channel estimation in large-scale multiple-antenna systems,” IEEE J.
Select. Areas Commun., vol. 31, no. 2, pp. 264–273, Feb. 2013.

[5] X. Gao, O. Edfors, F. Rusek, and F. Tufvesson, “Massive MIMO
performance evaluation based on measured propagation data,” IEEE
Trans. Wireless Commun., vol. 14, no. 7, pp. 3899–3911, Jul. 2015.

[6] S. Hur et al., “Proposal on millimeter-wave channel modeling for 5G
cellular system,” IEEE Trans. Signal Processing, vol. 10, no. 3, pp.
454–469, Apr. 2016.

[7] J. R. Deller, Jr., J. H. L. Hansen, and J. G. Proakis, Discrete-Time



5 10 15 20 25 30 35 40 45 50
Number of antennas, M

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2
P

(c
)

X

M × 1 (MISO)

1×M (SIMO)

M ×M (MIMO)

Fig. 6. Behaviour of the cross-power P (c)
X in terms of the number of transmit

and receive antennas for MISO, SIMO, and MIMO systems, where MT =
MR =M .

Processing of Speech Signals. Wiley-IEEE Press, 1999.
[8] J. F. Alm and J. S. Walker, “Time-frequency analysis of musical

instruments,” SIAM Review, vol. 44, no. 3, pp. 457–476, 2002.
[9] J. G. Lourens, “Passive sonar detection of ships with spectrograms,”

in Proc. South African Symp. on Commun. Sign. Processing, COMSIG
1990, Jun. 1990, pp. 147–151.

[10] R. I. A. Harmanny, J. J. M. de Wit, and G. Prémel Cabic, “Radar micro-
Doppler feature extraction using the spectrogram and the cepstrogram,”
in Proc. 11th European Radar Conference, EuRAD 2014, Oct. 2014, pp.
165–168.

[11] C. I. Huerta-Lopez, Y. J. Shin, E. J. Powers, and J. M. Roesset, “Time-
frequency analysis of earthquake records,” in Proc. 12th World Conf.
on Earthquake Engineering, 12WCEE2000, vol. 33. Auckland, New
Zealand, Feb. 2000, pp. 1–9.

[12] T. A. Lampert and S. E. M. O’Keefe, “A survey of spectrogram track
detection algorithms,” Applied Acoustics, vol. 71, no. 2, pp. 87–100,
Feb. 2010.

[13] M. Pätzold and N. Youssef, “Spectrogram analysis of multipath fading
channels,” in Proc. 26th IEEE Personal, Indoor and Mobile Radio
Communications, PIMRC 2015. Hong Kong, China, Aug./Sep. 2015.

[14] M. Pätzold and C. A. Gutiérrez, “Spectrogram analysis of multipath
fading channels under variations of the mobile speed,” in Proc. 84rd
IEEE Veh. Technol. Conf., IEEE VTC2016-Fall. Montreal, Canada,
Sep. 2016.

[15] B. Boashash, Ed., Time-Frequency Signal Analysis and Processing: A
Comprehensive Reference, 2nd ed. Elsevier Academic Press, 2015.
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