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Preface

This thesis concludes our Master of Science (M.Sc.) in Business Administration at the

University of Agder. The goal of the thesis is to thoroughly investigate the performance of

stock market timing using strategies based on moving averages and time-series momentum.

We aim to do so by testing different strategies on data of the US stock market in the

historical period from 1928 to the end of 2015. Inspired by the many academic papers

encountered in the completion of our time as students, we have tried to structure this

thesis as closely to a publishable academic article as possible. Finally we would like to

give a special thanks to our supervisor Valeriy Zakamulin for giving guidance, constructive

feedback and support whenever needed.
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Abstract

In this thesis we investigate the performance of moving average and momentum
strategies by simulating returns, both in-sample and out-of-sample, while simultane-
ously taking into account important market frictions. We do so for two stock indices
and four stock portfolios, at daily and monthly frequency, in the period from 1928 to
2015. This is carried out in order to examine if the active strategies outperform the pas-
sive benchmark on a risk-adjusted basis, and to see if the trading rules profitable when
tested in-sample also are profitable out-of-sample. In addition, and for the first time, we
examine the relevance of data frequencies in out-of-sample testing. A stationary block
bootstrap methodology is adopted in order to evaluate the statistical significance of
the risk-adjusted performance, measured by the Sharpe ratio. We find that in-sample
profitable trading rules perform poorly when tested out-of-sample. However, we are
able to find statistically significant outperformance when trading in small-cap stocks;
yet, the outperformance disappeared in recent past. Moreover, we investigate how the
performance depends on the split point between the in- and out-of-sample period and
the length of the in-sample period. We find that the performance of an out-of-sample
test highly depends on the choice of split point as well as in-sample period length. Con-
sequently, the out-of-sample testing procedure is not a complete remedy for the “data
mining bias”. Finally, we are not able to find conclusive evidence suggesting any benefit
of trading more frequently.

Key words: technical analysis, market timing, moving averages, time-series mo-
mentum, out-of-sample simulations, trading frequency
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1 Introduction

Technical analysis represents a set of techniques for analyzing past prices (and volumes) in

order to predict future price movements by discovering trends or reoccurring patterns. The

methodology of technical analysis implicitly assumes that asset prices are predictable and

investors can exploit and profit from the price information. In principle, there exist two

branches of technical analysis. A quantitative form, where the “technician” typically trades

using computerized technical trading systems, and a qualitative form, where the analyst use

visual charts and inductive reasoning to form an opinion about future movements (Menkhoff

and Taylor, 2007) .

Modern technical analysis and numerous technical trading rules can be traced back to

the Dow Theory in the early 1900s, named after the long-time editor of The Wall Street

Journal Charles Henry Dow. The theory was mainly developed after the death of Charles

Dow by his successor William Peter Hamilton1, and later made popular by Robert Rhea

(1932) in his influential book “The Dow Theory”. The Dow Theory, which is largely based

of Dow’s editorials, aims to identify long-term trends and predictable patterns in the stock

market (Bodie, Kane, and Marcus, 2011, p. 394). Alfred Cowles (1933) was perhaps the first

to quantify and test the Dow Theory, and his empirical study is considered significant in

the early development of the Efficient Market Hypothesis (Brown, Goetzmann, and Kumar,

1998). Using the trading signals2 obtained from Hamilton’s editorials in the Wall Street

Journal from 1904 to 1929, Cowles (1933) simulated returns to the active “Dow strategy”

and compared it to a strategy based on investing 100% in the stock market. Cowles (1933)

concluded that the Dow strategy performed worse then the passive strategy. Practitioners

and academics have since debated the usefulness of the Dow Theory and technical analysis

in general.

Technical analysis have historically mostly been used by practitioners, particularly in

FOREX markets. For example, Menkhoff and Taylor (2007) find that almost all foreign

exchange professionals use technical analysis to some degree. In fact, technical analysis

is generally considered profitable in commodity and FOREX markets (See for example

Zakamulin (2017)). In contrast to practitioners, academics tend to be skeptical about the

1See “The Stock Market Barometer” by William P. Hamilton (1922)
2The trading signals given by Hamilton was either “Bullish”, “Bearish”, or “Neutral/doubtful”.
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usefulness of technical analysis, and many consider it closer to art then science (see Park and

Irwin (2007)). However, in recent decades, this sentiment has changed and the literature on

technical analysis has experienced a renaissance. According to Park and Irwin (2007), the

change in attitude can be linked in part to the availability of electronic databases and cheap

computer power, and in part to the publication of numerous academic papers. In fact, a

stream of recently published papers3 have documented that trading based on simple moving

average and momentum rules would have protected investors against the turbulent financial

markets throughout the 2000s. Furthermore, the majority of these studies document that

the active strategies outperforms the passive buy-and-hold strategy. Still, the results of

these studies are varied and depend on a large number of variables including: trading rules,

look-back period, sample period, statistical tests, asset class, simulation method etc. In

practice, this leaves the researcher with an endless combination of parameters, which in

turn raises a legitimate concern about the potential of “data mining bias” in the reported

results.

The “data mining bias”4 is a well known and important problem in financial studies.

The fallacy can be explained as follows: When searching for outperformance, and at the

same time being faced with a great number of possible combinations of parameters, one

often end up reporting the optimal combination, yielding the best performance. But as

the performance is given part by the true performance and part by a random component,

chances are that the reported combination of parameters greatly benefits from the random

component. In turn, this may lead to systematic overestimation of performance, and re-

ported outperformance can exist entirely due to luck. The data mining bias is therefore

known as an upward bias occurring when the same dataset is used over and over for the

purpose of model selection. Even though the fallacy is regularly committed in the liter-

ature, the bias is by no means a new phenomenon. In fact, Jensen (1967) warned about

the potential dangers of “mining” the data back in the late 1960s5. Despite being a widely

recognized problem in financial studies, very few seem to adequately adjust for the bias.

Peculiarly, only a minority of the studies on technical trading in the stock market use out-

3See for example Faber (2007), Metghalchi, Marcucci, and Chang (2012), Kilgallen (2012), Moskowitz,
Ooi, and Pedersen (2012), Pätäri and Vilska (2014), and Glabadanidis (2016)

4“Data mining” is also known as “data snooping” and “selection bias”.
5A further discussion on “data mining bias” will be given in Section 3. For an in-depth analysis of the

problematic effects see Lo and MacKinlay (1990).
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of-sample tests to obtain unbiased estimates of the performance (see for example Sullivan,

Timmermann, and White (1999) and Zakamulin (2014, 2015)).

In this thesis, our goal is to remedy this issue and extend the existing literature by

implementing the following seven extensions.

First, in addition to testing the profitability of the active strategies using an in-sample

test, we also perform an out-of-sample test in order to obtain an unbiased and realistic esti-

mate of the profitability. Furthermore, when carrying out an out-of-sample test, the “data

window” is either rolled or expanded through time depending on assumptions regarding

market dynamics. Many traders believe that there exist one optimal and time invariant

trading rule. For example, Faber (2007) finds that the 10-month Simple Moving Average

(SMA) outperforms the S&P 500 over a period of 100 years. If we assume that the best

trading rule is time invariant, we would expect to see superior performance for the expand-

ing estimation scheme. However, if we suspect parameter instability and changing market

dynamics, the rolling estimation scheme is preferred. Both estimation methods will be used

in this thesis.

Second, in our study we utilize two stock indicies and four stock portfolios at daily and

monthly frequency that spans 88 years starting in January 1928 and ending in December

2015. First, we examine profitability for the S&P Composite xndex and the DJIA index.

Second, in order to see if the results persist for portfolios with different characteristics, we

examine profitability for value stocks, growth stocks, small stocks and large stocks.

Our third extension can be explained as follows. Numerous studies6 in the literature

on market timing do not adequately adjust for important market frictions. This can have

unfortunate implications. Since the reported results overstates the true profitability, the

reader is left with the impression that market timing is more profitable then what can be

achieved in practice. Consequently, in order to obtain a realistic estimate of the real-life

performance, we take into account the transaction costs incurring each time the active

strategy switches.

Our fourth extension is motivated by the following question. Is there any benefit of

trading more frequently? Intuitively, daily data provide more information then monthly

6E.g. Brock, Lakonishok, and LeBaron (1992), Glabadanidis (2016), Sullivan et al. (1999) and Gwilym,
Clare, Seaton, and Thomas (2010)
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data. Thus, a trader could potentially profit from the additional information. However,

this advantage may be reversed if the profits from additional trading are offset by the

added transaction costs. To our knowledge, there is only one paper to date that explicitly

investigate the relevance of data frequencies in stock markets. Specifically, using in-sample

testing, Clare, Seaton, Smith, and Thomas (2013) found that trading based on monthly

data is superior compared to daily data when the underlying passive benchmark is the S&P

500 index.

Fifth, in previous studies researchers typically use a simple parametric test for statistical

evaluation, despite the well known distributional characteristics of stock returns. With this

in mind, we adopt a stationary block bootstrap methodology to evaluate the statistical

significance of the risk-adjusted returns, measured by the Sharpe ratio, without making any

distributional assumptions. In addition, the active strategies are further evaluated using

the alpha of the Fama-French-Carhart (1997) 4-factor model. A bootstrap method is used

to determine the statistical significance of the alpha.

Our sixth extension is motivated by the study by Zakamulin (2014) who documents

that the performance of an out-of-sample test depends on the split point between the initial

in-sample and out-of-sample period. This has an important implication. Since the perfor-

mance is sensitive to the placement of the split point, the out-of-sample testing procedure

is not free of “data mining” issues. We further investigate this characteristic and extends

Zakamulin (2014)’s study by examining the dependence of split point for all datasets uti-

lized in our study at both daily and monthly frequency. Additionally, we also examine how

the performance depends on the length of the in-sample period.

Finally, our seventh extension is related to the choice of trading rule. In our study

we use the time-series Momentum rule (MOM), the Moving Average Crossover (MAC)

rule and the Moving Average Envelope (MAE) rule. In previous studies, the researchers

usually only report the performance of each trading rule individually. However, in a real

life setting, a trader can at each point in time analyze the performance of several rules and

adjust accordingly. Thus, in addition to reporting the performance of each trading rule

individually, we also report the performance of a combination (COMBI) rule where at each

period the strategy chooses the best performing trading rule among all three rules. This

allows us to examine if the combination rule outperforms the individual rules, and if a single
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trading rule consistently outperforms the other rules.

Our study makes several contributions to the existing literature and the results can

be summarized as follows. First, our results generally reveal lower volatility and mean

return for all trend following strategies. This result is by no means surprising since the

active strategies holds the risk-free asset approximately 30% of the time. In fact, this

characteristic of moving average and momentum strategies is heavily documented in the

existing literature (see e.g. Faber (2007), Moskowitz et al. (2012) and Zakamulin (2015)).

Furthermore, while most trading rules are able to avoid the largest negative returns, they

are equivalently not able to capture the largest positive returns.

Second, in consensus with Sullivan et al. (1999), our empirical analysis reveal that

statistically profitable trading rules discovered in-sample perform poorly when tested out-

of-sample. Specifically, when the underlying benchmark is the S&P Composite and the

DJIA index, we are not able to find any trading rule out-of-sample with statistical significant

outperformance. However, we find that the technical trading rules perform slightly better on

the S&P Composite compared to the DJIA index. Interestingly, when the underlying asset

is small-cap stocks, we find evidence from the out-of-sample test of statistically significant

outperformance for both daily and monthly data in the period 1960 to 2000. In fact, and

contrary to the results on the other stock indices, we find that trading using daily data has

performed significantly better then trading using monthly data. However, the performance

has deteriorated significantly over the past two decades, and we no longer see statistically

significant outperformance for neither daily, nor monthly data. We further find that daily

trading no longer perform superior to monthly, even showing underperformance over the

past 10 years.

Third, contrary to the findings of Clare et al. (2013), we are not able to find conclusive

evidence suggesting that high frequency data (e.g. daily) deteriorates performance when

the underlying asset is the S&P Composite index. However, by simulating each trading

rule individually, we generally find that the Moving Average Envelope (MAE) rule per-

forms best for daily data. In turn, this leads us to believe that the “percentage band”

protects the trader against “whipsaw” trading, and thus preventing excessive accumulation

of transaction cost for daily data.

Finally, and similar to Zakamulin (2014), we find that the performance of the active
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strategies is highly uneven over time for all datasets examined. Two implications follow.

First, the performance of the active strategy is highly dependent on the choice of sample

period and split point, and second, the out-of-sample testing procedure is not a complete

remedy for the “data mining bias”.

The rest of the thesis is structured as follows. Section 2 explores relevant literature

on technical analysis and market timing from 1960 to 2014. In Section 3 we outline the

methodology for in-sample and out-of-sample tests, trading rules, and statistical tests. Sec-

tion 4 presents and describes the data used in our study. Section 5 reports the results of

the empirical tests. In Section 6 we discuss the findings and relevant implications. Finally,

Section 7 concludes and summarizes the thesis.

2 Literature Review

This section reviews previous literature on technical analysis and active trading strategies

with particular emphasis on the profitability of momentum and moving average rules. Sim-

ilar to Park and Irwin (2007), we divide the literature into Early Studies: 1960 - 1987, and

Modern Studies: 1988 - 20147. The motivation for the split point is threefold. First, many

of the earlier studies do not conduct a statistical test, which in turn makes it difficult to

assess the validity of the empirical findings. Second, many of the studies conducted in the

late 1980s and forward significantly improve upon earlier studies in numerous ways. And

third, a majority of the literature on technical analysis was published after the mid 1990s

(Park and Irwin, 2007).

2.1 Early Studies: 1960 - 1987

In the early 1960s, Alexander (1961) began to develop filter rules in order to forecast market

trends. A strategy based on filters generates a buy (sell) signal when the asset has increased

(decreased), with a given percentage, from its recent low (high). Alexander tested his filter

strategy on the S&P Composite index from 1929 to 1959 and DJIA index from 1897 to 1929,

and concluded that a move in stock prices tends to persist once initiated. This result sparked

an interest in the academia. Mandelbrot (1963) argued that the methodology applied by

7Extending the reviewed literature by 10 years
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Alexander (1961) was flawed and could not be implemented in a realistic setting. Alexander

(1964) corrected his calculation, and when adjusting for transaction cost, the trading profits

disappeared.

Perhaps the most influential study categorized in the early studies is the seminal paper

by Fama and Blume (1966), who applied Alexander’s filter rules to individual stocks on

DJIA from 1956 to 1962. They concluded that the filter rules would most likely be inferior

to the buy-and-hold strategy when transaction costs and other fees were accounted for.

To forecast prices, Levy (1967) used a different approach termed “relative strength”. In

principle, a relative strength rule is based on buying assets that have performed relatively

well previously. Using relative strength rules on stocks listed on NYSE from 1960 to 1965,

Levy (1967) found evidence of superior performance, but concluded that the results were

tentative due to the lack of statistical tests. Jensen and Benington (1970) extensively tested

and replicated Levy’s rules using stocks listed on NYSE in the period from 1926 to 1966.

The authors divided the sample into seven 5-year sub-samples, where the final sub-sample

was the same period as Levy (1967). After adjusting for risk and transaction cost, they

argued that the rules based on relative strength did not yield significant profits greater then

the buy-and-hold policy.

In the late 1960s, Van Horne and Parker (1967, 1968) published two papers investigating

the profitability of moving average trading strategies and the validity of the random walk

hypothesis. Using 30 stocks listed on the NYSE from January 1960 to June 1966 the

authors calculated and tested the 100, 150 and 200 days moving average. By comparing

the profits generated by the active strategies to the buy-and-hold strategy, the authors

concluded that technical trading rules are not as profitable as the buy-and-hold strategy.

However, the authors did not account for risk and only reported the amount of dollar each

strategy generated.

Around the same time, James (1968) also investigated the random walk hypothesis

using moving average strategies. The author generated returns using moving averages

with different lengths and weights on stocks listed on NYSE in the period from 1926 to

1960. Using a simple parametric t-test for statistical evaluation, James (1968) concluded

that the simple buy-and-hold strategy generally outperformed the moving average trading

rules. However, similar to Van Horne and Parker (1967, 1968), the author only measured
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outperformance by dollar amount and did not account for risk. Thus, it is unclear how the

trading rules performed adjusted for risk.

By the time the influential articles by Samuelson (1965) and Fama (1970) reached the

mainstream, the Efficient Market Hypothesis became the leading paradigm in finance. As a

consequence, very few studies on technical analysis were published in the 1970s and 1980s.

2.2 Modern Studies: 1988 - 2014

Similar to Park and Irwin (2007), we start the first modern study with the paper by Lukac,

Brorsen, and Irwin (1988). This study is perhaps one of the first papers on technical analysis

to implement an out-of-sample test, a statistical significance test, and adjusting for risk and

market frictions. Specifically, the study use 12 different trading systems on a portfolio

of 12 different futures markets in the period from 1978 to 1984. Using Jensen’s alpha to

estimate significant risk adjusted profits, Lukac et al. (1988) discovered that 4 out of 12

trading systems produce statistical significant positive net returns. Following up on their

previous study, Lukac and Brorsen (1990) extended the study by using 23 trading systems

on a longer sample for 30 futures markets. This time 7 out of 23 trading systems produced

statistically significant net returns greater then zero.

Perhaps the most influential paper categorized in the modern studies is the paper by

Brock et al. (1992). The authors applied 26 trading rules based on moving averages and

trading range breaks to the DJIA from 1897 to 1986. By considering the well-known distri-

butional characteristics of financial time series, the authors utilized a model-based bootstrap

to validate the results. Brock et al. (1992) found that all trading rules considered had pre-

dictive power and generated significant profits. However, the deficiencies of this study are

only simulating returns in-sample and not accounting for transaction costs. Using the same

trading rules as Brock et al. (1992), Bessembinder and Chan (1998) tested for significant

profits on DJIA from 1926 to 1991. A break-even transaction cost over the full sample was

calculated to be 0.39%, suggesting that net returns from the study by Brock et al. (1992)

were no longer significant (Park and Irwin, 2007).

Sullivan et al. (1999) used the same dataset and sample period for the in-sample test as

Brock et al. (1992). In addition, the authors extended the sample by 10 years for an out-

of-sample test. The full sample was divided into 5 sub-periods and the number of trading
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rules was extended to almost 8000. In addition, White’s (2000) Reality Check bootstrap

methodology was utilized to assess the degree of “data mining” from the back-test. The

empirical findings were particularly compelling for two reasons. First, they were able to

find similar statistical significant profits as Brock et al. (1992). And second, using White’s

Reality Check, the results were documented to be free of “data mining”. However, Sullivan

et al. (1999) were not able to find superior performance when the best trading rule was

validated out-of-sample from 1987 to 1997. It should be noted that the out-of-sample period

was a bull market and market timing rules generally underperform during bull markets.

More recently, Faber (2007) demonstrated that a simple moving average strategy applied

to broad asset class indices would have produced superior performance compared to the buy-

and-hold strategy. Specifically, Faber (2007) documented that a 10-month simple moving

average strategy applied to the S&P 500 over a period of 100 years yielded higher annual

returns and lower volatility, resulting in improved risk adjusted performance. Even though

the author reported compelling and positive results, a number of weaknesses emerge. The

author acknowledges that the 10-month SMA rule was chosen due to its known performance

and the results were only simulated in-sample. In turn, this raises a legitimate “data mining”

concern. In addition, the author did not account for transaction cost and no statistical test

was conducted in order to assess the statistical significance of the results.

Gwilym et al. (2010) extended the study by Faber (2007) by simulating trading in-sample

based on momentum and moving average rules on international equity markets. The authors

reported statistically significant profits for the momentum rule, but did not account for

transaction costs. However, the authors observed that the trading profit decreased towards

the end of the sample. Additionally, Gwilym et al. (2010) confirmed the empirical results

by Faber (2007), and reported superior risk adjusted performance for the moving average

rule when compared to the buy-and-hold strategy.

Moskowitz et al. (2012) studied the effect of time-series momentum8 across 58 futures

contracts, in the period from 1985 to 2009, for major asset classes including equity mar-

kets, bond markets, currency markets and commodities markets. The authors were able

to document a consistent and significant time series momentum effect across every asset

8It should be noted that “time-series momentum” is related but not the same as the cross-sectional
“momentum” effect documented by Jegadeesh and Titman (1993) in the financial literature.
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class examined. More precisely, Moskowitz et al. (2012) found that returns in the last 12

months was a positive predictor for future returns. The momentum effect was documented

to persist for approximately one year before it partially reversed.

Kilgallen (2012) replicated the influential study by Faber (2007) with some modification.

Specifically, instead of focusing on broad asset class indices, Kilgallen (2012) simulated

the same strategies separately on individual assets. The author documented consistent

lower volatility and higher annual returns for all individual assets examined. In fact, the

volatility of the simple moving average strategy for individual currencies, equity indices

and commodities was on average reported to be 27% lower then the passive benchmark.

However, results are only simulated in-sample, and no statistical tests were conducted to

validate the significance of the results.

Clare et al. (2013) and Hachemian, Tavernier, and Van Royen (2013) studied the effect of

data frequencies on trend following strategies. Clare et al. (2013) documented that monthly

trading on the S&P 500 index were superior to daily trading. Similarly, using daily and

weekly data on 39 futures markets across 5 asset classes, Hachemian et al. (2013) were not

able to find any significant advantage of using daily data.

In contrast to a majority of the modern studies, Zakamulin (2014) provided a more

skeptical view of the superior performance of market timing strategies. The author utilized

an out-of-sample test in order to assess the real-life performance of two popular market

timing strategies. Two stock market indices and two bond market indices over a period of 87

years were used to evaluate if (1) the strategies performed over time, and (2) the performance

was robust for different asset classes. Two results stand out. First, the empirical findings

cast doubts on the results of previous research. Specifically, none of the active strategies

statistically significantly outperformed the passive benchmark. And secondly, the empirical

performance of market timing strategies was highly non-uniform. The significance of the

latter is particularly important for investors with shorter investment horizons.

In summary, no general consensus can be found with respect to the profitability of market

timing strategies based on moving averages and momentum rules. While the majority

of the modern studies show positive and significant profits, particularly in currency and

commodity markets, some deficiencies tend to persists. Specifically, many of the reviewed

studies only test the trading rules in-sample without acknowledging or correcting for “data
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mining bias”. Furthermore, several studies do not account for important market frictions

like transaction costs. In turn, these persisting deficiencies makes it hard to assess the real-

life profitability and applicability of the examined trading rules. Our main goal is to extend

the existing literature on market timing by taking into account important market frictions

and correcting for “data mining bias”. Thus, we aim to provide an unbiased estimate of

the risk-adjusted returns generated by momentum and moving average trading rules in a

fashion that emulates real-life trading.

3 Methodology

3.1 Market Timing Rules and Moving Averages

A core principle among practitioners of technical analysis is that prices move in trends and

that the trends can be uncovered in a timely manner. Thus, by identifying and “riding”

a trend, traders can potentially profit from the subsequent price movement. In general,

a simple trend following strategy can be implemented by buying (selling) assets that are

trending upward (downward). However, due to price fluctuations, the simple concept of

trend following can be difficult to implement in practice. In order to identify trends and

filter out the noise from large price fluctuations, a trader can implement moving averages

to “smooth” the price series.

3.1.1 Moving Averages

Moving averages are considered one of the simplest and most common ways to detect an

underlying trend (Brock et al., 1992). Let Pt be the closing price of a given asset at time

t. Note that the closing price is not adjusted for dividends. The general weighted moving

average is computed as follows:

MAt(k) =
wtPt + wt−1Pt−1 . . .+ wt−kPt−k

wt + wt−1 + . . .+ wt−k
=

∑k
j=0wt−jPt−j∑k
j=0wt−j

, (1)

where wt is the weight of price Pt, and MAt(k) is the general weighted moving average at

time t of the last k observed prices.

There exist many types of moving average weighting schemes. The most common type
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of moving average is the Simple Moving Average (SMA) where each price observation is

equally weighted. Many investors hold a belief that recent price observations contain more

meaningful information about the future direction of the asset. In order to benefit from

this idea the SMA can be substituted by the Linear Moving Average (LMA) where the

weight of each price decreases in arithmetic sequence (Zakamulin, 2017). Following the

same reasoning, investors can alternatively use the Exponential Moving Average (EMA) if

they think the arithmetic weighting-scheme in the LMA is too rigid. As the name suggests,

the price observations in EMA are weighted exponentially.

If the assumption that recent price information contains more relevant information is

valid, one should expect the LMA and EMA to produce superior trading results compared

to the simpler SMA. However, a recent empirical study by Zakamulin (2017) discovered that

in many cases the SMA outperformed the LMA and EMA when tested on S&P 500. The

author argues that in principle the choice of moving average is trivial in a practical sense.

In fact, one could argue that the simplicity and understandability of the SMA makes it

superior as a moving average compared to LMA and EMA. As a consequence, and in order

to reduce the dimensionality of the thesis, only the SMA will be employed in the empirical

analysis. The Simple Moving Average at time t of the last k observed prices are calculated

as

SMAt(k) =
1

k + 1

k∑
j=0

Pt−j . (2)

3.1.2 Trading Rules

In this thesis, we employ several technical trading rules based on Momentum (MOM) and

Moving Averages. The MOM rule constitutes one of the most basic market timing rules

and is based on the assumption that prices that have increased in the last period, will

continue to increase in the next period. Specifically, a Buy (Sell) signal is generated when

the last closing price Pt are greater (less) then the closing price t − k periods ago, Pt−k.

The technical indicator for the k-month MOM rule at time t are computed according to:

Momentum rule: Indicator
MOM(k)
t = Pt − Pt−k. (3)
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The simplest and most popular trading rule based on moving averages is the simple

moving average (P-MA) rule. In principle, the direction of a trend can be detected by

comparing the value of the moving average MAt to the last closing price Pt. Specifically,

prices are trending upward when MAt < Pt and downward when MAt > Pt. Thus, a Buy

(Sell) signal is generated when the value of the moving average is less (greater) then the

price. The technical indicator for the P-MA rule at time t is computed as

Price minus Moving Average rule: Indicator
P−MA(k)
t = Pt −MAt(k), (4)

where k denotes the averaging window and MA denotes the moving average.

However, as demonstrated by Zakamulin (2017), one of the major problems of the simple

market timing rules are the false signals created by price fluctuations, known as “whipsaws”.

Specifically, when prices trend sideways, strategies based on simple market timing rules tend

to produce many false signals which in turn lead to excessive accumulation of transaction

costs. In order to avoid unnecessary trades caused by “whipsaws”, a trader can alternatively

use the Moving Average Crossover (MAC) rule and the Moving Average Envelope (MAE)

rule.

The MAC rule consist of a shorter and a longer averaging window where a Buy (Sell)

signal is generated when the shorter averaging window crosses above (below) the longer

averaging window. The indicator for the MAC rule at time t is given by

Moving Average Crossover rule: Indicator
MAC(s,l)
t = MAt(s)−MAt(l), (5)

where s and l in the MAC rule denotes the size of the shorter (fast) and longer (slow) av-

eraging window respectively. It is worth emphasizing that when the slow averaging window

is set to one, the MAC rule becomes the P-MA rule.

The MAE rule is somewhat different in nature and consists of an upper and lower

boundary forming an envelope around the moving average. Specifically, no trading takes

place as long as the price of the risky asset is within the upper and lower bound. In turn,

a Buy (Sell) signal is produced when the price crosses the upper (lower) boundary. The
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upper and lower boundaries are computed according to:

Lt = MAt(n)× (1− p), Ut = MAt(n)× (1 + p), (6)

where the p in the MAE rule denotes, in terms of percentage, the distance from the moving

average to the upper and lower boundary.

The MOM, MAC and MAE rule will all be used in the empirical part of this thesis9.

The commonality for all trading rules employed in our study is a move to the risky asset (or

stay invested in the risky asset) when a Buy signal is generated, and a move to the risk-free

asset (or stay invested in the risk-free asset) if a Sell signal is generated. The trading signal

for the MAC and MOM rule at time t+ 1 can formally be expressed as:

Signalt+1 =


Buy, if Indicatort > 0,

Sell, if Indicatort ≤ 0.

(7)

Finally, the trading signal for the MAE rule at time t + 1 can be computed according to

following rule:

Signalt+1 =


Buy, if Pt > Ut,

Sell, if Pt < Lt,

Signalt, if Lt ≤ Pt ≤ Ut.

(8)

3.1.3 Accounting for Transaction Costs

For a more realistic approach we need to account for the transaction costs incurring each

time the active strategy switches. According to Zakamulin (2014), transaction costs con-

sists of three main components: half-size of the quoted bid-ask spread, market impact cost,

and commissions or brokerage fees10. However, the main components can vary significantly

depending on numerous factors like: the size of the investor, volatility in the market, and

liquidity of the asset. For example, large companies (large-cap) are considered more liquid

then small companies (small-cap) and thus are facing a smaller bid-ask spread. Conse-

9Note that since the slow avering window for the MAC rule starts at 1, the P-MA rule is also included
in the study.

10Other costs include: taxes and opportunity costs (Freyre-Sanders, Guobuzaite, and Byrne, 2004)
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quently, some simplifications has to be made in order to model realistic transaction cost. In

particular, we assume that transaction costs for the risky asset are proportional to the vol-

ume of trade. For the entirety of the thesis we assume an average one-way transaction cost

of 0.25%. This is consistent with the findings by Chan and Lakonishok (1993) and Knez and

Ready (1996), among others. The US Treasury Bill, particularly with shorter maturities (1-

3 months), is considered highly liquid and with practically zero bid-ask spread (Zakamulin,

2017). We therefore assume that buying and selling the risk-free asset is costless.

Let (R1, R2, ..., RT ) be the observed daily (monthly) total returns on the risky asset,

and let (rf1, rf2, ..., rfT ) be the daily (monthly) returns on the risk-free asset proxied by the

US Treasury Bill over the full sample period [1, T ]. The average one-way transaction cost

is given by τ . The post-transaction cost returns of the market timing strategy rt can thus

be expressed by:

rt =



Rt, if (Signalt = Buy) and (Signalt−1 = Buy)

Rt − τ, if (Signalt = Buy) and (Signalt−1 = Sell)

rft, if (Signalt = Sell) and (Signalt−1 = Sell)

rft − τ, if (Signalt = Sell) and (Signalt−1 = Buy)

(9)

An alternative approach to this strategy is to sell short the risky asset when a Sell signal is

generated. This will potentially allow the investor to earn profits from the short sale and

simultaneously obtaining downside protection. While attractive and good in principle, the

performance of this approach hinges on the strategy’s ability to timely predict both upward

and downward trends. This vulnerability makes the short selling strategy inherently more

risky and results of empirical studies conducted by Zakamulin (2017) reveal that short

selling substantially deteriorates performance. As a consequence, selling short the risky

asset is restricted.

3.2 Testing the Profitability of Trading Rules

In our thesis, we employ two commonly used tests in the financial literature to evaluate the

performance of market timing strategies. The back-test, commonly known as an in-sample
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test, and the forward-test, referred to as an out-of-sample test. Both will be presented in

the following subsections.

3.2.1 Back-Testing (In-Sample)

A back-test constitutes a simulation technique in which a trader (or researcher) simulates

how a strategy would have performed during a specific historical time period. A major

benefit of a back-test, in contrast to the forward-test, is the possibility to utilize the full

historical sample. However, the process of testing many different strategies and selecting

the best performing trading rule is called “data mining”. Zakamulin (2017) defines “data

mining” as “the process of finding the best rule among a great number of alternative rules”.

By “mining” the data and finding the best trading rule, the performance of the trading rule

will be biased upward. This upward bias increases the probability of Type 1 error (false

positive) and is commonly referred to as the “data mining bias”. In order to understand

why the bias occurs one has to recognize that the observed performance consist of two parts:

the true performance and a random component. Thus, when a dataset is re-used several

times with the purpose of selecting a trading rule, there is always a possibility that the best

performing trading rule appeared due to chance alone and not superior performance. By

“mining” the data, we tend to find the trading rule benefitting the most from the random

component in the observed performance. It is possible to correct the “data-mining” problem

from an in-sample test by adjusting the p-value of the test (see for example White (2000)).

Alternatively, a common practice to mitigate “data mining bias” is to discount the reported

Sharpe Ratios by 50% (Harvey and Liu, 2015).

3.2.2 Forward-Testing (Out-of-Sample)

Motivated by the discussion about the “data mining bias”, the rationale behind the forward-

test is simple. Since the in-sample test systematically overstates the performance of the best

observed trading rule, we need an additional segment of data to validate the trading rule.

The out-of-sample performance method applied in this study is based on simulating returns

in a way that resembles real-life trading. In contrast to the in-sample test, the out-of-

sample performance is considered to be a more reliable estimate of the true performance

(Zakamulin, 2015). We follow closely the exposition provided in Zakamulin (2014). For
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simplicity we shorten the exposition by outlining the methodology for the MOM(k) trading

rule.

The procedure for the out-of-sample test starts with splitting the historical sample into

two subsets. The first subset is denoted by in-sample [1, s] and the second subset is denoted

by out-of-sample [s + 1, T ]. Where T denotes the final observation in the sample and s

denotes the split point. The in-sample period (or the first subset) is used to find the best

trading rule given some predetermined performance measure. The best trading rule is

subsequently evaluated on the second subset (or the out-of-sample data).

In principle there are two alternative approaches to perform an out-of-sample test. The

first approach is to use a rolling estimation scheme, where the size of the initial in-sample

period is constant and rolled forward. If this estimation scheme is selected one usually

assumes that the markets (and the optimal strategy) are dynamic and not constant through

time. The optimal lookback period k* for the market timing strategy when using the rolling

estimation scheme is given by

kt∗ = arg max
k∈[kmin, kmax]

PM(rs−n+1, rs−n+2, . . . , rs), (10)

where kmin and kmax is the minimum and maximum value of k respectively, and PM is a

performance measure representing the optimization criterion.

The second approach is an expanding estimation scheme where the size of the in-sample

subset increases with each iteration. This approach is preferable if one assumes that market

dynamics are constant through time. For example, it is widely believed that the 10-month

SMA is a superior strategy11. The optimal lookback period k* for the market timing

strategy when using the expanding estimation scheme is given by

kt∗ = arg max
k∈[kmin, kmax]

PM(r1, r2, . . . , rt). (11)

In our study, both rolling (walk-forward test) and expanding (forward test) estimation

schemes will be used to evaluate the out-of-sample performance.

The major problem in out-of-sample testing is deciding on a split point. One might think

that the split point between the initial in-sample and out-of-sample subsets can be selected

11See for example Faber (2007)
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arbitrarily, but this is not the case. In recent years, several researchers12 have demonstrated

that the choice of split point significantly alters the performance of the test. A similar

result will also be demonstrated in Section 5 of the thesis. In general, Zakamulin (2014)

argues that the market timing strategy usually outperforms (underperforms) the passive

benchmark during bear (bull) markets. This characteristic makes the outperformance of

the market timing strategy extremely non-uniform. In fact, we can easily obtain erroneous

results that do not reflect the true performance of the market timing strategy by selecting

split points before a major market crash (for example 1928, 1986, 1999, 2006). This means

that the out-of-sample performance measurement is not a complete remedy for the “data

mining bias”. As a consequence, Zakamulin (2014) argues that the initial in-sample period

should have a minimum length, and include both bull and bear markets.

In practice, there are three alternative ways to choose the split point. (1) We can choose

a split point near the end of the sample in similar fashion to Sullivan et al. (1999), (2) we

can set the split near the start of the sample like Zakamulin (2014), or (3) somewhere in

between. Motivated by the discussion above, we report the out-of-sample performance with

two different split points. First we report the performance when the split point is set to

January 1953, leaving 25 years for the initial in-sample and the remaining 63 years for the

out-of-sample period. Subsequently, we report the out-of-sample performance when the split

point is set to January 1970, leaving 42 years for the initial in-sample and the remaining

46 years for the out-of-sample period. Finally, in order to examine how the performance

depends on the choice of split point, plots reporting the performance for each possible split

point will be presented in Section 5.

3.3 Performance Measures

There is a vast world of different performance measures in the finance literature (see e.g

Cogneau and Hübner (2009)), all with different advantages and drawbacks. It may therefore

be a difficult task to choose what measure to use, and not necessarily one single solution. The

simplest measure of performance is the excess return, i.e. the return on the asset, portfolio

or strategy less the risk-free rate of return. But in itself this is not a good measure, because it

disregards risk. If risk is not a factor, the investor can borrow money to lever his portfolio

12See Rossi and Inoue (2012), Hansen and Timmermann (2013) and Zakamulin (2014)
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and achieve greater expected mean return. However, according to conventional wisdom,

investors require compensation for taking on risk. Accordingly, a risk-adjusted measure is

more appropriate. In this thesis we apply the famous, and widely used Sharpe ratio. We

also test for abnormal returns, using the alpha in the Fama-French-Carhart 4-factor asset

pricing model as a measure.

3.3.1 The Sharpe Ratio

The Sharpe ratio was first introduced by William Sharpe in 1966 (Sharpe, 1966) as the

reward-to-variability ratio. He later revisited and generalized the ratio (Sharpe, 1994) and

referred to it with its then more common name, the Sharpe ratio. The ratio is calculated

as the mean excess return of asset i over the standard deviation of excess return of asset i,

and can formally be written as:

SRi =
µ(rei )

σ(rei )
, (12)

where µ(rei ) is the mean of excess return on asset i and σ(rei ) is the standard deviation of

excess return on asset i.

Even though the Sharpe ratio is a widely used measure, it has some strong assumptions,

which in real life rarely are fulfilled. E.g. it assumes the presence of a risk-free asset, and

that one without frictions can lend and borrow unlimited amounts at its rate of return. It

is also criticized for using the standard deviation as a measure of risk, because it penalizes

upside potential in the same manner as downside risk. To cope with this issue Sortino and

Price (1994) came up with an alternative measure which only accounts for the downside

risk, namely the Sortino ratio. It should be noted that it builds on the same assumptions

as the Sharpe ratio, and apart from not including upside potential as a risk, it retains all

other weaknesses of the Sharpe ratio.

Even though there might be better, more suitable performance measures than the Sharpe

ratio, several studies (see e.g. Eling and Schuhmacher (2007), Eling (2008) and Auer (2015))

have found that the choice of performance measure does not influence the evaluation of a

variety of different risky portfolios. Zakamulin (2017) also tests how the choice of the best

performing market-timing strategies varies when using excess return, Sharpe- and Sortino

ratio, and finds rank correlations to lie between positive 0.97 and 1. We therefore choose
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to stick with the Sharpe ratio, because it is the most widely used performance measure in

the finance literature, and presumably what potential readers are most familiar with.

3.3.2 The Fama-French-Carhart 4-Factor Model

As an estimate of abnormal returns we use the alpha of the Fama-French-Carhart 4-factor

model. This is done in a similar fashion to what Jensen (1968) first intoduced with the one

factor model. The 4-factor model was presented by Carhart (1997), and is an extension of

the Fama-French 3-factor model (Fama and French, 1993). Carhart added a fourth factor

to the 3-factor model motivated by the models inability to explain cross-sectional variations

in momentum-sorted portfolio returns. He augmented the previous model by including the

one-year momentum factor (PR1YR) of Jegadeesh and Titman (1993). We then get a model

that explains the excess return of an asset, portfolio or trading strategy using four factors.

The first being the excess return on the market portfolio (MKT), which simply gives the

return of the market portfolio less the risk-free rate of return. The second, the size, or small

minus big (SMB) risk factor, which gives the difference in return between small and large

companies. The third, the value, or high minus low (HML) risk factor, which gives the

difference in return between value and growth companies. And finally, the fourth, the one-

year momentum factor (PR1YR), which considers the difference in expected return between

stocks that performed well and poor in the prior year 13. These factors are calculated at

the end of either each trading day or each month, and will according to the model explain

the excess return on our asset, portfolio or trading strategy. The estimation is performed

by a multivariate ordinary least squares regression. Any linear asset pricing model states

that if the market is in equilibrium, the model explains the returns, i.e. α = 0. Thus,

an alpha unequal zero represents an abnormal return. To estimate abnormal returns we

therefore run a multivariate ordinary least square regression, with excess strategy returns

as the dependent variable, and the mentioned four factors as independent variables. The

interception, or constant, of the regression will represent the alpha, and thus the estimate

of abnormal return. Formally the model can be expressed as:

rei,t = αi + β1,i ·MKTt + β2,i · SMBt + β3,i ·HMLt + β4,i · PR1Y Rt + εi,t, (13)

13For more detailed explanations of the factors, see Carhart (1997)
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where rei,t gives the excess return on strategy i at time t. αi gives the intercept, and is the

estimate of abnormal return for strategy i. MKTt, SMBt, HLMt and PR1Y Rt gives the

excess return on the market portfolio, small minus big risk factor, high minus low risk factor

and the one-year momentum factor at time t respectively. β1,i, β2,i, β3,i and β4,i gives the

corresponding exposure of strategy i to factors MKT, SMB, HML and PR1YR respectively.

Finally εi,t gives the regression residuals.

3.3.3 Drawdown

An alternative approach of measuring risk is to examine the downside risk, or historical

drawdowns. Drawdown is a measure in percentage of the decline from a peak to a following

trough. Formally, the drawdown at time t can be expressed as

D(t) =
Ppeak − Ptrough

Ppeak
, (14)

where Ppeak is the price at the peak, and Ptrough is the price at the following trough. In

addition to reporting the average and median drawdown, we also present the maximum

drawdown and the average maximum drawdown. While the maximum drawdown is the

single largest drawdown, the average maximum drawdown refers to the mean of the 10

largest drawdowns during the sample period. The drawdown is a measure of financial risk

and is particularly important for investors with shorter investment horizons.

3.4 Statistical Tests for Outperformance

There are several different methods for testing if our results are statistically significant.

Broadly we can divide the tests into two sub-categories, namely parametric and non-

parametric tests. Parametric tests builds on numerous assumptions, including that the

data is normally distributed and without serial dependence. As the finance literature docu-

ments this is rarely the case for financial data, which often feature non-normal distributions,

heteroscedasticity and serial dependence. This is also in line with what we have found in our

data, with non-normal distributions of returns, difference in volatility over time and signifi-

cant serial dependence, especially in the daily data. Consequently, assumptions underlying
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parametric tests are violated and these test will usually be invalid.

Non-parametric tests do not require making assumptions about the probability distri-

butions because it uses randomization methods to estimate the distribution of the test

statistic. They are therefore more suitable when analyzing financial data. The bootstrap

methodology is the most popular non-parametric randomization method and is what we

will employ in our study. The standard bootstrap method was introduced by Efron (1979)

as a more primitive and robust method than the Quenouille-Tukey jackknife (as reviewed

in Miller (1974)). It has later been proven unfit for data containing serial dependence, and

other methods, such as overlapping and non-overlapping block bootstrap ((Carlstein, 1986)

and (Kunsch, 1989)) and stationary block bootstrap (Politis and Romano, 1994) has been

suggested.

3.4.1 Statistical Test for the Sharpe Ratio

As we here use the Sharpe ratio as the performance measure, let ∆ = SRMT − SRBH ,

where SRMT gives the Sharpe ratio of the market timing strategy, SRBH gives the Sharpe

ratio of the passive benchmark (buy-and-hold) and consequently ∆ gives the difference in

performance. We then set the following null and alternative hypotheses:

H0 : ∆ ≤ 0 versus HA : ∆ > 0. (15)

A parametric test for the Sharpe ratio was first introduced by Jobson and Korkie (1981)

with a later correction by Memmel (2003). The test assumes joint normality in the two

return series, and is obtained via the test statistic

z̃ =
∆√

1
T

[
2(1− ρ̂) + 1

2(SR2
MT + SR2

BH − 2ρ̂2SRMTSRBH
] , (16)

which is asymptotically distributed as a standard normal when the sample size is large.

The advantage of using this test is the fast and fairly easy computation. Further, the test

statistic follows a well known distribution, making it easy to find the p-value quickly. The

problem is however the strong distributional assumptions of the return series. As previously

mentioned, and also later documented, our return series are not normally distributed, hence
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such a test will be of little or no real value.

Instead we apply a bootstrap methodology, free of distributional assumptions. Because

several of our datasets contain significant levels of serial dependence, we use one of the block

bootstrap methods. When testing for outperformance the preferred method in the financial

literature seems to be the stationary block bootstrap method (see e.g. Sullivan et al. (1999),

Welch and Goyal (2008) and Kirby and Ostdiek (2012)), we will therefore follow the trend,

and use the same method.

All block bootstrap methods resembles the standard bootstrap method of Efron (1979).

The difference is that block bootstrap resamples blocks of observations instead of one-by-

one. This is also why block bootstrap methods are more suitable for data containing serial

dependence, because it does not break up the dependence in the data. While the overlapping

and non-overlapping block bootstrap methods have fixed block sizes, the stationary method

generates the block length from a geometric distribution. In this way stationary data keeps

its stationary properties also after the resampling. Following the lines of Zakamulin (2017)

the stationary block bootstrap method can be described as follows.

Let {ret } and {Ret} be a paired sample of excess returns, where t = {1, 2, ..., T}. Then

we draw N random samples with replacement, of blocks of the original sample. The block

length ψbi , where b denotes the index for the bootstrap number, is generated from a geometric

distribution with probability ϕ. This gives an average block length of 1
ϕ , thus ϕ is chosen

according to ϕ = 1
ψ , where ψ is the required average block length. The ith block begins

from a random index i generated from the discrete uniform distribution on {1,2,...T}. Since

the block length is not limited from above, ψbi ∈ [1,∞), and the block can start at any time

t, the data is wrapped around like a circle, so that 1 follows T and so on. The resampling is

done so that the resampled psuedo-time series has the same number of observations as the

original sample. Observe also that since we got a paired sample of excess returns, (ret , R
e
t ),

the resampled data is also paired, i.e. the resampling process gives two new psuedo-time

series. Consequently the historical correlation between the two return series remains.

A problem in any of the block bootstrap methods is choosing the block length, or here,

the required average block length. In this study we apply the method proposed by Politis

and White (2004) (with the correction made in Patton, Politis, and White (2009)) when

selecting the required average block length.
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After resampling the two excess return series, we want to test if the market timing

strategy statistically outperforms the passive benchmark. To test the null hypothesis of

equal or underperformance, we calculate the difference ∆b between the Share ratio of
{
retb
}

and
{
Retb
}

. By repeating the resampling procedure N times and for each time calculating

∆b, the bootstrap distribution of ∆ is constructed. To estimate the significance level of the

test, we count how many times ∆b is less than zero. If the number of negative realizations

of ∆b is denoted as n, we compute the p-value as n
N .

3.4.2 Statistical Test for Alpha

When testing the performance using the Fama-French-Carhart 4-factor alpha as perfor-

mance measure, we test if we have a statistically significant abnormal return. We therefore

form the following null and alternative hypothesis:

H0 : αi = 0 versus HA : αi 6= 0 (17)

We can easily test the hypothesis using a standard parametric t-test of the regression in-

tercept coefficient. The test statistic for strategy i, t�i is then given by

t�i =
α̂i
SEα̂i

, (18)

where α̂i is the estimated alpha of the Fama-French-Carhart 4-factor model for strategy i

and SEα̂i
is the standard error of the distribution of the same alpha. As the test statistic

follows a well known distribution, the p-value is easily found. However, the problem is that

the test assumes normality in the data, an assumption that is often violated in financial

data, leaving the results of the test invalid. We therefore once again see the need for a

non-parametric test to cope with the non-normal data. Several studies (see e.g. Horowitz

(2003), Kosowski, Timmermann, Wermers, and White (2006) and Fama and French (2010))

argue that bootstrap methods gives good evaluation of significance of alpha estimates in

regression models. We therefore use a residual bootstrap method to test our hypothesis.

We use notation similar to Kosowski et al. (2006), and describe the procedure as follows.

To prepare our bootstrap we run the Fama-French-Carhart 4-factor regression given
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in equation (13). We save the estimated coefficients
{
α̂i, β̂1,i, β̂2,i, β̂3,i, β̂4,i

}
and residuals

{ε̂i,t, t = Ti0, ..., Ti1}, where Ti0 and Ti1 are the first and last observation of strategy i re-

spectively. Using the standard bootstrap method, we draw a new sample with replacement

of the stored residuals from the regression, creating a psuedo-time series of resampled resid-

uals
{
ε̂i,tε , tε = zbTi0 , ..., z

b
Ti1

}
, for each strategy i. b is an index for the bootstrap number

(i.e. b = 1 for bootstrap number 1, b = 2 for bootstrap number 2, and so on), and each

of the time indices zbTi0 , ..., z
b
Ti1

is drawn randomly from Ti0, ..., Ti1. This is done in such a

way that it reorders the original sample of Ti1 − Ti0 + 1 for strategy i. Next, we construct

a pseudo-time series of excess returns, using the stored values of factor loadings and the

bootstrapped residuals, while imposing our null hypothesis, α = 0. The new series of excess

return will then have a true alpha of zero by construction. We then run a new regression

with the pseudo-time series of excess returns as the dependent variable, and the four factors

in the Fama-French-Carhart 4-factor model as independent variables. We now have a new

estimate for alpha. Repeating this for all bootstrap iterations b = 1, ..., N , we construct a

distribution of the alphas, θi, for each strategy i. After the bootstrap procedure we test,

and find that we cannot reject the null hypothesis of normality in the distribution of the

bootstrapped alphas. We therefore use our estimated alphas and the standard error of the

distribution of the bootstrapped alphas, and perform a standard t-test. The test statistic

for strategy i, t∗i , is then given by:

t∗i =
α̂i
SEθi

, (19)

where α̂i is the estimated alpha of the Fama-French-Carhart 4-factor model for strategy i

and SEθi is the standard error of the distribution of bootstraped alphas for strategy i. We

see that this test statistic is very similar to that of the parametric test, the only difference

being the distribution of which the standard error is found. But as we now know that

this distribution is normal, the test is valid. Once more the p-value is easily found in the

Student’s t-distribution.
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4 Data

In our empirical study we use both daily and monthly data of two stock indices, two different

stock portfolio composition schemes, as well as the risk-free rate of return and the risk factors

in the Fama-French-Carhart 4-factor model. Motivated by the access to quality data, all

data spans from around July 1st, 1926 to December 31st 2015. The first stock index is

the Standard and Poor’s Composite stock price index (S&P Composite). This is a value-

weighted stock index, which from 1926 to 1956 consisted of only 90 stocks, whereas it form

1957 until today has consisted of 500 stocks. It has so been known as the S&P 500 index.

The index is composed of large US companies, based on market size, liquidity and industry

group representation, and is considered one of the best representations of the US stock

market. The second stock index is the Dow Jones Industrial Average index (DJIA). It is

a price-weighted stock index, consisting of 30 large US companies, selected to represent a

cross-section of US industry. For both S&P Composite and DJIA we use both capital gain

return, and the total return. Capital gain return is simply computed as the change in daily

or monthly closing prices, while total return gives the sum of capital gain return and the

dividend return. All data on the two stock indices are provided by Valeriy Zakamulin14.

All stock portfolios consist of US companies, and the two different composition schemes

are portfolios sorted on size, and portfolios sorted on book-to-market ratio. For both com-

position schemes we use the high and low quintile portfolios, which means we examine four

different stock portfolios for both daily and monthly data. For portfolios sorted in size,

the low quintile portfolio is denoted as Small, while the high quintile portfolio is denoted

as Large. For portfolios sorted on book-to-market, the low quintile portfolio is denoted as

Growth, whereas the high quintile portfolio is denoted as Value.

The four risk factors are the excess return on the market portfolio (MKT), the return on

small minus big (SMB), the return on high minus low (HML) and the one-year momentum

factor (PR1YR), all for the US market. The risk-free rate of returns are proxied by the

Treasury Bill rate. Data for all stock portfolios, as well as the risk-free rate and the risk

factors are retrieved from Kenneth French’s online database15. For further explanation of

the composition of stock portfolios or risk factors, see Kenneth French’s online database. All

14To see where Zakamulin retrieves the data, see e.g. Zakamulin (2014)
15http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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Figure 1: Time series plot of cumulative logarithmic returns of the six different risky assets used in
the study. The plot is constructed by monthly total returns, i.e including and reinvesting dividends,
and covers the period January 1926 to December 2015.

descriptive statistics given below includes data ranging from January 1st 1928 to December

31st 2015, a total of 88 years. The reason why we start reporting descriptive statistics from

1928 is that this is the starting point of our earliest in-sample period. All data before this

date is only used in the initial moving average windows.

4.1 Standard and Poor’s Composite Index

Table 1 summarizes the descriptive statistics for returns of the Standard and Poor’s Com-

posite index. Together with reporting statistics for the whole period we also divide the

sample into two non-overlapping sub-periods of 44 years. The first ranging from January

1st 1928 to December 31st 1971, while second from January 1st 1972 to December 31st

2015. In doing this we may be able to see if the statistics of returns changes over the two

periods.

From the Anderson-Darling normality test, we see that the null hypotheses of normal

distribution are rejected for all return series. We also see that while the mean capital
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S&P Composite

1928-2015 1928-1971 1972-2015
Statistics

CAP TOT RF CAP TOT RF CAP TOT RF

N 1056 1056 1056 528 528 528 528 528 528
Mean % 7.21 11.05 3.47 6.42 11.14 2.03 8.00 10.95 4.92
Std. dev. % 18.98 19.01 0.90 22.11 22.15 0.54 15.25 15.27 0.99
Min % -29.94 -29.43 0.00 -29.94 -29.43 0.00 -21.76 -21.54 0.00
Max % 42.22 42.91 1.36 42.22 42.91 0.66 16.30 16.78 1.36
Skewness 0.30 0.38 1.04 0.55 0.62 0.83 -0.45 -0.44 0.53
Kurtosis 12.32 12.58 4.18 12.33 12.56 2.81 4.96 4.99 3.31
Anderson-Darling 13.55 13.52 23.83 10.41 10.37 17.68 2.05 2.07 5.99
p-value (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Table 1: Descriptive statistics for monthly S&P Composite index returns for three sample periods.
TOT denotes the total market return, CAP denotes the the capital gain return and RF denotes
the risk-free return. The mean and standard deviation of returns are annualized and reported in
percentages. Anderson-Darling represent the test statistic in the normality test and the p-value
of the test are reported in brackets below. Values in bold text are statically significant at the 5%
level.

returns seem to increase from the first to the second sub-period, the mean total returns

remain practically the same. The standard deviation how ever, seems to lower for the

second sub-period. This implies that the risk of the index has changed over time. Also

interesting is the fact that the first sub-period exhibits positive skewness, while for the

second it is negative. We see that the kurtosis is far less in the second sub-period compared

with the first, indication that the tails of the distribution are slimmer for the second sub-

period, and hence returns are more centralized around the mean. It is also worth noting

that the risk-free rate is substantially higher in the second sub-period

4.2 Dow Jones Industrial Average Index

Table 2 summarizes the descriptive statistics for returns of the Dow Jones Industrial Average

index. Also here we report descriptive statistics for both the complete period, and two non-

overlapping sub-periods of 44 years.
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DJIA

1928-2015 1928-1971 1972-2015
Statistics

CAP TOT RF CAP TOT RF CAP TOT RF

N 1056 1056 1056 528 528 528 528 528 528
Mean % 6.78 10.69 3.37 5.62 10.14 1.93 7.94 11.23 4.81
Std. dev. % 18.40 18.35 0.89 21.17 21.09 0.53 15.15 15.13 0.98
Min % -30.70 -29.88 -0.06 -30.70 -29.88 -0.06 -23.22 -22.90 0.00
Max % 40.18 40.46 1.35 40.18 40.46 0.64 14.41 14.75 1.35
Skewness 0.02 0.07 1.04 0.23 0.27 0.86 -0.48 -0.47 0.53
Kurtosis 10.90 10.95 4.17 11.10 11.16 2.87 5.30 5.34 3.32
Anderson-Darling 13.88 13.74 24.12 10.91 10.74 18.49 2.22 2.30 5.44
p-value (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Table 2: Descriptive statistics for monthly DJIA returns for three sample periods. TOT denotes
the total market return, CAP denotes the the capital gain return and RF denotes the risk-free
return. The mean and standard deviation of returns are annualized and reported in percentages.
Anderson-Darling represent the test statistic in the normality test and the p-value of the test are
reported in brackets below. Values in bold text are statically significant at the 5% level.

In the descriptive statistics we see much the same as for the S&P Composite index.

Once again the null hypotheses of normality are rejected across all return series. We also

see that mean returns seem to be higher in the second sub-period, and here also for the

total return. Further we see that standard deviation is lower in the second sub-period and

that it also here seems to be a difference in index volatility between the two sub-periods.

When it comes to skewness we have the same as for the S&P Composite index, positive in

the first sub-period, and negative in the second. For kurtosis we observe larger values in

the first sub-period.

4.3 Portfolios Sorted on Size and Value

Table 3 summarizes the descriptive statistics for a total of four stock portfolios sorted on

size and value. Additionally, the descriptive statistics for the risk-free rate is provided in

the far-right column.

From Table 3 we see the Value portfolio display a mean and standard deviation of

15.94% and 28.25%, and the Small portfolio display a mean of 15.47% and the largest

standard deviation of 31.41%. Particularly noteworthy is the max returns for the Small

and Value portfolio of 95.92% and 82.48% respectively. The return distributions for all

portfolios are leptokurtic with values of kurtosis ranging from 7.82 to 29.39. By examining

the value of the Anderson-Darling test and its associated p-value, it becomes evident that

we reject the null hypothesis of normality for all portfolios.
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Portfolios sorted on Size and Book-to-Market

Statistics Small Large Growth Value RF

N 1056 1056 1056 1056 1056
Mean % 15.47 10.48 10.32 15.94 3.37
Std. dev. % 31.41 17.97 19.01 28.25 0.89
Min % -33.07 -28.69 -29.27 -38.00 -0.06
Max % 95.92 36.95 32.76 82.48 1.35
Skewness 2.67 0.14 -0.17 2.11 1.04
Kurtosis 29.39 10.41 7.87 25.24 4.17
Anderson-Darling 27.93 11.77 8.33 30.81 24.12
p-value (0.00) (0.00) (0.00) (0.00) (0.00)

Table 3: Descriptive statistics for monthly returns of portfolios sorted on size and book-to-market
from January 1928 to December 2015. Small denotes the total market return of a portfolio consisting
of the 20% smallest US stocks sorted on size, Large denotes the total market return of a portfolio
consisting of the 20% largest US stocks sorted on size. Growth denotes he total market return of a
portfolio consisting of the lowest 20% of US stocks sorted on book-to-market, Value denotes he total
market return of a portfolio consisting of the highest 20% of US stocks sorted on book-to-market and
RF denotes the risk-free rate of return. The mean and standard deviation of returns are annualized
and reported in percentages. Anderson-Darling gives the test statistic in the normality test and
the p-value of the test are reported in brackets below. Values in bold text are statically significant
at the 5% level.

4.4 Risk Factors

Table 4 presents the descriptive statistics for the four Fama-French-Carhart factors over

the full sample period and two sub-periods. By examining the full sample, we observe that

the factors MKT and PR1YR displays the greatest mean return and standard deviation

for monthly data. This characteristic can also be seen for the two sub-periods. All factors

except PR1YR displays greater mean return in the first sub-period. In the second sub-

period we see the opposite. From Panel B we see that the market premium in the full

sample displays the highest standard deviation with 18.77%. Further, we note that the

standard deviation for all factors is higher in the first sub-period and lower in the second

sub-period when compared to the full sample. This indicates that the period from 1928 to

1971 was considerably more volatile then the period from 1972 to 2015.

5 Empirical Results

In this section we present the results of our empirical analysis. We employ the methods de-

scribed in Section 3, and present results both for in-sample and out-of-sample simulations.

All results are found and presented using the R software. By combining the SMA with all
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Risk Factors

MKT SMB HML PR1YR

Panel A: Mean Return %

1928 - 2015 7.52 2.63 4.74 8.11
1928 - 1971 8.72 3.31 5.12 7.62
1972 - 2015 6.31 1.94 4.35 8.61

Panel B: Std. Dev. %

1928 - 2015 18.77 11.22 12.19 16.50
1928 - 1971 21.35 11.65 13.95 17.60
1972 - 2015 15.78 10.78 10.13 15.34

Table 4: Descriptive statistics for monthly factor returns used in the Fama-French-Carhart 4-
factor model. MKT denotes the excess return of the market portfolio. SMB and HML denotes
the premium on the size and book-to-market factor, respectively. PR1YR denotes the one-year
momentum factor of Jegadeesh and Titman (1993). The mean and standard deviation of returns
are annualized and reported in percentages.

technical trading rules, we obtain the following set of rules for the monthly data:

MOM(k) for k ∈ [2, 18], a total of 17 strategies;

MAC(s, l) for s ∈ [1, 7] and l ∈ [2, 18], a total of 98 strategies;

MAE(k, p) for k ∈ [2, 18] and p ∈ [0,25, 0,5, . . . , 4], a total of 272 strategies;

This amount to a combination of 387 tested strategies for monthly data. For daily data we

obtain the following set of rules:

MOM(k) for k ∈ [50, 100, 150, 170, 180, . . . , 260, 280, . . . , 360], a total of 18 strategies;

MAC(s, l) for s ∈ [1, 2, . . . , 6, 8, . . . , 16, 20, 40, . . . , 100] and l ∈ [50, 100, 150, 170,

180, . . . , 260, 280, . . . , 360], a total of 284 strategies;

MAE(k, p) for k ∈ [50, 100, 150, 170, 180, . . . , 260, 280, . . . , 360] and p ∈ [0,25, 0,5,

. . . , 4], a total of 288 strategies;

This amount to a combination of 590 unique strategies for daily data.

5.1 In-Sample Tests

First we take a closer look at the results of the in-sample simulations. For each dataset we

report summary statistics for the best performing trading rule and its equivalent buy-and-

hold benchmark. In addition to presenting the results for the full sample, we also provide
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results for three non-overlapping sub-periods.

5.1.1 S&P Composite and DJIA

By studying the results for both panels in Table 5, it becomes evident that when the

underlying index is the S&P Composite, the mean returns and standard deviations are

generally lower for the market timing strategies. However, judging by the Sharpe ratios,

the reduction in mean return is less than the reduction in standard deviation, resulting in

improved risk-adjusted performance. The only exception can be found in the sub-period

from 1958 to 1987, which report greater mean return than the corresponding buy-and-hold

strategy. Looking closer at ∆ Sharpe, all reported market timing strategies outperformed

its corresponding benchmark. In fact, with the exception of the period from 1988 to 2015,

all Sharpe ratios in Panel A are statistically significantly greater then the Sharpe ratio of

its benchmark. It is also noteworthy that the moving average envelope produce the best

trading rule for all periods tested in Panel A. Looking at the results in Panel B, we observe

that the trading rule MAC(2, 10) produce statistically significant outperformance measured

by ∆ Sharpe for the full sample. For the three sub-periods in Panel B, we find Sharpe ratios

ranging from 36% to 63% higher then the Sharpe ratio of the passive benchmark. However,

using conventional statistical levels, we cannot reject the null hypothesis. Its important to

note that the test results depends on the number of observations. In that sense, we expect

daily data to produce more statistical significant results.
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S&P Composite: In-Sample

Mean % Std.dev. % Sharpe ∆ Sharpe p-value Best Strategy

Panel A: Daily

1928-2015
MT 10.88 12.06 0.62 0.21 (0.01) MAE(230,2.5)
BH 11.02 18.76 0.41

1928-1957
MT 10.82 13.73 0.71 0.29 (0.04) MAE(320,2.25)
BH 10.95 23.47 0.42

1958-1987
MT 11.91 8.82 0.69 0.32 (0.03) MAE(150,0.25)
BH 10.82 13.63 0.37

1988-2015
MT 11.01 11.68 0.67 0.21 (0.06) MAE(240,3.5)
BH 11.31 17.84 0.45

Panel B: Monthly

1928-2015
MT 10.52 12.05 0.58 0.19 (0.02) MAC(2,10)
BH 11.05 19.01 0.40

1928-1957
MT 10.33 14.08 0.65 0.25 (0.08) MAE(14,2)
BH 11.32 25.44 0.40

1958-1987
MT 11.35 10.78 0.49 0.16 (0.11) MAC(2,10)
BH 11.00 14.87 0.33

1988-2015
MT 10.52 10.19 0.72 0.19 (0.13) MAE(8,1.5)
BH 10.80 14.42 0.53

Table 5: Summary statistics and performance of the best active market timing strategies from
in-sample simulations. Best strategy gives the best performing strategy for the given period,
and for which we present summary statistics. Means and standard deviations are annualized and
reported in percentages. Sharpe denotes the annualized Sharpe ratios, while ∆ Sharpe denotes
the difference in annualized Sharpe ratios between the active strategy and the passive benchmark.
It is calculated as ∆ = SRMT − SRBH , where SRMT is the Sharpe ratio of the active strategy
and SRBH is the Sharpe ratio of the passive benchmark. For each Sharpe ratio we test the null
hypothesis H0 : SRMT ≤ SRBH . P-values are reported in brackets and values in bold text are
statically significant at the 5% level.

The results presented in Table 6 reports the best trading rules when the passive bench-

mark is the DJIA index. Some remarkable differences emerge. In particular, in Panel B

we no longer find statistical evidence of outperformance over the full sample. Instead, the

MOM(18) rule produce superior performance in the period from 1928 to 1957, with a sta-

tistically significant ∆ Sharpe of 0.33. In general, we observe that the best trading rules

for S&P Composite in Table 5 produce higher Sharpe ratios then the best trading rules for

DJIA in Table 6. We also note that, similar to the S&P Composite, the moving average

envelope generally produce the best trading rule, in particular for daily data.
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DJIA: In-Sample

Mean % Std.dev. % Sharpe ∆ Sharpe p-value Best Strategy

Panel A: Daily

1928-2015
MT 9.82 11.49 0.56 0.16 (0.05) MAE(260,3)
BH 10.66 18.20 0.40

1928-1957
MT 11.71 12.56 0.85 0.44 (0.01) MAE(260,2.75)
BH 10.15 22.24 0.41

1958-1987
MT 11.54 9.43 0.60 0.30 (0.02) MAE(200,0.5)
BH 10.14 14.29 0.30

1988-2015
MT 10.96 12.53 0.62 0.12 (0.19) MAC(100,320)
BH 11.77 17.11 0.50

Panel B: Monthly

1928-2015
MT 9.53 12.21 0.50 0.11 (0.13) MAE(8,3)
BH 10.69 18.35 0.40

1928-1957
MT 11.11 13.94 0.72 0.33 (0.03) MOM(18)
BH 10.54 24.09 0.39

1958-1987
MT 10.82 11.07 0.45 0.15 (0.13) MAC(3,9)
BH 10.22 14.87 0.29

1988-2015
MT 11.34 11.32 0.72 0.14 (0.14) MAC(6,17)
BH 11.35 14.18 0.58

Table 6: Summary statistics and performance of the best active market timing strategies from
in-sample simulations. Best strategy gives the best performing strategy for the given period,
and for which we present summary statistics. Means and standard deviations are annualized and
reported in percentages. Sharpe denotes the annualized Sharpe ratios, while ∆ Sharpe denotes
the difference in annualized Sharpe ratios between the active strategy and the passive benchmark.
It is calculated as ∆ = SRMT − SRBH , where SRMT is the Sharpe ratio of the active strategy
and SRBH is the Sharpe ratio of the passive benchmark. For each Sharpe ratio we test the null
hypothesis H0 : SRMT ≤ SRBH . P-values are reported in brackets and values in bold text are
statically significant at the 5% level.

5.1.2 Portfolios Sorted on Size and Value

Table 7 below presents the in-sample results when the underlying risky asset is a portfolio

of small and large stocks for daily and monthly data. The results in Panel A are striking.

Mean returns are significantly higher and standard deviations are considerably lower, when

compared to its corresponding buy-and-hold strategy. In particular, the best trading rule

for the sub-period between 1958 to 1987 are able to produce extraordinary risk-adjusted

performance with a Sharpe ratio of 2.5. Moreover, it is noteworthy to observe that all the

best trading rules are practically identical. Looking at Panel B, C and D, we observe that

all measures of ∆ Sharpe except one are statistically significant at the 5% level. The only

∆ Sharpe not statistically significant can be located in Panel D for the sub-period 1958 to

1987. However, looking at the p-value, the trading rule would be statistically significant

if the statistical threshold level was 7%. Once more, the moving average envelope rule
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generally produces the best trading rule.

Further we study the results from the portfolios sorted on value. Table 8 presents the

best trading rule for portfolios of growth and value stocks. Similar to the results presented

in Table 5 and 6, every market timing strategies reports lower standard deviation then its

corresponding benchmark. In addition, 75% of the best trading rules produce mean return

greater then its passive benchmark. In turn, this results in statistically significant measures

of ∆ Sharpe for a majority of the best trading rules. However, there are some noteworthy

exceptions. Specifically for daily data in Panel A and C, the best trading rule is not able to

produce a statistically significant ∆ Sharpe in the period from 1988 to 2015. Similarly, for

monthly data in Panel B and D, the best trading rule are not able to produce statistically

significant ∆ Sharpe in the period from 1958 to 1987. Moreover, by examining the best

trading rule across all value-sorted portfolios, 69% were generated by the moving average

envelope rule.
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Size-sorted: In-Sample

Mean % Std.dev. % Sharpe ∆ Sharpe p-value Best Strategy

Panel A: Small Daily

1928-2015
MT 20.20 12.44 1.37 0.91 (0.00) MAE(50,0.25)
BH 12.41 19.99 0.46

1928-1957
MT 21.55 16.06 1.28 0.86 (0.00) MAE(50,0.25)
BH 12.00 25.92 0.43

1958-1987
MT 24.64 7.51 2.50 1.88 (0.00) MAE(50,0.25)
BH 13.54 12.29 0.63

1988-2015
MT 14.52 11.56 0.98 0.51 (0.00) MAE(50,0.75)
BH 11.71 18.29 0.46

Panel B: Small Monthly

1928-2015
MT 16.90 23.22 0.58 0.20 (0.00) P-MA(2)
BH 15.47 31.41 0.38

1928-1957
MT 20.85 33.59 0.59 0.20 (0.03) MAE(2,3.5)
BH 18.48 44.96 0.39

1958-1987
MT 17.75 13.34 0.89 0.45 (0.00) P-MA(2)
BH 15.43 21.80 0.44

1988-2015
MT 14.21 14.72 0.75 0.31 (0.03) P-MA(2)
BH 12.29 20.70 0.44

Panel C: Large Daily

1928-2015
MT 10.25 11.46 0.61 0.22 (0.01) MAE(210,2.25)
BH 9.91 17.20 0.39

1928-1957
MT 10.00 12.18 0.74 0.36 (0.01) MOM(280)
BH 8.36 19.55 0.38

1958-1987
MT 11.46 9.48 0.59 0.26 (0.04) MAE(210,2)
BH 10.35 13.51 0.33

1988-2015
MT 11.21 11.61 0.69 0.23 (0.05) MAE(170,3)
BH 11.33 17.67 0.46

Panel D: Large Monthly

1928-2015
MT 10.56 12.10 0.59 0.20 (0.01) MAE(10,3)
BH 10.48 17.97 0.39

1928-1957
MT 11.14 15.51 0.65 0.26 (0.05) MOM(11)
BH 10.10 23.27 0.39

1958-1987
MT 11.40 11.05 0.50 0.18 (0.07) MAE(10,3)
BH 10.53 14.70 0.32

1988-2015
MT 11.80 11.05 0.78 0.25 (0.05) MOM(11)
BH 10.85 14.31 0.53

Table 7: Summary statistics and performance of the best active market timing strategies from
in-sample simulations. Small denotes a portfolio consisting of the smallest 20% of US stocks sorted
on size, while Large denotes a portfolio consisting of the largest 20%. Best strategy gives the best
performing strategy for the given period, and for which we present summary statistics. Means and
standard deviations are annualized and reported in percentages. Sharpe denotes the annualized
Sharpe ratios, while ∆ Sharpe denotes the difference in annualized Sharpe ratios between the active
strategy and the passive benchmark. It is calculated as ∆ = SRMT − SRBH , where SRMT is the
Sharpe ratio of the active strategy and SRBH is the Sharpe ratio of the passive benchmark. For each
Sharpe ratio we test the null hypothesis H0 : SRMT ≤ SRBH . P-values are reported in brackets
and values in bold text are statically significant at the 5% level.
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Value-sorted: In-Sample

Mean % Std.dev. % Sharpe ∆ Sharpe p-value Best Strategy

Panel A: Growth Daily

1928-2015
MT 9.78 11.85 0.55 0.19 (0.02) MAE(250,1.75)
BH 9.69 17.91 0.36

1928-1957
MT 9.80 12.34 0.72 0.35 (0.01) MOM(280)
BH 8.31 19.94 0.37

1958-1987
MT 12.04 9.44 0.66 0.41 (0.01) MAE(50,0.25)
BH 9.46 14.95 0.24

1988-2015
MT 11.75 13.48 0.63 0.17 (0.09) MAC(60,240)
BH 11.62 18.21 0.46

Panel B: Growth Monthly

1928-2015
MT 10.25 13.39 0.51 0.15 (0.05) MAE(14,4)
BH 10.32 19.01 0.36

1928-1957
MT 11.18 15.14 0.67 0.29 (0.03) MAE(18,3)
BH 9.95 23.22 0.38

1958-1987
MT 10.94 11.34 0.45 0.22 (0.09) MAE(2,0.75)
BH 9.86 17.30 0.23

1988-2015
MT 12.63 12.91 0.73 0.21 (0.02) MAC(7,16)
BH 11.21 15.46 0.52

Panel C: Value Daily

1928-2015
MT 14.47 15.07 0.75 0.27 (0.00) MAE(100,0.75)
BH 14.29 23.03 0.48

1928-1957
MT 14.54 19.48 0.70 0.32 (0.02) MAE(100,1.25)
BH 12.38 30.26 0.38

1958-1987
MT 17.96 9.04 1.34 0.55 (0.00) MAE(50,0.25)
BH 16.27 13.16 0.79

1988-2015
MT 13.42 13.23 0.77 0.24 (0.08) MAC(60,220)
BH 14.49 21.07 0.54

Panel D: Value Monthly

1928-2015
MT 14.20 19.17 0.56 0.12 (0.05) MAE(4,3.5)
BH 15.94 28.25 0.44

1928-1957
MT 17.55 27.34 0.60 0.23 (0.05) MAE(4,4)
BH 16.74 41.69 0.38

1958-1987
MT 15.25 13.03 0.72 0.08 (0.27) MAC(5,6)
BH 17.00 17.53 0.63

1988-2015
MT 13.85 12.11 0.88 0.28 (0.04) MAE(5,0.25)
BH 13.94 17.94 0.60

Table 8: Summary statistics and performance of the best active market timing strategies from
in-sample simulations. Growth denotes a portfolio consisting of the lowest 20% of US stocks sorted
on book-to-market, while Value denotes a portfolio consisting of the highest 20%. Best strategy
gives the best performing strategy for the given period, and for which we present summary statistics.
Means and standard deviations are annualized and reported in percentages. Sharpe denotes the
annualized Sharpe ratios, while ∆ Sharpe denotes the difference in annualized Sharpe ratios between
the active strategy and the passive benchmark. It is calculated as ∆ = SRMT−SRBH , where SRMT

is the Sharpe ratio of the active strategy and SRBH is the Sharpe ratio of the passive benchmark.
For each Sharpe ratio we test the null hypothesis H0 : SRMT ≤ SRBH . P-values are reported in
brackets and values in bold text are statically significant at the 5% level.
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5.2 Out-of-Sample Tests

5.2.1 Results of the Tests

We now take a look at the empirical results of the out-of-sample tests. First we present

summary statistics of the strategy returns, as well as two different performance measures

with corresponding statistical tests. We also include descriptive statistics for the passive

benchmark, to compare. Our three different trading rules will be simulated separately as

well as combined. In doing so, we get a general impression of the rules’ performance on their

own, compared to when we combine them. We may also compare them to one another, as

they are all tested against the same benchmark. To indicate what one may expect with more

realistic investment horizons, we also report 5- and 10-year outperoformance probabilities.

Further, tests are run using both a rolling and an expanding in-sample window. We also

present results for different lengths of the rolling in-sample window. Finally, to investigate

if the performance is stable over time, we present plots of rolling 10-year outperformance.

Daily Data on the S&P Composite Index

We start by looking at daily data of the S&P Composite index. In Table 9, we find summary

statistics, and results of statistical tests, when simulating the active strategies, with two

different split points between the initial in-sample and out-of-sample periods. Panel A, gives

results for when the initial in-sample period spans from January 1928 to December 1952,

and the initial out-of-sample period spans from January 1953 to December 2015. Similarly

Panel B gives results for when the initial in-sample period spans from January 1928 to

December 1969, and out-of-sample from January 1970 to December 2015. Simulations are

run for both choosing from a pool of all trading rules combined, and each trading rule

by itself. I.e. the results denoted “COMBI” is found when choosing from all 590 unique

trading rules, whereas the results under for instance “MAC” is found when choosing from

the 284 unique MAC trading rules. We report results for both the rolling and expanding

estimation scheme. Observe that as the split points for Panel A and Panel B are 1953 and

1970 respectively, the rolling in-sample window in the rolling estimation scheme will be 25

and 42 years respectively.

Looking at the results, we see that a clear pattern emerges in the mean returns and
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standard deviations across both panels. Mean returns are slightly lower for all strategies

compared to the benchmark, while standard deviations are quite substantially lower for

all strategies. This in turn leads to greater Sharpe ratios when one chooses from all the

trading rules (COMBI, both rolling and expanding), and for three out of the six when we

choose among each trading rule by itself (MAC rolling, and MAE rolling and expanding).

This is easily seen when looking at the values of ∆ Sharpe. Even though several of the

trading rules seems to outperform the passive benchmark, none of them are statistically

significant at the 5% level. The same is seen when looking at the Fama-French-Carhart

4-factor alphas. Several strategies yield abnormal positive returns, but none are even close

to being statistically significant. In fact, the most significant alpha found is that for MOM

expanding in panel A, which exhibits a quite large negative abnormal return.

Also interesting are the minimum and maximum returns. For Panel A, we see that all

strategies but the MAC rule manage to avoid the largest negative return in the period. This

in turn leads to a much fatter tail in the distribution, illustrated by a very high kurtosis,

and a larger negative skewness. The same is seen for the MAC rule in the expanding

estimation scheme in Panel B. Further we see that none of the strategies manage to capture

the largest return in the period. Looking at the skewness for all other strategies, we see that

it resembles that for the passive benchmark, all being slightly negative. The kurtosis on

the other hand are lower for the active strategies, implying that returns are less turbulent,

with fewer observations far away from the mean.

The rolling 5- and 10-year outperformance probability gives the probability that the

active strategy outperforms the passive benchmark over a 5- and 10-year investment horizon

respectively. We see that most active strategies outperform the passive between 40% and

60% of the time, while the best strategy (MAE rolling) outperformes the passive benchmark

78% of the time. The outperformance probability looks to increase when the investment

horizon increases from 5 to 10 years.

Further investigating the 10-year outperformance, we can look at Figure 2, showing the

rolling 10-year outperformance of the active strategies. The blue line gives the outperfor-

mance of using the active strategies over the past 10 years measured by ∆ Sharpe. The

date index on the x-axis gives the end of each 10-year period. What we see is that the

outperformance of the strategies varies significantly over time. For some periods we see
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S&P Composite Daily: Out-of-Sample

COMBI MAC MAE MOM
BH

roll exp roll exp roll exp roll exp

Panel A: Period 1928-1953-2016

Mean % 11.24 10.15 9.67 9.74 8.89 10.38 9.67 8.47 8.84
Standard Deviation % 15.55 10.26 10.30 10.83 10.53 10.26 10.30 10.45 10.71
Skewness -0.63 -0.38 -0.44 -2.07 -2.20 -0.38 -0.44 -0.55 -0.49
Kurtosis 20.85 7.41 8.07 58.20 63.56 7.41 8.07 8.40 7.83
Minimum % -20.45 -6.86 -6.86 -20.45 -20.45 -6.86 -6.86 -6.86 -6.86
Maximum % 11.59 5.12 5.12 5.12 5.12 5.12 5.12 5.12 5.12
Sharpe 0.44 0.56 0.52 0.50 0.43 0.59 0.52 0.39 0.42
∆ Sharpe 0.12 0.08 0.06 -0.01 0.15 0.08 -0.05 -0.02
p-value (0.10) (0.25) (0.32) (0.55) (0.10) (0.25) (0.71) (0.60)
Alpha 0.72 0.01 -0.52 -1.02 0.96 0.01 -1.49 -1.60
p-value (0.46) (1.00) (0.58) (0.27) (0.30) (1.00) (0.12) (0.07)
Rolling 5-year Win 0.56 0.47 0.51 0.41 0.59 0.47 0.42 0.46
Rolling 10-year Win 0.70 0.55 0.62 0.47 0.78 0.55 0.38 0.45

Panel B: Period 1928-1970-2016

Mean % 11.13 10.28 9.91 9.83 8.80 10.26 9.91 8.20 8.73
Standard Deviation % 16.96 10.87 10.97 11.05 11.25 10.87 10.97 10.96 11.48
Skewness -0.63 -0.32 -0.42 -0.36 -2.39 -0.32 -0.42 -0.37 -0.49
Kurtosis 19.37 5.97 6.94 6.94 65.01 5.97 6.94 6.02 6.71
Minimum % -20.45 -6.86 -6.86 -6.86 -20.45 -6.86 -6.86 -6.86 -6.86
Maximum % 11.59 5.12 5.12 5.12 5.12 5.12 5.12 5.12 5.12
Sharpe 0.37 0.50 0.46 0.45 0.35 0.50 0.46 0.31 0.34
∆ Sharpe 0.13 0.09 0.08 -0.02 0.13 0.09 -0.06 -0.03
p-value (0.15) (0.21) (0.24) (0.56) (0.14) (0.21) (0.71) (0.58)
Alpha 0.98 0.45 0.07 -0.99 0.95 0.45 -1.27 -1.61
p-value (0.42) (0.69) (0.95) (0.39) (0.41) (0.70) (0.29) (0.16)
Rolling 5-year Win 0.55 0.45 0.51 0.37 0.54 0.45 0.29 0.42
Rolling 10-year Win 0.65 0.50 0.62 0.40 0.64 0.50 0.16 0.35

Table 9: Descriptive statistics and performance of the active market timing strategies and the
corresponding passive benchmark. For each active strategy we simulate daily returns out-of-sample
for both rolling and expanding estimation schemes. The descriptive statistics for means and standard
deviation are annualized and reported in percentages. The rolling and expanding estimation schemes
are denoted by Roll and Exp. Sharpe denotes the annualized Sharpe ratios and Alpha denotes
the annualized alpha in the Fama-French-Carhart 4-factor model. The values of alpha, minimum
and maximum are reported in percentages. For each Sharpe ratio we test the null hypothesis
H0 : SRMT ≤ SRBH , where SRMT is the Sharpe ratio of the active strategy and SRBH is the
Sharpe ratio of the passive benchmark. For each alpha, the following null hypothesis is tested
H0 : α = 0. P-values are reported in brackets and values in bold text are statically significant at
the 5% level. BH (Buy and Hold) denotes the passive benchmark. COMBI denotes a combination
of all possible strategies. MAC denotes the Moving Average Crossover rule. MAE denotes the
Moving Average Envelope rule. MOM denotes the time-series Momentum rule. The rolling 5- and
10-year window denotes the probability of outperformance over a 5- and 10-year horizon.

quite large outperformance, whereas other periods shows underperformance. We also see

that only slight differences in when you start using the active strategies can result in large

differences in performance. A similar plot for monthly data, as well as plots for daily and

monthly data on the DJIA index and portfolios sorted on value can be found in Appendix

I.
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Figure 2: Rolling 10-year outperformance of daily trading on the S&P Compostie index over the
period January 1953 to December 2015. The results are simulated out-of-sample using the COMBI
rule for the rolling estimation scheme. Delta Sharpe denotes the difference between the Sharpe
ratio of the active strategy and the passive benchmark and is calculated ∆ = SRMT − SRBH ,
where SRMT is the Sharpe ratio of the active strategy and SRBH is the Sharpe ratio of the passive
benchmark. The solid black line gives where SRMT = SRBH .

To conclude, we generally see that the active strategies produce less volatile, though

also slightly lower returns than the passive counterpart. Looking at our two measures of

outperformance we see that some trading rules perform quite well, especially the MAE

rule, when we use the rolling estimation scheme. However, none of the trading rules has

statistically significantly outperformed the passive buy-and-hold. Generally, it looks like

market timing strategies have performed slightly better in the period presented in Panel

A in Table 9. From Figure 2 we also saw that the performance of the strategies is highly

non-uniform.

Monthly Data on the S&P Composite Index

Table 10 provides the same statistics and information as Table 9, only for monthly data.

Also here we see a similar pattern when it comes to annual mean returns and standard

deviations. Mean returns are slightly lower for the active strategies compared to the pas-

41



S&P Composite Monthly: Out-of-Sample

COMBI MAC MAE MOM
BH

roll exp roll exp roll exp roll exp

Panel A: Period 1928-1953-2016

Mean % 11.12 9.57 10.25 9.71 10.56 10.01 10.22 10.05 9.45
Standard Deviation % 14.55 10.83 10.94 10.95 10.91 10.72 10.98 10.96 10.88
Skewness -0.40 -0.48 -0.44 -0.59 -0.50 -0.43 -0.45 -0.47 -0.54
Kurtosis 4.73 7.93 7.83 7.80 8.10 8.36 7.76 8.11 8.24
Minimum % -21.54 -21.54 -21.54 -21.54 -21.54 -21.54 -21.54 -21.54 -21.54
Maximum % 16.78 12.17 13.46 11.92 13.46 13.46 13.46 13.21 13.21
Sharpe 0.45 0.47 0.52 0.48 0.55 0.51 0.52 0.51 0.46
∆ Sharpe 0.01 0.07 0.02 0.10 0.06 0.07 0.05 0.00
p-value (0.48) (0.23) (0.43) (0.13) (0.28) (0.24) (0.28) (0.50)
Alpha -0.54 -0.35 -0.60 0.33 -0.06 -0.45 -0.15 -0.89
p-value (0.56) (0.70) (0.51) (0.72) (0.95) (0.62) (0.88) (0.35)
Rolling 5-year Win 0.46 0.46 0.51 0.53 0.49 0.45 0.52 0.38
Rolling 10-year Win 0.63 0.58 0.59 0.64 0.60 0.62 0.62 0.50

Panel B: Period 1928-1970-2016

Mean % 10.92 10.02 10.94 10.40 10.80 9.55 10.73 9.65 9.68
Standard Deviation % 15.33 11.18 11.36 11.15 11.29 11.25 11.44 11.45 11.23
Skewness -0.43 -0.65 -0.57 -0.64 -0.65 -0.72 -0.57 -0.63 -0.68
Kurtosis 1.80 6.15 5.51 6.17 5.87 5.82 5.33 5.54 6.06
Minimum % -21.54 -21.54 -21.54 -21.54 -21.54 -21.54 -21.54 -21.54 -21.54
Maximum % 16.78 13.46 13.46 13.46 13.46 13.46 13.46 13.21 13.21
Sharpe 0.39 0.45 0.53 0.49 0.52 0.41 0.51 0.41 0.42
∆ Sharpe 0.06 0.14 0.10 0.13 0.02 0.12 0.02 0.03
p-value (0.29) (0.12) (0.20) (0.12) (0.43) (0.15) (0.42) (0.37)
Alpha 0.25 0.65 0.42 0.81 -0.33 0.31 -0.41 -0.43
p-value (0.83) (0.55) (0.70) (0.47) (0.77) (0.78) (0.72) (0.72)
Rolling 5-year Win 0.43 0.49 0.49 0.52 0.40 0.46 0.42 0.43
Rolling 10-year Win 0.42 0.62 0.48 0.60 0.42 0.62 0.41 0.59

Table 10: Descriptive statistics and performance of the active market timing strategies and the
corresponding passive benchmark. For each active strategy we simulate monthly returns out-of-
sample for both rolling and expanding estimation schemes. The descriptive statistics for means
and standard deviation are annualized and reported in percentages. The rolling and expanding
estimation schemes are denoted by Roll and Exp. Sharpe denotes the annualized Sharpe ratios
and Alpha denotes the annualized alpha in the Fama-French-Carhart 4-factor model. The values of
alpha, minimum and maximum are reported in percentages. For each Sharpe ratio we test the null
hypothesis H0 : SRMT ≤ SRBH , where SRMT is the Sharpe ratio of the active strategy and SRBH

is the Sharpe ratio of the passive benchmark. For each alpha, the following null hypothesis is tested
H0 : α = 0. P-values are reported in brackets and values in bold text are statically significant at
the 5% level. BH (Buy and Hold) denotes the passive benchmark. COMBI denotes a combination
of all possible strategies. MAC denotes the Moving Average Crossover rule. MAE denotes the
Moving Average Envelope rule. MOM denotes the time-series Momentum rule. The rolling 5- and
10-year window denotes the probability of outperformance over a 5- and 10-year horizon.

sive benchmark, while the standard deviations are considerably lower. Again this leads to

positive realizations of ∆ Sharpe, which indicates that the active strategies outperforms the

passive benchmark. Once more the outperformances are very small, and none are statisti-

cally significant at the 5% level. Looking at the Fama-French-Carhart 4-factor alphas we

also see that none of the strategies in either period produce statistically significant abnormal
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returns. The skewness of all active strategies resemble, and seems slightly greater negative

than that of the passive buy-and-hold. We also see slightly greater negative skewness in

Panel B, compared to Panel A. Comparing kurtosis we see the opposite for monthly data

as we did for daily. The market timing strategies exhibits greater kurtosis than the pas-

sive benchmark for both periods, indicating that the returns are more spread out from the

mean. Further, looking at the minimum and maximum returns, we see that none of the ac-

tive strategies in either of the periods manage to avoid the largest negative return. Neither

do they capture the maximum. Looking at the 5- and 10-year outperformance probability

we once again see that most lie in the range 40% to 60%, with the highest across the two

panels being 64%. Again the outperformance probability seems to be greater when we have

a 10-year investment horizon.

Daily Data on the DJIA Index

Table 11 is similar to Table 9 and 10, only for daily data of the DJIA index. Once again both

annual mean returns and standard deviations are lower for the active strategies than for the

passive benchmark. This time we also see a quite severe drop in the mean returns as well

as in the standard deviations. Futher, this leads to poorer performance than what we saw

for data on the S&P Composite index, and none of the reported values of ∆ Sharpe exceeds

0.01. Looking at the Fama-French-Carhart 4-factor alphas we see that all but one of the

strategies yield negative abnormal returns, where three of these are statistically significant

at the 5% level. For both panels we see that all but one strategy managed to avoid the largest

negative return, while once again none manage to capture the maximum. The distributions,

described by the skewness and kurtosis, looks similar to what we saw for daily data of the

S&P Composite index. Looking at the 5- and 10-year outperformance probabilities we see

that the active strategies seldom perform well. Several strategies outperform the passive

benchmark less than 25% of the time, and the best strategy outperforms the buy-and-hold

only 54% of the time.

What we generally see is that the active strategies performs worse when trading on the

DJIA index than when trading on the S&P Composite index. Though we also here see less

volatility, the mean returns decreases more, resulting in poorer risk-adjusted performance

and underperformance for almost all trading rules.
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DJIA Daily: Out-of-Sample

COMBI MAC MAE MOM
BH

roll exp roll exp roll exp roll exp

Panel A: Period 1928-1953-2016

Mean % 11.12 8.30 8.21 9.02 8.14 8.86 8.21 8.11 6.69
Standard Deviation % 15.40 10.50 10.35 10.58 10.32 10.10 10.35 10.68 10.81
Skewness -0.75 -0.41 -0.37 -0.41 -0.37 -0.39 -0.37 -0.35 -2.68
Kurtosis 26.50 7.13 6.65 7.11 6.69 7.05 6.65 7.24 82.99
Minimum % -22.60 -7.18 -7.18 -7.18 -7.18 -7.18 -7.18 -7.18 -22.60
Maximum % 11.09 4.51 4.51 4.51 4.51 4.51 4.51 4.71 4.71
Sharpe 0.44 0.38 0.37 0.44 0.37 0.45 0.37 0.35 0.22
∆ Sharpe -0.06 -0.07 0.00 -0.07 0.01 -0.07 -0.09 -0.22
p-value (0.74) (0.75) (0.48) (0.75) (0.46) (0.74) (0.81) (0.99)
Alpha -1.15 -1.05 -0.62 -1.05 0.03 -1.05 -1.06 -3.11
p-value (0.22) (0.29) (0.54) (0.29) (0.97) (0.27) (0.29) (0.00)
Rolling 5-year Win 0.34 0.41 0.51 0.45 0.44 0.41 0.35 0.30
Rolling 10-year Win 0.35 0.37 0.54 0.40 0.51 0.37 0.36 0.18

Panel B: Period 1928-1970-2016

Mean % 11.41 8.90 7.92 8.38 7.88 8.79 7.92 6.75 6.07
Standard Deviation % 16.85 11.04 11.19 11.55 11.13 10.91 11.19 11.36 11.76
Skewness -0.75 -0.30 -0.35 -0.40 -0.31 -0.30 -0.35 -0.34 -2.76
Kurtosis 24.63 5.62 5.75 6.38 5.52 5.88 5.75 6.09 79.82
Minimum % -22.60 -7.18 -7.18 -7.18 -7.18 -7.18 -7.18 -7.18 -22.60
Maximum % 11.09 4.27 4.27 4.27 4.27 4.27 4.27 4.71 4.71
Sharpe 0.39 0.37 0.28 0.31 0.27 0.36 0.28 0.17 0.11
∆ Sharpe -0.02 -0.11 -0.08 -0.12 -0.03 -0.11 -0.22 -0.28
p-value (0.57) (0.85) (0.77) (0.84) (0.60) (0.84) (0.98) (1.00)
Alpha -0.07 -1.27 -1.24 -1.25 -0.07 -1.27 -2.60 -3.76
p-value (0.96) (0.31) (0.31) (0.32) (0.96) (0.33) (0.04) (0.00)
Rolling 5-year Win 0.49 0.33 0.45 0.36 0.48 0.33 0.28 0.18
Rolling 10-year Win 0.51 0.20 0.50 0.24 0.49 0.20 0.15 0.07

Table 11: Descriptive statistics and performance of the active market timing strategies and the
corresponding passive benchmark. For each active strategy we simulate daily returns out-of-sample
for both rolling and expanding estimation schemes. The descriptive statistics for means and standard
deviation are annualized and reported in percentages. The rolling and expanding estimation schemes
are denoted by Roll and Exp. Sharpe denotes the annualized Sharpe ratios and Alpha denotes
the annualized alpha in the Fama-French-Carhart 4-factor model. The values of alpha, minimum
and maximum are reported in percentages. For each Sharpe ratio we test the null hypothesis
H0 : SRMT ≤ SRBH , where SRMT is the Sharpe ratio of the active strategy and SRBH is the
Sharpe ratio of the passive benchmark. For each alpha, the following null hypothesis is tested
H0 : α = 0. P-values are reported in brackets and values in bold text are statically significant at
the 5% level. BH (Buy and Hold) denotes the passive benchmark. COMBI denotes a combination
of all possible strategies. MAC denotes the Moving Average Crossover rule. MAE denotes the
Moving Average Envelope rule. MOM denotes the time-series Momentum rule. The rolling 5- and
10-year window denotes the probability of outperformance over a 5- and 10-year horizon.

Monthly Data on the DJIA Index

Table 12 gives the same descriptive statistics and tests as Table 9, 10 and 11, this time for

monthly data in the DJIA index. Like we saw for the daily data, the drop in annual mean

returns for the active strategies, compared to the passive are more severe for this index,

than for the S&P Composite. Here we also see less drop in annual standard deviations.
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DJIA Monthly: Out-of-Sample

COMBI MAC MAE MOM
BH

roll exp roll exp roll exp roll exp

Panel A: Period 1928-1953-2016

Mean % 10.98 8.51 8.32 8.97 8.55 8.23 8.62 9.06 8.13
Standard Deviation % 14.37 11.11 10.94 11.19 10.84 11.03 11.18 11.09 11.02
Skewness -0.43 -0.69 -0.71 -0.55 -0.79 -0.65 -0.57 -0.62 -0.66
Kurtosis 5.04 8.68 8.99 8.98 9.48 8.78 8.86 8.80 8.86
Minimum % -22.90 -22.90 -22.90 -22.90 -22.90 -22.90 -22.90 -22.90 -22.90
Maximum % 14.75 14.12 13.87 14.75 13.87 14.12 14.75 14.12 14.12
Sharpe 0.46 0.37 0.36 0.41 0.39 0.35 0.38 0.42 0.34
∆ Sharpe -0.09 -0.10 -0.05 -0.07 -0.11 -0.08 -0.04 -0.12
p-value (0.85) (0.86) (0.71) (0.80) (0.90) (0.80) (0.65) (0.91)
Alpha -0.66 -0.77 -0.70 -0.31 -0.77 -1.48 -0.02 -0.56
p-value (0.53) (0.44) (0.47) (0.77) (0.46) (0.14) (0.99) (0.58)
Rolling 5-year Win 0.29 0.33 0.32 0.43 0.29 0.26 0.34 0.16
Rolling 10-year Win 0.23 0.33 0.37 0.48 0.28 0.23 0.44 0.06

Panel B: Period 1928-1970-2016

Mean % 11.17 8.53 8.55 9.04 8.50 8.84 9.08 8.85 8.45
Standard Deviation % 15.11 11.66 11.35 11.84 11.31 11.69 11.65 11.37 11.38
Skewness -0.46 -0.72 -0.82 -0.64 -0.91 -0.65 -0.67 -0.81 -0.78
Kurtosis 5.20 9.49 9.84 9.14 10.20 9.45 9.59 9.90 9.77
Minimum % -22.90 -22.90 -22.90 -22.90 -22.90 -22.90 -22.90 -22.90 -22.90
Maximum % 14.75 14.50 13.87 14.50 13.87 14.75 14.75 14.12 14.12
Sharpe 0.42 0.32 0.33 0.35 0.32 0.34 0.36 0.35 0.32
∆ Sharpe -0.10 -0.09 -0.06 -0.09 -0.08 -0.06 -0.07 -0.10
p-value (0.83) (0.80) (0.73) (0.80) (0.76) (0.71) (0.70) (0.81)
Alpha -1.21 -0.27 -0.76 -0.13 -0.68 -0.81 -0.30 0.25
p-value (0.33) (0.83) (0.54) (0.92) (0.61) (0.52) (0.81) (0.84)
Rolling 5-year Win 0.25 0.34 0.27 0.39 0.28 0.29 0.23 0.14
Rolling 10-year Win 0.22 0.35 0.23 0.37 0.20 0.20 0.17 0.06

Table 12: Descriptive statistics and performance of the active market timing strategies and the
corresponding passive benchmark. For each active strategy we simulate monthly returns out-of-
sample for both rolling and expanding estimation schemes. The descriptive statistics for means
and standard deviation are annualized and reported in percentages. The rolling and expanding
estimation schemes are denoted by Roll and Exp. Sharpe denotes the annualized Sharpe ratios
and Alpha denotes the annualized alpha in the Fama-French-Carhart 4-factor model. The values of
alpha, minimum and maximum are reported in percentages. For each Sharpe ratio we test the null
hypothesis H0 : SRMT ≤ SRBH , where SRMT is the Sharpe ratio of the active strategy and SRBH

is the Sharpe ratio of the passive benchmark. For each alpha, the following null hypothesis is tested
H0 : α = 0. P-values are reported in brackets and values in bold text are statically significant at
the 5% level. BH (Buy and Hold) denotes the passive benchmark. COMBI denotes a combination
of all possible strategies. MAC denotes the Moving Average Crossover rule. MAE denotes the
Moving Average Envelope rule. MOM denotes the time-series Momentum rule. The rolling 5- and
10-year window denotes the probability of outperformance over a 5- and 10-year horizon.

This leads to poorer performance, and all reported values of ∆ Sharpe are negative. Similar

observations are made for the Fama-French-Carhart 4-factor alpha, with all but one of

the active strategies yielding negative abnormal returns. Like we saw for monthly data

on the S&P Composite index, none of the strategies manage to avoid the largest negative

return. On the other hand, we actually see that two of the strategies in both periods
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manage to capture the maximum return. Like for monthly data on the S&P Composite,

all active strategies has a higher kurtosis than the buy-and-hold. We also see generally

greater kurtosis than we have seen for the other datasets, and also slightly greater negative

skewness. The 5- and 10-year outperformance probabilities substantiates the impression of

poor performance. 14 out of 16, and 13 out of 16 reported 5- and 10-year outperformance

probabilities respectively, are less than 35%.

Portfolios Sorted on Size

Table 13 gives summary statistics, and results of statistical tests, when simulating our three

different trading rules on two different stock portfolios sorted on size. Small and Large

denotes the low and high quintile portfolios sorted on size respectively. The initial in-

sample period spans from January 1928 to December 1952, and the initial out-of-sample

period spans from January 1953 to December 2015. Simulations are run for both choosing

from all possible trading rules, denoted by COMBI, and each trading rule type by itself.

In simulating the results, we use the rolling estimation scheme only. Also included are the

descriptive statistics for the passive benchmark, to compare. Panel A and B gives statistics

and results for daily and monthly data respectively. Observe that as the split point is 1953,

the rolling in-sample window is 25 years.

We start by looking at the Small-portfolio, which obviously has performed very well.

As we for previous datasets have seen that annual mean returns has been lower for the

active strategies, compared to the passive benchmark, we here see the complete opposite.

Together with all mean returns being considerably greater, we also see that annual standard

deviations are considerably lower for the active strategies. This in turn gives high values of

outperformance measured by ∆ Sharpe, and all active strategies significantly outperform

the passive on a 1% level. This is the case for both daily and monthly data. We also

see very high levels of positive abnormal return, measured by the Fama-French-Carhart

4-factor alpha. Also these being statistically significant at the 1% level. Even though we

see significant outperformance for both daily and monthly data, we clearly see that daily

performs best, having both higher annual mean return, and lower annual standard deviation.

Looking at the shape of the distributions, we see much the same as for daily data on the two

stock indices, while the monthly data actually exhibits positive skewness for three of the
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Size Sorted: Out-of-Sample

Small Large

BH COMBI MAC MAE MOM BH COMBI MAC MAE MOM

Panel A: Daily

Mean % 12.55 18.98 18.82 19.03 14.79 11.02 10.30 9.52 10.18 9.83
Standard Deviation % 15.08 9.52 9.52 9.51 9.91 15.34 10.41 10.66 10.33 10.95
Skewness -0.67 -0.62 -0.60 -0.63 -0.83 -0.54 -0.42 -0.38 -0.44 -0.41
Kurtosis 11.69 10.46 10.34 10.48 11.76 18.82 7.01 7.28 7.20 7.27
Minimum % -10.81 -6.27 -6.27 -6.27 -6.27 -19.27 -6.91 -6.69 -6.91 -6.91
Maximum % 8.42 5.28 5.28 5.28 6.80 11.82 4.89 4.89 4.89 4.89
Sharpe 0.54 1.54 1.52 1.55 1.05 0.44 0.57 0.48 0.56 0.50
∆ Sharpe 0.99 0.98 1.00 0.51 0.14 0.05 0.13 0.07
p-value (0.00) (0.00) (0.00) (0.00) (0.07) (0.31) (0.07) (0.24)
Alpha 10.76 10.60 10.83 5.13 0.90 -0.35 0.92 -0.33
p-value (0.00) (0.00) (0.00) (0.00) (0.33) (0.70) (0.31) (0.71)
Rolling 5-year Win 0.94 0.92 0.94 0.87 0.56 0.52 0.56 0.50
Rolling 10-year Win 0.97 0.96 0.96 0.93 0.70 0.53 0.68 0.71

Panel B: Monthly

Mean % 13.75 16.33 15.57 15.15 14.76 10.91 10.10 9.88 10.35 10.20
Standard Deviation % 20.71 15.05 14.67 15.58 14.50 14.35 11.17 11.03 11.07 10.98
Skewness -0.20 0.33 0.27 -0.12 0.33 -0.36 -0.46 -0.46 -0.43 -0.53
Kurtosis 2.52 4.85 5.10 6.80 5.00 1.66 3.92 4.19 3.84 3.97
Minimum % -29.63 -20.82 -20.82 -29.63 -20.82 -20.31 -20.31 -20.31 -20.31 -20.31
Maximum % 27.70 27.70 27.70 27.70 27.70 18.12 13.16 13.16 13.16 12.07
Sharpe 0.45 0.79 0.76 0.69 0.72 0.45 0.51 0.50 0.54 0.53
∆ Sharpe 0.34 0.31 0.24 0.26 0.06 0.04 0.08 0.07
p-value (0.00) (0.00) (0.00) (0.01) (0.25) (0.32) (0.18) (0.22)
Alpha 5.69 4.90 3.48 5.04 0.17 -0.11 0.11 0.32
p-value (0.00) (0.00) (0.01) (0.00) (0.85) (0.90) (0.90) (0.72)
Rolling 5-year Win 0.83 0.83 0.74 0.80 0.45 0.50 0.50 0.48
Rolling 10-year Win 0.95 0.95 0.88 0.88 0.55 0.65 0.58 0.59

Table 13: Descriptive statistics and performance of the active market timing strategies and the
corresponding passive benchmark. Small denotes a portfolio consisting of the smallest 20% of US
stocks sorted on size, while Large denotes a portfolio consisting of the largest 20%. For each active
strategy we simulate daily and monthly returns out-of-sample for the rolling estimation scheme from
January 1953 to Desember 2015. The descriptive statistics for means and standard deviation are
annualized and reported in percentages. Sharpe denotes the annualized Sharpe ratios and ∆ Sharpe
denotes the difference in Sharpe ratios between the active strategy end the passive benchmark.
Alpha denotes the annualized alpha in the Fama-French-Carhart 4-factor model. The values of
alpha, minimum and maximum are reported in percentages. For each Sharpe ratio we test the null
hypothesis H0 : SRMT ≤ SRBH , where SRMT is the Sharpe ratio of the active strategy and SRBH

is the Sharpe ratio of the passive benchmark. For each alpha, the following null hypothesis is tested
H0 : α = 0. P-values are reported in brackets and values in bold text are statically significant at
the 5% level. BH (Buy and Hold) denotes the passive benchmark. COMBI denotes a combination
of all possible strategies. MAC denotes the Moving Average Crossover rule. MAE denotes the
Moving Average Envelope rule. MOM denotes the time-series Momentum rule. The rolling 5- and
10-year window denotes the probability of outperformance over a 5- and 10-year horizon.

four reported return series. For daily data, we see that the active strategies manage to avoid

the largest negative return, but also fail to capture the largest positive return. For monthly

data, we see that three of the four trading rules avoid the largest negative return, while all

actually manage to capture the largest positive return. This is probably also the reason why
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we see positive skewness for these strategies. Looking at the 5- and 10-year outperformance

probabilities, it once more becomes clear that the active strategies has outperformed the

passive. Especially for daily data, where we see 5- and 10-year outperformance probabilities

as high as 94% and 97% respectively.

1970 1980 1990 2000 2010

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

D
e
lt
a

 S
h
a
rp

e

(a) Daily

1970 1980 1990 2000 2010
0
.0

0
.2

0
.4

0
.6

0
.8

D
e
lt
a

 S
h
a
rp

e

(b) Monthly

Figure 3: Rolling 10-year outperformance in trading small stocks over the period January 1953
to December 2015. The results are simulated out-of-sample using the COMBI rule for the rolling
estimation scheme. Delta Sharpe denotes the difference between the Sharpe ratio of the active
strategy and the passive benchmark and is calculated ∆ = SRMT − SRBH , where SRMT is the
Sharpe ratio of the active strategy and SRBH is the Sharpe ratio of the passive benchmark. The
solid black line gives where SRMT = SRBH .

Figure 3 plots the 10-year rolling outperformance when trading small stocks using both

daily and monthly data. We see that the active strategy has outperformed its passive

counterpart over the period 1960 to 2000, especially good performance is seen when using

daily data. However, the performance deteriorates dramatically over the last 10 years or

so. In the end of the sample the outperformance has disappeared completely both for daily

and monthly data. For daily we even see underperformance in the very end. Thus in this

period we actually see monthly trading performing better than daily.

Looking at the Large-portfolio, we see that the results very much resembles what we saw

for the S&P Composite in Panel A of both Table 9 and 10. This is though to be expected

as many of the same stocks will be included in a portfolio consisting of the 20% largest

companies in the US, as in the S&P Composite index. We therefore do not comment the

results further.
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To conclude, we see that the active strategies historically have performed very well when

trading on small stocks. We find statistically significant outperformance when using both

daily and monthly data, though daily seems to have performed significantly better. Interest-

ingly, the performance has deteriorated severely over the past decade, and the statistically

significant outperformance has disappeared. Towards the end of the sample we also see that

daily trading no longer perform better than monthly. We even see underperformance for

daily data over the past 10 years or so. For large stocks we see much the same as we did

for the S&P Composite index, with no statistically significant outperformance.

Portfolios Sorted on Value

Similar to Table 13, Table 14 gives summary statistics, and results of statistical tests, when

simulating our three different trading rules on two different portfolios, only this time sorted

on book-to-market ratio. Growth and Value denotes the low and high quintile portfolios

sorted on value respectively. Except different data, Table 14 is equal to Table 13.

Looking at the results of the Growth-portfolio for daily data, we once again see the

pattern that annual mean returns of the active strategies are slightly lower than that for

buy-and-hold. We also see that annual standard deviation are considerably lower, and that

this leads to an outperformance measured by ∆ Sharpe. These levels of ∆ Sharpe are

quite high, and though none of the four are statistically significant at the 5% level, three

of them are at the 10% level. We also see quite large positive abnormal returns, one being

statistically significant at the 5% level. Both the shape of the distribution and minimum

and maximum returns have similar characteristics as that we have seen for the other daily

datasets. Further, we see that the 10-year outperformance probabilities are quite high, two

of them being 82%. The best strategy also outperforms the passive buy-and-hold 73% of

the time when we have a 5-year investment horizon.

For the Value-portfolio, we see that the annual mean returns are relatively less reduced

when we apply the market timing strategies, while the standard deviations still decline quite

a lot. Consequently values for ∆ Sharpe are greater, two of them statistically significant at

the 5% level, while another at the 10% level. We also see high positive abnormal returns

for three of the strategies, where one is significant at the 5% level, and the other two at the

10% level. The kurtosis of these strategies are slightly higher than what we have seen for
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Value Sorted: Out-of-Sample

Growth Value

BH COMBI MAC MAE MOM BH COMBI MAC MAE MOM

Panel A: Daily

Mean % 10.75 10.28 10.27 10.56 9.58 14.87 13.24 13.38 13.21 11.88
Standard Deviation % 16.26 10.98 11.17 10.94 11.36 17.17 11.35 11.38 11.17 11.50
Skewness -0.30 -0.43 -0.38 -0.45 -0.38 -0.48 -0.81 -0.64 -1.10 -0.55
Kurtosis 12.75 8.24 8.40 8.39 6.63 18.07 12.99 11.08 17.18 7.45
Minimum % -17.27 -8.14 -8.14 -8.14 -6.91 -16.90 -10.24 -10.24 -13.32 -7.61
Maximum % 12.67 5.42 5.42 5.42 5.42 11.96 7.26 7.26 6.30 6.30
Sharpe 0.39 0.54 0.53 0.57 0.46 0.61 0.78 0.79 0.79 0.65
∆ Sharpe 0.15 0.14 0.17 0.07 0.17 0.18 0.18 0.04
p-value (0.08) (0.10) (0.07) (0.24) (0.05) (0.04) (0.06) (0.36)
Alpha 1.65 1.05 2.00 -0.17 1.90 1.81 2.26 -0.40
p-value (0.11) (0.29) (0.05) (0.87) (0.08) (0.09) (0.04) (0.70)
Rolling 5-year Win 0.66 0.59 0.73 0.49 0.63 0.67 0.62 0.47
Rolling 10-year Win 0.82 0.67 0.82 0.60 0.72 0.73 0.71 0.53

Panel B: Monthly

Mean % 10.77 9.78 9.94 9.93 7.43 14.99 12.16 11.91 12.58 12.93
Standard Deviation % 16.20 12.33 12.92 11.53 12.22 17.55 12.99 12.52 13.35 13.50
Skewness -0.33 -0.45 -0.43 -0.05 -0.60 -0.22 -0.23 -0.62 -0.20 -0.22
Kurtosis 1.66 4.19 3.73 1.76 4.46 2.22 4.39 3.86 4.04 4.27
Minimum % -23.76 -23.76 -23.76 -14.33 -23.76 -20.99 -20.99 -20.99 -20.99 -20.99
Maximum % 22.03 13.14 14.82 13.14 13.14 25.17 22.76 14.10 22.76 22.51
Sharpe 0.39 0.44 0.43 0.48 0.25 0.60 0.60 0.60 0.61 0.63
∆ Sharpe 0.04 0.03 0.09 -0.14 -0.01 -0.00 0.01 0.03
p-value (0.37) (0.36) (0.22) (0.94) (0.58) (0.49) (0.51) (0.39)
Alpha 0.28 -0.37 0.95 -2.24 -0.33 -0.08 0.22 0.10
p-value (0.80) (0.71) (0.37) (0.03) (0.78) (0.94) (0.85) (0.93)
Rolling 5-year Win 0.51 0.41 0.56 0.24 0.46 0.38 0.50 0.38
Rolling 10-year Win 0.50 0.48 0.71 0.24 0.46 0.44 0.47 0.48

Table 14: Descriptive statistics and performance of the active market timing strategies and the
corresponding passive benchmark. Growth denotes a portfolio consisting of the lowest 20% of US
stocks sorted on book-to-market, while Value denotes a portfolio consisting of the highest 20%. For
each active strategy we simulate daily returns out-of-sample for the rolling estimation schemes from
January 1953 to Desember 2015. The descriptive statistics for means and standard deviation are
annualized and reported in percentages. Sharpe denotes the annualized Sharpe ratios and ∆ Sharpe
denotes the difference in Sharpe ratios between the active strategy end the passive benchmark.
Alpha denotes the annualized alpha in the Fama-French-Carhart 4-factor model. The values of
alpha, minimum and maximum are reported in percentages. For each Sharpe ratio we test the null
hypothesis H0 : SRMT ≤ SRBH , where SRMT is the Sharpe ratio of the active strategy and SRBH

is the Sharpe ratio of the passive benchmark. For each alpha, the following null hypothesis is tested
H0 : α = 0. P-values are reported in brackets and values in bold text are statically significant at
the 5% level. BH (Buy and Hold) denotes the passive benchmark. COMBI denotes a combination
of all possible strategies. MAC denotes the Moving Average Crossover rule. MAE denotes the
Moving Average Envelope rule. MOM denotes the time-series Momentum rule. The rolling 5- and
10-year window denotes the probability of outperformance over a 5- and 10-year horizon.

other datasets, and the skewness slightly more negative. The strategies avoid the largest

negative returns, but also miss the greatest positive returns. The three best strategies have

outperformance probabilities in the range of 62% to 67% and 71% and 73% for 5- and

10-year horizons respectively.
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For monthly data we see that both portfolios perform much worse. Both with relatively

larger decreases in annual mean returns, and less decrease in standard deviation when ap-

plying the strategies, yielding lower values of ∆ Sharpe. We see little or no outperformance,

and far from any statistically significant outperformance. No statistically significant posi-

tive abnormal returns are observed, and several strategies yield negative abnormal returns.

One of which also statistically significant at the 5% level. Outperformance probabilities are

also relatively low, ranging in the area between 40% and 50% for most strategies, both with

5- and 10-year horizons.

To conclude, we see that the active strategies has performed quite well for value stocks

when trading daily, with several performance measures being statistically significant. For

growth stocks the performance is worse, though we do find a statistically significant abnor-

mal return when using the MAE rule on daily data. We also see a clear tendency that the

strategies have performed superior when using daily data compared to monthly.

Summarizing our findings so far, a clear pattern emerges when looking at mean returns

and standard deviations of the active strategies. Standard deviation decreases substantially

across all datasets, but also the mean returns decrease for almost all datasets. The only

exception is daily data on small stocks. This leads to varying risk-adjusted performance,

where some outperform, whereas other underperform the passive benchmark. However,

almost none of the observed outperformances are statistically significant. Statistically sig-

nificant outperformance is seen for small stocks, though the outperformance deteriorates

and disappears over the last 10 years of the sample. Further looking at small stocks, we

see that daily trading performed much better than monthly in earlier years. This is no

longer the case, and we now actually see the opposite. This is also the case for the other

stock portfolios. In earlier years we see superior performance when trading daily, whereas

more recently, we see that monthly trading has performed just as good, or even better. We

further see that the performance is highly non-uniform, varying significantly over time.

5.2.2 Drawdown Analysis

To further analyse the risk, we can look at the drawdowns in the strategy returns. It is

interesting to see how strategies may reduce risk by reducing the largest drawdowns, and it
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Drawdown Analysis

COMBI MAC MAE MOM
BH

roll exp roll exp roll exp roll exp

Panel A: S&P Composite Daily

Average % 2.23 2.10 2.10 2.12 2.13 2.08 2.06 2.20 2.26
Median % 0.73 0.76 0.84 0.74 0.77 0.79 0.83 0.74 0.76
Average max % 34.68 21.98 20.16 23.55 23.20 20.84 18.55 25.38 23.10
Max % 55.23 53.87 49.03 56.51 53.37 51.01 32.97 44.12 44.67

Panel B: S&P Composite Monthly

Average % 6.41 5.26 4.85 5.68 4.93 5.14 4.71 4.97 5.11
Median % 3.12 3.00 3.16 3.61 2.97 3.09 3.01 3.12 3.09
Average max % 31.27 20.45 17.31 19.86 19.10 19.17 17.63 17.75 18.42
Max % 50.96 43.95 40.29 37.68 37.12 41.96 41.35 43.15 40.29

Panel C: DJIA Daily

Average % 2.14 2.04 1.98 1.97 2.03 2.08 1.97 2.16 2.10
Median % 0.75 0.77 0.79 0.77 0.82 0.84 0.78 0.86 0.83
Average max % 32.17 22.88 19.92 20.96 20.35 20.28 19.45 21.41 23.54
Max % 51.64 44.26 45.17 43.01 44.59 41.47 45.17 38.55 54.60

Panel D: DJIA Monthly

Average % 6.14 5.46 5.66 4.87 5.45 5.62 5.43 5.68 5.81
Median % 3.17 3.50 3.26 2.69 3.11 3.88 3.24 2.84 3.18
Average max % 28.20 18.84 20.49 19.58 21.73 18.71 19.80 21.27 20.19
Max % 46.96 43.05 39.35 41.52 42.75 27.89 31.94 39.35 39.35

Table 15: Summary statistics for the drawdown in the out-of-sample simulation from Desember
1937 to Desember 2015. All statistics are reported in percentages. Average max drawdown denotes
the average of the 10 largest drawdowns.

is a much used risk measure by practitioners. We will therefore look at the average, median

and maximum drawdown, as well as the average of the ten largest drawdowns.

Table 15 shows descriptive statistics of drawdowns of the passive benchmark and the

active strategies. We see that the average drawdowns of almost all strategies, for all datasets

are less than that for the passive, with only two exceptions. Medians tends to be slightly

greater for the active strategies, but not severely. More importantly, we see that the average

of the ten greatest drawdowns are significantly lower for the active strategies. This means

that the active strategies often manage to avoid the largest drops in the market. Also looking

at the maximum drawdowns, we see that most strategies manage to avoid the largest drop.

Interestingly we see that two of the reported strategies actually have a greater maximum

drawdown than its passive benchmark.

What we generally see is that the strategies reduces risk. Especially this becomes evident

looking at the average of the ten largest drawdowns, with all strategies reducing this measure

significantly. Once again it looks like the MAE rule produces the lowest risk, especially for

daily data.
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5.2.3 Analysis of Trading Rules

We have now seen how the strategies perform, but which trading rules are used to get

these results? Here we take a closer look at which rules that are being used. Both to see

which rules that are used most frequently, but also to compare how the two test procedures

choose trading rules. To illustrate this, we provide barplots showing the most used trading

rules, and their frequency of use. Further, to see the relationship between the different

trading rules, we also produce a cluster dendrogram. We do so using both a rolling and an

expanding in-sample window.
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(a) Barplot: Rolling
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(b) Barplot: Expanding
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(c) Dendrogram: Rolling
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(d) Dendrogram: Expanding

Figure 4: Barplots and cluster dendrograms of the most frequent strategies in the out-of-sample
simulation on daily data on the S&P Composite index from January 1953 to Desember 2015. The
barplots in (a) and (b) illustrates the most frequent strategies for both the rolling and expanding
estimation schemes. The cluster dendrograms in (c) and (d) is a graphic representation of the
correlation matrix and illustrate the relationship between the most frequent strategies.
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Figure 4 shows barplots and dendrograms of which strategies that has been used when

trading daily on the S&P Composite index. We include graphics for both the rolling and

expanding estimation scheme. For rolling, we only present the 20 most frequently used

trading rules. The initial in-sample period spans from January 1928 to December 1952,

and the initial out-of-sample period spans from January 1953 to December 2015. The

barplots shows the frequency of use, while the dendrogram shows the relationship between

the different trading rules. The distance given on the y-axis of the dendrogram is a measure

of relationship between two trading rules. It is calculated as (1 − ρi,j) · 100, where ρi,j is

the correlation between trading rule i and j. Consequently, a distance of 5 means that the

trading rules have a positive correlation of 0.95.

For daily data, we see that the rolling estimation scheme changes strategy more often,

while the expanding stays more with the same trading rules throughout the period. For both

schemes the different trading rules are highly correlated, and some rules produce almost

identical returns. However, the similarities in trading rules comes as no surprise as many of

them are practically the same. The only difference might be 10 or 20 days in the averaging

window, or 0.25 percent in the percentage band (MAE rule). We observe that different

versions of the MAE rule is highly represented, both for rolling and expanding, and it once

again becomes clear that this is the best performing trading rule when using daily data.

Figure 5 is equal to Figure 4 only for monthly data. Once again we see that when

using a rolling in-sample window, many different trading rules are used, while when using

an expanding window, we only use a few. Different from for daily data, we here see quite

large distances between the trading rules. We also see that different types of trading rules

are used, especially when using a rolling in-sample window. Whereas we for daily data saw

mainly the MAE rule, we here see that both the MAC and the MOM rule is well represented.

It is interesting to see that it is far from one single rule that is the best performing trading

rule over different in-sample periods. Similar results and implications are also found for the

other datasets used in the thesis.

To conclude, we see that the rolling estimation scheme changes trading rules often,

whereas the expanding scheme stays more with the same rules. Even though many of the

trading rules produce similar returns, there are still differences in the best trading rules

over different in-sample periods. This advocates for a dynamic strategy, which can switch
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(a) Barplot: Rolling
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(b) Barplot: Expanding
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(c) Dendrogram: Rolling
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(d) Dendrogram: Expanding

Figure 5: Barplots and cluster dendrograms of the most frequent strategies in the out-of-sample
simulation on monthly data on the S&P Composite index from January 1953 to Desember 2015. The
barplots in (a) and (b) illustrates the most frequent strategies for both the rolling and expanding
estimation schemes. The cluster dendrograms in (c) and (d) is a graphic representation of the
correlation matrix and illustrate the relationship between the most frequent strategies.

between different trading rules, in contrast to applying just one rule over a long period.

Further, we see that the MAE rule is preferred for all our daily datasets. For monthly data

the story is different, here we see a wider mix of rules being used, including MOM, MAC,

as well as MAE.

5.2.4 Dependence on Split Point

We have previously seen how the active strategies perform versus the passive buy-and-hold.

Though we have only seen the performance for two different, arbitrarily chosen split points
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between the in-sample and out-of-sample periods. We now want to see if the strategies

performance is dependent on the choice of the split point, and if so, how significant the

dependence is. This is interesting to see, because if the performance is severely dependent on

the split point, it will question the robustness of the strategies’ outperforming capabilities.

To study this, we provide plots showing the outperformance, measured by ∆ Sharpe, and

its corresponding p-value for different split points through time.

Figure 6 shows the outperformance measured by ∆ Sharpe and its corresponding p-value

of monthly trading on the S&P Composite index, when the split point is rolled through

time. Looking at this we can see if, and to what degree the choice of split point affects

the performance of the active strategies. Estimations are done when using the COMBI

rule. The first split point is January 1938, while the last is December 2005. The initial

in-sample period starts in January 1928, and is fixed for the expanding estimation scheme.

The start of the in-sample period for the rolling estimation scheme rolls forward as the

split point rolls forward, resulting in a constant in-sample period of 10 years for the rolling

estimation scheme. For both estimation schemes, the end of the out-of-sample period is

fixed to December 2015. This means that each point on the blue line and each point on the

red line gives the ∆ Sharpe and its corresponding p-value respectively, where the split point

is given by the x-axis and the end of the out-of-sample period is December 31st, 2015. E.g.

1953 and 1970 in Figure 6 (b) gives exactly the same ∆ Sharpe and p-value as we see for

COMBI expanding in Table 9, Panel A and Panel B respectively. This is however not the

case for Figure 6 (a) and Table 9 COMBI rolling, as the rolling in-sample periods in Table

9 are 25 and 42 years, whereas it in Figure 6 (a) is only 10 years.

From Figure 6, we see that the outperformance of the tested market timing strategies

varies significantly with different choices of split points. Especially the rolling estimation

scheme is very dependent on the choice of split point, whereas the expanding scheme seems

to be somewhat more stable, at least over certain periods. We see that when using an

expanding in-sample period, the performance is better than when we use a 10-year rolling

in-sample period, and it has a positive ∆ Sharpe for the whole period. Even though it seem

to outperform the passive counterpart, the outperformance is almost never statistically

significant. The exceptions are only a few split points in a tiny period around year 2000.

For the rolling estimation scheme the performance is generally worse than that for the
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(a) Rolling
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(b) Expanding

Figure 6: Delta Sharpe and p-value for different choices of split points from January 1938 to
Desember 2005. The results are simulated out-of-sample using the COMBI rule for both rolling
and expanding estimation schemes. Delta Sharpe denotes the difference between the Sharpe ratio
of the active strategy and the passive benchmark and is calculated ∆ = SRMT − SRBH . For each
Sharpe ratio we test the null hypothesis H0 : SRMT ≤ SRBH , where SRMT is the Sharpe ratio of
the active strategy and SRBH is the Sharpe ratio of the passive benchmark. The solid black line
gives where SRMT = SRBH .

expanding estimation scheme, and we see underperformance for almost half the sample.

Nor is it ever close to statistically significantly outperform the passive buy-and-hold.
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(a) Daily
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(b) Monthly

Figure 7: Delta Sharpe and p-value for different choices of split points from January 1953 to
Desember 2005. The results are simulated out-of-sample using the COMBI rule for both rolling
and expanding estimation schemes. Delta Sharpe denotes the difference between the Sharpe ratio
of the active strategy and the passive benchmark and is calculated ∆ = SRMT − SRBH . For each
Sharpe ratio we test the null hypothesis H0 : SRMT ≤ SRBH , where SRMT is the Sharpe ratio of
the active strategy and SRBH is the Sharpe ratio of the passive benchmark. The solid black line
gives where SRMT = SRBH .
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Figure 7 shows the outperformance of the market timing strategies for different split

points when the underlying passive benchmark is small-cap stocks. Note that we here

only see plots when we use the rolling estimation scheme, and that the initial in-sample

period spans from January 1928 to Desember 1952, leaving a 25-year rolling in-sample

window. We see statistically significant outperformance for most of the sample, but for

split points towards the end, the performance deteriorates significantly. This is also in line

with what we saw for the 10-year rolling outperformance. Even though the outperformance

stays statistically significant over a long period, the performance varies a lot. Thus the

performance is also here dependent on the choice of split point.

Similar plots for all our datasets leave us with the same impression relating to the

dependence on split point. No matter if the performance is relatively good or bad, it varies

significantly with different choices of split point. Plots for all other datasets can be found

in Appendix II

To conclude, we generally see that the performance of the trading strategies are depen-

dent on the choice of split point. This is the case across all our datasets, both when the

general performance has been relatively good and relatively poor. This implies that when

we start investing using these strategies may decide whether we will outperform or under-

perform the passive benchmark. Further, it questions whether the tested strategies has

outperformance capabilities, or if outperformance merely is a result of luck. It also shows

that the out-of-sample testing procedure is not a complete remedy for the data mining bias,

as the results can be altered by the choice of split point.

5.2.5 Dependence on In-Sample Period Length

We have seen that the performance of the active strategies is dependent on the split point,

now we also want to investigate if it is dependent on the choice of in-sample period length.

It is interesting to see if also this parameter alters the performance significantly, making

the performance even more unpredictable. Also this may give an indication on what the

minimum length of the in-sample window should be. In turn, it also indicates how much

data that is required to apply the active strategies.

To illustrate the dependence between market timing strategy performance, and the

choice of in-sample period, we plot the outperformance of a fixed out-of-sample period,
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with different start points for the initial in-sample period. That is, the start and end of

the out-of-sample period is fixed, while the start of the initial in-sample period is rolled

through time. Figure 8 shows such plots for both the rolling and expanding in-sample

windows, for two different choices of out-of-sample periods. (a) and (b) gives plots when

the out-of-sample period spans from January 1985 to December 2015, while (c) and (d)

when the out-of-sample period spans from January 2000 to December 2015. (a) and (c)

gives for the rolling estimation scheme, whereas (b) and (d) gives for the expanding. The

blue and red lines gives the outperformance measured by ∆ Sharpe, and its corresponding

p-value respectively. The plotted lines gives the measures for the out-of-sample period,

when the start of the initial in-sample period is given by the x-axis. The start date of the

initial in-sample periods spans from January 1928 to ten years before the fixed split date,

i.e. January 1975 for (a) and (b), and January 1990 for (c) and (d). All results are found

using monthly data of the S&P Composite index.

Looking at the first fixed out-of-sample period, in (a) and (b), we see that the perfor-

mance of both the rolling and expanding in-sample window varies quite a lot for the different

choices of initial in-sample periods. With relatively long in-sample periods, we manage to

stably outperform the passive benchmark, but still the size of the outperformance varies

quite a bit. As the in-sample period becomes shorter, the performance becomes poorer, and

also more unstable. For in-sample periods less than 20 years, we see that the performance

is very dependent on the choice of the in-sample period. Only a few months difference in

the in-sample period start date, can determine if one either performs better or worse than

the passive benchmark. Poor performance seems to come “earlier” with the rolling estima-

tion scheme, and in general performance looks to be better for the expanding estimation

scheme. We note that even though the performance varies a lot, no choice of in-sample

period creates statistically significant outperformance at the 5% level.

For the second fixed out-of-sample period, we see much the same pattern as in the first,

only with generally better performance. This is in line with earlier presented results, where

we have seen the time around year 2000 to be the best split point between the in-sample and

out-of-sample periods. Once again we see that market timing strategies seems to perform

better when chosen with longer in-sample periods. We also see that the rolling in-sample

window needs to be longer than the expanding. Though when the initial in-sample period
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(a) Rolling, 1985-2015
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(b) Expanding, 1985-2015
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(c) Rolling, 2000-2015
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(d) Expanding, 2000-2015

Figure 8: Delta Sharpe and p-value for out-of-sample simulations using the COMBI rule, when
the out-of-sample window is fixed. The plots shows the performance in the fixed window for different
choices of in-sample periods. For plots (a) and (b) the fixed window is set from January 1985 to
December 2015, and for plots (c) and (d) the fixed window is set from January 2000 to December
2015. The dates on the x-axis represents the choice of start date of the initial in-sample period.

is less than 20 years, it looks as though the rolling estimation scheme performs superior to

the expanding scheme. For this period we see several choices of in-sample periods where

market timing strategies significantly outperforms the passive buy-and-hold, on both the

10% and 5% level. This is though only the case when the initial in-sample period is longer

than 25 and 15 years for the rolling and expanding estimation schemes respectively.

Even though we see improved performance for longer in-sample periods, we see that the

performance can vary significantly with only small differences in in-sample period length.

That is even when the investment period is exactly the same, only months difference in when

60



you start the initial in-sample period can affect if you will outperform or underperform the

passive benchmark. Similar results and implications are found for monthly data on the

DJIA index, and the plots can be found in Appendix III.

To conclude, we see that the performance of the active strategies is dependent on the

length of the in-sample period. Using both a rolling and an expanding in-sample window,

we see that the performance increases with increased in-sample period length. We see that

the rolling window requires a longer initial in-sample window than the expanding, and from

the plots, it looks like the minimum length should be about 25 to 30 years. As the expanding

window expands, and the performance increases with increased in-sample period lengths, it

makes sense that the expanding scheme requires a shorter initial in-sample period. However,

we see that also this scheme requires a minimum of about 15 to 20 years. We further see that

even though the performance is better for longer in-sample periods, only small differences

in in-sample period starting point may lead to significant changes in performance.

6 Discussion

In this thesis we have tested a vast number of market timing strategies, both in- and out-

of-sample. We have done so for two stock indices and four different stock portfolios, with

both daily and monthly data frequency. In all of our results, we see that employing the

active strategies, decreases the risk substantially. It looks like the active strategies manages

to avoid the largest drops in the market, which also becomes evident in our drawdown

analysis. Similarly, it seems that the strategies fail to capture the largest positive returns.

A possible explanation is that large positive returns often follow sever market drops, and

that our strategies do not manage to get invested in the risky asset in time. Consequently

we generally see drops in mean annual return, though for the most part not so severe.

The results in many ways follows what Faber (2007) calls equity-like returns with bond-like

volatility, though our results do not advocate the same optimism towards the strategies’

outperformance capabilities as Faber.

Generally, the empirical results leaves us the impression that market timing strate-

gies statistically significantly outperform their passive counterpart when testing in-sample,

whereas they do not when tests are run out-of-sample. These results are in line with those
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of Zakamulin (2014), and substantiates his claim that data mining is a problem in studies

finding market timing strategies to hold outperforming capabilities over their passive coun-

terpart. That is, testing an extensive amount of different strategies over a given period, and

reporting the best (in-sample testing), is not a good way to measure if the strategies, in a

real-life setting, outperform the passive benchmark. The probability that at least one of the

tested strategies outperforms the passive is relatively large, but there is no guarantee that

it also will perform well the following period. Many studies also back-test the most popular

trading rules, leaving the same data-mining bias. This is because practitioners most likely

already have used an in-sample test to choose these strategies. We therefore focus on the

out-of-sample results to assess the outperformance of the strategy.

Out-of-sample results for the two tested stock indices shows few signs that the active

strategies outperform the passive. Especially results for the DJIA index shows very poor

performance, and leaves no doubt that market timing strategies do not statistically outper-

form the passive buy-and-hold. For the S&P Composite index we see better performance,

though almost none of the reported outperformances are statistically significant at the 5%

level. Like Zakamulin (2014), we see that the performance is highly non-uniform. We also

find that it depends heavily on both the choice of split point and the choice of initial in-

sample period. In fact, looking at Figure 6, we see that if we had chosen to report results

with split point around year 2000, we could have found statistically significant outperfor-

mance when trading monthly on the S&P Composite index. Though looking at Figure 8,

we see that this would have required starting the initial in-sample period before 1950 if

using the expanding estimation scheme, and even earlier if using the rolling. Even then

we could have been “unlucky”, choosing to start the in-sample period in the late 1940s,

resulting in non-significant results. All else equal, using the rolling scheme and starting

the initial in-sample period around 1973, we actually see that the active strategy under-

perform the buy-and-hold16. Also in other results, we have seen that only slight changes

in period choices can effect the performance dramatically. These are good examples of the

non-uniformity of the out-of-sample performance of market timing strategies, and shows

that outperformance may be due to luck rather than science.

Looking at for which data frequency the active strategies has performed best for the

16Commented results are given that the end of the out-of-sample period is set to December 2015
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stock indices, our results are inconclusive. For some results, the daily data looks to perform

the best, while for other, monthly data seem to perform the best. Though none of the

differences result in a change of conclusion on whether the active strategies statistically

outperform the passive or not. We also find somewhat conflicting results for the different

stock portfolios. Results in our tables show a clear tendency across all four portfolios that

the active strategies perform superior when using daily data instead of monthly. For the

value sorted portfolios, we even see that the difference lead to a change in the conclusion

on whether some of the active strategies statistically outperform the passive. Though when

looking at the performance plots with different split points, we see that the best performing

data frequency varies over different periods. Specifically we see that early in our sample,

daily trading looks to have performed superior for all portfolios, whereas it more recently

seems that monthly trading has performed the best. Still our results are in contrast to

the conclusions of Clare et al. (2013), who finds that market timing strategies performs

superior, or at least equal, when using monthly, compared to higher frequency data.

Interestingly, the active strategies looks to have performed very well for some of the

stock portfolios. Especially good performances are seen for the low quintile portfolio sorted

on size in the period from 1960 to 2000. Statistically significant outperformance is found

when using both daily and monthly data, where daily seems to perform superior for most of

the sample. However, in the plots in Figure 3, we see that the outperformance deteriorates

severely towards the end of the sample. For daily trading we even see underperformance

in most recent years. This also leads to monthly trading performing better than daily in

the very end of the sample. Similar tendencies is seen when looking at the plots of different

split points in Figure 7. For split points later than 1995 the outperformance is no longer

statistically significant for neither daily nor monthly data, and in the 2000s, we even see

underperformance for daily trading. Also our in-sample results shows similar signs, with

poorer performance in the last sub-period from 1988 to 2015. In Table 14, statistically

significant outperformances are also found for the high quintile portfolio sorted on value.

However, looking at the performance plot for different split points found in Appendix II,

we see that this statistically significant outperformance only occur for split points between

1953 and 1958. For split points later than that, outperformance deteriorates and for splits

after 1980, all realizations of ∆ Sharpe are negative. Again, this shows the data mining
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problem, and how misleading reporting results from only one split point can be. Looking

only at Table 14, we conclude that market timing strategies using daily data on value stocks

statistically outperform the passive benchmark. Though, when looking at the plot, we see

that this is far from the case.

Results of portfolios consisting of small-cap stocks are the most compelling evidence we

have seen for real-life outperformance of market timing strategies. Still, the deterioration of

performance over the past two decades indicates that outperforming the passive benchmark

is no longer probable for these stocks either. There is also a problem of how to efficiently

trade such portfolios. Composing and trading such portfolios stock by stock is likely to be

very costly, and may in that way deteriorate all possible outperformance. Small-cap stocks

may also be quite illiquid, and in that way incur larger transaction costs. A solution might

be trading in exchange traded funds (ETFs) who follows e.g. a small cap index. However,

studies show ETFs to contain significant tracking errors (see Shin and Soydemir (2010)),

which might also deteriorate outperformance.

Further we have to decide which trading rules to include when finding which rule to use

in the next period. Our results shows that the optimal trading rules depends on what data

frequency we use. For daily data, we generally see that the MAE rule is the best performing.

This is seen both in the in-sample results, the out-of-sample tables, as well as the barplots

in Figure 4. In turn, the good performance of the MAE rule leads us to believe that the

“percentage band” protects the trader against “whipsaws”, and thus prevents excessive

accumulation of transaction cost for daily data. To support this argument, experiments

have shown that restricting the MAE rule significantly deteriorates performance for daily

data. The same performance deterioration is not found for monthly data. The MAC rule

has also performed well, and at times even better than the MAE. It might therefore be more

suitable at times and should be included when choosing trading rules. The question then

becomes if to include the MOM rule. The performance on its own has been variable, though

it actually appear twice as the best performing strategy in the in-sample simulations. It

seems to be the best performing under certain market states, and should arguably also be

included. The possible damage of including it also seems to be small, as our results shows

that the performance of the combination rule seldom is worse than that for the best trading

rule on its own. For monthly data the MAC rule looks to be the best performing. Again
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this is seen both in the in-sample and out-of-sample results. Further we see that the MAE

rule performs only slightly worse, and that the MOM rule seem to work better for monthly

than for daily data. From the barplot in Figure 5 we also see that MOM(5) is the most

frequently used rule in the rolling out-of-sample test, indicating that it has been the best

performing rule over several in-sample periods. Reading our results, we once again argue

that the combination rule gives the best chance of good performance. It is also most realistic

to expect an investor to test several different trading rules instead of just one single rule by

itself.

We also have to decide whether to use a rolling or an expanding in-sample window. Our

result on the matter seems to be varying and difficult to read. Over some periods it looks

as though a rolling window perform superior, whereas for others, an expanding window

seems to perform the best. Even though we see that the performances are similar, we also

see that the two procedures chose strategies quite differently. The fact that the rolling

window changes trading rule more often indicates that different trading rules are preferred

over different periods. If market dynamics changes substantially over time, such a strategy

are likely to perform superior, by not including too old, irrelevant data. Further we have

the problem of choosing the length of the rolling in-sample window. The plots in Figure

8 shows that the rolling window should be quite long, preferably at least 25 years. We

therefore use a 25-year rolling window in most of our out-of-sample tests. This means that

the two test procedures have only slight differences in in-sample periods for a long period

in the beginning of our sample. This, together with the fact that the underlying asset is

the same, may also explain why the performances are similar.

7 Conclusion

Motivated by reoccurring deficiencies in the literature on technical analysis regarding “data

mining” and negligence of transaction cost, this thesis critically investigates the profitability

of moving average and momentum strategies in several stock portfolios. We simulate daily

and monthly returns both in-sample and out-of-sample on two stock indices and four stock

portfolios from 1928 to 2015, while simultaneously taking into account important market

frictions. This is carried out in order to examine if the active strategies outperform the
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passive benchmark on a risk-adjusted basis, and to see if the profitable trading rules dis-

covered in-sample also are profitable when tested out-of-sample. In addition, and for the

first time, we examine the relevance of data frequency in an out-of-sample test. We adopt

a stationary block bootstrap methodology in order to evaluate the statistical significance

of the risk-adjusted performance, measured by the Sharpe ratio, without making any dis-

tributional assumptions. In addition, we further evaluate the active strategies using the

alpha of the Fama-French-Carhart (1997) 4-factor model. A regression bootstrap is used to

determine the statistical significance of the alpha.

The empirical analysis from this thesis reveal that trading rules profitable when tested

in-sample, perform poorly when tested out-of-sample. Specifically, when the underlying

benchmark is the S&P Composite and the DJIA index, we are not able to find any trading

rule out-of-sample with statistical significant risk-adjusted outperformance. However, it is

worth emphasizing that the performance of the active strategies are dataset specific. For

instance, the benefit from timing the market are more distinct on the S&P Composite

compared to the DJIA index. Overall, these results stands in contrast to numerous studies

published in recent decades reporting that “market timing works” in stock markets (see

e.g. Brock et al. (1992), Faber (2007) and Kilgallen (2012)). On the contrary, our results

coincide with the empirical findings by Zakamulin (2014), suggesting that previous reported

performance is highly overstated. We find generally lower volatility and mean return for

all trend following trading rules. Additionally, from the drawdown analysis of the S&P

Composite and DJIA, we see that the average drawdown for the active strategies generally

are lower compared to the corresponding passive benchmark. However, these results are by

no means surprising since the active strategy holds the risk-free asset approximately 30%

of the time.

Whether to use a rolling or an expanding in-sample window remains somewhat unclear.

We see varying performance over different periods, and in general, neither of the two test

procedures stands out as superior to the other. What we find is that when using a rolling

window, the window size must be quite large, and preferably larger than 25 years. We

further see that a rolling window better adopts to changes in the market, and thus is likely

to outperform an expanding window if we have changing market dynamics.

Interestingly, when the underlying asset is small-cap stocks, we are able to find statis-
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tically significant outperformance for both daily and monthly data from the out-of-sample

test. In fact, and contrary to the results on the S&P Composite and DJIA index, we find

that trading small-stocks using daily data performs significantly better than trading using

monthly data. However, towards the end of the sample we see a reversion where trad-

ing using monthly data perform better than trading using daily data. Further, the good

performance of trading small stocks appears to have decayed and disappeared in recent

years. In turn, we consider future profitability from trading small stocks highly unlikely.

For large stocks we find similar results as for the S&P Composite index. Statistically signif-

icant outperformances are also found for value stocks at daily frequency. However, looking

at the performance plot for different split points, we see that this statistically significant

outperformance only occur for split points between 1953 and 1958. This shows the “data

mining” problem and illustrates how misleading reporting results from only one split point

can be. When the underlying portfolio is growth stocks, we are not able to find any trad-

ing rule out-of-sample with statistically significant outperformance measured by the Sharpe

ratio. However, we report a statistical significant positive alpha for the MAE rule at daily

frequency.

Moreover, we find that the performance of the active strategies is highly uneven over

time. This have two important implications. First, the performance of the active strategy

is highly dependent on the choice of sample period and split point, and second, the out-of-

sample testing procedure is not a complete remedy for the “data mining bias”.

Finally, contrary to the findings of Clare et al. (2013), we are not able to find conclusive

evidence suggesting that high frequency data (e.g. daily) deteriorates performance when

the underlying asset is the S&P Composite index. However, by simulating each trading rule

individually, we generally find that the Moving Average Envelope (MAE) rule performs best

for daily data. In turn, this leads us to believe that the “percentage band” protects the

trader against “whipsaw” trading, and thus prevents excessive accumulation of transaction

cost for daily data. Overall, our results shows that the performance of the COMBI rule,

at both daily and monthly frequency, seldom is worse than the best trading rule individu-

ally. Therefore, we argue that choosing the COMBI rule will give the best chance of good

performance.

While the results of this thesis sheds light on some interesting aspects of technical trading
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rules, some unanswered questions remain. In particular, a similar in-depth study can be

conducted for other asset classes like e.g. commodities, bonds, currencies etc. Testing the

profitability of trading currencies is an intriguing topic for two reasons. First, as documented

by Menkhoff and Taylor (2007), technical analysis in FOREX markets is widely used in

practice. And Second, Park and Irwin (2007) finds that a majority of studies in FOREX

markets from 1976 to 1991 report positive trading profits. While the authors note that

the profits disappeared in the 1990s, Zakamulin (2017) argues that this conclusion was

premature, and that the poor performance can be explained by the strengthening of the US

dollar in the period from 1995 to 2005.
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Appendices

Appendix I
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Figure 9: Rolling 10-year outperformance of monthly trading on the S&P Compostie index over the
period January 1953 to December 2015. The results are simulated out-of-sample using the COMBI
rule for the rolling estimation scheme. Delta Sharpe denotes the difference between the Sharpe
ratio of the active strategy and the passive benchmark and is calculated ∆ = SRMT − SRBH ,
where SRMT is the Sharpe ratio of the active strategy and SRBH is the Sharpe ratio of the passive
benchmark. The solid black line gives where SRMT = SRBH .
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(b) Monthly

Figure 10: Rolling 10-year outperformance in trading on the DJIA index over the period January
1953 to December 2015. The results are simulated out-of-sample using the COMBI rule for the
rolling estimation scheme. Delta Sharpe denotes the difference between the Sharpe ratio of the
active strategy and the passive benchmark and is calculated ∆ = SRMT − SRBH , where SRMT

is the Sharpe ratio of the active strategy and SRBH is the Sharpe ratio of the passive benchmark.
The solid black line gives where SRMT = SRBH .
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(a) Daily
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(b) Monthly

Figure 11: Rolling 10-year outperformance in trading large stocks over the period January 1953
to December 2015. The results are simulated out-of-sample using the COMBI rule for the rolling
estimation scheme. Delta Sharpe denotes the difference between the Sharpe ratio of the active
strategy and the passive benchmark and is calculated ∆ = SRMT − SRBH , where SRMT is the
Sharpe ratio of the active strategy and SRBH is the Sharpe ratio of the passive benchmark. The
solid black line gives where SRMT = SRBH .
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Figure 12: Rolling 10-year outperformance in trading growth stocks over the period January 1953
to December 2015. The results are simulated out-of-sample using the COMBI rule for the rolling
estimation scheme. Delta Sharpe denotes the difference between the Sharpe ratio of the active
strategy and the passive benchmark and is calculated ∆ = SRMT − SRBH , where SRMT is the
Sharpe ratio of the active strategy and SRBH is the Sharpe ratio of the passive benchmark. The
solid black line gives where SRMT = SRBH .
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Figure 13: Rolling 10-year outperformance in trading value stocks over the period January 1953
to December 2015. The results are simulated out-of-sample using the COMBI rule for the rolling
estimation scheme. Delta Sharpe denotes the difference between the Sharpe ratio of the active
strategy and the passive benchmark and is calculated ∆ = SRMT − SRBH , where SRMT is the
Sharpe ratio of the active strategy and SRBH is the Sharpe ratio of the passive benchmark. The
solid black line gives where SRMT = SRBH .
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(a) Rolling
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(b) Expanding

Figure 14: S&P Composite daily: Delta Sharpe and p-value for different choices of split points from
January 1938 to Desember 2005. The results are simulated out-of-sample using the COMBI rule
for both rolling and expanding estimation schemes. Delta Sharpe denotes the difference between the
Sharpe ratio of the active strategy and the passive benchmark and is calculated ∆ = SRMT−SRBH .
For each Sharpe ratio we test the null hypothesis H0 : SRMT ≤ SRBH , where SRMT is the Sharpe
ratio of the active strategy and SRBH is the Sharpe ratio of the passive benchmark. The solid black
line gives where SRMT = SRBH .
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(a) Rolling
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(b) Expanding

Figure 15: DJIA daily: Delta Sharpe and p-value for different choices of split points from January
1938 to Desember 2005. The results are simulated out-of-sample using the COMBI rule for both
rolling and expanding estimation schemes. Delta Sharpe denotes the difference between the Sharpe
ratio of the active strategy and the passive benchmark and is calculated ∆ = SRMT − SRBH . For
each Sharpe ratio we test the null hypothesis H0 : SRMT ≤ SRBH , where SRMT is the Sharpe ratio
of the active strategy and SRBH is the Sharpe ratio of the passive benchmark. The solid black line
gives where SRMT = SRBH .
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(a) Rolling
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(b) Expanding

Figure 16: DJIA monthly: Delta Sharpe and p-value for different choices of split points from
January 1938 to Desember 2005. The results are simulated out-of-sample using the COMBI rule
for both rolling and expanding estimation schemes. Delta Sharpe denotes the difference between the
Sharpe ratio of the active strategy and the passive benchmark and is calculated ∆ = SRMT−SRBH .
For each Sharpe ratio we test the null hypothesis H0 : SRMT ≤ SRBH , where SRMT is the Sharpe
ratio of the active strategy and SRBH is the Sharpe ratio of the passive benchmark. The solid black
line gives where SRMT = SRBH .
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(b) Monthly

Figure 17: Large stocks: Delta Sharpe and p-value for different choices of split points from January
1953 to Desember 2005. The results are simulated out-of-sample using the COMBI rule for the
rolling estimation scheme. Delta Sharpe denotes the difference between the Sharpe ratio of the
active strategy and the passive benchmark and is calculated ∆ = SRMT − SRBH . For each Sharpe
ratio we test the null hypothesis H0 : SRMT ≤ SRBH , where SRMT is the Sharpe ratio of the active
strategy and SRBH is the Sharpe ratio of the passive benchmark. The solid black line gives where
SRMT = SRBH .
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(b) Monthly

Figure 18: Growth stocks: Delta Sharpe and p-value for different choices of split points from
January 1953 to Desember 2005. The results are simulated out-of-sample using the COMBI rule
for the rolling estimation scheme. Delta Sharpe denotes the difference between the Sharpe ratio of
the active strategy and the passive benchmark and is calculated ∆ = SRMT − SRBH . For each
Sharpe ratio we test the null hypothesis H0 : SRMT ≤ SRBH , where SRMT is the Sharpe ratio of
the active strategy and SRBH is the Sharpe ratio of the passive benchmark. The solid black line
gives where SRMT = SRBH .
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(b) Monthly

Figure 19: Value stocks: Delta Sharpe and p-value for different choices of split points from January
1953 to Desember 2005. The results are simulated out-of-sample using the COMBI rule for the
rolling estimation scheme. Delta Sharpe denotes the difference between the Sharpe ratio of the
active strategy and the passive benchmark and is calculated ∆ = SRMT − SRBH . For each Sharpe
ratio we test the null hypothesis H0 : SRMT ≤ SRBH , where SRMT is the Sharpe ratio of the active
strategy and SRBH is the Sharpe ratio of the passive benchmark. The solid black line gives where
SRMT = SRBH .
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Appendix III
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(a) Rolling, 1985-2015
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(b) Expanding, 1985-2015
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(c) Rolling, 2000-2015
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(d) Expanding, 2000-2015

Figure 20: DJIA Monthly: Delta Sharpe and p-value for out-of-sample simulations using the
COMBI rule, when the out-of-sample window is fixed. The plots shows the performance in the
fixed window for different choices of in-sample periods. For plots (a) and (b) the fixed window is
set from January 1985 to December 2015, and for plots (c) and (d) the fixed window is set from
January 2000 to December 2015. The dates on the x-axis represents the choice of start date of the
in-sample period.
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Appendix IV

Reflection Note

H̊avard Løseth Modell

To complete our Master degree in Financial Economics, we wanted to find a topic in which

we could utilize the quantitative skills and financial theory we have adopted throughout our

studies. We therefore chose to look closer at the profitability of trading stocks using different

market timing trading rules. The goal of the thesis then became to thoroughly investigate

the performance of stock market timing using strategies based on moving averages and

time-series momentum. We did so by extensive tests of different strategies on data of the

US stock market in the historical period from 1928 to the end of 2015.

We found little to no statistically significant evidence that the active market timing

strategies hold outperforming capabilities over the passive buy-and-hold. This result also

persist across different indices and stock portfolios as well as for both monthly and daily

data frequency. We further found that the performance is highly non-uniform as well as

dependent on the choice of split point between in- and out-of-sample periods and also the

length of the in-sample period. This led us to conclude that timing the US stock market

using moving averages and time-series momentum rules does not outperform the passive

buy-and-hold strategy. We also argue that previous studies finding market timing strategies

to “work” contain a data mining bias leading to flawed results.

Our study in itself, with how to trade, and different market timing strategies might not

be very relevant when looking at internationalization. But if we take a step back, and look

slightly broader, including stock market trading and the financial market, it becomes very

relevant. The US stock market is not only a reflection of the American economy, but is

influenced by factors from economies around the world. In the same way, economics and the

financial markets in the rest of the world is largely dependent on the economic superpower

America. This has become very evident with the different financial crises we have had

throughout the years. Take for instance the crises of 2007/2008. Bad mortgage loans in the

US created a worldwide financial crises, affecting people around the whole world. We also

have the internationalization impact of the internet when it comes to stock trading. With
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an internet access you can easily be situated in Spain, trading equities in the US, Japan and

Norway at the same time. This again shows how stock trading and the financial markets

no longer is restricted by country boarders.

Innovation is an important factor in a sector where computers and technology plays

such an important role. In trading, we have seen a wast increase in the use of computers

and trading algorithms over recent years. Almost all major investment banks and hedge

funds today use computers and trading robots to some extent. Recently we have also

seen that several large institutional investors lay off stock traders, replacing them with

robots programmed with sophisticated trading algorithms. The possible performance of

such artificial intelligence has also been proven by the historical returns of the Medallion

fund of the quantitative hedge fund Renaissance Technologies. With an average annual

return of over 40% since 1990, it has beaten the market every year. With historical success

and the possibilities coming from new technology and increased computer power, it is no

doubt that robots and artificial intelligence has reserved a place in the future of stock

trading, as well as in the financial markets in general.

With great power comes great responsibility, and with asset under management ranging

from billions to trillions of dollars, many institutional investors today has great power. The

focus on responsible investments has increased in recent years, and today there are several

funds focusing on making only sustainable investments in e.g. renewable energy and climate

friendly technology. Still, some argue that the only responsibility of an investment bank

is to maximize their customers wealth within the boundaries of the law. It therefore also

becomes a responsibility for the government and law-makers. They should regulate the

market in a fashion that protects both the interests of the people and the future of this

planet. As greed and unlawful actions always will be a problem in a world driven by money,

governing bodies also has a responsibility to see to it that this laws are adhered to.
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Appendix V

Reflection Note

Lars Magnus Lynng̊ard

In this study we have investigated the performance of trend following strategies, specifically

moving average and momentum trading rules. The aim of the study is to examine stock

markets and portfolios to see if a simple and active trading strategy can outperform the

buy-and-hold strategy. We have tested the strategies on the stock indices; S&P Composite

and DJIA, and stock portfolios; small-cap, large-cap, growth and value. The main findings

can be summarized as follows. When simulating the strategies in a real-life setting we are

generally not able to find active strategies that outperform the passive (B&H). However,

when tested on small stocks, we found that the active strategy outperformed the passive in

the period from 1955 to 2000, but not thereafter.

The thesis is completed using knowledge and skills attained throughout the education

from courses like, econometrics, computational finance, advanced econometrics, corporate

finance, finance theory, etc. Specifically, in advanced econometrics and computational we

learned how to write an academic paper which in turn prepared us for the format the thesis is

written in. In computational finance we also learned the tools necessary to complete the data

programming in R, the main software used for completing the thesis. The topic studied in

this thesis is quite specific and narrow. As a consequence, the following discussion/reflection

will be broadened to technical analysis, trading and portfolio management in general.

In order to examplify how interconnected the financial markets are today, consider that

the 500 largest companies in the US, measured by the S&P 500, earns 50% of their revenues

abroad. In practice, this means that the US economy (and its companies) is not only

dependent on domestic variables like growth, employment, interest rates etc., but also on

the countries where the revenues comes from (e.g. China, Europe, India). This dependency

and global interconnected markets came to light by the recent global financial crisis starting

in 2007. Even though the crisis was connected to the US housing market, the consequences

were severe worldwide. For example, all three private commercial banks in Iceland (which

was considered robust) defaulted. It is now 10 years since the global financial crisis emerged,
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the world has become even more interconnected, which in turn makes me believe that the

next global financial crisis may even be more severe then the last. However, we have seen

in recent years that populist politicians in Europe and US (Trump) are on the rise with

anti-globalization rhetoric. Trump have explicitly said that he wants to ”close” the borders

and bring American factories abroad back to the United States. If this trend continues we

might see a decline or reversion in globalization. Time will tell.

The financial industry is currently undergoing massive changes. Specifically, we see

almost every day new capabilities and improvements from AI (artificial intelligence) and

robots (algorithms). This have several implications. First, many jobs will become redundant

when algorithms can do it 100x faster and for ”free”. Recently, large financial institutions

have announced that robots and algorithms have taken over and will continue to take over

jobs previously completed by humans. This includes capital management, customer service,

etc. However, as some jobs disappear and becomes redundant, new jobs and positions are

needed. And second, not only are robots and algorithms cheaper, they are also much

faster. In trading this is referred to as high frequency trading (HFT). High frequency

trading refers to the process of computers trading millions times a day (mainly against

other computers/algorithms) gaining small profits each time. The algorithms have become

incredibly sophisticated, and before you and I are able to open a news article, the algorithm

have already interpreted the meaning and magnitude of the news, and placed a trade. As

a consequence, humans are not able to compete against the algorithms, and the algorithms

are getting better and faster each day. In addition, from almost anywhere in the world it

is now possible to trade assets worldwide, and not only stocks, but also bonds, currencies,

commodities (e.g. gold, oil, beef, coffee) and real-estate (REIT). Each day, new derivatives

and trading products (ETFs and ETNs) are launched which allows investors to trade or

make a bet about anything. And more importantly, you no longer have to call (and pay)

your broker. Nowadays most people can trade through online retail brokerage firms faster

and cheaper then previously. In summary, the financial industry have changed a lot and

will continue to change.

There is an ongoing debate about the importance of responsible investing. According

to Fiona Reynolds, director of UN’s responsible investment department, over 63 trillions

USD of capital is invested according to UN’s principle of responsible investments and EGS
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(Environmental, Social and Governance). A number that is increasing by the day. In

order to help investors (small and large) to invest more responsibly, Morningstar provide

sustainability ratings based on EGS for a wide arrange of different funds. This allows

investors to not only invest in funds that fits the individual risk-reward level, but also the

individuals values and core principles.
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