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Abstract

DeMiguel, Garlappi, and Uppal (2009) conducted a study demonstrating that mean-

variance optimized portfolios do not consistently outperform the naive diversification

strategy in out-of-sample tests. This caused a heated debate and several studies claim

to defend the value of mean-variance optimization. Kirby and Ostdiek (2012) developed

two new methods of mean-variance portfolio optimization and demonstrated that these

strategies show superior out-of-sample performance as compared to performance of the

1/N strategy. Several other papers demonstrated that the Global Minimum Variance

portfolio outperforms the naive diversification. What all these papers have in common

is that they measure the performance using the Sharpe ratio. Zakamulin (2017) argues

that to display a convincing demonstration of the value of mean-variance optimization,

one needs to show that the superior performance cannot be attributed to some known

anomalies. In this thesis, we demonstrate that the strategies of Kirby and Ostdiek and

the Global Minimum Variance strategy outperform the naive rule. We use several US

datasets with an extended sample period and shorter estimation window. However, after

accounting for three known anomalies, there is no longer any evidence of superior perfor-

mance. Using similar data from the OSE, we also demonstrate that these strategies do

not seem to work in Norway, .
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1 Introduction

The naive diversification strategy (also called the 1/N strategy) has been an asset allo-

cation strategy for ages. The concept is simple enough: “do not put all your eggs in one

basket”. The strategy was first mentioned in a Babylonian Talmud around 1500 years

ago when Rabbi Issac Bar Aha said: “one should always place his wealth, a third in land,

a third in merchandise, and a third at hand”. The performance of the naive strategy has

in general been questioned since it was introduced due to its simplicity. Nevertheless,

without any better strategies, there was no need to change what was already working.

In modern times however, there has been written a lot of research literature on how to

optimize portfolios using the return distribution parameters.

The concept and theory behind modern portfolio optimization goes back to the early

1950’s when Harry Markowitz wrote his doctoral thesis at the University of Chicago. He

introduced a model on how to optimize portfolios based on mean and variance using the

efficient frontier. The efficient frontier is a tool describing the best possible return given

the investor’s risk-tolerance (Markowitz, 1952). Today his theory marks a cornerstone

of modern portfolio theory, despite practical limitations associated with assumptions re-

quired for the model to fulfill its purpose. His theory did not cause an immediate reaction

in the academic society, as it was filled with formulas and scribbles. Eventually however,

other financial researchers continued building on his work, developing well known models,

e.g. the Capital Asset Pricing Model (CAPM). Using modern portfolio theory, finan-

cial researchers challenged the naive strategy, and developed more advanced and complex

models for portfolio optimization. In later years, modern portfolio theory has been widely

taught at universities.

Recently, a number of respectable finance researchers have conducted studies with

results questioning the performance of various optimization strategies as compared to the

naive strategy. Though there is no question that Markowitz is theoretically correct, these

studies argue that mean-variance optimized portfolios does not necessarily outperform

the naive strategy with statistically significant margins. As a result, there is an ongoing
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debate about whether mean-variance optimization adds value and is worth the problems

that occur when trying to implement these strategies.

One of the leading research papers on this topic is the study by DeMiguel et al. (2009).

They evaluated the out-of-sample performance of some mean-variance optimized portfolios

relative to the 1/N strategy. The optimized portfolios are constructed using the sample-

based mean-variance strategy, and several extensions proposed in the literature that are

designed to mitigate estimation errors. Among the 14 models of optimal asset allocation

they examine, they show that typically none of them outperform the 1/N strategy for the

seven empirical datasets. This has caused some doubts on whether portfolio optimization

adds value, especially since the naive rule is easier to implement. To understand why the

optimized portfolios perform poorly, they derived analytically the length of the estimation

window needed to estimate the parameters used in the optimization strategies. While

these parameters usually are estimated using 60 or 120 months of data, DeMiguel et al.

found that for a portfolio of only 25 assets, the estimation window needed is 3000 months,

and 6000 months for a portfolio of 50 assets. The extensions designed to mitigate the

estimation errors only moderately reduced the needed estimation window. They concluded

that there is a need for improvement when it comes to estimating the moments of asset

returns. Investors should also use other available information about stock returns, not

only statistical information. They also argued for the use of the naive diversification rule

as a benchmark when evaluating performance of portfolios.

In defense of mean-variance optimization, other financial researchers claimed to have

found evidence of superiority of optimized portfolios. This has resulted in a heated debate

in the academic community. Kirby and Ostdiek (2012) conducted a study where they

suggested that the study of DeMiguel et al. (2009) focus on portfolios that are exposed

to high estimation risk and extreme turnover. To solve this problem they developed

two new strategies for mean-variance portfolio optimization. These are distinguished by

low turnover and outperform the 1/N strategy even in the presence of large transaction

costs. Kritzman, Page, and Turkington (2010) argued that the minimum-variance and

mean-variance strategies outperform equally weighted portfolios out-of-sample, and add
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value when using longer samples for the estimation of expected returns. To improve

performance Tu and Zhou (2011) proposed an optimal combination of the naive rule with

one of the four strategies: the Markowitz rule, the Jorion (1986) rule, the MacKinlay and

Pástor (2000) rule, and the Kan and Zhou (2007) rule. They found that this method not

only improves the performance of the four respective strategies, but also outperform the

1/N strategy in most cases.

The commonality of the studies defending the mean-variance optimization is that they

used the Sharpe ratio as their performance measure, some without performing statistical

tests. Zakamulin (2017) argued that researchers measure performance without further

examining whether superior performance can be attributed to established risk factor pre-

miums. Fama and French (1993) identified two such factors based on the Arbitrage

Pricing Theory by Ross (1976), and introduced a three-factor model as an extension to

the Capital Asset Pricing Model of Treynor (1961, 1962), Sharpe (1964), Lintner (1965),

and Mossin (1966) containing the market risk factor. Later, Carhart (1997) included yet

another risk factor designed to describe stock returns.

In this study we re-examine the performance of the optimized strategies by Kirby and

Ostdiek (2012) by extending the historical period for the US data and testing the strategies

using similar Norwegian data. We measure performance by means of the portfolio alpha

derived from regression on a multi-factor model in addition to the Sharpe ratio. We also

test the Global Minimum Variance portfolio, in similarity of the studies by Kritzman et al.

(2010) and Clarke, De Silva, and Thorley (2011), though we do not impose the long-only

constraint for this strategy. The purpose of testing the strategies on the Norwegian data

is that we want to investigate if the strategies work in Norway. By using the portfolio

alpha in addition to the Sharpe ratio, our goal is to account for the possibility that some

optimized portfolios show superior performance as a result of profiting from some known

market anomalies.

Our results on the US datasets show that all the optimized portfolios outperform the

1/N strategy according to the Sharpe ratio and associated p-values. On the Norwegian

datasets however, we see less convincing performance, where none of the optimized port-
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folios consistently outperform the naive portfolio. When we measure the performance

with the portfolio alpha, we see that the advantage of the timing strategies by Kirby

and Ostdiek (2012) is reduced and the statistical significance disappears, even for the US

data. On this note our results show that the superior performance can be attributed to

exploiting known anomalies.

The rest of the thesis is organized as follows: Section 2 reviews the relevant literature

to understand the background for our research and how it extends existing research. Sec-

tion 3 describes the method used for the portfolio strategies, performance measures, and

the statistical estimations and tests we use. Section 4 considers the data, data sources,

and sample period for our analysis. In this section we also present the descriptive statis-

tics. Section 5 presents and summarizes our empirical results relevant for our discussion.

Section 6 discusses the results in compliance with previous literature and emphasizes how

our results differ. Section 7 summarizes our thesis with the conclusion and final remarks.
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2 Literature review

DeMiguel et al. (2009) issued a research paper questioning the actual performance of op-

timized portfolios. Their study had a great impact on the academic community and gave

rise to the debate on whether mean-variance optimization outperform naive diversification

as they were of the first to examine the subject matter. They evaluated the out-of-sample

performance of 14 sample-based mean-variance models and compared to the 1/N strategy,

using seven different empirical datasets in addition to simulated data. The conclusion of

their study was that none of the compared portfolio optimization strategies conveyed re-

sults of statistically significant better performance than the naive strategy. Subsequently,

many academic researchers have reassessed different mean-variance optimization methods

and come up with their own empiric results showing strategies that yield better perfor-

mances.

Kritzman et al. (2010) claimed that previous research has created an incorrect im-

pression that naive asset allocation outperforms mean-variance optimized portfolios by

attributing the sensitivity of optimization to estimation error. Using naive but plausible

estimates of expected return, volatility and correlation, their results showed that the opti-

mized portfolios perform better. One of these portfolios is the Global Minimum Variance

portfolio. Kritzman et al. (2010) did not believe that the naive strategy is a viable option

to optimal diversification. Clarke et al. (2011) examined the composition of the Global

Minimum Variance portfolio with focus on the analytic form and the parameters of the

individual asset weights. They derived an analytic solution for the long-only constrained

Global Minimum Variance portfolio using the simplification associated with a single-factor

model for the security variance-covariance matrix.

Kirby and Ostdiek (2012) suggested that DeMiguel et al. (2009) achieved their results

because of their research design, focusing on models that are prone to high estimation

risk and extreme turnover. Kirby and Ostdiek (2012) found that turnover in the presence

of transaction cost removes the advantage of optimized portfolios. In order to address

this issue, they developed two simple active portfolio strategies that utilize sample infor-
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mation about the expected returns and variances. These strategies keep the appealing

features of the 1/N strategy by prohibiting short-sale, and dismissing optimization and

variance-covariance-matrix inversion requirements. To control the turnover and transac-

tion costs, they implemented a tuning parameter that can be interpreted as a measure of

timing aggressiveness. They found that both strategies outperform the naive strategy by

statistically significant margins, even in the presence of high transaction costs.

Disatnik and Katz (2012) introduced a portfolio strategy that prohibits short positions.

This strategy prohibits short positions by investing in a Global Minimum Variance portfo-

lio that is constructed using a block structure to calculate the variance-covariance matrix,

and finding the weights analytically. This method avoids generating corner solutions with

zero weights in many assets. Their diagonal variance-covariance matrix approach is the

same approach as Kirby and Ostdiek (2012) utilized to develop their strategies. Disatnik

and Katz (2012) also found that their basic portfolio optimization approach outperforms

the 1/N strategy even in the presence of transaction costs. Behr, Guettler, and Miebs

(2013) developed a constrained minimum-variance portfolio strategy on a shrinkage-theory

based framework and demonstrated that this strategy displays lower out-of-sample vari-

ances compared to other mean-variance strategies and consistently returns a Sharpe ratio

that is statistically different from that of the 1/N strategy. On the other hand, a study

of Haley (2016) presented results that are consistent with those of DeMiguel et al. (2009)

and argued additionally that the advantage of the naive strategy extends to individual

stock selection and not just portfolios of stocks.

A consistent observation we make is that the performance is more or less measured

using the Sharpe ratio. Zakamulin (2017) demonstrated that one can increase the Sharpe

ratio by using known anomalies and so it is therefore essential to control whether the

better performance can be attributed to mean-variance efficiency or some established risk

factor premiums. He also argued that the long-only Global Minimum Variance strategy,

Volatility Timing strategy, and Reward-to-Risk strategy exhibit superior performance

due to tilting towards the asset with the lowest volatility. Motivated by these issues,

we attempt to test the Volatility Timing strategy and the Reward-to-Risk strategy by
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Kirby and Ostdiek (2012) for superior performance as compared to the 1/N strategy. In

addition, we test the Global Minimum Variance strategy without imposing the long-only

constraint. To expand the literature, we extend the sample size of Kirby and Ostdiek

using similar datasets from the US. We also use the portfolio alpha as a performance

measure in addition to the Sharpe ratio. Further, we consider four Norwegian datasets,

sorted on similar criteria as the US datasets, to review the reliability of our results and

examine if the strategies work in Norway.
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3 Methodology

3.1 Constructing the portfolios

In this section we describe the portfolio construction strategies used in this study. We

utilize four strategies where the first strategy is our benchmark strategy, naive diversifi-

cation, also referred to as the 1/N strategy. This portfolio is constructed by allocating

the weights of the assets equally. Throughout this study we assume that there are N

risky assets and one risk-free asset. The comparing strategies we use are the Global Mini-

mum Variance portfolio, and two strategies introduced by Kirby and Ostdiek (2012): the

Volatility Timing strategy (VT) and the Reward-to-Risk Timing strategy (RRT), both

designed to outperform the 1/N strategy.

3.1.1 Portfolio mean return and variance

Mean-variance optimization was introduced by Markowitz (1952). He described how to

construct a portfolio with maximized expected returns given a specific level of risk. As a

rule, each active dynamic portfolio is rebalanced periodically. Suppose in each period t

the investor allocates a portion of his wealth ωit in each asset i. In matrix notation, the

mean return µpt and variance σ2
pt of the portfolio in period t are then given by:

µpt = ω′tµt and σ2
pt = ω′tΣtωt, (1)

where ωt is the vector of weights, µt is the vector of mean returns, and Σt is the variance-

covariance matrix of the assets in period t. Further, we assume that the asset returns are

linearly independent and that the variance-covariance matrix is invertible. The variance

covariance matrix is also symmetrical, because σij = σji, and since the variance is positive,

the variance-covariance matrix is positive definite.
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3.1.2 Global Minimum Variance

The construction of the Global Minimum Variance portfolio is thoroughly described by

Merton (1972), and the literature suggests a two-step approach to estimate the weights

of the Global Minimum Variance portfolio in an optimal way. First, estimate the distri-

bution parameters of the stock returns, then minimize the portfolio variance under the

assumption that the estimated parameters are true. These steps are repeated periodi-

cally. Consider a scenario where the risk-free asset is excluded. After the distribution

parameters in section 3.1.1 are estimated, the objective is then to minimize the quadratic

program:

min
ωt

1

2
ω′tΣtωt subject to ω′t1 = 1, (2)

where 1 denotes a N×1 vector of ones. Using the Lagrangian multipliers is a common way

to find the local maxima and minima under equality constraints. Forming the Lagrangian

we get the quadratic program:

min
ωt,γ

L =
1

2
ω′tΣtωt + γ(1− ω′t1), (3)

where γ is the Langrangian multiplier. Solving this program1 provides us with the vector

of weights in period t :

ωGMV,t =
Σ−1
t 1

1′Σ−1
t 1

. (4)

To justify the Global Minimum Variance portfolio, consider a scenario where the risk-free

asset is included and µGMV,t > rf . Then the investment opportunity set is tangent to the

efficient frontier of risky asset. The Tangency portfolio weights in period t are given in

the literature as:

ωtan,t =
Σ−1(µ− 1rf )

1′Σ−1(µ− 1rf )
, (5)

1See the derivation of this solution in Merton (1972)

9



where rf is the return on the risk-free asset. If we then assume that the investor has no

clue about the mean returns at all, the formula in equation (5) reduces to:

ωt =
Σ−1
t 1

1′Σ−1
t 1

,

which is the solution for the weights of the Global Minimum Variance portfolio. This

is the closed-form solution for the vector of weights of the Global Minimum Variance

portfolio, which means we assume that the market is frictionless and the assets can be

bought and sold short without any limitations. We use this solution for comparison in

our thesis. In practice however, this strategy is implemented with short-sale restrictions,

in which case we can only attain the solution using numerical methods. The subsequent

strategies are based on an approach using short-sale restrictions.

3.1.3 Volatility Timing

The VT strategy is an active portfolio strategy in which changes in the estimated variance

σ̂2 causes rebalancing of weights in the portfolio. It is designed to avoid short sales and

keep turnover as low as possible (Kirby & Ostdiek, 2012). Consider the solution for the

Global Minimum Variance portfolio in equation 4. To eliminate short-positions entirely,

we assume all correlations ρij = 0 for each period t, so that the estimated variance-

covariance matrix Σ̂ becomes a diagonal matrix. Since the variance is positive, ignoring

the correlations results in non-negative weights of assets. Using a diagonal variance-

covariance matrix and assuming that the expected returns are equal for all periods (µt =

µ), the weights for the Global Minimum Variance portfolio reduces to:

ω̂it =

(
1
σ̂2
it

)
∑N

i=1

(
1
σ̂2
it

) i = 1, 2, . . . , N, (6)

where σ̂it is the estimated conditional volatility of the excess return on the ith risky asset.

Kirby and Ostdiek (2012) specified the portfolio weights in terms of conditional return

volatility and a tuning parameter that allows some control over portfolio turnover and
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transaction costs. According to the authors, this tuning parameter η determines how ag-

gressively we make changes in the portfolio weights as a result of changes in the volatility.

In reality, increasing this tuning parameter tilts the weights towards the assets with the

lowest volatility (Zakamulin, 2017). The weights for the VT(η) portfolio are given by:

ω̂it =

(
1
σ̂2
it

)η
∑N

i=1

(
1
σ̂2
it

)η i = 1, 2, . . . , N, (7)

where η ≥ 0.

Regarding the tuning parameter. Because the correlations are set to zero, implement-

ing an assumption where η > 1, should compensate for the lost information. This can

be justified by η’s effect on the formula above. When η approaches zero we will achieve

the weight of the 1/N strategy portfolio and when η approaches infinity the weight of the

asset with lowest volatility will approach one (Kirby & Ostdiek, 2012).

3.1.4 Reward-to-Risk Timing

The next strategy introduced by Kirby and Ostdiek (2012) is the Reward-to-Risk (RRT)

strategy. Because the VT strategy above ignores information regarding conditional ex-

pected returns, one can ask if this information will influence its performance in a way. The

RRT strategy is also built on modern portfolio theory and considers this information by

adding the conditional expected return µit. Still considering a situation with the diagonal

variance-covariance matrix, the weights of the Tangency portfolio can be expressed as:

ω̂it =

(
µ̂it
σ̂2
it

)
∑N

i=1

(
µ̂it
σ̂2
it

) i = 1, 2, . . . , N, (8)

where µ̂it is the estimated conditional expected excess return in period t for asset i.

Due to the difficulty of estimating expected return as precise as variances, the strategy

in equation (8) is likely to involve noteworthy higher estimation risk than the VT strategy.

Though setting the off-diagonal elements of Σ̂t to zero reduce this risk, the possibility of
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extreme weights still remains. This is because negative µ̂it can cause the denominator of

equation (8) to come close to zero. To address this problem, Kirby and Ostdiek (2012)

assumes that the investor rejects any assets with µ̂it ≤ 0 in period t and express the

calculation of weights as:

ω̂it =

(
µ̂+it
σ̂2
it

)
∑N

i=1

(
µ̂+it
σ̂2
it

) i = 1, 2, . . . , N, (9)

where µ̂+
it = max(µ̂it, 0) assures non-negative weights for all assets in period t.

Further on, we implement the parameter controlling turnover and construct a final

formula for the weights of the RRT(µ+
itη) strategy:

ω̂it =

(
µ̂+it
σ̂2
it

)η
∑N

i=1

(
µ̂+it
σ̂2
it

)η i = 1, 2, . . . , N, (10)

where η ≥ 0.

3.1.5 Alternative estimators of conditional expected returns

To reduce estimation risk related to expected returns, Kirby and Ostdiek (2012) present

another version of the RRT strategy, exploiting the relationship between the first and

second moments of excess returns implied by numerous asset pricing models. Assume

that a conditional version of the Capital Asset Pricing Model holds. This model implies

that the cross-sectional variation in the conditional excess returns is due to cross-sectional

variation in the conditional beta coefficients. We can then replace µ+
it with the beta

coefficient β+
it , because the market risk premium µm is just a scaling factor that multiplies

each of the conditional betas. The weights for the RRT portfolio can then be constructed

as:

ωit =

(
β+
it

σ2
it

)η
∑N

i=1

(
β+
it

σ2
it

)η i = 1, 2, . . . , N, (11)
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where β
it

is the CAPM beta coefficient and β+
it = max(βit, 0). Replacing µ+

it with β+
it can

lower the sampling variations of the weights. Since βi = ρi
σi
σm

, the formula in equation

(11) can be reduced to:

ωit =

(
ρ+i
σi

)η
∑N

i=1

(
ρ+i
σi

)η i = 1, 2, . . . , N, (12)

where ρ+
i = max(ρi, 0) and ρi reflects the correlation between the excess return of the

market and of asset i. Hence, we have replaced µi with σiρi. Now, if we assume that

the conditional CAPM does not hold, bias is introduced when replacing the estimator µ̂it

with σ̂itρ̂it. However, replacing an unbiased estimator characterized by high variance with

a biased estimator characterized by low variance may still be beneficial.

Kirby and Ostdiek (2012) argue that this methodology can be extended to multi-factor

models. Consider a K-factor model where βij,t denotes the conditinal beta for the ith asset

with respect to the j th factor in period t. As a result, the weights for the RRT(β̄+
t , η) are

calculated as:

ω̂it =

(
β̄+
it

σ2
it

)η
∑N

i=1

(
β̄+
it

σ2
it

)η i = 1, 2, . . . , N, (13)

where β̄+
it = max(β̄it, 0 and β̄it = (1/K)

∑K
j=1 βij,t is the average conditional beta for asset

i with respect to the K factors in period t.

The implementation of the beta coefficient is described in section 3.3.2.

3.2 Performance measures

We use two performance measures to evaluate the strategies described previously. The

first measure we use is the industry standard, the Sharpe ratio. This measure is also used

in many, if not all, of the other studies debating our topic. In addition, we choose to use

the portfolio alpha as a performance measure. Zakamulin (2017) showed that using only

the Sharpe ratio does not provide information on whether the performance gains can be

attributed to exposures to certain risk factors. To accommodate this issue, we estimate
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the portfolio alphas using a four-factor model described in section 3.3.3.

3.2.1 Sharpe ratio

The Sharpe ratio is a widely used performance measurement within financial analysis.

This measurement was developed and defined by Sharpe (1966) as a reward-to-variability

ratio. It is used to calculate risk-adjusted return based on volatility. Generally, the greater

value of the Sharpe ratio, the more attractive the strategy. The Sharpe ratio reflects the

performance of the investment and is a suited measurement for evaluating which strategy

performs best.

The Sharpe ratio is known for being a determinative factor when an investor decides

on a portfolio to invest in. The formula for the Sharpe ratio can be presented as:

Sharpe ratio =
µp
σp
, (14)

where µp = E[rp− rf ] denotes the expected excess return on the portfolio and σp denotes

the volatility of the excess return.

3.2.2 Portfolio alpha

The portfolio alpha, or Jensen’s alpha, is justified as a performance measurement by the

CAPM (Jensen, 1968). It solely depends on two factors; expected return on the portfolio,

and the beta (systematic risk). The portfolio alpha can be interpreted as the excess return

on a portfolio predicted by an asset pricing model relative to the realized portfolio return:

portfolio alpha = realized portfolio return – predicted portfolio return.

The higher portfolio alpha, the better. It is a popular performance measure, because

it is easy to estimate and test for statistical significance with OLS regression. To estimate

the alphas one can either use the CAPM or a multi-factor model. Consider a K -factor
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model:

Rp = αp +
K∑
k=1

βp,kFk + εp, (15)

where Rp = rp − rf is the excess return on the portfolio, αp is the portfolio alpha, βp,k

is the kth factor loading or systematic risk, Fk is the return of factor k, and εp is the

disturbance term. We use the Carhart (1997) four-factor model to estimate the portfolio

alpha and take advantage of a more complex environment with several risk factors. We do

this to get a better reflection of the market and a more precise result of what an investor

actually can expect as return. Due to this extension, the systematic risk used to calculate

alpha now appeal to all factors that are important for understanding the allocation of the

fund.

3.3 Statistical estimations

3.3.1 Rolling estimators

To estimate µt and Σt for each portfolio’s rebalancing date t, we use a fixed-window stan-

dard rolling estimation method similar that of Kirby and Ostdiek (2012) and DeMiguel et

al. (2009). We use historical data from a window of length L to estimate the parameters

for each period t until T, where T is the total number of observations in the out-of-sample

period. Common choices of window length for monthly data are L = 60 and L = 120.

Merton (1980) argues that it is necessary with long time series of returns to estimate

expected returns. However, to be able to compare the Norwegian data to the US data, we

set L = 60. This is due to our small sample size of the Norwegian data.2 The estimators

of µt and Σt follow the expressions:

µ̂t =
1

L

L−1∑
l=0

rt−l (16)

and

Σ̂t =
1

L

L−1∑
l=0

(rt−l − µ̂t)(rt−l − µ̂t)′, (17)

2See section 4.
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where µ̂t is the estimated conditional mean vector of the excess returns, rt−l is the return

of the risky asset, and Σ̂t is the estimated conditional variance-covariance matrix of the

excess returns on the risky assets in period t.

3.3.2 Estimating conditional betas

To implement the alternative Reward-to-Risk timing strategy we need a method for cal-

culating the beta risk coefficient. Beta (β) is the undiversifiable risk coefficient associated

with the factor return. In a multi-factor model there is one beta associated with each

factor. Each of these are systematic risks and dependent on the associated factor. We

estimate these betas using a multi-factor model. A generalized formula for a multi-factor

model when we have N risky assets can be presented with the following approach:

Ri,t = αi +
K∑
k=1

βi,kFk,t + εi,t i = 1, 2, . . . , N, (18)

where Ri,t is the of excess return for asset i in period t, αi is the models’ pricing error,

βi,k denotes the beta coefficient for the kth factor associated with the ith risky asset, Fk,t

is the return of the kth factor at time t and εi,t is the time-t disturbance term. We use

the Carhart (1997) four-factor model to estimate the betas.

3.3.3 The Carhart (1997) four-factor model

To understand the Carhart (1997) four-factor model we have to go back to the Capital As-

set Pricing Model which was introduced by Treynor (1961, 1962), Sharpe (1964), Lintner

(1965), and Mossin (1966). Independently they developed the CAPM, by building on the

earlier work of Markowitz (1952) as a model for pricing an individual security or portfolio.

Later on, Ross (1976) introduced the Arbitrage Pricing Theory, which he proposed as an

alternative to the CAPM. The APT formed the foundation for multi-factor models, as it

is based on weaker assumptions than the CAPM.

Several “anomalies” have been discovered within the CAPM. This means that there

are portfolios of stocks with certain characteristics that have positive and statistically
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significant alphas in the CAPM. Some of these anomalies are the size anomaly, the value

anomaly, and the momentum anomaly, which are related to small cap stocks, stocks

with high book-to-market ratio, and selling losers and buying winners respectively. In

a rational asset pricing model, higher risk premiums can only be due to higher risk.

Therefore one assumes that the anomalies can be explained by specific risk factors. A

multi-factor model with two such risk factors was introduced by Fama and French (1993).

Their model account for the anomalies related to size and value using the SMB (Small

Minus Big) and HML (High Minus Low) factors respectively. Fama and French argue that

because these risk factors alone cannot explain the cross-section of average stock returns,

the market factor is included in the equation for justification. By including these factors,

the three-factor model can be presented as:

Rp = αp + βp,MKTFMKT + βp,SMBFSMB + βp,HMLFHML + εp, (19)

where Rp is the excess return on the portfolio, αp represents the portfolio alpha, and F

and β denoted MKT, SMB and HML are the factor premiums and risk coefficients for

the market, size, and value factors respectively.

All the MKT-, SMB- and HML-factors are each calculated by the use of six value-

weigted portfolios (Fama & French, 1992). Fama and French describe the construction

of these factor as follows: The portfolios of SMB are constructed by sorting all the non-

negative stocks of one index by size (price times shares) at time t and then divide it by its

median. The measure of this index is then applied as measure to all indices for which the

SMB-factor is constructed, by dividing them into two groups, small (S) and big (B). The

SMB-factor is further calculated by subtracting the B (the average return of the three big

portfolios) from S (the average return of the three small portfolios). The SMB-factor can

be expressed as:

SMB =1/3
(
Small Value + Low Neutral + Small Growth

)
(20)

− 1/3
(
Big Value + Big Neutral + Big Growth

)
.
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The market factor used is the excess market return (rm− rf ) calculated by sorting the

stocks by size, but this time, include the negative stocks as well. The portfolios of the

HML-factor are constructed by sorting the stocks of one index into three groups by their

book-to-market value, the lowest 30%, the mid-range 40%, and the highest 30%. Then,

similar to the SMB-factor, this measure (or a “breakpoint” (Fama & French, 1993))

is applied to all indices. Further the low 30%(average return of the lowest valued) is

subtracted from the high 30% (average return of the highest valued) (Fama & French,

1993).3 The HML-factor can be expressed as:

HML =1/2
(
Small Value + Big Value

)
(21)

− 1/2
(
Small Growth + Big Growth

)
.

By implementing the four-factor model we add yet another factor to this model, the

momentum factor (MOM). This factor was first introduced by Jegadeesh and Titman

(1993) as a strategy. In their study, Jegadeesh and Titman analyzed the strength of

trading strategies with a time horizon of three to twelve months. They include a strategy

they refer to as the “J −month/K−month” strategy. This strategy selects which stocks

to buy according to their returns over the the past J months and holds them for K months.

The “J −month/K −month” strategy is constructed by sorting all assets at time t

in an ascending order by their returns in the past J months. Then, based on how the

assets are sorted and how many securities there are, they are divided into ten equally

weighted portfolios, as the weight of each asset equals 1
K

in the top ten, the second top

ten, and so on. The top ten is then defined as the “losers”, and the bottom is defined as

the “winners”. At each t (start of month) the strategy sells the “loser”-portfolio and buys

“winner”-portfolio. Jegadeesh and Titman (1993) referred to these as zero-cost portfolios,

because the profit is calculated by subtracting the winners from the losers.

Four years later, Carhart (1997) proved that the “anomaly” regarding momentum

can be almost completely explained by adding the “J −month/K −month”-strategy by

3For further reading regarding the calculation and choice of data for the risk-factors SMB and HML,
see the article by Fama and French (1993).
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Jegadeesh and Titman (1993) as a new risk coefficient. Carhart added the momentum

factor to the three-factor model, developing it into the Fama-French-Carhart four-factor

model (MOM), an improved multi-factor model for further examination of mutual fund

performance. The construction of this momentum factor include the same indices as for

the SMB- and HML-factors (Carhart, 1997), but as in the “J−month/K−month” strat-

egy by Jegadeesh and Titman (1993) the stocks are now equally weighted. The momentum

factor is calculated over a 11 month period lagged one month, and is reconstructed every

month (Carhart, 1997). Further Carhart (1997) constructed it by subtracting the lowest

average 30% of firms from the highest 30% firms. The formula for the momentum factor

can be presented as:

MOM =1/2
(
Small Winners + Big Winners

)
(22)

− 1/2
(
Small Losers + Big Losers

)
.

The four-factor model can then be expressed as:

Rp = αp + βp,MKT rMKT + βp,SMBrSMB + βp,HMLrHMLβp,MOMrMOM + εp, (23)

where MOM is the momentum factor. Both the three- and four-factor model is developed

to make investments calculations based on a more complex environment than with the

CAPM. By taking advantage of the four-factor model, we present a more exact regression

based on the deviations of the factors.

3.4 Statistical outperformance tests

3.4.1 Formulating hypotheses

The question that remains after estimating the performance measures is whether the

difference between the two measures are significantly different. Given that we want to

test the optimized strategies against our benchmark strategy, we formulate our hypotheses
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as:

H0 : SRp ≤ SR1/N HA : SRp > SR1/N

and

H0 : αp ≤ α1/N HA : αp > α1/N ,

where SRp and SR1/N are the Sharpe ratios of the optimized and 1/N strategies respec-

tively, while αp and α1/N are the associated portfolio alphas.

There are two ways to test the hypotheses for performance measures, parametric tests

and non-parametric tests. A parametric test require a number of assumptions and is a

good fit for theoretical hypothesis. A non-parametric test is often a better fit for real-life

scenarios due to the difficulty of complying all assumptions for a parametric test. The

goal of the tests is to find statistically significant p-values. When we know the p-value,

we can establish whether our null-hypothesis can be rejected or not. Common statistical

significance levels are 1%, 5 %, and 10 %.

3.4.2 Parametric tests

A parametric test of the hypotheses in section 3.4.1 is based on the assumption that the

two excess return series of each strategy follow a normal distribution and are correlated.

It is called a parametric test because each random variable is assumed to have the same

probability distribution that is parameterized by mean and standard deviation. The

hypotheses are tested using a standardized value calculated from the sample data. This

test statistic, which has a well known distribution and is simple to calculate, can be used

to calculate the p-value. Each performance measure requires a specific test statistic. To

implement a parametric test of the Sharpe ratio one can employ the Jobson and Korkie

(1981) test, with the correction of Memmel (2003). The test statistic z is then given by:

z =
SRp − SR1/N√

1
T

[
2
(
1− ρ̂

)
+ 1

2

(
SR2

p + SR2
1/N − 2ρ̂2SRpSR1/N

)] (24)
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where ρ̂ is the estimated correlation between the excess returns of the two compared

strategies. This test assumes joint normality between the two excess return series and the

test statistic is asymptotically distributed as a standard normal when the sample size is

large. To implement a parametric test of the portfolio alpha one can use a two-sample

t-test. The test statistic y for this test can be expressed as follows:

y =
αp − α1/N√

se2
p + 2ρ̂sepse1/N + se2

1/N

(25)

where sep and se1/N reflects the standard error of the estimation of alpha from the com-

pared strategies respectively.

3.4.3 Non-parametric tests

Since the parametric tests do not control for time series characteristics in portfolio returns

(e.g. autocorrelation, volatility clustering, and absence of normally distributed returns),

we employ a block bootstrap approach to compute the p-values. The advantages of using

this type of test are that we do not need to make any assumptions, the test provide

accurate results even with smaller sample sizes, because it is distribution-free. We can

choose the test statistic freely, and the implementation of the test is simple and similar

regardless of which statistic we choose. Non-parametric tests, like the bootstrap, use

computer-intensive randomization methods to estimate the distribution of the p-values.

The bootstrapping method is the most popular non-parametric test that is based on

resampling the original data with replacements. If r1/N and rp represents two original

excess returns, this method constructs two pseudo time-series with the same number of

observations that retain the historical correlation.

The standard bootstrap was introduced by Efron (1979). This method assumes that

the data are serially independent. We cannot use this method because it breaks up the

dependency we have in our return data and creates serially independent resamples. To

preserve our dependency structure we use blocks instead of individual observations. There

are two types of block methods, with overlapping (Künsch, 1989) and non-overlapping
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blocks (Carlstein, 1986) for uni-variate time-series. Overlapping, also called moving block,

is preferred when the sample size is small relative to the block length. Suppose we

have a block length l, then the total number of overlapping blocks for a sample of T

observations is T − l + 1. By construction, the moving block time-series have a non-

stationary, or conditional, distribution. We can get a stationary distribution by making

the block length random (Politis & Romano, 1994). The length of the blocks are generated

from a geometric distribution with probability p. The p is then chosen so that p = 1
l

where l is the required average block length. The choice of average block length depends

on context. A study by Hall, Horowitz, and Jing (1995) express the asymptotic formula

for the optimal block length as: l ∼ T
1
h , where h = 3, 4, or 5, depending on what kind of

test you are conducting. For one-sided test we use h = 4 so that our optimal block length

for M = 10000 becomes 10000
1
4 = 10. The stationary method wraps the data around in

a circle so that 1 follows T and so on. The moving block bootstrapping method consists

of drawing M resamples of tb = {Bb
1, B

b
1, . . . , B

b
m} where each block of time indices Bb

i is

drawn randomly with replacement from a available blocks B1, B2, . . . , BT−l+1. After, the

pseudo time-series of the excess returns r1/N and rp are created by using each resample

tb.

To compute the p-values for the Sharpe ratios, we calculate the difference ∆ between

the Sharpe ratios for each pseudo time-series and count how many times m the compared

strategy does not outperform 1/N strategy. Then we divide this number by the total

number of bootstrap resamples M so that p-value = m
M

. When the p-value is lower than

or equal to a statistical significance level, we can reject the null-hypothesis for that level.

We use the same method to calculate the p-values for the portfolio alphas.
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4 Data

Our data for the empirical analysis consists of monthly excess returns on broadly based

US and Norwegian stock portfolios sorted on industry (Ind), book-to-market ratio (BM),

momentum (Mom) and size (Size). They contain value-weighted returns, which indicate

that the assets are weighted according to their total market capitalization. The larger

assets carry heavier weights while the smaller assets carry lower weights. This means that

price changes in the larger assets will have greater effects on the value of the portfolio.

The US portfolios contain stocks from NYSE, NASDAQ and Amex, while the Norwegian

portfolios contain stocks from the OSE. The US risk-free rates are the one-month Treasury

bill rates from Ibbotson Associates and the Norwegian estimate of the risk-free rates are

from the OSE data service and Datastream. The data are available from Kenneth R.

French’s library4 for the US and Bernt A. Ødegaard’s library for Norway.5 The data

libraries are also the source of the factor returns used to estimate the the beta coefficients

and alphas for the four-factor model. The risk factors are the excess return on the market

(rm−rf ) and the return on three portfolios that are constructed to mimic abnormal excess

returns between small and large capitalization stocks (SML), high and low book-to-market

equity stocks (HML) and a momentum factor (MOM).

We extend the study of Kirby and Ostdiek (2012) by using a sample period of July 1963

- December 2016, where T + L = 642 monthly observations and L = 60. Due to lack of

available Norwegian data, the sample period for the Norwegian stocks is somewhat shorter.

It starts July 1996 and ends December 2016, where T+L = 246 monthly observations and

L = 60. We consider eight datasets in total, four US and four Norwegian, with similar

characteristics to be able to compare them. All the datasets consists of ten portfolios.

Table 1 shows the descriptive statistics for the out-of-sample period for all data sets used.

Figure 1 and 2 describe the cross section of annualized return and standard deviation for

the US and Norwegian datasets respectively.

4http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html
5http://finance.bi.no/∼bernt/financial data/ose asset pricing data/index.html
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Table 1: Descriptive statistics
US Norwegian

Dataset Mean Volatility Min Max Mean Volatility Min Max
Ind 10.72 18.60 -23.6 20.22 17.43 31.12 -44.72 148.96
BM 12.19 17.05 -25.84 33.58 20.06 26.74 -39.26 38.15
Mom 10.53 19.23 -26.74 45.67 20.15 26.09 -41.17 39.76
Size 12.28 20.10 -30.30 32.95 28.28 20.89 -24.05 43.53

Table 1: This table reports the annualized descriptive statistics for the US and Norwegian out-of-sample
data. The period covers July 1968 - December 2016 for the US data and July 2001 - December 2016 for
the Norwegian data with value-weighted portfolio returns.
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Figure 1: Reward and risk characteristics on the US dataset

Figure 1: This figure summarizes mean and volatility for each portfolio in the dataset. The graphs on
the left shows the cross section of annualized mean returns and the graphs on the right shows the cross
section of annualized standard deviations. The reported statistics is associated with the out-of-sample
sub-period (observations 61-642).
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Figure 2: Reward and risk characteristics on the Norwegian dataset

Figure 2: This figure summarizes mean and volatility for each portfolio in the dataset. The graphs on
the left shows the cross section of annualized mean returns and the graphs on the right shows the cross
section of annualized standard deviations. The reported statistics is associated with the out-of-sample
sub-period (observations 61-642).
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5 Empirical results

In this section we present the results of our analysis conducted using the methods previ-

ously described. We evaluate the out-of-sample performance of each strategy from July

1968 to December 2016 for the US data and from July 2001 to December 2016 for the

Norwegian data, with an estimation window length of 60 months. The tables report the

estimations for the annualized means (µ̂), annualized volatility (σ̂), annualized Sharpe

ratios (ŜR) and the p-values for our hypothesis tests for the Sharpe ratio and the port-

folio alpha respectively. Like Kirby and Ostdiek, we set η = 1 for the baseline analysis

delivering VT and RRT strategies similar to basic mean-variance optimization using the

diagonal variance-covariance matrix. We set η = 2 and η = 4 to mitigate information loss

associated with ignoring the estimated return correlations and to be able to compare our

results with theirs. We also report the estimated values for the Global Minimum Variance

portfolio strategy, to document how the timing strategies perform compared to a basic

mean-variance optimization strategy.

5.1 Industry datasets

Our analysis starts with the datasets consisting of portfolios sorted on industry. Table 2

reports the performance of each strategy for the US and the Norwegian datasets. On row

one we find for each dataset the performance results of using the 1/N strategy. The means

are 6.67% and 14.38%, while the volatility values are 14.84% and 21.20% respectively. This

translates into Sharpe ratios of 0.45 and 0.68. The reported alphas are 0.47 and -0.13.

In the panels for the optimized strategies the US Sharpe ratios are larger than that of

the 1/N strategy for the VT, RRT(β̄+
t , η) and GMV and varies from 0.49 to 0.56. The

associated p-values are statistically significant at the 5% level for the VT(1), VT(2), and

RRT(β̄+
t , η) strategies. The p-value for the GMV strategy is statistically significant at the

10% level. The Norwegian Sharpe ratios are generally lower except for the RRT(β̄+
t , 1)

strategy and ranges from 0.57 to 0.78. None of the higher Sharpe ratios have p-values

that are statistically significant. The alphas for the timing strategies on the US dataset
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Table 2: Results for the Industry datasets
US Norwegian

Strategy µ̂ σ̂ ŜR pval α̂ pval µ̂ σ̂ ŜR pval α̂ pval
1/N 6.67 14.84 0.45 - 0.47 - 14.38 21.20 0.68 - -0.13 -
Panel A
VT(1) 6.81 13.87 0.49 0.000 0.48 0.202 12.87 19.77 0.65 0.613 -0.11 0.854
VT(2) 6.80 13.19 0.52 0.003 0.49 0.254 12.15 19.40 0.63 0.684 -0.18 0.857
VT(4) 6.54 12.60 0.52 0.033 0.49 0.360 11.19 19.46 0.57 0.774 -0.27 0.860
Panel B
RRT(µ̂+

t , 1) 5.81 13.85 0.42 0.560 0.45 0.614 13.38 20.44 0.65 0.607 -0.19 0.886
RRT(µ̂+

t , 2) 5.86 13.85 0.42 0.531 0.46 0.518 12.75 20.33 0.63 0.689 -0.26 0.906
RRT(µ̂+

t , 4) 5.81 14.20 0.41 0.649 0.46 0.505 12.42 20.71 0.60 0.738 -0.28 0.850

RRT(β̄+
t , 1) 7.03 14.34 0.49 0.037 0.46 0.643 14.86 20.91 0.71 0.258 -0.08 0.733

RRT(β̄+
t , 2) 7.15 14.09 0.51 0.028 0.46 0.516 15.74 21.08 0.75 0.206 -0.05 0.598

RRT(β̄+
t , 4) 7.22 13.89 0.52 0.050 0.47 0.454 16.86 21.51 0.78 0.185 -0.01 0.480

Panel C
GMV 7.14 12.69 0.56 0.010 0.64 0.063 6.69 20.55 0.33 0.988 -0.53 0.938

Table 2: This table summarize our results for the performance of the 1/N strategy (row one), Volatility
Timing strategies (Panel A), Reward-to-Risk Timing strategies (Panel B), and the Global Minimum Vari-
ance portfolio strategy (Panel C). We report the following sample statistics for the time series of monthly
excess return generated by each strategy: annualized mean (µ̂), annualized volatility (σ̂), annualized
Sharpe ratio (ŜR), portfolio alpha (α̂) and the associated p-values for our hypotheses from section 3.4.1.

are generally similar to the 1/N portfolio alpha and ranges from 0.45 to 0.49. None of the

p-values are statistically significant. For the GMV strategy however, the portfolio alpha

is 0.64 with an associated p-value that is statistically significant at the 10% level. For the

Norwegian dataset, all the alphas are, like the 1/N alpha, negative. None of the p-values

suggests that any of the optimized strategies perform better than the 1/N strategy.

5.2 BM datasets

The next datasets in our analysis are the ones with portfolios sorted on the book-to-

market ratio. Table 3 presents the performance results of each strategy for the US and

Norwegian datasets. The 1/N strategy on row one reports mean values of 7.41% and

17.01%. The volatility values are 15.75% and 20.91% and the Sharpe ratios are 0.47 and

0.81 respectively. The portfolio alphas are reported as 0.41 and 0.01. The Sharpe ratios

for the timing strategies vary from 0.48 to 0.53 for the US dataset with associated p-

values statistically significant p-values for the VT and RRT(β̄+
t , η) strategies. The GMV

portfolio does not outperform the 1/N strategy on this dataset. For the Norwegian dataset

the Sharpe ratios vary from 0.66 to 0.82. Even though some of the values are higher than

28



Table 3: Results for the BM datasets
US Norwegian

Strategy µ̂ σ̂ ŜR pval α̂ pval µ̂ σ̂ ŜR pval α̂ pval
1/N 7.41 15.75 0.47 - 0.41 - 17.01 20.91 0.81 - 0.01 -
{Panel A}
VT(1) 7.42 15.46 0.48 0.026 0.42 0.234 16.64 20.42 0.81 0.380 0.05 0.154
VT(2) 7.43 15.27 0.49 0.028 0.42 0.292 16.23 20.18 0.80 0.523 0.08 0.167
VT(4) 7.46 15.08 0.49 0.035 0.42 0.398 15.90 20.42 0.78 0.664 0.14 0.165
{Panel B}
RRT(µ̂+

t , 1) 7.30 15.00 0.49 0.255 0.41 0.472 16.58 21.51 0.77 0.783 -0.04 0.703
RRT(µ̂+

t , 2) 7.26 14.99 0.48 0.274 0.40 0.545 16.09 21.81 0.74 0.854 -0.08 0.768
RRT(µ̂+

t , 4) 7.21 15.03 0.48 0.343 0.38 0.625 14.99 22.78 0.66 0.947 -0.15 0.805

RRT(β̄+
t , 1) 7.92 15.70 0.50 0.024 0.40 0.852 17.19 20.90 0.82 0.405 0.04 0.346

RRT(β̄+
t , 2) 8.18 15.71 0.52 0.025 0.39 0.852 17.38 21.07 0.82 0.435 0.09 0.254

RRT(β̄+
t , 4) 8.43 15.84 0.53 0.038 0.38 0.858 16.97 21.49 0.79 0.619 0.12 0.290

{Panel C}
GMV 6.68 15.89 0.42 0.742 0.39 0.537 17.56 22.10 0.79 0.565 0.61 0.034

Table 3: This table summarize our results for the performance of the 1/N strategy (row one), Volatility
Timing strategies (Panel A), Reward-to-Risk Timing strategies (Panel B), and the Global Minimum Vari-
ance portfolio strategy (Panel C). We report the following sample statistics for the time series of monthly
excess return generated by each strategy: annualized mean (µ̂), annualized volatility (σ̂), annualized
Sharpe ratio (ŜR), portfolio alpha (α̂) and the associated p-values for our hypotheses from section 3.4.1.

that of the 1/N strategy, none of the associated p-values are statistically significant. The

alphas for the timing strategies range from 0.38 to 0.42 for the US dataset and from -0.15

to 0.14 for the Norwegian dataset. There are no statiscially significant p-values for the

timing strategies. The GMV alphas are 0.39 and 0.61, and the p-value for the alpha on

the Norwegian dataset is statistically significant at the 5% level.

5.3 Momentum datasets

We continue our analysis with the datasets formed by portfolios sorted on momentum.

Table 4 reports the performance of each strategy for the two momentum datasets. The first

row shows us that the means of the 1/N strategy for each dataset are 5.75% and 17.11%

respectively. The volatility values are 16.85% and 19.90%, and the Sharpe ratios are 0.34

and 0.86 respectively. The portfolio alphas are 0.38 and 0.11. All of the optimized portfolio

strategies outperform the 1/N strategy in terms of Sharpe ratio on the US dataset, with

values ranging from 0.35 to 0.55. The associated p-values are statistically significant at a

1% level for VT(η) and RRT(µ̂+
t , η), and at the 5% level for the GMV portfolio. For the

RRT(β̄+
t , η) strategy, the p-value is statistically significant at a 10% level for η = 1, while
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Table 4: Results for the Momentum datasets
US Norwegian

Strategy µ̂ σ̂ ŜR pval α̂ pval µ̂ σ̂ ŜR pval α̂ pval
1/N 5.75 16.85 0.34 - 0.38 - 17.11 19.90 0.86 - 0.11 -
{Panel A}
VT(1) 6.09 15.96 0.38 0.000 0.39 0.389 16.35 19.43 0.84 0.662 0.11 0.491
VT(2) 6.27 15.56 0.40 0.000 0.39 0.376 16.08 19.34 0.83 0.655 0.12 0.436
VT(4) 6.37 15.27 0.42 0.000 0.39 0.440 16.40 19.87 0.83 0.663 0.17 0.349
{Panel B}
RRT(µ̂+

t , 1) 6.61 15.37 0.43 0.009 0.44 0.213 18.16 19.92 0.91 0.155 0.20 0.200
RRT(µ̂+

t , 2) 7.00 15.52 0.45 0.008 0.46 0.148 18.93 20.83 0.91 0.317 0.26 0.176
RRT(µ̂+

t , 4) 7.39 15.73 0.47 0.008 0.49 0.102 19.91 22.23 0.90 0.476 0.33 0.178

RRT(β̄+
t , 1) 5.78 16.11 0.36 0.098 0.33 0.977 16.56 19.76 0.84 0.719 0.06 0.820

RRT(β̄+
t , 2) 5.73 16.00 0.36 0.173 0.30 0.974 16.34 19.92 0.82 0.748 0.05 0.764

RRT(β̄+
t , 4) 5.60 16.02 0.35 0.296 0.28 0.972 16.23 20.91 0.78 0.860 0.03 0.712

{Panel C}
GMV 8.43 15.44 0.55 0.023 0.56 0.080 15.77 22.83 0.69 0.918 0.25 0.336

Table 4: This table summarize our results for the performance of the 1/N strategy (row one), Volatility
Timing strategies (Panel A), Reward-to-Risk Timing strategies (Panel B), and the Global Minimum Vari-
ance portfolio strategy (Panel C). We report the following sample statistics for the time series of monthly
excess return generated by each strategy: annualized mean (µ̂), annualized volatility (σ̂), annualized
Sharpe ratio (ŜR), portfolio alpha (α̂) and the associated p-values for our hypotheses from section 3.4.1.

when η is set to 2 or 4 the p-value is not statistically significant. The Norwegian Sharpe

ratios are only higher than the 1/N Sharpe ratios for the RRT(µ̂+
t , η) strategy and none

of the associated p-values are statistically significant. When it comes to the US alphas

the only ones that are lower than the 1/N alphas are the RRT(β̄+
t , η) strategy alphas.

The p-values for the GMV portfolio is statistically significant. The Norwegian alphas are

generally higher for the VT and the RRT(µ̂+
t , η) strategies, but neither of these associated

p-values are statistically significant either. The GMV portfolio has an alpha of 0.25, with

a non-significant p-value of 0.336.

5.4 Size datasets

The last datasets we investigate is the datasets consisting of portfolios sorted on size.

Table 5 reports the performance results for the US dataset and the Norwegian dataset.

In row one the mean, volatility, Sharpe ratio, and alpha are 7.50%, 19.20%, 0.39, and

0.46 for the US dataset, and 25.23%, 15.84%, 1.59, and 0.76 for the Norwegian dataset

respectively. Some of the timing strategies on the US dataset slightly outperform the

1/N strategy with Sharpe ratios ranging from 0.39 to 0.43. None of the p-values are
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Table 5: Results for the Size datasets
US Norwegian

Strategy µ̂ σ̂ ŜR pval α̂ pval µ̂ σ̂ ŜR pval α̂ pval
1/N 7.50 19.20 0.39 - 0.46 - 25.23 15.84 1.59 - 0.76 -
{Panel A}
VT(1) 7.38 18.67 0.40 0.101 0.47 0.355 24.24 14.90 1.63 0.068 0.78 0.270
VT(2) 7.24 18.18 0.40 0.120 0.47 0.373 23.12 14.06 1.64 0.148 0.84 0.191
VT(4) 6.91 17.45 0.40 0.186 0.46 0.471 21.68 13.98 1.55 0.565 0.91 0.170
{Panel B}
RRT(µ̂+

t , 1) 7.25 17.74 0.41 0.274 0.57 0.160 25.56 15.15 1.69 0.000 0.85 0.006
RRT(µ̂+

t , 2) 7.51 17.77 0.42 0.217 0.59 0.136 25.38 14.63 1.74 0.002 0.93 0.008
RRT(µ̂+

t , 4) 7.75 17.87 0.43 0.201 0.61 0.108 24.22 14.33 1.69 0.131 1.01 0.032

RRT(β̄+
t , 1) 7.55 19.36 0.39 0.760 0.46 0.764 24.89 15.45 1.61 0.121 0.77 0.409

RRT(β̄+
t , 2) 7.61 19.50 0.39 0.691 0.46 0.723 24.60 15.19 1.62 0.167 0.78 0.382

RRT(β̄+
t , 4) 7.75 19.68 0.39 0.583 0.45 0.655 23.86 14.88 1.60 0.368 0.79 0.382

{Panel C}
GMV 9.51 15.88 0.60 0.011 0.81 0.004 23.89 14.85 1.61 0.452 1.10 0.064

Table 5: This table summarize our results for the performance of the 1/N strategy (row one), Volatility
Timing strategies (Panel A), Reward-to-Risk Timing strategies (Panel B), and the Global Minimum Vari-
ance portfolio strategy (Panel C). We report the following sample statistics for the time series of monthly
excess return generated by each strategy: annualized mean (µ̂), annualized volatility (σ̂), annualized
Sharpe ratio (ŜR), portfolio alpha (α̂) and the associated p-values for our hypotheses from section 3.4.1.

statistically significant. The GMV portfolio properly outperform the 1/N strategy with

a Sharpe ratio of 0.60 and a p-value that is statistically significant at the 5% level. For

the Norwegian dataset the Sharpe ratios are generally higher and range from 1.55 to 1.74

for the timing strategies. Setting η = 1 and η = 2 gives us significant p-values at the

1% level for the RRT(µ̂+
t , η) strategy. We get a significant p-value at the 10% level for

the VT(1) strategy. The GMV portfolio Sharpe ratio for the Norwegian dataset is 1.61,

with a non-significant p-value. When it comes to the alphas for the US dataset, they

range from 0.45 to 0.61 for the timing portfolios and 0.81 for the GMV portfolio. Most

of them higher are than the 1/N portfolio alpha. The p-values are statistically significant

at the 1% level for the GMV portfolio, while none of the other p-values are statistically

significant. For the Norwegian dataset all the optimized portfolio alphas are higher than

the 1/N portfolio alpha and range from 0.78 to 1.01 for the timing strategies and is 1.10

for the GMV portfolio. The p-values are significant at the 1% level when setting η = 1

and η = 2, and at the 5% level setting η = 4 for the VT strategies. The p-value for the

GMV portfolio is significant at the 10% level. The other p-values are not statistically

significant.

31



6 Discussion

Our results show us that in terms of Sharpe ratio the timing strategies perform well on

the US data. Especially the VT strategy, which outperforms the naive strategy with

statistically significant margins on three out of the four datasets we have tested. The

RRT(µ̂+
t , η) outperform the naive strategy with statistically significant margins only on

the momentum dataset. However, when using the alternative estimator of conditional

expected returns the naive strategy is outperformed on three datasets. It is worth noting

that on the momentum dataset, RRT(β̄+
t , η) only outperform the naive strategy with

statistically significant margins when η = 1.

The GMV strategy also outperforms the naive strategy on three datasets with statis-

tically significant margins, and was the only strategy to do so on the size dataset. On

the Norwegian datasets, there are much fewer Sharpe ratios for the optimized portfolio

strategies that are higher than that of the 1/N strategy, and even fewer that have statisti-

cally significant p-values. The only time we see the timing strategies outperform the naive

strategy with statistically significant margins is when we test them on the size dataset,

where RRT(µ̂+
t , η) is the best performing strategy.

The observation that attracts our attention is that the results for the portfolio alpha

does not correspond with the results for the Sharpe ratio. If we take a look at the US

datasets. The optimized portfolio strategies virtually outperforms the naive strategy in

terms of the Sharpe ratio. They do not outperform the naive strategy as consistent when

using the portfolio alpha as a performance measure. Additionally, none of the timing

strategies have statistically significant p-values associated with the portfolio alpha. The

GMV portfolio alpha has statistically significant p-values for the industry, momentum,

and size datasets. On the other datasets we receive better results for the optimized

portfolio strategies, yet statistically significant p-values only for the RRT(µ̂+
t , η) portfolio

alpha on the size dataset, and for the GMV portfolio alpha on the BM and size datasets.

These results leave us with some uncertainty. First, the different results from using the

Sharpe ratio and the portfolio alpha as performance measures. Zakamulin (2017) argued
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that the superior performance of the optimized portfolios is due to them assigning a lot

of weight on the assets with the lowest volatility. He demonstrated that when controlling

for the Fama-French High-Minus-Low risk factor, the alphas of the optimized portfolios

becomes neither economically nor statistically significant. Blitz (2016) confirmed that

the HML factor is a proxy for a distinct low-volatility risk factor. We control for two

additional risk factors and see the same results for the timing strategies, while for the

GMV portfolio strategy, we observe compliance between the results for Sharpe ratio and

portfolio alpha on three of the four US datasets. For the Norwegian book-to-market

and size datasets we even see the portfolio alpha report superior performance where the

Sharpe ratio does not, at least not with statistically significant p-values. However, since

our method of implementing the GMV portfolio strategy does not impose the long-only

constraint, the advantage of this strategy may be eroded if we impose transaction costs,

as this strategy is characterized by higher turnover than the timing strategies (Kirby

& Ostdiek, 2012). Considering all the portfolio alphas that are neither economically nor

statistically significant, further doubt emerge to whether portfolio optimization contribute

to better performance.

Another issue we encounter is the rather unconvincing performance of the RRT(µ̂+
t , η)

strategy. Kirby and Ostdiek (2012) found that the performance of the RRT(µ̂+
t , η) im-

proved when there is a good dispersion in the cross-section of average stock returns, due

to more information from the conditional means. As we can see in Figure 1, this disper-

sion is quite small in three of the US datasets we use, while on the momentum dataset,

where the means range from 1.56% to 16.59%, the RRT(µ̂+
t , η) strategy outperforms the

naive strategy by statistically significant margins for the Sharpe ratio. However, despite

good dispersion in the means of the Norwegian datasets, as we can see in Figure 2, this

strategy still disappoints.
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7 Summary and Conclusion

There is an ongoing debate about whether portfolio optimization adds value or not.

DeMiguel et al. (2009) conducted a highly influential study questioning the value of vari-

ous optimization strategies compared to the 1/N strategy. In response, many studies claim

to defend the optimized portfolios by demonstrating their superior performance. Many

of these studies use the Sharpe ratio as their performance measure, which do not account

for the possibility that the superior performance can be attributed to established risk

factor premiums (Zakamulin, 2017). Motivated by these issues we simulate the strategies

of Kirby and Ostdiek (2012) and the Global Minimum Variance portfolio. We compare

their performance relative to the performance of the 1/N strategy in the out-of-sample

period. Both the Sharpe ratio and portfolio alpha from a multi-factor model were used to

examine the performance before and after accounting for several risk factor premiums. In

addition, we extend the sample period of Kirby and Ostdiek with more recent data and

also add four Norwegian datasets with portfolios sorted on the same criteria to examine

whether these strategies work in Norway.

We find that all the optimized portfolio strategies perform well on the US datasets

in terms of the Sharpe ratio, which agrees well with the results in the study by Kirby

and Ostdiek (2012). However, when we account for the risk factor premiums using the

portfolio alpha, we find no evidence of superior performance for the timing strategies.

This is in line with the conclusion of Zakamulin (2017). The Global Minimum Variance

portfolio show superior performance even in terms of the portfolio alpha, however the

advantage of this strategy may be eroded if we impose transaction costs.

The results for the optimized portfolios on the Norwegian datasets are not convincing.

Out of the four different datasets we examine, only one of them show promising results

for the timing strategies. Though we find a number of optimized portfolios with higher

Sharpe ratio than the naively diversified portfolio on this dataset, there are only a few of

them with statistically significant p-values. The results for the portfolio alpha are similar,

which makes us doubt that these strategies work in Norway.
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With these results we argue that there is reason to doubt whether portfolio opti-

mization adds value. The strategies we have tested seem to benefit from some known

anomalies. In Norway, the optimized portfolios do not show promising results.
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Appendix A Reflection note of Andreas

Our topic is portfolio management. We re-examine the performance of some optimized

portfolios relative to the naively diversified portfolio (allocating equal weights to all as-

sets). There is an ongoing discussion on the value of mean-variance optimization of

portfolios. A study in 2009 found that none of the examined optimized portfolios outper-

formed the naive strategy with statistically significant margins. Later, several financial

researchers have claimed to defend mean-variance optimization. However, their methods

for measuring performance did not account for the possibility that the superior perfor-

mance could be attributed to some established risk factors.

We expand the literature by accounting for three well known factors when measuring

the performance of some optimization strategies. Additionally, we test the strategies on

Norwegian datasets, to see if they work in Norway. Our results show that the optimized

portfolios do indeed outperform the naively diversified portfolio before accounting for

the risk factors. After accounting for the risk factors however, we find little evidence of

superior performance. The results on the Norwegian data show that these strategies do

not work in Norway.

Portfolio management is closely related to international trends and globalization. Since

the introduction of computers and internet, the financial markets have become more

connected and have greater impact on each other. For example, the Norwegian stock

exchange is highly correlated with the stock exchanges in the US, in Europe, and in

Asia. We also saw how the problems of some economies led to a worldwide financial

crisis. Information about the markets are now easily available for the investors anywhere

in the world and trades happen instantly. Portfolio managers should take international

factors into account when picking stock for their portfolio. The demand from private

investors for the opportunity of investing in certain technologies or companies located in

other countries is huge. Institutions providing broker services must adapt to comply with

these demands, and to do so they need a team of portfolio managers and others with

international understanding.
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The competition in financial market has grown considerably. Norwegian stock brokers

and banks now compete with international institutions and must be innovative to hold on

to their customer base and acquire new customers. As a part of this competition, portfolio

managers have an increased incentive to provide higher returns than the passive market

portfolio. It is therefore essential to find the optimal methods of portfolio selection, so

that the return on the portfolio is as high as possible. Many private investors put their

money in a passive fund, that follow some market index. The goal for portfolio managers

should therefore be to convince customers that they can beat the market, by managing

their portfolios using methods that have scientific evidence for superior performance.

Investors rely on portfolio managers to take good care of their invested money. They

trust that the portfolio managers will accommodate the statements in the portfolio prospec-

tus and not make exceedingly risky investments. The portfolio managers must therefore

invest responsibly. They should also contribute to effective and well-functioning markets

by following international standards for responsible ownership. The portfolio managers

have the responsibility to perform ethical investments and counteract corruption, child

labor, human rights violations etc. In addition, environmental issues have become impor-

tant for investors, and should be accounted for.
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Appendix B Reflection note of Erik

In this thesis, we have tested the performance of some optimized portfolios compared to

the naive strategy using out-of-sample testing. We have performed a re-examination of

these optimized portfolio strategies by testing for both US and Norwegian data. Most of

the time-period for US datasets are tested in similar prior studies, but by adding newer

data, we seek to find evidence whether former conclusions still hold. By testing these

strategies using Norwegian datasets, we seek to discover if the conclusions found on the

US data, will apply to the Norwegian as well. It is argued that prior studies may not

find a true evidence due to only using the Sharpe ratio as performance measurement. By

implementing the portfolio alpha as a performance measurement alongside the Sharpe

ratio.

Our thesis has contributed research of the financial sector by examining more recent

data, include data from the Norwegian market, and by adding Alpha to the Sharpe

ratio as performance measure when concluding our research. After implementing several

risk-factors, we found that for the Norwegian datasets, the optimized strategies do not

outperform the naive diversification strategy. Regarding the US datasets, we found that

the näıve strategy out-perform three of four optimized strategies. The optimized strategy,

Global Minimum Variance out-perform näıve, though we consider this may be because

transaction costs are not accounted for. According to these results, we conclude that

there is little evidence of the optimized out-performing the näıve strategy.

The professional background-material provided by the University of Agder have been

essential for us being able to carry out and complete this thesis. Primarily this thesis is

a product of lectures given in econometrics, methodology, and finance theory.

The topic of optimizing portfolio strategies can be related to internationalization be-

cause it can be applied to all capital market indices, like e.g the NASDAQ, AMEX, OSE

etc. We live in a time where communication rarely is a problem, which have been a

depending factor in making portfolio strategies a well-known and well-discussed subject

world-wide. Today, financial markets across borders are more than ever, connected and
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dependent of each other. We have already seen how the financial catastrophe in the US

in 2008 affected other financial markets world-wide. Different indices can often be highly

correlated, and little suggest that the correlation will decrease in any near future. Due to

instant sharing through social media, public stock-information is available to all. Because

trading often can be done instantly, portfolio managers should consider more possible

factors when investing in stocks and developing portfolios.

Though our study is a re-examination, we consider some of our work to be innovative.

Though the topic of comparing the naive diversification strategy to optimized portfolio

strategies has been part of a number of financial studies later years, we still consider it

innovative due to the implementation and testing using Norwegian data. Also, in contrast

to some of the prior studies, we implement alpha as a performance measurement as we

believe our conclusions may be more reliable than conclusions depending only on the

Sharpe ratios. Later years, more and more people in Norway have started investing in

passive funds, rather than collecting their money in a risk-free saving account. By doing

so, they ”force” the portfolio managers to try convincing the costumers that they are able

to gain a higher return than the index funds or else they lose their customers. The goal

has to be more innovative than others and by maximizing the return at lowest possible

risk.

This topic can be related to responsibility due to how portfolio managers should act

when investing. By investing and managing other peoples money, portfolio managers

can be prohibited from investing in stocks which have any connection to war, drugs or

other actions which would seem unethical. Another thing which relate investments to

responsibility, is that portfolio managers handling others money should not invest others

money in assets that are have an unreasonably high risk.
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