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Abstract—This paper deals with the mathematical
analysis of the spectral moments of non-wide-sense-
stationary uncorrelated-scattering (non-WSSUS) mobile-
to-mobile (M2M) double-Rayleigh fading channels. The
point of departure is a recently proposed geometry-based
statistical model (GBSM) for M2M double-Rayleigh fading
channels from which general analytical expressions are
derived for the average Doppler shift, Doppler spread,
average delay, and delay spread. Closed-form solutions of
such expressions are presented for the particular case of
the geometrical two-rings scattering model. The obtained
results indicate that the average Doppler shift and Doppler
spread are directly influenced by not only the carrier
frequency, but also the bandwidth of the communication
system. A consistency analysis is carried out to assess
the physical soundness of the reference channel model.
The results show that the channel model fulfills all the
consistency criteria pertaining to the spectral moments.
The analysis presented here can be used as a guideline for
the statistical characterization of non-WSSUS time- and
frequency-selective M2M fading channels.

I. I NTRODUCTION

Government agencies in conjunction with automotive
companies are promoting the development and imple-
mentation of intelligent transportation systems (ITS)
as a technological solution to reduce road accidents
and increase transportation efficiency. One of the main
challenges in the development of ITS is the integration of
mobile-to-mobile (M2M) communication technologies
allowing for reliable real time communications among
vehicles. This is not a trivial task, because the propaga-
tion conditions change rapidly in M2M communications,
as both the transmitter (TX ) and receiver (RX ) are
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moving at high vehicular speeds. For this reason, the
wide-sense-stationary uncorrelated-scattering (WSSUS)
assumption that has widely been accepted for the sta-
tistical characterization of fixed-to-mobile (F2M) fading
channels [1], [2] is not suitable for the modeling of M2M
fading channels. Furthermore, empirical data obtained
from measurement campaigns [3]–[6] indicate that the
signals propagating through M2M channels are subject
to worse-than-Rayleigh fading, e.g., double-Rayleigh
fading. Thus, the formulation of new statistical channel
models capturing the non-stationary characteristics of
real-world time-frequency (TF) selective M2M channels
has become indispensable.

In this context, a novel geometry-based statistical
model (GBSM) for TF selective non-WSSUS M2M
double-Rayleigh fading channels was recently presented
in [7]. This model was formulated considering a generic
non-regular geometrical configuration of the propagation
area. It provides a flexible framework for the analy-
sis of the channel’s non-stationarities caused by the
time-varying (TV) propagation delays. A comprehensive
analysis of the probability density function (PDF) of
the envelope and phase, the four-dimensional (4D) TF
correlation function (CF), the TF-dependent power delay
profile (PDP), and the TF-dependent Doppler spectrum
of this GBSM were investigated in [7]. In this pa-
per, we complete the work of [7], [8] by providing a
through mathematical analysis of the spectral moments
of such types of GBSMs for non-WSSUS M2M double-
Rayleigh fading channels. Specifically, we derive general
expressions for the average delay, delay spread, average
Doppler shift, and Doppler spread by considering an
arbitrary geometrical configuration of the propagation
scenario. In addition, we present closed-form solutions of
such expressions for the particular case of the two-rings
scattering model [9]. The obtained expressions show that



the average delay and the delay spread are TV quantities.
On the other hand, the average Doppler shift and the
Doppler spread are shown to be frequency-varying quan-
tities. Our results also show that the average Doppler
shift and the Doppler spread are directly influenced by
not only the carrier frequency, but also by the frequency
bandwidth of the communication system. In order to
validate the obtained results, following the metrics in-
troduced in [10], we perform a consistency analysis of
the channel model. As we will see, our reference model
in [7] fulfills all the conditions defined to be considered
as consistent w.r.t. the spectral moments.

The paper is structured as follows. The reference
model is introduced in Section II. The computation of the
spectral moments and the analysis of consistency are the
topics of Section III. Some illustrative numerical results
are presented in Section IV. Finally, our conclusions are
summarized in Section V.

II. T HE REFERENCECHANNEL MODEL

A. Description of the M2M Propagation Scenario

The geometrical configuration of the propagation sce-
nario considered in [7] is shown in Fig. 1. It is assumed
that the transmitted signal reachesRX (black square)
by means of a double interaction with fixed interfering
objects (IOs) randomly located around the MSs. BothTX

(black triangle) andRX are moving at constant speeds
over linear trajectories. The transmitted signal interacts
first with a setST of L IOs placed in the vicinity ofTX .
As a result of such an interaction,L copies or echoes of
the transmitted signal reach a second setSR of M IOs
which are surroundingRX . Hence,L×M copies of the
transmitted signal are generated, which impinge on the
RX antenna and combine with one another.

When the MSs start a communication att = t0,
as illustrated in Fig. 1, the positions ofTX and RX

are described by the time-invariant vectorsOT and
OR, respectively. The distance betweenTX andRX is
denoted byD. The symbolsvT and vR designate the
velocity vectors ofTX andRX , respectively. TheL IOs
in the setST appear as white dots, while black dots are
the M IOs in SR. The lth IO in Sk is represented as
Sk
l for l ∈ {1, 2, ..., card(Sk)} andk ∈ {T,R}, and the

time-invariant vectorŝpk
l stand for the position ofSk

l

w.r.t. the fixed reference pointOk. The instantaneous
position ofST

ℓ as seen from the movingTX , is denoted
by the TV vectorpT

ℓ (t). In the same way,pR
m(t) indicates

the instantaneous position ofSR
m, as seen from the

movingRX . Furthermore, the position ofSR
m w.r.t. ST

ℓ

is given by the time-invariant vectorpS
ℓ,m. The time-

invariant vectorsuT
ℓ , uS

ℓ,m, anduR
m are unit vectors that

point at the propagation direction of the waves that travel
from TX to ST

ℓ , from ST
ℓ to SR

m, and fromSR
m to RX ,

respectively.
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Fig. 1. M2M propagation scenario at timet = t0.

B. Mathematical Model of the Channel Transfer Func-
tion

The channel transfer function is modeled in [7] in the
equivalent complex baseband at timet0 = 0 as

H(t; f) = ΠT0
(t)

L
∑

ℓ=1

M
∑

m=1

gTℓ gRm

× exp
{

−j
[

θTℓ + θRm
]}

× exp {−j2π (fc + f) τℓ,m(t)} (1)

wherej2 = −1, f denotes the frequency variable,gkl and
θkl stand for the gain and phase shift, respectively, caused
by the interaction of the transmitted signal withSk

l for
l ∈ {1, 2, ..., card(Sk)} and k ∈ {T,R}. The carrier
frequency isfc = C/λ, whereC stands for the speed
of light, and λ is the transmitted signal’s wavelength.
Furthermore,ΠT0

(t) = 1 for 0 ≤ t ≤ T0, and
ΠT0

(t) = 0 elsewhere. The functionΠT0
(t) denotes a

rectangular windowing function that has been introduced
to constrainH(t; f) within an interval of lengthT0,
where the plane wave propagation model is valid. In
addition, the TV propagation delaysτℓ,m(t) are given as
[7]

τℓ,m(t) =
‖ p̂T

ℓ ‖ + ‖ pS
ℓ,m ‖ + ‖ p̂R

m ‖
C

−t
fD
ℓ,m(f)

fc + f
(2)

where‖ · ‖ denotes the Euclidean norm. According to
[7], the Doppler shiftfD

ℓ,m(f), which is caused by the
combined movement ofTX andRX , is given by

fD
ℓ,m(f) = fT (φ

T
ℓ ) + fR(φ

R
m) (3)

whereφT
ℓ represents the angle of departure (AOD) of

the wave that interacts with theℓth IO of the setST ,
andφR

m denotes the angle of arrival (AOA) of the signal
that arrives atRX via the mth IO of the setSR. The
AOD φT

ℓ and the AOA φR
m are modeled by random

variables characterized by PDFspTφ (φ
T
ℓ ) and pRφ (φ

R
m),

respectively. In addition,

fk(φ
k
l ) = fk

max cos(φ
k
l − γk), k ∈ {T,R} (4)



RH(t, f ; ∆t,∆f) = σ2
HΥ(t,∆t)

π
∫

−π

π
∫

−π

exp

{

j2π

[

∆t
(

fT (φ
T
ℓ ) + fR(φ

R
m)
)

−∆f

(

GT (φT ) +GS(φT , φR) +GR(φR)

C
− t

(

fT (φ
T
ℓ ) + fR(φ

R
m)

fc + f

))]}

× pTφ (φT )p
R
φ (φR)dφT dφR (7)

where γk is the angle representing the direction of
motion of the TX (k = T ) and RX (k = R) for
l ∈ {ℓ,m}. In turn, fk

max is the maximum Doppler
frequency shift due to the speed ofTX (k = T ) and
RX (k = R), which is given as

fk
max =

vk
λ

(

fc + f

fc

)

. (5)

The speed ofTX and RX is denoted byvk for k ∈
{T,R}. Furthermore, the path lengths‖ pS

ℓ,m ‖, ‖ p̂T
ℓ ‖,

and‖ p̂R
m ‖ are modeled as functions of the AODs and

AOAs as follows‖ pS
ℓ,m ‖= GS(φ

T
ℓ , φ

R
m), ‖ p̂T

ℓ ‖=
GT (φ

T
ℓ ), and ‖ p̂R

m ‖= GR(φ
R
m). Thereby, we can

rewrite the TV propagation delays as

τℓ,m(t) =
GT (φ

T
ℓ ) +GS(φ

T
ℓ , φ

R
m) +GR(φ

R
m)

C

−t
fT (φ

T
ℓ ) + fR(φ

R
m)

fc + f
. (6)

It is shown in [7] that the 4D TF-CF of the channel
transfer function presented in (1) is given as in (7) at the
top of next page, whereΥ(t,∆t) = ΠT0

(t)·ΠT0
(t−∆t),

andσ2
H is the average power of the channel.

III. SPECTRAL MOMENTS AND ANALYSIS OF

CONSISTENCY

A. Spectral Moments

The frequency-varying (FV) average Doppler shift
B

(1)
ν (f) and the FV Doppler spreadB(2)

ν (f) of the
channel transfer functionH(t; f) in (1) can be computed
from the Doppler shiftfD

ℓ,m(f) in (3) as follows [10]:

B(1)
ν (f) =

L
∑

ℓ=1

M
∑

m=1

[

gTℓ gRm
]2

fD
ℓ,m(f)

L
∑

ℓ=1

M
∑

m=1

[

gTℓ gRm
]2

(8)

B(2)
ν (f) =

√

√

√

√

√

√

√

√

L
∑

ℓ=1

M
∑

m=1

[

gTℓ gRm fD
ℓ,m(f)

]2

L
∑

ℓ=1

M
∑

m=1

[

gTℓ gRm
]2

−
(

B
(1)
ν (f)

)2

.

(9)

After substituting (3) into (8) and (9), and knowing from
[7] that

∑L
ℓ=1

∑M
m=1 E

{

(

gTℓ
)2
}

E
{

(

gRm
)2
}

= σ2
H ,

whereE {·} denotes the expectation operator, we obtain-
—after straightforward algebraic manipulations and in-
voking the expected value theorem—the general expres-
sions.

B(1)
ν (f) =

π
∫

−π

π
∫

−π

fD(f)pTφ (φT )p
R
φ (φR)dφT dφR (10)

B(2)
ν (f) =

{ π
∫

−π

π
∫

−π

[

fD(f)
]2

pTφ (φT )p
R
φ (φR)dφT dφR

−
[

B(1)
ν (f)

]2
}1/2

. (11)

The TV average delayB(1)
τ (t) and the TV delay

spreadB(2)
τ (t) are equal to right-hand side of (8) and (9),

respectively, if we replace therefD
ℓ,m(f) by τℓ,m(t), and

if we useB(1)
τ (t) in place ofB(1)

ν (f) in (9). Substituting
the TV propagation delayτℓ,m(t) according to (6) into
the analogous versions of (8) and (9), we obtain two
expressions that have the same form as (10) and (11),
but with t instead off , τ instead ofν, andτ(t) instead
of fD(f). The results are not presented explicitly due to
space limitations.

An alternative for computing the FV average Doppler
shift B(1)

RH
(f) and the FV Doppler spreadB(2)

RH
(f) of

the channel transfer functionH(t; f) in (1), is to use
the TF-CFRH(t, f ; ∆t,∆f) in (7). According to [10],
B

(1)
RH

(f) andB(2)
RH

(f) are given by

B
(1)
RH

(f) =
1

2πj

ṘH(0, f ; ∆t, 0)

RH(0, f ; ∆t, 0)

∣

∣

∣

∣

∆t=0

(12)

B
(2)
RH

(f) =
1

2π





(

ṘH(0, f ; ∆t, 0)

RH(0, f ; ∆t, 0)

)2

− R̈H(0, f ; ∆t, 0)

RH(0, f ; ∆t, 0)

]
1

2
∣

∣

∣

∣

∆t=0

(13)

By analogous eq.(·), we mean that in eq.(·) all frequency variables
are replaced by the dual temporal variables (see Sec. III-A).



where ṘH(0, f ; ∆t, 0) and R̈H(0, f ; ∆t, 0) are the
first and second derivative ofRH(0, f ; ∆t, 0), respec-
tively, w.r.t. the time separation variable∆t. Analo-
gously, the TV average delayB(1)

RH
(t) and the TV

delay spreadB(2)
RH

(t) can also be computed following
this approach, but considering insteadRH(t, 0; 0,∆f),
ṘH(t, 0; 0,∆f), andR̈H(t, 0; 0,∆f) (the derivatives are
w.r.t. the frequency lag variable∆f ) in (12) and (13),
and setting∆f = 0.

B. Consistency Analysis

According to [10], a non-stationary multipath channel
model is consistent w.r.t. the:

i) Average Doppler shift ifB(1)
ν (f) = B

(1)
RH

(f), ∀f
ii) Doppler spread ifB(2)

ν (f) = B
(2)
RH

(f), ∀f
iii) Average delay ifB(1)

τ (t) = B
(1)
RH

(t), ∀t
iv) Delay spread ifB(2)

τ (t) = B
(2)
RH

(t), ∀t
1) General Case: In this part of the paper, we present

a comparison between the results obtained forB
(1)
ν (f),

B
(2)
ν (f), B

(1)
τ (t), and B

(2)
τ (t) with those obtained for

B
(1)
RH

(f), B(2)
RH

(f), B(1)
RH

(t), andB
(2)
RH

(t) with the pur-
pose of evaluating the consistency of the M2M channel
model proposed in [7]. Aiming at drawing conclusions
that are not constrained to a particular scattering con-
figuration, we consider a generic arrangement of the
location of the IOs, as shown in Fig. 1. Furthermore,
we will assume again that the AODsφT and AOAsφR

follow arbitrary circular symmetric distributions denoted
by pTφ (φT ) andpRφ (φR), respectively.

For reasons of comparison, we have computed
RH(0, f ; ∆t, 0), ṘH(0, f ; ∆t, 0), and R̈H(0, f ; ∆t, 0),
and after evaluating the results at∆t = 0, the average
Doppler shift was found as

B
(1)
RH

(f) =

π
∫

−π

π
∫

−π

fD(f)pTφ (φT )p
R
φ (φR)dφT dφR. (14)

This is the same result as in (10), meaning that
B

(1)
ν (f) = B

(1)
RH

(f). Analogously, the Doppler spread

B
(2)
RH

(f) was found to be

B
(2)
RH

(f)=

{
∫ π

−π

∫ π

−π

[

fD(f)
]2

pTφ (φT )p
R
φ (φR)dφT dφR

−
[

B
(1)
RH

(f)
]2
}1/2

. (15)

This agrees with the result forB(2)
ν (f) in (11), i.e.,

B
(2)
ν (f) = B

(2)
RH

(f). Hence, from equations (14) and
(15), we can conclude that the channel model meets the
Conditions i and ii.

With the same token, the average delayB(1)
RH

(t)

and the delay spreadB(2)
RH

(t) are shown to be

The average delay is obtained using the factor−1/2πj.

consistent. Indeed, after substitutingRH(t, 0; 0,∆f),
ṘH(t, 0; 0,∆f), andR̈H(t, 0; 0,∆f) in their analogous
equations to (12) and (13), it is shown thatB

(1)
RH

(t) =

B
(1)
τ (t) and B

(2)
RH

(t) = B
(2)
τ (t) hold. In fact, these

quantities have the same form as in (14) and (15),
respectively, if we replace theref by t, ν by τ , and
fD(f) by τ(t). Thus, we can conclude that the channel
model also meets the Conditions iii–iv. In addition, it is
important to note that not only the propagation delays
τℓ,m(t) are TV, but also the average delayB(1)

τ (t) and
the delay spreadB(2)

τ (t). Similarly, the Doppler shift
fD
ℓ,m(f), the average Doppler shiftB(1)

ν (f) and the

Doppler spreadB(2)
ν (f) are directly influenced by the

frequency of the communication system.
2) Particular Case: Next, we analyze the spectral

moments ofH(t; f) for the particular case of the ge-
ometrical two-rings scattering model presented in [9]. It
is assumed thatTX andRX are surrounded by a ring
of IOs with radii GT (φT ) = rT and GT (φR) = rR,
respectively. It is also assumed thatD ≫ max{‖ p̂T

ℓ ‖, ‖
p̂R
m ‖}, such that the path length‖ pS

ℓ,m ‖= Gs(φ
T
ℓ , φ

R
m)

can be approximated by [7]

Gs(φ
T
ℓ , φ

R
m) ≈ 1

C

[

rT + rR +D − rT cos(φT
ℓ )

+rR cos(φR
m)

]

. (16)

The AOD φT
ℓ and the AOAφR

m follow the von Mises
PDF

pkφ(φk) =
exp{κk cos(φk − µk)}

2πI0(κk)
, k ∈ {T,R} (17)

whereκk is known as the concentration parameter,µk

denotes the mean of the distribution, andI0 is the
modified zeroth-order Bessel function of the first kind.

After substituting the PDF shown in (17) in the
spectral moments presented in (10) and (11), we obtain-
—after some mathematical manipulations—the closed-
form expressions of the average Doppler shiftB

(1)
y (f)

and Doppler spreadB(2)
y (f) presented in (18) and (19),

respectively (see the beginning of the next page) for
y ∈ {ν,RH}, in which Mk

i is a constant defined as

Mk
i =

If (κk)

I0(κk)
cos(fµk − gγk)

for i ∈ {1, 2, 3, 4}, f ∈ {1, 2}, and g ∈ {0, 1, 2}. If
i = 1, thenf = 1 andg = 0; if i = 2, thenf = 1 and
g = 1; if i = 3, thenf = 2 and g = 0; and if i = 4,
thenf = 1 andg = 1; whereI1 (I2) is the first (second)
order modified Bessel function of the first kind.

In the same way, after substituting the PDF presented
in (17) in the analogous equations to (10) and (11) for
the average delayB(1)

x (t) and the delay spreadB(2)
x (t)

for x ∈ {τ, RH}, after some mathematical calculations,
we prove that the obtained results are given by (20) and



B(1)
ν (f) =

∑

k∈{T,R}

fk
maxM

k
2 = B

(1)
RH

(f) (18)

B(2)
ν (f) =

1√
2







∑

k∈{T,R}

(

fk
max

)2

[

1 +Mk
4 − [cos(2(µk − γk)) + 1]

(

I1(κk)

I0(κk)

)2
]







1/2

= B
(2)
RH

(f) (19)

B(1)
τ (t) =

rT +D + rR
C

+
∑

k∈{T,R}

qk

[

Mk
1 + t

(

fk
max

(fc + f)

)

Mk
2

]

= B
(1)
RH

(t) (20)

B(2)
τ (t) =







∑

k=T,R

[

(

rk√
2C

)2
[

1 +Mk
3 − 2

(

Mk
1

)2
]

+ t

(

qkrkf
k
max

C (fc + f)

)

[(

cos(γk)(1 +Mk
3 )− 2Mk

1M
k
2

)]

]

+t2
(

rk√
2C

)2
[

1 +Mk
4 − 2

(

Mk
2

)2
]

}1/2

= B
(2)
RH

(t) (21)

(21), respectively (see the top of the next page), where
qT = +1 andqR = −1.

IV. N UMERICAL RESULTS

Here, we compare the closed-form expressions of the
spectral moments obtained from the FV Doppler shift
fD
ℓ,m(f) in (3) and the TV propagation delaysτℓ,m(t) in

(6) (see (18)-(21)) with the expressions of the spectral
moments computed by means of the TF-CF in (7) (see
(12) and (13)) whenφT and φR follow the von Mises
distribution. We take into account the parameters given in
the IEEE 802.11p standard which has been drawn up for
vehicular communications. We simulate the transmission
of a data frame of durationT0 = 3.2 ms (comprising
5 × 104 data symbols without considering the cyclic
prefix) at a carrier frequency offc = 5.9 GHz and a
system bandwidth ofB = 10 MHz. We assume that the
MSs are approaching along nearly parallel trajectories as
presented in [7, Sec. IV.C], whereγT = 60◦, γR = 250◦,
D = 500 m, rT = 30 m, rR = 30 m, fT

max = 500
Hz, and fR

max = 500 Hz. We analyze four different
scenarios assumingµT = 60◦ andµT = 120◦: Scenario
1 corresponds to an isotropic scattering condition with
κT = 0 and κR = 0; while the other scenarios are
designed to study non-isotropic scattering conditions
with κT = 1, κR = 10 (Scenario 2),κT = 10, κR = 1
(Scenario 3), andκT = 10, κR = 10 (Scenario 4). The
obtained graphs for each spectral moment considering
the mentioned scenarios are presented in Figs. 2–5.

In Figs. 2 and 3, the FV average Doppler shiftB
(1)
y (f)

and the FV Doppler spreadB(2)
y (f) for y ∈ {ν,RH}, are

illustrated, respectively. In these figures, we can see that
the spectral moments remain almost constant regardless
of their frequency dependence. This occurs because in
vehicular communication systems based on the IEEE
802.11p standard, we havef ≪ fc. Thus, the contri-
bution of the factor(fc + f)/fc on the Doppler shift
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Fig. 2. FV average Doppler shiftB(1)
y (f) for y ∈ {ν, RH} and

B = 10 MHz.

fD
ℓ,m(f) in (3) is close to one. Furthermore, in Fig. 3,

we can observe that the Doppler spread associated with
Scenarios 2 and 3 are superimposed. Moreover, from
the Fig. 2 and 3, we can see that the model is consistent
according to the underlying criteria determined by the
Conditions i and ii becauseB(1)

ν (f) = B
(1)
RH

(f) and

B
(2)
ν (f) = B

(2)
RH

(f).

Additionally, in Figs. 4 and 5, we present the obtained
TV average delayB(1)

x (t) and the TV delay spread
B

(2)
x (t), respectively forx ∈ {τ, RH}. These figures

reveal that the average delay and the delay spread are
time-dependent, confirming that the proposed channel
model in [7] and its spectral characteristics derived
herein capture the non-stationarity of the physical chan-
nel. In addition, we can observe a perfect match between
B

(1)
τ (t) andB(1)

RH
(t), and betweenB(2)

τ (t) andB(2)
RH

(t).
Therefore, the channel model fulfills the consistency
criteria according to the Conditions iii and iv.
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V. CONCLUSIONS

In this paper, we have derived general analytical
expressions for the FV average Doppler shift, the FV
Doppler spread, the TV average delay, and the TV delay
spread of a novel non-WSSUS M2M double-Rayleigh

fading channel model. The obtained expressions have
shown that the average delay and delay spread are TV
quantities, which is in line with the reference GBSM
for M2M double-Rayleigh fading channels, where the
propagation delays are modeled by TV quantities. More-
over, the average Doppler shift and the Doppler spread
are not only dependent on the carrier frequency, but
also on the frequency of the communication system. If
the system frequency is much smaller than the carrier
frequency, the frequency dependence is almost negligible
as it is assumed in several research works. However, if
the system frequency is close to or equal to the carrier
frequency, the frequency impact on the average Doppler
shift and the Doppler spread becomes more evident and
cannot be neglected. Finally, the results have shown the
physical soundness of the reference GBSM for M2M
double-Rayleigh fading channels because it fulfills all
the conditions to be considered as consistent w.r.t. the
spectral moments. Further research is needed to validate
the theoretical results presented herein against measured
data of real-world channels.
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