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Abstract We prove that any linear operator with kernel in a Pilipovi¢ or Gelfand—
Shilov space can be factorized by two operators in the same class. We also give links on
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1 Introduction

The singular values and their decays are strongly related to possibilities of obtaining
suitable finite rank approximations of operators. For a linear and compact operator
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which acts between Hilbert spaces, the singular values are the eigenvalues in decreas-
ing order of the modulus of the operator. If more generally, the linear operator 7T is
continuous from the quasi-Banach space %) to (another) quasi-Banach space %,
then the singular value of order k > 1 is given by

0i(T) =0r(T, %1, %) =inf |T — Tollz,-2, (1.1)

where the infimum is taken over all linear operators Ty from % to %, of rank at most
k — 1. (See Sect. 2 for notations). It follows that 7" is compact when o, (7T') decreases
to zero as k tends to infinity, or equivalently, 7" can be approximated by finite rank
operators with arbitrarily small errors.

In this paper we deduce estimates of o4 (T) when %) and %, stay between small
test function spaces, denoted by H (R4 ) and Hoys(Rd ), and their (large) duals. The
spaces H (R9) and Ho, s(R?) are invariant under the Fourier transform, depend on
the parameter s > 0 and are obtained by imposing certain exponential type estimates
on the Hermite coefficients of the involved functions. More precisely, the set H; (R?)
(Ho.s(R?)) consists of all

f= anho{

1
such that |cy| < e~1l® for some (for every) ¢ > 0. It follows that H (R?) and
Ho.s (RY) increase with s, and are continuously embedded and dense in . (RY).
In [26] the spaces H (RY) and Ho, +(R?) and their duals were characterized in
different ways. For example, the images under the Bargmann transform were given,
and it was proved that f € H;(RY) (f € Ho.s (R%)), if and only if f satisfies

|HY f(x)| S VNI (1.2)

for some & > 0 (for every & > 0), where H is the harmonic oscillator |x|?> — A on
R?. In this context we recall that Pilipovi¢ introduced in [19] function spaces whose
elements obey estimates of the form (1.2) for certain choices of s. For this reason,
we call H,(R?) and Ho,s (R9) the Pilipovi¢ spaces of Roumieu and Beurling type,
respectively, of degree s > 0 (cf. [26]).

In [19], it is also proved that H, (Rd) and Ho s, (R") agree with the Gelfand—
Shilov spaces Sy, (Rd) and X, (R9), respectively, when s; > % and sp > %, while
Hy, 1 (RY) is different from the trivial space 1 (RY) = {0}. The family of Pilipovi¢
spaces therefore contains all Gelfand—Shilov spaces which are invariant under Fourier
transformations.

In Sect. 5 we consider linear operators whose kernels belong to H;(R*?). Some
parts of the approach here is related to the analysis in [6,7], where Schatten—von
Neumann properties for certain types of integral operators on compact manifolds are
deduced. We show that the singular values of such operator satisfies the estimate

1
o (T, B, Br) S e ™ (1.3)
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for some r > 0, when Z; stays between H; (RY) and its dual. If the ‘Hs-spaces and
their duals are replaced by H s-spaces and their duals, then we also prove that (1.3)
is true for every » > 0. Furthermore, if H,-spaces and their duals are replaced by
Schwartz spaces and their duals, then we prove

ow(T, By, %) Sk (1.4)

for every N > 0, which should be available in the literature.

These singular-value estimates are based on the fact that the operator classes here
above possess convenient factorization properties, which are deduced in Sect. 4. More
precisely, an operator class M is called a factorization algebra, if for every T € M,
there exist 71, 7o € M suchthat T = T o T5. (In [28] the term decomposition algebra
is used instead of factorization algebra). Evidently, . (£), the set of continuous linear
operators on the quasi-Banach space % is a factorization algebra, since we may choose
Ty as the identity operator and 7> = T. A more challenging situation appears when
M does not contain the identity operator, and in this situation it is easy to find operator
classes which are not factorization algebras. For example, any Schatten—von Neumann
class of finite order is not a factorization algebra.

If # above is a Hilbert space and M is the set of compact operators on %, then it
follows by an application of the spectral theorem that M is a factorization algebra. It
is also well-known that the set of linear operators with kernels in the Schwartz space
is a factorization algebra (see e.g. [2,17,21,28,30]). Furthemore, similar facts hold
true for the set of operators with kernels in a fixed Gelfand—Shilov space (cf. [28]).

In Sect. 4 we extend the latter property such that all Pilipovi¢ spaces are included.
That is, we prove that the set of operators with kernels in a fixed (but arbitrarily chosen)
Pilipovié space is a factorization algebra.

Since the singular values of the operators under considerations either satisfy condi-
tions of the form (1.3) or (1.4) forevery N > 0, it follows that the sequence {o & (T)},?o:1
belongs to £7 for every p > 0. This implies that any such operator is a Schatten—von
Neumann operator of degree p for every p > 0.

Here we remark that the latter conclusions in the Gelfand—Shilov situation, were
deduced in [28] in slightly different ways, which enables to replace the quasi-Banach
spaces A and %, by convenient Hilbert spaces. The main property behind the latter
reduction concerns [25, Proposition 3.8], where it is proved that if s > % and

H,RY) € 2 < H,RY),
then there are Hilbert spaces .7#] and 7% such that
H;(RY) C A C B S A < H,R?). (1.5)

The Schatten—von Neumann properties are then obtained in straight-forward ways
by the factorization properties in combination with the exact formulas, for Hilbert—
Schmidt norms of operators acting between Hilbert spaces. We remark that extensions
of (1.5) which include Pilipovi¢ spaces can be found in [5].
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Our investigations also include analysis of operators with kernels in H,, , Hop, »
o > 0, or their duals. These spaces were carefully investigated in [10,26] and the
Hermite coefficients of the involved functions should be bounded by expressions of
the form h‘“'(a!)_ﬁ. In [26], these spaces are characterized in different ways. For
example, it is here proved that the Bargmann transform is bijective from H,,, RY) to
the set of all entire functions F on C? such that

20
|F(z)| S eRI7

for some constant C > 0.

In Sect. 3 we deduce kernel theorems for operators with kernels in these spaces,
or related distribution spaces. In Sect. 4 we show certain factorization properties of
operators with kernels in H,,, or in Ho,. These factorization results are slightly
weaker compared to what is deduced for operators with kernels in H; and Ho s when
s > 0isreal.

In Sect. 5 we apply these factorization properties to obtain singular value estimates
for operators with kernels in H,,, or in Hg, . In particular we show that if 7 is an
operator on Lz(Rd) with kernel in H,,, (R2d ), then the singular values of 7 satisfy

o (T) < hh (k)™ 7

for some constant 2 > 0.

Finally, in Sect. 6 we apply the results from the first sections to obtain certain
characterizations of operators with kernels in H, and Hp . Some arguments here
involve estimates with modulation space norms, and a short introduction to modulation
spaces are therefore included in Sect. 2.

2 Preliminaries

In this section we recall some basic facts. We start by discussing Pilipovi¢ spaces
and their properties. Thereafter we consider suitable spaces of formal Hermite series
expansions, and discuss their links with Pilipovi¢ spaces.

2.1 The Pilipovié¢ Spaces

We start by considering spaces which are obtained by suitable estimates of Gelfand—
Shilov or Gevrey type when using powers of the harmonic oscillator H = [x|> — A,
x € R%.

Leth > 0,s > 0 and let Sj, s (RY) be the set of all f € C®(R?) such that

AN flle
1flls,, =s

v AV =y
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Then S, ¢ (R?) is a Banach space. If &, is the Hermite function

x|
2

ho(x) = 778 (=) @lgn =167 (921,
on R? of order a, then Hhy = (2|a| 4+ d)hg. This implies that Sh.s (R?) contains all
Hermite functions when s > 0, andif s = 0, and o € N4 satisfies 2|la| +d < h, then
he € Sy s(RY).

We let

;R = () SisRY) and SRY) = ] S (RY)
h>0 h>0

and equip these spaces by projective and inductive limit topologies, respectively, of
Si.s(RY), h > 0. (Cf. [13,18,19,26].)

In [18,19], Pilipovi¢ proved that if 51 > % and 5o > %, then S;, (Rd) and X, (Rd)
agree with the Gelfand—Shilov spaces S, (R%) and s, (RH!, respectively, and that

212RY) # 21 pRY) = (0}

(See e. g. [26] for notations).
By the definitions it follows that the latter relations extend into

| =

1
S, (R = S, (RY), %, (RY) = 5, (RY), 12 5,9 >

and

Sy RY) #S,R) =10}, TR #3T, RN =1{0}, s < % 0<s <

N =

The space X (R?) is called the Pilipovi¢ space (of Beurling type) of order s > 0 on
RY. Similarly, S;(R?) is called the Pilipovi¢ space (of Roumieu type) of order s > 0
on R4,

The dual spaces of 8, s(R?), Z;(R?) and §; (R?) are denoted by S, ((R?), £} (R?)
and S/ (RY), respectively. We have

TR =[S R
h>0

when s > 0 and

S/(RY) = ﬂ S, ;(RY
h>0

1 Note that the boldface characters, X, S etc. denote Pilipovi¢ spaces, and non-boldface characters, X,
S; etc. denote Gelfand—Shilov spaces.
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when s > 0, with inductive respectively projective limit topologies of S}Q’S R, h >0
(cf. [26]).

2.2 Quasi-Banach Spaces, Singular Values and Schatten—von Neumann
Operators

Let £ be a vector space. A quasi-norm || - || on 4 is a non-negative and real-valued
function on % which is non-degenerate in the sense that

lflg=0 << f=0, fec2B,

and fulfills
lefllz = lal-1f ]z fe#B ael,
and
If+gllz = DAfllz + gl f.8 €%, 2.2)

for some constant D > 1 which is independent of f, g € %. Then £ is a topological
vector space when the topology for & is defined by || - ||, and & is called a quasi-
Banach space if & is complete under this topology.

Let %, and %, be (quasi-)Banach spaces, and let 7' be a linear map between %
and %,. Then the singular values of order k > 1 of T is given by (1.1), where the
infimum is taken over all linear operators Ty from % to %, with rank at most k — 1.
Therefore, 01(T') equals || T || 5, —» ,, and ' (T') are non-negative and non-increasing
with respect to k.

For any p € (0, o0], .7,(%1, %>), the set of Schatten—von Neumann operators of
order p is the quasi-Banach space which consists of all linear and continuous operators
T from ) to %, such that

ITls, = IT1ls, 8. = @k (T, B1, B, v

is finite.

2.3 Spaces of Hermite Series Expansions

Next we recall the definitions of topological vector spaces of Hermite series expan-
sions, given in [26]. As in [26], it is convenient to use the sets R, and R, when indexing
our spaces.

Definition 2.1 The sets R, and R, are given by

R, =R, J {bs} and R, =R, [J{0}.

>0
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Moreover, beside the usual ordering in R, the elements b, in R, and R, are ordered

by the relations x| < by, < bs, < x2, when o1 < 02, x| < % and xp > % are real.

A function ¥ on a discrete set A is called a weight (on A) if it is real-valued and
positive.

Definition 2.2 Let p € (0, 0], s € Ry, r € R, ¥ be a weight on N4, and let

1
el when s € R,
19r,x(05) = +

1
rl(@)2s,  when s =b,, o e N4,

Then,

@)) 66 (N9) is the set of all sequences {cy}yene € C on N,

2) Eo,o(Nd) = {0}, and £o(N9) is the set of all sequences {cq}yene € C such that
cq 7 0 for at most finite numbers of «;

3) Zf’ﬂ] (N9) is the quasi-Banach space which consists of all sequences {catyend € C
such that

Heataendller = ltca® (@)}aen ller

is finite;
) €os(NY) = rDOZf)ﬁw](Nd) and £,(N9) = rgoﬁf;m](Nd), with projective respec-

tively inductive limit topologies of Eﬁ?r Jq (N?) with respect to r > 0;
(5) £y, (NY) = er{’] s5, g (ND) and ({(NY) = moeﬁ /5, (NP, with inductive
r> r>

respectively projective limit topologies of Eﬁ /ﬂ)_S](Nd) with respect to r > 0.

Let p € (0, oo], and let 2y be the set of all ¢ € N9 such that || < N. Then the
topology of £o(N9) is defined by the inductive limit topology of the sets

{ {calyent € Ly(N?): cq = O whena ¢ Q2 ]
with respect to N > 0, and whose topology is given through the quasi-semi-norms
{catyend = IHcatiai<nIler@y)- (2.3)
Furthermore, the topology of Z()(Nd) is defined by the quasi-semi-norms (2.3). It
follows that %(Nd ) is a Fréchet space, and that the topologies of £o(N?) and %(Nd)

are independent of p.
Next we consider spaces of formal Hermite series expansions

f= caha {calgent € Lo(ND), (2.4)

aeNd
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which correspond to
Cos(NY),  £(NT), efy (NY), €((NY) and € ,(N9). 2.5)

For that reason we consider the mapping

T {calyend = Y Cahas (2.6)

aeNd

between sequences and formal Hermite series expansions.

Definition 2.3 Let p € (0, oo], ¥ be a weight on N9 and lets € R,.

e The spaces
Hos(R), H;RY), HfpRY, H{RY and Hp (R 2.7)

are the images of T in (2.6) under the corresponding spaces in (2.5). Furthermore,
the topologies of the spaces in (2.7) are inherited from corresponding spaces in
(2.5);

e The quasi-norm ”f”H{’m of f e HE)(R‘I), is given by ||{Ca}a€Nd||Zf7§], when f is
given by (2.4).

By the definitions it follows that the inclusions

Ho(R?) € Hos(RY) € Hs(RY) € Ho, (RY)
c SR c .7 RY € Hy,(RY) € H,(RY)
C ) (RY) € Hy(RY), whens,reRy, s <1, (2.8)

hold true, and are in fact continuous embeddings.

Remark 2.4 By the definition it follows that 7 in (2.6) is a homeomorphism between
any of the spaces in (2.5) and corresponding space in (2.7).

The next result shows that the spaces in Definition 2.3 essentially agrees with the
Pilipovié spaces. We refer to [26] for the proof.

Proposition 2.5 Ler 0 < s € R. Then Hys(RY) = T;(RY) and Hs(RY) = S;(RY).
Remark 2.6 Let T be given by (2.6), p € [1, 2] and let ¢ be a weight on N such that
1/9 € £°(N?). Then
T
(65 (N9), £2(N?), £, (N?)) — (HsRY), L*RY), H;(RY)),  5>0,
T
(Co.s(ND), £2(ND), £ (ND))  — (Hos(RY), L2RY), Hj (RD)), s >0,
’ T ’
(e{;](Nd), 2(N9)y, z{’lm(Nd)) - (Hf’l,](Rd), L*(RY), Hf’lm(Rd))

are isometric bijections between Gelfand triples. (Cf. e. g. Sect. 4 in [26].)

Birkhduser
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2.4 Pseudo-Differential Operators

We let .% be the Fourier transform on .’ (R?), given by
(FHE) = @) / fe ') dg
R4

when f € L'(RY). We also let .%> F be the partial Fourier transform of F(x, y)
with respect to the y-variable. The Fourier transform restricts to homeomorphisms on
ZRY), Hy(R?) and Hs,o(Rd ), and extends uniquely to homeomorphisms on corre-
sponding duals. The same holds true for .%, when acting on functions and distributions
on R (cf. [26]).

For every s > %, real d x d-matrix A anda € S, (R*) (the symbol), the pseudo-
differential operator Op 4 (a) is the linear and continuous operator from Ss(R9) to
S!(R?) with distribution kernel

Kaa(x,y) = Qo) " 2(Z \a)(x — A(x — y), x — y).

Ifa € L'(R*?) and f € S;(RY), then Op 4 (a) f is given by

Op (@) f(x) = (2)~¢ / /R ale— A = ), ©)fOE dyds.

The product for compositions of pseudo-differential operators on the symbol level is
denoted by #4. This implies that if a, b € .7 (R??), then a#4b is defined by

OpA(a#Ab) = OpA(Cl) o OpA(b)

The product a#4b is well-defined and is uniquely extendable in different ways (see
e.g.[1,4,16]).

2.5 Modulation Spaces

Next we discuss basic properties for modulation spaces, and start by recalling the
conditions for the involved weight functions. A function @ on R is called a weight
(onRY),if o > 0 and w, 1/w € L{° (RY).

Let w be a weight on R?, and set (x) = 1 + |x| when x € R?. Then w is called a

weight of polynomial type, if
ox+y) So@Y, xyeR? (2.9)
for some N > 0. Here and in what follows we write A < B when A, B > 0 and

A < ¢B for a suitable constant ¢ > 0. We also let A < B when A < B and B < A.
We let Z(R9) be the set of all weights on R¢ of polynomial type.

Birkhauser
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Let¢p € .7 (Rd)\O be fixed. Then the short-time Fourier transform Vg f of f €
" (R?) with respect to the window function ¢ is defined by

Vo f(x,§) = (FUf @), §) = F(fd(- —x)(E),

where (UF)(x,y) = F(y,y —x).If f € (R%), then it follows that
V¢.f('xv E) = (27T)_d/2 \/l;d f(y)¢(y — x)g_i<y!€:) dy

Let w € 2(R*), p,qg € (0,00] and ¢ € .Z(R¥)\0 be fixed. Then the mixed
Lebesgue space Lf w’)] (de ) consists of all measurable functions F on R?? such that

| Fl;re < oo. Here
(@)

IFllpa = 1 FpoliLe, where Fpo() =I1F(-, Ho(-, E)llLr (2.10)

We note that these quasi-norms might attain +oo.
The modulation space M (Rd ) is the quasi-Banach space which consist of all

f e . (R?) such that ||f||M(p;; < 00, where
||f||M(1;)q = ||V¢>f||Lgm~f)1- (2.11)

For conveniency we set M?9 = M (I;f when w = 1. We remark that the definition of

M (’;)q (R?) is independent of the choice of ¢ € . (R?)\0 and different ¢ gives rise
to equivalent quasi-norms. (See e. g. [8,9, 11, 14] for general properties of modulation

spaces).

3 Kernel Theorems

In this section we deduce suitable kernel theorems for operators between Pilipovié¢
spaces and their duals. Since the spaces under considerations can in convenient ways
be formulated in terms of Hermite series expansions, we may easily reduce ourselves
to kernel results for matrix operators, in similar ways as in e. g. [20].

We begin with the following result concerning kernel properties of matrix operators.
Here we identify linear operators on discrete sets by their matrices.

Proposition 3.1 Let 9y be weight functions on N%, k = 1,2, 9(a, ) =

D1(B)” 195 (@), and let T be a linear and continuous mapfromﬁlﬁ ](Nd') to Z[f} ](Ndz).

Then the following is true:

(1) If A € €5,(N2H0), then the map f v+ A - f from Lo(N™") to £((N) extends
umquely to a linear and continuous map from Elﬁ ](N‘l‘) to Zw ](Ndz);

(2) there is a unique element A € ZOO (N such that Tf = A - f for every
f e E[lﬂl](Ndl). Furthermore,

Birkhduser
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||T||el (Ndl)_)eoo (Nd2) = ||A||l°° . 3.1

Proof The assertion (1) follows by straight-forward estimates and is left for the reader.
(2) Evidently, for some unique (matrix)

A = (a0,p) (g pyencrtdr € LoNTD),

Tf = A- f holds for every f € £o(N). Moreover, let

Q=(fictoND: I filly, <1} and =/ € oN): If2lly, <1,

Since £o(N?) and £((N?%) are dense in Z[ﬁ ](Nd') and E[ll /9] (N2), respectively, we
obtain

||T||g' QNI €5 (NB) = sup sup [(A- f1, f2)e2]

f1€Q fr€80
= sup A~ fillgs, = sup sup laws?1(8) " 02(e)| = I Allg,,
f1e€ BeND qeN©
which gives (2). O

By the links between Hf’ﬂk](de) and Hy (R? x R?), and e{’ﬁk](Ndk) and

Zﬁﬂ(Nd2 x N41), respectively, the previous proposition immediately gives the fol-
lowing. (Cf. Remark 2.6.)

Proposition 3.2 Let v be weight functions on Nk, k = 1,2, oo, B) =
191(/3)’1192(012) and let T be a linear and continuous map from 'H[ll,l](Rd') to

[192 (Rdz) Then the following is true:

(1) IfK € H([);] (R%2 x R, then the map

f (x2 — (K (x2, -),f)) 3.2)
from Ho (Rd ) to 'H/ (Rdz) extends uniquely to a linear and continuous map from

5 (RN 10 HS (Rd );
) there is a unique element K € ’Hﬁ‘;] (Rd2 x R4 such that

Tf = (x2 > (K(x2, ). f)) (3.3)

forevery [ € H[llm(Rdl). Furthermore,
1Ty, ez, ey = 1K s, (3.4)

We now have the following kernel results.

Birkhauser
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Theorem 3.3 Let s € Ry, and let T be the linear and continuous map from Ho(R)
to Hy(R%). Then the following is true:

(1) if T is a linear and continuous map from H, (R to Hy(R%), then there is
K € Hy(R%2 x RY) such that (3.3) holds true;

(2) if T is a linear and continuous map from H (R4 to0 H;, (R%), then there is
K € H.(R® x RY) such that (3.3) holds true.

The same holds true if the Hy and H,, spaces are replaced by Ho s and H(’), ; spaces,
respectively, or by . and .’ spaces, respectively.

Theorem 3.4 Let K € Hj, (R%2 x R%), s € R, and let T be the linear and continuous
map from Ho(R) to H6(Rd2), given by (3.2). Then the following is true:

(1) if K € Hy (Rd2 X Rdl), then T extends uniquely to a linear and continuous map
from H,(R¥) to Hs(R%);

(2) ifK € H; (R% x R%), then T extends uniquely to a linear and continuous map
from Hg(RY) to H.,(R%).

The same holds true if the Hy and H., spaces are replaced by Ho s and H&S spaces,
respectively, or by . and .¥' spaces, respectively.

Proof of Theorems 3.3 and 3.4 Let p € [1, o],

1
erlel® s € Ry {0},

29}'(Ol) = 1
rld@)a, s =b,,

and o, (@) = («)". The results follow from Proposition 3.2, and the facts that
p p p
Hs = UHp,) Moy = U5, S = U 16,1
r>0 r>0 r>0
with suitable inductive limit topologies, and

/r P _ 4 _ 4
My = N Hi,y Hos = N Hp,p 7= N Hig,,
r>0 r>0 r>0

with suitable projective limit topologies. O

Evidently, the assertions on . and .’ in Theorems 3.3 and 3.4 are well-known.
For the other cases, the results are straight-forward consequences of the nuclearity of
Hy (R x R (cf. e. g. [12] or [29]).

For completeness we also write down some of the corresponding results in the
matrix case. The proofs follow by similar arguments as for the proofs of Theorems
3.4 and 3.3, and are left for the reader. Here we recall that £ o (N”l2 X Ndl) is the set
of all matrices A = (da,p) (4, g)end2+4 Such that

lag.pl < ((a, B)) ™V forevery N >0

Birkhduser
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and ffy(Ndz x N91) is the set of all such matrices such that
laa,pl S (@, BYN for some N > 0.

Theorem 3.5 Let s € R, be real and let T be the linear and continuous map from
Lo(N1) 10 €, (N®2) with matrix A € £j(N2 x N). Then the following is true:

(1) if A € £s(N®2 x N, then T extends uniquely to linear and continuous mappings
from €, (N%) 10 £;(N®);

(2) ifAel, (N% x N4, then T extends uniquely to linear and continuous mappings
from £5(N91) to €/, (N2).

(3) if T is a linear and continuous map from £, (Nd') to 4y (Ndz), then A € {; (Nd2 X
Ndl )’.

4) ide is a linear and continuous map from £s(N') to 4 (N2), then A € 2 (N2 x
\

The same holds true if €5 and their duals are replaced by £ s and their duals,
respectively, or by £ o and their duals, respectively.

4 Factorizations of Pilipovi¢ and Gelfand—Shilov Kernels, and
Pseudo-Differential Operators

In this section we deduce convenient factorization properties for operators with kernels
in Pilipovi¢ spaces.

In what follows we use the convention that if 7y is a linear and continuous operator
from Ho(R?%) to Ho (R%2),and g € Hy (R%), then Ty ® g is the linear and continuous
operator from Ho(R%) to Hy(R%+40), given by

(Th®g) : f=(Tof)®g.

In the following definition we recall that an operator 7' from Ho(RY) to H6 (RY) is
called positive semi-definite, if (Tf, f);2 > 0, forevery f € Ho(R%), and then we
write T > 0.

Definition 4.1 Letd, > d; and let T be a linear operator from H (R™) to H6 (R%),
Then T is said to be a Hermite diagonal operator if T = Ty ® g, where the Hermite
functions are eigenfunctions to 7y, and either d, = dj and g = 1, or dy > d; and g is
a Hermite function.

Moreover, if T = Ty ® g is a Hermite diagonal operator and 7j is positive semi-
definite, then T is said to be a positive semi-definite Hermite diagonal operator.

The first part of the following result can be found in [2,30] (see also [17,21] and
the references therein for an elementary proof).

Theorem 4.2 Let s € R, T be a linear and continuous operator from Ho(RY) 1o
H(’)(Rdz) with the kernel K, and let dy > min(dy, dy). Then the following is true:
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(1) Ifs = 0and K € H; (RH4)) then there are operators Ty and T, with kernels
K1 € Hy(RY Y and Ky € Hy(R2H0) respectively such that T = T o Tj.
Furthermore, if j € {1,2} is fixed and dy > dj, then T; can be chosen as a
positive semi-definte Hermite diagonal operator.

(2) If s > 0and K € Hp, s (RE2F4)Y) then there are operators Ty and T» with kernels
K| € Hos (RO and Ky € Ho (R0 respectively such that T = Ty o Ty.
Furthermore, if j € {1,2} is fixed and dy > dj, then T; can be chosen as a
positive semi-definte Hermite diagonal operator.

The corresponding result for s = b, reads:

Theorem 4.3 Let o > 0, T be a linear and continuous operator from Ho(R%) to
H{)(Rdz) with the kernel K. Then the following is true.

(1) IfK € Hy, (Rd2+d1), then there are operators Ty, T\ and T, with kernels Ko €
HypRETY Ky € Hy, (RUITN) and Ky € Hy,, (RETD), respectively, and
T = T, o Ty o Ty. Furthermore, T and T, can be chosen as positive semi-definite
Hermite diagonal operators;

(2) If K € Hop, (Rd2+d1), then there are operators Ty, T1 and T, with kernels Ko €
Ho,12(RETN), Ky € Hop,, RUTNY) and Ky € Hop,, RE2FDR), respectively,
and T = T, o Ty o Ty. Furthermore, Ty and T, can be chosen as positive semi-
definite Hermite diagonal operators.

Remark 4.4 An operator with kernel in H,(R??) is sometimes called a regularizing
operator with respect to H, (R?), because it extends uniquely to a continuous map from
(the large space) H, (R9) into (the small space) H; (R?). Analogously, an operator with
kernel in Ho s (R??) (. (R?)) is sometimes called a regularizing operator with respect
to Ho,s(RY) (L (R?)).

Proof of Theorem 4.2 First we assume thatdy = d, and start to prove (1). Let 4 o (x)
be the Hermite function on R? of order & € N¢. Then K posseses the expansion

K,y = Y Y tapharadha p0y), 4.1)

aeN®2 BeN‘I

where the coefficients ay, g satisfies

1 1
sup |ag ge"191= 2| < o0, (4.2)
ap

for some r > 0.
Now let z € R%, and

Koa(x,2) = Y Y baogha«x)ha g(2),

aeN®2 BeN‘I
4.3)
Ko1(z,y) = Y capha;a@ha p(y),
o, BeN
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where

1 T
ba,ﬁ = aa,ﬂeflﬂlzs and Cap = 50,’/36_7“1'2‘?.

Here 8, g is the Kronecker delta. Then it follows that

/ Koa(x,2)Koa(z. ) dz= Y Y uphda(¥ha p(y) = K(x, ).

aeN% BeNd

Hence, if T is the operator with kernel Ko ;, j = 1,2, then T = T, 0 T;. Furthermore,

L 1
r(la 25 +]B] 2

11
sup |by, ge2 11> TPI2) | < sup ay ge )| < 00

a,f o, B

and

1 1 1 1
r 2s 25 — |25 Liw|2s
Sup |cq,ge 10915 HBIZ) | = qup o= H101™ 51017 | < o,

sup |
avﬂ o

This implies that Ko | € Hs(RY79) and Ko, € H;(R2F), and (1) follows with
K1 = Ko,1 and K7 = Ky 2, in the case dy = d;.

In order to prove (2), we assume that K € Ho g (R%2+d1y and we let aq,p be the
same as the above. Then (4.2) holds for any r > 0, which implies that if » > 0 is an
integer, then

1 1
O, = sup{ |B]; lag.p| > e 2FDWIZFBIZ) for some o € N2} (4.4)

is finite.
We let

I ={BeN"; |8 <O +1),

and define inductively
Li={BeNNL1; Bl <0;+j) j=2
Then

IjNnly =9 when j#k, and Ulijd‘,
j=0

and by the definitions it follows that /; is a finite set for every j.
We also let Ko 1 and Ko 2 be given by (4.3), where, if B € [},

! 1
i|B|2s 18175
baz’ﬁ = aaz,ﬂe”ﬁ\ and CC(],/S = aalaﬁe J1Bl ,
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when a1 € N4 ap € N9 If T} is the operator with kernel Ko ¢ for £ = 1, 2, then it
follows that 7, o 77 = T. Furthermore, if » > 0, then we have

1 1
sup |ba,ﬁ€r(‘a|§+|ﬁ|§)| < Ji+ Jp,
a.p

where

11
Ji = sup sup sup |by ge %1% FIEIZ)| 4.5)
jsr+l1 o Bel;

and

11
Jo = sup sup sup |ba,lger(|a‘2s+|ﬂ|2“)|. (4.6)
j>r+l1 a Bel;

Since only finite numbers of § is involved in the suprema in (4.5), it follows from
(4.2) and the definition of b, g that J; is finite.
For J, we have

! i
Jo = sup sup sup |ag ge’ %P TCFDIBIZ

j>r+l1 « Bel;
4191 et
< sup sup sup |e” 2 UIZ HIBIZ) rlal = +0+DIBIZ |
j>r+1 « Bel;

o0,

where the first inequality follows from (4.4). Hence

1 1
Pl 25 +1B] 28

sup |bg, ge )| < 00

a’/B
for every r > 0, which implies that Ko 2 € Ho s (R%2tdry,

If we now replace by, g with ¢y, g in the definition of J; and J», it follows by similar
arguments that both J; and J, are finite, also in this case. This gives

| 1
25 2s
Sup|Ca,/36r(|a‘ s+ Bl A)| < 00

a.f

for every r > 0. Hence K| € Ho,s(Rd1 +diy and (2) follows in the case dy = d;.
Next assume that dy > di, and let d = dy — di > 1. Then we set

K1(z0,y) = Ko,1(z1, Y)ha,0(z) and Ki(x,z0) = Ko2(x, 21)h4,0(2),

where Ky, ; are the same as in the first part of the proofs, z| € R% and 7 € RY, giving
that zo = (z1, z) € R%. We get

/d K> (x, z0)K1(z0, y) dzo =/1 Ko (x,z1)Ko,1(z1, ¥)dz1 = K(x, y).
R% R
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The assertion (1) now follows in the case dy > d; from the implications
Ko € HyRNT)  — K| e H(RDT

and
Koz € HyR®T)  — K, € H(RE2T0)

Since the same implications hold after the H; spaces have been replaced by Ho ¢
spaces, the assertion (2) also follows in the case dy > dj, and the theorem follows in
the case dy > d.

It remains to prove the result in the case dy > d». By taking the adjoint, the roles
of j = 1 and j = 2 are interchanged, and the result follows when dy > d> as well.
The proof is complete. O

Proof of Theorem 4.3 (1) We have

K,y = Y Y aaphara®ha p0y), (4.7)

aeN2 BeNdI
where

Sup |ag, p (1127 R=1IHED| < o0
o.p

for some R > 1.
Letz; € R% , and

KoGa,z0)= Y Y aoapha.a(z2)ha p1), (4.8)
aeN% BeN9
KiGuy)= Y. Y arwpha .a@)hap0) (4.9)
aeN4 BeN‘I
and
Kyx.z)= Y Y avaphara®)ha,p2). (4.10)
aeN% BeN%
where
e — ()58, R NG =12
aja,p = (o)) 27848 , a,BeNY, j=1,2,
and
A0,0.p = dap (a1 1) 27 R=21ITHBD, a e N2 g eNd,

Then it follows that

// K> (x, 22)Ko(22, 21)K1(z21, ¥) dzodzy = K (x, y).
Rd2+d1
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Hence, if T; is the operator with kernel K;, j = 0,1,2,then T = T, o Ty o T7.
Furthermore, the kernels lie in the claimed spaces since

sup |ajap(@!B)ir RICHAD| < oo o peNt j=1,2,
ap

and if 0 < ¢ < log R, then

sup lag.q pe D | < sup |R™IXIHIED el HIBD | < o,
a,p a,B

Next we prove (2). Let aq g be as in (4.7). Then

sup |ag. s (! )2 RITIAI| < o0
o p

for every R > 1, which implies that

O1., = sup{|Bl; laapl = (n + 1)~6(al+18D (4181) =3 for some a € N }

and
@pp = sup{ |a|; lag.pl > (n + 1)~0«HBD (4181~ 2 for some p € NI }

are finite for every n > 1.
We let

Iin={y eNU; |yl <01 +1),
and define inductively

Ij,m ={y GNd_/\Ij,mfl; 4 §®j,m +m}, m>=2, j=1,2.
Then

IimNIjy=% when m#n, and |J I, =N%.

m>1

and by the definitions it follows that /; ,, is a finite set for every m.
We also let K, j =0, 1,2 be given by (4.8)—(4.10), where

jap = (@) 7 8 gm~I*TB weljm j=1.2

and
2laf 2|B]
2 My,

1
a0,0,p = aa,ﬂ(a!ﬁ!)%m o€ y,, B e Iy -
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If T is the operator with kernel K ; for j = 0, 1, 2, thenitfollows that 7,0 Too 71 =T

and Ty, T, are positive semi-definite Hermite diagonal operators. The result therefore
follows if we prove

|ajapl S r\aﬂﬁ\(agﬂg)*%, Vr>0, j=1,2, and

4.11)
lao,e.pl S e (el +1BD Vr >0,
and since
U Ijm and U DLy X Iim,
m<R+1 m1+my<2R
are finite sets and R > 1 is arbitrary, it suffices to prove
sup sup (@B RIPla; g <00, j=1,2, (4.12)
m>R+1a€cl;,
and
sup sup  sup |R"HPlay, 5] <00, k=1,2,3, (4.13)
(my,ma)eMy a€lr my BEL
where
My ={(mi,mp) €Z%; m >2R -1, my=1},
My ={(mi.my) €Zi:my>2R—1,m =1}
and
M3 = {(my,my) € Z2; my +mp > 2R, my,my > 2},
We have

1
sup  sup [(a!B)¥ RIHPla; g
m>R+1aeljy,

= sup sup |8a,5R|°‘+’5‘m_|a+ﬁ‘| <oo, j=1,2,
m>R+1a,B€lj,

and (4.12) follows.
Next we prove (4.13), and start with the case k = 1. Then 8 € I ;,,, gives

o 5l < m 71D @181y 57
which, by the fact that my = 1, implies

L2 —4(|a]+
|a0.0.p] = laa gl (@B 2 m’ Pl < HFIPD,
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Hence,

sup sup sup [RIMHPlag, g < sup  RIHBL, HFIAD

(my,mp)eMi ael ISGIl,ml mi>R>1

oo,

and (4.13) follows in the case k = 1.

In the same way, (4.13) follows in the case k = 2.

Next we prove (4.13) in the case k = 3. By the definitions it follows thatif o € I j,,
then

_ 1
lag.p] < my "D @1g =35 v g e N,
and if B € Iy 5, then
law.pl < m7 D @B =3 v e N

Hence,if « € I ,,, and B € Iy ,, the geometric mean of the right-hand sides of
the inequalities becomes

a1 = i) 0D @1y
giving that
lao.pl < (mima)~(ITIED,
This gives
sup sup  sup |R|a‘+|ﬁ|a0,a,ﬁ|
(m1,m2)EM3 a€ly y BEITm,

< sup sup  sup Rla\+|ﬂ|(mlm2)*(\al+|/3\) < o0,
(my,ma)eM3 a€lr my BEL m

and (4.13), and thereby (4.11) follows. O

Remark 4.5 Let o > 0 and T > 0 be a Hermite diagonal operator on L?(R?) with
kernel K in Hy,_ . By the proof of Theorem 4.3, there are Hermite diagonal operators
Ty >0and T, > Oon L2(Rd) with kernels K| and K such that

Ki € Ho, R*), KreHipR*) and T=TioTh =TroTi.

In fact, if K is given by (4.7) with dj = d» = d, it suffices to let K| and K; be given
by (4.9) and (4.10), where

1 1
arap = R*Plag g)? (@)% and argp = R Pl(ag )"/ ? (@!p)*

with R > 1 sufficiently large.

Remark 4.6 From the construction of K and K3 in the proofs of Theorems 4.2 and
4.3, it follows that it is not so difficult to use numerical methods for approximations
of candidates to K1 and K>. In fact, K1 and K, are formed explicitly by the elements
of the matrix for 7', when the Hermite functions are used as basis for ., H, and Hy .

Birkhduser



J Fourier Anal Appl

We finish the section by presenting some consequences in the calculus of pseudo-
differential operators. The following result is an immediate consequence of Theorem
4.2 and the fact that the map a — K4 , is continuous and bijective on Sy, (R2d), and
on X, (R2d), for every s1 > % and 5o > %

Theorem 4.7 Let A be a real d x d-matrix, s1 > % and let so > % Then the following
is true:

(1) ifa € Hy, (de), then there are ay, ap € Hy, (de) such that a = a\#a>;
(2) ifa € Hos, (R24), then there are ay, ar € Ho.s, (R24Y such that a = a\# saz.

Remark 4.8 Extensions of Theorem 4.7 to the case where s; and s, are allowed to
be smaller than % is not so smooth, because those Pilipovi¢ spaces which are not
Gelfand-Shilov spaces, are not invariant under dilations (cf. [26, Proposition 7.4]).
However, if A is a real d x d matrix and a € .¥ (R2d) is such that the kernel K4 ,
belongs to H, (R?¢), then we may apply Theorem 4.2 in this situation as well.
Therefore, let G4 g (R*) (go,A,s(RZd)) be the set of all a € ./(R??) such that
Kpaa € HiRY™) (Kpy € Hos(R¥)). If a € Gay(R¥) (a € Go.as(R™)), then

there are elements aj, ay € QA,S(RM) (a1, ar € QOYA,S(RM)) such that a = a1#4az.

5 Singular Value Estimates and Schatten—von Neumann Properties
for Operators with Pilipovi¢ Kernels

In this section we use Theorem 4.2 to obtain estimates of the form (1.3) for operators
T with kernels in Pilipovi¢ spaces of order s, provided &, and %, stay between
the given Pilipovi¢ space and its dual. In particular it follows that any such operator
belongs to any Schatten—von Neumann class.

In the following result we show that the singular values for operators Tgx with
kernels K in Pilipovié¢ spaces or Schwartz spaces, obey estimates of the form

o1 (Tx. B1, Br) S (5.1)
o1 (Tx, B1, %) < R* (k)™ %7 (5.2)

or
o1 (Tx, B1, %) Sk, (5.3)

Here V; < V, means that the topological space V; is continuously embedded in the
topological space V5.

Theorem 5.1 Let p € (0,00], s > 0 be real, 0 > 0 and let d = min(dy, dy). Then
the following is true:

(1) if K € Hy(R2TN)Y and By and P, are quasi-Banach spaces such that B —
H, (R and Hg(R%2) < B>, then (5.1) holds for some r > 0. In particular,
Tk € Ip(%1, $);
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(2) ifK € Hos (REHAY) and By and P> are quasi-Banach spaces such that 5, —
HE)) S(Rdl) and Hy, s(R2Y < B, then (5.1) holds for everyr > 0. In particular,
Tx € I,(%1, %),
(3) ifK € Hy, (R4 and 2By and P> are quasi-Banach spaces such that B, —
H 2 R and H; 2 (R%2) < B>, then (5.2) holds for some R > 0. In particular,
TK € jp(%ls %2)r
4) ifK € Hop, (RN and By and P, are quasi-Banach spaces such that 8, —
0.1 /Z(Rdl) and Ho,12(R%2) < %, then (5.2) holds for every R > 0. In
particular, Ty € I,(B, $B);
(5) if K € S (R2YN) and By and B> are quasi-Banach spaces such that ) —
L' (RYY and . (R2) — B>, then (5.3) holds for every N > 0. In particular,
Tx € Sy(%1, %>).

We observe that Theorem 5.1 (5) should be available in the literature.

We need some preparations for the proof. First we recall thatif %, j =0, 1, 2, are
quasi-Banach spaces and T are linear and continuous mappings from %;_; to %;,
Jj = 1,2, then there is a constant C such that

0k (Ta o Ti, $o, $2) < CIT\ || 5y—2,0k(T2, $1, $2) 5.4
and
0(T2 0Ty, Bo, %2) < ClT2ll %, 2,0k(T1, Bo, $1). (5.5

In fact, if €2;;(k) is the set of all linear operators from 2; to Z; with rank at most
k — 1, then

0 (ThoTy, By, ) = inf Tob o T — S|4 v
k(T2 o T, By, %) Segoyz(k)llzol | ,— 2,

< inf TooTy — T 0Tyl —s 4
pdnf I700 2

S T2z -2, <T eglf © 171 — Toll%ﬁ%)
0€£20,1

= 1121l %, 2,0k (Th, Bo, B1).
which gives (5.5). In the same way (5.4) is obtained. (See also [22]).

Proof of Theorem 5.1 We only prove (1), (3) and (5). The assertions (2) and (4) follow
by similar arguments and are left for the reader.
(1) By Theorem 4.2 we get

Tx =Tk, 0Tk, o Tk,, (5.6)
where the kernels Ky, K> and K3 of the operators Tk,, Tk, and Tk, belong to

Hy (ROt H (R and H (RE2T2), respectively, and Tk, is a positive semi-
definite Hermite diagonal operator.
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It follows that Tk, is continuous from 2 to L2(R%), and Tk, is continuous from
LZ(RdZ) to %,. Hence, by (5.4) and (5.5) it suffices to prove that, if T = Tx,, then

1
or = ox (T, L>(RY), L2 (R®)) < Ce™K*" (5.7)

for some positive constants ¢ and C.
By the constructions we have, setting dy = |d| — d3|,

Ka(x,y) = Kop(x, yDh(y2),  y=(1.y2), x.y1€R’  y eRY,
when d| > d;, and
Ko(x,y) = h(x1)Ko2(x2, y), x=(x1,x2), x3,yeR)  x eR

when dp > d|, where

Koa(x,y) = Y caha(ha(y), x,y €R?, (5.8)
aeNd
with
1
0<cy Se > (5.9)

for some constant » > 0. Here £ is a fixed Hermite function on R% when dy > 0,
and & = 1 otherwise. We observe that (5.8) describes the spectral decomposition of
Tk, ,,with {hg},cndo as the orthonormal basis of eigenfunctions, and with eigenvalues
{ca}yendo - Furthermore, it is evident that

0 (Tky,, L*(RY), L*(RY)) = 04 (Tk,, L*(RD), L2 (R®)), &k > 1.

Hence it suffices to prove (5.7) in the case d] = d, = d.

Let My 4 be the number of all multi-indices o € N such that |«| < N. Then
My 4 = (N)“. Since the singular values are the eigenvalues of Tk, in non-increasing
order, (5.9) gives

1
ok(Tk,) Se™V>

for some r > 0 when My_1 4 < k < My 4. For such k we also have k =< N4, since
(N — 1)¥ < N¢. By combining these estimates we get

1 1
o1 (Tg) S e N S emroka®
for some constant rg. This gives (5.1).
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(3) By Theorem 4.3 and Remark 4.5, we get
Tx =Tk, 0 Tk, 0 Ty o Tk, 0 Tky s (5.10)
where the corresponding kernels satisfy
Ko, € HipRYGF) K€ Hy,, RUT), and Ko € HypR2T),
Jj = 1, 2. Furthermore, all kernels except Ky to the operators in (5.10) are positive
semi-definite Hermite diagonal operators.

It follows that

Txo, : %1 — L*R™M), Tk, : L*RY) — L*(R®)
and Tx,, : L*(R®) — %,

are continuous. By similar arguments as in the proof of (1), we get

_ 1
o1 (Tg;, L*RY), L*RY)) S REGkY 7%, j=1.2.

Hence,

1

o1 (Tx, By, o) SRR %, j=1,2,

in view of (5.4)—(5.5). This gives (3).
(5) By [2,17,21,28,30] we get

Tx = Tk, 0 Tk, o Tk, (5.11)
where the kernels K, K> and K3 of the operators Tk,, Tk, and Tk, belong to
S RO+ (R and 7 (R4 respectively. Furthermore, we may assume
that Tk, is a positive semi-definite Hermite diagonal operator (cf. e. g. [28]).

It follows that T, is continuous from 2 to LZ(R”I1 ), and Tk, is continuous from

L%(R%) to %,. Hence, by (5.4) and (5.5) it suffices to prove that for every N > 0
there is a constant C > 0 such that

ok = 01 (Tky,. L*RY), L*(RY)) < Ck™V. (5.12)
where Ko is the same as in the proof of (1). By the construction, ¢, in (5.8) fulfills
0<ca S f)™™

~

for every N > 0, and by similar arguments as in the proof of (1) we get
o Sk G
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for every N, and (5) follows.
Finally, by (5.1)—(5.3) it also follows that {o'} (T, %, %)} belongs to £7 for every
p > 0. This gives the second parts of (1)—(5). O

6 Discrete Characterizations of Kernels to Smoothing Operators

In this section we show that any operators with kernels in Gelfand—Shilov, Pilipovié¢
or Schwartz spaces can be characterized by convenient expansions of the form

o0
K=Y 0fij®fj ()2 SRy ©.1)
j=1
for some
{fe )52 S LPR%), k=1,2. 6.2)

In fact, the following result is an extension of Lemma 3.2 in [24].

Theorem 6.1 Let p € [1,00] and T be a linear and continuous operator from
Ho(RM) 10 H (R%) with kernel K. Then the following is true:

(1) ifK e & (R x R, then (6.1) holds for some orthogonal sequences in (6.2)
such that

sup (jNAj) < o0 and sup (jNHanﬂfk,j”Lp(de)) < 00 (6.3)
j=1 j>1

fork=1,2,a,8 € N4 and every N > Q.
() if K € C®R% x RY) satisfies (6.1) and (6.3) for k = 1,2 and every N > 1,
then K € .7(R% x R9).

The corresponding characterizations of operators with Pilipovi¢ kernels are given
in the following theorem. Here recall that the harmonic oscillator is given by H =
[x|2— A, x € RY.

Theorem 6.2 Let p € [1,00], s > 0, d = min(d,dz) and T be a linear and
continuous operator from Ho(R%) to H (R%) with kernel K. Then the following is
true:

(1) if K € HgR® x RN (K € Ho (R2 x RM)), then (6.1) holds for some
orthogonal sequences in (6.2) such that

b
ﬁ el s ||Hka,j||Lp(de)
sup (¢"/*" %;) < oo and sup RNV
i1 hV(N1)>s

6.4)

fork =1,2and someh > 0andr > 0 (every h > 0 andr > 0), where the latter
supremum is taken over all j > 0 and N > 0;
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() if K € C®R% x RY) satisfies (6.1) and (6.4) for k = 1,2 and some r > 0
(everyr > 0), then K € Hy(R® x RY) (K € Hos(R® x R%)),

We need some preparations for the proof. First we observe that Hﬁ?] possesses the
expected interpolation properties. (Cf. [3].)

Lemma 6.3 Let0 € [0, 1], ¥, 91 and ¥, be weights on N¢, andlet p, p1, p2 € [1, 00]
be such that

1 1-6 6 1
= +— and ¥ =7,
p D1 P2

-0 40
192 .
Then
(Hﬁ;l](Rd)’ Hf)ﬁzz](Rd))[G] = Hﬁ,](Rd).

Proof The result follows from the fact that the map

{calgend P> Y Caha

aeNd

is bijective and isometric from Zf’ﬂ](Nd) to Hf;](Rd ), and that

r dy pP d p d
(e, N, ef3 (N )){9] — 00 (N%.

]

We also need the following extension of [27, Proposition 5.5] on powers of non-
negative self-adjoint operators on L*(R?).

Proposition 6.4 Let s > 0, t > 0 and let T be a self-adjoint and non-negative
operator on L2(Rd) with kernel K in H; (Rd X Rd). Then the following is true:

(1) the kernel of T' belongs to H (RY x RY);
(2) T! is continuous from H, (R?) 10 Hy(RY).

The same holds true if the Hy and H., spaces are replaced by Ho s and H(’), ; Spaces,
respectively, or by . and .’ spaces, respectively.

Proof We only prove the result when K € H,(R¢ x R?). The other cases follow by

similar arguments and are left for the reader.
Let

Q={ze€eC;0<Re(z) <1}

and Ty(z) = Tz_when z € Q. Then the map z — T (z) with values in .Z(LZ(Rd)) is
continuous on £2 and analytic on 2.
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Furthermore, by writing T% = T* o T? when z = x + iy, and using that 7% is
bounded on L2(Rd) when y € R, it follows from the assumptions that

sup |70Vl 22Rd)—2@®RY = 1,
yeR

sup I To(1 + i)l 2 gty 72, iy < OO
yeR o]

and

sup ||T0(Z)||L2(Rd)—>L2(Rd) < sup ”TXHLZ(Rd)_)LZ(Rd)
2eQ 0=<x<l

1
for some r > 0, where ¥, (o) = e"1** .
It now follows from Lemma 6.3 and Calderon-Lion’s interpolation theorem (cf.
Theorem 1X.20 in [20]) that T" is continuous from L*(R?) to M, (R?). Duality
gives that

. 12md 2 d
T' : L*(RY) — Hip, (RY)
and
T' . My, R — L*(RY)
are continuous. Hence, by interpolation we obtain that
.92

d 2 d
n/zl(R ) — H[l?rx/zl(R )

is continuous (cf. Remark 2.6), and the result follows from

HyRY) = | JHfy RY) and H(R?) = () Hfy 9, (RD).

r>0 r>0
O

We also need the following characterization of Pilipovi¢ kernels. Here recall that
2 (R?) is the set of polynomially moderated weights on R? (cf. Sect. 2).

Lemma 6.5 Let p,q € (0, 00], 0 € Z(R?*2 x R¥1), 5 > 0, K € Hy(R% x R%),
Hy = x> = Ay, and Hy=|x2> — Ay, x=(x2,x1) € R? x RY,

Also let H = H» + Hj be the Harmonic oscillator on R x R Then the following
conditions are equivalent:

(1) K € Hy(R®2 x R (K € Ho (R x RY));
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(2) for some h > 0 (for every h > 0) it holds
IHYK 2 S RV (ND¥, N = 0; (6.5)

(3) for some h > 0 (for every h > 0) it holds
IHY Hy 2K |l 2 S VN (NGIND, Ny Ny = 0; (6.6)

(4) for some h > 0 (for every h > 0) it holds

1" HzNzKIIM;’g <ENMTN(NINGYP ., Ny > Nog, Na = Noop.  (6.7)

Proof The assertion (1) and (2) are equivalent in view of [26, Proposition 5.1]. Next
we prove that (2) and (3) are equivalent. Assume that (6.5) holds. Since K € H; (R% x
R%), K has a formal Hermite series expansions

K= 3" D calK)ho, ®ha,

aleNdl DQEN“"’2

where the Hermite coefficients satisfy

1
1 brs
lea(K) S €719 = (e, @) € N2 x N,
for some (every) h > 0. By Parseval’s inequality we obtain
Ni g N
IH " Hy? K|l 2

1
< Y D Qlal+d)M Qlesl +d)NVe i <1y,

a1 eN9 ayeN©2
where
Ljy;|2s
C Lg%
=) Qlajl+dMe 0
ojeN

with kg = ch, for some constant ¢ > 0 which only depends on s.
By Lemma 5.7 in [26] and its proof we get

I < (B(4sho)*)Ne (N < hNe(NHS

for some 4 > 0 and a combination of these estimates shows that (2) implies (3).
Assume instead that (6.6) holds. Then

N
N _
IHNK |2 = I(Hy + H)VK |2 < (k)nHlN “Hy K| 12
k=0
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N N

<hV Y <1]:[)((N — D> < kNN Y <]Z) = 2h)N (N)*,

k= k=0

and it follows that (3) implies (2).
It remains to prove the equivalence between (4) and (1)—(3). First we show that

IHY Kl yypa S BV (NDZ, N = No (6.8)

is independent on Ny and w when p, g > 1. If (6.8) is true for Ng = 0, then it is also
true for Ng > 0.If0 < N < Ny, N = Ng— N > 0 and (6.8) holds for some Ny > 0,
then by the fact that

HY M R? xR — MPT(R® x RD), (6.9)
with
o (x1, £1, %2, &) = C(1+ x1 > + 1611V, (6.10)

is a homeomorphism (cf. e. g. [23, Theorem 3.10]), it follows that
N N
IHY K |l yyra S INHOK [ ggpa S NH K| ypa < 00,
(w) (@/vn)) ()

and (6.8) holds for Ny = 0 as well. This shows that (6.8) is independent of Ny > 0
when p, g > 1.
Since w € P(R*2 x R%1), there exists an integer No > 0 such that

1/UN() S w f, UNy

and then
1Kl pra S UK pgra S UK e (6.11)
(l/vNO) (®) (Wng)

Hence the stated invariance follows if we prove that (6.8) holds for w = vy, if it is
true for w = 1/vy,.

Therefore, assume that (6.8) holds for w = 1/vn,. If N > 2N, then the bijectivity
of (6.9) gives
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IHNK | \ypa IHN PN v
(UNO) (1/ UNo )

hN(N!)2S ~ hN(N!)zs

” HN+2N()K ”MP .

N + 2Ny 2 (/o)
— h2N() 2N ’ 2s
< 2Ny ) (N 3% (N 1 28g) )%

N+2N
2s ”H] OK”MIW
1/vng) < (1/vng)

g (N +2N >
T\ 2Ng ) RNERNo((N 4+ 2Ng))Z Y p NNy 4 aNgy s

N+2N
| H, 0K||Mpc1

where h| = 4Y This shows that (6.8) is independent of w in the case p, g > 1.

By repeating these arguments, it follows that (6.7) is independent of Ny 1, No 2, ®
and p, g € [1, oo]. For general p, g € (0, oo], the invariance of (6.7) with respect to
No.1, No.2, o, p and ¢, is now a consequence of the embeddings

M2, RE x RM) € MUA(R® x RY) € M RE x RY)

when

di +d>
> —
min(p, q)

(seee.g. [11]).
The equivalence bewteen (3) and (4) now follows from these invariance properties
and the fact that L? = M2, and the result follows.

In the next proof we let ONy be the set of all orthonormal sequences in L2(RY).

Proof of Theorems 6.1 and 6.2 We only prove Theorem 6.2 in the Roumieu case. The
other cases (Theorem 6.2 in the Beurling case, and Theorem 6.1) follow by similar
arguments and are left for the reader.

In the sequel we employ the same notation used in the proof of Lemma 6.5

(1) Assume that K € H (R x R%). By polar decomposition we have

o0
K (x, x1) =Y ho.&(x2) f5 (1), x1 €R", x; eR®,
j=1

where Ao ; > 0 are the singular values of T, {f]}Oo | € ONy, and {gj}Oo | € ONg,.

Now let K1 and K, be thekernels of T} = (T*oT) 7 and T =(ToT*) 1 , respectively.
Then

Ki(x2,x1) = Z\/)LO,j fi(x2) fi(x1), x1,x € R™

j=1

Birkhduser



J Fourier Anal Appl

and
o0
K> (x2,x1) = Z\/Ao,j gi(x2)gj(x1), x1,x2 € R%,
j=1

By Theorem 5.1 we get
1
hoj S eI (6.12)

for some constant r > 0.
Since K| € H; (Rd1 X Rdl), Lemma 6.5 gives

o
S Vo IHN £, = 1HY HY Ky < |HY HY Kyl S BN (VDY
j=1

where || - ||y is the trace-class norm. Here we have identified operators with their
kernels, and used the fact that operators with kernels in M 11 (de) are of trace-class
(cf. [15,26]). Hence,

1
ho JMIHY fill 2 S hg (ND?,
1
where hy = +/h. Hence, if fij= Aé)jfj we obtain
1z 'l
HHY f1 2 S A%y (NDP S e hg (N)>

1
for some r > 0. By considering K> instead of Ky and letting f> ; = A 8 the same
computations give

1
N —rj 205 PN N\ 2
IH™ fojll2 S e/ hg (ND™

for some r > 0 and hg > 0.

1
The assertion now follows if we let 1; = A i
(2) By the assumptions and Cauchy-Schwartz inequality, we obtain

Ni N Ni N
IH " Hy* K2 = HHI 'H,” (Z)‘jfl,j ®f2’j)‘

~ (e

= (//Rd2+41 <Z)\3)<Z|H]N1JCIJ ®H2sz2,j|2) dxldx2>l/2

L2

, e P2 12
Z)»jHl 1, @ Hy” fa,j| dxidx;
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N N-

= 3 (O NEY A 12

< RNV (NN DB T e < NN (v ),

Hence, K € Hs(R% x R%) in view of Lemma 6.5. O
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