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Abstract. The Maximum Likelihood (ML) and Bayesian estimation
paradigms work within the model that the data, from which the param-
eters are to be estimated, is treated as a set rather than as a sequence.
The pioneering paper that dealt with the field of sequence-based estima-
tion [2] involved utilizing both the information in the observations and
in their sequence of appearance. The results of [2] introduced the con-
cepts of Sequence Based Estimation (SBE) for the Binomial distribution,
where the authors derived the corresponding MLE results when the sam-
ples are taken two-at-a-time, and then extended these for the cases when
they are processed three-at-a-time, four-at-a-time etc. These results were
generalized for the multinomial “two-at-a-time” scenario in [3]. This pa-
per® now further generalizes the results found in [3] for the multinomial
case and for subsequences of length 3. The strategy used in [3] (and also
here) involves a novel phenomenon called “Occlusion” that has not been
reported in the field of estimation. The phenomenon can be described
as follows: By occluding (hiding or concealing) certain observations, we
map the estimation problem onto a lower-dimensional space, i.e., onto
a binomial space. Once these occluded SBEs have been computed, the
overall Multinomial SBE (MSBE) can be obtained by combining these
lower-dimensional estimates. In each case, we formally prove and exper-
imentally demonstrate the convergence of the corresponding estimates.
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1 Introduction

The theory of estimation has been studied for hundreds of years [5,6,7], and
it has been the backbone for the learning (training) phase of statistical pat-
tern recognition systems [1,8,9]. Traditionally, the ML and Bayesian estimation
paradigms work within the model that the data, from which the parameters are
to be estimated, is known, and that it is treated as a set. The position that we
respectfully submit is that traditional ML and Bayesian methods ignore and dis-
card* valuable sequence-based information. The goal of this paper is to “extract”
and “utilize” the information contained in the observations when they are per-
ceived both as a set and in their sequence of appearance. Put in a nutshell, this
paper deals with the relatively new field of sequence-based estimation in which
the goal is to estimate the parameters of a distribution by maximally “squeezing”
out the set-based and sequence-based information latent in the observations.

The Maximum Likelihood (ML) and Bayesian estimation paradigms work
within the model that the data, from which the parameters are to be estimated,
is treated as a set rather than as a sequence. The pioneering paper that dealt
with the field of Sequence-Based Estimation (SBE) [2] involved utilizing both
the information in the observations and in their sequence of appearance. The
question that this entails is the following: “Is there any information in the fact
that in X', x; specifically precedes z;17”. Or in a more general case, “Is there any
information in the fact that in X', the sequence ;11 ... ;1  occurs 1 j41,.. itj
times?”. Our position, which we proved in [2] for binomial random variables®,
is that even though X is generated by an i.i.d. process, there is information in
these pieces of sequential data which can be “maximally” utilized to yield the
so-called family of SBEs.

If the MLE and any SBE of the parameter 6 converge to the same true,
unknown, value, what then is the advantage of having multiple estimates? The
answer lies simply in the fact that although the traditional MLE and the SBEs
converge asymptotically to the same value, they all have completely different
values. This is all the more true because the information used in procuring each
of these estimates is “orthogonal”. Further, since the convergence properties of
MLES is asymptotic, one can glean and effectively utilize other information when
the number of samples examined is “small”.

The consequences of invoking SBEs are potentially many. If we are able to
obtain reliable estimates of the parameters under investigation by utilizing the
set-based and sequence-based information, this could potentially have advan-
tages in all the fields where estimation is used.

The pioneering paper concerning SBEs [2] introduced its theory, experimental
results and applications for the Binomial distribution, where the authors derived

4 This information is, of course, traditionally used when we want to consider depen-
dence information, as in the case of Markov models and n-gram statistics.

® The papers [2] and [3] explain the application of SBEs, and also about how we can
fuse them to yield superior estimates. These aspects are not included here in the
interest of space.
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the corresponding MLE results when the samples are taken two-at-a-time, and
then extended these for the cases when they are processed three-at-a-time, four-
at-a-time etc. These results were generalized for the multinomial “two-at-a-time”
scenario in [3].

This paper now further generalizes the latter results (those found in [3]) for
the multinomial case and for subsequences of length 3. The results of the case
when we deal with subsequences of length greater than 3 are currently being
compiled. To the best of our knowledge, apart from our previous results of [2]
and [4], all of these are novel to the field of estimation, learning and classification.

In the interest of space and brevity, the proofs of the theoretical results
presented here are omitted. They are found in [4]. However, we add that all the
theoretical results have been experimentally verified

2 On Obtaining MSBEs Using Occluded SBEs

Informally speaking, the question of designing SBEs for multinomial random
variables is, perhaps, “two orders of magnitude” more complex than that of de-
signing them for binomial random variables® The reason for this is quite simple:
For a vector of dimension d, there are (‘;) possible pairs of binomial events, and
it is no trivial task to generalize the expressions for the binomial SBEs (from
[2]) to yield the corresponding multinomial SBE (MSBE). This, we believe, is
the hurdle that we have encountered in this present paper, and its solution is
the novel contribution.

How then have we proposed the solution to the problem even though we
encounter ((21) possible pairs? Indeed, rather than consider the problem of com-
puting the MSBE as a problem in its own right, we have shown how we can map
this problem into a linear set of Binomial SBE (BSBE) problems. This is, as
we shall see, achieved by effectively occluding (erasing, hiding or concealing) all
the observations in the sequence other than the ones that are concerned in the
specific binomial experiment. One can now procure corresponding BSBEs from
these occluded sequences. The final MSBE result is now computed by effectively
processing a sufficient set of such BSBEs, and combining them by means of a
normalizing constraint. The details of all these aspects will be explained in the
subsequent sections.

2.1 Notation: MSBEs Using Pairs and Subsequences

Before we proceed with the theoretical and experimental results, it is necessary
for us to formalize the notation that will be used”.
Notation 1: To be consistent, we introduce the following notation.

5 The contents of this section is quite identical to the corresponding section in [3]. This
is unavoidable because the notation is quite cumbersome. Besides, the fundamental
theory of using “occlusion” is identical in both the papers. Unfortunately, it is futile
to omit these concepts and to refer the reader to [3] - it will render the present paper
to be quite incomprehensible.

" We apologize for this cumbersome notation, but this is unavoidable considering the
complexity of the problem and the ensuing analysis.
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— X is a multinomially distributed random variable, obeying the distribution
S.

— X ={x1,22,...,2;} is arealization of a sequence of occurrences of X, where
each x; € D.

— An index a € D is said to be the unconstrained variable in any computation
if all the other estimates {s;} are specified in terms of s,, where i # a.
It will soon be clear that in any computation there can only be a single
unconstrained variable.

— x% = {x1,29,...,2n,,} is called the Occluded sequence of X (with Ny
items) with respect to a and b, if it is obtained from X by deleting the
occurrences of all the elements except a and b. Whenever we refer to the
sequence X% = {xy,z9,...,2N,,}, we always imply that the first variable
(in this case a) is the unconstrained variable.

— Let < jija ..., jr > be the subsequence® examined in the Occluded sequence
X where each j,, (1 <m < k), is either a or b. Then®:

e The BSBE, for s, obtained by examining in X% the subsequence <
ab

, where, as before, the first
<Jijz2---Jk>
variable (in this case a) is the unconstrained variable.

e Similarly, the BSBE, for s;, obtained by examining in X% the subse-
ab

Jije .-, Jjr > will be given by @,

, where the first
<J1j2--sJk>
variable (in this case a) is the unconstrained variable.

— Consider the sequence X in which the index a is the unconstrained variable.
Let < j1j2...,Jr > be the subsequence examined in the sequence X, where
each jn,, (1 <m < k), is either a or ‘¢, where each ‘¢’ is the same variable,
say ¢ € (D —{a}) . Then:

e The MSBE for s, (where a is the unconstrained variable) obtained by ex-
a

quence < j1j2...,J% > will be given by @,

amining in X the sequence < jijo ..., jr > will be given by s,

. . . <J1J2:-Jk>
where each j; that is not a is replaced by a ‘*’, and where each ‘x’ is the

same variable, say ¢ € (D — {a}).
e For any constrained variable b, the MSBE for s, obtained by examining

ab
in X the sequence < jija...,jx > will be given by 5, , where
. . . <ji1j2--Jk>
a is the unconstrained variable.
— Trivially, for all a and b:
Z R ab e
Sp =1-% . O
R PP N <higaenin>

A detailed example of Notation 1 is found in [3].

8 For the present, we consider non-overlapping subsequences. We shall later extend
this to overlapping sequences when we report the experimental results.

9 The reader must take pains to differentiate between the ¢’s and the s’s, because the
former refer to the BSBEs and the latter to the MSBEs.
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For any given a and b, if a is the unconstrained variable, we shall now derive

ab a ab
the explicit form of g, Qv , Su ,and 5
. <Jijz--Jk> <Jrjz--dk> <Jije--dk> <jijz---Jjk>
for various subsequences < j1j2...,Jr >.

By virtue of the Weak Law of Large Numbers, it is well known that the MLE
converges with probability 1 and in the mean square sense to the true underlying
parameter. Thus, all the estimates given in the following sections converge (w. p.
1, and in the mean square sense) to the true underlying value of the parameter.

2.2 The Fundamental Theorem of Fusing Occluded Estimates

Our first task is to formulate how we can compute the MSBEs by utilizing
information gleaned by the Binomial SBEs (BSBEs) obtained from the set of
(‘21) occluded sequences. The theoretical basis for this is the following: Consider
an occluded sequence, X, extracted from the original sequence, X, by removing
all the variables except a and b. In the sequence being examined, we choose one
variable, say a to be the unconstrained variable. We shall first attempt to obtain
BSBEs of the relative proportions of s, and s, from X®. Thereafter, we utilize

the set of these relative proportions to compute the MSBEs of all the variables.

Theorem 1. For every pair of indices, a and b, let X% be the Occluded se-
quence, extracted from the original sequence, X, by removing all the variables
except a and b. If we consider a to be the unconstrained variable, we define

ab
o = sas_ng and q, = Sa‘:_”Sb, where q, + qo = 1. Now let q, ) # 0 and
ab ab
Q@ =1-q, be the BSBFEs of q, and qp respectively based on the oc-
7(a,b) m(a,b)

currence® of any specific subsequence (a,b). Then, if ¢ is a dummy variable'!

representing any of the variables, the MSBEs of s, and s, obtained by examining
the occurrences'? of m(a,b) in every X are:

=R ab
~ |® 1 . |ab o 7(a,b)
S = , and b = ==, 1
@ m(a,b) ZVC Pe m(a,b) ZVC Pe ( )

ac

Q)

c

7 (a,c)
ac

where p, =1 and Ve # a, pe. =

a

)

7 (a,c)

Proof. The proof of the result is omitted due to space considerations. It is in [4].
An example clarifying its use is also found in [3] and [4]. O

10 The issue of how BSBEs are obtained for specific instantiations of 7(a, b) is discussed
in the subsequent sections.

' The fact that c is a dummy variable will not be repeated in the future invocations
of this result.

12 This, of course, makes sense only if Ve, Ga # 0. This condition will not be
m(a,c)

explicitly stated in the future.
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In [3], we had derived the explicit expressions for the MSBEs when the sub-
sequences 7(a, b) are of length 2. We shall now generalize this for the case when
the subsequences are of length greater than 2.

2.3 Computational Issues

In all the theoretical results that we shall prove, we shall deal with non-overlapping
subsequences. Thus, the number of non-overlapping sequences of length two in
X ig %, and the number of non-overlapping sequences of length three in Xxab
is % etc. In any sequence X, consider the contiguous sequences of length
two (i.e., aa, ab, ba and bb). Since the elements of X’ are drawn independently
and identically, the fact that two adjacent elements x, and z,41 in X% are a,
is independent of the event that z,4; and 42 can also assume the value of a.
The pairwise event is thus, effectively, one of “drawing with replacement”, and
we can thus consider N, — 1 consecutive pairs in X ab_ Observe that it would
be statistically advantageous (since the number of occurrences obtained would
be almost doubled) if all the overlapping N, — 1 subsequences of length 2 were
considered, and where nqq, nap, Npe and ny, were the number of occurrences of
aa, ab, ba and bb respectively in these Ny, — 1 subsequences. Similarly, it would
be advantageous to consider the overlapping N, — 2 subsequences of length 3
were considered etc. Indeed, we shall utilize these quantities in the experimental
verification of our theoretical results.

3 MSBESs Using Three-at-a-Time Sequential Information

3.1 Theoretical Results

The following analytic results are true when the sequential information is pro-
cessed three-at-a-time.

ab
Theorem 2. Let q, = Sasﬁsb and qp, = S;Tbsb, where g, +q, = 1. Then, q, .
ab
and Qp , the BSBEs of q, and qy, obtained by examining the occurrences of
<aaa>

< aaa > in X are:

ab _ Naaa and a ab — 11— s Naaa (2>
<aaa> Nab/?), b <aaa> Nab/37

where Ngqq 5 the number of occurrences of < aaa > from among the N;” non-

overlapping subsequences of length 3 in X, Consequently,

~

qa

=R ab
a 1 ab b < S
Sa = , and Sp = ez, (3)
<aaa> EVC Pec <aaa> ZVC Pec

1— 3/ Naaa
where p, =1 and Ve # a, p. = —fmal®
Na/C/s
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Proof. The proof of the result is found in [4]. O
ab

Sa

Theorem 3. Let qo = ;5

and qp = Sajl_’sb, where g, +q, = 1. Then, q,

<bbb>
ab

and Qp , the BSBEs of q, and qp obtained by examining the occurrences of
<bbb>

< bbb > in X are:
ab

bbb ab

=1-2 , d
<bbb> Nav/3 a

~

da

—~ Nbbb
= 4
*| <bbb> Nap/3’ )

where nyppy s the number of occurrences of < bbb > from among the “b non-
overlapping subsequences of length 3 in X . Consequently,

__jab
e 1 __jab v
Ucobbs>  Sgepe’ and Pl bbb ﬁbbpbj’ (5)
where p, =1 and V¢ # a, p. = Y N3
‘ N
Proof. The details are thus omitted. It is found in [4]. O

To simplify matters, we deal with the rest of the cases that involve three-at-
a~time subsequences, by sub-dividing them into the cases when the subsequences
contain one b, or two b’s, which are then dealt with in a single theorem.

ab

Theorem 4. Let g, = —2¢— and q, =

Satsy Sa +S ’ <uvw>’
the BSBE of q, obtained by examining the occurrences of subsequences of length
3 of the form < wvw > in X% of which only a single variable is b, can be
computed as the real roots (if any) of the cubic equations given below for each
such subsequence:

where q,+q, = 1. Then, q,

ab
1. q, is the real Toot, Ay, of A3 — A2 4 ]\T,“’a% = 0 whose value is closest
§\baa>
o qa;
ab
2. Qu is the real Toot, Ay, of X3 — A2 + 1\’;‘1”73 = 0 whose value is closest
<aba>
10 Qa;
ab
3. Q. is the real root, \a, of \> — A2 + 1\7;““/&3 = 0 whose value is closest
g\aab>
10 qa;

where Npaa, Napa aNd Ngqp are the number of occurrences of < baa >, < aba >

and < aab > respectively from bamong the N:;b non-overlapping subsequences of
a
length 3 in X°°. Similarly, g, =Xy, = 1—X\,. Finally, in each case,
<uvw>
= ab
~|® 1 d I~ ab o <uvw> (6)
S = , an S = s
“ <uvw> ZVC Pec b <uvw> ZVC Pec ’

where p, =1 and Ve # a, p. = ifc
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Proof. The details of the proof are omitted here and are included in [4]. O

We now consider the scenario when the subsequence examined contains two
b’s. However, here, we first estimate the probability ¢, using which infer the
estimate of ¢,. Indeed, the theorem mirrors the one above.

ab
Theorem 5. Let g, = S;‘;Sb and gy = - +S , curs”
the BSBE of q, obtained by examining the occurrences of subsequences of length
3 of the form < wvw > in X of which exactly two wvariables are b’s, can be
computed as the real roots (if any) of the cubic equations given below for each

such subsequence:

where q,+q, = 1. Then, @,

ab
1. @ is the real root, Ay, of A3 — A% 4 ”””/” = 0 whose value is closest to
<abb>
@;
ab
2. q b is the real root, Ay, of A3 — A% + ]\T,"’a}’g = 0 whose value is closest to
<bab>
qb;
=R ab
3. Q@ " is the real root, Ay, of A3 — X2+ ]\?bb‘/“s = 0 whose value s closest to
<oba>
ab;

where Napy, Npap aNd Nppe are the number of occurrences of < abb >, < bab >
and < bba > respectively from among the “b non-overlapping subsequences of

ab
length 3 in X, Similarly, , = Ag =1 — X\p. Finally, in each case,
<uvw>
=R ab
~ ] 1 d i~ ab v <uvw> (7)
S = , an S = U
¢ <uvw> EVC Pec b <uvw> ZVC Pec ’

where p, =1 and Ve # a, pe = %

Proof. This proof is similar to the proof of Theorem 4 (by merely replacing a
by b and vice versa) and is not included to avoid repetition. a

3.2 Experimental Results: Sequences of Length Three

To justify and experimentally verify the claims of Section 3.1, we now present
the results of our simulations on synthetic data for the cases studied in that sub-
section, namely for the case when the sequence is processed in subsequences of
length three. As in the case of sequences of length 2, by virtue of the arguments
of Section 2.3, we evaluate the approzimated versions of the respective equations
by considering the N — 2 overlapping sequences of length 3, and so the solutions
are obtained by replacing the existing term, N/3, by N — 2 in Theorems 2 to 5.

As in the case of using pairwise sequences of symbols, the MSBE process for
the estimation of the parameters for multinomial random variables was exten-
sively tested for numerous distributions, but we merely cite one specific example.
The case we report is when d = 5 and the true value of S = [0.33 0.25 0.18 0.14 0.10]
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Here too, we have simultaneously tracked the progress of the “traditional” MLE
computation using the identical data stream. Both the estimation methodologies
were presented with random occurrences of the variables for N = 390625 (i.e,
5%) time instances. As in [3,4], the criteria for the quality of the estimates were
the values of Eprp g, the error of the MLE, and the error of the MSBE, EysBE,
at time N.

In the case of the MSBE, the true underlying value of the estimates was
computed using each of the estimates when the triples examined in every X%
were < aaa >, < bbb >, < baa >, < aba >, < aab >, < abb >, < bab > and
< bba >. The results obtained are tabulated in [3,4] as a function of the number
of samples processed. However, to demonstrate the true convergence properties
of the estimates and to mitigate the sampling error, we report the values of
the ensemble average of the errors in Table 1 taken over an ensemble of 100
experiments. From it one can observe the amazing convergence of every single
estimate. For example, the traditional MLE, had the ensemble average error,
EnpE, of 0.1918 when only N = 625 symbols were processed. The error of the
MSBE (when the subsequence examined was < aaa >) at that time was 0.2081.
When N = 390625, the value of the Ey;r g was exactly 0.1885, while the value
of the Fy;spr was 0.1886 — demonstrating the power of the estimation strategy!

The same phenomenon can be observed for the other MSBESs, except that
in some cases the estimates were much better for smaller values of N. One also
observes that the error of the MLE and MSBE evaluated for a single experiment
are not as smooth - especially when the number of samples processed is small'3.
But fortunately, things “average” out as time proceeds.

Table 1. A table of the ensemble averages (taken over 100 experiments) of the error
of the MLE, EnrE, and the error of the MSBE, EnspE, at time N, when the triples
examined in every X% were < aaa >, < bbb >, < baa >, < aba >, < aab >, < abb >,
< bab > and < bba >. Here d = 5 and S = [0.33 0.250.18 0.14 0.10]. The latter MSBEs
were estimated by using the approximated results of Theorems 2 to 5 respectively
involving the Ny, — 2 overlapping subsequences of length 3 (approximated using the
issues discussed in Section 2.3).

N Evre|Evsee |EvsBe|EvsBe |EvmsBe |EvsBe |Evsee|EvsBe |EMsBE
< aaa >|< bbb > |< baa >|< aba >|< aab >|< abb >|< bab >|< bba >
52 (25) 0.1279 NaN 0.2955 NaN NaN NaN NaN NaN NaN

53 (125) 0.1695| NaN 0.2305 | 0.2163 | 0.2014 | 0.2128 NaN NaN NaN
5% (625) 0.1875| 0.1920 | 0.2110 | 0.2096 | 0.2025 | 0.2082 NaN NaN NaN
5° (3,125) [0.1886| 0.1891 | 0.1973 | 0.1958 | 0.2027 | 0.1968 | 0.1925 NaN 0.1928
56 (15,625) |0.1883| 0.1884 | 0.1937 | 0.1912 | 0.1984 | 0.1916 | 0.1905 | 0.1910 | 0.1905
57 (78,125) |0.1879| 0.1880 | 0.1919 | 0.1881 | 0.1879 | 0.1880 | 0.1878 | 0.1882 | 0.1878
58 (390,625)|0.1879| 0.1879 | 0.1895 | 0.1881 | 0.1882 | 0.1880 | 0.1883 | 0.1880 | 0.1883

13 In practice, this is augmented by the fact that the SBEs sometimes lead to complex
solutions or to unrealistic solutions when the number of samples processed is too
small.
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The estimated ensemble values of Enpr and Eyspr |<aca> Wwith N are
plotted in [4]. From it we can see that after an initial transient phase, the two
curves are almost undistinguishable. This same true for the values of Fyspg
estimated using the subsequences < bbb >, < baa > etc. It is important to men-
tion that the approximated values (using the N — 2 overlapping subsequences)
also converge rapidly to the true values of S with a remarkable accuracy.

4 Conclusions

In this paper, we have considered the problem of achieving Sequence Based Esti-
mation (SBE) for multinomial distributions. Unlike traditional estimates, which
ignore and discard valuable sequence-based information, SBEs “extract” the in-
formation contained in the observations when perceived as a sequence. The pio-
neering work in SBEs was presented in [2], and concerned Binomial distributions.
Since then, the analysis for multinomial distributions was left open. The first step
in solving the SBE problem for multinomial distributions was made in [3]. The
strategy that we developed there involved a novel and previously-unreported
phenomenon called “Occlusion” where by hiding (or concealing) certain obser-
vations, we mapped the original estimation problem onto a lower-dimensional
binomial space. We have also shown how these consequent occluded SBEs could
be fused to yield overall Multinomial SBE (MSBE). The results in [3] achieved
this by only investigating the information found in pairs of symbols in the oc-
cluded sequence. In this paper, we have further generalized these results when
we considered contiguous subsequences of length 3 in the occluded sequence,
which was then fused to yield the overall MSBE. The theoretical results have
been experimentally verified. The analytic and experimental results for the cases
when the subsequences are of lengths greater than 3 will soon be published.
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