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Abstract

Physics-based character animation offer an attractive alternative to traditional animation
techniques, however, physics-based approaches often struggle to incorporate active user
control of these characters. This thesis suggests a different approach to the problem of
actively controlled virtual characters. The proposed solution takes a neuroevolutionary
approach, using HyperNEAT to evolve neural controllers for a simulated eight-legged
character, a previously untested character morphology for this algorithm. Using these
controllers this thesis aims to evaluate the robustness and responsiveness of a control
strategy that changes between them based on simulated user input. The results show that
HyperNEAT is quite capable of evolving long walking controllers for this character, but
also suggests a need for further refinement when operated in tandem.
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Chapter 1.

Introduction

Character animation has become an important part of modern game development and the
responsiveness and perceived realism of these animations play an important role in the
games ability to provide an immersive experience to its audience.

While an experienced animator is often able to create lifelike and realistic looking anima-
tions, the limitation of these animations are that they are only applicable for the purpose
that the animation portrays. When these animations are used in situations that are out-
side of their intended domain, however slightly, they start to fall short. For example, a
running animation created for running on flat terrain is not likely to look equally perfect
when used to portray running on bumpy terrain or up a flight of stairs.

Seeing as game characters are often interactive, the sheer number of possible variations
of the actions they should be able to perform makes it challenging to create separate an-
imations for every conceivable scenario. While techniques like motion capture makes
it possible to quickly record a large number of animations, these animations still suffer
from the same limitations as manually crafted animations. Furthermore, motion capture
is mostly limited to humans and other creatures that can be persuaded to participate in
motion capture [3].

Physics-based simulation offer an attractive alternative to traditional animation tech-
niques, wherein each motion is the direct result of a physics simulation and is therefore
physically realistic by definition [3], at least within the limitations of the physics simula-
tion itself. Physics-based animations are commonly used to simulate passive phenomena
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Chapter 1. Introduction

like objects, cloths, fluids and ragdolls. However, for more active animations most games
still resort to kinematics-based approaches [3]–[5]. One of the commonly sited reasons
for this is that physics-based simulated characters are notoriously difficult to control,
as all movement has to be controlled by the application of torques and/or other forces
[3]. One way of approaching this issue is to train controllers using machine learning, a
technique that has shown promising results [1], [6]–[14]. However, such controllers are
usually trained for one singular purpose, or action, and bare little application outside of
that purpose.

While one approach could be to train multiple controllers and then switch between them,
the actual implementations of this logic is sparse. It is therefore not known whether or
not these controllers could handle the incessant switching that would be required inside a
highly interactive environment like a game.

1.1. Problem Statement

This project aims to investigate the feasibility of combining individually trained neural
controllers to form a control strategy for actively controlled virtual characters.

The proposed approach taken to this end utilizes neuroevolution to train a small set of
neural controllers. These controllers will be used to generate joint torques for a physics-
based simulated multi-legged character in order to produce motion for a corresponding
set of target behaviours. Finally the efficiency of these controllers can be evaluated based
on how robustly they perform when switching between them.

The main goal of this thesis is twofold. Firstly, evaluate whether or not HyperNEAT is
capable of evolving gaits for an eight-legged character, which to the best of the authors
knowledge has not been attempted before. Secondly, evaluate whether or not neural con-
trollers trained for different behaviours can operate in tandem to produce robust interactive
animation controllers.
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Chapter 1. Introduction

1.2. Contributions

This thesis theorise an approach to physics-based character animation control using
evolved artificial neural networks to produce joint torques for a physics-based simulated
character. The contributions of this thesis mainly resides in the approach taken to train
these networks, by using HyperNEAT to generate gaits for a previously untested, highly
complex, eight legged character, and provide insight into the efficiency of constructing
high-level controllers using such evolved networks.
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Chapter 2.

Background

This chapter provides a brief introduction to some of the topics relevant to this thesis.
Particularly legged locomotion, a topic that has gained a lot of interest in the field of
robotics, and neuroevolution with focus on the algorithms used in this project, namely
NEAT and HyperNEAT.

2.1. Legged Locomotion

Legged locomotion offers several benefits over wheeled locomotion. Particularly in the
field of robotics where the prospect of increased manoeuvrability andmobility on difficult
terrain [15] offer applications in a wide variety of domains, ranging from entertainment
robots [16] to military or industrial transportation, the exploration of disaster areas [15]
or even planetary exploration [17].

However, a major drawback for such robots is the time and difficulty involved in creating
effective controllers for them. The high number of degrees of freedom for each leg and
the coordination required to maintain balance makes this a very difficult task for human
engineers. Further considering how sensitive such controllers are to changes, effectively
requires these controllers to be recreated every time the robot is modified [18], it should
be to no surprise that researchers have long tried to automate this process.

One alternative to manually engineering such controllers are to train them using machine
learning. Evolutionary algorithms, typically involving the evolution of artificial neural
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Chapter 2. Background

networks, i.e. neuroevolution, are commonly used for this end and can often create better
gaits than those created by human engineers [2], [8], [10], [12]–[14], [18]–[22].

2.2. Neuroevolution

Neuroevolution is a class of machine learning techniques that uses evolutionary algo-
rithms to generate artificial neural networks, drawing inspiration from the biological evo-
lution of nervous systems in nature.

Most common, non-evolutionary, artificial neural networks are trained using back-
propagation, a form of supervised learning that provides continuous feedback to the
network. However, this form of learning imposes limitations on the network being
trained. Firstly, the size and topology of the network must be specified in advance, i.e.:
the number of hidden layers, the number of neurons in each layer and the connections
between each neuron. Secondly, this form of training also depend upon available datasets
of input-output pairs, where each output represents the optimal action or correct answer
for a given input. This further limits the domains where such networks can be used to
those cases where an optimal strategy for reaching the target goal is known.

Neuroevolution is an approach which aims to address these limitations. Similar to biol-
ogy and natural selection, which is driven only by reproductive success, neuroevolution
evaluates fitness based on some measure of overall performance. The main advantage of
such an approach is that it facilitates learning with only sparse feedback and without any
information about exactly what it should be doing at any given point. For example, when
playing a game the optimal action at any given time may be ambiguous, as there might
not be one single correct action, but rather multiple actions that can lead to a successful
outcome. In such a scenario it would be impossible to judge the fitness of each individual
action, but it would be trivial to judge the fitness of the sum of all actions once the game
concluded and a victor was declared.

Early neuroevolution algorithms focused only on evolving the weights of each neuron’s
connections, however, the network topology also has a huge impact on the performance
of the network [23], [24], though more advanced algorithms are also capable of evolving
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this [25]. The algorithms that are able to evolve the network topology have been shown
to hold a significant advantage over their fixed topology counterparts in a multitude of do-
mains, with examples ranging from pole balancing [26], vehicle control [27] and collision
warning systems [28] to various video game controllers [29], [30].

Neuroevolution is a very general learning technique with broad applicability and can be
used for supervised, unsupervised and reinforcement learning tasks [31]. When compared
to other reinforcement learning techniques, like temporal difference learning, neuroevolu-
tion has been shown to be slower, but eventually reaches higher performance [32], [33].

2.2.1. Algorithms

Neuroevolution algorithms work by taking a population of genotypes, i.e. a set of geneti-
cally encoded neural networks, and testing each one on the given task for a certain period
of time. During this test period the fitness, i.e. the measure of how well the network per-
forms, is recorded. Once the fitness for each member of the population has been obtained,
offspring are generated by applying mutations and/or crossovers between the fittest indi-
viduals. These offspring then replaces the individuals with the lowest fitness, forming a
new generation. This loop is then repeated until a network with a sufficiently high enough
fitness is found.

Some algorithms, like the NeuroEvolution of Augmented Topologies or NEAT algorithm,
allow the population to split into separate species. This facilitates the algorithm to ex-
plore new innovations that initially may have resulted in a lower fitness, but that could
eventually lead to a better solution than the current optimum. Other species that are not
improving, indicating it may be stuck at some local optima, or that are not performing
well can go extinct. [25]

More recent research in neuroevolution algorithms have focused much on the encod-
ing used for the genotype, i.e. the manner in which the algorithm stores the parameters
(weights, connections, etc.) of the neural networks it evolves. Early algorithms, including
the aforementioned NEAT algorithm, use a direct encoding. This form of encoding effec-
tively employs a one-to-one mapping between each parameter and the value encoded in
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the genome. The drawback of this approach is that similarities in the problem must be dis-
covered separately [14], [31], [34], [35]. For instance, to evolve a controller for a legged
robot, a solution that was effectively able to control one of its legs is likely going to be
very similar to the solutions that control its other legs, yet with a direct encoding these
solutions must evolve independently for each leg.

Conversely, biological organisms in nature does not use such an encoding scheme, but
rather uses an indirect form of encoding [35], [36], wherein large parts of the information
encoded in the genome are reused to make up the various parts of the organism. Drawing
inspiration from nature, the development of indirect encoding schemes have become an
important research topic in neuroevolution. The basic idea is that using such a scheme
could enable the discovery of patterns in the problem and allow for the reuse of solutions
across systems comprised of such patterns [14], [36]. By using an indirect encoding the
genotype can be more compact than the artificial neural network it encodes, resulting in
fewer variables for the algorithm to optimize [8], [37]. Multiple studies have also shown
that indirect encodings are more effective at problems containing such regular patterns
[8], [10], [20], [34]–[36].

(a) bilateral symmetry and
repetition [38]

(b) imperfect symmetry
[39]

(c) example with 3D shapes
[40]

Figure 2.1.: Spatial patterns evolved with CPPNs showcasing different forms of reg-
ularities

One prominent algorithm commonly employed as an indirect encoding is the Composi-
tional Pattern Producing Network or CPPN. ACPPN is a form of artificial neural network
that differs in the set of activation functions it employs [31], [38], [39]. Where standard
artificial neural networks often only contain sigmoid functions, CPPNs additionally incor-
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Chapter 2. Background

porates a set of different functions to produce various types of patterns and regularities
[31], [38]. Some examples include Gaussian, to produce symmetric patterns, and sinu-
soids to produce repeating patterns [31], [34], [41]. Composing these functions allow the
CPPNs to produce patterns in n-dimensional space from a set of n inputs, where each
set of inputs describes a point within that space [38]. For instance, to produce a two-
dimensional image the CPPN may be queried with the (x, y) position of each pixel and
have the output(s) specify the shade and/or the colour of the pixel [38], [40]. A three
dimensional CPPN, i.e. a CPPN with three inputs, may be similarly queried to produce
three-dimensional-shapes [40]. Figure 2.1 shows some examples of images and shapes
generated using CPPNs.

What makes CPPNs ideal candidates for use as indirect encodings is that they span their
entire domain of possible input values. Just like a CPPN may be queried for each pixel
position in order to create a image, this samplingmay be performed at any resolution, mak-
ing it an efficient encoding for that image at an infinite resolution [38], [41]. Crucially,
because CPPNs are structurally similar, algorithms for evolving normal artificial neural
networks, such as NEAT, may be used to evolve CPPNs as well [34], [38], [39]. Further-
more, CPPNs are not limited to producing visual patterns as images or shapes, rather its
output may be purposed for a multitude of different uses [39], [41], e.g. to describe the
weights and connections of an artificial neural network [34].

One particular algorithm that utilizes CPPNs in this way is the Hypercube-Based Neu-
roEvolution of Augmented Topologies algorithm, or HyperNEAT for short [34]. Specifi-
cally, HyperNEAT makes use of CPPNs to paint connectivity patterns for large-scale arti-
ficial neural networks. The key insight that allows HyperNEAT to realize this is that con-
nectivity patterns, i.e. connections between neurons, may be encoded as a function of each
neuron’s position in space. However, a connection between any two neurons cannot sim-
ply be described as a function of the position of either neuron, but rather requires the posi-
tion of both neurons [39]. HyperNEAT solves this by representing the problem in a higher-
dimensional space, by using a higher-dimensional CPPN to paint patterns in hyperspace.
These patterns may then be projected back as connectivity patterns by querying the CPPN
with the pairwise combination of every neurons position. For example, for two neurons
situated on a two-dimensional plane at position (x1, y1) and (x2, y2) a four-dimensional
CPPN may be queried with the combined position (x1, y1, x2, y2) in order to find the
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weight of the connection between them [14], [34], [39]. HyperNEAT may similarly cre-
ate connectivity patterns for network topologies expressed in three-dimensional space, by
querying the CPPN with the combined three-dimensional inputs: (x1, y1, z1, x2, y2, z2),
i.e. using a six-dimensional CPPN. This is especially interesting as it suggests that topolo-
gies like those found in the brains of biological creatures theoretically exist within its
search space [34].

Because neurons in HyperNEAT exists at precise points in space, aligning these neurons
with the geometry inherent to the problem domain enables HyperNEAT to exploit the
geometric relations in the problem [34], [37], [42], [43]. For example, in a game like chess
or checkers the relative position of each square of the game board plays an important role
in the understanding and mastery of the game, and being able to recognize the adjacency
relationships between the squares of the board makes it possible to learn general tactics
rather than actions tied to specific squares [42]. HyperNEAT’s general encoding allows
it to use this adjacency information to paint a connectivity pattern across the entire board
rather than having to learn this information one square at a time.

Furthermore, HyperNEAT’s abilities has been shown applicable in a variety of different
domains: Controlling multi-agent teams in a predator-pray simulation [44], [45], play-
ing checkers [37], [42], creating car controllers [46], [47], and creating controllers for
legged robots [10], [12]–[14], [22], [35]. On the common RoboCup Keepaway soccer
reinforcement learning benchmark HyperNEAT outperformed all previous learning algo-
rithms [48]. HyperNEAT as also been shown to be able to play general Atari games from
raw pixel data, even beating human high-scores on several games [49].

One limitation of HyperNEAT is that the location and role of each neuron connected
by the CPPN must be decided beforehand by the user. This creates a new task for the
user, wherein the user must manually position every input, output and hidden neuron
in the network inside a separate space called the substrate. While it is often easy to
find some way of positioning the input and output neurons in a way that represents the
domain geometry, it is often more difficult to determine the placement and number of
hidden neurons [50], [51]. An extension to the HyperNEAT algorithm called Evolvable-
Substrate HyperNEAT or ES-HyperNEAT [50] alleviates this problem by using the CPPN
itself to determine the number and placement of hidden neurons. As areas of the CPPN
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with uniform weight ultimately encode very little information, ES-HyperNEAT attempts
to best capture the information stored in the CPPN by searching and positioning neurons
in regions of high variance [52].
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Chapter 3.

Related Works

One of the earliest examples of physics-based character animation came in the inspiring
work of Karl Sims in 1994 [1], which used genetic algorithms to evolve both the morphol-
ogy and neural controllers of various simple three-dimensional creatures. In this work
Sims managed to evolve his creatures to swim, walk, jump and follow a light source, and
later evolved them to compete over the control of an object [2].

3.1. Bipedal

Reil and Husbands [7] evolves a fixed topology recurrent neural network for a three di-
mensional bipedal controller. Their model is a simplified lower-body humanoid with two
joints per leg, a hip and knee joint. The evolved controller generates target joint angles
that produce a stable cyclic walking motion for the biped.

Allen and Faloutsos [9] utilize the NEAT algorithm to evolve controllers for a more com-
plex humanoid model. In addition to the hip and knee joints the evolved controllers also
control both the spine and ankle joints of the model, by setting target joint angles. Further
to promote symmetry the controller is constructed of two identical controllers reflecting
the bilateral symmetry found in humans. However, while showing smooth and believable
human-like motion, their controllers were generally not stable for more than a few meters
before falling over.
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Chapter 3. Related Works

Olson [11] uses a similar bipedal model to that of Reil and Husbands [7], but uses Hyper-
NEAT for the optimization process. Further to facilitate oscillatory gaits the produced con-
trollers makes use of a Continuous Time Recurrent Neural Network or CTRNN. Though
the most novel approach in this work might be the use of the Novelty Search fitness cal-
culation, that instead of rewarding a direct target goal simply rewards individuals that are
different. The produced controllers show stable oscillatory gaits, but are on average not
capable of walking further than previous bipedal experiments evolved with NEAT.

Hagenaars [5] uses NEAT to evolve a developmental hierarchy of controllers to generate
joint torques for a full body humanoid character. Each controller, posing, standing and
reaching is trained in succession, in increasing order of complexity, each building upon
the previous lower level behaviour, creating a combined controller that can do all the
various actions. The user may also toggle individual sub-controllers on or off changing
the behaviour of the controller. As such this work is the most similar to the work presented
here in.

3.2. Quadrupedal

Clune, Beckmann, Ofria and Pennock [10] compares HyperNEAT and FT-NEAT on pro-
ducing gaits for a simple quadrupedal model. The model features a planar surface with
four legs and three joints per leg for a total of 12 joints. Results showed that HyperNEAT
were capable of producing smooth, natural looking gaits far outperforming those evolved
by FT-NEAT.

Yosinski, Clune, Hidalgo, Nguyen, Zagal and Lipson [12] used HyperNEAT to train gaits
for a physical 3D printed robot directly on the hardware. The robot, also known as the
QuadraTot, features two joints per leg and a central joint rotating the entire upper body
in relation to the lower for a total of nine joints. Results showed that gaits evolved with
HyperNEAT outperformed the previous hand coded controller for the same robot.

Lee, Yosinski, Glette, Lipson and Clune [13] shows the benefit of using HyperNEAT in
simulation to evolve gaits for the QuadraTot robot before transferring the controller to the
physical robot.
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Morse, Risi, Snyder and Stanley [14] uses an extended version of HyperNEAT to train
gaits for a simple quadrupedal model. The model features a rectangular body with four
legs and tree joints per leg for a total of 12 joints. The novel idea in this work is the
Single-Unit Pattern Generator, or SUPG, HyperNEAT extension. This extension is a
new type of neuron that produces temporal activation patterns that can be reset and re-
peated on various triggers such as a leg touching the ground. The SUPG extension aims
to provide an alternative to other commonly applied methods for achieving oscillatory
motion like CTRNNs or inputting sinusoids directly into the neural network. The results
show controllers producing stable oscillatory gaits that are capable of continuous walking
far beyond the training window.

3.3. Covariance Matrix Adaptation

A different approach to the problem of physics-based character animation that has re-
sulted in a variety of impressive animation controllers [53]–[55] is using the Covariance
Matrix Adaptation or CMA evolution strategy [56]. However, this is also purportedly
very difficult to implement and do not mix well with common physics engines, and also
highly computationally expensive where most implementations usually reports real-time
performance for only a single character at a time [57].
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Chapter 4.

Approach

This chapter details the approach and methods used in this project, most notably the setup
of the physics simulation and design of the character model and substrate.

4.1. Multi-legged Character

This project uses a customOpenGL-based game engine. This engine was built prior to this
project and has been adapted to incorporate a physics engine and neuroevolution library
in order to simulate and train the controllers needed for this thesis. The engine itself is
mainly used for visualization and to control the flow of the physics-based simulation.

The Bullet31 physics engine is used to perform all rigid body simulation and collision
detection required to simulate the character. The settings of Bullet has been tuned to
approximate real-life physics as closely as possible in order to provide a realistic environ-
ment. A full list of these settings can be found in Appendix A Settings.

To evolve the controllers, the neuroevolution library MultiNEAT2 is used. MultiNEAT
features an implementation of NEAT, HyperNEAT and ES-HyperNEAT and is one of
several highly recommended libraries with good track records [58]. The choice of Multi-
NEAT in particular was made due to language compatibility with the rest of the project
code. In this project MultiNEAT is used for its implementation of HyperNEAT. While

1
http://bulletphysics.org

2
http://multineat.com
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Figure 4.1.: Character in a upright position.

ES-HyperNEAT sounds like a very promising algorithm, it is still relatively new and have
not previously been tested for evolving locomotion controllers.

In addition to these libraries a complete list of all libraries used in this project as well as
the source code for the project itself can be found on the authors github repository3.

One of the elements that was kept from the original game engine is the character model.
This model is a arachnoid with a robotic theme, featuring eight legs, each with five differ-
ent joints. It also has a head, an abdomen and a sternum, where the latter is what all the
legs are connected to. This model was chosen as it had a sufficient complexity to provide
a realistic example of a fully featured game character.

All the joints of the character are defined as hinge joints, meaning that they can only rotate
in one specific axis. Furthermore, all of these joints have limitations in how much they
are able to move in their respective axis. This is to enforce realistic motions as the joints
should not have a full 360 degree freedom of movement. Figure 4.2 showcases several
legs in various different angles that are allowed, where Figure 4.3 shows each joint and
their limits. As seen in Figure 4.3, Trochanter is the only joint able to rotate forwards or
3
https://www.github.com/reewr/master

23

https://www.github.com/reewr/master


Chapter 4. Approach

Figure 4.2.: One of the legs in various poses.

Figure 4.3.: Leg joint limits.

backwards in relation to sternum, where as every other joint can only rotate up and down
in relation to sternum. The actual values of these limits can be seen in Table 4.1, where
each row represents the angle going from left to right in Figure 4.3.

Name Upper Limit Lower Limit

Trochanter -60 60
Femur -20 60
Patella -100 5
Tibia -100 5
Tarsus -35 35

Table 4.1.: Upper and lower limits of each joint on the legs of the character.

The character has four additional parts that are not mentioned in Table 4.1, the head, neck,
hip and abdomen. These parts may also be rotated, however, these parts were not consid-
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ered to contribute much in terms of the movement of the character and instead added more
complexity to an already complex character. These joints have therefore been disabled
and set to a constant angle that should not interfere with the movement of the character.

The dimensions of the character is roughly 4 units from its head to the back of the abdomen
and has approximately 9 units in total leg span when fully stretched out.

Each part of the character has a weight of 1 mass unit, except for the sternum, abdomen
and head which weighs 10 mass units, 8 mass units and 5 mass units respectively. These
units were set to make sure that the centre of mass was not exactly at the centre of the
character, but rather slightly tilted towards the back, in order to increase the perceived
realism of the character.

4.2. Substrate

As mentioned in Chapter 2 Background, HyperNEAT uses a substrate to define the coor-
dinates for input, hidden and output nodes. Designing the substrate is an important aspect
of using HyperNEAT as it contributes to how it will determine symmetries and patterns
[43].

The substrate is made to match the geometry of the character as closely as possible to
make it easier for HyperNEAT to detect the symmetries of the legs. The substrate takes
inspiration from previous research that has evolved gaits for Quadruped [10], [12], [13],
[35], but is extended to account for the additional two legs on each side and the increased
number of joints. The substrate with all its layers can be seen in Figure 4.4, which is
defined with three two-dimensional 7 × 8 Cartesian grids. The first of these represent the
input layer, the second is the hidden layer and the third is the output layer. All unmarked
inputs/outputs are unused.

Each column in the substrate represents a leg, starting from the front left and going clock-
wise around the character. Each row, except for the two top most rows, represents the
current angle of a joint normalized from a value between [−π, π] to a value between
[−1, 1]. The second row represents whether or not the tip of the leg is touching the floor
where as the first row include the pitch, roll and yaw of the sternum. The first row also
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Figure 4.4.: The three-dimensional substrate of the character

include a sine and cosine wave to encourage periodic behaviour. All the inputs, hidden
and output coordinates of the substrate are spread uniformly in the range of [−1, 1], while
trying to keep symmetry between opposite legs. To differentiate between the layers, the
inputs, hidden and output layers are placed on different z-coordinates, where the input
z-coordinate is −1, hidden z-coordinate is 0 and output z-coordinate is 1.

The outputs are expected to be of the range [−1, 1]. The current angle of the joint is
subtracted from the output and the result of this is set as the new velocity of the joint.
This simulates setting a target angle of the joint, allowing the networks to choose their
desired angles of each joint.
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4.3. Controllers

In order to create the control strategy, the neural controllers for each action has to be
trained first.

The first controller is trained to make the character stand completely still in a standing
position. While training, it will be awarded for not moving away from the initial starting
position and for remaining still in a balanced pose. If the character falls at any point
during the simulation, i.e. touches the ground with any vital parts, the simulation will
be terminated and the character will be rewarded for the length of time it stayed alive.
This mainly to discourage such behaviour by limiting the fitness of individuals that are
unable to remain upright throughout the entirety of the simulation, promoting more stable
postures.

The second controller is trained to make the character walk with a stable gait. Working
under the assumption that the further the character walks the more stable the gait must be.
Therefore, the fitness of the character will be the furthest distance travelled in one specific
axis, in this case the positive z-axis, which is the axis the character is facing at the start of
the simulation. As with the first controller, if the character falls, the simulation will end
and the final fitness value will be the furthest distance travelled before it fell.

The particular reason for choosing these two actions was that together they form a mini-
mum of actions required to test the control strategy. Walking gaits have been evolved for
various legged creatures before and thus evolving this behaviour for the character used
in this project should hopefully not be too much of a stretch, considering the characters
heightened complexity. While it would easily be possible to not have a separate standing
controller, by just locking all the joints of the character instead, this could possibly cause
the character to fall over if it happened to stop in some unbalanced position. Thus the
need for a separate standing controller that could account for such imbalance and other
residual forces left over from the walking controller after a transition.

Both of the above controllers will be trained with HyperNEAT using the substrate de-
scribed in the previous section and use the same input and output scheme as describe
above.
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The simulation process will be the same for both the controllers and they will only differ
in the fitness functions that they use. All simulations will be run with 150 individual with
randomized weights based on a random seed for 300 generations. Each character will be
allowed to run for up to 10 seconds in real time, in addition to an un-simulated process of
one second where the character is positioned into a standing pose that is equal across all
simulations.

Due to the complexity of HyperNEAT and its underlying NEAT algorithm, it has a va-
riety of different parameters to set, most of which have been heavily based on previous
research for similar multi-legged characters [10], [12], [13], [35]. However, these may
be subject to some degree of trial and error depending on the results. A full list of the
NEAT/HyperNEAT parameters can be found in Appendix A Settings.

4.4. Control Strategy

Once these two controllers are in place, the control strategy can be evaluated by using the
above controllers together. To do this, two experiments have been devised.

The first experiment is designed to measure the responsiveness of the controllers. This
is done by using the controllers in sequence and measuring the time it takes to transition
from standing to walking and vice versa.

The second experiment is aimed to test the robustness of the controllers under more inten-
sive switching. In this experiment the controllers will be sequenced in a loop at random
time intervals to see if the character starts displaying behaviours it was not train for.
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Results

This chapter details the results of the standing controller, walking controller and the con-
trol strategy. It also details any deviations from the approach detailed in Chapter 4 Ap-
proach.

The results presented in this chapter uses image series to convey the movement and mo-
tion of the controller as correctly as possible, therefore the time between each image may
be varied. The number of seconds into the simulation is displayed in the top corner. How-
ever, one can only convey so much motion through a set of images. For a more accurate
representation of each controller, it is highly recommended to look at the corresponding
videos on the authors github page1, if possible. The page displays the videos in the same
order as the image series appear in this chapter.

5.1. Standing Controller

The standing controller was evaluated based on its ability to stand still and not falling to
the ground. While many of the evolved controllers were capable of keeping balance and
remaining still very few of them did so in an intuitive manner.

In early generations of the simulation the dominating factor by far was the killing of
individuals who fell. In the first generations rarely did even a single individual live long

1
https://reewr.github.io/master
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Figure 5.1.: Image series highlighting the first standing controller.

enough as to complete the full simulation duration. This led to a dramatic increase in
simulation speed in the early stages as it allowed the simulation to be cut short and the
next generation could be started.

Figure 5.2.: Another image series highlighting the first standing controller.

Seeing as the controllers were directly rewarded for how long they remained alive it was
not surprising that most of the controllers managed to learn that staying upright was a
good strategy. However, many controllers had trouble going beyond that and often flailed
about frantically in order to remain upright. An example of this can be seen in Figure 5.1.
This controller tries to remain upright by pulling all its legs towards its body, however, it
appears to do so with an equal force across all legs. Seeing as the character’s centre of
mass is slightly towards the back this symmetrical application of force leads the character
to tilt, eventually falling backwards.

One observed phenomenon that became apparent after the controllers was run outside
the training environment was that only slight, imperceptible differences in the simulation
could lead to totally different results. As an example Figure 5.2 shows the exact same
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Figure 5.3.: Image series highlighting the second standing controller.

controller as seen in Figure 5.1, but display a radically different behaviour. This phe-
nomenon stems from the fact that the physics engine is not deterministic due to rounding
approximations and floating point errors that can make a huge impact later in the simula-
tion. In order to reduce the impact of this effect on the training simulation, HyperNEAT
was reconfigured to allow cloned individuals. This allowed identical individuals to exists
simultaneously in the population, giving it multiple attempts to prove itself, decreasing
the chance that individuals would go extinct due to these inconsistencies.

Figure 5.4.: Image series highlighting the third standing controller.

Other controllers manage to learn that certain poses were easier to balance than others. As
such, a number of controllers evolved various static poses that they were able to hold near
indefinitely. However, some of these poses looked more like a spider mannequin that had
been randomly assembled by a tornado. One example of this can be seen in Figure 5.3.
This controller does take some time to gather itself, but eventually converges to a stable
pose. While certainly amusing, it did not meet the requirements of the control strategy,
as it were considered unlikely that a walking controller could naturally transition into this
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particular pose.

Figure 5.5.: Image series highlighting the champion standing controller.

Another example of these controllers managed to find a more intuitive resting position.
The best one of these can be seen in Figure 5.4. This controller gathered its legs and man-
ages to achieve a balanced resting position with its legs tucked in under itself. While this
controller was the most balanced controller evolved during the project, it was considered
too fragile for use with the control strategy. It tended to put all its legs very close together
which could easily cause it to fall over if subjected to external forces, such as lingering
forces left over from a different controller after a transition.

The final controller, which originated as a separate species in the same simulation as the
previous example, was chosen as the champion standing controller. This controller did not
achieve a perfectly balanced pose as it slowly descended towards the ground. However,
it never did any drastic motions in order to position itself and were therefore judged to be
the most compatible with other controllers in the control strategy.

x1 y1 z1 x2 y2 z2 bias

ssin sgauss

sgauss ssin

x1 y1 z1 x2 y2 z2 bias

ssin sgauss

sgauss ssin

Figure 5.6.: The CPPN of the champion standing controller.
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Figure 5.7.: The generated neural network for the champion standing controller.

Type Number

Input Neurons 56
Output Neurons 56
Hidden Neurons 56
Input to Hidden 232
Input to Output 464
Hidden to Hidden 0
Hidden to Output 464
Output to Hidden 232
Output to Output 0
Looped Hidden 232
Looped Output 464

Total connections 2088

Table 5.1.: The type and number of connections in the final network for the champion
standing controller.

As can be observed in Table 5.1 and Figure 5.7, the number of connections is low and
they are mostly grouped around the top of the substrate. Since it was rewarded for not
moving and only to keep itself from falling, it only had to use some of the joints to do
exactly that. Seeing as the number of connections in a network will increase its sensitivity,
this sensitivity would usually cause it to move around more. In this case it seemed that
HyperNEAT discovered that reducing the number of connections in the network would
make it better at standing still. An additional note is that most of the outputs that it is
connected to are outputs that are not used. The downside of this type of network is that
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its very hard for it to react to changes, unless those changes happen to hit the very few
input nodes that its connected to.

5.2. Walking Controller

As mentioned in Chapter 4 Approach, the walking controller was evaluated purely based
on how far it travelled in one specific axis while remaining upright. While all the evolved
controllers were able to move forward to some degree, classifying all of them as gaits
would be a stretch.

Figure 5.8.: Image series highlighting the gait of the first walker.

The controllers often quickly learnt that standing as far up as it could and then falling
forward would give it a fairly decent fitness score. In some training runs it learnt that by
throwing itself forward from the standing position it started in, it could easily cover a dis-
tance of 4-5 units. If evolution discovered any of these behaviours early in the simulation
it would often outcompete other individuals and eventually dominate the population. Fur-
ther evolution of these controllers would usually only get incrementally better at falling
over or throwing themselves forward. An example of one of these controllers can be seen
in Figure 5.8.

One of the more reasonable controllers that were able to evolve from the same type of
behaviour can be seen in Figure 5.9. In this case, the controller flings itself forward with
all its legs spread. However, unlike the previously mentioned examples, this controller
learnt to move its legs into position to catch itself in time to avoid being killed due to
falling. While this is an interesting result that definitely had an amusing gait, it was far
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Figure 5.9.: Image series highlighting the gait of the second walker.

too unstable to be a candidate for the control strategy. Another thing to note about this
controller is that while catching itself and preparing another jump, it often slid or turned
unpredictably, meaning that it would very rarely travel in a straight line. Though in the
cases where it did manage to move straight the controller was very capable of walking
quite far.
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Figure 5.10.: The average distance travelled by the best individuals in the population
of the 1st and 2nd walkers.

The above results were evolved with a fitness function that purely looked at the distance
travelled and was given 10 seconds to walk. Figure 5.10 shows the distance travelled on
average by the best individuals in the population for the two highlighted walkers.

One reoccurring issue that was seen in all the results up until this point was that the con-
trollers often had no idea of what to do after the 10-second training period had passed.
As a result the simulation duration was increased to 30 seconds. The idea behind this
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change was to promote the evolution of a looped gait that could possibly go on for longer
than the simulation period. However, as individuals that fell were killed, the simulation
would almost never go on for the full 30 seconds. When the simulation time did get that
high, it was usually due to an individual managing to balance in some odd stationary pose,
eventually leading to its demise due to poor fitness.

Figure 5.11.: Image series highlighting the gait of the third walker.

One controller that evolved from this experiment, can be seen in Figure 5.11. This con-
troller positioned itself in a somewhat stable pose, before it started to produce a rapid,
near imperceptible movement, with many of the joints. This caused the character to inch
it forwards ever so slightly, usually ending with a spectacular bow.

This behaviour showcases one of the issues that comeswith using neural networks. Neural
networks can be very sensitive to change in the input it is given. While this is often good,
in some cases this can lead to rapid changes in the output of the network. As in the example
above the controller evolved to produce rapidly alternating outputs for many of the joints
of the character. The controller could go from requesting the angle of the joint to be a large
positive value followed by a large negative value the next update, before going back to a
large positive value again. Since the joint can only move so far during an update, it meant
that the joint would start going in one direction before suddenly changing to the opposite
direction, causing what looks like vibrations. As the idea was to achieve a more realistic
motion, these type of behaviours were discouraged by punishing the walking controller if
a joint changed its direction of motion more than a certain number of times per second.

The new fitness function worked well to discourage rapid changes in the motion of each
joint, and generally had no impact in the later stages of the simulation as the controllers
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Figure 5.12.: Image series highlighting the gait of the fourth walker.

usually learnt rather quickly to stay away from such motions. One of the first results that
showed a more reasonable gait was evolved after this new fitness function was added and
the duration of the simulation was increased. The gait of this controller can be seen in
Figure 5.12. The figure shows how the character would slightly turn itself and perform a
sideways walk resembling a gait seen in various types of crabs. This method of walking
enabled the character to walk quite far. In fact, this controller achieved one of the furthest
distances travelledwithin the 30-second lifespan. However, this controller was also highly
unstable and frequently fell over. Furthermore, it walked sideways and only performed
well because it managed to fool the fitness calculator by turning itself to walk in the correct
direction. As such it was therefore not an ideal candidate for a controller aimed to walk
forward.

Figure 5.13.: Image series highlighting the gait of the fifth walker.

In order to create a control strategy, the controller needed to be able to make the char-
acter walk in a more stable forward walking motion that moves as straight as possible.
To discourage the sideways motion displayed by the previous controller, another fitness
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function was added to measure how far it moved into the different directions on the x axis.
The further the character moved from 0 on the x axis in either direction, the worse fitness
it would get.
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Figure 5.14.: The average distance travelled by the best individuals in the population
of the 4th and 5th walkers.

One variation of the walking gaits that were evolved after these changes can be seen
in Figure 5.13. This controller uses its legs in a symmetric motion, showing off that
HyperNEAT has understood the symmetry of the model. In addition, it uses one of the
legs as a way to keep itself up when moving, so not to fall forward.

Another reoccurring issue present in many of the results was that they were highly unsta-
ble. When tested outside the training simulation, i.e. in an environment where they were
not immediately killed for falling, most of the controllers were not able to get themselves
back off the groundwhen they did fall, usually just displaying uncoordinated spasticmove-
ments. As a final change to the approach, the controllers was allowed to keep going even
after it had fallen. By allowing this it was believed that it would increase the likelihood
that the controllers could learn how to get up even after falling flat on the ground. Two
different variations of this change were implemented. First where touching the ground
with specific pieces of the character, such as the sternum, abdomen and head, would suf-
fer a penalty in the final fitness of the controller. Second did not incur any punishment
except for the implicit penalty caused by friction.

One disadvantage of not terminating poorly performing individuals was the huge increase
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in the time it took to execute the simulation. Even though the simulation is highly paral-
lelized, processing batches of individuals in separate threads, the bottleneck of the simu-
lation by far was the physics update. The physics simulation used in this project is rather
detailed as to most correctly represent the complexities of the chain of joints in the char-
acter model. The amount of detail and error correction performed by the physics engine
slows down the simulation quite significantly when used on as many as 150 individuals,
even when parallelized. Not terminating any individuals required the physics to be run
for every individual for the entirety of the 30 second simulation period, something which
rarely ever happened in the previous experiments.

This was exemplified by the first experiment runwith these new changes. This experiment
was cancelled, after only 180 generations, when it had already been running three times
as long as any prior experiment. In response to this the simulation duration was reduced
to 15 seconds.

Figure 5.15.: Image series highlighting the gait of the sixth walker.

Even though the experiment was cancelled it exhibited a new and interesting motion, as
can be seen in Figure 5.15. This controller was not punished for contacting the ground
with any vital parts, which can clearly be seen in the resultingmovement where it is resting
against the ground for long periods of its gait. However, it had a more fluid motion than
seen in the previous examples, and also achieved a higher stability by using two of its
hind legs to keep it self above ground in a balanced pose. The walking motion displayed
by this controller moves more consistently and was even capable of sustained walking
far beyond the training period. It still had a problem walking in a straight line, but rather
walked with a slight sideways tilt leading to a slightly curved heading.
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All the controllers evolved after removing the falling restriction showed similar results.
All of them where capable of walking substantially further than experiments run with
this restriction. Many of were also capable of sustained walking after the now 15 second
training period. However, all these controllers where categorically hugging the ground as
an intricate part of their evolved gaits.

Figure 5.16.: Image series highlighting the gait of the seventh walker.

One of the controllers that exemplifies this kind of movement is the controller seen in Fig-
ure 5.16. In the first seconds, the movement seems very reasonable, however, it quickly
falls forward and uses that to move itself by scraping the head against the ground, even
when punished for it. It still manages to move forward when using the legs in a movement
similar to a swimming octopus. Due to how it scrapes the ground, it was not able to stay
straight for very long, since it would occasionally lean over to one of the sides and turn
gradually into that direction.

Figure 5.17.: Image series highlighting the gait of the champion walker.

The final controller, also designated the champion walker, can be seen in Figure 5.17.
This controller, which was not punished for touching the ground, displayed the most pur-
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Figure 5.18.: The average distance travelled by the best individuals in the population
of the 7th and champion walkers.

poseful and straight movement of all the controllers. The gait exhibit a strong asymmetric
tendency in two distinct groups, consisting of the four front and four back legs, resembling
a form of gallop. This controller was also capable of sustained walking far beyond the
training period, in addition to being stable.

x1 y1 z1 x2 y2 z2 bias

tanh abs tanh2 lin lin abs abs ssig

ssin ssin

x1 y1 z1 x2 y2 z2 bias

tanh abs tanh2 lin lin abs abs ssig

ssin ssin

Figure 5.19.: The CPPN of the champion walker.
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Figure 5.20.: The generated neural network for the champion walker.

Type Number

Input Neurons 56
Output Neurons 56
Hidden Neurons 56
Input to Hidden 1582
Input to Output 1596
Hidden to Hidden 0
Hidden to Output 1617
Output to Hidden 1617
Output to Output 0
Looped Hidden 1610
Looped Output 1617

Total connections 9639

Table 5.2.: The type and number of connections in the final network for the champion
walker.

The CPPN of the champion walker can be seen in Figure 5.19 with all its neurons and
weights. The final generated neural network for the champion can be seen in Figure 5.20,
where the number of connections is shown in Table 5.2. The table also shows the number
of neurons, as determined by the pre-defined substrate shown in Figure 4.4 in Chapter 4
Approach.
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5.3. Control Strategy
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Figure 5.21.: Velocity of the character over time. The transitions between walking
and standing are indicated by the red vertical lines.

The proposed control strategy was evaluated based on its responsiveness and robustness
when switching between the two controllers. For the first experiment the walking and
standing controllers was sequenced in a loop with 5 second time intervals, and the ve-
locity of the character was recorded at each update. Figure 5.21 shows the result of this
experiment.

However, measuring the actual responsiveness of this experiment proved to be more dif-
ficult than anticipated, as the standing controller never ever stopped completely. That is
to say, its velocity never reached exactly 0, but rather slowed down to a near stop without
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stopping entirely. Although setting a threshold velocity for measuring its responsiveness
when switching from walking to standing it became possible to measure the time it took
to perform the switch. Depending on how strict this threshold value were set the average
response time were measured at 0.41 seconds for a lenient threshold velocity of 1 and
1.54 seconds when the threshold were set to a strict 0.1.

The samemeasurement was used for the switch from the standing to thewalking controller.
The walking controller did not have a constant speed, but rather displayed a periodically
varying phase of movement and rest. However, measuring the responsiveness with a
threshold value proved to be similarly effective, even when the threshold was set higher
than the low-points of the resting period of its gait. The average response time for this
switch was measuring at 0.09 seconds for a lenient threshold velocity of 0.5 and 0.65
seconds for a more strict threshold value of 1.5.

Figure 5.22.: Untrained behaviour seen during transitions.

However, as can be seen in Figure 5.21, the speed of the walking controller reduced no-
ticeably after the second switch from the standing controller. The reason for this was
that it managed to lock one of its forelegs under two of its hind legs, as can be seen in
Figure 5.22, a behaviour that was never observed when running the controller standalone.
For this reason the second control strategy experiment was abandoned. Seeing as even
this slow periodic switching between the walking and standing controllers was enough to
judge that the robustness of the control strategy did not meet expectations.
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Discussion

While the results of the control strategy did leave a lot to be desired, it is hard to fully
conclude that the strategy itself was a failure. This mainly due to the controllers it used,
which was not particularly robust to begin with. Thus to draw any final conclusion on the
topic, it will have to be tested with a set of more robust controllers.

Both the standing and walking controllers suggested much room for improvement, es-
pecially during transitions. The standing controller had a highly unconnected substrate,
suggesting that it could not react very well to differences in the input. As such, it may
have looked acceptable when starting from an already standing position, however, when
transitioned from the walking controller, it was not able to react and just slid down to the
ground. The walking controller did not handle transitions particularly well either, some-
times interlocking legs when starting from previously unseen starting positions left over
from the standing controller.

These results suggest that more extensive training is required for both the controllers be-
fore they can be tested together. These issues mostly seem to stem from the controllers
inability to adapt to situations it has not encountered during training. The decision to
start all training simulations from the same identical standing position may have been a
contributing factor in this regard. Training the controllers from a random starting posi-
tion, or in sequence as per their intended use case, could possibly increase the controllers
robustness over a wider range of scenarios. However, it is unknown whether or not this
added variation would ultimately help the evolution of the controllers or lead to their
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demise. Seeing as too much non-determinism during training could lead generally well-
performing individuals to go extinct if they just happened to be unlucky.

6.1. Character Complexity

Much of the previous research into evolving gaits onmulti-legged characters have focused
on characters with four legs or less. There have been multiple studies showing success
for bipedal and quadrupedal walkers using various algorithms, including HyperNEAT.
However, the authors have not found any research that has shown or tried to use Hyper-
NEAT with as many as eight legs. In addition to this, previous research has often had
between two to three joints per leg, unlike the character in this thesis that has five joints.
Due to the complexity of the character, it was expected that it would be more difficult for
HyperNEAT to evolve a stable gait for it.

However, HyperNEAT proved quite capable of producing gaits for this highly complex
eight-legged character. While most of them did not resemble what you would expect
from eight-legged creatures in nature, they all managed to find amusing ways of walking
forwards, some even managing to walk far beyond their training period. However, if the
aim was to replicate gaits found in nature it is likely that a more complex fitness func-
tion would be required, maybe one that could optimize for concepts like pain or energy
conservation.

On the other hand, if the character was replaced by a less complex character, it is believed
that HyperNEAT would more easily have been able to evolve more stable gaits and it
may have led to more success when creating the control strategy. However, as one of the
motivations behind the control strategy was to possibly use it within a game, using a less
complex character would have made it harder to verify whether or not this is possible with
an actual game character.
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Conclusion

This thesis set out to investigate the feasibility of combining individually trained neural
controllers to form a control strategy that could be used to actively control virtual physics-
based characters. To this end the neuroevolution algorithm HyperNEAT was used to
evolve neural controllers for a previously untested domain of eight-legged locomotion.
To create and evaluate the control strategy, two target neural controllers were trained for
two different behaviours, standing and walking. The newly trained neural controllers
were combined to form the control strategy and evaluated based on its robustness and
responsiveness when switching between them.

The presented results show that HyperNEAT was successfully able to evolve gaits for a
highly complex eight-legged character. The resulting gaits showed that they were quite
capable of walking long distances, even beyond the training period. However, when com-
bined within the control strategy the results suggest a need for further refinement as the
controllers were still not robust enough to operate in tandem with each other.
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Future works

This chapter describes various concepts that have not been tested within this thesis. Many
of the described chapters have shown promising results for legged locomotion, where as
some have yet to be tested.

8.1. Novelty Search

The controllers described in this thesis has been trained using an objective-based search
where a fitness function evaluates how well a certain genome is performing. For instance,
the walking controller was awarded for walking the furthest distance possible.

Novelty search is a different way of searching for a solution to a problem. Unlike
objective-based search, novelty search is not searching for the solution to the problem,
and instead of rewarding performance it rewards individuals who can be characterized
differently from everyone else. It can therefore succeed where objective-based search
often fails as it rewards stepping stones where objective-based searches often do not
[59].

Characterizing the walking controller described in this thesis could be done by storing
every x and z value at various intervals of the simulation. This would mean that two
characters whowalked who ended up at the same final coordinate by different paths would
be characterized differently [11].
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Novelty search would make it possible to discover gaits that, while possibly less effective,
can be more natural to the character, and may be able to walk longer and more stable. This
is because novelty does not search for a specific solution to a goal, butmay instead stumble
onto the solution of the goal as it is trying to evolve characters that can be characterized
differently from each other.

Replacing the current objective-based search used in this thesis with a novelty based one
would be of interest, as it may be possible to create a controller that is not only more stable,
but may also look more natural.

8.2. Single-Unit Pattern Generators

One of the many challenges in generating stable oscillatory gaits is trying to give the
network an intuitive understanding of time. This is often done by inputting pattern gen-
erating functions into the network, such as the sinusoids, which is the approach taken in
this thesis, or by using a CTRNN. Another method of achieving this, that has shown great
promise, is the usage of Single-Unit Pattern Generators or SUPG for short.

The SUPG is a new type of neuron that is able to produce a flexible temporal activation
pattern that can be reset and repeated on a special trigger. It takes advantage of the CPPNs
ability to encode spatial patterns, with a natural appearance, to instead use this to encode
patterns over time. Unlike the sinusoids, SUPGs do not repeat a patterns over a set interval,
but instead generate patterns until a trigger happens resetting the cycle. [14]

The trigger of the SUPGs can be customized, but as an example, one trigger might be
a leg touching the ground. This means that when this happens, all the SUPGs that are
connected to that leg is reset and starts the pattern over again.

Controllers using SUPGs have shown to be able to walk with a stable oscillatory gait and
has even shown to be able to continue walking for far beyond the training window [14].
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8.3. ES-HyperNEAT

Evolvable-Substrate HyperNEAT is a more recent alteration of the HyperNEAT algo-
rithm, as mentioned in Chapter 2 Background. Unlike HyperNEAT, ES-HyperNEAT al-
leviates the problem of having to decide on the number and position of the hidden neurons,
as this can often be a difficult task. ES-HyperNEAT takes advantage of the CPPN and
its information by searching for regions of high variance and placing neurons in those
regions.

While ES-HyperNEAT has not been used, to the best of the authors knowledge, to evolve
legged gaits, it would be interesting to see what effect the evolvable substrate would have
on the controllers and if it could evolve better gaits than shown in this thesis.
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Appendix A.

Settings

This appendix describes the settings that are used for Bullet Physics. It also describes
the settings used for the various experiments, due to the numerous amount of different
configurations that are available for HyperNEAT.

A.1. Bullet Physics

Asmentioned in Section 4, the weight of the model were 1 mass unit for each piece except
for the abdomen, eye and sternum which weigh 8, 5 and 10 mass units, respectively.

All of the pieces were set to have a friction of 0.84, which simulates the friction of metal.
The number of iterations were set to 25, allowing a more accurate representation of the
physics while not be too resource demanding.

The Error Reduction Parameter (ERP) specifies what proportion of the joint errors will
be fixed during the next simulation step. An ERP of 0 will apply no correcting force and
the bodies will eventually drift apart during the simulation. An ERP of 1 will attempt to
fix all joint errors, but will fail to fix everything due to some internal approximations in
Bullet. A value of 1 is not recommended. The value that was used for the simulations
was 0.8, in order to increase the accuracy of the many joints that the model uses. Default
value is 0.2.
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The Constraint Force Mixing (CFM) determines how hard or soft constraints will be. The
higher the value of CFM, the softer the constraints will be and the more it will be possible
to violate the constraint by pushing on it. The value used for the simulations was 0.00001,
which allows the constraints in the simulation to be violated by a small fraction. This was
set in order to create a smoother simulation due to the complexity of the model.

The gravity of the world was set to 9.81 simulating the gravity that is experienced on
Earth.

All other settings that was not specificallymentioned in this sectionwas left at their default
values.

A.2. HyperNEAT

The settings of HyperNEAT varied from experiment to experiment. Some of the important
settings is included in this chapter. The settings for all the other experiments can be found
on the authors github account1.

A.2.1. Substrate

Table A.1.: Substrate parameters.

Name Value

Allow input to hidden links true
Allow input to output links true
Allow hidden to output links true
Allow hidden to hidden links true
Allow output to hidden links true
Allow output to output links true
Allow looped to hidden links true
Allow looped to output links true

1
https://github.com/reewr/master
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A.2.2. NEAT

Table A.2.: NEAT/HyperNEAT parameters.

Name Value

Basic
PopulationSize 150
DynamicCompatibility true
MinSpecies 10
MaxSpecies 15
AllowClones true

GA
YoungAgeTreshold 5
YoungAgeFitnessBoost 1.1
SpeciesMaxStagnation 15
StagnationDelta 0.0
OldAgeTreshold 30
OldAgePenalty 1.1
SurvivalRate 0.25
CrossoverRate 0.7
OverallMutationRate 0.25
InterspeciesCrossoverRate 0.0001
MultipointCrossoverRate 0.75
EliteFraction 0.2

Structural Mutation
MutateAddNeuronProb 0.03
SplitRecurrent true
SplitLoopedRecurrent true
MutateAddLinkProb 0.2
MutateAddLinkFromBiasProb 0.0
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Name Value

MutateRemLinkProb 0.1
MutateRemSimpleNeuronProb 0.1
LinkTries 32
RecurrentProb 0.5
RecurrentLoopProb 0.25

Mutation
MutateWeightsProb 0.8
MutateWeightsSevereProb 0.5
WeightMutationRate 0.96
WeightMutationMaxPower 0.5
WeightReplacementMaxPower 1.0
MutateActivationAProb 0.1
MutateNeuronActivationTypeProb 0.15
ActivationFunction_SignedSigmoid_Prob 1.0
ActivationFunction_UnsignedSigmoid_Prob 0.0
ActivationFunction_Tanh_Prob 0.0
ActivationFunction_TanhCubic_Prob 0.0
ActivationFunction_SignedStep_Prob 0.0
ActivationFunction_UnsignedStep_Prob 0.0
ActivationFunction_SignedGauss_Prob 1.0
ActivationFunction_UnsignedGauss_Prob 0.0
ActivationFunction_Abs_Prob 0.0
ActivationFunction_SignedSine_Prob 1.0
ActivationFunction_UnsignedSine_Prob 0.0
ActivationFunction_Linear_Prob 1.0
ActivationFunction_Relu_Prob 0.0
ActivationFunction_Softplus_Prob 0.0

55



Bibliography

[1] K. Sims, ‘Evolving virtual creatures’, inProceedings of the 21st annual conference
on computer graphics and interactive techniques, 1994, pp. 15–22.

[2] K. Sims, ‘Evolving 3D morphology and behavior by competition’, Artificial Life,
vol. 1, no. 4, pp. 353–372, 1994.

[3] T. Geijtenbeek and N. Pronost, ‘Interactive character animation using simulated
physics: A state-of-the-art review’, Comput. Graph. Forum, vol. 31, no. 8, pp.
2492–2515, Dec. 2012.

[4] T. Pejsa and I. Pandzic, ‘State of the art in example-based motion synthesis for
virtual characters in interactive applications’, Computer Graphics Forum, vol. 29,
no. 1, pp. 202–226, 2010.

[5] M. Hagenaars, ‘Hierarchical development of physics-based animation controllers’,
Master’s thesis, Utrecht University, 2014.

[6] R. Grzeszczuk and D. Terzopoulos, ‘Automated learning of muscle-actuated loco-
motion through control abstraction’, inProceedings of the 22Nd annual conference
on computer graphics and interactive techniques, 1995, pp. 63–70.

[7] T. Reil and P. Husbands, ‘Evolution of central pattern generators for bipedal walk-
ing in a real-time physics environment’, IEEE Transactions on Evolutionary Com-
putation, vol. 6, no. 2, pp. 159–168, Apr 2002.

56



Bibliography

[8] V. K. Valsalam and R. Miikkulainen, ‘Modular neuroevolution for multilegged lo-
comotion’, inProceedings of the genetic and evolutionary computation conference
gECCO 2008, 2008, pp. 265–272.

[9] B. F. Allen and P. Faloutsos, ‘Evolved controllers for simulated locomotion’, in
Proceedings of the 2Nd international workshop on motion in games, 2009, pp.
219–230.

[10] J. Clune, B. E. Beckmann, C. Ofria, and R. T. Pennock, ‘Evolving coordinated
quadruped gaits with the hyperNEAT generative encoding’, in 2009 iEEE congress
on evolutionary computation, 2009, pp. 2764–2771.

[11] R. S. Olson, ‘A step toward evolving biped walking behavior through indirect en-
coding’, Master’s thesis, University of Central Florida, 2010.

[12] J. Yosinski, J. Clune, D. Hidalgo, S. Nguyen, J. C. Zagal, and H. Lipson, ‘Evolv-
ing robot gaits in hardware: The hyperNEAT generative encoding vs. parameter
optimization’, in In proceedings of the 20th european conference on artificial life,
2011, pp. 890–897.

[13] S. Lee, J. Yosinski, K. Glette, H. Lipson, and J. Clune, ‘Evolving gaits for physical
robots with the hyperNEAT generative encoding: The benefits of simulation’, in
Applications of evolutionary computation: 16th european conference, evoApplica-
tions 2013, vienna, austria, april 3-5, 2013. proceedings, A. I. Esparcia-Alcázar,
Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 540–549.

[14] G. Morse, S. Risi, C. R. Snyder, and K. O. Stanley, ‘Single-unit pattern genera-
tors for quadruped locomotion’, in Proceedings of the 15th annual conference on
genetic and evolutionary computation, 2013, pp. 719–726.

[15] C. Ridderström, ‘Legged locomotion: Balance, control and tools — from equation
to action’, PhD thesis, The Royal Inst. of Technology, 100 44 Stockholm, Sweden,
2003.

57



Bibliography

[16] G. S. Hornby, S. Takamura, J. Yokono, O. Hanagata, T. Yamamoto, and M. Fujita,
‘Evolving robust gaits with aIBO’, in Proceedings 2000 iCRA. millennium con-
ference. iEEE international conference on robotics and automation. symposia
proceedings (cat. no.00CH37065), 2000, vol. 3, pp. 3040–3045 vol.3.

[17] S. Colombano, F. Kirchner, D. Spenneberg, and J. Hanratty, ‘Exploration of plan-
etary terrains with a legged robot as a scout adjunct to a rover’, in Space 2004
conference and exhibit, 2004.

[18] G. S. Hornby, S. Takamura, T. Yamamoto, and M. Fujita, ‘Autonomous evolution
of dynamic gaits with two quadruped robots’, IEEE Transactions on Robotics, vol.
21, no. 3, pp. 402–410, June 2005.

[19] G. S. Hornby, S. Takamura, O. Hanagata, M. Fujita, and J. Pollack, ‘Evolution of
controllers from a high-level simulator to a high dOF robot’, in Evolvable systems:
From biology to hardware: Third international conference, iCES 2000 edinburgh,
scotland, uK, april 17–19, 2000 proceedings, J. Miller, A. Thompson, P. Thomson,
and T. C. Fogarty, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000, pp.
80–89.

[20] G. S. Hornby, H. Lipson, and J. B. Pollack, ‘Generative representations for the
automated design of modular physical robots’, IEEE Transactions on Robotics and
Automation, vol. 19, no. 4, pp. 703–719, Aug 2003.

[21] N. Kohl and P. Stone, ‘Machine learning for fast quadrupedal locomotion’, in Pro-
ceedings of the 19th national conference on artifical intelligence, 2004, pp. 611–
616.

[22] S. Risi and K. O. Stanley, ‘Confronting the challenge of learning a flexible neu-
ral controller for a diversity of morphologies’, in Proceedings of the 15th annual
conference on genetic and evolutionary computation, 2013, pp. 255–262.

[23] C. Igel, ‘Neuroevolution for reinforcement learning using evolution strategies’, in
Evolutionary computation, 2003. cEC ’03. the 2003 congress on, 2003, vol. 4,
pp. 2588–2595 Vol.4.

58



Bibliography

[24] J. Togelius, T. Schaul, J. Schmidhuber, and F. Gomez, ‘Countering poisonous in-
puts with memetic neuroevolution’, in Proceedings of the 10th international con-
ference on parallel problem solving from nature — pPSN x - volume 5199, 2008,
pp. 610–619.

[25] K. O. Stanley and R.Miikkulainen, ‘Evolving neural networks through augmenting
topologies’, Evol. Comput., vol. 10, no. 2, pp. 99–127, Jun. 2002.

[26] F. Gomez, J. Schmidhuber, and R. Miikkulainen, ‘Accelerated neural evolution
through cooperatively coevolved synapses’, Journal of Machine Learning
Research, pp. 937–965, 2008.

[27] L. Cardamone, D. Loiacono, and P. L. Lanzi, ‘Evolving competitive car controllers
for racing games with neuroevolution’, in Proceedings of the 11th annual confer-
ence on genetic and evolutionary computation, 2009, pp. 1179–1186.

[28] N. Kohl, K. Stanley, R. Miikkulainen, M. Samples, and R. Sherony, ‘Evolving a
real-world vehicle warning system’, in Proceedings of the 8th annual conference
on genetic and evolutionary computation, 2006, pp. 1681–1688.

[29] J. Schrum, I. V. Karpov, and R. Miikkulainen, ‘UT2: Human-like behavior via
neuroevolution of combat behavior and replay of human traces’, in Proceedings of
the iEEE conference on computational intelligence and games (cIG 2011), 2011,
pp. 329–336.

[30] J. Schrum and R. Miikkulainen, ‘Evolving multimodal behavior with modular neu-
ral networks in ms. pac-man’, in Proceedings of the 2014 annual conference on
genetic and evolutionary computation, 2014, pp. 325–332.

[31] S. Risi and J. Togelius, ‘Neuroevolution in games: State of the art and open chal-
lenges’, CoRR, vol. abs/1410.7326, 2014.

[32] S.M. Lucas and J. Togelius, ‘Point-to-point car racing: An initial study of evolution
versus temporal difference learning’, in 2007 iEEE symposium on computational
intelligence and games, 2007, pp. 260–267.

59



Bibliography

[33] S. Whiteson, M. E. Taylor, and P. Stone, ‘Empirical studies in action selection for
reinforcement learning’, Adaptive Behavior, vol. 15, no. 1, pp. 33–50, March
2007.

[34] K. O. Stanley, D. B. D’Ambrosio, and J. Gauci, ‘A hypercube-based encoding for
evolving large-scale neural networks’, Artif. Life, vol. 15, no. 2, pp. 185–212, Apr.
2009.

[35] J. Clune, K. O. Stanley, R. T. Pennock, and C. Ofria, ‘On the performance of in-
direct encoding across the continuum of regularity’, IEEE Transactions on Evolu-
tionary Computation, vol. 15, no. 3, pp. 346–367, June 2011.

[36] K. O. Stanley and R. Miikkulainen, ‘A taxonomy for artificial embryogeny’, Arti-
ficial Life, vol. 9, no. 2, pp. 93–130, 2003.

[37] J. Gauci and K. O. Stanley, ‘Autonomous evolution of topographic regularities in
artificial neural networks’, Neural Comput., vol. 22, no. 7, pp. 1860–1898, Jul.
2010.

[38] J. Secretan, N. Beato, D. B. D Ambrosio, A. Rodriguez, A. Campbell, and K. O.
Stanley, ‘Picbreeder: Evolving pictures collaboratively online’, in Proceedings of
the sIGCHI conference on human factors in computing systems, 2008, pp. 1759–
1768.

[39] K. O. Stanley, ‘Compositional pattern producing networks: A novel abstraction of
development’, Genetic Programming and Evolvable Machines, vol. 8, no. 2, pp.
131–162, Jun. 2007.

[40] J. Clune and H. Lipson, ‘Evolving 3D objects with a generative encoding inspired
by developmental biology’, SIGEVOlution, vol. 5, no. 4, pp. 2–12, Nov. 2011.

[41] K. O. Stanley, ‘Exploiting regularity without development’, in Proceedings of the
aAAI fall symposium on developmental systems, 2006.

60



Bibliography

[42] J. Gauci and K. O. Stanley, ‘A case study on the critical role of geometric regularity
in machine learning’, in Proceedings of the 23rd national conference on artificial
intelligence - volume 2, 2008, pp. 628–633.

[43] J. Clune, C. Ofria, and R. T. Pennock, ‘The sensitivity of hyperNEAT to different
geometric representations of a problem’, in Proceedings of the 11th annual confer-
ence on genetic and evolutionary computation, 2009, pp. 675–682.

[44] D. B. D’Ambrosio and K. O. Stanley, ‘Generative encoding for multiagent learn-
ing’, in Proceedings of the 10th annual conference on genetic and evolutionary
computation, 2008, pp. 819–826.

[45] D. B. D’Ambrosio, J. Lehman, S. Risi, and K. O. Stanley, ‘Evolving policy ge-
ometry for scalable multiagent learning’, in Proceedings of the 9th international
conference on autonomous agents and multiagent systems: Volume 1 - volume 1,
2010, pp. 731–738.

[46] J. Drchal, O. Kapral, J. Koutník, and M. Šnorek, ‘Combining multiple inputs in
hyperNEAT mobile agent controller’, in Artificial neural networks – iCANN 2009:
19th international conference, limassol, cyprus, september 14-17, 2009, proceed-
ings, part iI, C. Alippi, M. Polycarpou, C. Panayiotou, and G. Ellinas, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2009, pp. 775–783.

[47] J. Drchal, J. Koutnik, and M. Snorek, ‘HyperNEAT controlled robots learn how to
drive on roads in simulated environment’, in 2009 iEEE congress on evolutionary
computation, 2009, pp. 1087–1092.

[48] P. Verbancsics and K. O. Stanley, ‘Evolving static representations for task transfer’,
J. Mach. Learn. Res., vol. 11, pp. 1737–1769, Aug. 2010.

[49] M. Hausknecht, J. Lehman, R. Miikkulainen, and P. Stone, ‘A neuroevolution ap-
proach to general atari game playing’, IEEE Transactions on Computational Intel-
ligence and AI in Games, 2013.

61



Bibliography

[50] S. Risi, J. Lehman, and K. O. Stanley, ‘Evolving the placement and density of
neurons in the hyperneat substrate’, in Proceedings of the 12th annual conference
on genetic and evolutionary computation, 2010, pp. 563–570.

[51] S. Risi and K. O. Stanley, ‘Enhancing es-hyperneat to evolve more complex regular
neural networks’, in Proceedings of the 13th annual conference on genetic and
evolutionary computation, 2011, pp. 1539–1546.

[52] S. Risi and K. O. Stanley, ‘An enhanced hypercube-based encoding for evolving
the placement, density, and connectivity of neurons’, Artif. Life, vol. 18, no. 4, pp.
331–363, Oct. 2012.

[53] J.-c. Wu and Z. Popović, ‘Terrain-adaptive bipedal locomotion control’, ACM
Transactions on Graphics, vol. 29, no. 4, pp. 72:1–72:10, Jul. 2010.

[54] I. Mordatch, M. de Lasa, and A. Hertzmann, ‘Robust Physics-Based Locomotion
Using Low-Dimensional Planning’, ACM Transactions on Graphics, vol. 29, no.
3, 2010.

[55] T. Geijtenbeek, M. van de Panne, andA. F. van der Stappen, ‘Flexiblemuscle-based
locomotion for bipedal creatures’, ACM Transactions on Graphics, vol. 32, no. 6,
2013.

[56] N. Hansen, ‘The cMA evolution strategy: A comparing review’, in Towards a new
evolutionary computation: Advances in the estimation of distribution algorithms,
J. A. Lozano, P. Larrañaga, I. Inza, and E. Bengoetxea, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2006, pp. 75–102.

[57] T. Geijtenbeek, N. Pronost, and A. van der Stappen, ‘Simple Data-Driven Control
for Simulated Bipeds’, inEurographics/ACM sIGGRAPH symposium on computer
animation, 2012, pp. 211–219.

[58] E. C. (EPlex) Research Group at the University of Central Florida, ‘NEAT software
catalog’, 2017. [Online]. Available: http://eplex.cs.ucf.edu/neat_software/

#HyperNEAT. [Accessed: 01-Feb-2017].

62

http://eplex.cs.ucf.edu/neat_software/#HyperNEAT
http://eplex.cs.ucf.edu/neat_software/#HyperNEAT


Bibliography

[59] J. Lehman and K. O. Stanley, ‘Novelty search and the problem with objectives’, in
Genetic programming theory and practice iX, R. Riolo, E. Vladislavleva, and J. H.
Moore, Eds. New York, NY: Springer New York, 2011, pp. 37–56.

63


	Abstract
	Preface
	Contents
	List of Figures
	List of Tables
	Introduction
	Problem Statement
	Contributions

	Background
	Legged Locomotion
	Neuroevolution
	Algorithms


	Related Works
	Bipedal
	Quadrupedal
	Covariance Matrix Adaptation

	Approach
	Multi-legged Character
	Substrate
	Controllers
	Control Strategy

	Results
	Standing Controller
	Walking Controller
	Control Strategy

	Discussion
	Character Complexity

	Conclusion
	Future works
	Novelty Search
	Single-Unit Pattern Generators
	ES-HyperNEAT

	Appendices
	Settings
	Bullet Physics
	HyperNEAT
	Substrate
	NEAT



	Bibliography

