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Abstract

As our daily life is becoming more dependent on wireless and mobile services, seamless

network connectivity is of utmost importance. Wireless networks are expected to handle the

growing demand for applications which require higher capacity, without failure. Therein,

wireless connectivity is regarded as an essential requirement for a wide range of applications

in order to support flexible and cost-effective services. As part of the fifth generation (5G)

communication paradigm, ultra reliable communication (URC) is envisaged as an important

technology pillar for providing anywhere and anytime services to end users. While most ex-

isting studies on reliable communication are not pursued from a dependability perspective,

those dependability based studies tend to define reliability merely in the time domain.

The main objective of this thesis work is to advocate the concept of URC from a de-

pendability perspective in the space domain. Accordingly, we define cell availability, system

availability, and guaranteed availability for cellular networks. Poisson point process (PPP)

and Voronoi tessellation are adopted to model the spatial characteristics of cell deployment

in cellular networks. The spatially modeled cellular networks are used to analyze availability

and initiate definitions on cell availability and system availability. Correspondingly, the avail-

ability as well as the probability of providing a guaranteed level of availability in a network

are analyzed both/either cell-wise and/or system-wise. From this perspective, we investigate

in depth the relationship between the signal to interference noise ratio (SINR), capacity or

user requirement and achievable availability levels.

Extensive simulations are performed for various network scenarios and cell deployments

to obtain numerical results based on the cell and system availability definitions. For SINR-

based and capacity-based studies, threshold contours are identified in each case in order to

further study cell availability under different conditions. The importance of deploying differ-

ent types of cells for a cellular network is also highlighted by studying the tradeoff between

the required transmission power and the obtained system availability. Moreover, definitions

are developed for availability from users’ perspective concerning PPP distributed users as well.

In a nutshell, this thesis proposes a novel concept referred to as space domain availability

as a contribution to the ongoing research activities on URC for future 5G networks.

Key words: 5G and URC, dependability and availability, space domain analysis, PPP and

Voronoi tessellation, simulations.
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Chapter 1

Introduction

This chapter provides background information regarding the concept of ultra reliable commu-

nication (URC) in the fifth generation (5G) networks with a focus on the reliability aspects

in the space domain. The problem statement is stated along with the motivation of the thesis,

followed by the research methodology. Lastly, an outline of the thesis chapters is provided.

1.1 5G and URC

As an advancement from the fourth generation (4G), 5G will continue to provide services at

higher data rates with higher carrier frequencies and wider bandwidths to satisfy the grow-

ing user demand. Apart from 4G advancements, it is foreseen to become highly integrative

by combining 5G air interface and spectrum together with long term evolution (LTE) and

WiFi to expand the coverage at higher rates and to facilitate seamless user experience [1]. In

consequence, the European Union’s mobile and wireless enablers for the twenty-twenty infor-

mation society (METIS) 5G program has introduced URC as one of the key requirements for

future 5G networks. Fig. 1.1 shows how the importance of key capabilities in different usage

scenarios has been identified by ITU-R M.2083 recommendations.

The terminology, URC refers to achieving almost 100% reliability at a certain (satisfac-

tory) level of services [2]. Achieving reliable communication may be particularly challenging

in wireless mobile networks. URC is expected to support applications such as traffic, safety,

emergency response, industry and other areas where reliability concerns are considered to be

paramount. URC may support mission-critical applications, such as industrial automation,

public safety and vehicular communications [3]. These applications will require ultra reliable

connectivity with guaranteed availability and reliability of service [4].
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Figure 1.1: Key capabilities for different usage scenarios of 5G system [5].

1.2 Fundamentals of Dependability Theory

Reliability and availability in its simplest form can be explained as having the connectivity

to a system anywhere and anytime. A system can be either a mechanical system, software

system, electrical system or a cellular network etc. However, in the context of this thesis, we

will be referring to a cellular network in wireless communication as the system in interest.

Figure 1.2: Real life traffic pattern [6].

Fig. 1.2 shows the daily cellular traffic pattern in a suburban area. As indicated, several

peak times are reported in the 24-hour time span, in which there could be a higher probability

of unsuccessful call attempts. For example, at the peak load point, all channels can be

occupied by the demanding users therefore, the communication system can be saturated and

unavailable for further call attempts. Apart from that, a communication system can be still

unavailable to a user, when he/she is not covered by the base station (BS) even though there

are unoccupied communication channels. A user at an edge of a cell may experience difficulty

to connect to the cellular network because the received signal power is not satisfactory.
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1.2.1 Dependability

Dependability is the ability of a system to behave as it is specified when facing with failures

of components to deliver its intended level of services to its users [7]. It is important to

analyze dependability attributes of a system since they describe essential properties which

are expected from a system for a successful operation. Dependability attributes may be

utilized to appropriately evaluate a system behavior, depending on its application. There are

three primary attributes of dependability which represent the properties that are expected

from a communication system, i.e., reliability, availability and safety [8]. When the system is

in a state in which it can operate all the user requests successfully, the system is said to be in

the operational state whereas, the system is said to be in the failure state, when the system

fails to perform the required function.

1.2.2 Reliability

Reliability, as one of the primary attributes of the dependability theory, has been widely

deemed as an important aspect of wireless mobile networks [9]. A particular system may be

required to perform various functions with different reliability levels of each. The reliability of

a system is defined as the probability that a system will perform its intended functions without

failure for a given interval of time under specified operating conditions [10].

Alternatively, we can define the probability that the system fails to perform is intended

functions for a given interval of time under specified operating conditions as unreliability.

Therefore, unreliability expresses the probability of failure. The reliability and the unrelia-

bility can be related as, Unreliability = 1−Reliability.

1.2.3 Availability

In reality, only handful of systems can operate continuously without interruption and failure.

Most of the time we are not only interested in the probability of failure but also the fraction

of time or space in which the system is in the operational mode, expressed via availability.

Reliability can be attained when the communication system is available to users. Therefore,

availability of communication systems is an important and a fundamental aspect of depend-

ability theory which has to be studied extensively. Availability is closely related to reliability,

however, reliability is often confused as availability.

According to ITU-T Recommendation E.800 availability is defined as the ability of an

item to be in a state to perform a required function at a given instant of time or at any in-

stant of time within a given time interval, assuming that the external resources, if required,

are provided [11]. More straightforwardly, availability is the probability that the system is

functioning correctly at the instant of time or point of space.
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Alternatively, we can define the probability that the system is failing to perform is intended

functions for a given instant of time or space as unavailability. The availability and the

unavailability can be related as, Unavailability = 1− Availability.

1.3 Motivation and Problem Statement

Reliable communication from an end-user perspective can be explained as having connectivity

to the network at anywhere and anytime. However, most researches on reliability analysis

have merely emphasized on the anytime connectivity or the time domain analysis. So far

very little work has been done regarding the anywhere aspect of reliable communication or

the space domain analysis.

URC is a novel and a promising feature which is intended to enhance the future 5G sys-

tems. It is vital to facilitate mission critical, safety and emergency response applications. The

terminology of URC is introduced by the METIS project which had then objective of laying

the foundation for 5G technologies. A 3rd generation partnership project (3GPP) technical

report [12] included also the concept of URC in their ongoing work, but URC was dropped in

the newer (December 2016) version, probably due to its immaturity. However, there exist no

studies which elaborate the method to achieve URC, specifically in the space domain. Trig-

gered by this observation, we aim to centre our attention to find possible ways to achieve URC.

Most of the reliability metrics cope with the conventional understanding of reliable com-

munication, but they do not address the reliability issue from a dependability theory point

of view. Moreover, most dependability terminologies are however applicable to the time do-

main, not the space domain. It is vital to conduct the analysis in the space domain in addition

to the time domain, since the dependability of a system may differ with the space domain.

Availability analysis in the space domain will facilitate to comprehend how it can be used to

enhance the reliability levels in mobile networks.

Above interpretations can be incorporated in achieving URC. However, a proper definition

of availability in the space domain is lacking from the dependability theory’s perspective. To

the best of our knowledge, so far no definition exists on the availability of User Equipments

(UEs) in the space domain dedicated to URC. Triggered by this fact, we aim to introduce the

following definitions and terminologies considering the space domain in this thesis.

Therefore, it is necessary to advocate extending the concept of URC from the dependabil-

ity perspective considering the space domain. Moreover, it is important to initiate availability

definitions considering cell-wise, system-wise and user-wise. The scenarios and the specific

requirements have to be identified such that URC can be achieved considering circular BS
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coverage, signal to interference ratio (SINR)-based BS coverage and capacity-based BS cover-

ages. These observations lead the way to propose a novel analysis focusing on space domain

modeling in which stochastic geometry (SG) is utilized to evaluate the availability of cellular

networks.

Research objectives

The main objective of this work is to advocate dependability-based availability definitions in

the space domain as a contribution for the research work undergoing in the context of URC.

More specifically, we have the following objectives.

� Objective 1 Develop a system model for both homogenous and heterogeneous cellular

networks which employs the characteristics of SG and propose definitions for availability

of a cellular network.

� Objective 2 Create the coverage areas of the BS in a cellular network defined by the

minimum SINR threshold and propose definitions for availability of a cellular network

based on the BS coverage defined by the minimum SINR threshold.

� Objective 3 Create the coverage areas of the BS in a cellular network defined by the

minimum capacity threshold and propose definitions for availability of a cellular network

based on the BS coverage defined by the minimum capacity threshold.

� Objective 4 Advocate definitions by accommodating randomly positioned users in a

cellular network considering user requirements.

Research questions

This thesis makes efforts to answer the following research questions.

� Question 1 From the perspective of dependability theory, how to define availability in

the space domain by considering characteristics of real-life cellular networks?

� Question 2 How to find the locations of a Poisson Voronoi (PV) network which receive

the minimum SINR threshold and how to define availability of a PV network based on

the BS coverage defined by the minimum SINR threshold?

� Question 3 How to find the locations of a PV network which attain the minimum

capacity requirement and how to define availability of a PV network based on the

minimum capacity threshold?

� Question 4 How to define user-oriented availability considering spatially distributed

users with different resource requirements?
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1.4 Research Methodology

Followed by a thorough literature review on the areas relevant to the thesis topic, the general

concepts and related research work were studied. Equipped by that knowledge, the target

was to develop a system model which will enable to formulate definitions for availability.

Various schemes were proposed such that availability is analyzed considering factors such as

BS coverage, SINR and capacity. The proposed schemes were implemented by developing

algorithms and performing extensive simulations using MATLAB® software.

� While spatially modeling the locations of the nodes in a cellular network, it was in-

evitable that SG has to be in-cooperated in order to obtain tractable results. Thus, the

network may adapt Poisson point process (PPP) and Voronoi tessellation, and may be

referred to as a PV network. Assuming BS antenna is omni-directional, circular BS cov-

erages were presumed and cell availability, system availability, guaranteed availability

etc. were defined.

� Based on a predefined SINR threshold and the random BS locations, the contours which

define the boundary of the SINR threshold were created. Consequently, cell availability,

system availability were defined.

� Adapting a similar concept as in above, availability along with the respective contours

were also defined based on the minimum capacity requirement. Therein, cell availability,

system availability were defined.

� To initiate the user-oriented availability, users were also considered as PPP distributed

inside the network. Then the availability or rather the user connectivity was measured

considering circular-based, SINR-based and capacity-based BS coverage scenarios.

1.5 Thesis Organization

The rest of the thesis is organized into seven chapters and the main points of each chapter

are summarized below.

� In Chap. 2, the background work and the theoretical knowledge required to develop the

proposed scheme are discussed in detail. The basic system model is also introduced.

� Chap. 3 is dedicated to present the availability analysis conducted for a circular BS

coverage within a cell assuming that each BS uses an omni-directional antenna. The

definitions for cell availability, average cell availability, system availability, average sys-

tem availability and guaranteed availability are presented in a detailed manner. All the

algorithms used for Matlab simulations are also listed.
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� In Chap. 4, the detailed model of cellular network with SINR-based BS coverage is

explained. It described how the SINR threshold contours can be found for different

SINR thresholds. Then the definitions for cell availability, average cell availability,

system availability, average system availability are presented in a detailed manner. All

the algorithms used for Matlab simulations are also listed.

� Chap. 5 carries out the availability analysis for capacity-based BS coverage. Capac-

ity threshold contours are created for various capacity thresholds and cell and system

availability and their averages are also investigated.

� Chap. 6 consists of the analysis related to user availability in cellular networks. PPP

distributed users are considered and the availability is defined in terms of minimum

SINR threshold and capacity threshold. All the algorithms used for Matlab simulations

are also listed.

� Finally, the main contributions and conclusions of the thesis are summarized in Chap. 7

and some directions for future research are also pointed out.

� A paper which has been published in IEEE Communications Letters is reproduced in

Appendix A.

� Two examples of implemented MATLAB codes in the study are disclosed in Appendix B.
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Chapter 2

Related Work and Theoretical

Preliminaries

In order to propose novel definitions and terminologies, it is important to study the existing

literature and concepts relevant to the area of interest. First part of this chapter describes the

studies that has been conducted in the areas of URC and dependability aspects. Second part

provides a brief introduction of some fundamentals of SG theory, such as properties of the

PPP, which will be extensively used in the following chapters.

2.1 Related Work on URC

Very little work has been done on URC in 5G communication networks although it has be-

come an active research topic recently. The authors in [2] gave an insight to the terminology

URC and also for solving the new engineering problems posed by URC in 5G along with

several motivating scenarios for supporting URC in future wireless applications. Consider-

ing applying URC in the time domain, the authors of [13] investigated the tradeoff between

mobile energy and latency for mobile cloud computing applications over fading channels by

applying wireless URC service composition at the application layer. Furthermore, [14] pro-

vided a review of recent advances for short packet communications through three examples

in order to achieve massive, ultra reliable and low latency wireless communications.

To estimate the latency and reliability of a communication system and therein to achieve

URC, [15] proposed an analysis framework from the combination of traditional reliability

models with technology specific latency probability distributions. With the system level im-

provements proposed in [16], the authors expected to support the high reliable requirements

which are to be realized by 5G communications by focusing on the need of reduced control sig-

naling and improved end-to-end latency in network assisted device to device communications.

In [17], the authors showed the viability of using a simple air interface to achieve very low
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error rates and latencies for high reliability communication. They suggested that the spatial

diversity is important to ensure high reliability and low latency using short transmission in-

tervals without retransmissions, which could limit the coverage area of the BS. [18] evaluated

the viability of different diversity and interference management techniques to achieve the re-

quired downlink SINR outage probability for URC using a realistic network.

The authors of [19] invented a method to achieve cooperative URC using a master node

and slave nodes in an orthogonal frequency division multiplexing (OFDM) wireless network in

which all the resources are used for the down link transmission to increase the the probability

for reliable reception by the slaves. Several methods and apparatus were disclosed by [20]

for URC. An example method is, setting up a reliability estimate (or a threshold reliability)

before the communication link is established between the UEs and establishing the commu-

nication link upon when the received reliability estimate exceeds a threshold reliability. The

authors in [21] introduced availability as a novel metric for URC, that estimate the presence

or absence of link reliability at the time of transmission. They developed a system model

which compute the availability and indicated it to the applications by means of a possible

implementation for automotive scenarios.

URC is a novel topic which emerged along with 5G networks, therefore not many researches

have been conducted yet in its field. Therefore, there exists a void in the space domain analysis

of dependability in order to find the means of achieving URC, specifically for availability in

the space domain.

2.2 Related Work on Dependability

Research work done in relation to dependability can be identified under any of the depend-

ability metrics, more particularly as reliability or availability for wireless cellular networks.

In [22], the authors presented few architectures to improve the dependability of wireless net-

works. They also obtained fault-tolerant architectures with variable sizes, which are able to

improve in both network availability and survivability attributes. Two configurations using

redundant access points for IEEE 802.11e wireless local area networks (WLANs) were pro-

posed in [23] have higher dependability than the scheme without any redundancy techniques.

The authors of [24], defined several reliability and availability metrics for channel access

in multichannel cognitive radio networks with analogous to the dependability theory. They

developed Markov-chain-based models to analyze these metrics such as steady-state channel

availability, the mean time to channel unavailability, and the mean channel available time.

One of the many ways to ensure reliability at the transport layer is for the receiver to

acknowledge the data it receives from the sender. Transport control protocol (TCP) in trans-
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port layer guarantees reliable transmission where congestion is the primary cause of packet

loss. This is performed by setting a timeout at the initiation of data transmission and re-

transmitting data in the case of non-receipt of acknowledgment (ACK) of data within the

timeout. In [25], a new TCP-aware link layer retransmission scheme was developed which is

able to offer almost full reliable transmission over a wireless link. Their focus was on efficiently

recovering the loss from out-of-order packets and avoiding false actions of TCP source. [26]

introduced modifications to the transport control protocol/internet protocol (IP) stack, to

improve end-to-end reliable transport performance in wireless mobile networks where signifi-

cant data losses are incurred due to bit errors and hand-offs.

The authors in [27] defined the reliability as the probability that the packet is successfully

decoded in at most retransmissions. For an ad hoc network, delay-reliability, and throughput-

delay-reliability tradeoffs were derived for single hop and multi hop transmission with auto-

matic repeat request (ARQ) on each hop. In [28], the authors optimized modulation con-

stellation size to minimize the bit energy consumption under average BER constraints. Fur-

thermore, the link reliabilities and retransmission probabilities were determined using outage

probabilities under log-normal shadowing effects.

Apart from the traditional approaches of achieving reliable information transmission over

an error-prone network which employs either forward error correction (FEC) or retransmis-

sion techniques, it has been proven that network coding schemes could improve the reliability

of error-prone networks by reducing the number of packet retransmissions. The reliability

gain is also an important measure to quantify the reliability of wireless networks which was

analyzed by the work of the authors in papers [29–32].

The authors in [33] have investigated the relationship between packet loss rate at the

physical layer and the signal to noise ratio (SNR) in IEEE 802.15.4 networks. They demon-

strated that the packet loss rate reaches zero as long as the SNR exceeds the threshold. Their

results discuss the implications of using SNR as a reliability metric considering that SNR and

physical level packet loss rate do not share a linear relationship. In [34], a measure on reliable

throughput was proposed to investigate the efficient transmission rate and outage probability

for Rician fading channels which has indicated better tradeoff between the efficient transmis-

sion rate and the outage probability.

The authors in [35] provided a framework for modeling, analyzing and prediction of the

wireless link reliability. They started with the first techniques presented in reliability engi-

neering [36] and analyzed the theoretical reliability of the wireless link based on factors such

as fading, mobility, interference etc. The work in [37] introduced an approach to availability

prediction and reliability analysis of a wireless transmission assuming a repairable system

with variable failure and repair rates. It also introduced point availability and reliability
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function R(t) as two key performance indicators (KPIs) for analyzing reliable transmission.

The authors in [38] proposed a new availability measure and its application to a three

tier architecture considering availability in network design. The availability and reliability

of wireless multi-hop networks were evaluated in [39] by considering stochastic link failures.

The availability of wireless links was improved by placing redundant nodes at appropriate

locations in the existing network. In [40], based on a random-walk mobility model in ad-hoc

networks, expressions for the probability of link and path availability was derived for different

initial conditions. The analytical results were validated using discrete event simulation. The

proposed link availability measure places a bound on the probability of path failure and the

probabilistically determined path availability measure is expected to increase node mobility.

Mathematical expressions were derived for the coverage probability and rate coverage by

analyzing the SINR distribution based on a cell association scheme for non-uniform heteroge-

neous cellular networks in [41]. The obtained numerical results demonstrate that the achieved

rate by UEs through small cell deployment increases and also a higher coverage probability

can be obtained after employing appropriate level of cell biasing.

However, none of the above studies has carried out an extensive study to define availability

in the space domain for individual cells of the system and to evaluate system availability.

Also none of them has introduced the metric guaranteed availability which relates to the BS

coverage, those which we study in this thesis.

2.3 Related Work on SG as a Tool for Dependability

Analysis

SG is powerful mathematical tool which allows studying random spatially distributed pat-

terns in the real world. Many applications of SG into wireless cellular network can be found

in the literature. The following only brings out the literature which is related to the work

presented in this thesis.

In the work done in [42–44] BSs in cellular networks were modeled using homogeneous

PPPs. However no expressions were derived to analyze coverage, SINR or capacity. In the

letter [45], SG was adopted to model BSs and the mobile outage probability was analyzed in

order to optimize the BS density and achieve an optimal network performance.

The authors in paper [46], used PPP to model one tier networks and obtained a tractable

result for SINR, coverage probability and average rate of users. They have assumed that

the down-link SINR complementary cumulative distribution function (CCDF) is equivalent
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to the coverage probability and have derived some closed form expressions. A model to an-

alyze the coverage probability for PPP based heterogeneous networks was presented in [47].

Therein, a method was proposed to compute the location-specific coverage probability inside

the inscribing ball of a weighted Voronoi cell in three tier heterogeneous networks.

The probability of the user being connected to a macro cell or open access femto cell was

computed in [48] by using realistic SG models. The locations of the BSs in a three tier net-

work were used to find the SINR in a closed form. The authors of [49] developed a sequence

of equivalence relations for heterogeneous networks to derive semi analytical expressions for

the coverage probability at the mobile station when the transmissions from each BS may

be affected by random fading with arbitrary distributions as well as attenuation following

arbitrary path loss models.

The authors in [50] investigated the outage probability, the coverage probability, and the

average achievable rate for K tier heterogeneous networks. They modeled the locations of BSs

according to a PPP and a Poisson cluster process (PCP) which clusters the transmitting nodes

and attempted to find better ways to characterize the aggregate interference of clustered BSs.

A tractable framework for SINR in downlink heterogeneous cellular networks with flexible

cell association was presented in [51]. The authors derived the outage probability over

SINR threshold which is equivalently the cumulative distribution function (CDF) of SINR

for a randomly selected mobile in the network. Their study also extended to analyze spectral

efficiency for the proposed model, the average ergodic rate of a random user, and the minimum

average user throughput.

Although some of the above approaches have employed SG for BS modeling and some of

the studies have investigated coverage probability, SINR profile or outage probability, proper

definitions for cell availability in the space domain have not been determined yet. Through

the presented work in this thesis we aim to fulfill that gap in research and initiate an in

depth analysis for availability cell-wise and system-wise. We adopt SG tools to model the

randomness incorporated in cellular networks. As a result, we may obtain more tractable

analysis, for availability in a dependability perspective.

2.4 Dependability Metrics

In the context of the dependability theory, metrics such as mean up time (MUT), mean down

time (MDT), mean time to failure (MTTF), mean time to first failure (MTFF), mean time

between failures (MTBF), and mean time to repair (MTTR) have been defined to investigate

reliability aspects of a system.

Generally, a system may undergo a series of failures and be repaired over time. The
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available time or uptime (UT) is the time during which the system is operational. The

unavailable time or downtime (DT) is the time during which the system is not operational.

MUT is the average time that a system is in the operational state and MDT is the average

time that a system is in the non-operational (failed) state. TFF is the time from the system

initiation instant until it fails for the first time. MTTF describes the expected average time

to failure for a non-repairable system. MTFF is the mean time until the first failure occurs.

MTBF is used to estimate the expected lifetime of a system and it is the mean time between

two consecutive failures in a repairable system. MTTR is the mean time needed to repair

a failed system. Therefore, MTFF = E
{
TFF

}
; MUT = E

{
UT
}

and MDT = E
{
DT
}

,

where E
{
X
}

denotes the expected value of a random variable X and MTBF = MUT +

MDT . Fig. 2.1 illustrates the system times i.e. operational times and failed times regarding

the failures and repairs of a repairable system.

Figure 2.1: System times in a repairable system assuming that the system is initially in the
operational state [52].

2.4.1 Reliability metrics

With respect to the metrics used to characterize reliable communication, parameters such

as packet delivery ratio (PDR), packet reception ratio (PRR), bit error rate (BER), SINR,

outage probability are popular ones.

PDR is defined as the ratio of the number of packets successfully received by all receivers

to the number of packets transmitted. This is a transmitter-centric reliability index evaluat-

ing how a packet from a sender (or tagged node) is received by all intended receivers. PRR

is the percentage of nodes that successfully receive a packet from the tagged node among the

intended receivers at the moment that the packet is sent out. Therefore, PRR is a receiver

centric reliability index evaluating how a packet from a sender (or tagged node) is received

by all intended receivers.
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BER is the number of bit errors per unit time or the number of bit errors divided by the

total number of transferred bits during a time interval. It is an indication of how often a

packet has to be retransmitted in the occasion of an error. It serves as a reliable indicator in

both noise and interference-limited conditions. Any communication system is concerned with

an important parameter called the SINR, at the receiver. This parameter defines how much

signal power is received compared to the combination of the noise power and the interference

at the receiver. Here, the interference is the powers from other sources, such as adjacent

(sub)carriers in frequency or nearby cells in space. Indeed, the outage probability is defined

as the probability of failing to reach a minimum (or threshold) SINR required to satisfy a

given service i.e., Outage Probability = P (Achieved SINR < Threshold SINR).

2.4.2 Availability metrics

Availability can be measured using the metrics such as instantaneous (or point) availabil-

ity, interval availability (or mean availability), steady state availability, inherent availability,

achieved availability and operational availability.

Instantaneous (or point) availability is the probability that a system is operational at a

specific time of interest, t [53]. The mean availability is the proportion of time period that the

system is available for use [53]. It represents the mean value of the instantaneous availability

function over the period (0, T ]. The steady state availability of the system is the limit of

the availability function as time tends to infinity. Steady state availability is also called the

long-run or asymptotic availability [53].

Inherent availability is the probability that an item will operate satisfactorily at a given

point in time when used under stated conditions in an ideal support environment [53]. It ex-

cludes logistics time, waiting or administrative downtime, and preventive maintenance down-

time. It includes corrective maintenance downtime. It is calculated as,

Inherent Availability =
MTTF

MTTF +MTTR
. (2.1)

Achieved availability is the probability that an item will operate satisfactorily at a given

time when used under a set of stated conditions in an ideal support environment [53]. It

excludes logistics time and waiting or administrative downtime. It includes active preventive

and corrective maintenance downtime.

Operational availability is the probability that an item will operate satisfactorily at a given

point in time when used in an actual or realistic operating and support environment [53].
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It includes logistics time, ready time, and waiting or administrative downtime, and both

preventive and corrective maintenance downtime. Moreover,

Operational Availability =
MTBF

MTBF +MDT
. (2.2)

2.5 Geometry of Cellular Networks

The geometry of a cellular network or the location of the nodes (BSs, UEs) plays a vital role

with regard to the metrics such as coverage, achieved SINR and data rate. A mobile user’s

connectivity to a network is largely affected by the node locations in terms of the BS and the

user itself.

2.5.1 Traditional cellular network model in the space domain

Cellular networks are usually modeled by placing the BSs on a grid, where the UEs are either

randomly scattered or placed deterministically within the grid. The conventional hexagonal

grid model is the conceptual and is the simplistic model of the radio coverage for each BS in a

cellular network [54], [55]. However, the actual radio coverage is not reflected by this model,

because it has to be determined using propagation models or from field measurements [56].

But the hexagonal grid model is widely adopted since it provides a manageable analysis

of a cellular network. A hexagonal shape has been chosen among other sensible choices of

geometric shapes such as circle, an equilateral triangle or square, as it could cover an entire

region without any overlap, and has the largest area given the farthest perimeter points from

the center of the polygon. However, the actual cellular footprint has to be determined by the

contour in which a given BS serves the UEs successfully.

Figure 2.2: Hexagonal grid model of cellular networks.
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2.5. GEOMETRY OF CELLULAR NETWORKS

Although this model has been utilized extensively, it is important to realize that it is

both highly idealized and not very tractable [46]. For example, it is inaccurate to model

the heterogeneous cell deployment in urban or suburban areas where the radio coverage can

considerably vary due to the deviations in transmission power and BS and UE densities.

Therefore, traditional hexagonal grid planning can no longer be used to capture the deploy-

ment of BSs nowadays.Hence, it is desirable to study more tractable models to model the

spatial distribution of nodes in a cellular network.

2.5.2 SG framework

SG is a valuable analytical tool to model cellular networks which captures the spatial ran-

domness inherent in cellular networks. Moreover, it takes into account for other sources of

uncertainties such as fading, shadowing, path loss and power control [57]. In a nutshell, SG

allows to study the average behavior over many spatial realizations of a network whose nodes

are placed according to some probability distribution. It is intrinsically related to the theory

of point processes [58].

2.5.3 Point processes

Point Processes (PPs) are the most fundamental objects studied in the context of SG. A PP

can be visually illustrated as a random collection of points in space. More formally, a PP is

a measurable mapping φ from some probability space to the space of point measures (a point

measure is a measure which is locally finite and which takes only integer values) on some

space E [59].

A few dichotomies concerning PPs on Euclidean space Rd are as follows where Rd denotes

the real coordinate space of d dimensions:

� A PP can be simple or not. It is simple if the multiplicity of a point is at most one (no

two points are at the same location). By simple, we mean there are no two points at

the same location.

� A PP can be stationary or not. Stationarity holds if the law of the point process is

invariant by translation.

� A PP can be Poisson or not.

� A PP can be isotropic or not. Isotropy holds if the law of the PP is invariant to

rotation. Homogeneous PPPs are isotropic. If a PP is isotropic and stationary, it is

called motion-invariant.

� A PP can be marked or not; marks assign labels to the points of the process, and they

are typically independent of the PP and i.i.d. The study of marked point processes may

require the handling of Palm calculus.
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There are four categories of PPs that have been widely studied to model wireless networks,

namely, PPP, binomial PP (BPP), PCP and Matérn hard core PP (HCPP). PPP provides

the baseline model for the other PPs, i.e., PPP can be converted into the other PPs [59].

Moreover, among other PPs, PPP has provided a convenient mathematical framework to

model random wireless networks.

2.5.4 PPP

Recently, many studies tend to model the location of the nodes in a cellular network as

random, following a PPP. In the following, we define the PPP and the homogeneous PPP.

PPP A PP Φ , {xi} ∈ Rd is a PPP if and only if

� for an arbitrary set A ∈ Rd,Φ(A) is a Poisson RV.

� for any two disjoint subsets Ai, Aj ∈ Rd,Φ(Ai) and Φ(Aj) are independent [59].

Homogeneous PPP If the intensity measure Λ of a PPP Φ satisfies Λ(A) = λ |A|, i.e.,

the product of a constant value λ and Lebesgue measure |A|, then Φ is a homogeneous PPP

with intensity λ. λ can be simply introduced as the mean number of points per unit of area.

Homogeneous PPP is a simple, isotropy, and stationary PP. Mathematical analysis can be

greatly simplified by using homogeneous PPP. Therefore, unless otherwise specified, the PPP

in the following refers solely to the homogeneous PPP on a two dimensional plane R2 .

A key property on PPP Among the key properties of PPPs, the following is the mostly

used key property. For a PPP Φ ⊂ R2 and an arbitrary finite region A,Φ(A) is a Poisson

random variable with mean λ |A|. Therefore,

P {Φ(A) = n} = e−λ|A|
(λ |A|)n

n!
(2.3)

where |A| denotes the area of A. Eq. (2.3) gives the probability that n points are located

inside the area indicated by finite region A.

2.5.5 Voronoi tessellation

By definition, a tessellation is a collection of open, pairwise disjoint polyhedra (or polygons

in the case of R2 ) whose closures cover the space, and which is locally finite (i.e., the number

of polyhedra intersecting any given compact set is finite) [60]. Given a set of centers or seeds,

a Voronoi tessellation can divide the space in to specific regions, known as Voronoi regions.

Each of the regions contains those points of space that are closest to the same center. A

Voronoi tessellation in R2 would look like the polygons sketched in Fig. 2.3.
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Figure 2.3: Voronoi tessellation generated by a random sample of points [60].

When the centers are randomly distributed and uncorrelated in a Voronoi tessellation, it is

called as a Poisson Voronoi Tessellation (PVT). A PVT is constructed from the perpendicular

lines bisecting the distances between each two neighboring nodes of a PPP. In a cellular

network, the coverage regions of the BSs defined by these boundaries or the bisectors, form a

PVT, as shown in Fig. 2.4.

Figure 2.4: The BSs and mobile users modeled as PPPs. The cell boundaries of each BS form
a PVT.

2.5.6 Size of a PV cell

In our study, we are particularly interested in the average size or the area of a PV cell. Un-

fortunately, calculating the average size of a PV cell has been an open mathematical problem

to date and there does no exist a closed form expression until today. It is yet one of the most
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debated and less clarified aspect in SG.

A linear relationship between the mean cell area A(n) and the number of edges n in a PV

cell was presented by Lewis law [61] as below,

A(n) =
n− n0

6− n0

ā0 (2.4)

for a constant n0 where ā0 = 1
λ0

and λ0 denotes the mean number of cells per unit area.

The value 6 in the denominator indicates the mean number of edges a random PV cell could

possess. Substituting n0 = 3/2, [62] proposes,

A(n) =
2n− 3

9
ā0. (2.5)

However it is not reasonable to say, that the average PV cell size can solely depend on the

number of edges, since edge length has to be considered in this case. Therefore, it was decided

not to rely on this findings for the continuation of our study.

Numerous researchers have studied the characteristics of the PV cells using computer

simulations [63], [64], [65]. Their results have been able to provide an approximate numerical

solution for PV cell size distribution by fitting it into a generalized three parameter (a, b and

c) Gamma distribution. The Gamma function is an extension of the factorial function, with

its argument shifted down by 1, to real and complex numbers.

f(y) =
c b

a
c

Γ(a
c
)
ya−1exp(−byc). (2.6)

However, some researches [66], [67] have also suggested that a simpler two parameter (a and

b) Gamma function can also fit.

f(y) =
ba

Γ(a)
ya−1exp(−by). (2.7)

Using Monte Carlo-type computer simulations, the authors in [68] found that the probability

density function (PDF) of a normalized PV cell area y in a d dimensional space, i.e., Rd can

be approximated as Eq. (2.8); by finding appropriate values for a, b and c in Eq. (2.6),

fd(y) =

(
3d+1

2

)( 3d+1
2 )

Γ
(

3d+1
2

) y( 3d−1
2 ) exp

(
−
(

3d+ 1

2
y

))
. (2.8)

For 2 dimensional space, i.e. d = 2 we can rewrite Eq. (2.8) as,

fY (y) =
343

15

√
7

2π
y2.5exp (−3.5y) . (2.9)
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We will be using Eq. (2.9), for our work in order to satisfy the requirement of a good fit to

the size distribution of a PV cell.

2.6 Preliminaries on SINR and Capacity

In this section we recall the theoretical preliminaries behind SINR and capacity which will

be extensively used in the rest of this thesis.

2.6.1 SINR

Ensuring reliability in a cellular network can be also defined in terms of minimum SINR

requirement, which in turn satisfies the coverage requirement to serve an estimated number

of users. Satisfying the coverage requirement is an essential part at the initial configuration

of any cellular network design. Therefore, evaluating the intensity of received signals and

interference at a particular location is fundamental and critical. Not only the received signal

power is random due to the random spatial distribution of the users, the interference is also a

function of the network geometry which is also dependent upon the path loss and the fading

characteristics of the propagation environment.

SINR of an OFDM system

Due to the increased signal bandwidths, OFDM has been adopted as the modulation tech-

nique in 4G LTE cellular networks which is built on IEEE 802.16 [69]. 5G cellular systems

have agreed to deliver a capacity of the order of giga bits per second (Gbps) which is an

increase up to three orders of magnitude with respect to current 4G LTE systems. Therefore,

it is natural to appraise OFDM as the dominant signaling format for high-speed wireless

communication facilitated by 5G networks.

For an OFDM based system, received signal power Si,jr for the jth subcarrier of the ith

user is given by,

Si,jr = P i,j
T Lipu

i
gu

i
lG

i
R, (2.10)

where, P i,j
T is the effective isotropic radiated power (EIRP) for the jth subcarrier of the ith user

(in the direction of the receiver for user i), Lip is the propagation loss between the transmitter

and the receiver for user i, uig consists of other gains provided by the system (e.g., transmit

diversity gain, macro diversity gain) for user i, uil consists of other propagation-related losses

between the transmitter and the receiver (e.g., log-normal shadowing loss, fast fading loss)

for user i, andGi
R is the received antenna gain in the direction of the transmitter for user i [70].

In the context of an OFDM based system, interference can occur when two users in

neighboring cells occupy subcarriers at the same frequency at the same time. Such interference
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degrades the achieved SINR of individual subcarriers. The received cochannel interference

I0,j observed by the jth subcarrier of the 0th user is (assuming that user 0 is the user for whom

the SINR is calculated),

I0,j =
M∑
i=1

P i,j
T Lipu

i
gu

i
lG

i
R, (2.11)

where, M is the number of cochannel interfering users [70]. It is obvious that, P i,j
T where

i 6= 0 contributes to the interference received by user 0.

The noise power N0 received by a single subcarrier is given by,

N0 = kTsys∆f, (2.12)

where, k is the Boltzmanns constant (1.38×10−23 watt/HzK), Tsys is the system temperature,

and ∆f is the frequency spacing between subcarriers [70].

Provided the above expressions, SINR0,j for the jth subcarrier of user 0 can be derived

simply as,

SINR0,j =
S0,j
r

N0 + I0,j
. (2.13)

Note that above expression calculates SINR per subcarrier and is valid for both the uplink

and the downlink.

2.6.2 Capacity and Shannon capacity

For an effective system design of cellular networks, we should not only consider the coverage,

but also should take into account the capacity of the system. As the demand is expected to

rise as more UEs is become accustomed to being connected anywhere, anytime, it is impor-

tant to ascertain how many bps of capacity can be supplied by a BS utilizing a given amount

of spectrum. An effective design enables a the cellular service provider to serve the offered

traffic in a given area with fewer BSs.

The capacity of a communication system is the maximum data-rate in bits per second that

can be reliably transferred from transmitter to receiver. Claude Shannon invented the infor-

mation theory in 1948 in order to characterize the limitations of reliable communication [71].

Shannons formula can be used as a tool to determine the maximum rate, which is also known

as the channel capacity by which the information can be transferred over a communication

channel. Let W be the bandwidth available, S be the received signal power and the N be

the additive white Gaussian noise, channel capacity CCh can be simply expressed as,
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CCh = W log2

(
1 +

Sr
N0

)
. (2.14)

From 2.14, it is evident that the two factors limiting the maximum achievable rate is the W

and Sr/N0 which is the average SNR.

Capacity of an orthogonal frequency division multiplexing system

For an OFDM system, the instantaneous bit rate corresponds to the amount of bits in an

OFDM symbol that can be transmitted through the channel within the duration of an OFDM

symbol. The instantaneous bit rate Rb over an OFDM symbol in bps is yielded by,

Rb =
nW (Nused − 1)log2Mmod

NFFT (1 +G)
Rerrp, (2.15)

where, W is the total bandwidth, NFFT is the total number of subcarriers, Nused is the number

of used subcarriers, Mmod is the number of data symbols in the constellation, G is the ratio of

guard time for an OFDM symbol to useful OFDM symbol time, n is the oversampling factor,

Rerr is the error-correcting code rate, and p is the ratio of the number of data subcarriers to

the number of pilot subcarriers and data subcarriers [70].

2.7 Chapter Summary

This chapter begins with summarizing the work done by several researches on our area of

interest. After a thorough literature we have highlighted the void to be filled in relation to

dependability theory analysis and URC in 5G systems. Second part of this chapter has been

dedicated to brief out the relevant theoretical preliminaries which enabled us to carry out the

research work. The most important and relevant principles in SG are presented. Moreover,

techniques of evaluating size of PV cells and measuring SINR and capacity of an OFDM

based system is described before winding up the chapter.
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Chapter 3

Connectivity-based URC Concepts

and Analysis

The importance of adapting SG tools to model typical cellular networks was elaborated in

Chap. 2. In Chap. 3, we propose the system model using SG, which will enable to derive

more realistic expressions for cell availability, system availability and guaranteed availability.

The highlight in this analysis is that the BS coverage at each cell is circular assuming omni-

directional antennas at the BS.

3.1 System Model

Consider a cellular network which is modeled using PV principles. For the ease of our analysis,

we only focus on a 1 × 1 unit region of a cellular network, covered by a Voronoi tessellation

with N number of cells as shown in Fig. 3.1. We establish the system model based on the

following underlying assumptions.

� All BSs are formed based on a homogeneous PPP of intensity λB in the Euclidean plane.

This is in contrast with the typical modeling of cellular networks which locates the BSs

on a hexagonal grid assuming a deterministic approach.

� In each cell, one BS is deployed and one omni-directional antenna is mounted on each

of them. Hence, the coverage of each BS is considered to be a circular one.

� Same channel type and propagation condition are considered always.

The following terminologies are important to be clarified before explaining the proposed

model. Fig. 3.1 would provide more clarification to the above two terms.

Covered area of the BS means the geographical area in which the BS can communi-

cate with the UEs distributed randomly within the cell, assuming the BS antenna is omni-

directional.
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Area of the cell means the actual geographical area defined by the Voronoi cell boundaries.
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Figure 3.1: A PV distributed homogeneous cellular network with N = 10 cells/BSs. The
cell boundaries are shown and the cells together form a Voronoi tessellation. The Voronoi
cell boundaries which create the actual geographical area of each cell are indicated in blue
(solid) lines. The BS coverage which the BS can communicate with the UEs within each cell
is indicated in red (dashed) lines.

3.1.1 HomNets and HetNets

We consider two cellular network deployment scenarios referred to as HomNets and HetNets.

The main difference between them is that, while in the cell size transmission power for all BSs

is considered to be identical in the former case, two transmission power levels are considered

in HetNets to represent two types of cells, i.e., type 1 (T1) cells and type 2 (T2) cells.

� HomNet: All BSs transmit with an identical transmission power level and have the

same coverage radius, R2. Therefore, the network only consists of one type of cells, i.e.,

T2 cells.

� HetNet: This network deployment consists of both types, i.e., T1 and T2 cells. A T2

cell is deployed when its Voronoi cell size is greater than a predefined threshold value,

η. Otherwise a T1 cell with radius R1, where R1 < R2, is deployed for these small-size

cells.

In Fig. 3.2 the two network deployments are illustrated. T2 cells are indicated in red

(dot-dashed) lines and T1 cells are indicated in red (solid) lines.
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(a) HomNet scenario
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(b) HetNet scenario

Figure 3.2: HomNets and HetNets.
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Figure 3.3: Topology 1 of a PPP distributed cellular network with N = 10 cells/BSs.

3.1.2 Network topologies

The N cells considered in this model can be spatially distributed in multiplicity of topologies,

within a unit region. Any system we consider is a particular topology of many random

topologies the Voronoi cell system can take. In Fig. 3.3 and Fig. 3.4, we illustrate 5 random

topologies that a PPP distributed cellular network with N = 10 cells/BSs could take. Fig.

3.3 illustrates the topology we adhere to, for single topology scenario and Fig. 3.4 illustrates

the four other topologies we refer to, in multiple topology scenario.
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(a) Topology 2
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(b) Topology 3
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(c) Topology 4
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(d) Topology 5

Figure 3.4: A PPP distributed cellular network with N = 10 cells/BSs.

3.2 Availability Definition from the Space Domain

Firstly, it is important to revisit the time domain definition of availability, before developing

our concept which defines network availability in the space domain. The space domain net-

work availability deals with the anywhere aspect of URC. The steady state availability in the

time domain, At, can be expressed as,

At =
MUT

MUT +MDT
. (3.1)

Analogous to the time domain, we adopt a similar ratio to define the space domain avail-
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ability of a cellular network. Conceptually, the network availability in the space domain is

defined as the ratio between the covered area by the BS(s) and the total area of a cell or

network of interest. Consider the randomness of cell sizes in SG cellular networks and denote

the mean covered area and the mean uncovered area as MCA and MUA respectively. We can

express the availability in the space domain, As, as,

As =
MCA

MCA+MUA
. (3.2)

Bringing forward the above concept, we further define more explicit availability terminologies

as follows.

3.3 Cell Availability

Cell availability, is the availability defined in the context of one cell in interest.

3.3.1 Single cell single topology (SCST)

In this scenario, cell availability is expressed for a BS located in a Voronoi cell i considering a

particular topology j of many random topologies the Voronoi cell system can take. Thus, cell

availability, i.e., Acs is defined as the covered area by the BS of an individual cell of interest

divided by the area (or size) of the Voronoi cell. More simply, it is the ratio of covered area

and the area of the cell. Denote these two areas by C(i, j) and S(i, j) respectively for a

randomly selected cell i, in a given network topology j. We have,

Acs(i, j) =

{
C(i,j)
S(i,j)

, if C(i, j) < S(i, j);

1, otherwise.
(3.3)

Note that, we are interested in defining cell availability for a particular cell, under a par-

ticular network topology using Eq. (3.3). For example, considering cell 6 of topology 1 shown

in Fig. 3.3, we calculate the cell availability of cell 6, i.e., Acs(6, 1).

Furthermore, the cell unavailability of cell i under network topology j, denoted by U c
s (i, j)

is defined as,

U c
s (i, j) = 1− Acs(i, j). (3.4)

3.3.2 Single cell multiple topology (SCMT)

Consider, M randomly deployed topologies of the system with N cells. We can obtain a more

generalized definition for availability of a particular cell i by defining the cell availability

Acs(i, :) as follows.
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Acs(i, :) =
1

M

M∑
j=1

(
C(i, j)

S(i, j)

)
(3.5)

where C(i, j) and S(i, j) denote the covered area and the cell size of cell i corresponding to

jth topology. Here, denoted by Acs(i, :) is the SCMT cell availability defined for the cell i

considering all M network topologies. It is worth to mention that, one can argue the above

definition as average cell availability of cell i. The only difference is that a single topology is

considered in Eq. (3.3) while the average of multiple topologies is considered in Eq. (3.5). For

example, for the same cell of interest, cell 6 we further calculate the cell availability Acs(6, :)

as defined by Eq. (3.5) by considering all 5 random topologies, i.e., topology 1,2,3,4 and 5 of

Fig. 3.3 and Fig. 3.4.

Furthermore, the cell unavailability of cell i under M network topologies, denoted by

U c
s (i, :) is defined as,

U c
s (i, :) = 1− Acs(i, :). (3.6)

3.3.3 Multiple cell single topology (MCST)

Considering a given topology, we can also calculate the average cell availability for the whole

system, by calculating cell availability for all the cells in the network, and then by taking

the average. Cell availability specified for this scenario can be also argued as average cell

availability of any cell in a system, since it is the average over cell availabilities of the N cells

in a particular topology. Therefore, for a randomly selected cell in a a given network topology

j consisting of N cells, the average cell availability Acs(:, j) is expressed as,

Acs(:, j) =
1

N

N∑
i=1

Acs(i, j). (3.7)

Furthermore, the cell unavailability for the network topology j, denoted by U c
s (:, j) is

defined as,

U c
s (:, j) = 1− Acs(:, j). (3.8)

3.3.4 Multiple cell multiple topology (MCMT)

For a randomly selected cell, among M randomly deployed topologies of a system with N

cells, the average cell availability Ācs can be expressed as,

Ācs =
1

M

M∑
j=1

Acs(:, j) =
1

N

N∑
i=1

Acs(i, :), (3.9)

and also,
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Ācs =
1

N

N∑
i=1

(
1

M

M∑
j=1

Acs(i, j)

)
. (3.10)

Therefore,

Ācs =
1

N M

N∑
i=1

M∑
j=1

Acs(i, j). (3.11)

It should be highlighted that, this is the most generalized definition of cell availability, by

the virtue of taking into account random cell and topology occurrences. Furthermore, the

average cell unavailability can be defined as,

Ū c
s = 1− Ācs. (3.12)

3.4 System Availability

System availability is the availability defined for the whole system considering the total cov-

erage area composed of all the cells within it.

3.4.1 Single topology (ST)

For a specific network topology j, the system availability, Ass(j) is defined as the ratio between

the sum of the total covered area of all individual cells and the total area of the network

including all N cells. That is,

Ass(j) =


∑N
i=1 C(i,j)−∆∑N
i=1 S(i,j)

, if
∑N

i=1 C(i, j)−∆ <
∑N

i=1 S(i, j);

1, otherwise
(3.13)

where ∆ represents those overlapped coverage areas among neighboring BSs and the ‘exur-

ban’ areas of outer-tier cells. While an overlapping area is an area mutually covered by two

or more neighboring BSs, an exurban area is the area which belongs to an outer-tier cell but

falls outside the region of interest, i.e., beyond the 1× 1 border as illustrated in Fig. 3.5.

Furthermore, system unavailability of topology j, denoted by U s
s (j) is defined as,

U s
s (j) = 1− Ass(j). (3.14)

3.4.2 Multiple topology (MT)

The system availability, can also be defined considering multiple topologies to obtain a more

generalized expression. For M randomly deployed topologies of a system with N cells, Āss is

given by,
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Figure 3.5: Illustration of the overlapping areas among neighboring BSs and the exurban
areas of outer-tier cells in topology 1 of the PPP distributed cellular network. Shown in green
color and yellow color are the exurban areas and overlapping areas respectively.

Āss =
1

M

M∑
j=1

Ass(j). (3.15)

Moreover, the average system unavailability Ū s
s is given by,

Ū s
s = 1− Āss. (3.16)

The goal of achieving URC in the space domain is to diminish cell and system unavailability

to a sufficiently low level.

3.5 Guaranteed Availability

Even though a high level of availability is expected for applications such as mission critical

applications, safety applications so on, there is no guarantee that it can be obtained in a

network everywhere. The average availability itself does not provide a complete view regarding

the obtained availability from the system’s point of view. Network operators may additionally

be interested in obtaining the probability of achieving a given level of availability. In this

section, we introduce another dependability measure of guaranteed availability of a network

using a stochastic approach. The importance of this measure is that, it could expresses the

probability of providing a predetermined or guaranteed level of availability [72].
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3.5.1 The normalized size of a PV polygon: A stochastic view

There is no standard closed form expression provided for the average area of a Voronoi cell in

the literature. Instead of obtaining an explicit expression for g(S), it is more convenient to

use a general fY (y) distribution function to express the normalized cell sizes y = S/S̄, where

S is the area of Voronoi cell and S̄ = 1
N

∑N
i=1 S(i). In other words, S̄ denotes the average size

of a PV cell. Rewriting, the PDF of a normalized PV cell area y in a two-dimensional space

as [68],

fY (y) =
343

15

√
7

2π
y2.5exp (−3.5y) . (3.17)

Furthermore, from the CDF of Eq. (3.17), which is given by Eq. (3.18), we can obtain the

probability that the normalized Voronoi cell area y is smaller than or equal to a value c and

it is given by Eq. (3.19).

FY (y) = P (Y ≤ y) =

∫ y

0

fY (u) du. (3.18)

P (y ≤ c) =

∫ c

0

fY (y) dy. (3.19)

According to the simulations done in [68], the PV cells normalized area distribution func-

tion in two dimension can be illustrated as in Fig. 3.6. Empty circles are simulation results

which fits into a Gamma distribution and the point-dashed line is the corresponding CDF.

3.5.2 Guaranteed cell availability

As defined in Eq. (3.3), the cell availability equals to one when the cell size is smaller than or

equal to the covered area of the BS. Accordingly, Eq. (3.19) is equivalent to the probability

that Acs = 1 given that the value c, i.e., the upper limit of the integral, is equal to the

normalized covered area of the BS covering that cell. Mathematically, it is expressed as

P (Acs = 1) ≡ P (c ≥ y) =

∫ c

0

fY (y) dy. (3.20)

Note that availability equals to one implies that full connectivity is obtained everywhere in

the cell, indicating that URC can be achieved in this cell in the space domain.

Let us now target at a general guaranteed cell availability level of β where (0 < β < 1).

Then the probability for providing a guaranteed availability level greater than or equal to β

by the cell is given by,

P (Acs ≥ β) ≡ P (y ≤ yi) =

∫ yi

0

fY (y) dy (3.21)
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Figure 3.6: The Voronoi cells normalized area-distribution function in 2D [68].

where yi = MCA/(S̄β) is the corresponding normalized cell area.

This can be explained elaborately, using the following example with reference to the topol-

ogy 1 of the system as shown in Fig. 3.3. The cell areas calculated using the Shoelace formula

is as , S(1) = 0.1489 km2, S(2) = 0.2163 km2, S(3) = 0.0354 km2, S(4) = 0.054 km2, S(5) =

0.2094 km2, S(6) = 0.0733 km2, S(7) = 0.0828 km2, S(8) = 0.0575 km2, S(9) = 0.08 km2

and S(10) = 0.0423 km2.

Then, we can find S̄ as,

S̄ =

∑10
i=1 S(i)

10
= 0.1 km2 (3.22)

Normalized cell area y for each cell is calculated using Eq. (3.23), and y(1) = 1.4891,

y(2) = 2.1631, y(3) = 0.3542, y(4) = 0.5404, y(5) = 2.0938, y(6) = 0.7328, y(7) = 0.8282,

y(8) = 0.5746, y(9) = 0.8003 and y(10) = 0.4234.

y(i) =
S(i)

S̄
(3.23)

Therein, the general distribution function to express the normalized cell sizes y = S/S̄, is

given by Eq. (3.17).
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Let us now assume that a particular cell in the system, which is chosen randomly, is

required to provide a guaranteed availability, β = 0.9. If we limit the BS’s transmission

power to a pre-determined value, i.e. assume the BS coverage is governed by R = 0.15 km,

we can find the normalized cell area that the cell in interest should occupy, when β = 0.9,

y(i) =
MCA

S̄ β
,

MCA = π ∗R2 = π ∗ 0.152 km2,

y(i) =
π ∗ 0.152 km2

0.1 km2 × 0.9
= 0.785.

From Eq. (3.21) and the CDF plotted in Fig. 3.6, we know that,

P (Acs ≥ 0.9) ≡ P (y ≤ 0.785) =

∫ 0.785

0

fy (y) dy ≈ 0.44.

3.6 Space Domain Availability in a PV Network

In the previous sections, we introduced the definitions and the terminologies which we propose

in order to analyze the space domain availability of any cellular network. In this section, we

explain how those preliminaries can applied to evaluate the space domain availability in a PV

network.

3.6.1 Generating Voronoi diagram

Given a set of random seeds or centers, a Voronoi diagram for the two-dimensional case, was

sketched using the the perpendicular bisectors method [73], [74]. Starting from a given center

(C0), the nearest neighboring seed (C1) to it, was detected. Then the perpendicular bisector

on the C0C1 line was created which formed the first edge of the Voronoi polygon correspond-

ing to C0. Then the second nearest neighboring seed (C2) was detected and the perpendicular

bisector on C0C2 became the second edge of the Voronoi polygon. This algorithm was con-

tinued with the third (C3), fourth (C4),. . . nearest seeds, until the perpendicular bisectors

on C0C3, C0C4,.. . . created a closed polygon which does not change after considering any

more distant points. Repeating the above algorithm for all centers in the considered system

generated the Voronoi tessellation of the whole system.
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3.6.2 Size of a Voronoi polygon: A deterministic expression

To deterministically compute the areas of each Voronoi polygon in a PVT, the well-known

shoelace formula can be adopted. It is a mathematical algorithm to calculate the area of

a simple two-dimensional polygon whose vertices are represented by ordered pairs in the

plane [75]. Let (xl, yl) be the coordinates of vertex l, v be the number of edges of the Voronoi

polygon, and S be the area of the polygon. Then the formula to calculate the area of the

Voronoi polygon is expressed as,

S =
1

2

∣∣∣∣∣
v−1∑
l=1

xlyl+1 + xvy1 −
v−1∑
l=1

xl+1yl − x1yv

∣∣∣∣∣ . (3.24)

The individual cell areas are calculated from Eq. (3.24) and they are used to compute the

cell and system availability metrics defined in Sec. 3.3 and Sec. 3.4 by replacing S with S(i, j)

for cell i under topology j.

3.6.3 Cell and system availability for HomNets

The cell availability for SCST scenario was simulated using Alg. 1 as shown below. Simula-

tions were carried out for the cell number 6 in Fig. 3.7 which is considered as the reference

cell (RC) in this study. The outbound coverage area is the BS coverage which extends beyond

the boundaries of the cell in interest as highlighted (in yellow color) in Fig. 3.8.

Algorithm 1: Algorithm to estimate the cell availability for SCST.

Input: xB , yB : Cartesian coordinates of the BS
Input: R : Radius of the BS coverage
Output: Acs(i, j) : Cell availability of the corresponding BS i under the jth topology

[1] Calculate C(i, j) = πR2

[2] Generate the Voronoi diagram using (xB , yB) pairs
[3] Find the vertices of the cell, (xl, yl) of the Voronoi diagram
[4] Input (xl, yl) pairs to calculate the cell area S(i, j) using the Shoelace formula Eq. (3.24)
[5] Calculate Cout(i, j), i.e., exurban coverage area
[6] if C(i, j)− Cout(i, j) ≤ S(i, j) then

[7] Acs(i, j) = C(i,j)−Cout(i,j)
S(i,j)

[8] else
[9] Acs(i, j) = 1

[10] end

Fig. 3.9 illustrates the obtained U c
s (i, j) variation for the RC as the BS coverage, i.e., πR2

increases. It is observed that smaller the BS coverage is, higher the unavailability turns. BS

coverage is dependent on the transmission power level. Thus, we can also state that the un-

availability decreases monotonically to a substantially low level, as the transmission power of

the BS increases. By providing favorable conditions and sufficiently large transmission power

to the BS, cell unavailability can be reduced to zero, implying that all the users residing in

the RC are connected to the network through the coverage of the serving BS. Also, attaining
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Figure 3.7: Illustration of the RC (i = 6) in topology 1 of the PPP distributed cellular
network.

Figure 3.8: Illustration of the outbound coverage area of the RC (i = 6) in topology 1 of the
PPP distributed cellular network.

cell unavailability closer to zero means achieving URC within the cell.

To further investigate cell unavailability, we deploy M = 5 different topologies for the

same PV network with N = 10 cells but still select the cell in the center of the network

topology as the RC as shown in Fig. 3.7. The algorithm presented in Alg. 2 is used to run

the simulations for SCMT scenario.
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Figure 3.9: SCST cell unavailability of the RC (i = 6) for topology j = 1 as BS the coverage
increases.

Algorithm 2: Algorithm to estimate the cell availability for SCMT.

Input: M : Number of topologies
Input: xB(i, j), yB(i, j) : Cartesian coordinates of the BS of the jth topology
Input: R : Radius of the BS coverage
Output: Acs(i, :) : The average availability of the cell in interest considering M topologies

[1] for j=1:M do
[2] Run Alg. 1 to find Acs(i, j)
[3] end

[4] Acs(i, :) = 1
M

∑M
j=1A

c
s(i, j)

Fig. 3.10 illustrates the individual cell unavailability behavior for the RC under each

topology in colored (dashed) plots (obtained based on Eq. (3.3) under SCST scenario) and

averaged over 5 topologies in blue (solid with triangle marks) line (obtained based on the de-

fined Acs(i, :) in Eq. (3.5) under SCMT scenario). It is evident that the relationship between

the cell unavailability and the BS coverage agrees with what is observed in Fig. 3.9. When

the BS coverage area increases, a large portion of the PV cell can be covered. Therefore,

the availability of the cell increases. The gap between the cell availability curves related to

each topology are governed by the randomness of each deployment. As a consequence, higher

unavailability is entailed where RC occupies a larger cell area in the respective topology where

as lower unavailability is observed where RC occupies a smaller cell area. This result implies

also that it may not be beneficial to deploy the same type of cells in a PV network where a

mix of small-sized and large-sized cells are placed if URC is required.

Shown among the plots is the average unavailability of the different topologies. This
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Figure 3.10: SCST and SCMT cell unavailability of the RC i = 6 for M = 5 topologies as
the BS coverage increases.

Table 3.1: Comparison of SCST and SCMT cell availability

R(km) 0.05 0.1 0.15 0.2
Acs(6, 1) 0.1072 0.4287 0.8278 0.9284
Acs(6, 2) 0.0638 0.2546 0.5071 0.7610
Acs(6, 3) 0.0452 0.1706 0.3288 0.5230
Acs(6, 4) 0.0590 0.2248 0.4107 0.5022
Acs(6, 5) 0.0432 0.1728 0.3887 0.6355

Acs(6, :) 0.0637 0.2503 0.4926 0.6700

provides overall and general insight about the cell unavailability variation without any at-

tachment to a specific topology deployment. Although this also depicts a similar trend with

gradually decreasing unavailability with the increasing BS coverage, it is worth to get the

general behavior of any randomly selected cell in any deployment scenario.

Tab. 3.1 shows the numerical results obtained for above illustrated network topologies.

Note that Acs(6, j) and Acs(6, :) are obtained via Eq. (3.3) and Eq. (3.5) respectively. The cell

of interest is cell number i = 6 and there are M = 5 topologies, i.e., j = 1, 2, 3, 4, 5.

In MCST and MCMT scenarios we need to include all cells in the studied network. Since

we consider the whole network for defining average cell availability or the system availabil-

ity, we may deploy either the same type of cells (i.e., HomNets) or two types of cells (i.e.,

HetNets). For the HetNet scenario, the threshold to distinguish a cell as a T1 or T2 cell is

configured as η = 0.085 unit2 as described in Sec. 3.1.1. The radius of the BS coverage for
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a T1 or T2 cell varies as R1 = 0.1 ∼ 0.16 or R2 = 0.1 ∼ 0.2 unit respectively. These units

would represent kilometers in real-life scenarios, since the average cell size can vary between

one to few kilometers.

Alg. 3 proposes the algorithm which was used to carry out the MATLAB simulations

for MCST scenario and Alg. 4 proposes the algorithm for average cell availability in MCMT

scenario. Algorithms for calculating system availability are depicted in Alg. 5 and Alg. 6 for

ST scenario and MT scenario respectively.

Algorithm 3: Algorithm to estimate the cell availability for MCST in HomNets.

Input: xB , yB : Cartesian coordinates of the BS
Input: N : Number of cells in the topology
Input: R : Radius of the BS coverage
Output: Acs(:, j) : The average availability of any cell in the topology j

[1] for i=1:N do
[2] Run Alg. 1 to find Acs(i, j)
[3] end

[4] Calculate Acs(:, j) = 1
N

∑N
i=1A

c
s(i, j)

Algorithm 4: Algorithm to estimate the cell availability for MCMT in HomNets.

Input: xB , yB : Cartesian coordinates of the BS
Input: N : Number of cells in the topology
Input: M : Number of topologies
Input: R : Radius of the BS coverage
Output: Ācs : The average availability of any cell in any given topology

[1] for i=1:N do
[2] Run Alg. 1 to find Acs(i, j)
[3] end

[4] Ācs = 1
M

∑M
j=1

(
1
N

∑N
i=1A

c
s(i, j)

)

Algorithm 5: Algorithm to estimate the system availability for ST in HomNets.

Input: xB , yB : Cartesian coordinates of the BS
Input: N : Number of cells in the topology
Input: R : Radius of the BS coverage
Output: Ass(j) : System availability of topology j

[1] Generate the Voronoi diagram using (xB , yB) pairs
[2] Find the vertices of the cell, xl, yl of the Voronoi diagram
[3] Input (xl, yl) pairs to calculate the area of each cell S(i, j) for each topology using Eq. (3.24)
[4] Calculate the total exurban BS coverage outside the unit square region Cexurban(j) for each topology
[5] Calculate the total overlaps between BS coverages Coverlap(j) for each topology
[6] Calculate Ctot(j) = N × πR2 − Cexurban(j)− Coverlap(j)
[7] if Ctot(j) ≤

∑N
i=1 S(i, j) then

[8] Ass(j) = Ctot(j)∑N
i=1 S(i,j)

[9] else
[10] Ass(j) = 1
[11] end
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Figure 3.11: SCST, MCST cell and ST system unavailability in a HomNet with N = 10 cells
for topology j = 1.

Fig. 3.11 depicts the change of unavailability with the change of coverage of BS for the

HomNet scenario considering topology 1 cell deployment. The plots shown in green (dashed)

are the unavailability of individual cells and the average cell unavailability is shown in blue

(solid with triangle marks) plot. The average of the individual cell availabilities of the 10 cells

has been calculated as the average unavailability for MCST scenario. The system unavail-

ability is plotted in red (solid with plus marks) as the BS coverage increases. The illustrated

system unavailability is falling under the ST scenario since it is calculated solely for topology 1.

When the coverages of the BSs are at its minimum the unavailability of the system is

the highest, because most probably a user could fall inside the uncovered area. Increasing

the radius of the BS coverage will obviously reduce the system unavailability of the whole

circular system but as shown from the plot many cells reach the zero unavailability before the

average unavailability reaches there. While cells which occupies a larger geographical area,

need a higher transmit power to reduce the high levels of unavailability, smaller cells require

comparably low transmit power to reach the same level of unavailability. This implies that

URC can be achieved by increasing the transmit power of the BSs and thereby increasing the

BS coverages. Because of the diversity of cell sizes in a PV network, it is not necessary and

meaningful to uplift the radius of the coverage or the transmit power for the whole system

simultaneously. Therein, we perceive the need of deploying HetNets. Thus, it is appreciable

to analyze the unavailability for HetNets.

Tab. 3.2 shows the numerical results obtained for above illustrated network topologies,
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Table 3.2: Comparison of MCST and MCMT cell availability for N = 10 cells and M = 5
topologies

R(km) 0.05 0.1 0.15 0.2
Acs(:, 1) 0.1085 0.3789 0.7031 0.9025
Acs(:, 2) 0.0980 0.3605 0.6651 0.9170
Acs(:, 3) 0.1008 0.3625 0.7376 0.8736
Acs(:, 4) 0.1301 0.4341 0.6992 0.8959
Acs(:, 5) 0.0961 0.3892 0.7141 0.9139

Ācs 0.1067 0.3850 0.7038 0.5386

i.e. N = 10 cells in a system and M = 5 topologies. Note that Acs(:, j) and Ācs are obtained

via Eq. (3.7) and Eq. (3.11) respectively.

To obtain more general definitions, it is worth to analyze multiple topology scenarios and

take the averages. Thus, availability of HomNet was also evaluated for cell availability in

MCMT scenario and system availability considering MT scenario. The algorithm used to

evaluate the system availability under M topologies is given in Alg. 6.

Algorithm 6: Algorithm to estimate the system availability for MT in HomNets.

Input: xB , yB : Cartesian coordinates of the BS
Input: N : Number of cells in the topology
Input: M : Number of topologies
Input: R : Radius of the BS coverage
Output: Āss : Average system availability

[1] for j=1:M do
[2] Run Alg. 5 to find Ass(j)
[3] end

[4] Calculate Āss = 1
M

∑M
j=1A

c
s(j)

As illustrated in Fig. 3.12, green (dashed) curves are the SCMT cell unavailability varia-

tions for individual cells with the total BS coverage of the system. Blue (solid with triangle

marks) plot indicates the MCMT average cell unavailability of 10 cells over 5 topologies.

It also follows the same trend as in SCST ans SCMT scenarios but provides a more realis-

tic analysis of the average cell availability. The average system unavailability behavior for

M = 5 topologies can be observed by the red (solid with plus marks) curve which shows

a approximate linear relationship with the coverage radius. But it should be noted that

this curve does not reflect the 100% accurate variation of the system unavailability, since we

had to ignore the coverage area overlapping of more than 3 coverage areas due to calcula-

tion complexity. Same applies to the system unavailability calculations in ST scenario as well.

Tab. 3.3 shows the numerical results obtained for the above illustrated network topologies.

Note that Ass(j) and Āss are obtained via Eq. (3.13) and Eq. (3.15) respectively. The system

of interest consists of N = 10 cells and there are M = 5 topologies.
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Figure 3.12: SCMT, MCMT cell and MT system unavailability in a HomNet with N = 10
cells for M = 5 topologies.

Table 3.3: Comparison of ST and MT system availability

R(km) 0.05 0.1 0.15 0.2
Ass(1) 0.0751 0.2833 0.5820 1.0000
Ass(2) 0.0758 0.2770 0.5748 1.0000
Ass(3) 0.0729 0.2591 0.6324 1.0000
Ass(4) 0.0725 0.2721 0.6156 1.0000
Ass(5) 0.0670 0.2714 0.5973 1.0000

Āss 0.0727 0.2726 0.5908 1.0000

3.6.4 Cell and system availability for HetNets

Now we convert the same PV network into a HetNet with N = 10 cells, where there are 7 T1

cells and 3 T2 cells with η = 0.085. Algorithms for calculating MCST average cell availability,

ST system availability are depicted in Alg. 7 and Alg. 8 respectively.

Fig. 3.13 illustrates how the cell unavailability and system unavailability vary for a Het-

Net considering a MCST scenario. Illustrated by the green (dashed) curve is the individual

cell unavailability, in blue (solid with triangle marks) curve is the average cell unavailability

and the system unavailability shown in red (solid with plus marks) lines as the BS coverage

increases, for the HetNet scenario.
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Algorithm 7: Algorithm to estimate the cell availability for MCST in HetNets.

Input: xB , yB : Cartesian coordinates of the BS
Input: N : Number of cells in the topology
Input: η : Cell area threshold
Input: R1 : Radius of the coverage of a T1 cell
Input: R2 : Radius of the coverage of a T2 cell
Output: Acs(:, j) : The average cell availability of any cell in the topology j

[1] Generate the Voronoi diagram using (xB , yB) pairs
[2] Find the vertices of the cell, (xl, yl) from the Voronoi diagram
[3] Input (xl, yl) pairs to calculate the cell area S(i, j) using Eq. (3.24)
[4] if (S(i, j)) ≤ η then
[5] C(i, j) = π(R1)2;
[6] if (C(i, j)) ≤ S(i, j) then

[7] Acs(i, j) = C(i,j)
S(i,j) ;

[8] else
[9] Acs(i, j) = 1

[10] end

[11] else
[12] C(i, j) = π(R2)2;
[13] if (C(i, j)) ≤ S(i, j) then

[14] Acs(i, j) = C(i,j)
S(i,j) ;

[15] else
[16] Acs(i, j) = 1
[17] end

[18] end

[19] Calculate Acs(:, j) = 1
N

∑N
i=1A

c
s(i, j)

Algorithm 8: Algorithm to estimate the system availability for ST in HetNets.

Input: xB, yB : x, y coordinates of the BS
Input: N : Number of cells in the topology
Input: η : Cell area threshold
Input: R1 : Radius of the coverage of a T1 cell
Input: R2 : Radius of the coverage of a T2 cell
Output: Ass(j) : System availability of topology j

[1] Generate the Voronoi diagram using (xB , yB) pairs
[2] Find the vertices of the cell, xl, yl of the Voronoi diagram
[3] Input (xl, yl) pairs to calculate the cell area S(i, j) using Eq. (3.24)
[4] if (S(i, j)) ≤ η then
[5] C(i, j) = π(R1)2

[6] else
[7] C(i, j) = π(R2)2

[8] end
[9] Calculate the total BS coverage outside the unit square region Cexurban(j)

[10] Calculate the total overlaps between BS coverages Coverlap(j)

[11] Calculate Ctot(j) =
∑N
i=1 C(i, j)− Cexurban(j)− Coverlap(j)

[12] if Ctot(j) ≤
∑N
i=1 S(i, j) then

[13] Ass(j) = Ctot(j)∑N
i=1 S(i,j)

[14] else
[15] Ass(j) = 1
[16] end
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Figure 3.13: SCST, MCST cell and ST system unavailability in a HetNet with 3(7) T2(T1)
cells for topology j = 1 .

3.6.5 Availability and transmission power tradeoff

Fig. 3.14 brings out a comparison of average cell unavailability (blue plots) and system un-

availability (red plots) of HomNet and HetNet. Blue (solid with circle marks) curve and

blue (solid with plus marks) curve illustrate the average cell unavailability of topology 1 for

HomNet and HetNet respectively. Red (solid with circle marks) curve and red (solid with

plus marks) curve illustrate the system unavailability of topology 1 for HomNet and HetNet

respectively.

When compared with the average unavailability of HomNet (in which all cells have the

same radius as R2) with HetNet, we observe that unavailability of the HetNet is higher for the

coverage area defined for the T2 cells. This is because the coverage of those T1 cells is lower

than that of the T2 cells. This is reasonable since received power is inversely proportional

to the distance between the transmitter and the receiver, according to the radio propagation

model in the free space. Although this is not favorable from the mobile user’s perspective,

service provider can compensate the tradeoff via the reduced transmission power levels ob-

tained after the introduction of micro cells (T1 cells).

To study the tradeoff between system availability and transmission power, we calculate

and compare the total BS transmission power in the HomNet versus in the HetNet. For

illustration simplicity, the free space propagation model is adopted in our calculation, i.e.,
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Figure 3.14: Comparison of MCST cell/ST system unavailability in a HomNet with N = 10
cells and HetNet with 3(7) T2(T1) cells for topology j = 1 .

PR(d) =
PTGTGRλ

(4π)2dαL

2

(3.25)

where, PR(d) is the reception power at the UE which is d distance away from the BS, PT

is the transmission power, GT and GR are the antenna gains of the transmitter and the re-

ceiver respectively, λ is the wavelength in meters, α is the path loss coefficient, and L is the

system loss factor. Assume that Gt = Gr = 1, α = 2.5, L = 1, and λ = 15 cm. Configure

PR(R) = 0.1 µW as the required PR for a UE which is located at the boundary of the BS

coverage, with radius R. Consider the N = 10 cell network shown in Fig. 3.1.

Tab. 3.4 illustrates the numerical results on the obtained system availability and the total

(i.e., for 10 cells together) required transmission power for both HomNet and HetNet. Keep

the same threshold as η = 0.085 km2. There are respectively 7 T1 cells (with coverage radius

R1) and 3 T2 cells (with coverage radius R2) in the HetNet case. In the HomNet case, all 10

cells are homogeneous with coverage radius R2.

With four different combinations of cell coverage for T1 (with radius R1) and T2 (with

radius R2) cells, we illustrate the tradeoff between system availability and total transmis-

sion power. For instance, the last row tells us that to increase the system availability from

Ass(1) = 63.48% (obtained by the HetNet) to Ass(1) = 100% (obtained by the HomNet) which

indicates that URC is supported, a 70% higher power level is required.
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Table 3.4: The tradeoff between availability and transmission power

R1

(km)
R2

(km)
HetNet HomNet

Ass(1) Total PT (W) Ass(1) Total PT (W)

0.11 0.17 0.4395 1416.85 0.7739 2644.60
0.11 0.20 0.5030 1814.53 1.0000 3970.20

0.14 0.17 0.5736 1932.72 0.7739 2644.60
0.14 0.20 0.6348 2330.40 1.0000 3970.20

It can be seen that the required transmission power is much lower in a HetNet compared

to a HomNet although the availability is higher. This is an advantage in the service provider’s

eye, eventhough the mobile user might suffer from lack of connectivity in certain occasions.

3.6.6 Guaranteed cell availability

The algorithm which has been followed to analyze the guaranteed cell availability is given

below by Alg. 9.

Algorithm 9: Algorithm to estimate the guaranteed cell availability.

Input: xB , yB : x, y coordinates of the BS
Input: N : Number of cells in the topology
Input: β : Required availability level
Input: R : Radius of the BS coverage
Output: P (Acs ≥ β) : The guaranteed cell availability corresponding to the BS at (xB , yB)

[1] Generate the Voronoi diagram using (xB , yB) pairs
[2] Find the vertices of the cell, xl, yl of the Voronoi diagram
[3] Input (xl, yl) pairs to calculate the cell area S(i, j) using Eq. (3.24)

[4] Calculate S̄ =
∑N
i=1 S(i,j)

N
[5] Calculate C = π(R)2

[6] Calculate y = C
βS̄

[7] Calculate P (Acs ≥ β) =
∫ y

0
f2D (y) dy

Fig. 3.15 illustrates this probability for 2 cell radius values of a HomNet where the mean

cell coverage is calculated as MCA = πR2. To obtain the definite integral in Eq. (3.21), the

CDF of the normalized cell areas derived in [68] is adopted. Evidently, the higher the required

availability level, the lower the probability to achieve it. Meanwhile, a larger cell coverage

would increase the probability for providing a guaranteed availability level for a particular

cell which may in turn provide URC.

45



3.7. CHAPTER SUMMARY

Guaranteed availability, β
0 0.2 0.4 0.6 0.8 1

P
ro
b
a
b
il
it
y
,
P
(A

c s
≥

β
)

0

0.2

0.4

0.6

0.8

1

R = 0.14 km

R = 0.17 km

Figure 3.15: The probability for providing a guaranteed cell availability level.

3.7 Chapter Summary

This chapter discloses the study we carried out to obtain connectivity-based availability defi-

nitions assuming circular BS coverages. Firstly, the developed system model was introduced

along with the different scenarios and assumptions considered. Then the cell availability

definitions were explained for SCST, MCST, SCMT and MCMT cases and for HomNet and

HetNet cell deployments. Similarly, system availability definitions were described for ST and

MT for HomNets and ST HetNets. Followed by the cell and system availability, we also

present a definition for guaranteed cell availability using a stochastic approach. Algorithms

for all the scenarios are enclosed as well. A comparison was carried out in between HomNets

and HetNets to evaluate the availability and transmission power tradeoff.

46



Chapter 4

SINR-based URC Concepts and

Analysis

In Chap. 3, we proposed a cellular system which is modeled using SG tools with an assumption

on circular-shaped BS coverage for each cell. However, one may argue that this assumption

might not be valid to characterize the real life cellular networks. Thus, in Chap. 4 we de-

rive expressions for cell availability and system availability assuming that the BS coverage is

affected by SINR, hence not certainly circular-shaped coverages.

4.1 System Model

In this chapter we continue studying the previously introduced system model in Sec. 3.1 of

Chap. 3, which is modeled as a PV network with N cells. In contrast to the previous system

model, our underlying assumptions are differed as follows.

� All BSs are formed based on homogeneous PPP of intensity λB in the Euclidean plane.

� In each cell, one BS is deployed and one omni-directional antenna is mounted on each

of them. However, SINR deterioration over distance has a significant impact on the

coverage of each BS.

� Frequency re-use factor of the system is one. Therefore, the whole band of frequency

used in a particular cell is reused in each of the adjacent cells.

� Same channel type and propagation conditions are considered.

4.2 SINR and Coverage

From rewriting the Eq. (2.13) after expanding the denominator and nominator we get,

SINR0,j =
P i,j
T Lipu

i
gu

i
lG

i
R

kTsys∆f +
∑M

i=1 P
i,j
T Lipu

i
gu

i
lG

i
R

. (4.1)
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Followed by the assumption that the interference term I0,j in the denominator may be

much higher than the noise term N , (especially since the frequency reuse factor of system is

tight), we could assume that N ≈ 0 and ignore the noise term in Eq. (2.13) for the ease of

our analysis. This is sometimes also called as signal to interference ratio (SIR). Having the

knowledge of SINR, we now advance to investigate the relationship between the SINR and

the coverage of a cell or the whole system. Thereby, we can relate the spatial characteristics

of a cellular network to SINR and derive expressions for availability.

We begin with the assumption, that P i,j
T , uig, u

i
l, G

i
R are same for all the cells in the system.

Therefore, we can rewrite Eq. (4.1) as follows.

SINR0,j =
Lip∑M
i=1 L

i
p

. (4.2)

Also, Lip which is the propagation loss between the transmitter and the receiver for user,

is given by,

Lip =
λ2

(4π)2(di)α
(4.3)

where, d is the distance between the mobile user and the BS, λ is the wavelength in meters

and α is the path loss coefficient as introduced in Eq. (3.25). Substituting from Eq. (4.3) and

using the assumption of unity frequency reuse factor, we get the mathematical expression

which relates SINR and distance as in Eq. (4.4).

SINR0,j =
(di)−α∑M
i=1(di)−α

. (4.4)

For the further clarification of the work documented in the rest of the chapter, we define

the terminology of SINR threshold as below.

SINR threshold: is the minimum SINR that a UE should achieve in order to get a suffi-

cient level of service from the BS.

By setting an appropriate SINR threshold, we can find the maximum allowable distance

from the BS that a mobile user should fall within a cell. If a user fall inside the maximum

allowable distance, we assume that a successful demodulation can be attained at the UE.

This distance defines the maximum coverage area offered by a BS to meet a given required

level of SINR.
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4.3 SINR-based Cell Availability

Bringing forward the concept of the availability definition from the space domain as proposed

in Eq. (3.2), we define the SINR-based cell availability as the area covered by the minimum

SINR or the SINR threshold contour over the area of the cell of interest. Thus, we can express

the SINR-based cell availability in the space domain, Acs(i, j) as,

Acs(i, j) =


CSINR(i,j)
S(i,j)

, if CSINR(i, j) < S(i, j);

1, otherwise.
(4.5)

where, CSINR(i, j) and S(i, j) denote area covered by the SINR threshold and area (or size)

of the PV cell respectively for a randomly selected cell i of topology j.

To provide coherent definitions as proposed in Sec. 3.3, we can further develop cell avail-

ability definitions for SCMT, MCST and MCMT scenarios.

4.4 SINR-based System Availability

System availability is the availability defined for the whole system considering the total area

covered by the SINR threshold of each cell and the total area of the region considered which

contains all the cells. Accordingly, we express the SINR-based system availability considering

a particular topology j, Ass(j) as,

Ass(j) =


∑N
i=1 CSINR(i,j)−∆∑N

i=1 S(i,j)
, if

∑N
i=1 CSINR(i, j)−∆ <

∑N
i=1 S(i, j);

1, otherwise
(4.6)

where, ∆ represents the overlap between the contours defined by the SINR threshold among

neighboring BSs and the area which belongs to an outer-tier cell but falls outside the region of

interest. Furthermore, we can also define the SINR-based system availability by considering

the MT scenario separately as in Sec. 3.4.

4.5 SINR Threshold Contours

According to the definitions proposed above, in order to analyze the SINR-based cell or sys-

tem availability in the space domain, we have to estimate the coverage area of the SINR

threshold contour. Alg. 10 shows the algorithm which is employed to create the SINR thresh-

old contour in the MATLAB simulations. Unless otherwise stated, parameters are configured

as α = 2.5, Th = 0.4 : 0.05 : 0.6, N = 10,M = 5.

Fig. 4.1 and Fig. 4.2 illustrate how the contour for a comparably low and high SINR
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Algorithm 10: Algorithm to estimate the SINR threshold contour.

Input: xB , yB : Cartesian coordinates of the BS of the RC
Input: N : Number of cells in the topology
Input: Th : SINR threshold
Input: α : Path loss coefficient
Output: xp, yp : Cartesian coordinates along the SINR threshold contour

[1] for z = π
180 : π

180 : 2π do
[2] d = 0.001 : d is the initial distance from the BS of the RC to any user
[3] xp(z) = xB + d cos(z)
[4] yp(z) = yB + d sin(z)
[5] I(z) = 0 : I(z) is the interference at the point (xp(z), yp(z))
[6] for i = 1 : N do

[7] dist(z, i) =
√

(xp(z)− xB(i))2 + (yp(z)− yB(i))2 : dist(z, i) is the distance to the point

(xp(z), yp(z)) from the ith BS
[8] I(z) = I(z) + dist(z, i)−α

[9] end

[10] SINR(z) = d−α

I(z)−d−α

[11] while SINR(z) ≥ Th do
[12] d = d+ 0.001;
[13] xp(z) = xB + d cos(z)
[14] yp(z) = yB + d sin(z)
[15] for i = 1 : N do

[16] dist(z, i) =
√

(xp(z)− xB(i))2 + (yp(z)− yB(i))2

[17] I(z) = I(z) + dist(z, i)−α

[18] end

[19] SINR(z) = d−α

I(z)−d−α

[20] end

[21] end

thresholds are distributed spatially within the RC respectively. Fig. 4.1(a) (or Fig. 4.2(a))

presents the RC and its SINR threshold contour within the system of interest and Fig. 4.1(b)

(or Fig. 4.2(b)) illustrates the zoomed-in view of the SINR threshold contour of the RC. As

it is evident from Fig. 4.1 and Fig. 4.2, now the coverage of the BS can not be considered as

circular, as we assumed in Chap. 3 even though omni-directional antennas are mounted on

the BS.

When comparing Fig. 4.1 with Fig. 4.2 we observe that contour drawn for high SINR

threshold is a smoother contour with less bounces along it. In contrast, the contour corre-

sponding to the low SINR threshold is not smooth and takes a random shape. This can be

explained, by focusing on the nominator and the denominator of the SINR expression given

in Eq. (4.4).

A lower SINR threshold indicates that the UE can receive a lesser power from the BS

thus, can locate remotely to the tagged BS. Meanwhile moving away from the tagged BS

within the cell means the received power from the neighboring BSs or the interference be-

comes substantial with comparison to the received power from the tagged BS. By thorough

examination of Fig. 4.1(a), we can identify that the contour is biased towards the tagged cell,
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Figure 4.1: The coverage contour for a low SINR threshold.
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Figure 4.2: The coverage contour for a high SINR threshold.

i.e., cell number 6 in the where in the proximity of neighbor BSs and contour fold outwards

where neighbor BSs are located much farther.

When a higher SINR threshold is set for the cell, UE should locate within the range where

received power from the tagged BS is dominant over the interference from other BSs in the

system. Since the effect from neighbor BSs are low in this case, the contour becomes much

smoother and approximately recreates a circular coverage area as shown from Fig. 4.2(a).
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4.6 SINR-based Cell Availability of a PV Network

The SINR-based cell availability for SCST scenario was simulated using the Alg. 11 as shown

below. Simulations were carried out for cell number 6 in Fig. 3.7 which is considered as the

RC in this study. The set of the Cartesian coordinates (xp, yp) along the SINR threshold

contour which is obtained from Alg. 10 is denoted as S ′ when explaining the algorithms from

here onwards.

Algorithm 11: Algorithm to estimate the SCST cell availability for a given SINR thresh-

old.
Input: xB , yB : Cartesian coordinates of the BS of the RC
Input: N : Number of cells in the topology
Input: Th : SINR threshold
Input: α : Path loss coefficient
Output: Acs(i, j) : SINR-based cell availability of the corresponding BS i of the topology j

[1] Run Alg. 10 and obtain the set of Cartesian coordinates along the SINR threshold contour S′(i, j)
[2] Input S′(i, j) to calculate the coverage area defined by SINR threshold CSINR(i, j) using Eq. (3.24)
[3] Find the vertices of the cell, (xl, yl) of the Voronoi diagram
[4] Input (xl, yl) pairs to calculate the cell area S(i, j) using Eq. (3.24)
[5] if CSINR(i, j) ≤ S(i, j) then

[6] Acs(i, j) = CSINR(i,j)
S(i,j)

[7] else
[8] Acs(i, j) = 1
[9] end

Fig. 4.3 illustrates the obtained U c
s (i, j) variation for RC as the estimated SINR threshold

increases. It can be observed that unavailability increases with the increment of the SINR

threshold. According to Eq. (4.4) when the SINR is high, the boundary or the contour is

tight because the distance between the BS and a UE cannot be too large. Therefore, the

area covered by the contour becomes comparably small which consequently make the un-

availability high. Correspondingly, unavailability reaches zero for a sufficiently low SINR

threshold. URC can be achieved in the space domain, when a user can access the services

provided by BS with a lower SINR threshold. Then the BS can assure availability within the

cell almost anywhere. With a higher SINR threshold, URC can be achieved if the BS has a

higher transmission power and the neighboring BSs are located distantly to the UE’s location.

For in depth analysis of cell unavailability, we consider M = 5 different cell deployments

for the same PV network with N = 10 cells but still select the cell number 6 as the RC as

shown in Fig. 3.7. The algorithm presented in Alg. 12 is used to run the simulations for

SCMT scenario.

Fig. 4.4 illustrates the SCST cell unavailability behavior for the RC under each topology

in dashed plots and SCMT cell unavailability over 5 topologies in blue (solid with triangle
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Figure 4.3: SCST cell unavailability of the RC (i = 6) for topology j = 6 as SINR threshold
increases.

Algorithm 12: Algorithm to estimate the SCMT cell availability for a given SINR thresh-

old.
Input: xB , yB : Cartesian coordinates of the corresponding BS
Input: N : Number of cells in the topology
Input: M : Number of topologies
Input: Th : SINR threshold
Input: α : Path loss coefficient
Output: Acs(i, :) : SINR-based cell availability of the corresponding BS i considering M topologies

[1] for j = 1 : M do
[2] Run Alg. 11 to obtain Acs(i, j)
[3] end

[4] Acs(i, :) =
∑M
j=1A

c
s(i, j)

marks) line. As depicted from Fig. 4.4, SCST cell unavailability U c
s (6, 2) and U c

s (6, 3) remains

at zero, where U c
s (6, 1), U c

s (6, 4), U c
s (6, 5) show non-zero values. Further, it can be observed

that U c
s (6, 5) < U c

s (6, 1) < U c
s (6, 4). This can be explained by carefully examining Fig. 3.3

and Fig. 3.4.

For a proper explanation concerning SINR we have to assess the positioning of the RC

with respect to neighboring cells that produce interference. Among the 5 topologies, RC, i.e.,

the cell number 6 is placed in the middle only in topology 1. In all other 4 topologies, RC

is placed in an edge of the unit square, but in different cell sizes and with different distances

to the closest neighbor BSs. For instance, in topology 2 the RC has only one neighbor in a

reasonable distance which can immensely affect the SINR. Contrary to that deployment, in

topology 4, the neighboring BSs are placed in the vicinity to RC thus, the interference is very
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Figure 4.4: SCST and SCMT cell unavailability for i = 6 and M = 5 topologies as SINR
threshold increases.

Table 4.1: Comparison of SCST and SCMT SINR-based cell availability

SINR Threshold 0.4 0.45 0.5 0.55 0.6
Acs(6, 1) 1.0000 0.9346 0.8750 0.8242 0.7805
Acs(6, 2) 1.0000 1.0000 1.0000 1.0000 1.0000
Acs(6, 3) 1.0000 1.0000 1.0000 1.0000 1.0000
Acs(6, 4) 1.0000 0.9216 0.8239 0.7468 0.6849
Acs(6, 5) 1.0000 1.0000 1.0000 0.9112 0.7925
Acs(6, :) 1.0000 0.9712 0.9398 0.8964 0.8516

high which in turn degrades the availability. However, at a glance it can be understood that

the unavailability increases along with the SINR threshold. Through the SINR-based SCMT

cell availability analysis, we understand that the URC can be achieved in the cell deployments

where the neighboring BSs are positioned distantly to each other.

Tab. 4.1 shows the numerical results obtained for SINR-based cell availability definitions.

Note that Acs(6, j) and Acs(6, :) are obtained for SINR-based cell availability with correspon-

dence to Eq. (3.3) and Eq. (3.5) respectively where covered area C(i, j) has to be replaced

by CSINR(i, j). This is also clearly illustrated by Alg. 11 and Alg. 12 respectively. The RC is

cell number i = 6 and there are M = 5 topologies, i.e., j = 1, 2, 3, 4, 5.

Now we consider all N = 10 cells in the system in general and simulate the results for

MCST SINR-based cell availability. Alg. 13 proposes the algorithm which was used to carry

out the simulations for MCST scenario.
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Figure 4.5: SCST and MCST cell unavailability for N = 10 cells of topology j as SINR
threshold increases.

Algorithm 13: Algorithm to estimate the MCST cell availability for a given SINR thresh-

old.
Input: xB , yB : Cartesian coordinates of the corresponding BS
Input: N : Number of cells in the topology
Input: Th : SINR threshold
Input: α : Path loss coefficient
Output: Acs(:, j) : SINR-based cell availability of the jth topology

[1] for i = 1 : N do
[2] Run Alg. 11 and obtain Acs(i, j)
[3] end

[4] Acs(:, j) =
∑N
i=1A

c
s(i, j)

Fig. 4.5 depicts the change of unavailability with the change of SINR threshold considering

SCST and MCST scenarios. SCST cell unavailability are plotted in green solid curves and the

average MCST cell unavailability is plotted in red (dashed-asterisks) curve. As illustrated

from the results (refer to Tab. 4.2), we observe that many of the corner cells achieve zero

unavailability for the considered SINR threshold range. However, we could say generally that

MCST cell unavailability shows an increase when the SINR threshold increases.

Tab. 4.2 presents the values of MCST cell unavailability obtained with considered SINR

threshold range for more clarity.

SINR-based cell availability was also evaluated for MCMT scenario. The algorithm used

for this scenario is shown in Alg. 14 and the obtained results are shown in Fig. 4.6. The plots
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Table 4.2: SINR-based SCST and MCST cell availability for N = 10 cells in topology 1

SINR Threshold 0.4 0.45 0.5 0.55 0.6
Acs(1, 1) 1.0000 1.0000 1.0000 1.0000 1.0000
Acs(2, 1) 1.0000 0.6781 0.5014 0.3923 0.3189
Acs(3, 1) 1.0000 1.0000 0.7544 0.5679 0.4610
Acs(4, 1) 1.0000 1.0000 0.9117 0.7587 0.6519
Acs(5, 1) 1.0000 0.8999 0.7743 0.6828 0.6124
Acs(6, 1) 1.0000 0.8750 0.7805 0.7068 0.6482
Acs(7, 1) 1.0000 1.0000 1.0000 0.9732 0.8838
Acs(8, 1) 1.0000 1.0000 1.0000 1.0000 1.0000
Acs(9, 1) 1.0000 1.0000 1.0000 1.0000 1.0000
Acs(10, 1) 1.0000 1.0000 1.0000 1.0000 1.0000
Acs(:, 1) 1.0000 0.9453 0.8722 0.8082 0.7576

shown in black (dashed) are the MCST cell unavailability of individual topologies and the

average MCMT cell unavailability is shown in blue (solid with triangle marks) plot. It can be

observed that, a similar trend is depicted which is increasing cell unavailability with increas-

ing SINR threshold. For instance, topology 2 shows the lowest unavailability, with BSs placed

comparably distant to each other causing low interference at each of the BSs and topology

4 has the highest unavailability, with BSs positioned closer to each other which created high

interference at each.

Algorithm 14: Algorithm to estimate the MCMT cell availability for a given SINR

threshold.
Input: xB , yB : Cartesian coordinates of the corresponding BS
Input: N : Number of cells in the topology
Input: M : Number of topologies
Input: Th : SINR threshold
Input: α : Path loss coefficient
Output: Ācs : SINR-based average cell availability for any cell in any topology

[1] for j = 1 : M do
[2] for i = 1 : N do
[3] Run Alg. 11 and obtain Acs(i, j)
[4] end

[5] end

[6] Ācs = 1
M

∑M
j=1

(
1
N

∑N
i=1A

c
s(i, j)

)

Tab. 4.3 presents the values of MCST and MCMT cell unavailability obtained with con-

sidered SINR threshold range. The given values are obtained from the simulations, which

used Eq. (3.7) and Eq. (3.11) as the basis definitions.
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Figure 4.6: MCMT cell unavailability for N = 10 cells and M = 5 topologies as SINR
threshold increases.

Table 4.3: Average SINR-based MCST and MCMT cell availability for N = 10 cells and
M = 5 topologies

SINR Threshold 0.4 0.45 0.5 0.55 0.6
Acs(:, 1) 1.0000 0.9453 0.8722 0.8082 0.7576
Acs(:, 2) 1.0000 0.9739 0.9418 0.9113 0.8756
Acs(:, 3) 0.9843 0.9519 0.9096 0.8585 0.8098
Acs(:, 4) 0.9671 0.9000 0.8481 0.7888 0.7144
Acs(:, 5) 0.9897 0.9472 0.8471 0.7689 0.7144

Ācs 0.9882 0.9437 0.8838 0.8271 0.7744

4.7 SINR-based System Availability of a PV Network

For a comprehensive analysis of SINR-based availability analysis, one must consider the vari-

ation of the system availability with SINR threshold as well. The algorithm which can be

used to calculate SINR-based system availability for ST is given by Alg. 15.

However, due to the calculation complexity, estimating the overlaps between the adjacent

SINR threshold contours accurately is complicated. Especially, for a low SINR threshold as

the SINR threshold contour takes a irregular shape, finding the intersection and calculating

the exact overlap are composite tasks. Even though for a higher SINR threshold, the contour

may take a almost circular or elliptical shape, the calculation of overlaps is still complex. For

a contour created for higher SINR threshold, one may estimate average radius of the each of

the contours, however, calculating the overlaps between each other still becomes complicated.

The overlap scenarios for a low threshold and high threshold are illustrated by Fig.4.7 to
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Algorithm 15: Algorithm to estimate the system availability for ST in HomNets.

Input: xB , yB : Cartesian coordinates of the corresponding BS
Input: N : Number of cells in the topology
Input: Th : SINR threshold
Input: α : Path loss coefficient
Output: Ass(j) : SINR-based system availability of topology j

[1] for i = 1 : N do
[2] Find S′(i) = (xp(i), yp(i)) using Alg. 10
[3] for z = 1 : length(xp(i)) do
[4] d(i, z) = sqrt((xB(i)− xp(i, z))2 + (yB(i)− yp(i, z))2);
[5] end
[6] dist(i) = mean(d(i, :)) : dist(i) is the average radius of the SINR threshold contour (i)

[7] end
[8] Input S′(i) to calculate the coverage area defined by SINR threshold CSINR(i, j) using Eq. (3.24)
[9] Find the vertices of the cell, xl, yl of the Voronoi diagram

[10] Input (xl, yl) pairs to calculate the cell area S(i, j) using Eq. (3.24)
[11] Calculate the total BS coverage outside the unit square region Cexurban(j)
[12] Calculate the total overlaps between BS coverages Coverlap(j)

[13] Calculate Ctot(j) =
∑N
i=1 CSINR(i, j)− Cexurban(j)− Coverlap(j)

[14] if Ctot(j) ≤
∑N
i=1 S(i, j) then

[15] Ass(j) = Ctot(j)∑N
i=1 S(i,j)

[16] else
[17] Ass(j) = 1
[18] end
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(a) Overlaps for low SINR threshold
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(b) Overlaps for high SINR threshold

Figure 4.7: Illustration of the overlaps between SINR threshold contours.

provide a clear idea. Therefore, evaluating SINR-based system availability using as given

above simulations was not performed in this thesis.

An option is to set a sufficiently high SINR threshold which creates no overlaps in be-

tween the contours. Then we can assume that the overlap area becomes zero and deduct the

calculate exurban area from the sum of the area of the SINR threshold contours which can be
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divided my total area of the region to obtain the system availability. However, it should be

noted from the above observations that the unavailability of the system may probably reach

a higher value for unavailability which is not desirable.

In Chap. 6, we deploy PPP distributed users along with the PPP distributed BSs and

find the user-oriented system availabilities considering SINR thresholds. Those results can be

referred in order to get an overview of the SINR-based system availability.

4.8 Chapter Summary

This chapter was committed to conduct the availability analysis in the space domain with the

focus to SINR perspective. Firstly, the relevant background for the rest of the chapter was

laid by giving necessary theoretical explanation to show the relationship between the coverage

and SINR. Then, the SINR-based availability definitions were proposed which can be adapted

for cell-wise availability and system-wise availability with correspondence to the definitions

of Chap. 2. Followed by the definitions, the estimations for SINR threshold contour was

explained. Towards the end of the chapter, the respective algorithms followed and the figures

and tables illustrating the obtained results are provided.
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Chapter 5

Capacity-based URC Concepts and

Analysis

Now we have understood how the availability can be defined considering connectivity-based

and SINR-based perspectives from Chap. 3 and Chap. 4 respectively. In Chap. 5, we will

be focusing on the capacity variation along with the distance with respect to the placement

of BSs. Therein, we attempt to define capacity-based cell availability and system availability

definitions by the analysis conducted in this chapter.

5.1 System Model

Analogous to Chap. 4, we continue with the same system model introduced in Chap. 3. The

system consists of N = 10 PV cells within a unit region with one BS deployed in each of it.

The underlying assumptions related to this chapter is as same as Chap. 4 which are listed in

Sec. 4.1, except that the BS coverage is governed by the capacity threshold of the system.

5.2 Capacity and Coverage

We reviewed the expression for capacity in an OFDM system by Eq. (2.15). In this section, we

are going to discover the relationship between the capacity and the distance. Since capacity

is related with SNR in a system, we start by looking at SNR in a different perspective.

Eq. (5.1) indicates an expression which concerns SNR and the number of data symbols in the

constellation Mmod of the OFDM system.

SNR =
Eb fs log2Mmod

N0 W
(5.1)

where fs is the baud rate and Eb is the energy per bit. We can further simply the above

expression and yield an expression for log2M by substituting N0 = kTsys∆f from Eq. (2.12)

and fs = ∆f
1+G

as follows .
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5.3. CAPACITY-BASED CELL AVAILABILITY

log2Mmod =
(SNR) K Tsys (1 +G)

Eb
. (5.2)

Besides, SNR achieved by user (i) can be also expressed as,

SNR(i) =
PR(i)

kbTsys∆f
(5.3)

where Pr(i) is given by PR(i) = PTλ
2

(4π)2dα
. Now from the combinations of Eq. (2.15) and

Eq. (5.1)-Eq. (5.3), it is evident that a system with higher capacity can provide services to

users dispersed in a larger area than a system with a lower capacity. Also, the connected

users would have to share the total capacity.

The capacity offered by a BS has to be decided upon how far the UE and how good the

propagation environment is. Since we assume similar channel conditions and propagation

conditions we can only focus on the distance between the BS and a particular UE. In general,

the UEs would be geographically distributed closer to the BS or far from the BS. Thus, the

actual bit rate that can be supplied by a BS will vary. If the UE is close enough to the BS

to achieve a desired SNR in order to support a favorable modulation constellation, the user

will achieve the required capacity to fulfill its high bandwidth requirements. Also, the UEs

located too far from the BSs cannot achieve a sufficient capacity with a supportive modula-

tion constellation.

Also, we can understand that smaller the cell, higher the capacity is because smaller the

cell, the closer UEs are to the BS, and the more efficient the modulation can be supported.

However,smaller the cells, more cells are needed to cover the considered region. Hence, there

exists a tradeoff between the coverage of the system and the achieved capacity.

Before advancing to the rest of the chapter, we define the terminology, capacity threshold

as follows.

Capacity threshold: is the maximum capacity that the system or the BS can offer to a

certain area within its proximity in order to satisfy the capacity requirements of the users

within it.

5.3 Capacity-based Cell Availability

Bringing forward the concept of the availability definition from the space domain as proposed

in Eq. (3.2), we define the capacity-based cell availability as the area covered by the required

capacity or the capacity threshold contour over the area of the cell of interest. Thus, we can

express the capacity-based cell availability for cell i under network topology j in the space
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domain, Acs(i, j) as,

Acs(i, j) =


Ccap(i,j)

S(i,j)
, if Ccap(i, j) < S(i, j);

1, otherwise.
(5.4)

where, Ccap(i, j) and S(i, j) denote area covered by the capacity threshold and area of the

PV cell respectively for a randomly selected cell i of the jth topology.

To maintain the consistency, we could also propose definitions for cell availability for

SCMT, MCST and MCMT scenarios as presented in Sec. 3.3.

5.4 Capacity-based System Availability

Capacity-based system availability is the availability defined for the whole system considering

the total area covered by the capacity threshold of each cell and the total area of the region

considered which contains all the cells. Accordingly, we express the capacity-based system

availability for jth network topology, Ass(j) as,

Ass(j) =


∑N
i=1 Ccap(i,j)−∆∑N

i=1 S(i,j)
, if

∑N
i=1 Ccap(i, j)−∆ <

∑N
i=1 S(i, j);

1, otherwise
(5.5)

where, ∆ represents the overlap between the contours defined by the capacity threshold

among neighboring BSs and the area which belongs to an outer-tier cell but falls outside the

region of interest. Furthermore, we can also define the capacity-based system availability by

considering MT scenario separately as in Sec. 3.4.

5.5 Capacity Threshold Contours

Given the required capacity or the capacity threshold of the system or a cell, one can calculate

the distance (radius) within which that required capacity can be met. Thus, the coverage

area bounded by the capacity threshold can be estimated. Alg. 16 shows the algorithm which

has been employed in creating the capacity threshold contour in the simulations.

Unless otherwise stated, parameters are configured as, N = 10, M = 5, rc = 6, Th =

1 Gbps : 1 Gbps : 10 Gbps, α = 2.5, λ = 3/20 m, Pt = 1.5 W, ug = ul = 1, Tsys =

290 K, ∆f = 10937.5 Hz, NFFT = 1024, Nused = 841, Rerr = 3/4, p = 24/28, G =

1/8, n = 28/25, W = 10 Mbps, Eb = 9.5 ∗ 10−17 for the MATLAB simulations conducted in

this chapter.

The set of the Cartesian coordinates (xp, yp) along the capacity threshold contour which

is obtained from Alg. 16 is denoted as S ′′ when explaining the algorithms from here onwards.

62
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Algorithm 16: Algorithm to estimate the capacity threshold contour.

Input: xB , yB : Cartesian coordinates of the BS of the RC
Input: Th : Capacity threshold
Input: α : Path loss coefficient
Input: PT : Transmitted power from the BS
Input: ug, ul : System gains
Input: kb : Boltzmanns constant
Input: Tsys : Temperature of the system
Input: ∆f : Frequency spacing between subcarriers
Input: NFFT : Total number of subcarriers
Input: Nused : Number of used subcarriers
Input: λ : Wavelength of the signal
Input: Rerr : Error-correcting code rate
Input: p : Ratio of the number of data subcarriers to the number of pilot subcarriers and data

subcarriers
Input: G : Ratio of guard time for an OFDM symbol to useful OFDM symbol time
Input: n : Oversampling factor
Input: W : Total bandwidth of the BSs
Input: Eb : Energy per bit
Output: xp, yp : Cartesian coordinates along the capacity threshold contour

[1] for z = π
180 : π

180 : 2π do
[2] d = 0.001
[3] xp(z) = xB + d cos(z)
[4] yp(z) = yB + d sin(z)

[5] dist(z) =
√

(xp((z)− xB)2 + (yp(z)− yB)2 : dist(z) : is the distance from (xp(z), yp(z)) to the
BS which is apparently equal to d

[6] PR(z) = PTλ
2

(4π)2dist(z)α

[7] SNR(z) = PR(i)
kbTsys∆f

[8] log2Mmod(z) =
SNR(z) kb Tsys (1+G)

Eb

[9] Rb(z) = n W (Nused−1) log2Mmod(z) Rerr p
NFFT (1+G) : Rb is the capacity of the cell

[10] while Rb(z) ≥ Th do
[11] d = d+ 0.001
[12] xp(z) = xB + d cos(z)
[13] yp(z) = yB + d sin(z)

[14] dist(z) =
√

(xp((z)− xB)2 + (yp(z)− yB)2

[15] PR(z) = PTλ
2

(4π)2dist(z)α

[16] SNR(z) = PR(z)
kbTsys∆f

[17] log2Mmod(z) =
SNR(z) kb Tsys (1+G)

Eb

[18] Rb(z) = n W (Nused−1) log2Mmod(z) Rerr p
NFFT (1+G)

[19] end

[20] end

Fig. 5.1 illustrates how the contours can vary with different capacity thresholds. As seen,

the capacity threshold contours take a circular shape, since we have ignored the interference

from the neighboring cells. For high capacity thresholds, the circular contour has a smaller

radius compared to low capacity thresholds with larger radius of the contour. This is because,

the SINR deteriorates over distance and this in turn results in a poor modulation constellation

thus, reducing the area in which the allocated capacity threshold could serve.
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Figure 5.1: The coverage contours for various capacity thresholds.
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Figure 5.2: The achieved capacity variation over distance.

The above explanation can be also supported from the illustration in Fig. 5.2. The achieved

capacity is plotted against the distance in between the BS and the reference point. It proves

that the achieved capacity degrades when the distance increases.
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5.6 Capacity-based Cell Availability of a PV Network

The cell availability for SCST scenario was simulated using the Alg. 17 as shown below. Sim-

ulations were carried out for the RC, which is the cell number 6, in Fig. 3.7.

Algorithm 17: Algorithm to estimate the SCST cell availability for a given capacity

threshold.
Input: xB , yB : Cartesian coordinates of the BS of the RC
Input: Th : Capacity threshold
Input: α : Path loss coefficient
Input: Pt : Transmitted power from the BS
Input: ug, ul : System gains
Input: kb : Boltzmanns constant
Input: Tsys : Temperature of the system
Input: ∆f : Frequency spacing between subcarriers
Input: NFFT : Total number of subcarriers
Input: Nused : Number of used subcarriers
Input: λ : Wavelength of the signal
Input: Rerr : Error-correcting code rate
Input: p : Ratio of the number of data subcarriers to the number of pilot subcarriers and data

subcarriers
Input: G : Ratio of guard time for an OFDM symbol to useful OFDM symbol time
Input: n : Oversampling factor
Input: W : Total bandwidth of the BSs
Input: Eb : Energy per bit
Output: Acs(i, j) : Capacity-based cell availability of the corresponding BS i of the topology j

[1] Run Alg. 16 and obtain the Cartesian coordinates along the capacity threshold contour S′′(i, j)
[2] Input S′′(i, j) to calculate the coverage area defined by capacity threshold Ccap(i, j) using Eq. (3.24)
[3] Find the vertices of the cell, (xl, yl) of the Voronoi diagram
[4] Input (xl, yl) pairs to calculate the cell area S(i, j) using Eq. (3.24)
[5] Calculate the exurban coverage area Cout(i, j)
[6] if (Ccap(i, j)− Cout(i, j)) ≤ S then

[7] Acs(i, j) =
Ccap(i,j)−Cout(i,j)

S (i, j)
[8] else
[9] Acs(i, j) = 1

[10] end

Fig. 5.3 illustrates the U c
s (i, j) variation for RC with the capacity thresholds. It is ob-

served that lower the capacity threshold is, lower the unavailability turns and vice versa.

Since the BS coverage rely on the capacity threshold, the BS coverage or the area which

can be served by a particular capacity shrinks for a higher threshold. Therefore, the actual

service area by the BS is smaller indicating a higher value for unavailability. Similarly, lower

capacity threshold could expand the serviceable coverage area of a BS and reduce the un-

availability. Therefore, achieving URC would require the cell to require a lower capacity level.

In the above analysis, as also depicted from Alg. 16, we have not considered any partic-

ular modulation scheme such as quadrature amplitude modulation (QAM) when calculating

log2Mmod. Fig. 5.4 illustrates the behavior of SCST cell unavailability of the RC (i = 6) under

topology j = 6 assuming QAM for the modulation constellation, as an example.
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Figure 5.3: SCST cell unavailability of the RC (i = 6) for topology j = 6 as capacity threshold
increases.

Capacity threshold, Gbps
0 5 10 15 20

U
n
a
v
a
il
a
b
il
it
y
,
U

c s
(i
,
j
)

0

0.2

0.4

0.6

0.8

Figure 5.4: SCST cell unavailability of the RC (i = 6) for topology j = 6 as capacity threshold
increases assuming QAM.

Now we consider the SCMT cell availability by taking the average of M = 5 topologies for

RC. Presented by the Alg. 18 is the algorithm used for simulating the SCMT capacity-based

cell availability.
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Algorithm 18: Algorithm to estimate the SCMT cell availability with given capacity

threshold.
Input: xB , yB : Cartesian coordinates of the corresponding BS
Input: Th : Capacity threshold
Input: α : Path loss coefficient
Input: Pt : Transmitted power from the BS
Input: ug, ul : System gains
Input: kb : Boltzmanns constant
Input: Tsys : Temperature of the system
Input: ∆f : Frequency spacing between subcarriers
Input: NFFT : Total number of subcarriers
Input: Nused : Number of used subcarriers
Input: λ : Wavelength of the signal
Input: Rerr : Error-correcting code rate
Input: p : Ratio of the number of data subcarriers to the number of pilot subcarriers and data

subcarriers
Input: G : Ratio of guard time for an OFDM symbol to useful OFDM symbol time
Input: n : Oversampling factor
Input: W : Total bandwidth of the BSs
Input: Eb : Energy per bit
Output: Acs(i, :) : Capacity-based cell availability of the corresponding BS i considering M topologies

[1] for j = 1 : M do
[2] Run Alg. 17 to obtain Acs(i, j)
[3] end

[4] Acs(i, :) =
∑M
j=1A

c
s(i, j)

Fig. 5.5 demonstrates how the cell unavailability averaged over 5 topologies could differ

with various capacity thresholds. As seen, for non-zero values of individual cell unavailability,

highest values are indicated by topology 2 for a given capacity threshold and for topology

5, the cell unavailability remains at zero. Cell 6 contains a larger area in topology 2 and

also the BS is placed with a biasing towards an edge. As a result, the BS coverage for a

given capacity threshold cannot cover the total cell area. For instant, cell 6 in topology

5 inhere the smallest cell area among the 5 topologies, resulting in zero cell unavailability

for the given range of capacity threshold. Average cell unavailability for the 5 topologies

in blue (solid with triangle marks) curve indicates that Acs(i, :) decreases when the capacity

offered by the BS becomes larger. This analysis show that a smaller cell would have a better

chance of obtaining URC, compared to a larger cell, provided with a lower capacity threshold.

Tab. 4.3 shows the numerical results obtained for above presented capacity-based cell

availability definitions. Note that Acs(6, j) and Acs(6, :) are obtained for capacity-based cell

availability with correspondence to Eq. (3.3) and Eq. (3.5) respectively by replacing covered

area C(i, j) by Ccap(i, j). The cell of interest is cell number i = 6 and there are M = 5

topologies.

Cohering into a single topology we can define MCST capacity-based cell availability con-

sidering N = 10 cells in topology 1, corresponding to Eq. (3.7). Alg. 19 proposes the algorithm

which was used to carry out the simulations for MCST scenario.
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Figure 5.5: SCST and SCMT cell unavailability for i = 6 and M = 5 topologies as capacity
threshold increases.

Table 5.1: Comparison of SCST and SCMT capacity-based cell availability

Capacity Threshold
(Gbps)

1 2 3 4 ‘ 5 6 7 8 9 10

Acs(6, 1) 1.0000 1.0000 1.0000 1.0000 0.7952 0.7299 0.6645 0.6068 0.5474 0.5093
Acs(6, 2) 1.0000 1.0000 1.0000 1.0000 0.6866 0.6090 0.5497 0.5069 0.4655 0.4388
Acs(6, 3) 1.0000 1.0000 1.0000 1.0000 0.7647 0.6880 0.6209 0.5720 0.5244 0.4932
Acs(6, 4) 1.0000 1.0000 1.0000 0.9693 0.8145 0.7046 0.6223 0.5640 0.5086 0.4732
Acs(6, 5) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Acs(6, :) 1.0000 1.0000 1.0000 0.9939 0.8122 0.7463 0.6915 0.6499 0.6092 0.5829

Fig. 5.6 illustrates the change of unavailability with the change of capacity threshold

considering MCST scenario. Average MCST cell unavailability is plotted in purple (dashed-

asterisks) curve whereas the individual SCST cell unavailability are plotted in colored solid

curves. It is observed from Fig. 5.6, that individual cell unavailability of cell 2 is the highest,

more specifically the individual cell unavailability vary as U c
s (2, 1) > U c

s (5, 1) > U c
s (1, 1) >

U c
s (7, 1) > U c

s (9, 1) > U c
s (3, 1) > U c

s (4, 1) > U c
s (6, 1) > U c

s (8, 1) > U c
s (10, 1), i.e. indi-

vidual cell unavailability of cell 10 being the lowest. By carefully examining topology 1

demonstrated in Fig. 3.3, we see that cells 2, 5, 1 have larger sizes compared to other

cells and also BSs of cell 2 and 5 are placed closer to a cell edge. Hence, it is clear that

U c
s (2, 1) > U c

s (5, 1) > U c
s (1, 1) > ..... Also cell 10 has the smallest size therefore it could

achieve a higher availability for a given capacity threshold. Moreover, the MCST cell unavail-

ability shows an increase when the capacity threshold increases.
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Algorithm 19: Algorithm to estimate the MCST cell availability for a given capacity

threshold.
Input: xB , yB : Cartesian coordinates of the corresponding BS
Input: Th : Capacity threshold
Input: α : Path loss coefficient
Input: Pt : Transmitted power from the BS
Input: ug, ul : System gains
Input: kb : Boltzmanns constant
Input: Tsys : Temperature of the system
Input: ∆f : Frequency spacing between subcarriers
Input: NFFT : Total number of subcarriers
Input: Nused : Number of used subcarriers
Input: λ : Wavelength of the signal
Input: Rerr : Error-correcting code rate
Input: p : Ratio of the number of data subcarriers to the number of pilot subcarriers and data

subcarriers
Input: G : Ratio of guard time for an OFDM symbol to useful OFDM symbol time
Input: n : Oversampling factor
Input: W : Total bandwidth of the BSs
Input: Eb : Energy per bit
Output: Acs(:, j) : Capacity-based cell availability of the jth topology

[1] for i = 1 : N do
[2] Run Alg. 17 and obtain Acs(i, j)
[3] end

[4] Acs(:, j) =
∑N
i=1A

c
s(i, j)

Capacity Threshold, Gbps
0 2 4 6 8 10

U
n
v
a
il
a
b
il
it
y,

U
c s
(i
,
j
),
U

c s
(:
,
j
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
U c

s (1)

U c
s (2)

U c
s (3)

U c
s (4)

U c
s (5)

U c
s (6)

U c
s (7)

U c
s (8)

U c
s (9)

U c
s (10)
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Figure 5.6: SCST and MCST cell unavailability for N = 10 cells of topology 1 as capacity
threshold increases.

Tab. 5.2 presents the values of SCST and MCST capacity-based cell unavailability of

topology 1 obtained with considered capacity threshold range to verify the above explanation.

The most general definition for average cell availability can be obtained through MCMT
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Table 5.2: Capacity-based SCST and MCST cell availability of N = 10 cells in topology 1

Capacity Threshold
(Gbps) 1 2 3 4 5 6 7 8 9 10
Acs(1, 1) 1.0000 0.8952 0.6461 0.5134 0.4314 0.3732 0.3296 0.2987 0.2694 0.2506
Acs(2, 1) 1.0000 0.6163 0.2880 0.2350 0.2018 0.1780 0.1599 0.1469 0.1345 0.1265
Acs(3, 1) 1.0000 1.0000 1.0000 0.7039 0.6439 0.5975 0.5604 0.5325 0.5045 0.4858
Acs(4, 1) 1.0000 1.0000 1.0000 0.8370 0.7521 0.6847 0.6285 0.5836 0.5345 0.5027
Acs(5, 1) 1.0000 0.6361 0.4358 0.3582 0.3063 0.2654 0.2344 0.2125 0.1916 0.1783
Acs(6, 1) 1.0000 1.0000 1.0000 0.9708 0.7952 0.7299 0.6645 0.6068 0.5474 0.5093
Acs(7, 1) 1.0000 1.0000 1.0000 0.9055 0.7525 0.6647 0.5926 0.5371 0.4843 0.4506
Acs(8, 1) 1.0000 1.0000 1.0000 1.0000 0.8429 0.7701 0.7090 0.6612 0.6092 0.5742
Acs(9, 1, 1) 1.0000 1.0000 1.0000 0.9552 0.8026 0.6880 0.6133 0.5558 0.5012 0.4663
Acs(10, 1) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9475 0.8816
Acs(:, 1) 1.0000 0.9148 0.8370 0.7479 0.6529 0.5951 0.5492 0.5135 0.4724 0.4426

scenario. The algorithm which is employed to simulate MCST scenario is shown in Alg. 20.

The variation of average cell availability with the capacity threshold can be observed via

Fig. 5.7. It is evidenced that the MCMT cell availability curves for the 5 topologies fall very

close to each other, implying a more realistic variation of the average MCMT cell availability

in a capacity point of view. Tab. 5.3 presents the values of MCMT cell unavailability obtained

with considered capacity threshold range.

Algorithm 20: Algorithm to estimate the MCMT cell availability for a given capacity

threshold.
Input: xB , yB : Cartesian coordinates of the corresponding BS
Input: Th : Capacity threshold
Input: α : Path loss coefficient
Input: Pt : Transmitted power from the BS
Input: ug, ul : System gains
Input: kb : Boltzmanns constant
Input: Tsys : Temperature of the system
Input: ∆f : Frequency spacing between subcarriers
Input: NFFT : Total number of subcarriers
Input: Nused : Number of used subcarriers
Input: λ : Wavelength of the signal
Input: Rerr : Error-correcting code rate
Input: p : Ratio of the number of data subcarriers to the number of pilot subcarriers and data

subcarriers
Input: G : Ratio of guard time for an OFDM symbol to useful OFDM symbol time
Input: n : Oversampling factor
Input: W : Total bandwidth of the BSs
Input: Eb : Energy per bit
Output: Ācs : Capacity-based average cell availability for any cell in any topology

[1] for j = 1 : M do
[2] for i = 1 : N do
[3] Run Alg. 17 and obtain Acs(i, j)
[4] end

[5] end

[6] Ācs = 1
M

∑M
j=1

(
1
N

∑N
i=1A

c
s(i, j)

)
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Figure 5.7: MCST and MCMT cell unavailability for N = 10 cells and M = 5 topologies as
capacity threshold increases.

Table 5.3: Average capacity-based MCST and MCMT cell availability for N = 10 cells and
M = 5 topologies

Capacity Threshold
(Gbps) 1 2 3 4 5 6 7 8 9 10
Acs(:, 1) 1.0000 0.9148 0.8370 0.7479 0.6529 0.5951 0.5492 0.5135 0.4724 0.4426
Acs(:, 2) 0.9723 0.9323 0.8595 0.7093 0.6239 0.5731 0.5269 0.4930 0.4557 0.4272
Acs(:, 3) 0.9479 0.8723 0.8565 0.7819 0.7226 0.6505 0.5871 0.5365 0.4779 0.4482
Acs(:, 4) 0.8999 0.8510 0.7777 0.7222 0.6732 0.6298 0.5463 0.5239 0.5009 0.4805
Acs(:, 5) 0.9836 0.9191 0.8269 0.7388 0.6768 0.6267 0.5792 0.5087 0.4728 0.4497

Ācs 0.9607 0.8979 0.8315 0.7400 0.6699 0.6151 0.5577 0.5151 0.4760 0.4497

5.7 Capacity-based System Availability of a PV Net-

work

We also analyze the availability of the whole system consisting of N = 10 cells in a capacity

perspective. The capacity-based system availability is evaluated for both ST and MT scenar-

ios. The algorithms which can be used to calculate capacity-based system availability for ST

and MT are given by Alg. 21 and Alg. 22 respectively. Tab. 5.4 presents the numerical values

obtained from performing the simulations for ST and MT scenarios of capacity-based system

availability.

Fig. 5.8 depicts the capacity-based system unavailability considering both ST and MT

scenarios for M = 5 topologies, each consisting of N = 10 cells. It can be seen that for the

5 topologies the system unavailability increases when the capacity threshold increases which

is understandable from above explanations. Also the curves lie much closer to each other so
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Table 5.4: Comparison of ST and MT system availability

Capacity Threshold
(Gbps) 3 4 5 6 7 8 9 10
Ass(1) 0.8175 0.6398 0.5659 0.4770 0.4257 0.3891 0.3540 0.3315
Ass(2) 0.7675 0.6194 0.5245 0.4903 0.4384 0.4015 0.3663 0.3439
Ass(3) 0.7954 0.6466 0.5521 0.5148 0.4565 0.4146 0.3555 0.3328
Ass(4) 0.8232 0.6628 0.5677 0.4836 0.4319 0.3886 0.3520 0.3287
Ass(5) 0.7660 0.6263 0.5315 0.4639 0.4104 0.3393 0.3098 0.2912

Āss 0.7939 0.6390 0.5484 0.4859 0.4326 0.3866 0.3475 0.3256

Algorithm 21: Algorithm to estimate the ST system availability for a given capacity

threshold.
Input: xB , yB : Cartesian coordinates of the corresponding BS
Input: Th : Capacity threshold
Input: α : Path loss coefficient
Input: Pt : Transmitted power from the BS
Input: ug, ul : System gains
Input: kb : Boltzmanns constant
Input: Tsys : Temperature of the system
Input: ∆f : Frequency spacing between subcarriers
Input: NFFT : Total number of subcarriers
Input: Nused : Number of used subcarriers
Input: λ : Wavelength of the signal
Input: Rerr : Error-correcting code rate
Input: p : Ratio of the number of data subcarriers to the number of pilot subcarriers and data

subcarriers
Input: G : Ratio of guard time for an OFDM symbol to useful OFDM symbol time
Input: n : Oversampling factor
Input: W : Total bandwidth of the BSs
Input: Eb : Energy per bit
Output: Ass(j) : Capacity-based system availability of topology j

[1] for i = 1 : N do
[2] Find S′′ using Alg. 16
[3] end
[4] Input S′′(i, j) to calculate the coverage area defined by capacity threshold Ccap(i, j) for each topology

using Eq. (3.24)
[5] Find the vertices of the cell, xl, yl of the Voronoi diagram
[6] Input (xl, yl) pairs to calculate the cell area S(i, j) using Eq. (3.24) for each topology
[7] Calculate the total coverage outside the unit square region Cexurban(j)
[8] Calculate the total overlaps between coverages Coverlap(j)

[9] Calculate Ctot(j) =
∑N
i=1 Ccap(i, j)− Cexurban(j)− Coverlap(j)

[10] if Ctot(j) ≤
∑N
i=1 S(i, j) then

[11] Ass(j) = Ctot(j)∑N
i=1 S(i,j)

[12] else
[13] Ass(j) = 1
[14] end

that the average system unavailability which is shown in blue (solid with triangle marks) plot

also provide a slight variation with each ST system unavailability.
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Algorithm 22: Algorithm to estimate the MT system availability for a given capacity

threshold.
Input: xB , yB : Cartesian coordinates of the corresponding BS
Input: Th : Capacity threshold
Input: α : Path loss coefficient
Input: Pt : Transmitted power from the BS
Input: ug, ul : System gains
Input: kb : Boltzmanns constant
Input: Tsys : Temperature of the system
Input: ∆f : Frequency spacing between subcarriers
Input: NFFT : Total number of subcarriers
Input: Nused : Number of used subcarriers
Input: λ : Wavelength of the signal
Input: Rerr : Error-correcting code rate
Input: p : Ratio of the number of data subcarriers to the number of pilot subcarriers and data

subcarriers
Input: G : Ratio of guard time for an OFDM symbol to useful OFDM symbol time
Input: n : Oversampling factor
Input: W : Total bandwidth of the BSs
Input: Eb : Energy per bit
Output: Āss : Capacity-based average system availability

[1] For j = 1 : M Calculate Ass(j) from Alg. 21

[2] Calculate Āss = 1
M

∑M
j=1A

c
s(j)
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,Ū

s s

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
U s

s (1)

U s
s (2)

U s
s (3)

U s
s (4)

U s
s (5)
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Figure 5.8: ST and MT system unavailability as capacity threshold increases.

5.8 Chapter Summary

This chapter is dedicated for the analysis of capacity-based availability both cell-wise and

system-wise. In the first part of the chapter we explained how the capacity of BSs could affect

the BS coverage which in turn impacts the availability. Then we developed an algorithm in

order to obtain the coordinates along the contour beyond in which the capacity threshold
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cannot be achieved. This algorithm is then used for the simulations done for capacity-based

cell availability and system availability, followed by the availability definitions.
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Chapter 6

User-oriented URC Concepts and

Analysis

In the previous chapters, i.e., Chaps. 3, 4, 5, we analyzed the space domain availability based

on connectivity, SINR and capacity respectively. In Chap. 6 we conduct the analysis with a

user-oriented approach. The UE locations are assumed to form a realization of a homogeneous

two-dimensional spatial PPP. We introduce the concepts of individual user availability and

user-oriented system availability in the space domain.

6.1 System Model

We consider a cellular network which consists of N randomly deployed BSs in a Euclidean

plane according to some homogeneous PPP as shown in Fig. 2.4. We also consider multiple

UEs distributed randomly in the same network according to another independent homoge-

neous PPP. Illustrated by Fig. 6.1 is the system model to which we refer in Chap. 6. In what

follows, the underlying assumptions taken for this system model can be found.

� All BSs and UEs are formed based on two independent homogeneous PPPs of intensity

λB and intensity λU in the Euclidean plane respectively.

� Each UE is associated with a serving BS which may or may not be the nearest one.

For instance, if the association scheme is to pair the UE with the BS with the given

SINR threshold, then the serving BS may or may not be the closest one because of

propagation losses.

� In each cell, one BS is deployed, and one omni-directional antenna is mounted on each

of them. However, SINR deterioration over distance has a significant impact on the

coverage of each BS.

� Frequency re-use factor of the system is one.

� Same channel type and propagation conditions are considered.
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Figure 6.1: A cellular network of N = 10 BSs modeled with a homogeneous PPP of intensity
λB = 10 and a collection of UEs following an independent homogeneous PPP of intensity
λU = 1500 in the Euclidean plane.

Followed by the foundation laid in Sec. 3.2, we continue to extend the concept in the space

domain availability in users’ perspective. In this chapter, MCA in Eq. (3.2), will be reflected

by the number of users within the covered area UEcovered. Note that, this covered area can be

defined by either of the perspectives analyzed in the previous chapters, i.e. connectivity-based,

SINR-based or capacity-based.

6.2 Individual User Availability

In this section, we propose the space domain user availability for a randomly selected UE. If

the randomly chosen user m falls within the covered area, the space domain user availability,

which is denoted by Aus (m) becomes 1. Otherwise, Aus (m) becomes 0, since the user is not

served by any BS. Thus, in this criteria, Aus (m) can be either 1 or 0.

Aus (m) =

1, if user m is covered;

0, otherwise.
(6.1)

Also the individual user unavailability for user m in the space domain, denoted as Uu
s (m)

is given by,

Uu
s (m) = 1− Acs(m). (6.2)
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6.3 User-oriented System Availability

Now we consider the whole cluster of UEs and propose the space domain user availability

considering all the users as a system. User-oriented system availability determines the avail-

ability of the BSs’ service to a collection of UEs dispersed within a unit area despite of the

distribution which characterizes it. We define the user-oriented system availability Aus as,

Aus =


no. of users covered
total no. of users

= UEcovered
NUE

, if UEcovered < NUE;

1, otherwise.
(6.3)

The user-oriented system unavailability Uu
s is expressed as,

Uu
s = 1− Acs. (6.4)

6.4 Individual User Availability of a PV Network with

PPP Distributed Users

Now we evaluate the individual user availability of the system which is introduced in Fig. 6.1

using MATLAB simulations. Following algorithm given by Alg. 23 has been employed for

individual user scenario.

Algorithm 23: Algorithm to estimate the individual user availability of a PV network

with PPP distributed users considering SINR-based coverages.

Input: xB , yB : Cartesian coordinates of the BS
Input: N : Number of cells in the topology
Input: Th : SINR threshold
Input: λU : Intensity of the user PPP
Input: α : Path loss coefficient
Output: Aus (m) : Individual user availability of user m

[1] Generate the Voronoi diagram using (xB , yB) pairs
[2] Generate the user distribution of λU intensity
[3] Create SINR threshold contours using Alg. 10 and obtain its coordinates S′

[4] Select a random user m and obtain the coordinates (xU (m), yU (m))
[5] if (xU (m), yU (m)) lies within (xp, yp) then
[6] Aus (m) = 1
[7] else
[8] Aus (m) = 0
[9] end

From the simulations done for the individual user availability for a randomly selected user,

2 possible scenarios can be observed. A UE can either lie closer to the BS, within the territory

of the covered area or either lie closer to an edge of the cell, completely outside the coverage

of the BS of the cell to which it belongs. These 2 scenarios can be recognized clearly from

Figs. 6.2 and 6.3. The illustrated SINR threshold contours correspond to the SINR threshold

range given by Th = 0.5 : 0.05 : 0.7 and the random UE is picked up from a homogeneous
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Figure 6.2: The individual user unavailability for a randomly chosen UE which lies in the
middle of a cell.

PPP of intensity λU = 1500.

When a UE is placed closer to a BS, its user availability is obvious to become 1, unless

a very tight SINR threshold is set to the BS. However, when a UE falls far away to the BS

of the cell in which it belongs to, or rather lies near to an edge of the cell, the probability of

the user availability becoming 0 is very high. But, there’s a slight possibility that the user

availability could become still 1. This could happen with the following scenarios.

� When a tight SINR threshold is given to all the BSs, and the BS is placed biased towards

the edge to which the user is placed closely.

� When a relaxed SINR threshold is given to all the BSs, and the BSs is situated at the

middle of the cell or closer to the edge in interest.

� When a relaxed SINR threshold is given to all the BSs, and the BS is situated away

from the edge in interest but a neighboring BS is placed bias to the edge in interest.

This assumes that no association policy is given such that a UE has to be paired with

the closest BS.

Fig. 6.2(b) and Fig. 6.3(b) show the variation of the individual user unavailability with the

increment of SINR threshold which determines the coverage area of a BS when the random

UE is located as in Fig. 6.2(a) and Fig. 6.3(a) respectively. Fig. 6.4 shows the the variation

of the individual user unavailability accordingly when the random UE falls in between the

coverages corresponding to considered SINR threshold range.
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(a) The randomly chosen UE lies closer to an
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Figure 6.3: The individual user unavailability for a randomly chosen UE which lies closer to
an edge of a cell.

(a) The randomly chosen UE lies in between the
SINR threshold contours.
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Figure 6.4: The individual user unavailability for a randomly chosen UE which lies in between
the SINR threshold contours.

6.5 User-oriented System Availability of a PV Network

with PPP Distributed Users

From the service provider’s point of view, it is worth to know the indicated availability for the

users within the system as a measure to evaluate the offered service. Therefore, we simulated
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the user-oriented system availability, which apparently is the ratio between the number of

users falling within the coverage UEcovered and total number of users NUE within the system.

Alg. 24 presents the algorithm which was used to simulate the user-oriented system availabil-

ity considering that the coverage is defined by a given SINR threshold.

Algorithm 24: Algorithm to estimate the user-oriented system availability of a PV

network with PPP distributed users considering SINR-based coverage.

Input: xB , yB : Cartesian coordinates of the corresponding BS
Input: N : Number of cells in the topology
Input: Th : SINR threshold
Input: λU : Intensity of the user PPP
Input: α : Path loss coefficient
Output: Aus : User-oriented system availability

[1] Generate the Voronoi diagram using (xB , yB) pairs
[2] Generate the user distribution of λU intensity and obtain the Cartesian coordinates of UEs (xU , yU )
[3] Create SINR threshold contours using Alg. 10 and obtain its coordinates S′

[4] Count no. of UEs covered by the BSs UEcovered
[5] if UEcovered ≤ NUE then

[6] Aus = UEcovered
NUE

[7] else
[8] Aus = 1
[9] end

Fig. 6.5(a) illustrates the PV network in our interest consisting of PPP distributed users

of intensity λU = 1500 along with the contours drawn for each SINR threshold. Fig. 6.5(b)

depicts the variation of user-oriented system unavailability with each given SINR threshold.

User-oriented system unavailability shows an increment when the SINR threshold increases.

When the SINR threshold is higher, the coverage area of the BS shrinks such that lesser

number of users fall within it and vice versa.

The simulations were also carried out considering different distributions to model the UEs

within the PV network. We considered 2 distributions namely the PPP and uniform distri-

bution, with 2 intensities of each. The simulations are carried out for λU = 750 and 1000

for PPP distribution and NUE = 750 and 1000 for the uniform distribution. Also, it should

be noted that, for a homogeneous PPP of intensity λU = ρ, number of UEs also can be ap-

proximated to ρ, i.e., NUE ≈ ρ.The results are shown in Fig. 6.6 and Tab. 6.1. It is observed

that for the same intensity, PPP distribution indicates a higher system user unavailability

compared to that of the uniform distribution. And for the same distribution unavailability

decreases when the intensity increases.
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(a) The PV network with PPP distributed users
and SINR threshold contours.
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Figure 6.5: The variation of user-oriented system unavailability as the SINR threshold in-
creases.
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Figure 6.6: The variation of user-oriented system unavailability with the SINR threshold
variation for different user distributions.

For a uniform distribution, the probability that there are K out of N nodes are distributed

within a certain region of A0, given the total system area as A is given by Eq. (6.5), where,

p = A0

A
.

P (N = K) =

(
N

K

)
(p)K(1− p)N−K . (6.5)
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Table 6.1: Numerical results of user-oriented system availability for PPP and uniform
distributions

SINR Threshold 0.4 0.45 0.5 0.55 0.6
Aus (λU = 750) 0.9333 0.8993 0.8624 0.8085 0.7730
Aus (λU = 1000) 0.9444 0.9256 0.8829 0.8442 0.7857

Aus (NUE(uniform) = 750) 0.9333 0.9040 0.8587 0.8173 0.7800
Aus (NUE(uniform) = 1000) 0.9380 0.9080 0.8630 0.8160 0.7730

The probability that there are K out of N nodes within an area of A0 for a PPP distri-

bution of intensity of λU is given by,

P (N = K) =
(λA0)K e−λA0

K!
. (6.6)

For a given intensity of λU , K,N , A0 and A, we find that the uniform distribution has a

higher probability of having K out of N nodes compared to the PPP distribution containing

the same number of nodes using Eq. (6.5) and Eq. (6.6). From a different perspective, we can

also explain the behavior of user-oriented system availability illustrated in Fig. 6.6. When

the number of nodes in a uniform distribution increases, the number of users covered by the

BSs also increases since the users are distributed in a uniform manner. Yet, for a PPP distri-

bution, since the distances between the neighboring nodes follow an exponential distribution,

nodes (or the UEs) lie closer as the intensity increases. Therefore for a higher intensity λU ,

number of covered users increase significantly. However, there should exist a tradeoff between

the intensity of the user distribution or the total number of users within the system, with the

capacity offered from the system to achieve URC in the space domain.

6.6 PPP Distributed Users with Specific Resource Re-

quirements

With the growing usage of sophisticated applications in the wireless communication, users

tend to expect different resource requirements from the BSs in terms of capacity. Therefore,

in this section we examine the effect on the user-oriented system unavailability with different

resource requirements of the users.

6.6.1 Homogeneous resource requirements

When the resource requirements are homogeneous, every user in the system demands the

same capacity to satisfy their demands. The algorithm used to simulate the user-oriented

system availability for homogenous resource requirement scenario in a PV network is pre-

sented in Alg. 25. Fig. 6.7(a) illustrates the various capacity threshold boundaries along with
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the PPP distributed users, having homogeneous resource requirements, dispersed within a

PV network. Fig. 6.7(b) shows the user-oriented system unavailability for users having ho-

mogeneous resource requirements, in a system with capacity-based BS coverages.

Algorithm 25: Algorithm to estimate the user-oriented system availability of a PV

network with PPP distributed users considering homogeneous resource requirements.

Input: xB , yB : x, y coordinates of the BSs
Input: λU : Intensity of the user PPP
Input: Th : Capacity threshold
Input: α : Path loss coefficient
Input: Pt : Transmitted power from the BS
Input: ug, ul : System gains
Input: kb : Boltzmanns constant
Input: T : Temperature of the system
Input: ∆f : Frequency spacing between subcarriers
Input: NFFT : Total number of subcarriers
Input: Nused : Number of used subcarriers
Input: λ : Wavelength of the signal
Input: R : Error-correcting code rate
Input: p : Ratio of the number of data subcarriers to the number of pilot subcarriers and data

subcarriers
Input: G : Ratio of guard time for an OFDM symbol to useful OFDM symbol time
Input: n : Oversampling factor
Input: W : Total bandwidth of the BSs
Input: Eb : Energy per bit
Output: Aus : user-oriented system availability

[1] Generate the Voronoi diagram using (xB , yB) pairs
[2] Generate the user distribution of λU intensity and obtain the Cartesian coordinates of UEs (xU , yU )
[3] Create capacity threshold contours using Alg. 16 and obtain its coordinates S′′

[4] Count no. of UEs covered by the BSs UEcovered
[5] if UEcovered ≤ NUE then

[6] Aus = UEcovered
NUE

[7] else
[8] Aus = 1
[9] end

As observed from Fig. 6.7, when the capacity threshold increases, user-oriented system

unavailability also increases accordingly. More specifically, user-oriented system unavailability

shows an intense variation for low capacity thresholds but slowly increases for high capacity

thresholds. When the capacity threshold is high, the BS can only serve for a limited area in

which the number of users are limited.

6.6.2 Heterogeneous resource requirements

In the real life scenarios, users have heterogeneous resource requirements which means that

users may demand different the bandwidths or capacity for the different applications they

use. For the simulations performed in this section we consider two types of users namely,

low resource requiring (LRR) users and high resource requiring (HRR) users using a OFDM

system with NFFT subcarriers. HRR users demand for more subcarriers from the system to
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(a) The PV network with PPP distributed users
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Capacity threshold, Gbps
0 2 4 6 8 10

U
n
a
v
a
il
a
b
il
it
y,

U
u s

0

0.1

0.2

0.3

0.4

0.5

0.6

(b) The variation of user-oriented system un-
availability with the capacity threshold varia-
tion.

Figure 6.7: User-oriented system unavailability for users with homogeneous user requirements.

fulfill their capacity requirements compared to LRR users. In Fig. 6.8 indicated by the crosses

are the LRR users and indicated by the circles are the HRR users.
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Figure 6.8: A PV network consisting of 10 BSs and LRR (illustrated by empty circles) and
HRR (illustrated by cross symbols) users which follow 2 independent homogeneous PPP
distributions of both having intensity of λU = 500.

Alg. 26 shows the algorithm used for performing the simulations for user-oriented system

unavailability of a PV network with PPP distributed users considering low resource require-
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ments. The same algorithm was modified for simulating system user availability of HRR

users.

Fig. 6.9 illustrates the system user variation for heterogeneous scenario obtained for LRR

and HRR users. It is evident that for both LRR and HRR users, the system user unavailability

decreases when the capacity threshold increases. Further, it is observed that the unavailabil-

ity of the HRR user system is higher than that of the LRR user system. It should be noted

that the illustrated capacity threshold in Fig. 6.9 is the sum of the capacity offered for both

LRR and HRR users by the system.
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Figure 6.9: user-oriented system unavailability variation for LRR and HRR users when the
capacity threshold increases.

The above behavior can be explained as follows. When the offered capacity by the system

is low, system can only serve lesser number of users by satisfying their demands. Therefore

the system user unavailability becomes substantial. Likewise, when the capacity offered by

the system is high which is defined by means of the capacity threshold, system can serve

more users resulting in lower system user unavailability. Also since a HRR user requires more

capacity than a LRR user, for a given system capacity lesser number of HRR users can be

satisfied, thus the unavailability of the HRR user system is higher than that of the LRR user

system.
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Algorithm 26: Algorithm to estimate the user-oriented system availability of a PV

network with PPP distributed users considering low resource requirements.

Input: xB , yB : x, y coordinates of the BSs
Input: λU : Intensity of the user PPP
Input: Th : Capacity threshold
Input: α : Path loss coefficient
Input: Pt : Transmitted power from the BS
Input: ug, ul : System gains
Input: kb : Boltzmanns constant
Input: T : Temperature of the system
Input: ∆f : Frequency spacing between sub carriers
Input: NL,FFT : Total number of sub carriers for LRR users
Input: N1 : Number of sub carriers required by LRR users
Input: λ : Wavelength of the signal
Input: R : Error-correcting code rate
Input: p : Ratio of the number of data sub carriers to the number of pilot sub carriers and data sub

carriers
Input: G : Ratio of guard time for an OFDM symbol to useful OFDM symbol time
Input: n : Oversampling factor
Input: W : Total bandwidth of the BSs
Input: Eb : Energy per bit
Output: Aus : user-oriented system availability

[1] Generate the Voronoi diagram using (xB , yB) pairs
[2] Generate the LRR user distribution of λU intensity and obtain the Cartesian coordinates of UEs

(xU,L, yU,L)
[3] for z = π

180 : π
180 : 2π do

[4] d = 0.001 : d is the initial distance from the BS of the RC to any user
[5] xp(z) = xB + d cos(z)
[6] yp(z) = yB + d sin(z)

[7] dist(z) =
√

(xp((z)− xB)2 + (yp(z)− yB)2

[8] count NL,covered inside the circle defined by d radius and (xB , yB)
[9] NL,used = NL,covered ×N1

[10] Pr(z) = Ptλ
2

(4π)2dist(z)α SNR(z) = Pr(z)
kbT∆f

[11] log2Mmod(z) = SNR(z) kb T (1+G)
Eb

[12] Rb,L(z) =
n W (NL,used−1) log2Mmod(z) R p

NFFT (1+G)

[13] while Rb,L(z) ≥ Th & NL,used ≥ NL,FFT do
[14] d = d+ 0.001
[15] ; xp(z) = xB + d cos(z)
[16] yp(z) = yB + d sin(z)

[17] dist(z) =
√

(xp((z)− xB)2 + (yp(z)− yB)2

[18] count NL,covered inside the circle defined by d radius and xB, yB
[19] NL,used = NL,covered ×N1

[20] Pr(z) = Ptλ
2

(4π)2dist(z)α SIR(z) = Pr(z)
kbT∆f

[21] log2Mmod(z) = SNR(z) kb T (1+G)
Eb

[22] Rb,L(z) =
n W (NL,used−1) log2Mmod(z) R p

NFFT (1+G)

[23] end

[24] end
[25] Count no. of LRR UEs covered by the BSs coverage UEL,covered : BS coverage is defined by the

contour made of (xp, yp) Cartesian coordinates
[26] if UEL,covered ≤ NUE then

[27] Aus =
UEL,covered

NUE

[28] else
[29] Aus = 1
[30] end
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6.7 Chapter Summary

In this chapter we analyzed the space domain availability in a novel approach considering

the UEs of a cellular network. UEs are modeled as an independent homogeneous PPP and

their spatial characteristics are used to obtain the definitions and the analysis of individual

user availability ans system user availability. Furthermore, system user availability is more

extensively analyzed considering both homogenous and heterogeneous resource requirements

of users.
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Chapter 7

Conclusions

In this chapter, we conclude the thesis by providing a brief description of the progress made

towards achieving the main objective of the thesis, a summary of the main conclusions and

our contributions. We also suggest new research directions that have invoked as a result of

our study.

7.1 Conclusions

We presented the main objective of the research work done in this thesis as to advocate

dependability-based availability definitions in the space domain in order to contribute the

research work done in the context of URC. For achieving this goal, initially the existing work

and the related concepts regarding the dependability analysis and URC are studied in de-

tail. Thereafter, certain loopholes of the previous work done over dependability analysis and

possible approaches to achieve URC are identified. Thus, the definitions for the availability

in the space domain with a dependability perspective are derived using connectivity-based,

SINR-based, capacity-based and user-oriented approaches.

To avoid certain limitations of previous models of cellular networks, SG is adapted to

reflect more realistic spatial characteristics. The definitions for cell and system availability

for connectivity-based, SINR-based, capacity-based perspectives are advocated and analyzed

seperately. The probability of providing a guaranteed availability level is also deduced for

the connectivity-based approach. Assuming UEs’ distribution to be an independent PPP, the

analysis is also extended to propose definitions for availability definitions in users’ perspective.

The proposed schemes are implemented in MATLAB in order to facilitate the evaluation of

availability for the developed system models in each of the scenarios.

Therefore, it can be concluded that the main objectives of the thesis (as mentioned in

Sec. 1.3) are achieved from the SG-based modelling, extensive simulations and analysis per-

formed in Chaps. 3- 6. The findings of this thesis are expected to contribute towards the
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progress of achieving URC in 5G networks.

7.2 Major Contributions

In the following, we highlight the main contributions that we have made through this thesis

work.

� The concepts of cell availability and system availability in the space domain are solicited

following a dependability perspective. According to the best of our knowledge, until

now no such definitions exist in the literature. The definitions advocated based on the

analysis presented in Chap. 3 have been disseminated as a journal paper in the IEEE

Communication Letters.

� Connectivity-based cell availability and system availability considering both homoge-

neous and heterogeneous cellular networks have been analyzed. Also a comparison of

the transmission power tradeoff between homogeneous and heterogeneous cellular net-

works has been presented.

� Guaranteed cell availability has been analyzed considering a PV network which employs

SG characteristics. This is an important measure since many users are interested in the

ability of the network to provide a certain level of availability. It is also worth to inves-

tigate the guaranteed cell availability of offering almost 100% availability, particularly

for achieving URC.

� The threshold contours which define the boundary of exceeding the minimum achieved

SINR and capacity are investigated. It is noteworthy identifying these boundaries that

prescribe the borderlines in the space beyond which the BS cannot offer its service, i.e.,

network is unavailable in that particular space.

� Availability definitions in the space domain have been advocated in SINR and capacity

driven deployments to provide a more extensive analysis of dependability in the space

domain.

� User-oriented availability definitions have been also investigated by taking in to account

the distribution of realistic user dispersions in cellular networks. Moreover, user require-

ments are identified as either homogeneous or heterogeneous and therein the respective

user-oriented system availability is analyzed.

7.3 Future Work

During the work of this thesis, several interesting research areas have been emerged. Some of

them are listed below.
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� For this thesis work, proposed definitions were evaluated using MATLAB based sim-

ulations. More studies based on simulations can be performed via network simulators

such as NS3 to perform extensive analysis. Also real-life test beds can be implemented

to obtain more general results.

� The space domain availability analysis can be extended to obtain definitions for outage

probability and area spectral efficiency (ASE). Outage probability can be defined as the

probability that a UE can fall in to a region where a predetermined SINR or capacity

threshold is not achieved. ASE can be defined as the maximum data rate per unit

bandwidth per unit area achieved at a random UE location.

� Path availability, which can be defined as the availability that a UE attains by choosing a

particular path within the network can also be analyzed. This path could be any random

path a moving UE can follow. Within the selected path, an UE can pass path lengths

where it is covered by a BS coverage, where it is not covered by any of the BS coverages

or places where handovers can occur due to poor availability and overlapping of BS

coverages are appeared. Considering UE’s mobility patterns (for example random way

point mobility), expressions can be formulated to evaluate the availability of a moving

user in the space domain.

� Employing device-to-device (D2D) communication and relay assisted techniques to en-

hance the connectivity-based cell availability and thereby improving the system avail-

ability in the space domain.
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Abstract — As part of the 5G communication paradigm, ultra reliable com-

munication (URC) is envisaged as an important technology pillar for providing

anywhere and anytime services to end users. While most existing studies on reli-

able communication do not investigate this problem from a dependability theory

perspective, those dependability based studies tend to define reliability merely in

the time domain. In this letter, we advocate extending the concept of URC from

the dependability perspective also in the space domain. We initiate definitions on

cell availability and system availability. Correspondingly, the availability as well

as the probability of providing a guaranteed level of availability in a network are

analyzed both/either cell-wise and/or system-wise. Poisson point process (PPP)

and Voronoi tessellation are adopted to model the spatial characteristics of cell

deployment in both homogeneous and heterogeneous networks.

Keywords—URC, dependability and availability, space domain analysis, Poisson point

process, Voronoi tessellation.

I. Introduction

Ultra reliable communication (URC) is foreseen as one of the essential service requirements

for 5G mobile and wireless networks. It aims at achieving almost 100% reliability at a cer-

tain (satisfactory) level of services [1]. The terminology of URC is introduced by the METIS

project which had the objective of laying the foundation for 5G technologies. A 3GPP tech-

nical report [2] also included the concept of URC.

Reliable communication for an end-user in its simplest term can be defined as having con-

nectivity to the network at anywhere and anytime. However, most studies on reliability have

solely focused on the anytime connectivity or the time domain analysis. Little work has been

done regarding the anywhere aspect of reliable communication or the space domain analysis.
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With respect to the metrics used to characterize reliable communication, parameters such as

packet delivery ratio, outage probability, signal to interference and noise ratio (SINR), bit

error rate (BER) are popular ones. These metrics represent the conventional understanding

of reliable communication, but they do not address the reliability issue from a dependability

theory point of view. In the context of the dependability theory, metrics such as mean time

to failure (MTTF), mean time between failures (MTBF), and mean time to repair (MTTR)

have been defined to investigate reliability. These dependability terminologies are however

applicable to the time domain, not the space domain.

Considering applying URC in the time domain, [3] investigated the tradeoff between mo-

bile energy and latency for mobile cloud computing applications. Furthermore, [4] provided a

review of recent advances for short packet communications through three examples in order

to achieve massive, ultra reliable and low latency wireless communications.

For space domain analysis, one may apply a Poisson point process (PPP) to capture

the randomness of cell deployments and user equipment (UE) distribution in today’s cellu-

lar networks. For instance, [5] employed the PPP to model one-tier networks and obtained a

tractable result for coverage probability and average data rate of UEs. A model to analyze the

coverage probability for PPP-based heterogeneous networks (HetNets) was presented in [6].

The probability that a user is connected to a macro-cell or open access femto-cell was com-

puted in [7] by using a realistic stochastic geometry (SG) model. [8] derived expressions for

UE coverage probability in HetNets considering random fading with arbitrary distributions

and non-homogeneous PPP base station (BS) distributions.

Although many existing studies have investigated BS or/and UE distributions and ob-

tained coverage probability, SINR profile or outage probability, a proper definition of reliabil-

ity and availability in the space domain is lacking from the dependability theory’s perspective.

To the best of our knowledge, so far no definition exists on the availability of UEs in the

space domain dedicated to URC. In this letter, we introduce the concept of cell availability

and system availability in the space domain and derive their expressions in both homogenous

networks (HomNets) and HetNets.

II. Network Scenario and Assumptions

To perform space domain analysis, the physical deployment of BS locations and UE dis-

tributions need to be considered. Traditionally, a cellular network is often assumed to be

deployed on a hexagonal grid (for coverage calculation convenience). To model the spatial

randomness of modern cellular networks consisting of typically heterogeneous cells with vari-

ous sizes, SG is a powerful tool. When applying SG into wireless networks, PPP and Voronoi

diagrams are popular mathematical models in order to retain tractability of BSs or/and UEs

and to study cell tessellations.
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Figure A.1: A PV distributed cellular network with N = 10 cells/BSs. The cell boundaries
are shown and the cells together form a Voronoi tessellation. The Voronoi cell boundaries
which create the actual geographical area of each cell are indicated in blue (solid) lines. The
BS coverage which the BS can communicate with the UEs within each cell is indicated in red
(dashed) lines.

Consider a Poisson Voronoi (PV) distributed cellular network consisting of N number of

cells. In each cell there is a BS and the whole network is covered by a Voronoi tessellation

with N cells, as shown in Fig. 1. It is worth highlighting that each Voronoi cell might contain

different cell size since the Voronoi cell boundaries are defined by lines bisecting the distances

between each two neighboring BSs. For the ease of analysis, we focus on a 1× 1 unit region

of a cellular network.

Two cellular network deployment scenarios are considered in our study, i.e., HomNets and

HetNets, as presented below. In both cases, the BS antenna is assumed to be omni-directional

for all cells. Two types of cells, i.e., type 1 (T1) cells and type 2 (T2) cells, are considered

with the same channel type and propagation condition but with different transmission ranges.

� HomNet: All BSs transmit with an identical transmission power level and have the

same coverage radius, R2. That is, there exists only one type of cells, T2.

� HetNet: It consists of both T1 and T2 cells. A T2 cell is deployed when its Voronoi cell

size is greater than a predefined threshold value, η. Otherwise a T1 cell with radius R1,

where R1 < R2, is deployed.

Note that the Voronoi cell size is independent of the transmission power of its associated

BS. Another underlying assumption of the above scenarios is that all BSs are distributed

based on a homogeneous PPP with a constant intensity level in the Euclidean plane [5].
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III. Availability Definition

In this section, we firstly revisit the time domain definition of availability and then de-

velop our concept which defines network availability in the space domain. The space domain

network availability deals with the anywhere aspect of URC.

A. Availability Definition from the Time Domain

For a repairable system, the available time or the uptime is the time duration during which

the system is operational. Similarly, the unavailable time or the downtime for a repairable

system is the time duration during which the system is not operational. Let MUT and MDT

denote mean uptime and mean downtime respectively. The steady state availability in the

time domain, At, can be expressed as,

At =
MUT

MUT +MDT
. (A.1)

B. Availability Definition from the Space Domain

Analogous to the time domain, we adopt a similar ratio to define space domain availability.

Conceptually, the network availability in the space domain is defined as the ratio between the

covered area by the BS(s) and the total area of a cell or network of interest. Consider the

randomness of cell sizes in SG cellular networks and denote the mean covered area and the

mean uncovered area as MCA and MUA respectively. We can express the availability in the

space domain, As, as,

As =
MCA

MCA+MUA
. (A.2)

Bringing forward the above concept, we further define two availability terminologies as

follows.

� Cell availability Acs: defined as the covered area by the BS of an individual cell of

interest divided by the area (or size) of the cell. Denote these two areas by C(i) and

S(i) respectively for a randomly selected cell, i, in a given network topology. We have,

Acs(i) =

{
C(i)
S(i)

, if C(i) < S(i);

1, otherwise.
(A.3)

Furthermore, the average cell availability Ācs for a given network topology consisting of

N cells is expressed as,

Ācs =
1

N

N∑
i=1

Acs(i). (A.4)

� System availability Ass: For a specific network topology, Ass is defined as the ratio
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between the sum of the total covered area of all individual cells and the total area of

the network including all N cells. That is,

Ass =


∑N
i=1 C(i)−∆∑N
i=1 S(i)

, if
∑N

i=1C(i)−∆ <
∑N

i=1 S(i);

1, otherwise
(A.5)

where ∆ represents those overlapped coverage areas among neighboring BSs and the ‘exur-

ban’ areas of outer-tier cells. While an overlapping area is an area mutually covered by two

or more neighboring BSs, an exurban area is the area which belongs to an outer-tier cell but

falls outside the region of interest, i.e., beyond the 1× 1 border in Fig. 1.

Furthermore, the cell unavailability of cell i and the system unavailability, denoted by

U c
s (i) and U s

s respectively, are defined as,

U c
s (i) = 1− Acs(i); U s

s = 1− Ass. (A.6)

Therefore, the goal of achieving URC in the space domain is to diminish system unavail-

ability to a sufficiently low level.

III. Space Domain Availability in a PV Network

To apply the defined space domain availability to cellular networks, we need to calculate

both MCA and mean cell area.

A. The Size of a Voronoi Polygon: A Deterministic Expression

To compute the area of each Voronoi polygon, i.e., S(i), the well-known shoelace for-

mula has been adopted. It is a mathematical algorithm to calculate the area of a simple

2-dimensional polygon whose vertices are represented by ordered pairs in the plane. Let

(xj, yj) be the coordinates of vertex j, l be the number of edges of the Voronoi polygon, and

S be the area of the polygon. Then the formula to calculate the area of the Voronoi polygon

is expressed as,

S =
1

2

∣∣∣∣∣
l−1∑
j=1

xjyj+1 + xly1 −
l−1∑
j=1

xj+1yj − x1yl

∣∣∣∣∣ . (A.7)

The above calculated individual cell area will be used to compute the cell and system

availability defined in Sec. III by replacing S with S(i) for cell i under a given topology.

Consider now a PV network withN = 10 cells distributed in a 1×1 unit region. A snapshot

of a such a cellular network is shown in Fig. 1. We perform MATLAB based simulations for

our space domain availability evaluation. For the HetNet scenario, the threshold to distinguish
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Figure A.2: Cell unavailability of the reference cell as BS coverage increases.

a cell as a T1 or T2 cell is configured as η = 0.085 unit2. The radius of the BS coverage for

a T1 or T2 cell varies as R1 = 0.1 ∼ 0.16 or R2 = 0.1 ∼ 0.2 unit respectively.

B. Cell Availability for HomNets

Refer to cell number 6 in Fig. 1 as a reference cell (RC) in this study. Fig. 2 illustrates

its obtained U c
s (i) variation as the BS coverage, i.e., πR2, increases. With a very small BS

coverage, i.e., at a very low transmission power level, the unavailability turns to be quite

high. As the BS transmission power increases, the unavailability decreases monotonically

to a substantially low level. The cell unavailability reaches zero when the BS coverage is

sufficiently large, implying that all the users residing in the RC are connected to the network.

C. System Availability for HomNets and HetNets

To obtain system availability, we need to include all cells in the studied network. To cover

the whole network, we may deploy either the same type of cells (i.e., HomNets) or two types

of cells (i.e., HetNets). Fig. 3 depicts the individual cell unavailability in green (dashed),

average cell unavailability in blue (solid with triangle marks) and the system unavailability

red (solid with plus marks) lines respectively as the BS coverage increases, for the HomNet

scenario. When the BS coverage is low, the system unavailability is high since a user can very

likely fall into an uncovered area. Increasing the BS coverage will obviously reduce the system

unavailability for the whole network but it is not effective for lifting individual cell availability

due to the diversity of cell sizes in a PV network. As shown from the plot, many cells reach

zero unavailability much earlier than the system unavailability does. This result means that

it is not smart to increase the BS transmission power for the whole network simultaneously.

In other words, the deployment of a HetNet is appreciated.

Fig. 4 depicts how the cell unavailability and system unavailability vary for a HetNet.

For the same PV network with N = 10 and η = 0.085, there are 7 T1 cells and 3 T2 cells.

In addition to the individual cell unavailability, the blue (solid with triangle marks) curve
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Figure A.3: Cell and system unavailability in a HomNet with N = 10 cells.
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Figure A.4: Cell/system unavailability in a HetNet with 3(7) T2(T1) cells.

represents the average cell unavailability for T1 and T2 cells respectively. Another curve in

red (solid with plus marks) illustrates the system unavailability for the whole HetNet.

When comparing the system unavailability of the HomNet (in which all cells have the

same radius as R2) with that of the HetNet, we observe that the unavailability of the HetNet

is higher. This is because the coverage of those T1 cells is lower than that of the T2 cells.

At the same time, the total transmission power of the whole network is reduced in a HetNet.

Although providing lower availability to end-users may have negative effect on user satisfac-

tion, a network service provider would be interested in identifying the tradeoff between BS

transmission power levels and cell/system availability for its network deployment considering

for instance a combination of macro- and small-cells.

D. System Availability for HomNets and HetNets

To study the tradeoff between system availability and transmission power, we calculate

and compare the total BS transmission power in the HomNet versus in the HetNet. For

illustration simplicity, the free space propagation model is adopted in our calculation. That

is, Pr(d) = PtGtGrλ
(4π)2dαL

2
where Pr(d) is the reception power at the UE which is d distance away

from the BS, Pt is the transmission power, Gt and Gr are the antenna gains of the transmitter
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Table A.1: The Tradeoff between Availability and Transmission Power

R1

(km)
R2

(km)
HetNet HomNet

Ass Total Pt (W) Ass Total Pt (W)

0.11 0.17 0.4395 1416.85 0.7739 2644.60
0.11 0.20 0.5030 1814.53 1.0000 3970.20

0.14 0.17 0.5736 1932.72 0.7739 2644.60
0.14 0.20 0.6348 2330.40 1.0000 3970.20

and the receiver respectively, λ is the wavelength in meters, α is the path loss coefficient, and

L is the system loss factor.

Assume that Gt = Gr = 1, α = 2.5, L = 1, and λ = 15 cm. Configure Pr(R) = 0.1 µW as

the required Pr for a UE which is located at the boundary of the BS coverage, with radius R.

Consider the N = 10 cell network shown in Fig. 1. Table A.1 illustrates the numerical results

on the obtained system availability and the total (i.e., for 10 cells together) required transmis-

sion power for both HomNet and HetNet. Keep the same threshold as η = 0.085 km2. There

are respectively 7 T1 cells (with coverage radius R1) and 3 T2 cells (with coverage radius R2)

in the HetNet case. In the HomNet case, all 10 cells are homogeneous with coverage radius R2.

With four different combinations of cell coverage for T1 and T2 cells, we illustrate the

tradeoff between system availability and total transmission power. For instance, the last row

tells us that to increase the system availability from Ass = 63.48% (obtained by the HetNet)

to Ass = 100% (obtained by the HomNet), a 70% higher power level is required.

V. Guaranteed Levels of Availability

Although a high level of availability is expected, there is no guarantee that it can be obtained

in a network. The average availability itself does not provide a complete view regarding the

obtained cell availability from the system’s point of view. Network operators may addition-

ally be interested in obtaining the probability of achieving a given level of availability. In

this section, we introduce another dependability measure which expresses the probability of

providing a predetermined or guaranteed level of availability [9].

A. The Normalized Size of a PV Polygon: A Stochastic View

In the literature, there does no exist a standard closed-form expression to calculate the average

area of a Voronoi cell. The size of a Voronoi cell, g(S), is indeed one of the to-be-clarified

aspects regarding PV diagrams. Instead of obtaining an explicit expression for g(S), it is

more convenient to use a general f2D(y) distribution function to express the normalized cell

sizes y = S/S̄, where S is the area of Voronoi cell and S̄ = 1
N

∑N
i=1 S(i). Accordingly, it

is shown that the probability density function (PDF) of a normalized PV cell area y in a

2-dimensional space can be approximated as [10]

f2D(y) =
343

15

√
7

2π
y2.5exp (−3.5y) . (A.8)
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Figure A.5: The probability for providing a guaranteed cell availability level.

Moreover, from the cumulative distribution function (CDF) of (A.8) we obtain the probability

that the normalized Voronoi cell area y is smaller than or equal to a value c and it is given

by

P (y ≤ c) =

∫ c

0

f2D (y) dy. (A.9)

B. Guaranteed Cell Availability

As defined in (3), the cell availability equals to one when the cell size is smaller than or

equal to the covered area of the BS. Accordingly, (A.9) is equivalent to the probability that

Acs = 1 given that the value c, i.e., the upper limit of the integral, is equal to the normalized

covered area of the BS covering that cell. Mathematically, it is expressed as

P (Acs = 1) ≡ P (c ≥ y) =

∫ c

0

f2D (y) dy. (A.10)

Note that availability equals to one implies that full connectivity is obtained everywhere

in the cell, indicating that URC can be achieved in this cell in the space domain.

Let us now target at a general guaranteed cell availability level of β where (0 < β < 1).

Then the probability for providing a guaranteed availability level greater than or equal to β

by the cell is given by,

P (Acs ≥ β) ≡ P (y ≤ yi) =

∫ yi

0

f2D (y) dy (A.11)

where yi = MCA/(S̄β) is the corresponding normalized cell area. Fig. 5 illustrates this

probability by considering two cell radius values for a HomNet where the mean cell coverage

is calculated as MCA = πR2. To obtain the definite integral in (A.11), the CDF of the

normalized cell areas derived in [10] is adopted. Evidently, the higher the required availability

level, the lower the probability to achieve it. Meanwhile, a larger cell coverage would increase

the probability for providing a guaranteed availability level.
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APPENDIX A: REFERENCES

VI. Conclusions

This letter makes a contribution to the ongoing research work on URC by soliciting the con-

cept of cell and system availability in the space domain from the perspective of dependability

theory. Through PPP and Voronoi tessellation based analysis, we illustrate the relationship

between BS coverage and cell/system availability for both homogenous and heterogeneous cel-

lular networks. The probability of providing a guaranteed availability level is also deduced.
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Appendix B

Example of MATLAB Codes

The outline of the MATLAB simulations used to obtain the results of this thesis is depicted

by Tab. B.1. MATLAB programs were simulated in a computer with a RAM of 6 GB memory

and Intel(R) Core(TM) i5-6200U processor with 2.4 GHz speed.

Table B.1: Summary of the MATLAB codes

MATLAB version used R2015a
Number of MATLAB programs 56
Number of MATLAB functions 18
Maximum length of a MATLAB program/ function 540 lines
Minimum length of a MATLAB program/ function 26 lines
Maximum time to run a MATLAB program/ function ≈ 10 minutes
Minimum time to run a MATLAB program/ function ≈ 5 seconds

B.1 MATLAB Code for Connectivity-based System Avail-

ability of HetNet Scenario

File Name: Availability_HetNet

This program computes the MCST cell availability and the ST system availability

of the topology 1 which employs both T1 and T2 cells for a given radius

of the BS coverage.

xB = gallery(’uniformdata’,[1 10],1);

yB = gallery(’uniformdata’,[1 10],2);

S=SquareBV(xB,yB,0); %Cell Area

Th=0.08; %Threshold cell Area
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B.1. MATLAB CODE FOR CONNECTIVITY-BASED SYSTEM AVAILABILITY OF
HETNET SCENARIO

index=find(S>Th); %Index of T2 cells

jndex=find(S<Th); %Index of T1 cells

R1=0.05:0.01:0.16; %radius of the BS coverage of T1 cells

R1(13:16)=0.16;

R2=0.05:0.01:0.2; %radius of the BS coverage of T2 cells

%--- ST system availability ---%

for z=1:length(R2)

%exurban area

OutofBoundArea(z)=boundaryOutAreaHet(x,y,S,Th,R2(z),R1(z));

%overlapping area

OverlappingArea(z)=AreaOverlapCirclesHet(x,y,S,Th,R2(z),R1(z));

%total BS coverage of the system

BSarea(z)=length(index)*pi*R2(z)^2+length(jndex)*pi*R1(z)^2;

%effective BS coverage of the system

CoveredArea(z)= BSarea(z)- OutofBoundArea(z)-OverlappingArea(z);

%ST system availability

STAvailability(z)=CoveredArea(z)/sum(S);

end

%--- MCST cell availability ---%

R=0.05:0.01:0.2;

IndAvailT2=zeros(length(xB),length(R));

IndAvailT1=zeros(length(xB),length(R));

for i=1:length(xB)

if S(i)>Th

R=0.05:0.01:0.2;

for z=1:length(R)

coverT2(z)=pi*R(z).^2;

if S(i)<coverT2(z)

IndAvailT2(i,z)=1;

else

IndAvailT2(i,z)= coverT2(z)/S(i);

end

end

else

R=0.05:0.01:0.16;

R(13:16)=0.16;

for z=1:length(R)
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coverT1(z)=pi*R(z).^2;

if S(i)<coverT1(z)

IndAvailT1(i,z)=1;

else

IndAvailT1(i,z)= coverT1(z)/S(i);

end

end

end

%eliminating nonzero elements

[r_mac,c_mac]=find(IndAvailT2);

IndAvailT2=IndAvailT2(unique(r_mac),:) ;

[r_mic,c_mic]=find(IndAvailT1);

IndAvailT1=IndAvailT1(unique(r_mic),:) ;

for k=1:length(R)

totAvailT1(k)=sum(IndAvailT1(:,k));

totAvailT2(k)=sum(IndAvailT2(:,k));

AvgAvail(k)=(totAvailT1(k)+totAvailT2(k))/length(xB);

end

%===============================================================================

Function Name: boundaryOutAreaHet

This function outputs the total exurban area produced by the BS coverages

outside the unit region.

Input: (x,y) coordintes of the BSs, CellArea, ThresholdArea,

Radius of T1 and T2 cells

Output: total exurban area

function OutOfBound=boundaryOutAreaHet(x,y,S,Th,R1,R2)

for i = 1 : length(x)

if S(i)>Th

R=R1;

if x(i)<R

h=R-x(i);

OutboundArea(i)= R.^2.*acos(1-h/R)-(R-h).*sqrt(2*R.*h-h.^2);
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else if 1-x(i)<R

h=R-1+x(i);

OutboundArea(i)= R.^2.*acos(1-h/R)-(R-h).*sqrt(2*R.*h-h.^2);

else if y(i)<R

h=R-y(i);

OutboundArea(i)= R.^2.*acos(1-h/R)-(R-h).*sqrt(2*R.*h-h.^2);

else if 1-y(i)<R

h=R-1+y(i);

OutboundArea(i)= R.^2.*acos(1-h/R)-(R-h).*sqrt(2*R.*h-h.^2);

%two boundary out area

%x=0,y=0

else if x(i)<R & y(i)<R

[Alpha_(i),Beta_(i)]=linecirc(infinity,0,x(i),y(i),R);

if Beta_(i)> 0

Alpha(i)=0;

Beta(i)=Beta_(i);

end

[u_(i),v_(i)]=linecirc(0,0,x(i),y(i),R);

if Beta_(i) > 0

u(i)=u_(i);

v(i)=0;

end

Triangle(i)=0.5*(abs(Alpha(i)*v(i)-u(i)*Beta(i)));

Theta(i)=acos((2*R^2-(Alpha(i)-u(i))^2-(Beta(i)-v(i))^2)/2*R^2);

Segment(i)=0.5*R^2*(2*Theta(i)-sin(2*Theta(i)));

OutboundArea(i)=pi*R^2-(Triangle(i)+Segment(i));

%x=0,y=1

else if x(i)<R & 1-y(i)<R

[Alpha_,Beta_]=linecirc(infinity,0,x,y,R);

if Beta_ > 0

Alpha=0;

Beta=Beta_;

end

[u_,v_]=linecirc(0,1,x,y,R);

if Beta_ > 0

u=u_;

v=1;

end
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Triangle(i)=0.5*(abs(Alpha(i)*v(i)+u(i)-Alpha(i)-u(i)*Beta(i)));

Theta(i)=acos((2*R^2-(Alpha(i)-u(i))^2-(Beta(i)-v(i))^2)/2*R^2);

Segment(i)=0.5*R^2*(2*Theta(i)-sin(2*Theta(i)));

OutboundArea(i)=pi*R^2-(Triangle(i)+Segment(i));

%x=1,y=0

else if 1-x(i)<R & y(i)<R

[Alpha_,Beta_]=linecirc(infinity,-1,x,y,R);

if Beta_ > 0

Alpha=1;

Beta=Beta_;

end

[u_,v_]=linecirc(0,0,x,y,R);

if Beta_ > 0

u=u_;

v=0;

end

Triangle(i)=0.5*(abs(Alpha(i)*v(i)+Beta(i)-v(i))-u(i)*Beta(i));

Theta(i)=acos((2*R^2-(Alpha(i)-u(i))^2-(Beta(i)-v(i))^2)/2*R^2);

Segment(i)=0.5*R^2*(2*Theta(i)-sin(2*Theta(i)));

OutboundArea(i)=pi*R^2-(Triangle(i)+Segment(i));

%x=1,y=1

else if 1-x(i)<R & 1-y(i)<R

[Alpha_,Beta_]=linecirc(infinity,-1,x,y,R);

if Beta_ > 0

Alpha=1;

Beta=Beta_;

end

[u_,v_]=linecirc(0,1,x,y,R);

if Beta_ > 0

u=u_;

v=1;

end

Triangle=0.5*(abs(Alpha(i)*v(i)+u(i)+Beta(i)-Alpha(i)-v(i))-u(i)*Beta(i));

Theta(i)=acos((2*R^2-(Alpha(i)-u(i))^2-(Beta(i)-v(i))^2)/2*R^2);

Segment(i)=0.5*R^2*(2*Theta(i)-sin(2*Theta(i)));

OutboundArea(i)=pi*R^2-(Triangle(i)+Segment(i));
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end

end

end

end

end

end

end

end

else

R=R2;

if x(i)<R

h=R-x(i);

OutboundArea(i)= R.^2.*acos(1-h/R)-(R-h).*sqrt(2*R.*h-h.^2);

else if 1-x(i)<R

h=R-1+x(i);

OutboundArea(i)= R.^2.*acos(1-h/R)-(R-h).*sqrt(2*R.*h-h.^2);

else if y(i)<R

h=R-y(i);

OutboundArea(i)= R.^2.*acos(1-h/R)-(R-h).*sqrt(2*R.*h-h.^2);

else if 1-y(i)<R

h=R-1+y(i);

OutboundArea(i)= R.^2.*acos(1-h/R)-(R-h).*sqrt(2*R.*h-h.^2);

%two boundary out area

%x=0,y=0

else if x(i)<R & y(i)<R

[Alpha_(i),Beta_(i)]=linecirc(infinity,0,x(i),y(i),R);

if Beta_(i)> 0

Alpha(i)=0;

Beta(i)=Beta_(i);

end

[u_(i),v_(i)]=linecirc(0,0,x(i),y(i),R);

if Beta_(i) > 0

u(i)=u_(i);

v(i)=0;

end

Triangle(i)=0.5*(abs(Alpha(i)*v(i)-u(i)*Beta(i)));

Theta(i)=acos((2*R^2-(Alpha(i)-u(i))^2-(Beta(i)-v(i))^2)/2*R^2);

Segment(i)=0.5*R^2*(2*Theta(i)-sin(2*Theta(i)));

OutboundArea(i)=pi*R^2-(Triangle(i)+Segment(i));
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%x=0,y=1

else if x(i)<R & 1-y(i)<R

[Alpha_,Beta_]=linecirc(infinity,0,x,y,R);

if Beta_ > 0

Alpha=0;

Beta=Beta_;

end

[u_,v_]=linecirc(0,1,x,y,R);

if Beta_ > 0

u=u_;

v=1;

end

Triangle(i)=0.5*(abs(Alpha(i)*v(i)+u(i)-Alpha(i)-u(i)*Beta(i)));

Theta(i)=acos((2*R^2-(Alpha(i)-u(i))^2-(Beta(i)-v(i))^2)/2*R^2);

Segment(i)=0.5*R^2*(2*Theta(i)-sin(2*Theta(i)));

OutboundArea(i)=pi*R^2-(Triangle(i)+Segment(i));

%x=1,y=0

else if 1-x(i)<R & y(i)<R

[Alpha_,Beta_]=linecirc(infinity,-1,x,y,R);

if Beta_ > 0

Alpha=1;

Beta=Beta_;

end

[u_,v_]=linecirc(0,0,x,y,R);

if Beta_ > 0

u=u_;

v=0;

end

Triangle(i)=0.5*(abs(Alpha(i)*v(i)+Beta(i)-v(i))-u(i)*Beta(i));

Theta(i)=acos((2*R^2-(Alpha(i)-u(i))^2-(Beta(i)-v(i))^2)/2*R^2);

Segment(i)=0.5*R^2*(2*Theta(i)-sin(2*Theta(i)));

OutboundArea(i)=pi*R^2-(Triangle(i)+Segment(i));

%x=1,y=1

else if 1-x(i)<R & 1-y(i)<R

[Alpha_,Beta_]=linecirc(infinity,-1,x,y,R);

113



B.1. MATLAB CODE FOR CONNECTIVITY-BASED SYSTEM AVAILABILITY OF
HETNET SCENARIO

if Beta_ > 0

Alpha=1;

Beta=Beta_;

end

[u_,v_]=linecirc(0,1,x,y,R);

if Beta_ > 0

u=u_;

v=1;

end

Triangle=0.5*(abs(Alpha(i)*v(i)+u(i)+Beta(i)-Alpha(i)-v(i))-u(i)*Beta(i));

Theta(i)=acos((2*R^2-(Alpha(i)-u(i))^2-(Beta(i)-v(i))^2)/2*R^2);

Segment(i)=0.5*R^2*(2*Theta(i)-sin(2*Theta(i)));

OutboundArea(i)=pi*R^2-(Triangle(i)+Segment(i));

end

end

end

end

end

end

end

end

end

end

OutOfBound=sum(OutboundArea);

%===============================================================================

Function Name: AreaOverlapCirclesHet

This function calculates the overlapping area between 2 circles with

heterogeneous radius values.

Input: (x,y) coordintes of the BSs, CellArea, ThresholdArea,

Radius of T1 and T2 cells

Output: total overlapping area between all combinations of 2 cricles

function Overlap=AreaOverlapCirclesHet(x,y,S,Th,R1,R2)
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Array_Overlap=zeros(length(x),length(x));

%computing overlap area between two circles

for i = 1 : length(x)

for j = i : length(x)

d(j)=sqrt((x(i)-x(j)).^2+(y(i)-y(j)).^2);

if S(i)>Th && S(j)>Th

R=R1;

theta(j)=2.*acos(d(j)./(2*R));

if d(j)>=2*R

AreaOverlap(j)=0;

else if i==j %to avoid the circle compared with itself

AreaOverlap(j)=0;

else if d(j)==0 %to avoid the circle compared with itself

AreaOverlap(j)=pi*R.^2;

else

AreaOverlap(j)=R.^2*(theta(j)-sin(theta(j)));

end

end

end

Array_Overlap(i,j)=AreaOverlap(j);

else if S(i)<Th && S(j)<Th

R=R2;

theta(j)=2.*acos(d(j)./(2*R));

if d(j)>=2*R

AreaOverlap(j)=0;

else if i==j %to avoid the circle compared with itself

AreaOverlap(j)=0;

else if d(j)==0 %to avoid the circle compared with itself

AreaOverlap(j)=pi*R.^2;

else

AreaOverlap(j)=R.^2*(theta(j)-sin(theta(j)));

end

end

end

Array_Overlap(i,j)=AreaOverlap(j);

else if S(i)>Th && S(j)<Th

RR1=R1;
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RR2=R2;

phi(j)=2.*acos((RR1.^2+d(j).^2-RR2.^2)./(2*RR1*d(j)));

theta(j)=2.*acos((RR2.^2+d(j).^2-RR1.^2)./(2*RR2*d(j)));

if d(j)>=(RR1+RR2)

AreaOverlap(j)=0;

else if i==j %to avoid the circle compared with itself

AreaOverlap(j)=0;

else if d(j)==0 %to avoid the circle compared with itself

AreaOverlap(j)=pi*RR2.^2;

else

area1(j)=0.5*phi(j)*RR1.^2 - 0.5*RR1.^2.*sin(phi(j));

area2(j)=0.5*theta(j)*RR2.^2 - 0.5*RR2.^2.*sin(theta(j));

AreaOverlap(j)=area1(j)+area2(j);

end

end

end

Array_Overlap(i,j)=AreaOverlap(j);

else if S(i)<Th && S(j)>Th

RR1=R2;

RR2=R1;

phi(j)=2.*acos((RR1.^2+d(j).^2-RR2.^2)./(2*RR1*d(j)));

theta(j)=2.*acos((RR2.^2+d(j).^2-RR1.^2)./(2*RR2*d(j)));

if d(j)>=(RR1+RR2)

AreaOverlap(j)=0;

else if i==j %to avoid the circle compared with itself

AreaOverlap(j)=0;

else if d(j)==0 %to avoid the circle compared with itself

AreaOverlap(j)=pi*RR2.^2;

else

area1(j)=0.5*phi(j)*RR1.^2 - 0.5*RR1.^2.*sin(phi(j));

area2(j)=0.5*theta(j)*RR2.^2 - 0.5*RR2.^2.*sin(theta(j));

AreaOverlap(j)=area1(j)+area2(j);

end

end

end

Array_Overlap(i,j)=AreaOverlap(j);

end

end

end
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end

end

end

% Array_Overlap

[row,col,val] =find(Array_Overlap);

if length(unique(row))< length(row)& length(unique(col))< length(col)

%disp(’there are more than two overlapping circles’);

Overlap=AreaOverlap3CirclesHet(x,y,S,Th,R1,R2,row,col,val);

else %calculating two circle overlap area

Overlap=sum(val);

end

%===============================================================================

Function Name: AreaOverlap3CirclesHet

This function calculates the overlapping area between 3 circles with

heterogeneous radius values.

Input: (x,y) coordintes of the BSs, CellArea, ThresholdArea,

Radius of T1 and T2 cells

Output: total overlapping area between all combinations of 3 cricles

function Overlap=AreaOverlap3CirclesHet(x,y,S,Th,R1,R2,row,col,val)

R=R1;

%calculating the intersecting points of the overlapping circles

for k = 1 : length(row)

i=row(k);

j=col(k);

% R(k)=0.1;

[alpha,Beta]=circcirc(x(i),y(i),R,x(j),y(j),R);

points(2*k-1,1)=alpha(1);

points(2*k,1)=alpha(2);

points(2*k-1,2)=Beta(1);

points(2*k,2)=Beta(2);

end

%check if the three point lie incide the circles and sort out the common
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%overlap area intersecting points

unique_r=unique(row);

unique_c=unique(col);

if length(unique_r)>length(unique_c)

bb=setdiff(unique_c,unique_r);

for v=1:length(bb)

unique_r(length(unique(row))+v,1) = bb(v,1)

end

unique_array=unique_r;

else

bb=setdiff(unique_r,unique_c);

for v=1:length(bb)

unique_c(length(unique(col))+v,1) = bb(v,1);

end

unique_array=unique_c;

end

% unique_array

% olap_circ=unique([unique_r,unique_c]);

if length(points)<length(unique_array)*2

for m=1:length(unique_array)

for n=1:(length(unique_array)*2)-2

in_dist(n,m)=sqrt((points(n,1)-x(unique_array(m))).^2+...

.........(points(n,2)-y(unique_array(m))).^2);

if in_dist(n,m)<R-0.0001

trianglepoint(n,m)=in_dist(n,m);

else

trianglepoint(n,m)=0;

end

end

end

else

for m=1:length(unique_array)

for n=1:length(unique_array)*2

in_dist(n,m)=sqrt((points(n,1)-x(unique_array(m))).^2+...
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.........(points(n,2)-y(unique_array(m))).^2);

if in_dist(n,m)<R-0.0001

trianglepoint(n,m)=in_dist(n,m);

else

trianglepoint(n,m)=0;

end

end

end

end

[r,c] =find(trianglepoint);

point_array=points(r,:);

if length(r)<3

chordlength=sqrt((point_array(1,1)-point_array(2,1))^2+...

.........(point_array(1,2)-point_array(2,2))^2);

angle=2*asin(chordlength/(2*R));

Overlap=R.^2*(angle-sin(angle));

else

%area of triangle formed by the intersecting points

triArea=polyarea(point_array(:,1),point_array(:,2));

%calculating the chord length

c1=sqrt((point_array(1,1)-point_array(2,1))^2+(point_array(1,2)-point_array(2,2))^2);

c2=sqrt((point_array(2,1)-point_array(3,1))^2+(point_array(2,2)-point_array(3,2))^2);

c3=sqrt((point_array(3,1)-point_array(1,1))^2+(point_array(3,2)-point_array(1,2))^2);

%assuming equal radius

Overlap=0.25*sqrt((c1+c2+c3)*(c2+c3-c1)*(c1+c3-c2)*(c1+c2-c3))+ ....

.....R^2*(asin(c1/(2*R))+asin(c2/(2*R))+asin(c3/(2*R))-(0.25*c1*sqrt(4*R^2-c1^2))-....

.....(0.25*c2*sqrt(4*R^2-c2^2))-(0.25*c3*sqrt(4*R^2-c3^2)));

end
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B.2 MATLAB Code for Creating SINR Threshold Con-

tour and Finding The Cell Availability of The RC

File Name: SINR_Th_Contour

This program obtains the coordinates along the SINR threshold contour

and calculates the cell availability accordingly.

%x y coordinates of the 10 BSs

xB = gallery(’uniformdata’,[1 10],1);

yB = gallery(’uniformdata’,[1 10],2);

[XY,V,C]=Voronoi(xB,yB,’bs_ext’,[0 0;0 1;1 1;1 0],’figure’,’on’);

%The function Voronoi provides the Voronoi decomposition of a set of (x,y) data,

% but with all vertices limited to the unit square.

%V contains all vertices and C contains all vertices for each individual point.

%XY contains updated xy coordinates as limited by any input boundaries.

hold on

Th=0.6; %SINR threshold

alpha=2.5; %path loss coefficient

ref=6; %index of the RC

xc=C(ref,1);

yc=C(ref,2);

xv=XY(V{ref},1);

yv=XY(V{ref},2);

Theta=0:1:360;

for j=1:length(Theta)

d=0.001; %calculating sinr at d=0.001

xp(j)=xc+d*cosd(Theta(j));

yp(j)=yc+d*sind(Theta(j));
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Iloop(j)=0;

for k=1:length(xB)

dist(j,k) = sqrt((xp(j)-xB(k)).^2+(yp(j)-yB(k)).^2);

Iloop(j)=Iloop(j)+ dist(j,k)^(-alpha);

end

I_r(j)=Iloop(j)-d.^(-alpha);

sinr(j)= d.^(-alpha)/I_r(j);

while sinr(j)>=Th

d=d+0.001;

xp(j)=xc+d*cosd(Theta(j));

yp(j)=yc+d*sind(Theta(j));

Iloop(j)=0;

for k=1:length(xB)

dist(j,k) = sqrt((xp(j)-xB(k)).^2+(yp(j)-yB(k)).^2);

Iloop(j)=Iloop(j)+ dist(j,k)^(-alpha);

end

I_r(j)=Iloop(j)-d.^(-alpha);

sinr(j)= d.^(-a)/I_r(j);

end

end

% plotting the SINR threshold contour

plot(xp,yp,’b’,’LineWidth’,2)

hold off

%Finding the cell availability

ThArea=polyarea(xp,yp);

CellArea=polyarea(xv,yv);

if CellArea<ThArea

availability=1;

else

availability=ThArea/CellArea;

end
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