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Abstract

One of the great challenges faced in the Nord Pool Market by companies

and traders is the frequency of behaviour modification due to government

policy such as Carbon tax, demand changes, supply changes, as well as

changes faced in marginal cost. These behavioural changes have been

colloquially described as price spikes or market regimes and are noted

as the overall key influential factor in forecasting accuracy. This thesis

undergoes a hidden markov model to categorize the hidden states within

the most influential stochastic datasets provided by Nord Pool and utilizes

this output as input to train the LSTM algorithm. It was found that the

methodology in implementing the HMM did not allow for the LSTM to

recognize the differing volatile regimes; however, a significant accuracy of

0.0082 mean absolute error was found and bench marked to other results.

Recurrent neural networks (RNNs) are suitable for time series phenomena

because of their effective dynamic relationship in utilizing changing tem-

poral information. The long-short term memory (LSTM) algorithm arose

to solve the RNNs fundamental problem of vanishing gradient problem.

The LSTM is thus utilized as the main algorithm in learning the Western

European’s largest Market for Electricity, Nord Pool.

A key issue in previous deep learning studies has been the identification

of key features that are explanatory for the relationship of Nord Pool’s

notorious spike regimes.
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Chapter 1

Introduction

The introduction to the trading platform, Nord Pool, that founded a competitive

energy market which deregulated monopolies in Scandinavia to increase market ef-

ficiency began in the 1990s. It has drastically shaped the role of energy in today’s

market and has expanded into Western and Eastern Europe. Electricity is a unique

commodity as it is physically non-storable while the power system must stabilize the

production and consumption balance - leading to price instability especially when

supply of hydropower is currently low [7]. Furthermore, electricity depends on many

explanatory variables such as weather, intensity of business, daily hours, weekdays,

weekends, month, year, holiday, marginal costs of supply, etc. In terms of machine

learning in finding patterns in data, the advantage of such a time series is the cyclic

behaviour of consumption due to the regulated times of when the consumer requires

electricity [7]. The disadvantage is the non-linearity of the data reportedly due to

for example, the shifts of the energy supplied, creating instances of dramatic price

changes. This has led researches to intensify on their efforts of forecasting over the

past decade.

The importance of price forecasting is significant on the corporate level due, as

this is a primary input to the major decision making of energy companies throughout

[21]. There is a serious risk faced in undercontracting and the selling or buying power

in the real time market, as experienced during the California crisis of 2000 to 2001

[7]. A body such as a utility company/industrial consumer that can forecast the

day ahead market, which represents 70 percent of the overall market, can drastically

improve the risk and maximize profits.

A key reference in estimating the price the next day is the price of the previous day

at the specific hour. Thus, dis-aggregated hourly prices representing the daily price

which have been used in multivariate models have been demonstrated to signficantly

outperform univariate models of just using the averaged day price (error reduction
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reaching 16 percent root mean square error). One would expect this due to the

granularity of the data, comparing one averaged day price to hourly averaged price.

Therefore, much research is now involved in finding rich multivariate models to exploit

the relationship between prices and explanatory variables to said prices- forecast

combination.
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Chapter 2

Literature Review

The main focus on the next day electricity price as the goal criterion is due to the

fact that it acts as a reference for forward, future, and the majority of derivative

contracts in various electricity markets including Nord Pool Spot. As market traders

can submit bids for specific individual hours of the next day, the algorithm utilized

in this paper predicts the market on an hourly analysis.

2.1 Methodologies

2.1.1 AutoRegression Models

One of the most frequent methodologies used is in the domain of linear nd non-linear

time-series models, such as Weron and Misiorek in 2008, Weron 2006, conducting

autoregressive models. Karakatsani and Bunn in 2008 found relationships in the

explanatory variables of fuel prices and demand level on price volatility.

2.1.2 Problem Statement

Price Forecasting Spikes classification utilizing the past 4 years of historical data for

Hyrdopower Reservoir, Demand, and price in order to predict the next day. Different

intervals of data were used, compared, and merged in a long short term memory

algorithm to predict the next day.
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Chapter 3

Nordic Energy Market

3.1 Introduction

Over 370 companies from 20 different countries trade on Nord Pool Spot’s markets-

both giant consumers and producers are involved in transactions. The Nordic re-

gion has considerable experience with deregulated electricity markets. The Nordic

electricity market was formed in 1993 in conjunction with deregulation of electricity

markets in the region. The derivatives and energy markets were separated in 2002

to establish Nord Pool Spot, which currently operates in Norway, Denmark, Swe-

den, Finland, Estonia, Latvia and Lithuania. The main goal of Nord Pool Spot is

to balance the generation of electricity with the electricity demand, precisely and at

an optimal price, so-called equilibrium point trading. The optimal price represents

the cost of producing one kilowatt hour of power from the most expensive source

needing to be employed in order to balance the system. All the employed generators

are paid the same market price. Two different physical operation markets are orga-

nized in Nord Pool Spot: Elspot and Elbas. Elspot is a day-ahead energy market in

which market participants submit offers to sell, or bids to buy, physical electricity for

the next day. Elbas is an intra-day energy market where trades are adjusted in the

day-ahead market until one hour prior to delivery time.

3.2 System Price Calculation

The elspot market is the current focus of the thesis, specifically in NO1- the Oslo

region of Norway. The determination of the day-ahead system price is calculated at

12:00 pm deadline for market traders submission. The aggregation of supply and

demand can then be constructed into two curves. The system price is calculated by

the intersection of supply and demand representing the bids/offers of the combined
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Figure 3.1: Dynamics of System Price Calculation [18]

territory. This is referred as equilibrium point trading. The following figure illustrates

the dynamics of low supply or high demand necessarily affecting the system price to

be determined.

The infamous volatility of the system price (which peaked in 2015 from an average

price of 240kr to 2000kr) is partly a result of periods of high demand, low supply, and

thus a likely switch of the merit order system. The first major supplies are provided

by the cheapest sources of energy which are located at the bottom of the merit order.

As depicted in the following figure, wind has the cheapest marginal cost, afterwards

hydropower with the majority of supply from Norway, following is Nuclear (Sweden),

later more expensive fuels are used in times of short supply which varies the price

regime of the market.

3.3 Data Analysis

The datasets utilized in the following thesis are the hourly consumption of the NO1

nordic region, the volume of bids placed, as well as the historical/seasonal market

price data. According to a report from NTNU, the fundamental quantities influenc-

ing the levels of electricity consumption, generation and exchange can be attributed

to consumption (which is inherently dependent on temperature), and the volume

of bidding (which is inherently dependent on the demand combined with resources

available for hydro power producers in the Nordic region). [7]
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Figure 3.2: Merit Order[18]

3.4 Price and Seasonal Effects

As discussed in most of the previously reported price forecasting studies, price is

largely dependent on the load or demand. On the other hand, demand itself varies

depending on the season (period) of the year, day of the week and hour of the day.

The hourly price can vary drastically between 240kr to 2000kr representing over 15

standard deviations in a matter of hours. As well, regular fluctuations of 200 to 400

NOK occur with mean reversion.

Season or period of the year is one of the factors that the electricity consumption

depends on. During winter (the colder season of the year), for instance, there is

a high demand of electricity, which in turn can cause an increase in the electricity

price. In contrast, during summer (the warmer season of the year) the demand is

considerably low and so does the market price. Hence, this can be considered as

one of the factors that affect the system price in any electricity market. Similarly,

there is a clear variation of demand for electricity between each day of the week and

even between each hour of the day. Industrial loads, for instance, are usually high

during weekdays while they appear to be considerably low at weekends. Residential

loads, in the contrary, might be a bit higher at weekends compared to normal working

days. Generally, Saturday and Sunday are days of the week having the least demand

of electricity where as mostly Thursday is said to have relatively high demand. In

general, this is also one factor that affects the demand or can be considered as one of

6



Figure 3.3: Price Over the Past 3 Years To Current

the reason for load, and hence price, variation. Likewise, demand depends greatly on

the hour of the day. The hourly demand varies through out the day and so does the

electricity price. In week days demand is mostly high at hours between 8:00 -11:00 in

the morning and also at about 18:00 – 20:00 in the evening; however, weekends have

high demand hours at around 18:00-20 in the evening. [20] Therefore, a method must

be constructed to take into account both the weekly changes, daily changes, and the

hourly changes in a short concise matter.The algorithm utilized will later portray the

method in which this is done in a novel fashion. It should be noted that if there is

enough data, yearly changes should also be taken into account [14].

3.5 HydroPower Reservoir

The reservoir level has a significant influence on the price [7], especially in the NO1

region. The volume of hydropower is dependent on rainfall or amount of water in

reservoir. Increase in reservoir levels, which depends on seasonal variation, leads to a

supply shift and thus reduction of price [14]. Throughout this thesis, the volume in

NO1 is utilized as the indicator of hydropower reservoir supply.
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Figure 3.4: Comparison of Historical Prices given the hour [14]

3.6 Demand Usage and Volume

In Norway over 99 percent of electricity generated comes from hydropower. During

periods of high demand and low shortages such as during winter, the supply for hy-

dropower decreases as rainfall decreases due to temperature affects [3]. Thus demand

is indicative of the volatility of supply. Volume is as well indicative of to what extent

is consumption met. As can be seen by the dynamics of system price calculation

figure during periods of over consumption or periods of too great volume/supply,

the supply curve shifts. The following superposition of the volume and consumption

graph over the past 3 years are similar but their minuscule differences directly affect

the volatility of price as this is the dependence of the system price, i.e. the balance

of supply and demand [7].
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Figure 3.5: Consumption Over the Past 3 Years To Current
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Chapter 4

Markov Model

4.1 Introduction

Hidden Markov Models are renown for their use in modelling time series data and have

been used in speech recognition algorithms, computational molecular biology, data

compression, and in general, pattern recognition [5]. To generalize, hidden markov

models are a particular kind of Bayesian Network.

Hidden Markov Models (HMM) are a standard technique in time series analysis

or data mining. Given a (set of) time series sample data, they are typically trained

by means of a special variant of an expectation maximization (EM) algorithm[8].

4.2 What are Hidden Markov Models?

An HMM is a tool that describes the probability distributions over sequences of

observations. To begin, let us describe an observation occurred denoted Yt at a time

t. This observation could be a price spike, demand spike, or reservoir spike [6]. It

then makes the assumption that the observation was generated by a process that has

a state denoted St which is not known to the observer. As there are a multitude

of reasons why a price spike can occur and the reasons are not exactly known, it

can be said that the this process is hidden from the observation. The behavioural

assumptions are as follows, t has equally-spaced time intervals and next, the next

is the major assumption that the value of the current State, St, is independent of

all states prior to t-1. The third assumption is that the outputted hidden variable

is discrete. The method in which the markov model takes into account information

before t-1 is thus through the transition probability of the state embedded in just

the previous state. The previous statement is summarized as the joint distribution

of a sequence of states and is formulated in the following way[8]: The probability of
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Figure 4.1: Simplified Bayesian Network Assumption [8]

the initial state at the initial time is multiplied by the probability of the observation

given state at the initial time is multiplied by the join distribution of the probability

of the state given the previous state at the current time multiplied by the probability

of the observation given the state. [8]

Hidden Markov Models are a sublcass of Bayesian networks known as dynamic

Bayesian networks. They are bayesian networks specialized in modeling time series.

The assumption that time can only move forward, not backwards, simplifies the design

of bayesian network where directed arcs should flow forward in time. The next aspect

is to define the transition probabilites.

Figure 4.2

4.3 Gaussian HMM

The Gaussian Hidden Markov model can be defined as a variant of HMM where each

state dependent emission probability function is calculated through a gaussian [1]. A

transition matrix represents the probability of going from state at i to state at j, an

emission matrix B indicating the probability of emission of symbol o from state Sj,

and an initial state probability distribution (representative of first state probability).

The observation to state probability can be calculated by the following: where μj,

Σj, represents the mean vector which is multiplied by the covariance matrix respec-

tively. It is out of the scope to derive the full gaussian hmm; however, it is provided

by [19] in full. The number of states is chosen based on the Bayesian Information Cri-

terion which is defined as follows [11]: The Akaike information criterion is compared

with the following equation in order to choose the optimal number of components[12]:

Using 14 components from the AIC analysis the following state transition regime

is possible to be constructed through the use of the Hmmlearn framework available on

github[10]. The construction of figure 5.6 is adapted from the following tutorial[4] and

separates the transition regimes according to the variance and the mean according

11



Figure 4.3: Gaussian Continuous HMM (emission matrix simplified in blue) [19]

Figure 4.4: Observation probability [19]

to 14 n components. The regimes are color-coded in order to easily perceive how the

behavioural regimes are divided according to their extreme or non-extreme variances.

The states that are prescribed according to the variances are then used as feature

inputs to the LSTM algorithm with the hypothesis that a feature engineered state

will lead the algorithm to understand a more volatile regime will take place in order

to better predict the spikes of such a regime. The next figure pictorially describes

that given an observation of the variance and mean a state transition has a likelihood

occurence of changing. It is through this methodology in which the experiment is

conducted.

12



Figure 4.5: BIC vs AIC analysis

Figure 4.6: oslo historical state regime
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Figure 4.7: Hidden Markov Model Observation to State [13]
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Chapter 5

Long Short Term Memory

The nordpool electricity market is a form of time series data. Traditionally, macroeco-

nomic and business based methods tackled the problem of electricity market prediction-

and this relied heavily on human observation of weather patterns combined with util-

ity information [7]. The next generation of modeling time series utilized regression,

which reportedly could not predict spike innacuracies. Futhermore, neural networks,

deep multilayer perceptrons, have also been used to tackle spot prices. These method-

ologies did not work due to the temporal memory which can only be provided through

a fixed sized sliding window. The neural network was a great improvement; however,

it limits the sophistication of the modeling memory capabilities. Recurrent neural

networks came as a resolution to this limitation by providing a gate which feeds acti-

vations from the previous time step back in as an input- this provides greater historical

information to be considered in every current time step iteration. Thus temporal in-

formation is analyzed throughout the whole potential historical data that it is trained

with. There were a few problems with the first models of the recurrent neural network,

such as vanishing and exploding gradient – a disappearing or exponentially increasing

term occurring after a multitude of iterations of taking the gradient. This has been

resolved by one of the latest models introduced to the machine learning community,

the long short term memory (LSTM) algorithm, that overcomes many of the prob-

lems faced by the recurrent neural network. https://arxiv.org/pdf/1603.07893.pdf

The LSTM is made up of a selected threshold gate input such as the sigmoidal input,

output gate, and forget gate. The novelty of this construction is that it allows the

network to learn to forget previous historical inputs. The internal state of the LSTM

cell is updated upon the layer being previously activated, inputs within the previous

layer, as well as self-connections[4]

15



5.1 Keras

Keras is an open source neural network library created by Francois Chollet in 2015

as a high level framework which is used in CERN, start-up companies, google, and

over 100,000 users since its creation [2]. Keras was chosen to construct the experi-

ments due to its main support of RNN’s as well as the RNN LSTM, the ability to

run on tensorflow and theano, the major online community and thus documentation

regarding error, the fluid pythonic language, and the fluidity in which one can merge

neural networks and features together to combine the prediction analysis of datasets.

The reader is provided with the exact code used for prediction in the appendix in

order to further intensify the research conducted with LSTM’s for the nord pool spot

price. In general, if a given parameter’s value is not tested throughout this paper it is

because the parameters value has been suggested to be used in the keras readthedocs

documentatio [2].

5.2 Network of the LSTM

LSTM is specialized in long-term dependency information. First proposed by Hochre-

iter Schmidhuber (1997) and was recently improved and promoted by Alex Graves[9]

. In many cases, LSTM has achieved considerable success and has been widely used

[9]. All RNNs have a chained form of a repeating neural network module. In the

standard RNN the major difference is the simplicity of the structure, such as a tanh

layer. To provide a comparison, the LSTM has 4 unique interactions that is depicted

Figure 5.1: Recurrent Neural Network [17]

in the following figure: The following provides the pictorial notation for the LSTM

16



Figure 5.2: Comparison LSTM Neural Network [17]

Figure 5.3: Pictorial Notation [17]

neural network We have the neural network layer in yellow which depicts the learning

neural network layer. The black lines signify an entire vector, from output to input.

The pink is a point-wise operation representing summation or multiplication of the/

vectors.

One can identify the key cell state that is located on the top of the figure- an

analogy of this cell state is similar to that of a conveyor belt. The LSTM has the

ability to forget information or increase the information to the state of the cell by a

well constructed combination of gates. The gates can contain a sigmoid function (or

other activation) that depending on the threshold will allow certain information to

pass through. There are a total of three gates that control the cell status which is

described in the next section.

5.2.1 LSTM Analysis

The first step in our LSTM is to decide what information we will discard from the

cell state. This decision is done by a so-called door . The door reads h(t-1) and xt

outputs a value between 0 and 1 to each state in the cell C(t-1) numbers. 1 means

”full hold”, 0 means ”completely discard”.

17



Figure 5.4: Forget Gate [17]

The next step can be considered the update step- determination of what kind of

new information is stored in the cell state. First step, the sigmoid layer activates

the ”input gate” to determine the updated value. Next, the tanh layer creates a new

candidate value vector C that will be added to the state.

Figure 5.5: Update Step[17]

The previous cell state is next updated from the previous time step to the next

iteration. The significance of this step is that the old state will now have the f function

applied in order to determine what and how much to discard. The new candidate

value is then added to this

Lastly, the output is deterimined - it is based on the cell as well as a filtered

version of the cell. A sigmoid function is run and this determiens which part of the

cell state to output. Afterwards, a tanh function is applied to the process of the cell

state where an output of -1 and 1 occurs in order to apply a differing logic [17].

18



Figure 5.6: Update Step[17]
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Chapter 6

Methodology

6.1 Batches and Epochs

An important parameter in determining the convergence of a solution is the epoch

number. An epoch is defined as the entire training data exposed to the network, while

the batch size is defined by the incremental gradient and the frequency in which one

updates weights. The following thesis conducts 3 sets of experiments testing different

network configurations with a different epoch parameter to determine the optimal

methodology. In general, small batch sizes are a common modern approach to deep

learning combined with a large number of epochs. The correct number of epochs can

be considered to be chosen once a logarithmic curve can be found with the y-axis

being the error and the x-axis the epoch.

6.2 Accuracy Validation

Mean absolute error is the main metric for validation and is calculated as follows [15]:

6.3 Sliding window

In order to take into account the true potential the LSTM algoroithm has to offer,

the sliding window method must be used concisely. The sliding window allows for

a multivariate analysis, i.e. multiple input analysis for single output. This allows

one to provide a greater weight for the greatest stochastic influential factors in the

20



inherently cyclic data sets. Considering the large variation in prices depending on

the hour, the day, as well as the week a for loop is constructed to take into account

the data from one week ago at an interval of 24 hours up to the current time t.

Figure 6.1: LSTM Time window input

This is conducted in the following for loop for the preprocessing section of the

LSTM algorithm:

Figure 6.2: For Loop Construction

6.4 Neural Network Merging

It is possible to merge recurrent neural networks in the keras framework through the

following methodology when fitting the model: The logical operations were merged as

21



Figure 6.3: Merge

follows in order to set up the experiment: price by itself, price merged with volume,

price merged with consumption, price merged with volume and consumption. The

same sliding window was as well utilized for the volume and the consumption upon

merging. Three models are created each with four hidden layers with 8 inputs each

corresponding to the hour at the current time and the previous 7 days before at the

same hour each day. The following code described how it was possible to merge the

neural networks (with the full code provided in the appendix):

22



Figure 6.4: Merge Construction
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Chapter 7

Results

The following results provide a comparison of utilizing the demand, volume, and

consumption data sets independently, merged, and at increments of 1 year, 2 years,

and 3 years to provide a comparison of the differences of accuracy in utilizing these

parameters.

Comparison of 12 Experiments MAE
Dataset 2014-2015 2014-2016 2014-2017
Price 0.0300 0.0094 0.0082
Price/Vol/Con 0.0288 0.0094 0.0084
Price/Vol 0.0285 0.0094 0.0085
Price/Con 0.0290 0.0095 0.0084

(a) Test Data Set Year 2014-2015 (b) 4 Experiments Volume, Price, Cons.

Figure 7.1: The Merged LSTM networks are compared with a 1 year analysis of data
from 2014

One can see that the epochs indicate a converged solution with the typical logarith-

mic fashion with regards to all experiments. It was found that the highest accuracy

in terms of mean absolute error was in the price data set only experiment, where a 3

24



(a) Test Data Set Year 2014-2016 (b) 4 Experiments Volume, Price, Cons.

Figure 7.2: The Merged LSTM networks are compared with a 2 year analysis of data
from 2014-2015

(a) Test Data Set Year 2014-2017 (b) 4 Experiments Volume, Price, Cons.

Figure 7.3: The Merged LSTM networks are compared with a 3.5 year analysis of
data from 2014-2017

percent mean absolute error to 0.82 percent error in only using the price. Although,

the greatest accuracy in terms of root mean square error was found to be the merged

recurrent neural network of price and consumption with a value of 127.85. This was

a dramatic increase in accuracy from 239.99 from the 2014-2015 data set experiment.
Comparison of 12 Experiments RMSE

Dataset 2014-2015 2014-2016 2014-2017
Price 232.27 145.88 135.7
Price/Vol/Con 296.14 138.99 132.69
Price/Vol 239.99 136.55 129.96
Price/Con 243.09 144.61 127.85

Finally, the hidden markov model was simulated for 1 set of experiments 2014-2016

in order to test the hypothesis of implementing regime detection as a preprocessing
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step and further adding it as a feature could prepare the LSTM algorithm better to

predict forecast such as McCandless implemented for short solar irradiance forecasting

[15] as well as [16] in predicting the insulin regime and thus dose adjustments for type

1 diabetes.

HMM Regime State Feature Simulation MAE
Dataset 2014-2016 2014-2016 with

HMM
Price 0.0094 0.0096
Price/Vol/Con 0.0094 0.0097
Price/Vol 0.0094 0.0099
Price/Con 0.0095 0.0098

Unfortunately, it was found that there was little to no affect on the accuracy by

adding the hidden state regime as a feature. Although the approach classified the

data set according to its variance and thus classified the volatility, the LSTM did not

manage to perform with greater accuracy.

As no other LSTM algorithms on Nord Pool’s spot price has been conducted

according to the knowledge of the author, a benchmark against research conducted

in Chalmers University on the spot price through linear multiple regression (LMR)

methods will be utilized [14].

Benchmark against LMR
Dataset Chalmer LMR Chalmer ITSM LSTM (UiA)
January 20 0.0362 0.0757 0.0082
March 11 0.0625 0.0317 0.0082
March 12 0.0421 0.01031 0.0082
June 30 0.0339 0.00558 0.0082
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Chapter 8

Discussion

Although the gaussian hidden Markov model was not successful, it has showed promise

in other papers that have sought out to detect observations through hidden states

[5]. In the case of utilizing the HMM as an input for LSTM, McCandless successfully

predicted solar irradation timeseries more accurately as an input to an RNN[15] as

well as Mougiakakou in determining the dosage according to the insulin regime [16].

Utilizing the gaussian HMM as a feature may therefore not be the best approach

for the LSTM algorithm. Another approach could be to train neural networks data

specifically according to the data’s regime. However, this method would lose the

component of time in a time series.

However, a mean absolute error of 0.0082 was acheived in utilizing a time window

of the exact previous hour of a subsequent week of data for every datastep- a multi-

variate analysis of 8 input steps for a one output calculation. In comparison to linear

multiple regression techniques the error is three percent more accurate for the best

estimation of the LMR from Chalmers which proves a promising result.
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Chapter 9

Conclusion

It is absolutely vital that electricity utility company suppliers and traders are provided

with accurate state of the art forecasting tools to prevent bankruptcy and increase

profitability for the corporate market. An analysis of the Nord-Pool market was

conducted and it was found that the LSTM algorithm can with a high accuracy

predict the next day-ahead. A hidden markov behaviour regime classification was

conducted and the way in which it was implemented was found to have little affect

on the overall result. Another methodology must be used to further increase the

LSTM’s understanding of behavioural regimes in order to increase the accuracy of

spike classification and prediction-which leads to the greatest losses in the Nord Pool

Market. However, it is clear that a significant increase of accuracy from 3.62 percent

to 0.82 percent mean absolute error is found when LSTM is used over multiple linear

regression analysis.
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Initialization of Data and Merging of Neural Networks

May 18, 2017

In [ ]: import matplotlib as mpl
import matplotlib.pyplot as plt
from matplotlib.dates import YearLocator, MonthLocator
%matplotlib inline
import matplotlib.patches as mpatches
import seaborn as sns
import missingno as msno
from tqdm import tqdm
import math
import warnings
import pandas
import math
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error
from pandas import read_csv, DataFrame
from numpy.random import seed
from sklearn.preprocessing import scale
from keras.models import Sequential
from keras.constraints import maxnorm
from keras.optimizers import SGD, RMSprop
from keras.layers import Dense, Merge
import numpy
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error
from pandas import read_csv, DataFrame
from numpy.random import seed
from sklearn.preprocessing import scale
from keras.models import Sequential
from keras.constraints import maxnorm
from keras.optimizers import SGD, RMSprop, Nadam
from keras.layers import Dense, Merge
scaler = MinMaxScaler(feature_range=(0, 1))
skipfooter2 = 13500
def getData(csv, col, skiprows, skipfooter, comma = True, **kwargs):

dataframe = pandas.read_csv(csv, usecols=[col], engine='python', skiprows= skiprows, skipfooter = skipfooter)
dataframe.dropna(how='all', inplace=True)
if comma:

dataframe = dataframe.stack().str.replace(',', '.').unstack()
dataframe = dataframe.apply(pandas.to_numeric)
dataset = dataframe.values
dataset = dataset.astype('float32')
dataset = scaler.fit_transform(dataset)
return dataframe, dataset
#
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priceDF, priceDS = getData('../price.csv', 10, 2, 24+skipfooter2, comma= True)
priceDFShift, priceDSShift = getData('../price.csv', 10, 26, 0+skipfooter2, comma= True)
consumeDF, consumeDS = getData('../consume.csv', 2, 2, 193+49+skipfooter2, comma= False)
volumeDF, volumeDS = getData('../volume.csv', 3, 2, 312+skipfooter2, comma= True)

def my_test(a, b):
return np.log(a/b)

data = pd.concat([volumeDF, consumeDF, priceDF, priceDFShift], axis=1)
data.columns.values[3] = 'OsloF'
lret = data.apply(lambda column: my_test(column['OsloF'], column['Oslo']), axis=1)

data = pd.concat([data, lret], axis=1)
data.columns.values[4] = 'lret'
plt.plot(priceDS)

In [ ]: from keras.callbacks import ModelCheckpoint

def train_input(dataset, look_back, ahead):
dataX = []
train_size = int(len(dataset) * 0.8)
dataset = dataset[0:train_size, :]
for i in range(len(dataset) - ahead - 1):

a = dataset[i:1 + look_back + i:24]
dataX.append(a)

return numpy.array(dataX)

def train_output(dataset, look_back, ahead):
dataX= []
train_size = int(len(dataset) * 0.8)
dataset = dataset[0:train_size, :]
for i in range(len(dataset) - ahead - 1):

dataX.append(dataset[i + ahead, 0])
return numpy.array(dataX)

def test_input(dataset, look_back, ahead):
dataX = []
train_size = int(len(dataset) * 0.8)

# test_size = dataset[train_size:len(dataset), :]
dataset = dataset[train_size:len(dataset), :]
for i in range(len(dataset) - ahead - 1):

a = dataset[i:1 + look_back + i:24]
dataX.append(a)

return numpy.array(dataX)

def test_output(dataset, look_back, ahead):
dataX = []
train_size = int(len(dataset) * 0.8)

# test_size = dataset[train_size:len(dataset), :]
dataset = dataset[train_size:len(dataset), :]
for i in range(len(dataset) - ahead - 1):

dataX.append(dataset[i + ahead, 0])
return numpy.array(dataX)

def LSTM_Nordpool3(days, look_back, ahead, number, epochs):
trainX= train_input(priceDS, look_back, ahead)
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trainX2 = train_input(consumeDS, look_back, ahead)
trainY = train_output(priceDS, look_back, ahead)
testX = test_input(priceDS, look_back, ahead)
testX2 = test_input(consumeDS, look_back, ahead)
testY = test_output(priceDS, look_back, ahead)
trainX = numpy.reshape(trainX, (trainX.shape[0], 1, number))
trainX2 = numpy.reshape(trainX2, (trainX2.shape[0], 1, number))
testX = numpy.reshape(testX, (testX.shape[0], 1, number))
testX2 = numpy.reshape(testX2, (testX2.shape[0], 1, number))
RMS = RMSprop(lr=0.001, rho=0.9, epsilon=1e-08, decay=0.0)
Nad = Nadam(lr=0.002, beta_1=0.9, beta_2=0.999, epsilon=1e-08, schedule_decay=0.004)
# model1
model1 = Sequential()
model1.add(LSTM(4, input_shape=(1, number))) #
model1.add(Dense(1))
model1.compile(loss='mean_squared_error', optimizer='adam')
# model2
model2 = Sequential()
model2.add(LSTM(4, input_shape=(1, number))) #
model2.add(Dense(1))
model2.compile(loss='mean_squared_error', optimizer='adam')
# model3
model = Sequential()
model.add(Merge([model1, model2], mode='concat'))
model.add(Dense(1))

model.compile(loss='mean_squared_error', optimizer='adam', metrics=['mae', 'acc'])

model.fit([trainX, trainX2], trainY, epochs=epochs, batch_size=1, verbose=2) #

trainPredict = model.predict([trainX, trainX2])
testPredict = model.predict([testX, testX2])
# #
trainPredict = scaler.inverse_transform(trainPredict)
trainY = scaler.inverse_transform([trainY])
testPredict = scaler.inverse_transform(testPredict)
testY = scaler.inverse_transform([testY])
#

trainScore = math.sqrt(mean_squared_error(trainY[0], trainPredict[:, 0]))
print('Train Score: %.2f RMSE' % (trainScore))

testScore = math.sqrt(mean_squared_error(testY[0], testPredict[:, 0]))
print('Test Score: %.2f RMSE' % (testScore))

In [ ]: def train_input(dataset, look_back, ahead):
dataX = []
train_size = int(len(dataset) * 0.8)
dataset = dataset[0:train_size, :]
for i in range(len(dataset) - ahead - 1):

a = dataset[i:1 + look_back + i:24]
dataX.append(a)

return numpy.array(dataX)

def train_output(dataset, look_back, ahead):
dataX= []
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train_size = int(len(dataset) * 0.8)
dataset = dataset[0:train_size, :]
for i in range(len(dataset) - ahead - 1):

dataX.append(dataset[i + ahead, 0])
return numpy.array(dataX)

def test_input(dataset, look_back, ahead):
dataX = []
train_size = int(len(dataset) * 0.8)

# test_size = dataset[train_size:len(dataset), :]
dataset = dataset[train_size:len(dataset), :]
for i in range(len(dataset) - ahead - 1):

a = dataset[i:1 + look_back + i:24]
dataX.append(a)

return numpy.array(dataX)

def test_output(dataset, look_back, ahead):
dataX = []
train_size = int(len(dataset) * 0.8)

# test_size = dataset[train_size:len(dataset), :]
dataset = dataset[train_size:len(dataset), :]
for i in range(len(dataset) - ahead - 1):

dataX.append(dataset[i + ahead, 0])
return numpy.array(dataX)

def LSTM_Nordpool2(days, look_back, ahead, number, epochs):
trainX= train_input(priceDS, look_back, ahead)

trainY = train_output(priceDS, look_back, ahead)

testX = test_input(priceDS, look_back, ahead)

testY = test_output(priceDS, look_back, ahead)

trainX = numpy.reshape(trainX, (trainX.shape[0], 1, number))

testX = numpy.reshape(testX, (testX.shape[0], 1, number))

RMS = RMSprop(lr=0.001, rho=0.9, epsilon=1e-08, decay=0.0)
Nad = Nadam(lr=0.002, beta_1=0.9, beta_2=0.999, epsilon=1e-08, schedule_decay=0.004)
model = Sequential()
model.add(LSTM(4, input_shape=(1, number)))
model.add(Dense(1))

model.compile(loss='mean_squared_error', optimizer='adam', metrics=['mae', 'acc'])

model.fit([trainX], trainY, epochs=epochs, batch_size=1, verbose=2)

trainPredict = model.predict([trainX])
testPredict = model.predict([testX])
trainPredict = scaler.inverse_transform(trainPredict)
trainY = scaler.inverse_transform([trainY])
testPredict = scaler.inverse_transform(testPredict)
testY = scaler.inverse_transform([testY])
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trainScore = math.sqrt(mean_squared_error(trainY[0], trainPredict[:, 0]))
print('Train Score: %.2f RMSE' % (trainScore))

testScore = math.sqrt(mean_squared_error(testY[0], testPredict[:, 0]))
print('Test Score: %.2f RMSE' % (testScore))

In [ ]: def train_input(dataset, look_back, ahead):
dataX = []
train_size = int(len(dataset) * 0.8)
dataset = dataset[0:train_size, :]
for i in range(len(dataset) - ahead - 1):

a = dataset[i:1 + look_back + i:24]
dataX.append(a)

return numpy.array(dataX)

def train_output(dataset, look_back, ahead):
dataX= []
train_size = int(len(dataset) * 0.8)
dataset = dataset[0:train_size, :]
for i in range(len(dataset) - ahead - 1):

dataX.append(dataset[i + ahead, 0])
return numpy.array(dataX)

def test_input(dataset, look_back, ahead):
dataX = []
train_size = int(len(dataset) * 0.8)

# test_size = dataset[train_size:len(dataset), :]
dataset = dataset[train_size:len(dataset), :]
for i in range(len(dataset) - ahead - 1):

a = dataset[i:1 + look_back + i:24]
dataX.append(a)

return numpy.array(dataX)

def test_output(dataset, look_back, ahead):
dataX = []
train_size = int(len(dataset) * 0.8)
dataset = dataset[train_size:len(dataset), :]
for i in range(len(dataset) - ahead - 1):

dataX.append(dataset[i + ahead, 0])
return numpy.array(dataX)

def LSTM_Nordpool4(days, look_back, ahead, number, epochs):
trainX= train_input(priceDS, look_back, ahead)

trainX3 = train_input(volumeDS, look_back, ahead)

trainY = train_output(priceDS, look_back, ahead)

testX = test_input(priceDS, look_back, ahead)

testX3 = test_input(volumeDS, look_back, ahead)

testY = test_output(priceDS, look_back, ahead)

trainX = numpy.reshape(trainX, (trainX.shape[0], 1, number))
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trainX3 = numpy.reshape(trainX3, (trainX3.shape[0], 1, number))

testX = numpy.reshape(testX, (testX.shape[0], 1, number))

testX3 = numpy.reshape(testX3, (testX3.shape[0], 1, number))

RMS = RMSprop(lr=0.001, rho=0.9, epsilon=1e-08, decay=0.0)
Nad = Nadam(lr=0.002, beta_1=0.9, beta_2=0.999, epsilon=1e-08, schedule_decay=0.004)
# model1
model1 = Sequential()
model1.add(LSTM(4, input_shape=(1, number)))
model1.add(Dense(1))
model1.compile(loss='mean_squared_error', optimizer='adam')

# model3
model3 = Sequential()
model3.add(LSTM(4, input_shape=(1, number)))
model3.add(Dense(1))
model3.compile(loss='mean_squared_error', optimizer='adam')

model = Sequential()
model.add(Merge([model1, model3], mode='concat'))
model.add(Dense(1))

model.compile(loss='mean_squared_error', optimizer='adam', metrics=['mae', 'acc'])

model.fit([trainX, trainX3], trainY, epochs=epochs, batch_size=1, verbose=2)

trainPredict = model.predict([trainX, trainX3])
testPredict = model.predict([testX, testX3])
# # invert predictions
trainPredict = scaler.inverse_transform(trainPredict)
trainY = scaler.inverse_transform([trainY])
testPredict = scaler.inverse_transform(testPredict)
testY = scaler.inverse_transform([testY])
# calculate root mean squared error

trainScore = math.sqrt(mean_squared_error(trainY[0], trainPredict[:, 0]))
print('Train Score: %.2f RMSE' % (trainScore))

testScore = math.sqrt(mean_squared_error(testY[0], testPredict[:, 0]))
print('Test Score: %.2f RMSE' % (testScore))

In [ ]: def train_input(dataset, look_back, ahead):
dataX = []
train_size = int(len(dataset) * 0.8)
dataset = dataset[0:train_size, :]
for i in range(len(dataset) - ahead - 1):

a = dataset[i:1 + look_back + i:24]
dataX.append(a)

return numpy.array(dataX)

def train_output(dataset, look_back, ahead):
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dataX= []
train_size = int(len(dataset) * 0.8)
dataset = dataset[0:train_size, :]
for i in range(len(dataset) - ahead - 1):

dataX.append(dataset[i + ahead, 0])
return numpy.array(dataX)

def test_input(dataset, look_back, ahead):
dataX = []
train_size = int(len(dataset) * 0.8)
dataset = dataset[train_size:len(dataset), :]
for i in range(len(dataset) - ahead - 1):

a = dataset[i:1 + look_back + i:24]
dataX.append(a)

return numpy.array(dataX)

def test_output(dataset, look_back, ahead):
dataX = []
train_size = int(len(dataset) * 0.8)
dataset = dataset[train_size:len(dataset), :]
for i in range(len(dataset) - ahead - 1):

dataX.append(dataset[i + ahead, 0])
return numpy.array(dataX)

def LSTM_Nordpool(days, look_back, ahead, number, epochs):
trainX= train_input(priceDS, look_back, ahead)
trainX2= train_input(consumeDS, look_back, ahead)

trainX3 = train_input(volumeDS, look_back, ahead)

trainY = train_output(priceDS, look_back, ahead)

testX = test_input(priceDS, look_back, ahead)
testX2 = test_input(consumeDS, look_back, ahead)

testX3 = test_input(volumeDS, look_back, ahead)

testY = test_output(priceDS, look_back, ahead)

trainX = numpy.reshape(trainX, (trainX.shape[0], 1, number))
trainX2 = numpy.reshape(trainX2, (trainX2.shape[0], 1, number))

trainX3 = numpy.reshape(trainX3, (trainX3.shape[0], 1, number))

testX = numpy.reshape(testX, (testX.shape[0], 1, number))
testX2 = numpy.reshape(testX2, (testX2.shape[0], 1, number))

testX3 = numpy.reshape(testX3, (testX3.shape[0], 1, number))

RMS = RMSprop(lr=0.001, rho=0.9, epsilon=1e-08, decay=0.0)
Nad = Nadam(lr=0.002, beta_1=0.9, beta_2=0.999, epsilon=1e-08, schedule_decay=0.004)
# model1
model1 = Sequential()
model1.add(LSTM(4, input_shape=(1, number)))
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model1.add(Dense(1))
model1.compile(loss='mean_squared_error', optimizer='adam')
# model2
model2 = Sequential()
model2.add(LSTM(4, input_shape=(1, number)))
model2.add(Dense(1))
model2.compile(loss='mean_squared_error', optimizer='adam')

# model3
model3 = Sequential()
model3.add(LSTM(4, input_shape=(1, number)))
model3.add(Dense(1))
model3.compile(loss='mean_squared_error', optimizer='adam')

model = Sequential()
model.add(Merge([model1,model2, model3], mode='concat'))
model.add(Dense(1))

model.compile(loss='mean_squared_error', optimizer='adam', metrics=['mae', 'acc'])

model.fit([trainX,trainX2, trainX3], trainY, epochs=epochs, batch_size=1, verbose=2) #

trainPredict = model.predict([trainX, trainX2, trainX3])
testPredict = model.predict([testX, testX2, testX3])

trainPredict = scaler.inverse_transform(trainPredict)
trainY = scaler.inverse_transform([trainY])
testPredict = scaler.inverse_transform(testPredict)
testY = scaler.inverse_transform([testY])

trainScore = math.sqrt(mean_squared_error(trainY[0], trainPredict[:, 0]))
print('Train Score: %.2f RMSE' % (trainScore))

testScore = math.sqrt(mean_squared_error(testY[0], testPredict[:, 0]))
print('Test Score: %.2f RMSE' % (testScore))

In [ ]: days = 7
look_back = 24 * days
ahead = look_back + 24
number = look_back // 24 + 1
LSTM_Nordpool(days, look_back, ahead, number, epochs = 50)

In [ ]: days = 7
look_back = 24 * days
ahead = look_back + 24
number = look_back // 24 + 1
LSTM_Nordpool2(days, look_back, ahead, number, epochs = 50)

In [ ]: days = 7
look_back = 24 * days
ahead = look_back + 24
number = look_back // 24 + 1
LSTM_Nordpool3(days, look_back, ahead, number, epochs = 50)

In [ ]: days = 7
look_back = 24 * days
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ahead = look_back + 24
number = look_back // 24 + 1
LSTM_Nordpool4(days, look_back, ahead, number, epochs = 50)

In [ ]: testY = test_output(priceDS, look_back, ahead)
plt.figure()
plt.plot((testY))
plt.ylabel('Price in NOK normalized')
plt.xlabel('Per Hour Time-Step [h]')
blue_patch = mpatches.Patch(color='blue', label='Tested Dataset')
plt.legend(handles=[blue_patch])

In [ ]: testY = test_output(priceDS, look_back, ahead)
plt.figure()
plt.plot(P1)
plt.plot(P2)
plt.plot(P3)
plt.plot(P4)
plt.ylabel('Mean Absolute Error')
plt.xlabel('Number of Epochs')
blue_patch = mpatches.Patch(color='blue', label='Merged Volume, Price, Consumption: RMSE= 296.14 ')
green_patch = mpatches.Patch(color='green', label='Price Only: RMSE = 232.27')
red_patch = mpatches.Patch(color='red', label='Merged Price, Consumption: RMSE = 243.09 ')
purple_patch = mpatches.Patch(color='purple', label='Merged Price, Volume: RMSE = 239.99')
plt.legend(handles=[blue_patch, green_patch, red_patch, purple_patch])
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