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Abstract

The phenomenon of so-called break-away forces, as maximal actuation forces at which a sticking system begins to slide
and thus passes over to a steady (macro) motion, is well known from the engineering practice but still less understood
in its cause-effect relationship. This note analyzes the break-away behavior of systems with nonlinear friction, which is
well-describable analytically by combining the Coulomb friction law with the rate-independent presliding transitions and,
when necessary, Stribeck effect of the velocity-weakening steady-state curve. The break-away conditions are brought into
an analytic form of the system description and shown to be in accord with a relationship between the varying break-away
force and actuation force rate – that is observable in experiments reported in various independently published works.
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1. Introduction

The break-away force and related break-away conditions
belong to significant and well-known, but yet still not fully
studied, aspects of nonlinear dynamic friction in the ac-
tuated motion systems. The break-away as phenomenon
can be seen as a brief, but not discrete, transition between
the presliding and gross sliding, when an idle system with
friction is subject to a continuously increasing actuation
(input) force. Due to the lack of direct measurements
and complexity of nonlinear friction transitions, the break-
away instant and force are particularly challenging for de-
tecting accurately and describing in a closed analytic form.
Some researchers even noted that ”quantitative prediction
of the break-away friction level seems not yet possible” [1].
The early detailed studies of presliding frictional charac-

teristics and transitions to the gross sliding may be cred-
ited to the works of Dahl, e.g. [2, 3]. Later, in the well-
celebrated survey on the friction modeling and control [4]
the authors also addressed the break-away friction while
noting that the break-away is not instantaneous and the
corresponding modeling should account for a translational
distance. In further works on dynamic friction model-
ing [5, 6, 7], the authors have paid attention to, and ex-
tracted from the numerical simulations, a dependency of
the break-away force on the actuation force rate. In favor
to that observation, quite similar relationships have been
demonstrated in various experimental setups reported in
[8, 6, 9]. Also the system sticking, and the related stick-slip
behavior, have been analyzed and compared for various
existing dynamic friction models, and that from a theo-
retical perspective in [10] and experimentally in [11, 12].
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Further aspects of measuring the presliding friction transi-
tions, continuous sliding, static friction, and dynamic fric-
tion effects the interested reader can find in [13, 14, 15, 16].
Despite the break-away phenomenon, as observation, is

well-known from the engineering practice and has been
addressed, or at least mentioned, is several studies on the
kinetic friction, its modeling and control, less works have
been dedicated to formulating the straightforward ana-
lytic conditions and deriving the expressions for break-
away. Note that such developments should be in line with
the corresponding system modeling. It seems that an ex-
plicit analysis and mathematical notation of the break-
away states has been solely provided in [17], while the
break-away force has been considered rather as a function
of dwell time, and the given deviations appear cumbersome
for a direct practical use.
With this note we address the relationship between the

break-away friction force and actuation force rate in a pos-
sibly simple and, at the same time, coherent way, based
on the established modeling assumptions and results pub-
lished in several independent works. The following analysis
and presentation should contribute to a better understand-
ing of frictional break-away behavior and help in predicting
and controlling the actuated presliding transitions.

2. Sliding and presliding friction

The tangential friction force, acting in opposite direction
to the relative motion in x coordinates, is the generalized
nonlinear function

F = f(ẋ, z, t). (1)

The velocity argument can be seen as capturing the
steady-state friction behavior including the amplitude-
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constant and sign(ẋ)-dependent Coulomb friction, the vis-
cous velocity-dependent friction, and Stribeck velocity-
weakening curves as well. All three can be described by
the well-known steady-state characteristic curve

Fss(ẋ) = sign(ẋ)
(
Fc + (Fs − Fc) exp

(−|ẋ|δV −δ
))

+ σẋ,

(2)
often referred to as a static Stribeck friction model. The
free parameters are the Coulomb friction coefficient Fc >
0, Stribeck (or stiction) friction level Fs > Fc, linear vis-
cous friction coefficient σ ≥ 0, and two shape factors of the
velocity-weakening curve V > 0 and δ �= 0. For more de-
tails on the Stribeck effect and steady-state characteristic
friction curve (2) we refer to [18, 4].
The time-dependency of friction in (1) summarizes the

weakly known and often non-deterministic fluctuations in
the frictional behavior due to e.g. wear, adhesion effects,
contact surface irregularities, lubrication conditions, dust
and others. Such effects may cause some non-systematic
parameter drifting in the friction modeling and, in what
follows, are excluded from an explicit consideration.
The z-argument represents an internal presliding state,

or the so-called relative presliding distance on the one-
dimensional frictional interface. Most simple way, this is a
relative displacement at each motion onset or motion re-
versal, and that until the dynamic friction force converges
to the steady-state of gross sliding provided an unidirec-
tional motion. Obviously, the presliding distance z is ini-
tialized (or reset) whenever the velocity sign changes and
it explicitly maps the instantaneous state of presliding fric-
tion force transitions. Depending on the particular form
of presliding friction F = f(z), as a function of relative
presliding distance, an additional scaling factor s is to be
used, resulting in

z = s

t∫
tr

ẋ dt. (3)

Note that here the scaling factor is strictly required due to
the logarithmic map assumed further in (4). Therefore, the
normalized through the scaling factor s presliding distance
is defined on the interval [−1, 1], while at the boundaries
the friction force will saturate on the steady-state level.
Obviously, tr denotes the time instant of the last motion
reversal so that |z| always represents a scaled distance to
position where the motion direction changed for the last
time. That is the integral (3) is reset each time the motion
direction changes at tr. For the sake of simplicity, in what
follows, we will assume s = 1. The friction-displacement
curve at the motion reversals exhibit a hysteresis loop,
see example shown in Figure 1. The shape of the hys-
teresis loops depends on multiple factors of the surface
asperities, their elastic and plastic deformation and, as
a consequence, on energy dissipated on the frictional in-
terface during the motion cycles [19, 20, 21]. According
to [22] the area of hysteresis loop increases in proportion
to the n-th power of presliding distance. In particular,
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Figure 1: Friction-displacement curve with hysteresis loop.

it has been found and experimentally proved that this is
quadratic relationship, i.e. n = 2. Therefore, the curva-
ture of friction-displacement map during presliding can be
described by

f(z) = z
(
1− ln(z)

)
. (4)

For details on deriving equation (4) from the above n-th,
respectably second, power condition we refer to [22].
Assuming the hysteresis loop shape as in (4) and s = 1

it is obvious that for zero initial state F0 = 0, i.e. at a
motion onset, the presliding friction is given by

F (ẋ, z) = sign(ẋ)Fss(ẋ) z
(
1− ln(z)

)
. (5)

Assuming the presliding transitions always converge to a
steady-state Fss and the instantaneous friction value at
the last motion reversal is Fr = F (tr), the friction force
during presliding is given by

F (ẋ, z) =
∣∣sign(ẋ)Fss(ẋ)− Fr

∣∣ z(1− ln(z)
)
+ Fr. (6)

Note that for zero initial friction state at motion reversal
Fr = 0, which coincides with a case of motion onset, the
general form (6) reduces to (5).

3. Break-away conditions

The problem of the break-away friction force can be seen
as a problem of detection (alternatively prediction) of the
minimal actuation force at which the motion system, being
initially in the idle state, begins a continuous (macro) mo-
tion which is often denoted as gross sliding. This problem
is closely related to the stiction and adhesion effects on the
frictional surfaces and, at the same time, is of an empirical
observation nature and practical relevance for engineer-
ing applications. The transitions from the system stick-
ing into the gross sliding at an unidirectional motion have
been observed in various actuated machines and mecha-
nisms and reported in e.g. [13, 4, 15]. In the most of the
previously published works, the varying break-away force
(or torque) has been exposed in dependency of the actua-
tion (input) force rate. That means the actuation (input)
force has been linearly increased (starting from zero) i.e.
u = kt, and the break-away transition has been observed
and recorded as when a non-fluctuating quasi-constant ac-
celeration occurs and the relative velocity grows continu-
ously. Note that before this happens, the system is in the
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Figure 2: Break-away force as function of the actuation force rate.

presliding regime where a low relative displacement can
be detected, while the measured relative velocity is mostly
high-frequent oscillating around zero. For instance, such
oscillating pattern with a relatively low average and in-
crease has been shown in experiments in [23] (Fig. 8).
The dependency of the observed break-away force on the
actuation force rate du/dt = k has been investigated and
experimentally demonstrated in [8, 6, 9], and also shown
for the numerically simulated dynamic friction in [5, 6, 7].
In all cases a typical inverse exponential map has been
highlighted which is similar to that schematically shown
in Figure 2 (cf. e.g. Fig. 4 in [5], Fig. 5 in [6], Fig. 13 in
[7], Fig. 10 in [9]).

Now, we are in the position to analyze and to describe
analytically the break-away conditions based on the mod-
eling assumptions made in Section 2. We note that despite
the break-away dependency on the actuation force rate has
been known from experiments and confirmed by means of
numerical simulations, no explicit analytic form has been
proposed and validated so far, which would be in line with
the modeled presliding friction behavior.

For the motion dynamics with a linearly increased ac-
tuation force we write

mẍ+ f(ẋ, z) = kt. (7)

During presliding, the macroscopic system inertia can be
neglected due to a very low average acceleration so that
the actuation force is mainly balanced by the counteract-
ing friction, that yields f(ẋ, z) ≈ kt. Taking the time
derivative of (7) and neglecting the inertial dynamics one
obtains

d

dt
f(ẋ, z) = k, (8)

while the full deferential, as in [24], yields

d

dt
f(ẋ, z) =

∂f

∂ẋ
ẍ+

∂f

∂z
ẋ. (9)

For the same reason as above and due to the fact that
∂f/∂ẋ = 0 within presliding (this due to the rate-
independency of presliding friction and therefore neglected
viscous contribution), the first right-hand-side summand
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Figure 3: Relative velocity as a function of presliding distance in
dependency of the rate of actuation force.

in (9) can be neglected and we obtain

∂f

∂z
ẋ− k = 0. (10)

Substituting the derivative of (4), with respect to z, into
(10) results in

−Fss ln(z)ẋ = k. (11)

It is obvious that the relative velocity during presliding

ẋ = − k

Fss ln(z)
(12)

can be estimated as a function of relative presliding dis-
tance and mainly depends on two factors k and Fss. While
k is fixed for the given slope of external actuation force,
the steady-state friction value self depends on the instan-
taneous relative velocity. Nevertheless, from (2) we know
that Fc ≤ |Fss| ≤ Fs so that either both boundary values,
or an average

F̂ss = Fc + (Fs − Fc)/2,

can be considered when calculating (12).
The (z, ẋ) phase diagrams are shown in Figure 3 for the

different actuation force rates k and a fixed F̂ss value. One
can see that for all actuation force rates the relative ve-
locity, starting from zero after a motion reversal (z = 0),
increases exponentially when approaching the boundary of
presliding distance (z = 1). The computed phase diagrams
are for the actuation force rates k ∈ [0.01, . . . , 30] with an
increment equal to 2. Since a rapid (exponential) increase
of the relative velocity (when z → 1) is for all k, one can
restrict the considered values by e.g. 95 % of presliding
distance, further denoted by z0.95. Here we should note
that the transition from presliding to the gross sliding is
not abrupt/stepwise at all, and the break-away conditions
can be considered only for a certain, though well-specified
interval, like for example 0.95 < z < 1 we assumed. It is
apparent that if increasing the left interval bound, like for
example 0.99 or 0.999, a sharp asymptotic velocity increase
(cf. Figure 3) will occur according to (12). However in this
case the viscous damping and sliding friction ‘mechanisms’
(which are out of scope in the recent analysis) come into
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Figure 4: Steady-state (Stribeck) characteristic friction curve.

0 10 20 30

10

12

14

actuation force rate, k 

B
re

ak
−

aw
ay

 f
or

ce

 

 
with average F

ss

with min F
ss

 (F
c
)

with max F
ss

 (F
s
)

Figure 5: Break-away force as function of the actuation force rate
computed by (2), (12), and (13) for minimal (Fc), maximal (Fs),

and average (F̂ss) steady-state friction values.

play, so that a real velocity increase will remain bounded.
This is also in accord with the experimental and numerical
observations reported so far, while the break-away detec-
tion is mostly realized empirically “at the time where a
sharp increase in the velocity could be observed” [5].
For the assumed presliding boundary the break-away

force can be computed, based on (2) and (12), as

Fba = Fss

(
ẋ(z0.95)

)
. (13)

Now one can calculate the break-away force as a function
of actuation force rate k, provided solely the friction model
(2)-(4) is given. The assumed steady-state (Stribeck) char-
acteristic curve is depicted in Figure 4. Recall that the
linear viscous friction coefficient σ = 0 is assumed, for
the sake of simplicity, and a relatively high difference
Fs = 1.5Fc between the minimal and maximal steady-state
friction values is chosen, at the same time. The computed
break-away force as a function of actuation force rate is
depicted in Figure 5. In order to reveal the impact of Fss

value assumed for (12) computation, the minimal (Fc),
maximal (Fs), and averaged (F̂ss) steady-state values are
demonstrated opposite to each other. One can see that
the functional dependency of the break-away force from k
is similar for all three steady-state values. In particular,
at lower (near to zero) and higher actuation force rates
the curves are nearly coinciding with each other. On the
opposite, the visible differences occur mostly during the

well-pronounced exponential decrease.

4. Conclusions

This note aimed to analyze and describe analytically the
break-away conditions for which, at certain level of the ex-
ternal actuation force and its rate, the presliding friction
behavior transits into the gross sliding and a continuous
(macro) motion sets on. Using the straightforward formu-
lation of presliding and steady-state friction force it has
been explicitly shown how the relative velocity progresses
with the relative presliding distance, starting from zero
idle state. A rapid exponential increase of the relative ve-
locity, that is characteristic for a break-away phenomenon,
has been exposed. We have derived an analytic expression
for computing the break-away force as a function of actu-
ation force rate. The computed and demonstrated char-
acteristic behavior is in accord with both, the previously
published experimental observations and those obtained
from the numerical simulations for which, however, an an-
alytic expression and analysis have been missed.
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