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ABSTRACT. We study oscillatory behavior of solutions to a class of even-order
neutral differential equations relating oscillation of higher-order equations to that
of a pair of associated first-order delay differential equations. As illustrated with
two examples in the final part of the paper, our criteria improve a number of
related results reported in the literature.
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1. INTRODUCTION

In this paper, we are concerned with the oscillation of solutions to a class of
even-order neutral differential equations

(1.1) (1) +q(t)z(o(t) =0,

where z(t) = z(t) + p(t)x(7(t)), t > to > 0 and n > 4 is an even natural number.
We suppose that

(Hy) p, q € C([to,0),R), p(t) > 0, ¢(t) > 0, and ¢(t) is not identically zero for
large t;
(Hy) 1, 0 € C([ty, ), R), 7(t) < t, and limy_,o 7(t) = lim; o 0(t) = 0.

Let t, = minyep,,00){7(t),o(t)}. By a solution of (1.1), we mean a function x €
C([t«, 0),R) such that z € C™([ty,0),R) and x(t) satisfies (1.1) on [tg, 00). In what
follows, we suppose that solutions of (1.1) exist and can be continued indefinitely
to the right. Furthermore, we consider only solutions x (¢) of (1.1) which satisfy
sup{|z(t)| : t > T} > 0 for all T' > ¢, and we tacitly assume that (1.1) possesses such
solutions. As customary, a solution of (1.1) is called oscillatory if it has arbitrarily
large zeros on [t,,, 00) for some t, > to; otherwise, we call it non-oscillatory. Equation
(1.1) is termed oscillatory if all its solutions are oscillatory.

Oscillatory and non-oscillatory behavior of solutions to different classes of differ-
ential and functional differential equations always attracted interest of researchers;
see, for instance, [1-5, 7-15] and the references cited therein. One of the main rea-
sons for this lies in the fact that differential and functional differential equations
arise in many applied problems in natural sciences and engineering, cf. Hale [6].
In what follows, we briefly comment on a number of closely related results which
motivated our study. Several interesting oscillation criteria for equation (1.1) have
been reported in the recent papers [1,4,5,11,14] under the assumptions that

(1.2) 0 <p(t) <py < 0, ToOoO=00T,
7 € CY([tg, 00), R), and  7'(t) > 719> 0.
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For the convenience of the reader, we present below some related results. We use
notation 771 and o~ ! for the inverse functions of 7 and ¢ along with

f1(t) = max{0, f ()},
Q(t) = min{q(t), q(r(¥))},  Q(t) = min{g(o*(t)),a(0 " (r(1)))},
Il<t) :t—tl, t1>>t0, [Z(t) :/tlfi_l(S)dS, 2§i§n—1,

t1

Jy(t) = /too 7' (u) /JOO Q(s)dsdu, JI(t) = /too 7'(s)J; 4 (s)ds, 3<i<mn,

Qna(t) = Q1) 1n-1(a(t)),

Q)= 3 (o) 1) T ), 1Sisn-d,

B S O o Gt 0))
P = ) (1 <T—1(t))n—lp(r—l(r—wt)))> |

()
P 0= (- S mn)

Theorem 1.1 ( [1, Theorem 2.2]). Let conditions (Hy) and (H2) be satisfied.
Suppose further that o(t) < 7(t),
(1.3)

R p B o
€Ol ), T 0=0and = e ) 2

If there exist two functions p,d € C'([tg, 00), (0,00)) such that, for some \g € (0, 1),

and

[ |poatm ooy T B i — o
and
R B I NNt 0) I GAC) A
[ 120 [ o= ot o =2 ay - T ai - o,

then equation (1.1) is oscillatory.

Theorem 1.2 ( [5, Corollary 2.8] and [14, Corollary 2.14]). Assume that 0 <
p(t) < po < 00, 7 € CY([tg, ), R), 7/(t) > 179 > 0, and assumptions (H,) and (H,)
hold. If o is invertible, c=' € C!([tg, 00),R), (¢71(¢)) > 09 > 0, o(t) < 7(t), and

t
ToO0 . 5\ et 1
11m1nf/ Q(s)s" *ds > —,
(70 +po)(n — 1) “t=oo Joaony) (5) e

then equation (1.1) is oscillatory.

Theorem 1.3 ( [4, Corollary 2]). Suppose that J}(ty) = 0o and assumptions (Hy),
(Hy), and (1.2) hold. If o(t) < 7(t) and

¢
1
T liminf/ Q7 (s)ds > -

To +Po t=0 Ji-1(o(1)

fori=1,3,...,n—1, then equation (1.1) is oscillatory.
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The objective of this paper is to establish for equation (1.1) new oscillation criteria
that improve Theorems 1.1-1.3. In the sequel, all functional inequalities are supposed
to hold for all ¢ large enough. Without loss of generality, we deal only with positive
solutions of (1.1) since, under our assumptions, if z(¢) is a solution, so is —xz(t).

2. MAIN RESULTS

To prove our oscillation criteria, we need the following auxiliary lemmas.
Lemma 2.1 (Philos [12]). Let f € C"([ty, 00), (0,00)). If the derivative f™(t)
is eventually of one sign for large t, then there exist a t, > tg and an integer [,
0 <I1<n withn+1 even for f(”)(t) >0, orn+1 odd for f(”)(t) < 0 such that
1>0  yields () >0, t > t,, k=0,1,...,01—1,
and
I<n—-1 yields (-)**f®@y>0, t>t,, k=0L1+1,....,n—1.

Lemma 2.2 ( [2, Lemma 2.2.3]). Let f € C"([to, o0), (0,00)), f™ () f"V(t) <0
for t > t., and assume that lim;_, f(t) # 0. Then for every \ € (0,1) there exists
aty € [ts,00) such that, for all t € [ty, 00),

1) 2 2t )
Lemma 2.3 (Kiguradze and Chanturia [9]). Suppose that the function h satisfies
hO(t) >0,i=0,1,2,...,k and h**V(t) < 0 eventually. Then, fort large enough,
h(t) _ t
W) =k
Theorem 2.1. Let conditions (Hy), (Hz), and (1.3) be satisfied. Suppose that
there exist functions n € C([tg, 00), R) and & € C([tg, >0),R) satisfying
n(t) <o),  n@)<7(t), &@)<alt), &) <7(t),
)20,  and  limn(t) = lim {(2) = oo,

v

If there exists a Ao € (0, 1) such that the two first-order delay differential equations

Q1 O+ O ) () =0
and

(22) w'(t)+

1 o _ « _ _
o (6= oraom etonas) - emui e <o
. t
are oscillatory, then equation (1.1) is oscillatory.
Proof. Assume that equation (1.1) has a non-oscillatory solution x(¢) which is even-
tually positive. It follows from (1.1) that

(2.3) 2(t) = —q(t)a(o(t)) < 0.

Then, using Lemma 2.1, we conclude that there are two possible cases for the be-
havior of z and its derivatives for large ¢, either

Case (i)  z(t) >0, 2/(t)>0, 2'(t) >0,
LDy >0, M) <o
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or
Case (ii) z(t) > 0, 29(t) >0,
Ut (1) <0, for all odd j € {1,2,...,n — 3},
270 () >0, and  2W(t) <0.
We consider each of the two cases separately starting with case (i). Then

thm z(t) # 0,

and, by virtue of Lemma 2.2, for every A € (0,1) and for all large t,

(2:4) 2(t) >

>\ n— n—
—)t 1.( 1)@)_

(n
It follows from the definition of z(t) that
1 1 -1
25) () = s (7 0) = o 0)
_2(7() 1 <Z(7_1(7_1(t))) B 96(7_1(7_1@))))
Cop(r D) p(r ) \p(r T HD)  pr (D))
S 2() L 0 0)
p(r=1 (D) p(rH(E) p(rH(rH(2))
Then, by Lemma 2.3,
z(t) 5 _t
Z(t) " n—1
and we deduce that for all large ¢,
(2.6) <;§2> <.
Using the condition 771(¢) < 771(771(¢)) and (2.6), we conclude that
1) () = )

Substitute first (2.7) into (2.5) to obtain
s 20) (i )

29 > {565 (- e o)
Subsequent substitution of (2.8) into (2.3) yields

2(t) + q(t)pu(o (1) 277 ((1))) < 0.
Using conditions n(t) < o(t) and 2'(t) > 0, we conclude that
(2.9) 2(1) + q(t)p<(a (1) 2(7(n(t))) < 0.
It follows from (2.4) and (2.9) that for all A € (0, 1),
ﬁQ(t)p*(U(t))(T_l(n(t)))"_lz("_l) (T (1)) < 0.

Introduce now a new function y(t) = 2™ (t). Clearly, y(t) is a positive solution of
the first-order delay differential inequality

210) (0 + g )y 0(e) <0

) — p()2(r (1),

M (t) 4
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It follows from [13, Theorem 1] that the associated with (2.10) delay differential
equation (2.1) also has a positive solution for all A\g € (0, 1), but this contradicts our
assumption on equation (2.1).

Consider now case (ii). By the definition of z(¢), (2.5) holds. It follows from
conditions z(t) > 0, 2/(¢t) > 0, 2”(t) < 0, and Lemma 2.3 that

(2.11) z(t) > t'(t),

and hence
t /

(2.12) <§> <0

eventually. By virtue of condition 771(¢) < 771(771(t)) and (2.12), we deduce that
T (1)

IN

(2.13) 2(r7H (1)) T@)z(r_l(t)).

Substitution of (2.13) into (2.5) yields

) () N
e10) o> 3 (1~ gy ~P O 0)
Substituting now (2.14) into (2.3), we obtain

A0(0) + (B (1) (7 (o (1))) < 0.
Since £(t) < o(t) and 2'(t) > 0, we also have

(2.15) () + q(t)p"(o(8)2(r7H(E(1)) < 0.
Integrating (2.15) from ¢ to oo consecutively n — 2 times, we deduce that

210) 0+ g ([ -0 oo ) s ew) <o.

Letting w(t) = 2/(t) and using (2.11) in (2.16), we conclude that w(t) is a positive
solution of a first-order delay differential inequality

([ ot aertetsnas) e ew) <o

It follows from [13, Theorem 1] that the associated with (2.17) delay differential
equation (2.2) also has a positive solution, which again contradicts our assumption
on equation (2.2). Therefore, equation (1.1) is oscillatory. O

(2.17) w'(t) +

Combining Theorem 2.1 with the oscillation criterion reported by Baculikovd and
Dzurina [3, Lemma 4], we obtain the following result.

Corollary 2.1. Let conditions (Hy), (Hz), and (1.3) be satisfied. Suppose that
there exist functions n,& as in Theorem 2.1. If

218)  cZglmint [ ool o) s>

—L(n(t)) €
and

(2.19) %lim inf / t " ( / Tl 3)"_3q(u)p*(a(u))du> e(s))ds > *)

(n— )' t—o0 -1 €

then equation (1.1) is oscillatory.



[§ TONGXING LI AND YURIY V. ROGOVCHENKO*

Proof. Applying (2.18), (2.19), and [3, Lemma 4], we conclude that (2.1) and (2.2)
are oscillatory. Hence, by Theorem 2.1, equation (1.1) is oscillatory. O

3. EXAMPLES AND DISCUSSION

The following examples illustrate theoretical results obtained in the previous sec-
tion. We assume that ¢ > 1 and ¢y > 0.

Example 3.1. Consider a fourth-order neutral delay differential equation

(3.1) [ac(t) + 162 (%)} ” + 3—235 (é) —0.

Let n(t) = £(t) = t/6. An application of Corollary 2.1 yields that equation (3.1) is
oscillatory provided that qo > 5184/(eln3) ~ 1, 736.

Remark 3.1. Our oscillation result for equation (3.1) improves known theorems.
Indeed, [11, Theorem 2.4] cannot be applied to equation (3.1) because t/6 = o (t) <
T(t) = t/2 fort > 1 and, in addition, one of the assumptions has to be satisfied
for arbitrary M. Let py = 16, 19 = 1/2, and o9 = 6. Theorems 1.2 and 1.3 ensure
oscillation of equation (3.1) for qo > 42768/(eln3) ~ 14,321.22. However, choosing
p(t) =13, 6(t) = t, and \g = 144/145 and using Theorem 1.1, we observe that (3.1)
is oscillatory for qo > 3,915. Therefore, our criterion provides a sharper estimate.

Example 3.2. Consider a fourth-order neutral differential equation

(3.2) [ac(t) + 162 (%)} Y M o(t) =0

where o is any continuous function satisfying o(t) > t/2 on [1,00). Observe that in
this case Theorems 1.1-1.3 cannot be applied to equation (3.2). Letn(t) = &£(t) = t/3.
By Corollary 2.1, equation (3.2) is oscillatory for qo > 648/(eln1.5) ~ 588.

Remark 3.2. For a class of even-order neutral functional differential equations
(1.1), we derived two new oscillation results which complement and improve those
obtained by Agarwal et al. [1], Baculikovd and Dzurina [4], Baculikovd et al. [5], Li
et al. [11], and Xing et al. [14]. A distinguishing feature of our criteria is that we
do not impose specific restrictions on the deviating argument o; that is, o can be
delayed, advanced, and even change back and forth from advanced to delayed.
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