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Abstract

A Pattern Recognition (PR) system that does not involve labelled samples requires the

clustering of the samples into their respective classes before the training and testing can be

achieved. All of the reported clustering algorithms (except the one reported in Hammer et

al. (2015)) operate on Bayesian principles, which is understandable because these principles

constitute the basis of optimal PR. Recently, Oommen and his co-authors have proposed a

novel, counter-intuitive and pioneering PR scheme that is radically opposed to the Bayesian

principle. The rational for this paradigm, referred to as the �Anti-Bayesian� (AB) paradigm,

involves classi�cation based on the non-central quantiles of the distributions. This paper,

extends the results of Hammer et al. (2015) in many directions. Firstly, we generalize our

previous AB clustering Hammer et al. (2015) to handle arbitrary d-dimensional spaces using

so-called �quantiloids�. Secondly, we extend the AB paradigm to consider how the clustering

can be achieved in hierarchical ways, where we analyze both the Top-Down and the Bottom-

Up clustering options. Extensive experimentation, on arti�cial and on challenging real-life

data, demonstrates that our clustering achieves results competitive to the state-of-the-art

�at, Top-Down and Bottom-Up clustering approaches, demonstrating the power of the AB

paradigm.
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1. Introduction

Clustering is the task of grouping data points in a way that elements that exhibit some

similarity, or that inherently belong to the same class, end up in the same group. It is a

fundamental task in data analysis and inference, and it is, arguably, among the most popular

machine learning and data mining techniques [7] [21].

A range of di�erent clustering methods have been proposed and each of them vary with

the understanding of what a cluster, actually, is. For instance, density models, such as

OPTICS [1] and DBSCAN [4], coalesce most dense regions in the space into a single cluster.

As opposed to this, in hierarchical clustering [12] [15], the aim is to arrange the data points

into an underlying hierarchy which then determines the various clusters. A third group of

clustering algorithms constitute the so-called �centroid� methods where all the points within

a computed cluster are represented by a single point, for example the cluster's centroid. The

most prominent example of a scheme within this family is the acclaimed k-means clustering

algorithm where a centroid is represented by the mean value of the points in the cluster.

The central strategy motivating these clustering schemes involves classifying unassigned data

points to the di�erent clusters based on the distances to the means (or centroids) of the

clusters.

From the above, one can informally see that any speci�c pattern classi�cation algorithm

can be conceptually expanded to yield a clustering scheme. Thus, if we have k previously-

determined clusters, an unknown unlabelled sample can be assigned to any one of the k classes

by the corresponding classi�cation algorithm, whence the speci�c cluster can be grown to

include this speci�c sample.

Almost all the well-known classi�ers involved in pattern classi�cation are based on a

Bayesian principle which aims to maximize the a posteriori probability. Quite recently,

Oommen and his co-authors proposed a completely counter-intuitive paradigm, known as

CMQS, the Classi�cation by Moments of Quantile Statistics. CMQS works with a counter-

intuitive philosophy, and essentially compares the testing sample with points from each class

which are distant from the mean � as opposed to the Bayesian principle which essentially

compares it to the clusters' means or the centroids5.

The question that begged investigation and that was considered open was that of invoking

these �Anti�Bayesian� (AB) PR algorithms to design the corresponding clustering algorithms.

5A very brief overview of CMQS-based PR is presented in Section 2.
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This is the avenue of research undertaken here.

The pioneering steps taken in this direction were reported in [6], where we introduced a

novel alternative to the k-means clustering algorithm. The algorithm presented in [6] follows

the same steps dictated by a typical k-means clustering algorithm. The main di�erence,

however, is the manner by which it assigns the data points to the already-formed clusters.

Indeed, rather than follow a Bayesian classi�cation methodology, it traverses one of the

AB-based PR CMQS-based schemes reported earlier. In fact, unlike the k-means clustering

strategies that rely on centroid-based criteria, we resort to quantiles positions distant from

the cluster means [16] [18] [14], which is a strategy just as counter-intuitive and non-obvious

as the CMQS schemes themselves.

Central to the development of such CMQS clustering algorithms is the concept of a

�Quantiloid�6. We will elaborate on the phenomenon of Quantiloids in the next section.

It is pertinent to mention that by working with Quantiloids, we will have e�ectively

extended our previous work [6]. However, apart from doing it in the �vanilla� manner,

we shall accomplish it by also invoking hierarchical clustering approaches. In fact, we shall

introduce AB clustering algorithms that represent the two well-known families of hierarchical

clustering methods, namely the Top-Down and Bottom-Up methods. The paper will attain

its goal when we have experimentally veri�ed that the AB principles are also valid in the

case of such hierarchical clustering methods, and for d-dimensional spaces.

Before we embark on the contents of the paper, we should emphasize that we are not at-

tempting to design an/or implement a superior clustering scheme. Rather, we are presenting

a completely new paradigm for clustering. Thus, in one sense, while we are content with

results comparable to those obtainable through traditional clustering mechanisms, it is more

important to observe that the results we have reported are due to strategies (or one could

even say, �philosophies�) that were previously unknown within the �eld of unsupervised clas-

si�cation. The consequence of this assertion is that since these novel methods are orthogonal

to the ones reported in the �eld, the possibilities to merge (fuse) these methods with the ones

currently used, are huge. The research avenues that are open due to the introduction of the

concept of �quantiloids� is, in our opinion, vast.

6To the best of our knowledge, the concept of �Quantiloids� has not been utilized in the literature except
in the scienti�c package [11] as explained in Section 3.1. However, the use of �Quantiloids� in clustering is
pioneered here.
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1.1. Some Key Remarks

Since some of the initial results on �Anti�Bayesian� clustering were presented earlier [6], it

is scienti�cally and ethically necessary for us to highlight the di�erences between our previous

work [6] and the results presented in this current paper.

• Firstly, the prior work [6] does not di�erentiate between the hierarchical and �at clus-

tering modes of operation.

• Secondly, in our earlier work [6], we had only tackled the case of assigning a new point

to a cluster with two-dimensional data. This assignment was achieved by evaluating

the distance between the point's closest corners, which is a concept that is relatively

easy to describe and implement. In this work:

� We have extended our work to data that has any number of dimension. The exten-

sion from two-dimensional representations to higher-dimensional representations,

is unarguably, non-trivial;

� In the two-dimensional case, we utilized the distance between a point and the

corners of a cluster as the metric for comparing the distance between the point and

the cluster. Obviously, this is a computational expensive exercise, as it requires,

for the given data point, the closest corner to each cluster. In this present paper,

we have utilized a completely di�erent metric, i.e., the distance between vectors

of quantiloids;

� We note that in d dimensions, there are 2d possible corners for each cluster. Thus

the simple generalization of our earlier work is prohibitively expensive as we need

to the �nd the closest distance between a point and 2d possible other points. By

invoking the concept of quantiloids the complexity is rendered to be linear as a

function of the dimensions instead of the exponential complexity.

• The third, and more important contribution of this paper is to de�ne the distance

between two clusters and not merely the distance between a point and a cluster -

as done in our previous work. We are surprised that the Referee did not observe or

appreciate this fundamental contribution.

• We should also mention that the latter distance is useful for hierarchical clustering

while the distance between a cluster and a point is useful for what we have called �at
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clustering. Note that the latter distance between the quantiloids is a natural extension

of the concept of the "distance between centroids".

• One should observe that even the methodology of how to compute the distance between

quantiloids is non-obvious and far from trivial. This is because, given two clusters, for

each dimension, we have to determine the right pairs of points to be used to compare

the quantiloids. This has led us to proposing the innovative operation of �borrowing

quantiles�.

1.2. Structure of the paper

In Section 2, we brie�y review some related work and focus on the state-of-the-art of the

AB classi�cation framework which, indeed, forms the basis for the �Anti�Bayesian� clustering

algorithms. In Section 3, we present the fundamental principles of AB clustering. Section 4

explains how AB clustering is done in one and two-dimensional spaces, and this is followed

in Sections 5 and 1.1 where we demonstrate the development of AB �at clustering in d-

dimensional spaces. The principles of hierarchical AB clustering are given in Section 7. In

Sections 8 and 9, we report the experimental results that we have obtained which compare our

AB �at and hierarchical clustering schemes to their Bayesian counterparts on both synthetic

and real-life data sets. Section 10 concludes the paper.

2. Related Work on �Anti�Bayesian� Pattern Recognition

In this section, we very brie�y review the related work on AB classi�cation. Initially,

in [16], the authors worked with the quantiles for the data distributions, and showed how

we could achieve near-optimal classi�cation for various uni-dimensional distributions. For

uni-dimensional quantile-based PR, their methodology is based on comparing the testing

sample with the n−k+1
n+1

th
percentile of the �rst distribution and the k

n+1

th
percentile of the

second distribution. These results were shown to be applicable for the distributions that

are members of the symmetric and asymmetric exponential family. By considering the entire

spectrum of the possible values of k, the results in [16] [18] [14], showed that the speci�c value

of k is usually not so crucial, and that the same results were also true for multi-dimensional

features.

In [17], the authors further proposed a new border identi�cation algorithm, namely the

AB Border Identi�cation scheme. For each class, this method selects, as the corresponding

border points, a small number of data points that lie close to the discriminant function's
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boundary, but where these points are not within the central part of the class conditional

distributions.

The results of [16] [18] and [14] were used to design numerous Prototype Reduction

Schemes in [19], and an AB text classi�cation scheme in [13].

3. The �Anti�Bayesian� Clustering Solution

3.1. Quantiloids

As alluded to earlier, the solution we propose is based on the concept of �Quantiloids�.

What then is a Quantiloid? The quantiloid associated with the real number, θ, is, quite sim-

ply, for a uni-dimensional distribution, the unique point where the Cumulative Distribution

Function (CDF) has the value θ. This is the unique point where the probability mass (i.e.,

the integral of the Probability Density Function (PDF)) attains the value of θ.

While this is an elementary concept for uni-dimensional variables, the concept can be

extended for multi-dimensional vectors to be the hyper-surface under which the CDF has

the value θ. The goal of this paper is to develop quantiloid-based clustering algorithms that

work in an AB paradigm just as the centroid-based clustering algorithms worked within the

�Bayesian� paradigm. Indeed, rather than characterizing a cluster by its centroid, we shall

attempt to characterize it by its quantiloids, which will then lead to the various AB clustering

algorithms.

It should be mentioned that in the package named Weighted Correlation Network Anal-

ysis (WGCNA) the authors programmed modules in `R' to perform Weighted Correlation

Network Analysis [11]. In that package, the authors employed the word �Quantiloids� to

describe the concept of using quantiles as follows: �If samples within each class are hetero-

geneous, a single centroid may not represent each class well. This function can deal with

within-class heterogeneity by clustering samples (separately in each class), then using a one

representative (mean, eigensample) or quantile for each cluster in each class to assign test

samples� [11]. We applaud the authors of the package for suggesting the use of quantiles as

a tool for classi�cation. However, we could not �nd any documentation that explains their

methodology.

Although the concept of quantiloids is valid for multi-dimensional vectors, the question

of how they can be computed and represented is still open. We shall thus restrict ourselves

to uni-dimensional quantiloids by processing the multi-dimensional distribution in terms of

its uni-dimensional marginals.
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3.2. �Anti�Bayesian� Classi�cation Rules

We �rst summarize the AB classi�cation rules designed and proven in [16], [18] and [14]

for uni-dimensional features.

To do this, we use the notation that for the jth dimension of the feature vector of class

ωi, qi,jp is the quantiloid for the value p, i.e., the position where the feature's CDF has a value

of p. In the case when both the classes are characterized by only a single feature X, qip is

ωi's quantiloid for the value p, i.e. more formally qip = Pr(X < p|X ∈ ωi). Observe that

we encounter the cases when the quantiloids overlap (i.e., q11−p < q2p) or when they do not

overlap (i.e., q11−p > q2p). Using this notation, the uni-dimensional AB classi�cation rules for

the testing sample x∗ are:

Case 1: When the quantiloids are non-overlapping (see Figure 1 on the left):

If x∗ < q11−p ⇒ x∗ ∈ ω1;

If x∗ > q2p ⇒ x∗ ∈ ω2;

If (q11−p < x∗ < q2p) ∧ (‖x∗ − q11−p‖ < ‖x∗ − q2p‖) ⇒ x∗ ∈ ω1;

If (q11−p < x∗ < q2p) ∧ (‖x∗ − q11−p‖ > ‖x∗ − q2p‖) ⇒ x∗ ∈ ω2.

(1)

The reader will observe that the cases are mutually exclusive and that the classi�cation

border is:
q11−p+q2p

2
.

Case 2: When the quantiloids are overlapping (see Figure 1 on the right):

If x∗ < q2p ⇒ x∗ ∈ ω1;

If x∗ > q11−p ⇒ x∗ ∈ ω2;

If (q2p < x∗ < q11−p) ∧ (‖x∗ − q1p‖ < ‖x∗ − q21−p‖) ⇒ x∗ ∈ ω1;

If (q2p < x∗ < q11−p) ∧ (‖x∗ − q1p‖ > ‖x∗ − q21−p‖) ⇒ x∗ ∈ ω2.

(2)

In this case, the comparison is based on the distant quantiloids and so the classi�cation

border is:
q1p+q21−p

2
.

The reader will observe that the latter case (Case 2) is the one that uses the so-called

�Dual� scenario (please see [16], [18] and [14]), and where the extreme quantiloids are used

for the classi�cation as opposed to the quantiloids that are close to the discriminant. In the

symmetric cases analyzed in [16], [18] and [14], it is easy to see that the assignments in the

so-called �Dual� scenario reduce to those involving comparisons to the quantiloids that are

close to the discriminant, but where the assignment is to the class that is the more distant

one. The decision rule for this is given below.
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Figure 1: The AB scheme: (a) When the quantiloids are non-overlapping on the left, and (b) When the
quantiloids are overlapping on the right.

Case 2 (Revised): When the quantiloids are overlapping (again see Figure 1 on the right):

If x∗ < q2p ⇒ x∗ ∈ ω1;

If x∗ > q11−p ⇒ x∗ ∈ ω2;

If (q2p < x∗ < q11−p) ∧ (‖x∗ − q2p‖ < ‖x∗ − q11−p‖) ⇒ x∗ ∈ ω2;

If (q2p < x∗ < q11−p) ∧ (‖x∗ − q2p‖ > ‖x∗ − q11−p‖) ⇒ x∗ ∈ ω1.

(3)

The di�erence between the two versions of Case 2 (Eq. (2) and (3)) lies in the assignments

made in the last two statements, where they, however, are done to the non-adjacent classes.

In this case, the comparison is based on the closer quantiloids and so the classi�cation border

is:
q2p+q11−p

2
. To distinguish between these two scenarios, we shall refer to this version of the

�Dual� scenario as the �Swapped Border� scenario.

The cases when the second distribution (for ω2) is to the left of the �rst (for ω1), is shown

in Figure 2. Observe that this is identical to the case of the �gure on the left of Figure 1,

except that the identities of the classes is interchanged.

Figure 2: This �gure depicts the case of when the quantiloids do not overlap but when second distribution
(for ω2) is to the left of the �rst (for ω1).

There is one additional scenario, and that occurs when there is a huge overlap between

the distributions (See Figure 3). The classi�cation decision rule to be used is not that obvious

because the classes are highly overlapping. Apart from this, the classi�cation of an unknown

sample itself is not just non-obvious, it is actually �meaningless�. This case never occurred
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in our experiments.

Figure 3: This �gure depicts the scenario when there is a huge overlap between the distributions.

4. The AB One and Two-dimensional Clustering

In the interest of completeness, before we proceed, we brie�y present the principles of the

�Anti�Bayesian� �at7 clustering scheme presented in [6], based on the one and two dimensional

PR cases explained in Section 3.2. Then, in Section 5, we extend the principles of the �at

clustering to the multidimensional case where the dimension of the data can exceed two. In

Section 7, we present our solution to the hierarchical clustering solutions.

The algorithm presented in [6] is based on the above-described AB classi�cation frame-

work [16] [18] [14], to cluster unclassi�ed points into k clusters. The algorithm follows the

same steps as a k-means clustering algorithm. The main di�erence relies on two things: How

to characterize the clusters in terms of multiple quantiles and not the centroids, and how

to the compute the distance between a point to its nearest neighbor where the distance is

computed between point-based quantiles.

We explain below the AB clustering strategy, proposed in [6], for one and two-dimensional

data.

�Anti�Bayesian� Uni-dimensional Clustering: Consider the case when we are dealing

with uni-dimensional data. Let {x11, x12, . . . , x1n1
} and {x21, x22, . . . , x2n2

} be n1 + n2 random

samples from two unknown probability distributions f1(x) and f2(x) characterizing the classes

ω1 and ω2 respectively. Our task is to classify a new point z to ω1 or ω2, i.e., to see whether

it is a sample that comes from f1(x) or f2(x). If we assume that the variances of f1(x) and

f2(x) are equal, the optimal classi�cation strategy is to assign z to ω1 or ω2 if z is closer to

the means of f1(x) or f2(x) respectively. This, in turn, assigns z to ω1 if the average of the

7The previous methods are referred to as being ��at� because they do not invoke any hierarchical paradigm.
This paper �rst shows how the ��at� method can be used for multi-dimensional clustering and then proceeds
to consider hierarchical methods.
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samples {x11, x12, . . . , x1n1
} is closer to z than the average of {x21, x22, . . . , x2n2

}. It is otherwise
assigned to ω2. The reader should observe that this is precisely how points are assigned to

clusters in the k-means paradigm.

In the AB classi�cation approach, classi�cation is achieved based on quantile-based com-

parisons rather than comparisons with regard to the mean. To render this formal, we denote

the quantiles as follows: q1p = Pr(X < p|X ∈ ω1), and q2p = Pr(X < p|X ∈ ω2). Although,

in practice, the quantiles have to be, estimated (or learned), for ease of clari�cation, in the

descriptions below, we assume that the quantiles are known. We also know that for p < 0.5,

q1p < Median(X) so that for p < 0.5, q11−p is always greater than q
1
p. The analogous conditions

are satis�ed by q2p and q21−p. With this in place, the AB classi�cation method operates as

follows:

1. Determine which of the distributions f1(x) or f2(x) is to the left by using the quantiles

of the distributions. We have three possible cases:

Case 1: If q1p < q2p and q11−p < q21−p =⇒ f1(x) is to the left of f2(x).

Case 2: If q1p > q2p and q11−p > q21−p =⇒ f2(x) is to the left of f1(x).

Case 3: Else, we determine their relative positions by comparing the averages of

the quantiles as follows:

If
q1p+q11−p

2
<

q2p+q21−p

2
=⇒ f1(x) is to the left of f2(x).

Else8 f2(x) is to the left of f1(x).

2. Once the relative positions of the distributions are determined, the classi�cation rule

must now be speci�ed. For simplicity, we merely describe this for Case 1 since the

rules for the �mirrored� cases are analogous. The Anti-Bayesian rule classi�es using the

right quantile of the left distribution and the left quantile of the right distribution. If

B =
q11−p+q2p

2
, we classify as follows:

If z < B, classify z to ω1.

Else, classify z to ω2.

This approach works even when the distributions overlap such that q21−p is to the left

of q1p as shown by the �gure on the right of Figure 1.

8This case occurs rarely in practice except when the classes are highly overlapping, in which case the PR
problem is often meaningless.
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As mentioned earlier, Figure 1 depicts the above two cases. We see that for Cases 1 and 2,

f1(x) and f2(x) are the distributions to the left and right, respectively.

�Anti�Bayesian� Two-dimensional Clustering: The AB clustering for two-dimensional

data was achieved in [6] as follows. We assume that {x111, . . . , x1n11
} and {x112, . . . , x1n12

} are
2n1 independent samples from f1(x). The two-dimensional vector points for ω1 are obtained

as the pairs: {X1
i = (x1i1, x

1
i2), i = 1, 2, . . . n1}. Similarly, we assume that {x211, . . . , x2n21

} and
{x212, . . . , x2n22

} are 2n2 independent samples from f2(x). The two-dimensional vector points

for ω2 are obtained as the pairs: {X2
i = (x2i1, x

2
i2), i = 1, 2, . . . n2}. Again our task is to

classify a vector point Z to ω1 or ω2 as per f1(X) or f2(X). The classi�cation is done as per

the ideas in [16] [18] and [14]. It is a natural generalization of the uni-dimensional case above

and follows two steps:

1. De�ne the rectangle with corners (q11−p, q
1
1−p), (q11−p, q

1
p), (q1p, q

1
1−p) and (q1p, q

1
p) for f1(X),

and the analogous rectangle corners for f2(X). Locate the corners in the two rectangles

that are closest to each other.

2. If Z is closer to the corner of the quantile rectangle of f1(X), classify Z to ω1. Else

classify Z to ω2.

Figure 4 shows the classi�cation procedure for the two typical cases.

We are now set to explain how AB Multi-dimensional Clustering can be achieved when

the number of dimensions is greater than two.

5. The AB Multi-dimensional Clustering

We now consider the extensions of the results in Section 4 to the multi-dimensional

scenario. To explain this, we state that in [6], as explained above, we used the concept of

the closest quantile corners in two dimensions. For the multi-dimensional scenario, instead

of measuring the distances between the centroids as as done in the Bayesian paradigm, we

measure the distances between the quantiloids9.

5.1. The Quantiloids Used

In the d-dimensional feature space, let Q1 = [Q1
1, Q

1
2, ..., Q

1
d] and Q2 = [Q2

1, Q
2
2, ..., Q

2
d]

denote the quantiloids of the distributions (clusters) of f1(X) and f2(X) respectively. Q1

9This generalizes the concept used in our paper [6] (explained above), where the corners of the rectangles
encountered in two dimensions are, in one sense, the quantiloids as explained in Section 3.1.
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Figure 4: Classi�cation in the two dimensional scenario for two typical cases. In each case, the gray dashed
line shows the border of the discriminant regions when Z is classi�ed to ω1 or ω2 as per f1(X) or f2(X).

and Q2 are computed as follows:

• In each dimension, we decide which distribution (cluster) is to the left and which is to

the right. To decide this, we exactly follow the principles explained in Section 4 above.

• For each of the three cases de�ned in Section 4 the elements in the ith dimension of the

quantiloid vectors is computed as follows:

� Case 1: Here f1() is to the left of f2(). Here we set Q1
i = q1i,p and Q

2
i = q2i,1−p. In

this case, we also have to consider the case when an exception occurs, i.e., when

there is a degree of overlap between them. Indeed, if the f1() and f2() are close

in the ith dimension such that the quantiles overlap, i.e. that q1i,p is to the right of

12



q2i,1−p, then the point should be classi�ed to ω1 if it is closer to q2i,1−p and to ω2 if it

is closer to q1i,p. This corresponds to �Swapped Border� scenario (Case 2 (Revised))

in Section 3.2. With such overlapping quantiles we therefore set Q1
i = q2i,1−p and

Q2
i = q1i,p.

� Case 2: Here f1() is to the right of f2() and, if the quantiles do not overlap, we

set Q1
i = q1i,1−p and Q

2
i = q2i,p. If the quantiles overlap, we switch the quantiles, as

described above, to account for the �Swapped Border� scenario as in Case 1.

� Case 3: Here we set Q1
i =

q1i,p+q1i,1−p

2
and Q2

i =
q2i,p+q2i,1−p

2
. This is the case when the

overlap is signi�cant and the classi�cation can be considered to be �meaningless�.

As mentioned earlier, this case occurs very rarely in the domain of clustering.

The �rst two scenarios encountered above can be explained in the following �gures drawn

in two dimensions. In each case, we have plotted the hyper-ellipsoids characterizing the hyper-

plane of a speci�ed height. These hyper-ellipsoids characterize the corresponding hyper-

rectangles. If the overlap is small, the distances are measured from the nearest quantiloids,

as seen in Figure 5.

If the overlap is signi�cant, the distances are measured from the fartherest quantiloids

(Case 2 of Section 3.2), or equivalently from the �Swapped Border� (Case 2 (Revised)) quan-

tiloids explained in Section 3.2 and shown in Figure 6.

5.2. The Distance Measures Used

Based on the de�nition of the quantiloids, we are now ready to de�ne two types of

distances used in the framework of our AB clustering paradigm. The two types of distance

metrics we use are listed below:

• Data Point to Cluster (DPC) Distance: Once the quantiloids have been computed

following the procedure above, the points Z is classi�ed to ω1 if Z is closer, in terms

of its Euclidean distance to Q1 than to Q2. Otherwise, Z is classi�ed to ω2. The DPC

Distance has been used for �at clustering as well as for Top-Down clustering.

• Cluster to Cluster (CC) Distance The same notion can be used to characterize the

distance between two clusters. The CC distance between two clusters C1 and C2 is the

Euclidean distance between their corresponding quantiloids Q1 and Q2. The notion of

the CC Distance is usually used for Bottom-Up clustering techniques.

Both of these will be clari�ed later.
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Figure 5: The case when the multi-dimensional distributions have little overlap: (a) The two sets of ellipsoids
representing the Gaussian distributions, and (b) The corresponding rectangles representing the quantiloids.

6. Remarks regarding Multi-Dimensional Clustering

In the light of what we have described above, it is appropriate to submit a few comparative

remarks.

6.1. Comparison to Border Identi�cation

The phenomenon of qunatiloids bears a marked similarity to the concepts used in Border

Identi�cation methods. In fact, the quantiloids of a cluster are the points in the d-dimensional

space located at its non-central �border� as opposed to its centroid that is located at or near

the cluster's center. It is interesting to note that these points can be used to adequately

characterize the cluster � just as the centroid does.
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Figure 6: The case when the multi-dimensional distributions have a large overlap: (a) The two sets of ellipsoids
representing the Gaussian distributions, and (b) The corresponding rectangles representing the quantiloids.
Observe that in this case, we have utilized the �Swapped Border� scenario to compute the quantiloids.

6.2. Majority Voting in the d dimensions

Instead of using the Euclidean distance to compare the testing sample to the quantiloids,

we could just as well have used the alternative concept discussed in [19] based on invoking

majority voting. The idea motivating this is simple: In order to assign an d dimensional data

point to one of two clusters C1 or C2, we could have applied our proposed uni-dimensional

classi�cation strategy separately, in each dimension. As a result of this, we will obtain d

decisions after which we can invoke a majority voting to decide on the cluster that the

unassigned sample Z should fall into. Of course, whenever d is even number, one should

apply a random tie-breaking mechanism if the number of votes for C1 is equal to those for

C2.

The reader should also observe that by invoking such a majority voting mechanism, we are

ignoring the dependence between the dimensions as in the case of a Naïve-Bayesian process.

In this context, we mention that the accuracy of such a majority voting phase improves as
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the number of dimensions increases.

7. Principles of our Hierarchical Clustering

It is well-known that clustering can also be achieved hierarchically, where the scheme is

either of a Bottom-Up paradigm or of a Top-Down paradigm. These traditional paradigms

can be extended to our AB paradigm bymerely modifying the concept of the distances invoked,

where in the AB scheme, the distance is based on the concept of quantiloids. Thus, in essence,

our algorithms follow the classical hierarchical clustering philosophy [8] in all the relevant

steps, except that we consider the distances to the qunatiloids rather than the distances to

the centroids of the clusters.

To explain these, we present the hierarchical AB clustering methods. These are, precisely,

the counter-parts of the classical hierarchical clustering methods [8]. The only di�erence is

the way by which we specify the distances, i.e., whether we invoke the DPC or CC distance

measures based on the principles of the quantiloids rather than centroids.

7.1. Bottom-Up AB Clustering

A Bottom-Up clustering works with the principle that all the points are individually

speci�ed in the d-dimensional space. The points and then gathered together to form clusters,

to which the unclassi�ed points are then subsequently added. Thus, the steps of a Bottom-Up

AB clustering are described below:

• Compute all pair-wise similarity distances between the di�erent clusters and popu-

late the proximity matrix. The distance between the clusters is merely the Euclidean

distance between their corresponding quantiloids.

• Identify the closest clusters in terms of their similarity and merge them into a single

cluster. This results in updating the proximity matrix and decreasing its order by unity.

• Repeat the above steps until we obtain the desired (pre-speci�ed) number of clusters.

7.2. Top-Down AB Clustering

A Top-Down clustering works with the principle that all the points are collectively grouped

into a single cluster in the d-dimensional space. The most distant points are then separated

to be the nuclei of two distinct clusters, and the points closest to these are then included

into their respective clusters. Again, in an AB paradigm, the distances are measured in
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terms of the quantiloids rather than the centroids. Thus, the steps involved in Top-Down

AB clustering are described below:

• Start at the top level with all the data points coalesced in a single cluster.

• Use a �at clustering scheme in order to split the cluster.

• Apply the procedure recursively until a termination condition on the depth of the tree

is reached or until each data point (singleton) ends up as its own cluster (maximum

depth). Usually, one invokes a termination condition which involves the desired (pre-

speci�ed) number of clusters.

8. Experimental Results: Synthetic data example

In order to test the validity of the concepts proposed in this paper, we conducted numerous

experiments on synthetic data. In the interest of space and brevity, we report the salient

ones here.

In all our experiments, we used K = 3 clusters. All the synthetic data were from multi-

variate Normal distributions, where we �xed d, the dimension of the space, to be 4.

8.1. Data Generation

We shall �rst explain how the data points were generated for Normally-distributed dis-

tributions. Let N(µk,Σk) denote a multivariate Normal distribution with an expectation

vector µk and a covariance matrix Σk, where k = 1, . . . , K ( where we are dealing with K

clusters). To generate the K distributions, it is crucial that we determine how µk and Σk

(k = 1, . . . , K) are set.

In our experiments, the expectations, {µk} were generated in two ways, each of which led

to di�erent sets of experiments:

1.1. The expectations of the classes were spread along a line in Rd as per:

µk = tk · [1, 1, . . . , 1], k = 1, 2, . . . , K,

where {tk} were chosen such that the clusters were reasonably spread along the line,

rendering their inter-class overlaps to be minimal. In the experiments we used tk =

1.8k, k = 1, . . . , K;
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1.2. The expectations were uniformly spread on the d−dimensional cube [0, D]d where,

again, D was chosen such that the clusters were reasonably spread in space. This too

made their inter-class overlaps to be minimal. In the experiments for which we report

the results, we used D = 6.

The covariance matrices Σk for each cluster was generated by the following procedure:

2.1. Set the diagonal element to be equal to 1, i.e. the marginal variance was equal to unity

in all the dimensions;

2.2. The correlation between each of the variables in the ith and jth dimensions for i =

1, . . . , j < i was drawn uniformly from the interval [−ρmax, ρmax], where ρmax < 1. In

the experiments we used two di�erent values of ρmax. Either ρmax = 0 (independence

between feature dimensions) and ρmax = 0.8 (strong correlation);

2.3. We checked if the generated covariance matrix was positive de�nite. If it was not, we

repeated Step 2, above10.

In what follows, we let n denote the number of samples generated from each underlying

cluster in the synthetic data. Thus, the total number of data points generated were n · K.

In the experiments that we report, we used two values of n, i.e., n = 20 and n = 100.

8.2. Quantile and �Distance� Estimations

Since we constantly need to estimate the quantiloids, we opted to achieve this using the

corresponding quantiles in each of the projected dimensions. This was done non-parametrically

and parametrically as below:

• Non-parametrically (referred to in the columns titled �AB Non-parametric� in the tables

below): This was achieved in a manner similar to the work presented in [6].

• Parametrically: This was achieved by assuming normality Here we estimated the corre-

sponding µ and σ and computed the respective quantiles from the Normal distributions

(referred to in the columns titled �AB Parametric� in the tables).

The corresponding �distance� estimations for the experiments done were achieved as be-

low:

10With ρmax = 0.8 and for d = 3 the matrix were almost always positive de�nite on the very �rst attempt.
For d = 5, on the average, about every third matrix that was generated was positive de�nite.
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• Row titled �Bottom up�: These represent the classical version where all the inter-point

distances are computed. The distances were computed between the centroids in case of

the Bayesian clustering, and between the corresponding quantiloids in the case of the

AB clustering.

• Row titled �Bottom-Up Distance UD (uni-dimensional)�: In this case, we sorted the

data by the �rst dimension and repeatedly merged the closest points in this dimen-

sion. This approach was a simpli�cation of the general approach where we should have

considered all the dimensions. The present approach required less computations. We

expected that such a simpli�cation would result in a reduced accuracy as we only relied

on the �rst dimension of the data for executing the clustering, and this was, indeed,

our experience.

• Row titled �Top-Down�: In this case, the points were repeatedly split in two using

k-means and the AB analog ([6]).

• Row titled �Top-Down Distance UD (uni-dimensional)�: In this case, the data was

sorted by the �rst dimension and repeatedly split in such a way that the distance

(Bayes or AB) between the clusters was as large as possible. Again, this approach

required less computations than the �Top-Down� one. As before, it is reasonable to

expect such a simpli�cation to result in a reduced accuracy. This was, indeed, the case.

8.3. Evaluation of Clustering Performance

Before we consider the performance of the various clustering strategies, it is prudent for us

to understand how the performance of a clustering algorithm can be quanti�ed. Indeed, the

question of how is to be measured, is far from being obvious or trivial. Consider the following

simple example. Suppose that six points {A1, A2, A3, B1, B2, B3} are to be clustered into two

clusters, with the goal that the elements {Ai} and {Bi} are located in the same respective

clusters. Consider now the case when the results of a speci�c clustering algorithm are:

Cluster C1: {A1, B2, B3},
Cluster C2: {A2, A3, B1}.

If the requirements of the clustering problem required that all the elements {Ai} are to be

in cluster C1, and that all the elements {Bi} are to be in cluster C2, we could immediately

see that the number of errors incurred by the above clustering is 4. On the other hand,

if the clustering problem merely stipulated that the {Ai}'s were to be in one cluster, and

that the {Bi}'s in another (irrespective of whether it is C1 or C2), the number of errors
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is 2. In our experiments, we used a simple paired comparison approach to get rid of the

labeling issue described above. If two points were in the same clusters for the true clusters

described by the �state of nature�, they should also have ideally been in the same cluster

in the results obtained from the clustering algorithm. Conversely, if two points were not in

the same clusters for the true underlying clustering, they should not have been in the same

cluster in the results of the clustering algorithm either. More formally, suppose that we are

given the data points x1, x2, . . . , xnK that we intend to cluster into K clusters. Let Ctruth(x)

and Calg(x) denote the cluster of data point x in the true clusters described by the �state of

nature� and as a result of using the clustering algorithm, respectively. Our measure of the

performance of the clustering algorithm will be the portion of paired comparison agreements

and can be formalized as

1

nK(nK − 1)

nK∑
i=1

∑
j<i

[1(Ctruth(xi) = Ctruth(xj))1(Calg(xi) = Calg(xj))+

+1(Ctruth(xi) 6= Ctruth(xj))1(Calg(xi) 6= Calg(xj))]

where nK(nK − 1) refers to the number of paired comparisons, and 1(·) is the indicator

function.

8.4. Results: n = 20 Data Points

In this section, we report the comparative results obtained for four experimental settings

for the case when the date involved n = 20 data points per cluster in the ground truth. The

corresponding results for the case when n = 20 is given in 8.5. The analyses of the results

for the cases when n = 20 and n = 100 are given in Section 8.6.

In each case, we report the error rates (recorded as per Section 8.3, where the errors

in each cluster were the number of the misclassi�ed points inferrred from the ground truth

made available from the data generation process) with their corresponding 95% con�dence

intervals. We summarize the results tabulated in the following four tables as follows:

• Table 1 illustrates the case when the features were independent (the values between

the dimensions), and the expectations were along the line. This is the scenario given

in Item 1.1 in Section 8.1.

• Table 2 illustrates the case when the values between the dimensions were dependent,

and the expectations were along the line as given in Item 1.1 in Section 8.1.
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• Table 3 illustrates the case when the features were independent, and the expectations

were along the cube. This is the scenario given in Item 1.2 in Section 8.1.

• Finally, Table 4 illustrates the case when the values between the dimensions were de-

pendent and the expectations were along the cube as given in Item 1.2 in Section 8.1.

Bayes AB Non-parametric AB Parametric
Flat clustering 0.073 (0.071, 0.075) 0.099 (0.096, 0.102) 0.1 (0.097, 0.103)
Bottom-Up 0.188 (0.183, 0.193) 0.283 (0.278, 0.289) 0.276 (0.272, 0.281)
Bottom-up Distance UD 0.328 (0.325, 0.332) 0.385 (0.38, 0.391) 0.385 (0.379, 0.39)
Top-Down 0.165 (0.162, 0.168) 0.18 (0.176, 0.184) 0.191 (0.188, 0.194)
Top-Down Distance UD 0.278 (0.274, 0.281) 0.336 (0.331, 0.341) 0.328 (0.323, 0.333)

Table 1: The clustering errors of the various methods for the case when the features were independent, and the
expectations were along the line as speci�ed in Item 1.1 in Section 8.1. Here n = 20, and the dimensionality
d = 4.

Bayes AB Non-parametric AB Parametric
Flat clustering 0.082 (0.079, 0.085) 0.113 (0.11, 0.117) 0.119 (0.115, 0.123)
Bottom-Up 0.202 (0.197, 0.206) 0.294 (0.288, 0.301) 0.292 (0.286, 0.299)
Bottom-up Distance UD 0.341 (0.337, 0.346) 0.391 (0.385, 0.397) 0.394 (0.388, 0.4)
Top-Down 0.169 (0.165, 0.172) 0.179 (0.175, 0.183) 0.195 (0.191, 0.199)
Top-Down Distance UD 0.280 (0.276, 0.284) 0.328 (0.324, 0.333) 0.322 (0.318, 0.327)

Table 2: The clustering errors of the various methods for the case when the features were dependent with
ρmax = 0.8, and the expectations were along the line as speci�ed in Item 1.1 in Section 8.1. Here n = 20,
and the dimensionality was d = 4.

Bayes AB Non-parametric AB Parametric
Flat clustering 0.084 (0.08, 0.088) 0.096 (0.091, 0.1) 0.094 (0.09, 0.098)
Bottom-Up 0.185 (0.177, 0.193) 0.263 (0.252, 0.274) 0.265 (0.254, 0.276)
Bottom-up Distance UD 0.415 (0.408, 0.423) 0.44 (0.432, 0.447) 0.437 (0.429, 0.444)
Top-Down 0.113 (0.108, 0.118) 0.128 (0.122, 0.133) 0.128 (0.123, 0.133)
Top-Down Distance UD 0.337 (0.331, 0.343) 0.362 (0.356, 0.367) 0.352 (0.346, 0.359)

Table 3: The clustering errors of the various methods for the case when the features were independent,
and the expectations were along the cube as speci�ed in Item 1.2 in Section 8.1. Here n = 20, and the
dimensionality d = 4.
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Bayes AB Non-parametric AB Parametric
Flat clustering 0.098 (0.094, 0.103) 0.098 (0.094, 0.102) 0.099 (0.094, 0.103)
Bottom-Up 0.21 (0.201, 0.219) 0.277 (0.266, 0.288) 0.275 (0.265, 0.286)
Bottom-up Distance UD 0.423 (0.415, 0.43) 0.434 (0.427, 0.442) 0.443 (0.435, 0.45)
Top down 0.13 (0.125, 0.135) 0.132 (0.127, 0.137) 0.13 (0.125, 0.135)
Top-Down Distance UD 0.335 (0.329, 0.341) 0.369 (0.363, 0.375) 0.358 (0.352, 0.365)

Table 4: The clustering errors of the various methods for the case when the features were dependent with
ρmax = 0.8, and the expectations were along the cube as speci�ed in Item 1.2 in Section 8.1. Here n = 20,
and the dimensionality was d = 4. N = 4.

8.5. Results: n = 100 Data Points

We now report the comparative results obtained for four experimental settings for the

case when the date involved n = 100 data points. Again, in each case, we report the error

rates (recorded as per Section 8.3) with their corresponding 95% con�dence intervals. The

results are tabulated in the following four tables:

• Table 5 illustrates the case when the features were independent (the values between

the dimensions), and the expectations were along the line. This is the scenario given

in Item 1.1 in Section 8.1.

• Table 6 illustrates the case when the values between the dimensions were dependent,

and the expectations were along the line as given in Item 1.1 in Section 8.1.

• Table 7 illustrates the case when the features were independent, and the expectations

were along the cube. This is the scenario given in Item 1.2 in Section 8.1.

• Finally, Table 8 illustrates the case when the values between the dimensions were de-

pendent and the expectations were along the cube as given in Item 1.2 in Section 8.1.

Bayes AB Non-parametric AB Parametric
Flat clustering 0.071 (0.063, 0.08) 0.071 (0.066, 0.076) 0.069 (0.066, 0.072)
Bottom-Up 0.232 (0.217, 0.246) 0.388 (0.344, 0.432) 0.325 (0.291, 0.36)
Bottom-up Distance UD 0.383 (0.361, 0.404) 0.414 (0.388, 0.44) 0.385 (0.364, 0.405)
Top-Down 0.18 (0.174, 0.185) 0.172 (0.161, 0.184) 0.189 (0.178, 0.199)
Top-Down Distance UD 0.271 (0.262, 0.279) 0.333 (0.317, 0.349) 0.317 (0.297, 0.337)

Table 5: The clustering errors of the various methods for the case when the features were independent,
and the expectations were along the line as speci�ed in Item 1.1 in Section 8.1. Here n = 100, and the
dimensionality d = 4.

The analysis of the above tabulated results follows.
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Bayes AB Non-parametric AB Parametric
Flat clustering 0.067 (0.059, 0.076) 0.092 (0.081, 0.102) 0.115 (0.098, 0.132)
Bottom-Up 0.241 (0.23, 0.252) 0.41 (0.364, 0.456) 0.404 (0.358, 0.449)
Bottom-up Distance UD 0.396 (0.371, 0.421) 0.444 (0.415, 0.473) 0.409 (0.386, 0.432)
Top-Down 0.174 (0.162, 0.187) 0.174 (0.159, 0.189) 0.191 (0.176, 0.205)
Top-Down Distance UD 0.273 (0.261, 0.284) 0.336 (0.317, 0.356) 0.326 (0.31, 0.342)

Table 6: The clustering errors of the various methods for the case when the features were dependent with
ρmax = 0.8, and the expectations were along the line as speci�ed in Item 1.1 in Section 8.1. Here n = 100,
and the dimensionality was d = 4.

Bayes AB Non-parametric AB Parametric
Flat clustering 0.084 (0.068, 0.101) 0.108 (0.091, 0.126) 0.118 (0.1, 0.137)
Bottom-Up 0.248 (0.205, 0.291) 0.414 (0.359, 0.469) 0.417 (0.36, 0.474)
Bottom-up Distance UD 0.447 (0.415, 0.478) 0.503 (0.469, 0.537) 0.48 (0.449, 0.51)
Top-Down 0.099 (0.08, 0.118) 0.126 (0.107, 0.146) 0.147 (0.125, 0.168)
Top-Down Distance UD 0.335 (0.31, 0.359) 0.389 (0.361, 0.417) 0.355 (0.332, 0.378)

Table 7: The clustering errors of the various methods for the case when the features were independent,
and the expectations were along the cube as speci�ed in Item 1.2 in Section 8.1. Here n = 100, and the
dimensionality d = 4.

Bayes AB Non-parametric AB Parametric
Flat clustering 0.079 (0.064, 0.094) 0.089 (0.072, 0.107) 0.082 (0.065, 0.099)
Bottom-Up 0.247 (0.203, 0.291) 0.322 (0.268, 0.375) 0.369 (0.311, 0.428)
Bottom-up Distance UD 0.479 (0.451, 0.507) 0.481 (0.451, 0.512) 0.504 (0.476, 0.532)
Top-Down 0.108 (0.087, 0.129) 0.097 (0.08, 0.114) 0.126 (0.104, 0.148)
Top-Down Distance UD 0.346 (0.32, 0.372) 0.364 (0.342, 0.385) 0.334 (0.311, 0.358)

Table 8: The clustering errors of the various methods for the case when the features were dependent with
ρmax = 0.8, and the expectations were along the cube as speci�ed in Item 1.2 in Section 8.1. Here n = 100,
and the dimensionality was d = 4. N = 4.

8.6. Analysis of the Results

We shall now draw some qualitative conclusions based on the empirical and quantitative

results reported in Sections 8.4 and 8.5. This will help us illustrate the behavior of our

devised �at and hierarchical clustering methods.

Flat Approaches: The �rst very interesting conclusion that we can draw from these results

is that both the Bayes and the AB Flat approaches are comparable. This is, actually, quite

remarkable because, unlike the Bayesian schemes, the AB assigns the unassigned samples

based on distant quantiles and not on their centroids. Thus, for example, the clustering

errors are 0.071, 0.071 and 0.069 (See Table 5) when the n = 100, and for the Bayes, the AB

with a non-parametric estimation of the quantiloids, and the AB with a parametric estimation

of the quantiloids. The di�erence is more noticeable when n = 20, but understandably the

estimates of the quantiles in the d = 4-dimensional space is poor when we are utilizing only
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n = 20 samples per cluster. The errors between the methods is small for both the cases

when the means fall along the line, as speci�ed in Item 1.1 in Section 8.1, or in the cube as

speci�ed in Item 1.2 in Section 8.1.

Top-Down Approaches: As in the case of the �at clustering, the Top-Down approach

performs very well. Indeed, the AB paradigm performs almost as well as the Bayes. The

same comment about this being non-intuitive is pertinent here too. Thus, for example, the

clustering errors are 0.18, 0.172 and 0.189 (See Table 5) when the n = 100, and for the Bayes,

the AB with a non-parametric estimation of the quantiloids, and the AB with a parametric

estimation of the quantiloids. Remarkably, the AB method is marginally better than the

Bayes.

Botton-Up Approaches: Bottom-Up approaches (as opposed to the others studied), in

general, work rather poorly when it concerns both the Bayesian and AB schemes. A Bottom-

Up approach performs a lot of merging of small clusters11 and this requires the utilization of

good �distance measures� between small-sized clusters. Understanding this is far from trivial

especially in AB schemes. They face a major challenge here. This is more of a �conceptual�

challenge, because the quantiles are not readily computed when (a) the sizes of the sets

to be merged is small, and (b) when the cardinality of the data sets being processed are

themselves, small. Strangely, the bottom up approaches performed poorer when the number

of data points in each cluster increased (n = 100) for both the Bayes and the AB schemes.

Since we are building larger clusters from smaller ones, and since the small clusters are better

represented by their means (rather than their quantiles), we can conclusively infer that if one

opts to use a Bottom-Up approach, it is always better to use a Bayesian methodology than

an AB.

Data Size Considerations: One can unequivocally observe that other than for the scenario

mentioned above, the accuracy of all the approaches improved as the number of points n

increased from 20 to 100. This is, of course, intuitive and con�rms that the accuracy of

the estimation of the quantiloids increases with the number of data points. This, in turn,

increases the accuracy of the AB �at and Top-Down approaches. Thus, the errors obtained

were 0.13 and 0.099 respectively when the number of samples increased from 20 to 100 when

11Indeed, whenever we have a single data point x, in a cluster, it is not possible to compute the quantiles.
In order to avoid this, we compute the quantiles for these clusters as [x − ε, x + ε], with a small value of ε,
i.e., (10−4).
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the features were dependent with ρmax = 0.8, and the expectations were along the cube as

speci�ed in Item 1.2 in Section 8.1 (please see the third rows of Tables 4 and 8). These results

are typical.

Topology Considerations: One can also observe the remarkable conclusion that the topol-

ogy of the points does not degrade the AB strategy. Indeed, when the expectations fell along

a line, the results of the AB scheme and the Bayes were again comparable.

Non-parametric vs. Parametric Considerations: Another very interesting conclusion

that we obtained is that computing the quantiles non-parametrically (column two in the

tables) or parametrically (column three) a�ect the results minimally. However, the non-

parametric method yielded superior accuracy for the AB schemes. This again, is intuitive,

because the quantiles estimated using low-quality estimates of the mean and variances will,

understandably, be poor. Thus, the errors obtained were 0.172 and 0.189 respectively when

the estimates were non-parametric and parametric respectively, when the features were in-

dependent and the expectations were along the line as speci�ed in Item 1.1 in Section 8.1

(please see the third rows of Tables 5).

Independence vs. Dependence Considerations: It is extremely interesting to note that

the AB paradigm reported no problems when there was a dependence between the di�erent

dimensions of the data i.e., when ρmax > 0. Rather, by comparing Tables 3 and 4, and Tables

7 and 8, it appears as if the di�erence to the Bayes paradigm was less than when the data

was dependent.

Uni-dimensional Approximations: The most daring step we took was when we attempted

to reduce all our clustering decisions based on the behavior of a single dimension. This was,

of course, a �shot in the dark�, and it was not too surprising that both the Bayes and the

AB schemes behaved poorly. Indeed, when we dealt with clustering based on this uni-

dimensional paradigm, all schemes (bottom-up and top-down) without exception yielded a

low accuracy. That being said, invoking an uni-dimensional clustering paradigm works better

for expectations along the line than for the case when the expectation were within a cube. The

reason for this very interesting observation may be due to the fact that when we generated

the data along a line, we e�ectively �reduced� the dependence between the dimensions.

Real-life data sets: The problem associated with comparing di�erent clustering algorithms

on real-life data sets is that we are not aware of the ground truth � i.e., the true clustering.

The other option is to compare the clustering achieved by the di�erent methods. A study
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about how this can be accomplished is currently being undertaken. Although we do have

some preliminary results, they are still half-baked are are not suitable for publication. We

hope to publish them in the near future.

9. Experimental Results: Real-life data

In this section, we report the results of evaluating the performance of our Anti-Bayesian

clustering algorithms for real-life data. To render the task challenging, we have done this

testing on �ve recently-proposed data sets. They are:

• Seeds data set: This data set contains the measurements of the geometrical properties

of kernels belonging to three di�erent varieties of wheat. A soft X-ray technique and the

so-called GRAINS package were used to construct seven real-valued attributes, namely

the area A, perimeter P , compactness C = 4πA/P 2, length and width of the kernels,

their asymmetry coe�cients, and the lengths of their grooves. The data has a total of

210 observations. Additional details about this data set are found in [2].

• Perfume data set: This data consists of the odors of 20 di�erent perfumes. The data

was obtained by using a hand-held odor meter (OMX-GR sensor) per second for a

period of 28 seconds, resulting in a total of 28 attributes per perfume. For more details

about this set, please see [10].

• Stone �akes data set: Stone �akes are waste products that emerge from the process of

production of stone tools in the prehistoric era. The variables are the means of eight

di�erent geometric and stylistic features of the �akes contained in di�erent inventories.

The data set has a total of 79 observations. Additional details on this data set are

found in [20].

• Turkiye student evaluation data set: This data set contains a total of 5,820 evaluation

scores provided by the students from Gazi University in Ankara (Turkey). There is a

total of 28 course-speci�c questions with additional 5 attributes. For more details on

the data set, please see [5].

• User knowledge modeling data set: This is a dataset that contains details about the

status of students' knowledge concerning the subject of Electrical DC Machines. The

data set has a total of 403 observations and �ve attributes. More detailed information

about this dataset is found in [9].
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There is a fundamental problem that has to be resolved when we are dealing with real-life

data sets. This involves the challenge of evaluating the performance of the various clustering

algorithms on these sets because the true identity of the clusters is unknown. Of course,

this is because, unlike the synthetic data sets from the previous section, the real-life data

examined does not provide the �true� clusters nor the points within these clusters, from which

the data originates. We have to, therefore, resort to a strategy by which we can procure a

good approximation of the ground truth. To achieve this, we have invoked the following

procedure on the �raw� unprocessed real-life sets.

For a given data set with data point {x1, x2, . . . , xn}, we do the following:

1. Let us suppose that we have J algorithms, {A1, A2, . . . , AJ}, all of which are accepted

in the literature as being standard and accurate clustering algorithms12.

2. Cluster the data using each of the algorithms A1, A2, . . . , AJ . Denote the results of

these clustering algorithms as C1, C2, . . . , CJ .

3. Go through each pair of data points, xi, xj, i 6= j, in the same manner as in Section 8.3.

If each of the clustering results C1, C2, . . . , CJ agree, i.e., each algorithm has placed

xi and xj in the same cluster or each algorithm has assigned xi and xj, in di�erent

clusters, we save the pair as a test pair. If some of the algorithms disagree, we do not

use that pair when evaluating the other algorithms. Let Ω denote the set of all the

resulting test pairs.

4. To measure the performance of another algorithm A∗, we cluster the data using this

algorithm. Let C∗ denote the result of clustering using A∗. We now go through all the

test pairs from the previous step, i.e., from Item 3 above, and compute the proportion

of the test pairs in which the clustering result C∗ agrees with the clustering from

C1, C2, . . . , CJ .

To actually execute the above test procedure, we use the following J = 3 alternative

clustering algorithms:

• A�nity Propagation: The A�nity Propagation algorithm creates clusters by send-

ing messages between pairs of samples until a convergence is attained. A dataset is

then described using a small number of exemplars, which are identi�ed as those most

representative of other samples. The messages sent between the pairs represent the

12Obviously, it is impossible to get any understanding of the true nature of the data if we don't even have
a strategy for obtaining an approximation of the ground truth. Our aim is to obtain this by using the J
algorithms, {A1, A2, . . . , AJ}.
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suitability for one sample to be the exemplar of the other, which is updated in response

to the values from other pairs. This updating occurs iteratively until a convergent be-

havior is observed, at which point the �nal exemplars are chosen, and hence the �nal

clustering is obtained.

• Gaussian Mixture Distribution: In this approach, we assume that each data point is

an outcome from a Gaussian mixture distribution. We estimate the parameter of the

Gaussian mixture using the EM algorithm [3]. To save computation time, we assume

independence between the dimensions, i.e., we assume that the covariance matrix of

each Gaussian distribution is a diagonal matrix. After the parameters are estimated,

the points are placed into clusters based on the Mahalanobis distance from the mean

vectors of the Gaussian distributions.

• Mini Batch k-means: The Mini Batch k-means is a variant of the k-means algorithm

which uses mini-batches to reduce the computation time, while still attempting to

optimize the same objective function. Mini-batches are subsets of the input data,

randomly sampled in each training iteration. These mini-batches drastically reduce the

amount of computation required to converge to a local solution.

For both the Gaussian mixture and Mini Batch k-means, the number of clusters can

be set, while this is not an option for the a�nity propagation algorithm. Therefore when

computing the test pairs, Ω, using the approach above, we �rst run the A�nity Propagation

algorithm. The number of clusters computed by this algorithm is, thus, subsequently used

for the two other algorithms. The results of the clustering for the three algorithms for the

�ve data sets is given in Table 9.

Data set No. clusters No. evaluated No. agree Portion agree
Seeds 11 43890 36850 0.839
Perfume 5 380 300 0.789
Stone �akes 9 6162 4934 0.800
Turkiye Eval. 301 33866580 31249324 0.923
User knowledge 29 162006 148282 0.915

Table 9: Results obtained by invoking the clustering using the three algorithms, namely A�nity Propagation,
Guassian mixture, and the Mini Batch k-means clustering for each of the �ve data sets. The columns from
left to right are the number of clusters from the A�nity Propagation algorithm, the total number of pairs of
points evaluated, the number of pairs of points in which the three algorithms agree, i.e., the number of test
pairs in the set Ω, and the portion of the pair of points in which the algorithms agree.

Having established a set of test pairs, Ω, using the procedure and clustering algorithms

presented above, we evaluate the clustering performance of the 15 algorithms presented in
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this paper, i.e., the same 15 algorithms evaluated in the previous section involving synthetic

datasets. For each clustering result for each of the 15 algorithms, we use the same number

of clusters used by the three alternative algorithms used to compute the pair of points in the

test set Ω. For all the algorithms based on the k-means or Mini Batch k-means algorithm, the

clustering depends on the initial clustering used. In order to reduce the Monte Carlo error

with respect to this, we repeated the computation of the test set, Ω, with di�erent initial

conditions for the k-means Mini Batch scheme. Further, the Flat clustering and Top-down

clustering algorithms described earlier, also depend on the initial clustering. Therefore, for

each of the 20 times that the test set Ω were computed, the clusterings based on the Flat

clustering and the Top-down clustering paradigms were repeated 50 times. By doing this,

we are guaranteed that the experiments conducted and the results reported are rigorous.

Tables 10 − 14 show the results for each of the �ve data sets. Not that the Buttup Up

algorithm were not run for the Turkiye student evaluation data set. The algorithm is too

computer demanding for such a large data set.

Bayes AB Non-parametric AB Parametric
Flat clustering 0.026 0.029 0.029
Bottom-Up 0.191 0.512 0.394
Bottom-up Distance UD 0.217 0.428 0.428
Top-Down 0.049 0.055 0.051
Top-Down Distance UD 0.505 0.469 0.511

Table 10: Results of the various clustering algorithms for the Seed data set. The table reports the portion
of the pair of points in the test set, Ω, in which the clustering algorithms disagree with the three alternative
clustering algorithms.

Bayes AB Non-parametric AB Parametric
Flat clustering 0.057 0.099 0.077
Bottom-Up 0.412 0.412 0.412
Bottom-up Distance UD 0.572 0.572 0.572
Top-Down 0.087 0.077 0.063
Top-Down Distance UD 0.456 0.456 0.456

Table 11: Results of the various clustering algorithms for the Perfume data set. The table reports the portion
of the pair of points in the test set, Ω, in which the clustering algorithms disagree with the three alternative
clustering algorithms.

For the di�erent data sets, we see that the �at clustering and the top-down algorithms

perform the best. This is also in agreement with what we observed in the synthetic example.

For these algorithms we see that the Bayesian and the Anti-Bayesian alternatives perform

about equally well. The performance of the Bottom-up Distance UD and Top-Down Distance
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Bayes AB Non-parametric AB Parametric
Flat clustering 0.047 0.052 0.049
Bottom-Up 0.290 0.805 0.751
Bottom-up Distance UD 0.588 0.600 0.474
Top-Down 0.077 0.088 0.118
Top-Down Distance UD 0.647 0.223 0.371

Table 12: Results of the various clustering algorithms for the Stone Flakes data set. The table reports the
portion of the pair of points in the test set, Ω, in which the clustering algorithms disagree with the three
alternative clustering algorithms.

Bayes AB Non-parametric AB Parametric
Flat clustering 0.001 0.002 0.052
Bottom-Up - - - - - - - - -
Bottom-up Distance UD 0.737 0.627 0.394
Top-Down 0.041 0.038 0.091
Top-Down Distance UD 0.271 0.034 0.602

Table 13: Results of the various clustering algorithms for the Turkiye student evaluation data set. The table
reports the portion of the pair of points in the test set, Ω, in which the clustering algorithms disagree with
the three alternative clustering algorithms.

Bayes AB Non-parametric AB Parametric
Flat clustering 0.013 0.015 0.017
Bottom-Up 0.930 0.872 0.910
Bottom-up Distance UD 0.601 0.873 0.595
Top-Down 0.049 0.083 0.090
Top-Down Distance UD 0.707 0.124 0.181

Table 14: Results of the various clustering algorithms for the Knowledge Modeling data set. The table reports
the portion of the pair of points in the test set, Ω, in which the clustering algorithms disagree with the three
alternative clustering algorithms.

UD algorithms are quite poor in terms of their respective performances, and this is again

in agreement with what we observed in the synthetic example. Also for these algorithms,

the Bayesian and the Anti-Bayesian alternatives perform about equally well. But it is worth

emphasizing that the Anti-Bayesian alternatives performed far better then the Bayesian alter-

native when using the Top-Down Distance UD algorithm on the Stone Flakes data set. For

the Bottom-Up algorithm the Bayesian and the Anti-Bayesian alternatives perform about

equally well except that the Bayesian alternative performs the best in the case of Seed and

the Stone �akes data sets.

Overall, we see that the Anti-Bayesian algorithms perform very well compared to the

Bayesian alternatives on the di�erent real-life data sets. This is quite remarkable when we

consider that the points are non-intuitively assigned to clusters based on quantiloids that are

distant from the means. It is also important to note that both the Mini Batch k-means and
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the Gaussian mixture approach are closely related to the Bayesian paradigm. One would,

therefore, expect that the Bayesian algorithms presented in this paper agree to a higher

degree with the pairs of points in the test set, Ω, which is also what one observes. The fact

that an AB-based scheme could attain to a comparable accurcay is, really, quite noteworthy.

10. Conclusion

In this paper, we have considered an �Anti-Bayesian� (AB) paradigm for clustering. All

of the reported clustering algorithms (except the one reported in [6]) operate on Bayesian

principles, (where the Bayesian principle corresponds to assigning the unlabelled samples to

the cluster whose mean (or centroid) is the closest). Our aim here has been to see if the �Anti-

Bayesian� (AB) classi�cation philosophy, introduced recently by Oommen and his co-authors,

can be extended into the domain of clustering. The AB principle involves classi�cation based

on the non-central quantiles of the distributions, which involves utilizing the information

resident in the outlier samples.

In this paper, we have extended the �rst-reported AB clustering methods proposed in

[6]. This paper has extended the results of [6] in many directions. Firstly, we have gen-

eralized our previous AB clustering [6], initially proposed for handling uni-dimensional and

two-dimensional spaces, to arbitrary d-dimensional spaces using their so-called �quantiloids�.

Secondly, we have extended the AB paradigm to consider how the clustering can be achieved

in hierarchical ways, where we have analyzed both the Top-Down and the Bottom-Up clus-

tering options. The AB paradigm can also use an anti-Naïve-Bayesian computational mecha-

nisms. The paper contains the results of extensive experimentation on arti�cial datasets and

on �ve recently-introduced real-life datasets. These results clearly demonstrate that our AB

clustering schemes achieve results competitive to the state-of-the-art Flat, Top-Down and

Bottom-Up clustering approaches.

In the future, we envisage an ambitious goal of devising an AB clustering method based

on applying majority voting on the decision made in each dimension of the quantile vector.

Further, since the novel methods introduced are, in one sense, orthogonal to the ones reported

in the �eld, the possibilities to merge (fuse) these methods with the ones currently used,

are huge. The research avenues that are open due to the introduction of the concept of

�quantiloids� is, in our opinion, vast.
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