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Abstract. This paper deals with the extremely fascinating area of “fus-
ing” the outputs of sensors without any knowledge of the ground truth. In
an earlier paper, the present authors had recently pioneered a solution,
by mapping it onto the fascinating paradox of trying to identify stochastic
liars without any additional information about the truth. Even though
that work was significant, it was constrained by the model in which we
are living in a world where “the truth prevails over lying”. Couched in
the terminology of Learning Automata (LA), this corresponds to the
Environment (Since the Environment is treated as an entity in its own
right, we choose to capitalize it, rather than refer to it as an “environ-
ment”, i.e., as an abstract concept.) being “Stochastically Informative”.
However, as explained in the paper, solving the problem under the con-
dition that the Environment is “Stochastically Deceptive”, as opposed
to informative, is far from trivial. In this paper, we provide a solution
to the problem where the Environment is deceptive (We are not aware
of any other solution to this problem (within this setting), and so we
believe that our solution is both pioneering and novel.), i.e., when we are
living in a world where “lying prevails over the truth”.

Keywords: Sensor fusion · Unreliable sensors · Learning automata ·
Learning from Stochastic Liars

1 Introduction

We consider the problem of fusing the information obtained from a set of sensors
where the knowledge of the “Ground Truth” is unavailable. However, unlike
the problem that has been traditionally considered (i.e., whether the “Ground
Truth” is available or not), we consider the intrinsically more complex model
in which the sensors could be stochastically “truth telling” or “deceptive”, and
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where the behavior of the sensor is not known a priori. This problem is, in
and of itself, non-trivial, and as in the case when one deals with Stochastic
Teachers and Stochastic Liars, there is no universal guaranteed solution to such
puzzles. To place the field of sensor fusion in the right perspective, we mention
that the aggregation of data obtained from sensors enables us to procure more
reliable information about the underlying process, as opposed to utilizing the raw
sensor information from the individual sensors themselves. However, the quality
of the aggregated information is intricately dependent on the reliability of the
individual sensors. In fact, understandably, unreliable sensors will tend to report
erroneous values of the ground truth, and thus degrade the quality of the fused
information. Finding strategies to identify unreliable sensors can assist in having
a counter-effect on their respective detrimental influences on the fusion process,
and this has been a focal concern in the literature. The body of the related work
operate with the assumption of direct knowledge of the ground truth to assess
the reliability of the sensors, or indirect knowledge using the concept of sensor
accuracy that is deduced from historical data. The existing literature generally
assumes that the reliability of the individual sensors can be inferred, whence one
can invoke an efficient scheme to fuse their respective readings. Although the task
of resolving this problem without the knowledge of the ground truth is apparently
impossible, the authors of [4,5] (which are also the present authors) previously
obtained conclusive results by utilizing the “agreement” between the sensors
themselves and a set of Linear Reward-Inaction (LRI) Learning Automata (LA)
associated with the sensors. The results of [4,5] were constrained by the model
in which “the truth prevails over lying”, which, in the setting of LA corresponds
to the Environment being “Stochastically Informative”. Informally speaking,
this is equivalent to the scenario where the proportion of truth-tellers in the
society exceeds the proportion of liars. This paper considers the scenario in
which the Environment is “Stochastically Deceptive”, where “lying prevails over
the truth”, or if you like, where the proportion of liars exceeds the proportion
of truth-tellers. This is not an unrealistic setting. Indeed, in cases of nuclear
meltdowns, the majority of the sensors in the vicinity of the meltdown can be
considered faulty and unreliable1.

1.1 Survey of the Field

A myriad of pieces of literature can be cited that concentrate on using majority
voting to faulty sensor fusion. The premise for invoking majority voting is that
the decision of the group is better than the decision of the individual sensor.

The theory of sensor fusion has also found wide deployment in the field
of “reputation systems” where users who want to promote a particular prod-
uct or service can flood the domain (i.e., the social network) with sympathetic
votes, while those who want to get a competitive edge over a specific product

1 This being said, the content and goal of this paper is to present a solution within
a theoretical and conceptual framework. Thus, we will not embark on the study of
any real-life application domains here.
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or service can “badmouth” it unfairly. Thus, although these systems can offer
generic recommendations by aggregating user-provided opinions, unfair ratings
may degrade the trustworthiness of such systems. This problem, of separating
“fair” and “unfair” agents for a specific service, is called the Agent-Type Parti-
tioning Problem (ATPP ). Determining ways to solve the (ATPP ) [3] and thus
counter the detrimental influence of unreliable agents on a Reputation System,
has been a focal concern of a number of very interesting studies.

The analogous sensor-related problem, of separating reliable and unreliable
sensors, is called the Sensor-Type Partitioning Problem (STPP ). We shall solve
it in stochastically Deceptive Environments. Put in a nutshell, in this paper, we
propose to solve the above-mentioned paradoxical STTP using tools provided
by LA, which have proven powerful potential in efficiently and quickly learn-
ing the optimal action when operating in unknown stochastic Environments. It
adaptively, and in an on-line manner, gradually learns the identity and charac-
teristics of the sensors that are reliable and those that are unreliable. In addition,
we will provide two approaches for fusing the sensor readings which leverage the
convergence result of our LA-based partitioning.

A recent work by the authors of the current paper, that was alluded to ear-
lier, is found in [4,5]. This paper pioneered a solution by which it is feasible to
solve the STTP problem of identifying which sensors are unreliable without any
knowledge of the ground truth, a claim that is counter-intuitive. The essence of
the approach presented in [4,5] stems from the simple intuition that the “agree-
ment” between the sensors themselves can give invaluable knowledge about their
respective reliabilities. In a stochastic Environment where errors can take place
according to some unknown underlying stochastic process, those sensors that
tend to deviate from the decision of the majority are more likely to be unre-
liable than those that adhere to the decision of the majority. Such simple and
intuitive remark works under the premise that the decision of the majority has
some high likelihood of revealing the truth [4,5]. The main assumption of our
legacy work was the fact that “the truth prevails over lying” which is translated
into a condition that can be seen as an extension of the simple majority voting.
In fact, the reader can observe in [4,5] that if the Environment is deterministic,
i.e., the reliable sensors are deterministic (always report the ground truth with
probability 1) and the unreliable sensors are deterministic too (always misreport
the ground truth with probability 1), then the mild condition of the “the truth
prevails over lying” translates to the simple and well-know majority vote in the
setting that the number of reliable sensors forms the majority. Stochastically,
the setting in which “truth prevails over lying” is tantamount to having more
stochastically reliable sensors that stochastically unreliable ones.

In this paper, we consider a natural but non-obvious scenario where “lying
prevails over the truth”. Alluding to the terminology of LA (and more partic-
ularly the theory of the SPL [2]), such an Environment can be characterized
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as being “Deceptive” as opposed to “Informative”2. As a dual to the previous
framework, stochastically, the setting in which “lying prevails over truth” is
tantamount to having more stochastically unreliable sensors that stochastically
reliable ones.

To justify the validity of the claims that we have made, rigorous theoretical
results and a host of empirical results were presented in [4,5]. These have been
extended and generalized in this paper for Deceptive Environments.

2 Modeling the Problem

We consider a population of N sensors, S = {s1, s2, . . . , sN}. Let the real situ-
ation of the Environment at the time instant t be modeled by a binary variable
T (t), which can take one of two possible values, 0 and 1. The value of T is
unknown and can only be inferred through measurements from sensors. The
output from the sensor si is referred to as xi. Let π be the probability of the
state of the ground truth, i.e., T = 0 with probability π.

To formalize the scenario, we record four possibilities:

– xi = T (where xi = 0 or 1): This is the case when the sensor correctly reports
the ground truth.

– xi �= T (where xi = 0 or 1): This is the case when the sensor faultily reports
the ground truth.

In our discussions, we make one simplifying assumption: The probability of
the sensor reporting a value erroneously is symmetric. In other words, in terms
of the binary detection problem, we assume that the probability of a false alarm
and the so-called miss probability are both equal. Thus, presented formally, we
assume that:

Prob(xi = 0|T = 1) = Prob(xi = 1|T = 0). (1)

Further, let qi denote the Fault Probability (FP) of sensor si, where:

qi = Prob(xi = 0|T = 1) = Prob(xi = 1|T = 0).

Similarly, we define the Correctness Probability (CP) of sensor si as pi = 1− qi.
It is easy to prove that the total probability Prob(xi = T ) is, indeed, pi,

since, in fact:

Prob(xi = T ) = Prob(T = 0)Prob(xi = 0|T = 0) + Prob(T = 1)Prob(xi = 1|T = 1)

= πpi + (1− π)pi

= pi. (2)

2 In the case of a recommendation system, a Deceptive Environment can, for example,
correspond to a compromised system where the integrity of the majority of the agents
in the systems are compromised.
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Thus, the quantity pi = Prob(xi = T ) can be re-rewritten as pi =
Prob(I{xi = T} = 1), where I{.} is the Indicator function.

We refer to a sensor as being reliable when it has a FP qi < 0.5. Conversely,
the sensor is unreliable when it has a FP qi > 0.5. Equivalently, a reliable sensor
is one that has a CP pi > 0.5, and an unreliable sensor as one that has a CP of
pi < 0.5.

Observe that as a result of this model, a reliable sensor will probabilistically
tend to report 0 when the ground truth is 0, and 1 when the ground truth is 1.
Otherwise, it is clearly, unreliable. Our aim, then, is to partition the sensors as
being reliable or unreliable. Furthermore, once partitioned, our aim is to use the
partitioning as a basis for better fusion.

To simplify the analysis3, we assume that every pi can assume one of two
possible values from the set {pR, pU}, where pR > 0.5 and pU < 0.5. Then, a
sensor si is said to be reliable if pi = pR, and is said be unreliable if pi = pU . To
render the problem non-trivial and interesting, we assume that pR and pU are
unknown to the algorithm.

Based on the above, the set of reliable sensors is SR = {si|pi = pR}, and the
set of unreliable sensors is SU = {si|pi = pU}.

We now formalize the Sensor-Type Partitioning Problem (STPP ). The
STPP involves a set of N sensors4, S = {s1, s2, . . . , sN}, where each sensor si

is characterized by a fixed but unknown probability pi of it sensing the ground
truth correctly. The STPP involves partitioning S into 2 mutually exclusive and
exhaustive groups so as to obtain a 2-partition G = {GU , GR}, such that each
group, GR, of size, NR, and GU , of size NU , exclusively contains only the sensors
of its own type, i.e., which are either reliable or unreliable respectively.

We define P(NR−1,NU ) as the probability of a deterministic majority voting
scheme, which involves the opinions of NR −1 reliable sensors and NU unreliable
ones, to yield the correct decision using the majority rule. In other words, this
is the probability that a majority of more than (NR−1+NU )

2 of the sensors will
advocate the ground truth. Similarly, we define P(NR,NU−1) as the probability
of a deterministic majority voting scheme, which involves the opinions of NR

reliable sensors and NU −1 unreliable ones, to yield the correct decision using the
majority rule. As one can see, this quantity is the same: It too is the probability
that a majority of more than (NR+NU−1)

2 of the sensors will, in turn, advocate
the ground truth.

In [4,5], we assumed that:

(NR − 1)pR + NUpU >
(NR + NU )

2
.

The latter condition is founded on a fundamental premise that has to hold in any
sustainable society, where telling the “truth” is considered a virtue, while “lying”
3 This assumption, however, does not simplify the problem. Indeed, pR can be assigned

to be the smallest value of all the values of pi for the reliable sensors, and pU can be
assigned to be the largest value of all the values of pi for the unreliable ones.

4 Throughout this paper, since we will be invoking majority-like decisions, we assume
that N = NR + NU is an even number.
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is considered detrimental and harmful to the society. In this paper, the task we
undertake is to consider the non-intuitive complementary problem. Indeed, we
will investigate the non-trivial case in which the phenomenon of “lying” is more
prevalent than that of saying the “truth” exasperated by the case when the
proportion of stochastic “lying” agents exceeds the number of stochastic “truth-
telling” agents. We shall endeavor to state and prove the relevant theoretical
results for the case where:

(NR − 1)pR + NUpU <
(NR + NU )

2
− 1.

The reader should observe that whenever the Environment is deterministic,
i.e., pR = 1 and pU = 0, the above condition can be written as NR < NR + NU ,
which simply means that the set of unreliable sensors form the Majority from
among the sensors. Hence, in the special case of a deterministic Environment,
the problem can be seen as resolving the problem using Majority voting.

3 The Solution

3.1 Overview of Our Solution

In this paper, we provide a novel solution to the STTP for the scenario where
“lying prevails over the truth”, and where this solution is based on the field of
LA that was briefly surveyed above. It is appropriate to mention that we are
not aware of any other solution to this problem (within this setting), and so
we believe that our solution is both pioneering and novel. We intend to take
advantage of the fact that LA combine rapid and accurate convergence with low
computational complexity. In addition to its computational simplicity, unlike
most reported approaches, as mentioned earlier, our scheme does not require
prior knowledge of the ground truth. Rather, it adaptively, and in an on-line
manner, gradually learns the identity and characteristics of the sensors which
tend to provide reliable readings, and of those which tend to provide unreliable
ones.

Our solution involves a team of LA where each LA is uniquely attached to (or
rather, associated with) a specific sensor, on a one-to-one basis. Each automaton
Ai, attached to sensor si, has two actions.

By suitably modeling the agreement or disagreement of the opinions about
the sensed ground truth between each sensor and the rest of the other sensors,
we can appropriately model these as responses from the corresponding “Envi-
ronment”. Using these synthesized responses, our scheme will intelligently group
the sensors according to the readings that they report about the ground truth.
Since a sensor is reliable if it reports the ground truth correctly with a probabil-
ity pi > 0.5 (and unreliable otherwise), we will design our scheme so that it can
infer the similar sensors and collect them into their respective groups. In other
words, we will infer the crucial pieces of information, namely the identities of
the sensors, from the random stream of sensor reports.
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The fusion part of our scheme will be based on the result of a prior partition-
ing phase. Ultimately, the aim behind identifying the set of unreliable sensors,
SU , is to improve the performance of the fusion process for inferring the ground
truth. The result of the convergence of the team of LA, which results in a parti-
tioning that infers the identity of the sensors, will serve as an input to the fusion
process. In this vein, we present a simple approach for fusing the results, and
study its performance in the section that describes the experimental result. The
fusion approach only considers the measurements from the reliable sensors as
being informative, and simultaneously discards measurements from the unreli-
able sensors. An alternate fusion scheme which considers the responses from all
the sensors is also described. The first formal result concerning the performance
of the LA is given below.

3.2 Theoretical Results for the Case Where: “Lying Prevails
over Truth”

In this section, we provide theoretical results pertinent to the extremely inter-
esting and fascinating case when “Lying Prevails over Truth-Telling”, i.e., when
it is more likely for the sensors to be unreliable than reliable, or if you like, the
number of unreliable sensors is more than the number of reliable ones.

We analyze and provide the theoretical results for the case where (NR −
1)pR +NUpU < (NR+NU )

2 −1. The proofs of the following two theorems are quite
involved and are omitted here for the sake of brevity. The proofs can be found
in a unabridged version of this article [4].

Theorem 1. Consider the scenario when NRpR + (NU − 1)pU < (NR+NU )
2 − 1

and when NR+NU −1 ≥ 3. Let si ∈ SR. Consider now the agreement between the
opinion of a reliable sensor si and the opinion of the majority formed by all the
rest of the sensors S\{si} = (SR\{si})∪SU . Let y(NR−1,NU ) be the decision of a
majority voting scheme S\{si}, based on the responses of NR−1 reliable and NU

unreliable sensors. Then, if xi is the output of si: Prob(xi = y(NR−1,NU )) < 0.5.

The next theorem, which deals with the analogous case of excluding an unre-
liable sensor, follows.

Theorem 2. Consider the scenario when NRpR + (NU − 1)pU < (NR+NU )
2 − 1

and when NR + NU − 1 ≥ 3. Let si ∈ SU . Consider now the agreement between
the opinion of an unreliable sensor si and the opinion of the majority formed
by all the rest of the sensors, S\{si} = SR ∪ SU\{si}. Let y(NR,NU−1) be the
decision of a majority voting scheme based on the responses of S\{si}, consisting
of NR reliable and NU − 1 unreliable sensors. Then, if xi is the output of si:
Prob(xi = y(NR,NU−1)) > 0.5

3.3 Construction of the Learning Automata

The results that we have presented in the previous section form the basis of our
LA-based solution. We explain this below, including the strategy by which the
majority vote is invoked.
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In the partitioning strategy, with each sensor si we associate a 2-action
LRI automaton Ai, (Σi,Πi, Γ i, Υ i, Ωi), where Σi is the set of actions, Πi is
the set of action probabilities, Γ i is the set of feedback inputs from the Envi-
ronment, and Υ i is the set of action probability updating rules. Each of these is
explained below.

1. The set of actions of the automaton: (Σi)
The two actions of the automaton are αi

k, for k ∈ {0, 1}, i.e., αi
0 and αi

1.
2. The action probabilities: (Πi)

P i
k(n) represent the probabilities of selecting the action αi

k, for k ∈ {0, 1}, at
step n. Initially, P i

k(0) = 0.5, for k = 0, 1.
3. The feedback inputs from the Environment to each automaton: (Γ i)

Let the automaton select either the action αi
0 or αi

1. Then, the responses from
the Environment and the corresponding probabilities are tabulated below. For
a chosen action, the Environment will respond by a “Reward”, or a “Penalty”.
The conditional probabilities of the “Reward”, and “Penalty” are also speci-
fied in the tables.
A brief explanation about the equations in these tables could be beneficial.
(a) The LA system is rewarded if it chooses action αi

0, in which case
the reading of the sensor si agrees with the opinion of the major-
ity voting scheme associated with S\{si}. This occurs with probabil-
ity Prob(xi = y(NR−1,NU )) whenever si ∈ SR and with probability
Prob(xi = y(NR,NU−1)) whenever si ∈ SU .

(b) Alternatively, the system is rewarded if it chooses action αi
1, in which

case the reading of the sensor si disagrees with the opinion of the major-
ity voting scheme associated with S\{si}. This occurs with probabil-
ity 1 − Prob(xi = y(NR−1,NU )) whenever si ∈ SR and with probability
1 − Prob(xi = y(NR,NU−1)) whenever si ∈ SU .

(c) The penalty scenarios are the reversed ones.
4. The action probability updating rules: (Υ i)

First of all, since we are using the LRI scheme, we ignore all the penalty
responses. Upon reward, we obey the following updating rule:
If αi

k for k ∈ {0, 1} was rewarded then,

P i
1−k(n + 1) ← θ × P i

1−k(n)
P i

k(n + 1) ← 1 − θ × P i
1−k(n),

where 0 � θ < 1 is the LRI reward parameter.

Before we prove the properties of the overall system, we first state a funda-
mental result of the LRI learning schemes which we will repeatedly allude to in
the rest of the paper.

Lemma 1. An LRI learning scheme with parameter 0 � θ < 1 is ε-optimal,
whenever an optimal action exists. In other words, limθ→1 limn→∞ P i

k(n) → 1.
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The above result is well known [1]. By virtue of this property, we are guaranteed
that for any LRI scheme with the two actions {α0, α1}, if ∃ k ∈ {0, 1} such
that ci

k < ci
1−k, then the action αi

k is optimal, and for this action P i
k(n) → 1

as n → ∞ and θ → 1, where the {ci
k}, are the penalty probabilities for the two

actions of the automaton Ai.
By invoking the property of the LRI learning scheme, we state and prove the

convergence property of the overall system.

Theorem 3. Consider the scenario when (NR − 1)pR + NUpU < (NR+NU )
2 − 1

and that NR + NU − 1 ≥ 3. Given the LRI scheme with a parameter θ which is
arbitrarily close to unity, the following is true:

If si ∈ SR, then limθ→1 limn→∞ P i
0(n) → 1;

If si ∈ SU , then limθ→1 limn→∞ P i
1(n) → 1.

Proof: To prove the theorem, we treat the two cases separately.

Case 1: si ∈ SR: Based on the result of Theorem 1, we can see that the inequality
Prob(xi = y(NR−1,NU )) < 0.5 holds. We can thus deduce that:

Prob(xi = y(NR−1,NU )) < 1 − Prob(xi = y(NR−1,NU )). (3)

If we now consider the entries of Table 1 that specify the penalty probabilities
si ∈ SR, we see that:

ci
1 = Prob(xi = y(NR−1,NU )) < ci

0 = 1 − Prob(xi = y(NR−1,NU )),

implying that for this case, the action αi
1 is the optimal one. Consequently, by

virtue of Lemma 1, for this action:

P i
1(n) → 1 as n → ∞ and θ → 1,

proving the result for this case.
Case 2: si ∈ SU : In this case, based on the result of Theorem 2, we see that the
following inequality holds: Prob(xi = y(NR,NU−1)) > 0.5.

Therefore we can confirm that

Prob(xi = y(NR,NU−1)) > 1 − Prob(xi = y(NR,NU−1)). (4)

Table 1. Reward and Penalty probabilities for sensor si ∈ SR

Action Associated probability
Reward Penalty

αi
0 Prob(xi = y(NR−1,NU )) 1 − Prob(xi = y(NR−1,NU ))

αi
1 1 − Prob(xi = y(NR−1,NU )) Prob(xi = y(NR−1,NU ))
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Table 2. Reward and Penalty probabilities for sensor si ∈ SU

Action Associated probability
Reward Penalty

αi
0 Prob(xi = y(NR,NU−1)) 1 − Prob(xi = y(NR,NU−1))

αi
1 1 − Prob(xi = y(NR,NU−1)) Prob(xi = y(NR,NU−1))

From the entries of Table 2, that specify the penalty probabilities si ∈ SU ,
we obtain:

ci
0 = 1 − Prob(xi = y(NR,NU−1)) > ci

1 = Prob(xi = y(NR,NU−1)).

This implies that the action αi
0 is the optimal one, and for this action:

P i
0(n) → 1 as n → ∞ and θ → 1.

The theorem is thus proven. ��

3.3.1 Remarks and Some Additional Notation
Based on what we have already seen, the following observations are in place:

1. Analogous to the above theorems, from Theorem 3, we see the similar result
for the case when:

NRpR + (NU − 1)pU <
(NR + NU )

2
− 1.

In fact, when NRpR+(NU −1)pU < (NR+NU )
2 −1, the reliable sensors will con-

verge to action αi
0, while the unreliable ones to action αi

1 with an arbitrarily
large probability. To summarize these results, let:

– GR = {si ∈ S such that limn→∞ P i
1(n) = 1}

– GU = {si ∈ S such that limn→∞ P i
0(n) = 1}.

As the conclusions are ε-optimal results, if θ is arbitrarily close to unity, GR

will converge to SR and GU will converge to SU . On the other hand, if θ is
not arbitrarily close to unity, some of the LA might fail to converge to the
optimal action, and thus the set GR may not necessarily be equivalent to SR,
and GU may not necessarily be equivalent to SU .

2. In our earlier work [4], we had dealt with a with a society where “truth prevails
over lying” (i.e., where, effectively, the number of reliable sensors was more
than the number of unreliable ones), characterized by the canonical equation:

(NR − 1)pR + NUpU >
(NR + NU )

2
.

A naive way to attempt to obtain the condition for the opposite scenario
involving a deceptive environment, i.e., one in which “lying prevails over
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truth”, would be to invert the equations by exchanging NR with NU and
pR with pU respectively. The inverted equation obtained by such a straight-
forward substitution is:

(NU − 1)pU + NRpR >
(NR + NU )

2
.

However, on performing a rigorous analysis, one observes that the above con-
dition “does not lead anywhere”. Further, the condition does not guarantee
any form of convergence5. Rather, since reasoning by direct symmetry does
not work, deducing the correct condition that is applicable for Deceptive
Environments is far from being intuitive.

3. A more careful investigation reveals that the correct condition, NRpR+(NU −
1)pU < (NR+NU )

2 − 1, is not symmetric. Indeed, it is this condition that is
valid for the case where “lying prevails over truth”. One will observe that
the above condition reduces to NR < (NR+NU )

2 for (pR, pU ) = (1, 0). In other
words, whenever the Environment is deterministic, implying that a reliable
sensor will always tells the truth (pR = 1) and an unreliable sensor will
always misreport the truth (pU = 0), we will obtain a minority of reliable
sensors since NR < (NR+NU )

2 , forcing the unreliable sensors to constitute the
majority.

3.4 Fusion Schemes with Exclusion: Discarding the Opinions
of the Unreliable Sensors

A possible strategy to increase the accuracy of the fusion process is to employ a
simple majority voting strategy that excludes all the sensors whose LA converged
to the action GU during the partitioning phase. This means that the prediction
of the ground truth will be exclusively based on the “accurate” sensors, i.e.,
those whose LA converged to the action GR.

4 Experimental Results

The performance of the LA-based partitioning as well as the fusion schemes with
exclusion (that makes use of the partitioning described in Sect. 3.4), have been
rigorously tested by simulation in a variety of parameter settings, and the results
that we have obtained are truly conclusive. In the interest of brevity, we merely
report a few representative (and typical) experimental results, so that the power
of our proposed methodology can be justified. In the experiments, the settings
were chosen so that the condition (NR − 1)pR + NUpU < (NR+NU )

2 − 1 was met,
reflecting that the world possessed that the phenomenon in which “lying prevails
over the truth”.

5 The absence of convergence was also supported by experimental results that are not
reported here. This was, indeed, what motivated the present avenue of research.
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4.1 Fusion Scheme with Exclusion

We now compare the “Fusion Scheme with Exclusion” with the deterministic
Majority Voting (MV) strategy that incorporates all the sensors in S. As detailed
earlier, the latter scheme relies exclusively on the decision of the vote of the
majority of the sensors that converged to the GR partition. Let P (Cc) denote
the probability of the consensus being correct, i.e., that the probability that the
vote of the majority coincides with the ground truth. Table 3 reports the result
of the comparison for the case when NR and NU are both equal to 10.

Table 3. Comparisons of the value of P (CC), the probabilities of the consensus being
correct for different values of (pR, pU ), and for the different approaches for NR = 10
and NU = 10.

(pR, pU ) P (CC) for Fusion Scheme
with Exclusion

P (CC) for MV for all
sensors

(0.55, 0.25) 0.738 0.234
(0.6, 0.25) 0.833 0.13
(0.65, 0.25) 0.905 0.401
(0.7, 0.25) 0.952 0.5
(0.55, 0.2) 0.738 0.16
(0.6, 0.2) 0.833 0.225
(0.65, 0.2) 0.905 0.426
(0.7, 0.2) 0.952 0.396

From this table, we observe:

1. The distribution of T does not play a role in determining the value of P (Cc)
for the Fusion Scheme with Exclusion because of the symmetry property of
the fault. As one can see, the results we report are conclusive. In fact, we
were able to increase the value of P (Cc) quite remarkably. For example, for
the case when (pR, pU ) = (0.7, 0.25), our scheme yielded a value of 0.952
for P (CC), while the scheme which operated with the MV involving all the
sensors yielded the value of only 0.5.

2. The value of P (CC) for the simple MV involving all sensors gave a low accu-
racy (less than 0.5) as the Environment was Deceptive.

3. The value of P (CC) for our Fusion Scheme with Exclusion was immune to
the variation of pU . For example, for the entries corresponding to pR = 0.7,
we see that P (CC) was equal to 0.952 even if pU changed, for example, by
taking the values 0.25 or 0.2.

Consider now the case when the value NU was doubled from 10 to 20 while
the value of NR was equal to 10. As expected, we see from Table 4, the value of
P (CC) for our scheme was intact and independent of the value of NU .
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Table 4. Comparisons of P (CC), the probabilities of the consensus being correct for
different values of (pR, pU ), and for the different approaches for NR = 20 and NU = 10.

(pR, pU ) P (CC) for Fusion Scheme
with Exclusion

P (CC) for MV
for all sensors

(0.55, 0.25) 0.738 0.057
(0.6, 0.25) 0.833 0.081
(0.65, 0.25) 0.905 0.112
(0.7, 0.25) 0.952 0.15
(0.55, 0.2) 0.738 0.02
(0.6, 0.2) 0.833 0.03
(0.65, 0.2) 0.905 0.046
(0.7, 0.2) 0.952 0.066

5 Conclusion

The authors of the current articles have recently pioneered a solution to an
extremely pertinent problem, namely, that of identifying which sensors are unre-
liable without any knowledge of the ground truth. This fascinating paradox can
be formulated in simple terms as trying to identify stochastic liars without any
additional information about the truth. In this paper, we provide a LA-based
solution to the problem where the sensors operated in a world in which “lying
prevails over truth telling”, or informally speaking, where the number of unreli-
able sensors is stochastically more than the number of reliable ones.
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