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Abstract

Much has been written about fishery-induced evolution (FIE) in exploited

species, but relatively little attention has been paid to the consequences for one of

the most important parameters in evolutionary biology—effective population

size (Ne). We use a combination of simulations of Atlantic cod populations expe-

riencing harvest, artificial manipulation of cod life tables, and analytical methods

to explore how adding harvest to natural mortality affects Ne, census size (N),

and the ratio Ne/N. We show that harvest-mediated reductions in Ne are due

entirely to reductions in recruitment, because increasing adult mortality actually

increases the Ne/N ratio. This means that proportional reductions in abundance

caused by harvest represent an upper limit to the proportional reductions in Ne,

and that in some cases Ne can even increase with increased harvest. This result is

a quite general consequence of increased adult mortality and does not depend on

harvest selectivity or FIE, although both of these influence the results in a quanti-

tative way. In scenarios that allowed evolution, Ne recovered quickly after harvest

ended and remained higher than in the preharvest population for well over a cen-

tury, which indicates that evolution can help provide a long-term buffer against

loss of genetic variability.

Introduction

Increasingly in recent decades, humans have created a

global experiment by subjecting natural populations to har-

vest at rates that equal or exceed the rate of natural mortal-

ity (Darimont et al. 2009). Some short-term consequences

of harvest can be deduced from first principles. The addi-

tional harvest-induced mortality will truncate the age struc-

ture of the population because fewer individuals live to old

age. Moreover, this additional mortality is often positively

correlated with size, due to harvesting regulations and tro-

phy hunting (Coltman et al. 2003; Allendorf and Hard

2009). Size in turn is correlated with age in species with

indeterminate growth, such that the effect of age-structure

truncation will be exacerbated.

These short-term demographic consequences can be

expected to elicit evolutionary responses in species with the

genetic capability to do so. Species with low rates of natural

mortality as adults generally mature at older ages, because

investing limited energy into growth rather than early

maturity means that they will be larger when they reach

maturity (and hence have higher fecundity and potentially

higher mating success), and they can expect to reap the

benefits of higher fecundity for many years because mortal-

ity is low. If adult mortality is sharply increased, perhaps by

a factor of 2 or more (Mertz and Myers 1998; Law 2007),

individuals that delay reproduction no longer can expect to

enjoy many seasons of high reproductive success, so rela-

tive fitness of that phenotype declines. The result is evolu-

tionary pressure to mature at an earlier age and smaller

size, to ensure at least some opportunities for reproduction

before death. Precisely predicting evolutionary responses to

harvest is difficult because changes in a population’s vital

rates can affect density dependence, particularly at juvenile

life stages, as well as biotic interactions with other species

(Polacheck et al. 2004; Howell et al. 2013; Kuparinen et al.

2014a). Nevertheless, numerous studies have estimated

empirical rates of phenotypic change in harvested species
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that are in line with expectations from fisheries-induced

evolution (FIE) (Hutchings and Baum 2005; Sharpe and

Hendry 2009; Devine et al. 2012; Audzijonyte et al. 2013;

Kendall et al. 2014).

Over the past decades, numerous studies have focused

on FIE, to understand its mechanisms and to project its

ecological consequences. However, this literature has lar-

gely ignored influences of FIE on effective population size

(Ne). This is an important gap because Ne can influence

virtually all evolutionary processes. Effective size determi-

nes not only the rates of inbreeding, allele frequency

change, and loss of genetic variability in a population, but

also the efficiency of natural selection (and hence the bal-

ance between random and directed evolutionary processes;

see Edeline et al. 2007; Lanfear et al. 2014). Ne and the

ratio of Ne to census size (N) are sensitive to population

demography (Felsenstein 1971; Nunney 1993), so direct,

short-term effects of harvest and longer-term evolutionary

changes to a population’s vital rates can both be expected

to change Ne and Ne/N.

One notable exception to the above gap regarding effec-

tive population size is the study by Marty et al. (2015),

who showed that considering random effects associated

with FIE is important, particularly when evaluating poten-

tial for evolutionary recovery after fishing is relaxed. They

showed that, in many circumstances, random factors

related to Ne can be more important than FIE in eroding

additive genetic variance, which provides evolutionary resi-

lience to a population. Marty et al. (2015) simulated both

neutral and adaptive genes and estimated Ne from neutral

genes by tracking the rate of change in allele frequency over

time (the temporal method; Waples 1989). They took sam-

ples every 20 years and converted this time interval into

elapsed generations based on calculations of generation

length (T) from the simulated demographies. This

approach should be sufficient to provide rough estimates

of Ne. However, the standard temporal method they used

assumes discrete generations and is not ideally suited for

iteroparous species with overlapping generations—exactly

the type of species most likely to experience FIE (Hutchings

and Fraser 2008). Based on the range of generation lengths

in their modeled populations (T = 7.5–12.1 years; Marty

et al. 2015), each 20-year period for estimating Ne encom-

passed only 1.7–2.7 generations, which is not enough to

eliminate age-structure bias in N̂e in the temporal method

(Waples and Yokota 2007). Furthermore, the resulting esti-

mates apply to a harmonic mean Ne over the period

between samples and hence are difficult to relate to specific

points in time.

Here, we take a different approach and calculate Ne

directly from vital rates for simulated populations of Atlan-

tic cod that experience various harvest scenarios previously

modeled, for example, by Kuparinen et al. (2014a). We use

a method for calculating Ne (AgeNe; Waples et al. 2011)

that is designed for use with iteroparous, age-structured

species and which can estimate effective size for individual

cohorts. We consider both Ne and the ratio Ne/N (with N

defined as the number of mature adults) because the latter

allows us to disentangle the effects of changes in vital rates

that affect the Ne/N ratio from effects on abundance, which

can reduce Ne even if Ne/N is not reduced. To explore gen-

erality of our results, we supplement the simulations with

analytical results and artificial manipulation of another life

table for Atlantic cod.

Methods

Table 1 lists notation used in this study. Our analyses used

two different life tables for Newfoundland’s Northern cod,

which we refer to as cod life table #1 and cod life table #2.

These life tables are both based on empirical data, but for

different areas and time periods with different histories of

exploitation. Life table #1 was used to parameterize the

simulations that evaluated demographic and evolutionary

responses to fishing. These simulations included density

dependence, again based on empirical data. To explore

generality of our simulation results, we artificially manipu-

lated cod life table #2 by increasing adult mortality. These

analyses were purely demographic and did not consider

evolution or density dependence. More details about each

type of analysis are provided below.

Table 1. Notation used in this study.

NT Total population size, including juveniles

N Adult population size (all mature individuals)

Ne Effective population size per generation

a Youngest age at which reproduction can occur

x Maximum age

N1 Number of newborn offspring produced each year.

Na Number of offspring produced each year that survive to age at

first reproduction, at which point they are known as recruits

bx Mean number of offspring per year produced by an individual of

age x that survive to age of recruitment

sx Probability of survival from age x to age x + 1

dx =1�sx = probability of dying between age x and age x + 1

lx Cumulative survival through age x

T Generation length = average age of parents of a newborn cohort

Vk• Lifetime variance in reproductive success among individuals in a

single cohort

Vx Variance in number of offspring produced by same-age, same-sex

individuals in one time period

/x Vx/bx = ratio of the variance to mean number of offspring

produced in one time period by individuals of age x

F Instantaneous rate of fishing mortality (annual mortality = 1�e(�F))

L(t) Length at age t

L∞ Asymptotic length

k von Bertalanffy intrinsic growth coefficient
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Simulation of cod dynamics and construction of life tables

To investigate the impacts of fishing and FIE on Ne, we

constructed cod life table #1 at different phases of exploita-

tion and fisheries-induced life-history evolution. To this

end, we simulated cod dynamics using an individual-based

modeling approach that integrates quantitative genetics,

life-history evolution, and ecological dynamics of the pop-

ulation. Individual life histories are described through von

Bertalanffy growth trajectories (von Bertalanffy 1938),

L(t) = L∞�(L∞�L0)e
�kt, where L0 and L(t) are length at

ages 0 and t, L∞ is asymptotic body length, and k is the

intrinsic growth coefficient describing the speed at which

L∞ is reached.

Genetic contributions to life histories were described

through additive effects of 10 diploid loci (coded 0 or 1),

to mimic the fact that quantitative traits are typically

coded by many loci with small additive effects (Roff

2002). The sum of allelic values (ranging between 0 and

20) was coupled with a small amount of environmental

variation (drawn from a normal distribution with

mean = 0, SD = 3.5) to yield realistic heritabilities of

~0.2–0.3 for life-history traits (Mousseau and Roff 1987;

Carlson and Seamons 2008; but see also Postma 2014)

and translated linearly into the value of L∞. The correla-

tions between k and L∞ and between L∞ and the length

at maturation are well-established life-history relation-

ships (Charnov 1993; Charnov et al. 2013), so the value

of k and the length at maturation could be estimated

based on L∞. Empirical bases for the growth parameters

and their relationships were obtained from growth trajec-

tories estimated from otoliths collected in a landlocked

cod population in Baffin Island, northern Canada. Cod

life histories in this population are similar to marine cod

populations in northern latitudes, and the population is

unexploited and, therefore, reflects natural phenotypic

diversity of cod life histories. The empirically observed

range of L∞ was 30–130 cm, and k could be estimated

through regression as log(k) = 0.609-0.0139 9 L∞ (with

residual standard error of 0.305) (Kuparinen et al. 2012).

L0 was set to 4 cm for each growth trajectory. The age–
length relationship was estimated from the same cod data

as weight = 3.52 9 106 9 length3.19.

Population dynamics were simulated through time such

that at each time step (year) the processes of natural mor-

tality, growth, maturation, and reproduction were modeled

on an individual basis. Demographic stochasticity was

accounted for by drawing appropriate random numbers to

describe the outcome of each process. Baseline instanta-

neous natural mortality was assumed to be 0.12, to which a

survival cost of reproduction of 0.1 was added for mature

individuals; these values provide the closest match between

the empirically observed cod growth trajectories and those

predicted by the model (Kuparinen et al. 2012). Growth

occurred such that at each time step an individual pro-

gressed along its von Bertalanffy growth trajectory accord-

ing to a time increment Dt = e15–17.69c (1 + e15–17.69c)�1,

where c is the ratio of population biomass to carrying

capacity (K). In a sparse population, Dt was approximately

1, corresponding to 1 year increment in simulation time,

whereas in a dense population the progress is slower. Matu-

ration was assumed to occur at a body length 66% of L∞
(Jensen 1997), and maximum age was set to 25 years.

At each time step, all mature individuals reproduced,

such that for each mature female a mature male was

assigned randomly (no sexual selection was assumed). Alle-

les were passed from parents to juveniles stochastically

through Mendelian inheritance. Egg production was

predicted through eggs = {0.48 9 [(female weight + 0.37]/

1.45) + 0.12} 9 106, as estimated for Northern cod in the

1960s (Hutchings 2005). At that time, abundance of the

Northern cod stock was assumed to be at about 40% of its

carrying capacity. Density dependence of juvenile produc-

tion was assumed to be compensatory, such that the above

egg production was scaled up or down according to the

abundance-specific relative fecundity estimates reported in

Kuparinen et al. (2014b). Survival from egg to a 3-year-old

recruit was set to 1.13 9 10�6 (Hutchings 2005). For fur-

ther details of the model and its parameterization, see

Kuparinen et al. (2012, 2014b).

Dynamics of preadapted cod populations were simulated

first for 100 years in equilibrium conditions, followed by a

50-year period of fishing and a 150-year period of recovery

in the absence of fishing. Simulations were repeated with

and without life-history evolution. In nonevolving simula-

tions, juvenile alleles were drawn from a parental pool

recorded during equilibrium conditions. We considered

three alternative fishing pressures (F = 0.15, F = 0.20, and

F = 0.25, where F is instantaneous fishing mortality

expressed as a fraction of total biomass) and two fishing

selectivity scenarios (logistic typical for trawl, and no size

selectivity). These fishing intensities are well within the

range of population-specific target fishing mortality levels

for Atlantic cod (FMSY: 0.18–0.40; www.ices.dk). However,

we needed to model levels that were sustainable over five

decades and left a large enough population to allow calcula-

tion of age-specific vital rates. At each time step throughout

the simulations, we recorded age-specific survival (sx),

fecundity (bx), and the proportion of mature individuals,

as well as total annual recruit production. Life tables for the

simulated populations were then compiled by averaging

across replicates at specific years representing the period of

equilibrium (year 100); early fishing (years 110, 130); late

fishing (year 150), by which point fisheries-induced evolu-

tion had occurred in evolving populations; initial recovery

following the end of fishing (years 160, 180); mid recovery
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(year 220); and late recovery, by which time biomass had

rebuilt back to equilibrium levels (year 300).

Census size and effective population size

Census size

In a stable, age-structured population, total population size

(NT) depends on two parameters: the number of newborns

each year (N1) and cumulative survivorship over time (lx),

calculated through the maximum age (x). Adult popula-
tion size (N) can be obtained by replacing newborns with

recruits (Na = the number of offspring that survive to age

at maturity, a), defining la to be 1, and taking the sum

across the years of the adult life span (a to x):

N ¼ Na

Xx

x¼a
lx ð1Þ

Because age at maturity varies in cod (Table 2), in calcu-

lating adult N from eqn (1) we used a = 3 (the minimum

age any individuals matured in our study) and adjusted Σlx
to account for the fraction mature at each age.

If adult mortality is constant at the rate d per year, then

it can be shown that Σlx = 1/d and

N ¼ Na=d ð2Þ
This result is exact for a species with an arbitrarily long

life span (Waples, in review) and is a good approximation

for a long-lived species like Atlantic cod.

Effective population size

We used the software AgeNe (Waples et al. 2011) to calcu-

late Ne and Ne/N at specific time steps, based on popula-

tion vital rates calculated as described above. AgeNe uses

Hill’s (1972) general formula for calculating Ne for species

with overlapping generations but retains the direct link to

population vital rates provided by the method of Felsen-

stein (1971):

Ne ¼ 4NaT

Vk� þ 2
; ð3Þ

where (in our notation) Na is the number of offspring pro-

duced each time period that survive to become recruits, Vk•

is lifetime variance in reproductive success of the Na

recruits in a cohort, and T is generation length. AgeNe cal-

culates lifetime Vk• from a population’s vital rates by

grouping individuals by age at death (see Waples et al.

2011). Na is a scaling parameter; N and Ne both increase

linearly with Na, but the ratio Ne/N does not depend on

Na. Similarly, mortality that occurs before maturity affects

both N and Ne in the same way but not the ratio Ne/N.

AgeNe automatically rescales relative age-specific fecundi-

ties to produce a stable population, and it also follows the

Felsenstein and Hill models in assuming stable age

structure and independence of survival and reproduction

across time periods.

One final piece of information is required to calculate

Ne: /x = Vx/bx = the ratio of variance to mean reproduc-

tive success in one season for individuals of age x. If repro-

ductive success of same-age, same-sex individuals is

random, then each age and sex behaves like a mini Wright–
Fisher ideal population, and / � 1. Values of / > 1

therefore represent overdispersed variance in reproductive

success. To parameterize this part of the model, we drew

on experimental data for three captive populations in

which parentage analysis was used to assign offspring (fer-

tilized eggs) to potential parents (see Supporting Informa-

tion for details). Table S1 shows an example of age-specific

vital rates for the simulated population at equilibrium

before harvest (year 100), after harvest (year 150), and late

recovery (year 300).

AgeNe is based on discrete-time life tables and requires

the user to specify a maximum age, x. In each scenario, we

chose x as the oldest age (≤25) for which both age-specific

survival and fecundity data were available; this was limited

by low numbers of individuals that survived to advanced

age, particularly in populations whose abundance declined

sharply due to harvest. Resulting life tables for representa-

tive scenarios can be found in Table S1. At each time per-

iod in each scenario, the mean number of recruits

produced per year was used as the value for Na in the

AgeNe calculations. Because vital rates in the simulations

were only tracked for females, we used the same estimates

for males in the AgeNe analyses.

Table 2. Fraction of individuals that survive to age 3–10 that are

sexually mature, at three time points in simulations with (E) and without

(NE) evolution.

Age

Year 100

Equilibrium

Year 150 Year 300
150E/

Eq

150NE/

EqNE E NE E

1 0 0 0 0 0 – –

2 0 0 0 0 0 – –

3 0.005 0.047 0.068 0.006 0.017 14.0 9.7

4 0.039 0.180 0.247 0.043 0.088 6.4 4.7

5 0.123 0.379 0.425 0.132 0.227 3.5 3.1

6 0.249 0.492 0.624 0.264 0.397 2.5 2.0

7 0.396 0.662 0.732 0.413 0.555 1.8 1.7

8 0.531 0.775 0.837 0.553 0.683 1.6 1.5

9 0.650 0.812 0.858 0.666 0.784 1.3 1.2

10 0.739 0.839 0.930 0.750 0.850 1.3 1.1

Year 100 is the end of the equilibrium period before fishing; year 150 is

the end of fishing and beginning of recovery, and year 300 is late

recovery. The last two columns on the right show the ratio of results for

year 150 with (and without) evolution to year 100 equilibrium. These

data are for selective fishing with F = 0.2 and are based on cod life

table #1.
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Artificial manipulation of a life table for cod

Finally, to further explore generality of the above results,

we artificially manipulated another life table for Atlantic

cod (cod life table #2), based on data from Hutchings

(2011) as modified by Waples et al. (2013). In this popula-

tion, cod do not mature until age 7 and have maximum

age x = 20, constant annual adult survival at sx = 0.82, and

fecundity that increases with age (Table S2). We created

variations of this life table by allowing annual adult survival

to drop to 0.72, 0.62, and 0.52 to reflect an increasing but

uniform harvest rate that changed annual adult mortality

to d = 0.28, 0.38, and 0.48, respectively. In the original

population, the fraction of adults reaching age 7 that were

still alive at age 20 was 0.8213 = 0.076. Therefore, in the

three artificial populations we truncated the life table at

x = the first age when cumulative survival from age 7

dropped below 0.076. In the variations with sx = 0.72, 0.62,

and 0.52, this resulted in x = 16, 14, and 12, respectively.

We considered three general scenarios, each with variable

adult survival: (i) fecundity is constant and / is fixed at 3,

which is roughly the value we estimated for age 15 in a pris-

tine population; (ii) relative fecundity increases with age in

the same relative proportions as in the original life table,

and / is fixed at 3; and (iii) fecundity and / both increase

with age, with the increase in / following the same sched-

ule we used for the simulated populations, except we

started with / = 1 at age 7 rather than age 3. These scenar-

ios did not consider either evolution of earlier age at matu-

rity or potential density-dependent effects of increasing

adult mortality on population dynamics, so N1 was

assumed to remain constant. Nonetheless, they provide

insights into consequences for age structure and Ne/N asso-

ciated with changes in adult mortality.

Results

Simulations of harvest and recovery

Fishing led to steep declines of cod population biomass,

such that by the end of the fishing period the biomass had

dropped below 20% of population carrying capacity

(Fig. 1A, with selective harvest). Owing to selective

removal of large individuals, fisheries-induced evolution

caused asymptotic body length to decline across the fishing

period by about 7 cm (Fig. 1B). Similar declines were also

seen in the age and size at maturation, but the difference

between evolving and nonevolving scenarios was less pro-

nounced, as relaxed density-dependent competition accel-

erated growth and allowed fish to reach maturity earlier

(Fig. 1C,D). After fishing ceased, biomass recovered rapidly

to the prefishing level, but evolutionary recovery of the life-

history traits was much slower, and clear differences in

asymptotic length and age and size at maturity could still

be seen at the end of the simulations.

Changes in demographic parameters

Figure 2 shows how key demographic parameters changed

over the course of a typical simulation (selective harvest at

F = 0.2, with evolution). Adding harvest on top of natural

mortality roughly doubled the total adult mortality experi-

enced by the population. As a consequence, adult N

declined sharply during harvest before rapidly returning to

its original status after harvest finished. The number of

recruits (Na) also declined sharply during harvest, but not

as much as did N. Changes in annual survival between the

equilibrium population and the end of fishing (year 150)

are shown for several scenarios in Figure S1.

The purely demographic consequences for age at matu-

rity of harvesting at this level can be seen by focusing on

results where evolution was not allowed (Table 2). By the

end of fishing at year 150, the fraction that were mature at

young ages (3–5) was 3–10 times higher than in the equi-

librium population before fishing (year 100), and the first

age at which 50% of the population was mature had been

reduced from 8 to 6. This occurred because increased adult

mortality reduced overall abundance, and juvenile growth

was enhanced owing to reduced density-dependent compe-

tition, allowing fish to reach body size at which they

matured (66% of L∞) at a younger age. By year 300 (late

recovery), age at maturity in scenarios without evolution

had largely returned to the preharvest equilibrium pattern

(Table 2).

Patterns of change in N, Ne and Ne/N

Ne always declined sharply (by 50% or more) during fish-

ing, while the ratio Ne/N always increased over the same

time period (Fig. 3). This figure shows results for selective

and nonselective harvest at F = 0.2 with and without evo-

lution, but this same general pattern was found in every

scenario we examined, including those in which the initial

population size was doubled or halved (Fig. 4). During

recovery, Ne and Ne/N both approached their original val-

ues fairly quickly, and this pattern was also consistent

across scenarios.

The increases in Ne/N during fishing have a simple expla-

nation: declines in Ne almost exactly mirrored declines in

the number of recruits (N1), while N declined at a faster

rate (Fig. 2). As discussed later, the more rapid declines in

N can be attributed to the fact that, whereas declines in

recruitment affect N and Ne to the same extent, truncation

of age structure caused by increased adult mortality also

reduces adult N but by itself does not directly change Ne.

Effects of evolution

In our model, evolution could increase the probability of

maturing at an earlier age through its effect on von Berta-

lanffy parameters, but in our simulations no individuals

matured before age a = 3. By the end of fishing at year 150
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in scenarios that allowed evolution, the fraction that were

mature at young ages (3–5) was 3–14 9 higher than in the

equilibrium population before fishing, compared to

3–10 9 higher for scenarios that did not allow evolution

(Table 2). Thus, most of the age-structure changes by year

150 can be attributed directly to demographic conse-

quences of increased adult mortality, although evolution

enhanced this effect in scenarios where it was allowed. By

year 300 (late recovery), the fraction mature at earlier ages

was still elevated in scenarios that allowed evolution.

These demographic patterns were reflected in patterns of

change in effective population size. Whether or not

evolution was allowed had little effect on Ne and relatively

minor effect (�about 15%) on Ne/N during harvest. Dur-

ing recovery, however, Ne and Ne/N were both slower to

return to their prefishery equilibrium values in scenarios

involving evolution, and even at year 300 they had not fully

recovered.

Selective versus nonselective harvest

Nonselective harvest resulted in more dramatic reductions

in overall population size and hence Ne. For example, by

the end of fishing (year 150) with F = 0.2 and evolution,

size-selective harvest had reduced Ne from 1969 to 683, a

Figure 1 The temporal development of cod population biomass (A), asymptotic body length (B), age at maturity (C), and size at maturity (D) in ten

replicated simulation runs, each described by a solid line. Evolving simulations are drawn with black and nonevolving simulations with gray. The

beginning and the end of fishing period are denoted with vertical dashed lines.
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decline of 65%, while nonselective harvest reduced Ne from

1959 to 131, a decline of 93% (Fig. 3). These stronger decli-

nes in N occurred because selective harvest could remove

20% of the biomass by harvesting a relatively small number

of larger, older fish, while nonselective harvest that

included many smaller fish would have to remove more

individuals to take the same biomass. Whether harvest was

selective or not had only modest effects on Ne/N because

additional reductions associated with nonselective harvest

were similar for Ne and N (Fig. 3).

Different levels of harvest

Allowing different levels of F had predictable consequences

for population size and Ne but did not change the basic

patterns described above. Harvesting at a level of F = 0.25

led to greater reductions in Ne, while reducing F to 0.15

produced a smaller reduction (Fig. 5). By the end of fishing

(year 150), selective harvest at F = 0.25 with evolution had

increased Ne/N to 1.67, compared to 1.52 and 1.35 for

Figure 2 Proportional change in key demographic parameters over the

course of the simulations. Results are for selective fishing at F = 0.2,

with evolution. Time periods indicate the end of equilibrium and start of

fishing (year 100), end of fishing and beginning of recovery (year 150),

and late recovery (year 300).

Figure 3 Changes in Ne and Ne/N over the course of simulations with F = 0.2. Results are shown for scenarios with selective harvest (left panels) and

nonselective harvest (right panels), and that do (open circles) and do not (filled circles) allow evolution of life-history traits.
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F = 0.2 and 0.15, respectively. All of these patterns related

to varying levels of F were qualitatively similar under sce-

narios without evolution (Figure S2).

Changes in T and Vk•

Additional mortality associated with harvest sharply

reduced both generation length and lifetime variance in

reproductive success, but Vk• declined more rapidly so the

ratio T/Vk• increased (Fig. 6). When fishing stopped, both

T and Vk• ncreased again and approached their preharvest

equilibrium values, with a predictable lag for scenarios

involving evolution. Immediately after fishing stopped, T

increased more rapidly than Vk•, leading to the spike in

T/Vk• at year 160. Figure 6 shows results for selective fish-

ing with F = 0.2 and allowing evolution, but again this

general pattern was evident in all scenarios.

Analysis of alternative life table

Artificially reducing adult survival from 0.82/year to 0.62/

year in cod life table #2 dramatically reduced (from 26% to

4%) the fraction of the adult population made up of

individuals age 13 or older, and the population became

increasingly dominated by younger individuals (49% of the

adult population was age-7 individuals with annual sur-

vival = 0.52, compared to 19% in the real population with

natural survival = 0.82; Table 3). Truncating the age struc-

ture as adult mortality increased from d = 0.18 to 0.48

reduced the adult population size by 60.8% (Table 4). This

is close to the value predicted from eqn (2) (N2/N1 = (1/

0.48)/(1/0.18) = 0.375, a decline of 62.5%), which would

apply to a population with arbitrarily long life span.

In the base population (Scenario II in Table 4), in which

fecundity increased with age and / was constant, genera-

tion length also decreased but by a smaller amount (35.8%

for d = 0.48). Although both N and T are inversely related

to adult mortality (Figures S3 and S4; see also Nunney

1991), T cannot be lower than the age at maturity (a = 7 in

this population), and this constrained the rate at which

(and amount by which) T could be reduced as d increased.

Furthermore, increasing mortality also reduced Vk• (by

26%), and this largely offset reductions in Ne caused by

lower T. As a consequence, Ne only declined by 17.4%

when d increased to 0.48. Because this was much less than

the reduction in N, the ratio Ne/N more than doubled,

from 0.70 to 1.48.

Figure 4 Effects of varying initial population size for simulated cod

populations. Results are for selective fishing at F = 0.2 with evolution.

The filled circles (Normal N) reproduce results for F = 0.2 shown in

Fig. 3; the other lines and symbols show results for scenarios in which

initial size was half or double the ‘Normal’ level.

Figure 5 Effects of varying levels of fishing intensity. Results are for

simulations with selective fishing with evolution.
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In Scenario I in Table 4 with constant fecundity (as

might be applicable for some harvested species, such as

birds), the reduction in Ne was slightly greater (20.4%).

This occurred because under constant fecundity, and start-

ing from relatively high survival, T declines more rapidly

with increasing mortality than does Vk• (Figure S4).

A different pattern was seen in Scenario III, in which

both fecundity and / were proportional to age. In this case,

increasing mortality had a stronger effect on reducing Vk•,

such that the ratio T/Vk• increased by 23.7% as d increased

to 0.48; as a consequence, Ne actually was 7.5% higher with

d = 0.48 than with d = 0.18 (again, under the assumption

that Na remained constant).

Results in Table 4 help to illustrate how changes in

recruitment and adult mortality interact to determine adult

census size [eqn (2)]. For cod life table #2, we lacked

empirical data regarding density dependence, so we

adopted a simple assumption of no change in recruitment,

which would occur only under full productivity compensa-

tion (i.e., if the reduced number of adults still produced the

same number of offspring per time period). Therefore, this

table probably underestimates the reduction in effective

size, because Ne is also linearly related to the number of

recruits [eqn (1)]. If instead we had assumed that per

capita production of recruits remained constant when mor-

tality increased (i.e., no productivity compensation), then

Ne would have been reduced by an additional 60.8% for

d = 0.48. In that event, however, N also would have experi-

enced the same additional reduction, so assumptions about

density dependence and recruitment had no effect on the

Ne/N ratio.

In the simulated populations using cod life table #1

(which included density dependence), recruitment

dropped substantially with harvest, but not as much as

did adult abundance (Fig. 2). This shows at least partial

productivity compensation at low density, even if it was

not sufficient to fully offset the reduction in adult num-

bers. It is important to note here that the recruitment

and mortality terms in eqns (1) and (2) can interact over

time in a feedback loop that can produce cumulative

changes over time much larger than predicted from a

single iteration. For example, if increased mortality in

time period 1 reduces adult N and this reduces recruit-

ment, adult N will be reduced further in the next time

period, and, in the absence of strong productivity com-

pensation, this process can continue until the population

collapses. Given our initial conditions, the duration of

fishing, and the empirically based form of density depen-

dence we modeled, we found that was the case for simu-

lated populations with F greater than about 0.25.

Discussion

The major results from our study can be summarized as

follows:

Figure 6 Changes over the course of the simulations in generation

length (T), lifetime variance in reproductive success (Vk•), and their ratio.

Results are for selective fishing at F = 0.2 with evolution.

Table 3. Fraction of adult population in each age class for a Northern

cod population experiencing various hypothetical levels of annual adult

mortalit.

Age class

Adult survival

0.82 0.72 0.62 0.52

7 0.192 0.291 0.388 0.490

8 0.157 0.209 0.241 0.255

9 0.129 0.151 0.149 0.132

10 0.106 0.109 0.093 0.069

11 0.087 0.078 0.057 0.036

12 0.071 0.056 0.036 0.019

13+ 0.258 0.106 0.036 –*

The first column shows data for the reference population (cod life table

#2, for which annual adult survival = 0.82) from Hutchings (2011), as

modified by Waples et al. (2013). The other columns depict results for

hypothetical populations with the same age-specific fecundity relation-

ship but different rates of adult survival that reflect natural mortal-

ity + fishing mortality.

*In this scenario, maximum age was truncated to x = 12 based on the

rules described in the text.
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1 Increasing adult mortality through harvest reduces both

census and effective size, but the ratio Ne/N increases

because N is reduced more than Ne.

2 This general result occurs regardless whether harvest

is size-selective or not, and regardless whether evolu-

tion of life-history traits is allowed or not—that is,

those other factors affect the outcome in a

quantitative way but do not change the qualitative

patterns.

3 The intensity of fishing affects the magnitude of change

in a predictable way but also does not change these

general patterns.

4 The effects of evolution were more pronounced late

in the recovery period than they were during harvest.

In scenarios without evolution, population parameters

rapidly returned to near their equilibrium values after

harvest ended, but in the scenarios with evolution

the population never achieved its original status by

year 300. This was true of biomass, size, age at

maturity (Fig. 1), census size and effective size

(Fig. 2), and generation length and variance in repro-

ductive success (Fig. 6). Although both N and Ne

were higher at year 300 than they were at equilib-

rium in scenarios with evolution, the proportional

increase in N was larger, so the Ne/N ratio was lower

(Figs 2 and 3).

Below we discuss these points and explain why we believe

they are not specific to our study system but instead repre-

sent quite general expectations for the consequences of

increased adult mortality.

The Ne/N ratio

The increase in Ne/N during fishing while Ne went down

can be easily understood based on two key insights from

inspection of eqns (1)–(3). First, both N and Ne are linear

functions of the number of recruits that reach age at matu-

rity (Na). This means that any changes in recruitment have

proportional changes in Ne and N that are exactly the same,

so the ratio Ne/N is not affected by recruitment. Therefore,

changes in the Ne/N ratio are entirely determined by differ-

ences in the way N and Ne respond to changes in adult

mortality (d). The effects of changes in d on N are again

straightforward: increased mortality truncates the age

structure and reduces the number of adults as a simple

function of the mortality profile as described in eqns (1)

and (2). In contrast, Ne is not directly affected by changes

in mortality; it is only indirectly influenced by the effects of

changes in mortality on generation length and lifetime

variance in reproductive success [eqn (3)].

As discussed above and illustrated in Figure S3, the exact

patterns of change in T and Vk• associated with a change in

adult mortality are complex and depend on age-specific

vital rates and age-specific /. However, because a) the

direction of change in T and Vk• with increasing mortality

is the same (Figure S3 and S4), and b) T occurs in the

numerator of eqn (3) while Vk• occurs in the denominator,

mortality-mediated changes in T and Vk• largely cancel

each other (Fig. 6), which greatly constrains the degree to

which changes in adult mortality directly affect Ne. To a

first approximation, therefore, change in Ne associated with

Table 4. Results of artificial manipulation of cod life table #2.

Adult Mortality (d) Adult N % Ne % Ne/N % T % Vk• % T/Vk• %

Scenario I: constant bx; / fixed at 3

0.18 10421 – 8224 – 0.789 – 10.63 – 8.34 – 1.275 –

0.28 6875 �34.0 7172 �12.8 1.043 32.2 9.18 �13.6 8.24 �1.2 1.114 �12.6

0.38 5148 �50.6 6716 �18.3 1.305 65.3 8.45 �20.5 8.07 �3.2 1.047 �17.8

0.48 4084 �60.8 6548 �20.4 1.603 103.2 7.96 �25.1 7.73 �7.3 1.030 �19.2

Scenario II: bx increases with age; / fixed at 3

0.18 10421 – 7310 � 0.701 – 12.87 – 12.08 – 1.065 –

0.28 6875 �34.0 6361 �13.0 0.925 31.9 10.22 �20.6 10.85 �10.2 0.942 �11.6

0.38 5148 �50.6 6027 �17.6 1.171 66.9 9.02 �29.9 9.97 �17.5 0.905 �15.1

0.48 4084 �60.8 6040 �17.4 1.479 110.8 8.26 �35.8 8.94 �26.0 0.924 �13.3

Scenario III: bx and / increases with age

0.18 10421 – 8453 – 0.811 – 12.87 – 10.18 – 1.264 –

0.28 6875 �34.0 8252 �2.4 1.200 48.0 10.22 �20.6 7.91 �22.3 1.292 2.2

0.38 5148 �50.6 8431 �0.3 1.638 101.9 9.02 �29.9 6.55 �35.7 1.377 8.9

0.48 4084 �60.8 9083 7.5 2.224 174.2 8.26 �35.8 5.28 �48.1 1.564 23.7

The original life table (Scenario II) had constant adult mortality of d = 0.18 (see Table 3) and fecundity (bx) that increases with age; we also assumed

that / = 3 for all ages. We considered how increases in adult mortality in this life table would affect key demographic parameters. We also consid-

ered two other hypothetical scenarios: one with constant fecundity and / fixed at 3 (Scenario I), and one in which fecundity and / both increase with

age (Scenario III). Results were calculated using AgeNe assuming that the number of recruits produced per year was constant at Na = 2000. Within

each scenario, ‘%’ indicates the percent change from the value when d = 0.18.
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fishing can be explained solely by changes in recruitment,

while changes in N depend on both recruitment and mor-

tality. The net result is that increases in adult mortality

reduce N more than Ne, so the ratio Ne/N goes up, even

though Ne will generally decline (absent complete produc-

tivity compensation).

Another type of compensation, sometimes termed ‘ge-

netic compensation’, can affect both Ne and Ne/N; this

occurs when variance in reproductive success declines at

low density, presumably because reduced competition for

mates allows otherwise inferior individuals to successfully

reproduce. As a consequence of reduced Vk•, the ratio Ne/N

is often higher when population abundance is reduced.

Empirical studies that have reported this type of result

include Palstra and Ruzzante (2008), Beebee (2009), and

Saarinen et al. (2010). Although this could potentially be

an important phenomenon in populations subjected to

higher adult mortality through harvest, we did not have

any empirical information to parameterize this effect with

cod. To the extent that it does occur, it would reinforce the

pattern we observed in which Ne/N increases with fishing

intensity.

The Ne/N ratios shown in Figs 3–5, especially those

during harvest, are higher than most reported in the liter-

ature (e.g., Frankham 1995, Palstra and Fraser 2012). In

general, it has been thought that Ne must be <N in natural

populations, but recently it has been shown that this is

not necessarily the case for species with overlapping gener-

ations, particularly those (like cod) with delayed age at

maturity (Waples et al. 2013). However, Ne/N in iteropar-

ous species is very sensitive to the variance in reproductive

success among individuals of the same age and sex (/x),

and high Ne/N ratios are only possible if /x is relatively

low. In this study, we used empirical data for a captive

population to parameterize /x, and as a result it increased

from about one at age at maturity to over four by age 25.

Values of /x in wild populations could potentially be

much higher, especially in species that experience ‘sweep-

stakes’ reproductive success as proposed by Hedgecock

(1994). Unfortunately, however, very few estimates of /x

are available for wild populations of any species. Never-

theless, it is easy to evaluate how hypothetical values

would affect the Ne/N ratio for the simulated populations.

For example, in our simulated populations based on cod

life table #1, initial Ne/N would be reduced from nearly

1.0 to below 0.1 if the age-specific /x values we used were

all multiplied by a fixed factor 50 (Figure S4A). Such a

population would have much lower Ne and Ne/N, but the

pattern of change over time in these parameters

(Figure S4B) would be similar to that shown in Figs 3–5.
Finally, because changes in adult mortality can have large

effects on the Ne/N ratio (as demonstrated here), and

because anthropogenic changes to all of earth’s ecosystems

have dramatically changed mortality profiles for many spe-

cies, it is risky to assume that the Ne/N ratio is constant,

absent a good reason to believe that is the case.

Effects of evolution

The typical evolutionary response to increased adult mor-

tality is to evolve mechanisms that allow earlier maturation,

which increases the chances of having at least one opportu-

nity to reproduce before being harvested. What are the

likely consequences for Ne? If increased adult mortality

causes an evolutionary response toward earlier maturation,

that would reduce generation length and, all else being

equal, that would reduce Ne [eqn (1)]. However, earlier

maturation could also mean that more total individuals

survive to maturity, which would increase the number of

recruits (Na) and, all else being equal, increase Ne. There-

fore, the net effects of evolution on Ne and Ne/N are

expected to depend on the relative importance of these two

factors. The effects on generation length are easier to pre-

dict, while those on recruitment depend on assumptions

about ecological processes such as competition and density

dependence.

In the simulated populations, reductions in N caused by

higher harvest rates enhanced juvenile growth and survival

through relaxation of density dependence, and as a conse-

quence, a larger fraction of individuals matured at earlier

ages (Table 2). This was a purely ecological phenomenon

that also caused age-structure shifts in populations without

evolution. Allowing evolution of age at maturity, therefore,

only added a relatively small component to a fundamen-

tally ecological process (compare last two columns in

Table 2). This tended to blur the distinction between

results for scenarios that did and did not allow evolution,

at least during the period of harvest.

The major (and quite consistent) difference between the

evolution and nonevolution scenarios can be found at the

end of the long recovery period (year 300), by which time

the vital rates of all populations simulated without evolu-

tion had returned to essentially the same place they were

before harvest commenced. In contrast, at year 300 in sce-

narios that involved evolution, Ne was always slightly

higher and Ne/N slightly lower than it was in the equilib-

rium preharvest population. This result is consistent with

empirical observations from other studies (e.g., Pigeon

et al. 2016) that document rapid evolution of life history

under strong selection, but slower evolution toward initial

phenotypes once selection is relaxed, presumably because

selection in the wild is seldom as strong as selection

humans impose through harvest (Allendorf and Hard

2009).

Two factors combined to produce the higher Ne at year

300: higher N (Fig. 2) and higher T/Vk• (Fig. 6) compared
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to their values at year 100. However, the ratio Ne/N was

lower at year 300 than at year 100. This occurred because

evolution of the age-at-maturity reaction norm toward ear-

lier maturity meant that a larger fraction of the population

was mature at an earlier age, and this increased adult N fas-

ter than it did Ne. The net effect was a reduction in Ne/N,

even though Ne was slightly higher in late-recovery popula-

tions that allowed evolution than it was at preharvest

equilibrium.

Model assumptions

The Felsenstein–Hill models that AgeNe is based upon

assume constant population size and stable age structure.

These assumptions were met in the preharvest equilibrium

population (year 100) and nearly met in the late recovery

phases (after about year 200), but harvest led to rapid

changes in population demography that affected data col-

lected in years 110–180. Therefore, because AgeNe calcu-

lates Ne for individual cohorts based on vital rates

calculated at specific points in time, our results are best

interpreted as estimates of instantaneous Ne that would

apply to a population that remained stable with those mean

vital rates. Nevertheless, several lines of evidence suggest

that our results should be fairly robust to these demo-

graphic changes. Felsenstein (1971) showed that his model

accurately estimates Ne for populations that are increasing

or declining at a constant rate, and this was approximately

met during the decline due to fishing and the resulting

rebound after fishing stopped. Waples et al. (2011, 2014)

showed that eqn (1) provides robust results in simulated

populations that incorporate random demographic

stochasticity and with Ne as low as 200 (lower than the

levels reached in any of our scenarios except those with

nonselective fishing). Furthermore, substantial generational

overlap and long adult life span (as are found in cod popu-

lations) help to buffer a population against cyclical environ-

mental fluctuations (Gaggiotti and Vetter 1999). Finally,

although Hill (1972; 289) did not formally evaluate the

assumptions of constant population size and random mat-

ing, he did provide arguments why he believed that ‘neither

effect has much influence on effective population size’.

We did not simulate very small effective sizes (Ne <100)
because that is difficult to do in a long-lived species with

many age classes. If effective size is that small, random

changes in allele frequency can overwhelm the effects of

selection, which would make predictions regarding FIE less

reliable. However, because most of the changes we reported

were dominated by demographic changes related to

increases in adult mortality rather than evolutionary

changes, we believe our results would also be qualitatively

true for smaller Ne values than we modeled.

The AgeNe model also assumes that probabilities of sur-

vival and reproduction are independent across time. That

will not always be the case. If, for example, individuals

(especially females) who reproduce in one time period have

a reduced probability of reproducing for one or more sub-

sequent time periods, Ne will be slightly higher than calcu-

lated under AgeNe because skip breeding tends to reduce

extreme variation in lifetime reproductive success (Waples

and Antao 2014). Conversely, if certain individuals are con-

sistently above or below average in their reproductive out-

put, Ne will be reduced (Lee et al. 2011). Although these

phenomena can influence effective population size, they

should not affect the general patterns of change in Ne and

Ne/N in response to increases in adult mortality.

Implications for conservation and management

We demonstrated that Ne is likely to decline, perhaps

substantially, in response to elevated adult mortality associ-

ated with harvest. Our results thus support the conclusion

by Marty et al. (2015) that failure to account for stochastic

processes associated with reduced Ne can lead to incorrect

conclusions about eco-evolutionary dynamics associated

with fishery-induced evolution. However, these results also

add some important nuances to our understanding of this

complex topic.

First, the good news is that increasing harvest rates can

be expected to increase the Ne/N ratio. This means that the

proportional reductions in Ne will be smaller than the

effects of harvest on total abundance. As the latter are easier

to predict, the expected reduction in N can be used as an

upper limit to the expected reduction in Ne, with the

expectation that increases in the Ne/N ratio will at least par-

tially buffer the overall reduction in effective size.

The second important point is that although adding

anthropogenic harvest to natural mortality can promote

fishery-induced evolution, direct demographic conse-

quences of elevated adult mortality explain most of the

reductions in effective size that we observed in the modeled

populations. Reductions in Ne are caused primarily by

reductions in recruitment, as the effects of elevated harvest

on T and Vk• tend to cancel each other [eqn (3)]. We did,

however, find that long after harvest stopped, Ne was

higher in the scenarios that involved evolution, which indi-

cates a potentially important role for evolution in main-

taining genetic diversity in populations recovering from

periods of elevated harvest-related mortality.

Although this does not directly relate to effective size, it

is worth noting that, because substantial generational over-

lap and the storage effect (Warner and Chesson 1985) help

buffer a long-lived species against environmental fluctua-

tions, truncation of age structure resulting from increased
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adult mortality will reduce this buffering capacity, leaving

the population more vulnerable to random events.

The eco-evolutionary patterns described here are quite

general and should be applicable to a wide range of spe-

cies that experience increased mortality from anthro-

pogenic factors, including but not limited to harvest. In

a recent study, Dowling et al. (2014) monitored effective

size over 15 years in a species (razorback sucker, Xyrau-

chen texanus) experiencing reduced survival in altered

habitat and found that effective size was stable or

increased while N declined, so Ne/N increased. These

were genetically based estimates and did not consider

demography, but the authors also used AgeNe to evalu-

ate the consequences of truncating the life span from 44

to 20 years. Dowling et al. (2014) found this truncation

caused little change in Ne/N, so they concluded that the

increase in the effective: census size ratio was due to

reduced variance in reproductive success. However, sim-

ply truncating a life table at a certain age does not

properly mimic a scenario with increasing adult mortal-

ity, as the latter will reduce abundance in all ages from

age at maturity onwards. We altered the life table for

razorback sucker (published in Waples et al. 2013) by

reducing adult survival from 0.8 to 0.6 and truncating

at 20 years, and this raised Ne/N from about 1.0 to 1.6,

comparable to changes we report here. Thus, although it

is certainly possible that variance in reproductive success

has been reduced in this species, it is not necessary to

postulate that to explain the empirical pattern in the

estimates of Ne/N.

One important factor that applies to species subject to

trophy hunting is that harvest that targets males can skew

the sex ratio and hence reduce Ne (Coltman et al. 2003;

Hard et al. 2006). Although the AgeNe model can easily

incorporate sex-specific vital rates to fully account for sex-

ratio effects on Ne, harvest of cod is thought to be sex-neu-

tral and we do not have evidence for sex-based differences

in survivorship. We can, however, predict the general con-

sequences of male-targeting trophy hunting on Ne and

Ne/N using the framework developed here. When males

and females have different vital rates, the simple formula

developed by Wright (1938) can be used to calculate overall

Ne as a function of the effective numbers of females and

males. Sharply increasing mortality of adult males will

reduce male N but at the same time will increase male Ne/

N, for reasons described above. As a consequence, male Ne

will not decline as fast as male N, so the effects on overall

Ne will be less than would be predicted simply from the

reduction in the number of adult males. The net results for

overall Ne will depend on population-specific patterns in

vital rates that determine how the ratio T/Vk• changes with

increasing adult mortality.

Acknowledgements

The Academy of Finland provided funding to AK and a

Natural Sciences and Engineering Research Council of

Canada Discovery Grant and Loblaw Companies Ltd pro-

vided funding to JAH to support this research. The com-

ments of the associate editor and two anonymous reviewers

considerably improved the manuscript.

Data archiving statement

No data have been archived for this study because all of the

empirical data used have been published elsewhere, as

noted in the text. Representative life tables from the simu-

lations are given in Appendix Table S1.

Literature cited

Allendorf, F. W., and J. J. Hard 2009. Human-induced evolution caused

by unnatural selection through harvest of wild animals. In J. C. Avise,

and F. J. Ayala, eds. In the Light Of Evolution, vol. III: Two Centuries

of Darwin, pp. 129–148. The National Academies Press, Washington,

DC.

Audzijonyte, A., A. Kuparinen, and E. A. Fulton 2013. How fast is fish-

eries-induced evolution? Quantitative analysis of modelling and

empirical studies. Evolutionary Applications 6:585–595.

Beebee, T. J. C. 2009. A comparison of single-sample effective size

estimators using empirical toad (Bufo calamita) population data:

genetic compensation and population size-genetic diversity correla-

tions. Molecular Ecology 18:4790–4797.

von Bertalanffy, L. 1938. A quantitative theory of organic growth

(inquiries on growth laws II). Human Biology 10:181–213.

Carlson, S. M., and T. R. Seamons 2008. A review of quantitative genetic

components of fitness in salmonids: implications for adaptation to

future change. Evolutionary Applications 1:222–238.

Charnov, E. 1993. Life History Invariants: Some Explorations of Symme-

try in Evolutionary Ecology. Oxford University Press, Oxford.

Charnov, E. L., H. Gislason, and J. G. Pope 2013. Evolutionary assembly

rules for fish life histories. Fish and Fisheries 14:213–224.

Coltman, D. W., P. O’Donoghue, J. T. Jorgenson, J. T. Hogg, C. Stro-

beck, and M. Festa-Bianchet 2003. Undesirable evolutionary

consequences of trophy hunting. Nature 426:655–658.

Darimont, C. T., S. M. Carlson, M. T. Kinnison, P. C. Paquet, T. E.

Reimchen, and C. C. Wilmers. 2009. Human predators outpace other

agents of trait change in the wild. Proceedings of the National Acad-

emy of Sciences of the United States of America 106:952–954.

Devine, J. A., P. J. Wright, H. M. Pardoe, and M. Heino 2012. Compar-

ing rates of contemporary evolution in life-history traits for exploited

fish stocks. Canadian Journal of Fisheries and Aquatic Sciences

69:1105–1120.

Dowling, T. E., T. F. Turner, E. W. Carson, M. J. Saltzgiver, D. Adams,

B. Kesner, and P. C. Marsh 2014. Time-series analysis reveals genetic

responses to intensive management of razorback sucker (Xyrauchen

texanus). Evolutionary Applications 7:339–354.

Edeline, E., S. M. Carlson, L. C. Stige, I. J. Winfield, J. M. Fletcher, J. B.

James, T. O. Haughen et al. 2007. Trait changes in a harvested

population are driven by a dynamic tug-of-war between natural and

670 © 2016 The Authors. Evolutionary Applications published by John Wiley & Sons Ltd 9 (2016) 658–672

Harvest and effective population size Kuparinen et al.



harvest selection. Proceedings of the National Academy of Sciences of

the United States of America 104:15799–15804.

Felsenstein, J. 1971. Inbreeding and variance effective numbers in popu-

lations with overlapping generations. Genetics 68:581–597.

Gaggiotti, O. E., and R. D. Vetter 1999. Effect of life history strategy,

environmental variability, and overexploitation on the genetic diver-

sity of pelagic fish populations. Canadian Journal of Fisheries and

Aquatic Sciences 56:1376–1388.

Hedgecock, D. 1994. Does variance in reproductive success limit effec-

tive population size of marine organisms? In A. Beaumont, ed. Genet-

ics and Evolution of Aquatic Organisms, pp. 122–134. Chapman &

Hall, London.

Hill, W. G. 1972. Effective size of population with overlapping genera-

tions. Theoretical Population Biology 3:278–289.

Howell, D., A. A. Filin, B. Bogstad, and J. E. Stiansen 2013. Unquantifi-

able uncertainty in projecting stock response to climate change: exam-

ple from North East Arctic cod. Marine Biology Research 9:920–931.

Hutchings, J. A. 2005. Life-history consequences of overexploitation to

population recovery in Northwest Atlantic cod (Gadus morhua).

Canadian Journal of Fisheries and Aquatic Sciences 62:824–832.

Hutchings, J.A. 2011. Chapter 5, Population Ecology. In B. Freedman

et al. , eds. Ecology: a Canadian Context. Nelson Education, Toronto.

Hutchings, J. A., and J. K. Baum 2005. Measuring marine fish biodiver-

sity: temporal changes in abundance, life history, and demography.

Philosophical Transactions of the Royal Society of London 360:315–

338.

Hutchings, J. A., and D. J. Fraser 2008. The nature of fishing- and farm-

ing-induced evolution. Molecular Ecology 17:294–313.

Jensen, A. L. 1997. Origin of the relation between K and Linf and synthe-

sis of relations among life history parameters. Canadian Journal of

Fisheries and Aquatic Sciences 54:987–989.

Kendall, N. W., U. Dieckmann, M. Heino, A. E. Punt, and T. P. Quinn

2014. Evolution of age and length at maturation of Alaskan salmon

under size-selective harvest. Evolutionary Applications 7:313–322.

Kuparinen, A., D. C. Hardie, and J. A. Hutchings 2012. Evolutionary

and ecological feedbacks of the survival cost of reproduction. Evolu-

tionary Applications 5:245–255.

Kuparinen, A., N. C. Stenseth, and J. A. Hutchings 2014a. Fundamental

population–productivity relationships can be modified through den-

sity-dependent feedbacks of life-history evolution. Evolutionary

Applications 7:1218–1225.

Kuparinen, A., D. M. Keith, and J. A. Hutchings 2014b. Allee effect and

the uncertainty of population recovery. Conservation Biology 3:790–

798.

Lanfear, R., H. Kokko, and A. Eyre-Walker 2014. Population size and

the rate of evolution. Trends in Ecology and Evolution 29:33–41.

Law, R. 2007. Fisheries-induced evolution: present status and future

directions. Marine Ecology Progress Series 335:271–277.

Lee, A. M., S. Engen, and B.-E. Sæther 2011. The influence of persistent

individual differences and age at maturity on effective population size.

Proceedings of the Royal Society of London B: Biological Sciences

278:3303–3312.

Marty, L., U. Dieckmann, and B. Ernande 2015. Fisheries-induced neu-

tral and adaptive evolution in exploited fish populations and conse-

quences for their adaptive potential. Evolutionary Applications 8:47–

63.

Mertz, G., and R. A. Myers 1998. A simplified formulation for fish pro-

duction. Canadian Journal of Fisheries and Aquatic Sciences 55:478–

484.

Mousseau, T. A., and D. A. Roff 1987. Natural selection and the heri-

tability of fitness components. Heredity 59:181–197.

Nunney, L. 1991. The influence of age structure and fecundity on effec-

tive population size. Proceedings of the Royal Society of London B:

Biological Sciences 246:71–76.

Nunney, L. 1993. The influence of mating system and overlapping gener-

ations on effective population size. Evolution 47:1329–1341.

Palstra, F. P., and D. J. Fraser 2012. Effective/census population size ratio

estimation: a compendium and appraisal. Ecology and Evolution

2:2357–2365.

Palstra, F. P., and D. E. Ruzzante 2008. Genetic estimates of contempo-

rary effective population size: what can they tell us about the impor-

tance of genetic stochasticity for wild population persistence?

Molecular Ecology 17:3428–3447.

Pigeon, G., Festa-Bianchet M., Coltman D.W., and F. Pelletier 2016.

Intense selective hunting leads to artificial evolution in horn size. Evo-

lutionary Applications (published online 26 January 2016;

doi:10.1111/eva.12358).

Polacheck, T., J. P. Eveson, and G. M. Laslett 2004. Increase in growth

rates of southern bluefin tuna (Thunnus maccoyii) over four decades:

1960 to 2000. Canadian Journal of Fisheries and Aquatic Sciences

61:307–322.

Postma, E. 2014. Four decades of estimating heritabilities in wild verte-

brate populations: improved methods, more data, better estimates? In:

A. Charmantier, D. Garant, and L. E. B. Kruuk, eds. Quantitative

Genetics in the Wild, pp. 16–33. Oxford University Press, Oxford,

UK.

Roff, D. A. 2002. Life History Evolution. Sinauer, Sunderland, MA.

Saarinen, E. V., J. D. Austin, and J. C. Daniels 2010. Genetic estimates of

contemporary effective population size in an endangered butterfly

indicate a possible role for genetic compensation. Evolutionary appli-

cations 3:28–39.

Sharpe, D., and A. Hendry 2009. Life history change in commercially

exploited fish stocks: n analysis of trends across studies. Evolutionary

Applications 2:260–275.

Waples, R. S. 1989. A generalized approach for estimating effective pop-

ulation size from temporal changes in allele frequency. Genetics

121:379–391.

Waples, R. S., and T. Antao 2014. Intermittent breeding and constraints

on litter size: consequences for effective population size per generation

(Ne) and per reproductive cycle (Nb). Evolution 68:1722–1734.

Waples, R. S., and M. Yokota 2007. Temporal estimates of effective pop-

ulation size in species with overlapping generations. Genetics

175:219–233.

Waples, R. S., C. Do, and J. Chopelet 2011. Calculating Ne and Ne/N in

age-structured populations: a hybrid Felsenstein-Hill approach. Ecol-

ogy 92:1513–1522.

Waples, R. S., G. Luikart, J. R. Faulkner, and D. A. Tallmon 2013. Simple

life history traits explain key effective population size ratios across

diverse taxa. Proceedings of the Royal Society of London B: Biological

Sciences 280:20131339.

Waples, R. S., T. Antao, and G. Luikart 2014. Effects of overlapping gen-

erations on linkage disequilibrium estimates of effective population

size. Genetics 197:769–780.

Warner, R. R., and P. L. Chesson 1985. Coexistence mediated by recruit-

ment fluctuations: a field guide to the storage effect. American Natu-

ralist 125:769–787.

Wright, S. 1938. Size of population and breeding structure in relation to

evolution. Science 87:430–431.

© 2016 The Authors. Evolutionary Applications published by John Wiley & Sons Ltd 9 (2016) 658–672 671

Kuparinen et al. Harvest and effective population size

http://dx.doi.org/10.1111/eva.12358


Supporting Information

Additional Supporting Information may be found online in the support-

ing information tab for this article:&3-5.pdf"/>

Data S1. Age-specific variance in reproductive success.

Figure S1. Patterns of adult survival (individuals age 3+) as a function

of age in simulated cod populations.

Figure S2. Effects of varying levels of fishing intensity for simulated

cod populations. Results are for selective fishing without evolution (i.e.,

as in Fig. 5, main text, but without evolution).

Figure S3. Theoretical relationship between adult survival (assumed

to be constant at annual rate 1–d) and generation length (T) and lifetime

variance in reproductive success (Vk•).

Figure S4. Effects of increasing / on Ne and the Ne/N ratio in simu-

lated cod populations.

Table S1. Age-specific vital rates for simulated cod populations at

representative time periods.

Table S2. Age-specific vital rates for cod life table #2 under different

assumptions about adult survival.

672 © 2016 The Authors. Evolutionary Applications published by John Wiley & Sons Ltd 9 (2016) 658–672

Harvest and effective population size Kuparinen et al.


