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Abstract 
Norwegian students at the end of lower secondary school are according to 
international comparative studies weak in algebra. This thesis reports a 
study of a mathematics classroom at the start of upper secondary school, 
when basic algebra, number, and number operations are recapitulated. 

One aim has been to study what kind of mathematics is emphasised. 
The analysis is done on the basis of the textbook, the tasks, and the 
presentation in the classroom. Another aim has been to inquire into what 
experiences students have of the mathematics offered in the classroom. 
Experiences are not directly accessible, but the analyses are based on stu-
dents’ oral and written responses in the classroom and in interviews, and 
on all their written task solutions. A third aim appeared during the work 
with the data, and was to explore how the setting of the mathematics 
classroom influences students’ experiences. 

The study, combines the social and the individual perspective, and is 
based on a conceptual framework with concepts from different theories 
and studies. Important concepts reflecting the individual perspective are, 
‘concept image’, ‘proceptual thinking’, ‘structure sense’, and ‘mathemati-
cal proficiency’. The social perspective is reflected by some concepts 
from social interactionism, the ‘didactical contract’ from the theory of di-
dactical situation, and ‘task discourse’.  

The data were of different kinds and from different sources: classroom 
observations, interviews with students and the teacher, written material 
from students’ task solutions; both tests and assigned tasks, teacher’s ex-
planation, and the textbook with its resources.  

The analyses revealed that the mathematics offered was focused on 
rules and algorithms, with little or no connection to the underlying con-
cepts. The textbook tasks were of a low level of cognitive demand and did 
not challenge students to develop their concept images. Important con-
cepts and principles were not explicitly addressed; a request for develop-
ing conceptual understanding. The teacher addressed some issues. 

Students’ responses revealed that problems reported in former studies 
still exist. The problems are well-known, but the textbook seems not to 
have been based on research within the area of mathematics education, 
and thus gave no adequate attention to help those students who struggled 
to overcome these problems.  

The didactical contract, the task discourse, the pressure on curriculum 
time, and the inadequate teaching material seemed to constrain students in 
developing conceptual understanding and thus procedural fluency. 
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Sammendrag 
Internasjonale komparative studier viser at norske elever i slutten av ung-
domsskolen er svake i algebra. Avhandlingen er en studie av en matema-
tikklasse ved starten av videregående skole mens elementær algebra, tall 
og regneoperasjoner repeteres.  

Et mål har vært å undersøke hva slags matematikk som vektlegges. 
Læreboka, oppgavene og presentasjonene i klasserommet danner grunnlag 
for analysen. Et annet mål har vært å finne ut hva slags erfaringer elevene 
har av matematikken som blir presentert. Erfaringer er ikke direkte til-
gjengelige, men analysen her er basert på elevenes skriftlige og muntlige 
utsagn i klasserommet og i intervjuer, og på skriftlige løsninger av lære-
bokoppgaver og testoppgaver. Gjennom arbeidet med dataene dukket et 
tredje spørsmål opp: Hvordan influerer klasseromsettingen på elevenes 
erfaringer av matematikken som presenteres? 

Det individuelle perspektivet er kombinert med et sosialt perspektiv, 
og teoretiske begreper benyttet i analysen er hentet fra ulike teorier og 
studier. Det individuelle perspektivet er reflektert gjennom begrepene 
‘concept image’, ‘proceptual thinking’, ‘structure sence’, og ‘mathemati-
cal proficiency’. Det sosiale perspektivet gjenspeiles i begreper fra sosial 
interaksjonisme, ‘den didaktiske kontrakten’ fra ‘Theory of didactical si-
tuations’ (TDS) og ‘oppgavediskursen’.  

Datamaterialet er data av ulikt slag og fra ulike kilder: klasseroms ob-
servasjoner, intervjuer med elever og lærer og skriftlige løsninger både på 
testoppgaver og lærebokoppgaver. Lærerens forklaringer og læreboka 
med ressurser er også del av datamaterialet.  

Analysene viste at matematikken som ble presentert, var fokusert på 
regler og algoritmer med få eller ingen koblinger til begrepene de bygger 
på. Lærebokoppgavene var kognitivt lite krevende og var ikke egnet til å 
utfordre elevene til å utvikle sine ‘concept images’, og viktige begreper og 
prinsipper var ikke eksplisitt nevnt i læreboka, noe som er viktig for å ut-
vikle begrepsforståelse. Læreren brakte inn noen utelatte begreper.  

Studien viste at problemer rapportert i tidligere studier fremdeles ek-
sisterer. Problemene burde være velkjente, men det ser ikke ut tl at lære-
boka var bygd på forskning i feltet, og det var derfor ingen fokus på å av-
dekke problemer og hjelpe de elevene som strevde.  

Den didaktiske kontrakten, oppgavediskursen, tidspresset for å dekke 
læreplanmålene og utilstrekkelig undervisningsmateriell så ut til begrense 
elevene i å utvikle god begrepsforståelse og i å bruke prosedyrer effektivt  
og fleksibelt. 
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1 Introduction 
My quest is to inquire into the relationship between the mathematics of-
fered in a mathematics classroom to students entering upper secondary 
school, and what these students experience of that mathematics. Observa-
tions made in more than 20 years of teaching mathematics, both at lower 
and upper secondary level, induced the interest in this quest.  

As a teacher I experienced students making errors, but to find the basis 
for the problems students revealed was difficult under the pressure of time 
and the many demands in the daily work.  

In my master study done within the frame of a research project at Uni-
versity of Agder, the KUL-LCM project, test tasks from 230 students in 
upper secondary school were analysed. Many of the tasks in the test were 
used in a former large study in Norway – the KIM-study (Quality in the 
teaching of mathematics) (Brekke, 1995a, 1995b, 2005; Brekke, Rosén, & 
Grønmo, 2000). Related literature and analyses of these tasks, gave me 
new insight into students’ learning difficulties also experienced in my 
classes. 

In comparing the results from the two studies (KUL-LCM and the 
KIM study), it appeared that the students in the KIM study performed bet-
ter 10 years earlier than the students in my study, although the latter stu-
dents had one more year of schooling. In addition, the students in the KIM 
study were from the whole age population, while the students in my study 
were students preparing for university studies. The mathematical prob-
lems I found, seemed to be the same as those identified in the KIM-study; 
even though a lot of material about the findings in this former study had 
been available for teachers for more than a decade. For me, as a teacher in 
school, the material had not been made known.  

In Norway there is a break between lower and upper secondary school. 
From grade one to grade ten, the pupils have followed a common curricu-
lum and remained part of the same class. Preschools, primary schools, and 
lower secondary schools are under the same district administration alt-
hough each school has its own administration at school level. Upper sec-
ondary school has another administration which covers a wider geograph-
ical area, and students can choose among different schools within this ar-
ea. 

This means that traditionally there has been little or no contact be-
tween upper secondary schools and the lower grades. Courses for in-
service teachers are held specifically for teachers from upper secondary 
schools. It is therefore unusual for teachers from the different levels to 
have met to discuss matters related to subjects and teaching.  
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When the opportunity arose to work in a project where teachers from 
kindergarten or preschool up to upper secondary school were included and 
would work together, I was eager to participate.1 It stimulated my interest 
to find out more about students’ understanding of basic mathematical 
concepts, especially in the area of algebra in the transition from lower to 
upper secondary school.  

There is a huge amount of research carried out on students’ concep-
tions of algebra, and the transition from arithmetic to algebra. Most of this 
was conducted in the 1980s and 1990s, and often the research design did 
not include observation of normal classes. It is a moot point whether more 
research is needed in the area, however, the results in my master study and 
the findings from PISA and TIMSS show that problems still exist.  

Norway has a problem in that many students drop out of upper sec-
ondary school, and there is an ongoing discussion about what to do to 
keep them in school and help them finish their schooling. Studies have 
shown that low achievement in mathematics from lower secondary school 
is one important factor (Falch, Nyhus, & Strøm, 2014) causing this drop-
out. Algebra is recognised as the foundation for mathematical analysis in 
many studies both in economics and in science, and TIMSS advanced 
study 2008 showed that a lack of competence in algebra led to low scores 
in physics ( Lie, Angell, & Rohatgi, 2010).  

When students come to upper secondary school they are expected ac-
cording to the syllabus to be fluent in transforming algebraic expressions. 
Most upper secondary teachers are fully aware that not all students master 
these transformations. The issue is then how to deal with problems many 
students have, and at the same time challenge the students who perform 
well, when the topics have been covered earlier.  

In mathematics textbooks at this level the first part is normally devot-
ed to a recapitulation of basic algebra and the arithmetical operations. The 
recapitulation of the topic is often treated as self-regulated work with 
textbook tasks, similar to those the students have met before, while both 
the teacher and the students are looking forward to starting on something 
‘new’. 

The students in this study are in this transition from lower secondary 
to upper secondary school. They have left their former schools, and have 
just met a new school system, which may be challenging for them. Ac-
cording to a study from England about the transition from compulsory 

                                           
1 The name of the project was the TBM- project (Teaching Better Mathematics). Information 
about this project is to be found in Appendix 2. 
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school to college2 (Hernandez-Martinez et al., 2011) it was found that 
most students in the study were worried about the social dimension of the 
transition, but for most of them it was later regarded as having given them 
a feeling of  growing up. Another issue for them was that they expected 
mathematics to be different from what they had experienced earlier; to be 
more difficult. However, when looking back, they mostly regarded it posi-
tively, as challenges to overcome. For weaker students everything seemed 
to be new in mathematics, and thus it was harder for them. The authors 
opinion was that the colleges had information about the students entering 
the college, and thus it is a “curriculum pathways  problem, and concomi-
tantly a funding problem” (ibid) to help the students. Also in Norway the 
upper secondary schools have information about students coming to their 
schools.   

In this study one class is followed during these first weeks in upper 
secondary school, when algebra is recapitulated. There is generally little 
classroom research carried out in upper secondary school, and especially 
during the first weeks in the new school, when basic algebra is recapitu-
lated. The aim in this study is to learn about the relationship between the 
mathematics offered , and students’ responses. By using the word rela-
tionship, I do not intend to find a cause and effect relationship, but to ex-
amine how the two phenomenona are related. In this way I want to add to 
the knowledge in the research community about students’ conceptions of 
topics within basic algebra, and about the teaching/learning going on in 
the classroom, in the transition from one school system to another.  

 In order to make the study as transparent as possible I have made an 
extensive presentation of the data and the results. The organisation of the 
thesis makes it possible to read it topic by topic. This thesis is aiming at 
giving the reader a holistic glimpse of an ordinary mathematics classroom 
in a limited period of time. 

1.1 The structure of the thesis 
In chapter 2, I have outlined the Norwegian situation with the aim to base 
the study and the mathematics classroom in the Norwegian context. 

In chapter 3, it is discussed what algebra is, and what it means as a 
subject in school. In addition, the Chapter 4 is a review of former studies 
focusing on students’ learning and work with number and algebra. That 
chapter is important as a basis for the analysis of students’ responses. 

Chapter 5 has the title: Interpretative framework. Both the social and 
the individual perspectives are taken into consideration. Important con-

                                           
2 The students in the study going from compulsory school to college are at about the same age 
as the students in this study. 
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cepts within the social perspective are: ‘patterns of interaction’, ‘task dis-
course’ and ‘didactical contract’. Within the individual perspective ‘con-
cept image’, ‘proceptual thinking’ and ‘structure sense’ are important 
concepts. These concepts are presented before different kinds of mathe-
matics are discussed. At the end of the chapter, the strands of ‘mathemati-
cal proficiency’ are presented. 

The heading in chapter 6 is: Opportunities to learn. This chapter in-
cludes a review of studies done on what promotes different kinds of learn-
ing, and studies on mathematics textbooks and tasks.   

The data collection and methods are described in chapter 7, with re-
flections on the methodology.  

In the chapters 8 to 12, students’ observed responses, both written and 
oral, are categorised and analysed on the basis of former research on alge-
bra and number (chapter 4), and discussed on the basis of the interpreta-
tive framework in chapter 5.  

In chapter 13, the focus is on the learning situation described through 
the patterns of interactions going on in the classroom.  

Chapter 14 includes short summaries of the students’ work with math-
ematics presented thoroughly in the chapters 8 to 12. The rest of this 
chapter is devoted to the research questions and a discussion of the find-
ings.  

The last chapter, chapter 15, includes the conclusion and implications 
for teaching and for further research. 
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2 The Norwegian context 
In the foregoing section, I have given a rationale for my personal interest 
in this study. In this chapter I will outline the Norwegian context.  

The mathematics and the students’ mathematical activity is at the core 
of my investigation of the classroom activity. However, students and their 
activity do not exist in isolation. Internal and external factors influence 
both what students do, and how they perform in mathematics. In this 
chapter I will examine factors which official documents and research re-
veal as influencing Norwegian mathematics classrooms.  

In the first section, reference will be made to Norwegian students’ per-
formances in the international comparative studies. The reason for this is 
that the results from these studies have made a strong impact on policy 
makers in Norway (Baird et al., 2011), and they form a part of the ra-
tionale for this study. 

Then the two mathematics syllabi in the L97 and in the K06 curricula 
are presented. The reason for this is that the students in this study have 
followed both; the L97 the first 10 years, and during the time of observa-
tion they met K06.  

The following sections are devoted to factors influencing the daily 
work in the classroom: Digital tools, the teachers, work plans, prior 
knowledge and mathematics textbooks.  

The last section is a summary of how I see the Norwegian context and 
a presentation of the research questions.  

2.1 Students’ mathematics – PISA and TIMSS 
The Trends in International Mathematics and Science Study, the TIMSS 
study, was developed by the International Association for the Evaluation 
of Educational Achievement (IEA) in order to allow participating nations 
to compare students’ educational achievement across borders. The first 
TIMSS study was carried out in Norway in 1995, and every 4 years there-
after. Students are assessed in mathematics and science based on test 
items. Students, teachers and school leaders are in addition asked to an-
swer questionnaires. The study intends to measure students’ achievements 
related to mathematics syllabi. The tasks are thus chosen to correspond to 
what is supposed to be learned in school.   

The Programme for International Student Assessment (PISA) is an in-
ternationally standardised assessment jointly developed by the OECD 
member countries through the OECD’s Directorate for Education. The 
aim is to assess to what extent students near the end of compulsory educa-
tion have acquired the knowledge and skills that are essential for full par-
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ticipation in society.  As in TIMSS, students are expected to solve test 
items and to answer questionnaires. The first study was carried out in 
2000, and every third year after that.  

The subjects to be focused on are mathematics, science and reading. 
The questionnaires have a wider focus than students’ performance on test 
items. The focus is on students’ motivation to learn, their beliefs about 
themselves and the learning situation. Their learning strategies are also 
examined in addition to differences in performance between groups of 
students, e.g. the difference between genders and between socioeconomic 
groups.   

In 1995, the TIMSS results in grade 8 showed that Norwegian students 
achievements were approximately at the international average with alge-
bra as the weakest topic (Lie, Brekke, & Kjærnsli,1997). In 2003 Norwe-
gian students performed less well (Grønmo, 2004). It was claimed that 
Norwegian students in 2003 were estimated to be one year behind the stu-
dents in 1995. Also this time the weakest topics were algebra and number. 
The researchers assert there is a correlation between a deliberate low pri-
ority of these topics in the syllabus from 1997, and students’ achievement. 

The PISA study from the same year, 2003, testing students in grade 10 
confirmed the results from the TIMSS study (Kjærnsli, Lie, Olsen, Roe, & 
Turmo, 2004). One of the problematic issues reported was that students 
lack skills and elementary knowledge in the topic of number. The PISA 
study also compared the results from the study in 2003 with the results 
from 2000, and reported a decrease in performance, although not signifi-
cant.  

In 2006 there was still a decrease in the results in mathematics for stu-
dents in grade 10, and now the decrease was statistically significant 
(Kjærnsli, 2007). The TIMSS study 2007 (Onstad & Grønmo, 2009) re-
veals some change. The results were slightly better than the results from 
2003, however, students’ performance was still far below the results from 
1995. The researchers observed that students in grade 8 were allowed to 
use calculators in 2007, which was a change from 2003, however it was 
argued that this was taken into account when comparing the two results.  

TIMSS advanced, a study of students’ performance in mathematics at 
the end of upper secondary school, was carried out in Norway in 1998 and 
in 2008. Only students taking the advanced courses in mathematics and 
physics participated. This study was carried out for the first time in 1995, 
however, Norway did not participate that year. Instead the same test in-
struments were used in a study in Norway in 1998, and the results in 2008 
were compared to the data from the 1995 study. The results from 1998 
showed that Norwegian students at the end of upper secondary school per-
formed above the international mean.  
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The trend in TIMSS advanced for mathematics (Grønmo, Onstad, & 
Pedersen, 2010) is in accordance with the trend in the lower secondary 
schools. Students were tested in the areas of algebra, calculus and geome-
try. When compared task for task, overall there was a decrease in the pro-
portion of students with correct solutions. When the poor results from 
2003 in lower grades were publicly discussed, it was often said that they 
were nothing to worry about, since by the end of upper secondary Norwe-
gian students perform well above the international mean, referring to the 
result in 1998. The results, however, from TIMSS advanced 2008, contra-
dict this assertion.  

In summary, longitudinal studies such as TIMSS and PISA indicate a 
setback in mathematical performance among students in both lower and 
upper secondary school, and especially in the topics of number and alge-
bra. It has been questioned if the setback in physics, which was also doc-
umented in TIMSS advanced 2008, partly might be due to the weak per-
formance in manipulating simple algebraic expressions (Angell, et al., 
2010). Also the TIMSS study from 2011 (Grønmo et al., 2012) indicates 
that Norway still lies significantly below the international average with 
algebra as the weakest topic. 

 The Norwegian results from the comparative studies are generally 
considered unsatisfactory and have stimulated much debate in Norway.  

2.2 Policy and directives – curricula 
The studies in the section above and especially the results from 2003 re-
sulted in bold headlines in the media and discussion both at school level, 
system level, and in the political arena. Actions were undertaken to deal 
with the problems. One consequence was a new curriculum introduced in 
2006.  

The students in my study had 10 years of school within the framework 
of the L97-curriculum.3 When they entered grade 11 or the upper second-
ary school, they were introduced to the new curriculum K064 – “The 
Knowledge Promotion". Because of this, I will present a short outline of 
the two curricula and the mathematics syllabi within them. In Norway 
there is a long tradition of a centralised curriculum. New reforms have 
come and gone, often felt by the teachers and school leaders as coming 
too frequently (Kleve, 2007).  

                                           
3 L97 was the curriculum for the 10-year compulsory school in Norway from 1997. In Norwe-
gian: Læreplanverket for den 10-årige grunnskolen (L97).  
4 K06 is the curriculum for grade 1 until the end of upper secondary school. This means 13 
years of schooling. It was introduced in 2006. In Norwegian: Kunnskapsløftet (K06), official 
English translation: The Knowledge Promotion.  
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2.2.1 The curriculum L97  
L97 was developed over a relatively short period and came into effect 
from the school year 1997-1998. One point in the curriculum was that 
students should be educated to become independent participants in socie-
ty, and that they should be encouraged to take responsibility for their own 
learning. It was a detailed goal-oriented curriculum, and teachers and par-
ents could consult the syllabi for each subject and check what had to be 
learned or taught.  

 It was built on a constructivist view of learning. In the mathematics 
syllabus it is asserted: 

Learners construct their own mathematical concepts. In that connection it is im-
portant to emphasise discussion and reflection. The starting point should be a 
meaningful situation, and tasks and problems should be realistic in order to moti-
vate pupils. At times pupils may work with incomplete concepts; they make occa-
sional mistakes and show misunderstandings. In a confident and constructive at-
mosphere such matters are grounds for further learning and deeper insight 
(Hagness & Veiteberg, 1999, p. 167). 

The emphasis is placed on the student as an active learner. Also activities 
in the classroom such as problem solving and investigation should be 
promoted to stimulate students’ learning. “As they experiment, experi-
ence, wonder and reflect, the subject will help to develop the pupils’ curi-
osity and urge to explore. It is important for pupils to experience the 
learning of mathematics as a process” (ibid p. 165).  

The syllabus included specific guidelines for each mathematical do-
main in each school year. The main areas in the syllabus are outlined in 
the table below: 
       Table 2-1: Mathematics syllabus L97 – main areas (ibid p. 168) 

Main stages Main areas 

Lower 
secondary 
stage 

Mathematics in 
everyday life 

Number and 
algebra 

Geometry 
 

Handling 
data 

Intermediate 
graphs and 
function 

Intermediate  
Stage 
 

Mathematics in 
everyday life 
 

Number 
 
 

Geometry 
 
 

Handling 
data 
 

  

Primary  
Stage 
 

Mathematics in 
everyday life 
 

Number 
 
 

Space and 
shape 
 

    

 
One of the main areas  ‘Mathematics in everyday life’, might appear to be 
a distinct topic in its own right, however, it was supposed ”to be under-
stood more as an attempt to emphasise this aspect in school mathematics, 
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rather than adding yet another topic to the mathematics syllabus” 
(Mosvold, 2005, p. 88).  

Algebra as a domain comes into the syllabus in grade 8, but is men-
tioned also in the general part of the curriculum. There, it is said that the 
work with patterns and regularities in the elementary school should serve 
as a basis for the further work with the concept of variable. Also it is em-
phasised that algebra has to be presented in meaningful contexts, and that 
algebra should be a tool in problem solving, and a language to make 
thinking and reasoning easier.  

In grade 8 there is only one paragraph about algebra: “pupils should 
have the opportunity to work to develop their understanding of the use of 
letters and brackets in simple mathematical expressions and formulae, al-
so on the basis of quantities from other subjects or from everyday life” 
(Hagness & Veiteberg, 1999, p. 179). In grade 9, it is expanded to include 
work with, and interpretation of formulas, equations, and inequalities with 
one unknown. The aim is for students to be able to find methods for solv-
ing simple equations and inequalities. They should also experience how 
letters can be used to formulate and prove general arithmetic rules.  

In grade 10 students are supposed to work further with formulas, linear 
equations, and inequalities. It is expressed that they shall describe, judge, 
and solve problems also through formulas and equations. As for grade 9, 
they should have further experiences with generalisations in order to make 
simple proofs. Simple algebraic expressions including fractions with one 
term in the denominator are to be handled. How to solve systems of linear 
equations is also expected to be learned.   

In mathematics at all levels students were encouraged to produce a 
“student book”. This was not mentioned in the syllabus but came as an 
appendix to the information sent out before the exam in 1999 
(Eksamenssekretariatet, 1999). This book should be produced by students 
themselves. There was neither any restriction on what was written therein, 
nor on the number of books. Normally students wrote rules, formulas and 
examples. From 1999 this book(s) was allowed in exams with no re-
striction. Therefore, the use was normally allowed in regular tests. This 
was the case for the students in my study during their years in lower sec-
ondary school, and they often referred to this book(s) during the observa-
tions.  

What is outlined above is the intended curriculum. A large research 
program financed by the Norwegian Research Council (Norges Forsk-
ningsraad, NFR) included 26 different projects where the assignment was 
to evaluate the reform from 1997. The aim was to map out differences and 
development from the former curriculum, to point to weak and strong ef-
fects from both what was planned, and what happened unintentionally. 
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The results should serve as a basis for further plans and actions (Haug, 
2004). It was reported (ibid) that teachers in the lower secondary school 
mostly continued their practice from before the reform. Many expressed 
negative attitudes because the detailed and numerous goals in the subjects 
gave little space for local initiative, and also many teachers felt there was 
too much to cover. Teachers thus had to make a choice between making 
haste and only addressing the surface in the different domains in the sub-
jects, or to choose to leave out some topics and not present all the goals 
for the students. Some teachers reported that emphasis on students’ activi-
ty and the intention in the curriculum that students should be promoted to 
be responsible for their own learning, led in some cases to a teacher’s role 
as a facilitator, and that students were left alone with their work. The same 
was found in the TIMSS studies. Some even let the students take the role 
of leaders in the classroom (Klette, 2003).  

L97 emphasises what is stated by law, that the school has room for all 
children whatever background they have. They are divided into groups 
only on the basis of their age, not on any other criteria. The curriculum 
states that teachers must have an eye for each individual learner and: 

The mode of teaching must not only be adapted to subject and content, but also to 
age and maturity, the individual learner and the mixed abilities of the entire class 
(Hagness & Veiteberg, 1999, p. 35).  

In order to meet the demand of serving each individual student and his or 
her needs, most teachers have made work plans, in which tasks for school 
and home work are listed (Klette, 2007). These plans may be for all the 
subjects in a period of time, or for one specific subject. In those plans, 
teachers often make differences between students or groups of students, in 
order to try to let students at different levels in the class meet tasks appro-
priate for them (see also section 2.6).  

Alseth, Breiteig, and Brekke (2003) conducted an investigation of the 
implementation of L97 in mathematics classrooms. They tested students 
in grade 4 and grade 7 and compared the results with results from the 
Kassel-Exeter study in Norway (Hinna, 1996). Alseth et al. (2003) pointed 
to the fact that conceptual knowledge and comprehension are to be em-
phasised in all subjects according to L97, including mathematics. In the 
mathematics syllabus there is also a warning against learning rules and 
formulas by rote without understanding. The framework used in their 
(ibid) comparison study, was the theory about conceptual and procedural 
learning (Hiebert & Lefevre,1986). Procedural knowledge was defined to 
be knowledge about how to perform operations in accordance to a step by 
step algorithm, and conceptual knowledge to be knowledge about the con-
cepts of number and arithmetic operations. The tasks they used were di-
vided into two groups on the basis of these definitions. The conclusion 
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was that students in grade seven generally performed less successfully 
than the students tested before the implementation of the L97 reform. Es-
pecially it seemed that students’ performance on tasks demanding proce-
dural knowledge had decreased, and explicitly they said that the computa-
tional skills were better before the reform in 1997. They also did not find 
evidence that students’ conceptual knowledge had improved. On the tests 
the students had not been allowed to use their “student books” nor their 
calculators, and the authors therefore asked the question if students relied 
too much on these tools and thus did not perform so well. The same con-
clusion was made on the basis of the results from the Norwegian TIMSS 
study and PISA study in 2003 (Grønmo, 2004; Kjærnsli, et al., 2004). 

Klette and her colleagues (Klette, 2003) chose 30 classrooms with the 
aim of describing Norwegian classrooms after the reforms were intro-
duced during the 1990s. The classes were in elementary and lower sec-
ondary school. Each of these classes were followed for one week.  

They found that the interaction between teacher and students in all 
classes, showed signs of acceptance, and the teachers showed that they 
wanted to tolerate, negotiate, and respect the individual student and 
groups of students. The interaction seemed to be led by a wish that all stu-
dents should be seen and be taken care of as far as the teaching situation 
made it possible. A side effect of this was that the individual student was 
given space to act, which in some cases disturbed the learning situation. 
Another possible side effect was that it seemed as if the teachers did not 
criticise students’ work despite the fact that it was poor. Instead they tried 
to be encouraging and positive, making no demands.    

In common for all classes, the teacher was the leader giving turns to 
speak. On average the teacher talked 60 % of the time during classroom 
conversations. Mostly the teacher let as many as possible of the students 
have a word, and the result was that the structure in the conversations ac-
cording to the authors, was “flat” (ibid). The classroom conversation went 
on thematically coherent, but there was hardly ever observed utterances 
indicating a need to expand on something, although some students clearly 
did not understand.  

In all classrooms through the grades and subjects the most dominant 
activity was individual work. This is also documented in the question-
naires from both teachers and students in the TIMSS study from 2007 5 ( 
(Grønmo & Onstad, 2009). The TIMSS study also documented that ac-
cording to students, the most frequent work in class was to solve tasks in 

                                           
5 In 2007, the students in the TIMSS study had 7 years with L97 curriculum and almost one 
year with K06. 
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the textbook after being introduced to examples similar to the tasks in the 
textbook. This was also the case internationally. 

Also other studies concerning teachers’ implementation of L97 indi-
cated that the intentions in the curriculum were not easily carried out in 
classrooms. It seems as if the traditional teaching practice with the teacher 
presenting theory and students working individually on tasks was pre-
served (Alseth, et al., 2003; Kleve, 2007; Mosvold, 2005).  

Mosvold (2005) asserts that even in textbooks the curriculum inten-
tions are not easily communicated. He investigated how the intentions in 
the L97-curriculum to relate mathematics to real life situations, were im-
plemented in textbooks and in classrooms. He found that since textbooks 
are one of the most important sources for teachers in their practice, the 
relationship between teaching practice, textbooks and intentions in the 
curriculum is of great importance especially in curricular reforms.  

In this section I have outlined the intended L97-curriculum, as a basis 
for setting the scene for the students in the study who had been following 
this curriculum for ten years. Research on the implementation of the L97 
curriculum in Norwegian schools, however, indicates that the actual 
teaching practice changed very little from before the introduction of the 
L97. For students, the introduction of work plans may have resulted in 
more isolated learners within the mathematical classroom. Although the 
emphasis in the mathematics syllabus is on conceptual understanding, 
students’ autonomy, and teachers’ connecting mathematics to students’ 
everyday life, the implementation of the ideas takes time and also the im-
pact on students’ learning seems not to have occurred as intended. 

2.2.2 The curriculum K06  
In 2006 a new reform was introduced at all levels in Norwegian schools. 
This curriculum replaced L97, a curriculum for the first 10 grades, and the 
Reform 946, revised in 2000, for the upper secondary school. The new re-
form and curriculum is called “The Knowledge Promotion” (K06). It en-
compasses the 10-year compulsory school, and upper secondary education 
and training as a whole. The goal of this curriculum is to help all students 
to develop fundamental skills for active participation in the so called 
‘knowledge society’ (Ministry of Education and Research, 2006). 

Within this new curriculum, K06, the mathematics syllabus contains 
specific competence aims to be reached at grade 2, grade 4, grade 7, grade 
10, and for each year for the different courses in the upper secondary 
school. The curriculum for upper secondary school is called: ‘the Pro-

                                           
6 Reform 94 was the curriculum for upper secondary education. It was introduced in 1994 and 
then revised in 2000.  
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gramme for Specialization in General Studies’. Within this curriculum 
there are syllabi for two mathematics courses in Vg1 (the first year in up-
per secondary school), and three courses for Vg2 (the second year in up-
per secondary school). All students have to follow mathematics courses 
the two first years in this programme.  

For the school in this study, the options are the T course in the first 
year (T for theoretical). The T programme is more theoretically oriented 
and serves as a basis for those who need to study mathematics in their fur-
ther education. After the first year there was no external exam.7 External 
exams were held after the second year and also after the third year for 
those who continued studying mathematics all three years in upper sec-
ondary school.  

For the students in this8 study the options for the second year is either 
to follow the R programme which is seen as a more advanced mathemat-
ics course; providing a basis for further studies in mathematics or science, 
or they can follow the S-programme, which is more practically oriented 
preparing students for further studies in economics and social studies. The 
figure below illustrates the options offered by the school in this study. 
 

 
Figure 2-1: Mathematics courses (lessons per week) – options in the observed school 
  
Since the students in this study are meeting the new curriculum only in 
upper secondary school, I will only go into the curriculum and the math-
ematics syllabus for what influences students and the teachers in this con-
text. 

The mathematics syllabus R94 for upper secondary school from 1994 
was goal oriented with specific, detailed goals for each mathematical do-
main in each year of school, as was the case in L97 for the compulsory 

                                           
7 It must be noted that from 2009, there is also an exam after Vg1, however, it did not influ-
ence the students in this study.     
8 In 2016 the courses are the same.  
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school. It was easy for students to check if they had reached the specific 
goals in the mathematics syllabus. This was changed within the new one. 
The basic educational visions from the old curriculum are still there, how-
ever, the goals in the subjects are now listed as statements of competen-
cies that students are expected to achieve. There is now less emphasis on 
mathematics in an everyday context. It is no longer a main area in the cur-
riculum, but the perspective to take students’ everyday life into account is 
still integrated into most areas in the syllabus.  

A new main concept is that of basic skills which are to be applied and 
developed in all subjects and within all grades. These skills are: oral 
skills, writing skills, reading skills, arithmetic skills and digital skills.  

When it comes to the aims for the education in the area of number and 
algebra in the first grade in upper secondary school for the 1T course, it is 
asserted that students shall be able to:   

 interpret, process and assess the mathematical content in various texts 
 use mathematical methods and aids to solve problems from various subjects 

and societal fields  
 calculate with powers with rational exponents and numbers in scientific nota-

tion, algebraic expressions, formulas, expressions with brackets and alphanu-
merical rational and square expressions, and use quadratic equations to factor 
algebraic expressions 

 solve equations, inequalities and systems of equations of the first and second 
order and simple equations with exponential and logarithmic functions, using 
algebra and digital aids 

 convert a practical problem into an equation, an inequality or an equation sys-
tem, solve it and assess the validity of the solution (all curricular text is taken 
from the official, English version of the mathematics syllabus) (Ministry of 
Education and Research, 2006). 

In the weeks when I was present, there was no attention given to quadratic 
equations or quadratic inequalities, all the functions and systems of equa-
tions were linear. The powers had only exponents within the set of inte-
gers (Z). However, what was handled and worked upon in those first 
weeks serves as basis for further work in algebra and with functions, and 
is therefore of great importance.   

In the above list of what students should be able to do; digital tools are 
mentioned once. 

During the observation, the class followed the progression in the text-
book and the expressed competencies to be reached during the first weeks 
were according to the textbook, to be able to: 

 calculate with powers and numbers in scientific notation 
 solve equations and inequalities of the first order  
 convert a practical problem into an equation 
 interpret, process and evaluate the mathematical content in various texts 

These competencies are part of the competencies listed above.  
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2.3 Digital tools 
Technological development in the society and the use of technological 
tools in all areas of private and official life has motivated the politicians to 
make decisions about how to implement digital tools in schools.  

For more than 20 years already, some use of technological tools has 
been mentioned in the mathematics syllabi. Examples of digital tools are 
different kinds of handheld calculators, personal computers, software such 
as Computer algebra systems (CAS), and Learning management systems 
(LMS).  

In the national curriculum L97 the use of digital tools, or what at that 
time was termed ICT or IT (Information communications technology), 
was not seen as a main area or a specific topic. It was supposed to be used 
as integrated suitable tools in other subjects (ibid). Calculators and com-
puters were especially mentioned as tools in presenting assignments and 
projects, not only as tools to make calculations simpler. Word processing 
was seen as a standard tool, and spreadsheets as useful tools in mathemat-
ics. 

In L97 it is already stated from grade 2 that calculators and computers 
are useful in investigating numbers, symbols, and arithmetic operations. 
From grade 5, students should be able to investigate the limitations and 
the possibilities of calculators and computers. In other words, they should 
be encouraged to be critical. Information technology is proposed to be 
used in lower secondary school in problem solving, and in exploring sit-
uations. In grade 8, one goal for students was to be acquainted with the 
main principles of spreadsheets and their use. Spreadsheets are also men-
tioned as a tool in grade 10. This means that the students in this study 
should be familiar with the use of technological or digital tools in mathe-
matics.  

In the syllabus, K06, one of the 5 basic skills is digital skills (see sec-
tion 2.2.2). For mathematics to have digital skills means to:  

Use these tools for games, exploration, visualisation and publication, and also in-
volves learning how to use and assess digital aids for problem solving, simulation 
and modelling. It is also important to find information, analyse, process and pre-
sent data with appropriate aids, and to be critical of sources, analyses and results t. 

In the competencies to be attained in the whole syllabus for Vg1T, digital 
tools are mentioned three times. There is a goal to use algebra and digital 
tools to solve different kinds of equations and inequalities. When it comes 
to functions, it is an expectation that students should be able to use digital 
aids to discuss and elaborate on the different kinds of functions. In proba-
bility it is asserted that students should be able to “make binomial proba-
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bility models based on practical examples, and calculate binomial proba-
bility using formulas and digital aids” (ibid pp. 7-8).  

This is what is intended, however, what is the situation? In 1997 ‘The 
National Network for IT Research and competence in Education’ – ITU 
was founded, and in 2004 this Network was established as a unit at the 
University of Oslo. This unit should follow the development in schools 
when it comes to the implementation of ICT. Every second year a report 
is published with assessment of the frequency and type of ICT in Norwe-
gian schools, and the degree to which the use of ICT is integrated with 
pedagogy. A longitudinal survey is conducted and is based on web-based 
questionnaires. 322 teachers, 3060 students from grade 7, 9, and 11, 307 
school leaders from 307 schools answered the questionnaires in 2007. The 
data was collected in the spring of 2007, only half a year after the intro-
duction of K06.  

It was reported that there was an increase in the use of ICT in schools 
from 2005, especially in the lower grades (Arnseth, Kløvstad, Ottestad, 
Hatlevik, & Kristiansen, 2007). However, the majority of students in low-
er grades used computers in schools only occasionally. Especially in the 
subjects mathematics and science the use of ICT was low. The use of in-
ternet and office programmes is most frequent at all grades. There was, 
however, a big difference between schools in the lower grades. 

In grade 11 the situation differed from the lower grades in that all 
schools used learning management systems. Although the use of ICT in 
upper secondary school was more part of students’ daily life, only 12 % of 
the students in the survey reported that they used ICT in mathematics on a 
daily or weekly basis. The report stated that directives in the form of cur-
ricula, and an increase in the number of computers in schools are not 
enough to enhance integration of digital tools in the pedagogical work in 
the classrooms. This is in line with international studies (Cuban, 
Kirkpatrick, & Peck, 2001; Thomas, 2006). The ITU report (Arnseth, et 
al., 2007) stated that teachers’ lack of competence and school leaders lack 
of support and systematic work in order to implement the use of ICT were 
factors limiting the use of ICT in classrooms. The same was concluded in 
a study about teachers’ implementation of Cabri in lower secondary 
school (Erfjord, 2008).  

From international studies it is claimed that digital tools are often just 
another tool in the teaching, and the teaching approach is not altered. The 
classroom organisation is the same, and the tasks are the same as without 
these new tools (Cuban, et al., 2001). Billington (2009) carried out a study 
within the same TBM  project (see appendix 1) as this study. Her focus 
was the teaching practice of two teachers, who had implemented the use 
of computers and pedagogical software in all topics in mathematics. All 
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students had their own laptop; and textbook, paper, and pencils were ab-
sent in the classrooms. Her findings show that the organisation of the 
classrooms was not changed in the first place, and also the tasks were the 
same. However, as they developed their practice and used new software, it 
happened that students solved the tasks in unexpected ways related to the 
new possibilities within the tools. These ways were not always in accord-
ance with the learning goals within the subject, and the teachers had to 
change tasks. Billington (ibid) emphasised that the K06 syllabus even 
though emphasising the use of new tools, does not discuss or make rec-
ommendations for new practice. The way to implement the intended cur-
riculum in relation to digital tools seems to depend mainly on the individ-
ual teacher.  

The Norwegian students are among the students in the TIMSS studies 
who on a regular basis use calculators in all topics in mathematics. The 
calculators are advanced calculators. Actually in TIMSS advanced 
(Grønmo, et al., 2010), students in Norway and Sweden are the students in 
that study who are reported to use digital tools most frequently, and at the 
same time they are reported to perform less well. 

Research has thus revealed that the quantity of computers and other 
digital tools are high in schools, however, to implement these tools in the 
teaching practice as a pedagogical tool, is a long process and depends on 
the school leaders’ and teachers’ interest and efforts to reach the goals in 
the curricula. Although the intention is that digital tools should be inte-
grated in all subjects, the curriculum, K06, gives no clear recommenda-
tions about how to use them.  

2.4 The teachers 
In Norway teachers in lower secondary school are normally educated to 
teach all subjects, and few teachers have special competence in mathemat-
ics, which in TIMSS is defined to be one year with specialisation 
(Grønmo, 2004). According to the TIMSS study 2003 (ibid) less than 30% 
of the teachers in the study teaching grade 8, reported that they had partic-
ipated in courses related to mathematical content during the preceding 
years. Compared with the international mean Norwegian teachers do not 
participate in courses related to mathematics as often as teachers in other 
countries. Grønmo and Onstad (2009) reported in TIMSS 2007 that there 
are more teachers in lower secondary school, who report that they have 
participated in courses relevant for mathematics than in the former TIMSS 
studies. The researchers interpret this to be a changing trend, however, 
many of the teachers reported that they only joined courses related to the 
introduction of the new curriculum.  
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Only a small proportion of the teachers in upper secondary school re-
ported participation in courses to enhance their competencies (Grønmo, et 
al., 2010). The main difference between teachers in compulsory school 
and teachers in upper secondary school, is that nearly all teachers in the 
TIMSS advanced study; teachers in upper secondary school, had speciali-
sation in mathematics and/or in mathematics education.   

In a study interviewing a small group of teachers in upper secondary 
school, Hundeland (2010) found that the teachers knew the curriculum 
and the directives very well and were loyal to it. This means that they fol-
lowed the directives coming from the authorities. This was evident in their 
talk about the obligation to go through the syllabus, which seemed to be 
the goal in their instruction. The teachers felt the pressure from the system 
to present all the topics in the syllabus, and at the same time tackle the 
problem of supporting students at all levels in the same class.  

They regarded students’ learning to be a gradual process. Therefore, 
the understanding could come later on, and it was not necessary that all 
students gained conceptual knowledge in the first place since the students 
would be given new possibilities later on in the mathematics classes. 
What was seen as important, was to do mathematics; to solve mathemati-
cal tasks. They asserted that the exam was steering much of the activity in 
the classroom. Also they meant there were too many topics to cover in the 
syllabus in the time available.  

In sum, the teachers in Hundeland’s study referred to institutional de-
mands and constraints steering their choices in their daily work. In addi-
tion, they told that their main source for both examples and students’ work 
with tasks, was the mathematics textbook.  

2.5 Mathematics textbooks 
While the mathematics syllabi represent the intended curriculum, text-
books in mathematics are potential links between intended curriculum and 
classroom activities. In textbooks, the topics are identified in accordance 
with the syllabus, and organised for students and teachers to follow. For 
many teachers the textbook is the interpreted syllabus, especially when a 
new curriculum is being introduced. 

In Norway the tradition was that textbooks had to be authorised in or-
der to be used in school. In 2000 this changed. One reason for this was 
that the curriculum L97 was very detailed, and another that the technolog-
ical development demanded new thought. As long as the textbooks were 
controlled by the authorities, teachers were sure they had covered the top-
ics in the syllabus. After 2000, the mathematics teachers in a school have 
to make their choices from among several mathematics textbooks from 
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different publishers without being aided by suggestions from the Educa-
tion Department.  

Also without being authorised, the textbooks have a strong position in 
Norwegian classrooms (Alseth, et al., 2003; Grønmo, et al., 2010; 
Hundeland, 2010; Mosvold, 2005; Grønmo & Onstad, 2009). Mullis and 
colleagues (2012), reported that 97 % of grade 8 Norwegian teachers in 
TIMSS 2011, said they used mathematics textbooks as a basis for instruc-
tion. In a recent study based on teachers’ responses on a survey, teachers’ 
use of mathematics textbooks in Estonia, Norway, and Finland, was inves-
tigated. The findings indicate that Norwegian teachers in lower secondary 
schools when introducing new concepts, tend to use other resources than 
the textbook more often than teachers in Estonia and Finland. The vast 
majority though, relied on the textbook when assigning tasks (Lepik, 
Grevholm, & Viholainen, 2015).  

There is no similar large study from upper secondary school involving 
Norwegian teachers, but the TIMSS advanced study (Mullis, Martin, 
Robitaille, & Foy, 2009) found that the only activity taking more than half 
the time of the lessons in Norwegian mathematics classrooms, was indi-
vidual work with tasks similar to the examples in the textbook. This im-
plies that textbooks are in extensive use in mathematics classroom also at 
upper secondary level. On this basis, the mathematics textbook and its 
resources is one important factor influencing students’ experiences of 
mathematics.  

In a study in the USA, the authors Reys and colleagues (2003) found 
that topics included in textbooks were most likely to be presented in class, 
and that the pedagogical strategies used by teachers, were influenced by 
the instructional approaches in the textbooks. Johansson (2006) studying 
three Swedish teachers with different teaching experiences and at different 
ages, found the same, and also that the textbook was the main source for 
assigned tasks. In Hundeland’s study (2010) one Norwegian teacher ar-
gued that there is no reason for not using the textbook. Not using publish-
er’s resources would be to do the work once again, since professionals 
writing textbooks had already chosen appropriate tasks for the different 
topics.  

In her study, Johansson (2006) directs attention to the issue of individ-
ual teaching in mixed groups of students. Many textbooks in Sweden as 
also in Norway are graded by level of difficulty. The aim is to afford stu-
dents, at all levels, tasks which are appropriately challenging for them. 

The students in this study were used to such books from lower second-
ary school, and the textbook they used during observation was graded in 
this way.  
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2.6 Work plans 
Since work plans are a common way to organise students’ work in the 
school as well as at home (Bergem & Dalland, 2010; Klette et al., 2008), 
the phenomenon deserves further comment. Legally, every student has the 
right to be taught according to his/her needs. In mixed ability groups this 
seems almost impossible, and one assumes that the practice with the work 
plans started in order to meet those needs (section 2.2.1).  

In lower grades the teacher, responsible for a class, normally asks all 
the other class teachers to deliver the learning goals planned to be reached 
within the different subjects for the next week(s). Included are assigned 
tasks in each subject. Then plans for all subjects are collected and present-
ed in one overarching plan. Parents and students welcome such plans, in 
that they then have an overview of what is to be learned and done in the 
planned period. In upper secondary schools those plans are normally giv-
en for each subject. 

In the L97 curriculum it was emphasised that students themselves 
should take responsibility for own learning. In praxis, this responsibility 
often turned out to be a responsibility to do the assigned work within the 
period, no matter when and where. In the PISA+ study (Bergem & 
Dalland, 2010), the interviewed students told about their decisions: some 
chose to do all tasks as soon as possible in order to relax or to do other 
things, other students that they do it the last day in the period covered by 
the plan. It illustrates that the students often worked with tasks not related 
to the theoretical focus for the lesson. The students told that they contin-
ued to work with the plan where they had left it. In most classes students 
sat together in pairs or in groups, however, there was little or no coopera-
tion. The reason was according to the students that they were not working 
with the same tasks.  

In addition, the researchers (ibid) found that teachers gave little or no 
response to assignments. When students had worked with different prob-
lems during a lesson, it was not easy for teachers to draw conclusions or 
to lead discussions about the mathematical topic in focus for the lesson. 
This is in accordance with the findings from surveys in the main PISA 
study; that students were often left alone with their work, and that the fo-
cus was the doing, not so much the metacognitive activity of reflection 
and thereby learning.  

In sum, it is reported that students did not cooperate so much during 
seat work, since they worked at different rates on their plans, and that in-
dividual work on textbook tasks dominated the work in the classroom. 
Research reported that the atmosphere in the classrooms was characterised 
by mutual respect and acceptance. However, through the work plans the 
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teachers abstained from or lost the possibilities to steer the work in the 
classroom and to have classroom discussions and to reflect on mutual 
tasks (Bergem & Dalland, 2010; Klette, 2003; Klette, et al., 2008).  

2.7 The task discourse and the didactical contract 
In mathematics classrooms the individual work on textbook tasks led Mel-
lin-Olsen (1996) to come up with the notion ‘task discourse’. In inter-
views with teachers in primary and lower secondary school he found that 
in schools there could be said to be an institutionalised discourse going 
on. In mathematics this discourse is characterised or steered by the math-
ematical tasks, and therefore he introduced the notion ‘task discourse’ as a 
metaphor for the process of teaching and learning. A mathematical task 
has a start and an end. And this end is often to be checked by solutions in 
answer books. He described how mathematical tasks are coming in a se-
quence, one after another, and it continues until the last task is solved, it 
may be within a lesson, in home work, on the work plan, or in the book. 
Mellin-Olsen (ibid) found that teachers used words connected to a journey 
as metaphor for the teaching and learning processes. There is a goal for 
this journey; the exam, and the teachers have the role as drivers or coach-
men. Their responsibility is to bring the passengers, the students, safe to 
the goal. Students’ responsibility is to keep on and not fall off. Students 
range themselves according to how far they have come in the textbook. 
Hundeland (2010) found that the same metaphors were frequently used 
among teachers in his study. Mellin-Olsen (1996) emphasised that this 
institutionalised task discourse might constrain teachers’ way of acting. 

Mellin-Olsen also showed how stops on the journey implied possibili-
ties for students and teachers to reflect, discuss and negotiate before the 
journey through the mathematical tasks continued.  

The teachers in both studies (Hundeland, 2010; Mellin-Olsen, 1996) 
refer to the dilemma of going through the syllabus and at the same time 
supporting each student, who is some place in this sequence of mathemat-
ical tasks. As mentioned in the foregoing section, one way to deal with the 
problem has been the introduction of work plans which have made the 
important stops on ‘the journey’ more problematic since the students are 
not working with the same tasks.  

The above mentioned studies (ibid) are only case studies with few 
teachers involved, however, as a mathematics teacher, this task discourse 
is not unfamiliar to me. The task discourse is closely related to the didac-
tical contract described by Brousseau (1997). This contract comprises the 
tacit and implicit rules regulating the relations between the teacher and the 
students in a class.  
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Blomhøj (1994) claims that traditional mathematics classrooms are 
characterised by some common features that are part of the didactical con-
tract. These features are: The teacher has to carefully demonstrate meth-
ods and algorithms presented in the textbook. Student are only offered 
tasks that can be solved using learned methods and algorithms. A task is 
solved and finished when its questions are answered. The questions can be 
answered shortly by a number or by few words. Students’ learning is as-
sessed on the basis of their ability to solve such tasks only. Students’ roles 
are to do their best to solve assigned tasks.  

Further, Blomhøj (ibid) claims that students’ learning is influenced by 
the type of contract that prevails in the classroom. The contract described 
above might lead students’ motivation to be to fulfill their part of the con-
tract, not to learn mathematics in its full sense. The mathematics has a 
tendency to be closely bound to the context of the mathematics classroom. 
Students, however, are mostly satisfied with the situation. Blomhøj, as 
also Brousseau (1997), claims that such a contract must be broken if stu-
dents are going to learn mathematics properly.  

2.8 Prior knowledge 
Students in upper secondary school already have a long experience of 
school. This means that they have gained knowledge in mathematics and 
in tackling school life generally. It is asserted that one of the key factors 
influencing learning outcomes, is the knowledge students have about a 
topic or subject before instruction (Ausubel, Hanesian, & Novak, 1978). 
Prior knowledge about a topic includes knowledge about concepts and 
procedures that a student brings to the learning event. The knowledge 
might be in accordance with accepted knowledge within the domain, 
however, it might also be incomplete or incorrect. Thus prior learning can 
have a positive or negative impact on learning.  

‘Concept image’ was the notion Tall and Vinner (1981) proposed 
when they elaborated the problem of students taking only some few as-
pects into account when working with certain mathematical concepts. In 
the development of constructing mathematical meaning, students’ concep-
tions of a mathematical object may not be in accordance with the formal 
definition of that object. The notion ‘concept image’ “consists of all the 
cognitive structures in the individual’s mind that is associated with a giv-
en concept. This may not be globally coherent and may have aspects 
which are quite different from the formal concept definition” (ibid, p. 
151).  

A concept image is personal and is influenced by all the experiences 
the person associates with a specific concept. The concept image is thus 
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limited by the personal experiences an individual student has. Niss (1999) 
claims: 

For a student engaged in learning mathematics, the specific nature, content and 
range of a mathematical concept that he or she is acquiring or building up are, to a 
large part, determined by the set of specific domains in which that concept has 
been concretely exemplified and embedded for that particular student (Niss, 1999, 
p. 15). 

Although many students can recite formal concept definitions, that is not 
to say that their concept images are in line with these formal definitions.  

De Lima and Tall (2008) discuss how prior experiences may influence 
current learning. They use the notion ‘met before’, asserted to be part of 
the individual’s concept image, and defined to be “a mental construct that 
an individual uses at a given time based on experiences they have met be-
fore” (ibid p. 6). Such ‘met before-s’ may cause problems because they 
can be used out of the domain in which they are valid. These prior experi-
ences may affect new learning, however, new learning may also affect 
what is already learned.  

The new learning of writing repeated multiplication as powers, for ex-
ample, may affect the way of writing general multiplication. An over-
generalising of rules from old domains to newly learned domains; cogni-
tive obstacles (Brousseau, 1997), is another type of problem caused by 
incorrect transfer of prior knowledge or experiences.  

One example of prior learning causing problems for students is the dif-
ference in interpretation of the invisible operation sign between the two 
mathematical domains; arithmetic and algebra.  In arithmetic the invisible 
operation is addition, however, in algebra it is multiplication. Lee and 
Messner (2000) reported that college students after working with algebra 

were confused when asked about the fraction 1
8

3
. They suggested that the 

operation connecting 8 and 1

3
 was multiplication. This is an indication 

that the interference also can go in the other direction; conventions in al-
gebra interfere with conventions in arithmetic.  

Ausubel (1978) claims that for meaningful learning to take place it is 
important to relate new material to what the students already know, and 
that rote learning is more likely to be the outcome if students lack relevant 
prior knowledge. For teachers it is thus important to find out what 
knowledge students bring to a course, and use this to plan teaching. The 
problem is however, that there is a variety of conceptions within a class of 
students. 
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2.9 Outline of the situation in Norway  
In this chapter I have tried to outline how I see the situation in Norway, to 
take into account components influencing and making an impact on stu-
dents’ activity in the classroom and their learning of mathematics.  

The Norwegian results reported in the comparative studies, and studies 
within Mathematics Education around the world have reported and are 
reporting about learning difficulties related to algebra and arithmetic op-
erations. Clements (2013) asks the question: “Why has there not been a 
marked improvement, given the large amount of mathematics education 
research conducted around the world, and over a very long period of time, 
with respect to such fundamentally important curriculum matters?”  

In Norway there have been few research reports about algebra in upper 
secondary school. One is connected to the latest TIMSS advanced study 
and concludes that many Norwegian students lack skills in manipulating 
symbolic expressions, and that this lack caused low performances in phys-
ics (Pedersen, 2015). Another study in lower grades, also building on 
TIMSS data and additional task-based interviews of grade 8 students 
about algebra, concluded that the Norwegian students needed more formal 
mathematics (Naalsund, 2012). None of these studies are classroom stud-
ies.  

In this research, students’ work with algebra within the classroom dur-
ing the first weeks in upper secondary school is to be studied in relation to 
the mathematics offered within that classroom setting.  

As far as I know there is no similar study within the Norwegian con-
text, building on earlier studies about algebra and students’ problems 
within the context of institutionalised teaching. The goal is to add to and 
extend the existing body of research in mathematics education and espe-
cially in the Norwegian context. 

The figure below illustrates what components are influencing the work 
in the classroom, as I see it on the basis of what is described in the forego-
ing sections. All the letters i in the figure, stand for the word influence(s).    
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Figure 2-2: Model of the situation in Norway 
 

The curriculum in directives and documents includes the mathematics syl-
labus, exam, and the whole organisation of the Norwegian school system. 
However, in my model I have split this into policy and directives, mathe-
matics syllabus, and exam/evaluation. Through policy and directives, the 
authorities guide and control what is going on in schools. There are spe-
cial laws for students and parents to refer to if they are not satisfied with 
the instruction, the resources and/or the way the students are treated in 
school.  

The teacher has to follow up directives coming during the school year. 
For example in the school year 2007-2008, a new directive about exams 
was sent out to schools. What was written in the official documents from 
2006, should be changed from having no centralised exam after the first 
year of mathematics in upper secondary school, to centralised exam from 
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2009 on. This means that new directives have to be taken into account, 
and as in this example with the exam; these directives have a direct impact 
on the teaching practice, and students’ behaviour. This is evident from 
Hundeland’s (2010) study. 

 The mathematics, as a science, influences how the mathematics sylla-
bus is formed and also the content of the syllabus. Although the mathe-
matics for mathematicians is different from school mathematics, it is the 
basis for the transposition into school mathematics. This together with 
policy and the trends in the society steers what is emphasised in the math-
ematics syllabus.  

What is given in the written documents is the intended curriculum. 
Then publishers interpret it and produce textbooks with tasks and other 
resources for teachers and students. Some of these are resources on web- 
pages such as work plans and time tables. The textbooks include exposi-
tions, examples and tasks. As outlined above (section 2.5), researchers 
(Alseth, et al., 2003; Grønmo, et al., 2010; Hundeland, 2010; Mosvold, 
2005; Grønmo & Onstad, 2009) give evidence that textbooks and publish-
ers resources are the most important sources for Norwegian teachers in 
their work.  

Teachers implement the curriculum in the classroom. Then the sylla-
bus has already passed through the interpretation made by authors of 
teaching and learning resources. Then these resources have to be inter-
preted by the teachers, who also have their own interpretation of the 
mathematics syllabus, based on their mathematical competence, their ex-
perience as teachers and on the culture in the specific school.  

This means that students’ experience of mathematics, the mathematics 
syllabus and the whole curriculum, is influenced by the mathematics 
teacher, the textbook and publisher’s resources. In addition, students have 
their experiences from earlier work with mathematics in school and out of 
school, which strongly influence how they experience new input.  In addi-
tion, their previous knowledge is influenced by new experiences in math-
ematics. Inferences of new knowledge on previous knowledge are seen for 
example when students learn the notation of powers. Evident in my data is 
for example that some students tend to write multiplication as powers.  

When it comes to the computer and other digital tools, previous expe-
riences with these tools, influence students’ behaviour and their way of 
using these tools. The use of these tools also makes an impact on the 
mathematics experienced by the students. There is a big difference be-
tween producing graphs by hand and doing the same aided by computer 
software. When using computers, students have the opportunity to experi-
ence a large variety of different graphs in a short time, compared to line 
drawings by pencil on paper.  
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The mathematics teacher is the one orchestrating the activity. As men-
tioned in section 2.4, research gives evidence that many teachers feel con-
strained and pressed by the curriculum and all the demands on what is to 
be achieved within a limited period of time. This pressure comes from 
students, parents, and school leaders. Part of the reason is that for students 
it is of great importance to achieve well and get good marks for further 
studies, and for schools, the results are visible and it is important to gain a 
good reputation.    

Although publishers provide learning resources, examples for teach-
ing, and tasks, the teacher has to decide what to use, what to emphasise, 
and how to present the mathematics. Therefore, publishers’ work influ-
ences teachers’ decisions, and teachers’ choices influence what is present-
ed for students. This is all the implemented curriculum. The experienced 
curriculum, though, might differ from both what is intended and what is 
implemented, and my emphasis is on students’ experiences of a small but 
important part of the curriculum; elementary algebra.   

As shown in section 2.1, the TIMSS studies give evidence that algebra 
is a weak topic for students in grade 8 (Grønmo, 2004), and also a reason 
for problems in mathematics and physics in upper secondary school 
(Angell, et al., 2010; Grønmo, et al., 2010).  

The Norwegian Mathematics Council is testing first year science, en-
gineering and economics students’ pre-knowledge in mathematics. The 
test tasks are tasks from the grade 10 mathematics curriculum. The first 
test was carried out in 1984, and the results have shown  a decline since 
1984 with the lowest results in 2007. Although the last results, in 2013 
(Nortvedt, 2014) showed a tiny improvement (average mean 51%), the 
results have been on a stable low level the last ten years. A lack of con-
ceptual understanding of fractions and a lack of competence in applying 
the arithmetic operations are mentioned as factors causing problems in the 
work with algebra and formulas. Results from these tests show that even 
when starting higher studies, Norwegian students struggle with basic 
mathematics.   

On this background within the Norwegian context outlined in the fore-
going sections, my main research questions are: 

What mathematics are students offered in the classroom for learning,  
or to consolidate already learned mathematics as they enter the upper 
secondary school? 

What experiences of the mathematics offered do students reveal 
through their responses? 
 
Students’ responses include all that is observed of their responses; what 
they write and what they say. 
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The learning does not take place in isolation; the student alone with the 
mathematics. My study of the mathematics offered and students’ respons-
es on that mathematics, caused me to reflect on the learning situation, and 
how the mathematics offered and students’ responses on that mathematics 
were related. It led me to ask a third question: 
 
How does the setting of the mathematics classroom influence students’ 
experiences of the mathematics offered? 
 
The setting of the mathematics classroom, includes the textbook used in 
the class, the tasks offered, the teacher's explanations, and the computer 
with the provided software. The students and the teacher are also part of 
the setting and thus the interaction in the classroom is included. This 
means that the mathematics offered and students’ responses are part of the 
setting. I think though that to focus particularly on factors constituting the 
setting of the mathematics classroom, will be fruitful in understanding 
students’ responses to the mathematics offered. I do not intend to search 
for a cause – effect relationship, but to examine the classroom setting, 
looking for factors which on the background of former research and theo-
ries may influence students’ conceptions and learning of mathematics.    

The focus is on the mathematics offered in the first weeks of upper 
secondary school. In this part of the course, the students worked with the 
first textbook chapter. On the first page of this chapter was written: 
Goals:  
When you (singular) have read this chapter, you should be able to  

 calculate with powers and numbers in scientific notation 

 solve linear equations and inequalities  

 convert a practical problem into an equation 

 interpret, process and evaluate the mathematical content in various texts 
 

These goals are part of the goals stated in the K06 curriculum for the area 
number and algebra in the K06 curriculum (see section 2.2.2). 

These goals, with some minor exceptions, were expected to have been 
reached during the first 10 years in school. During the first weeks in upper 
secondary school, the students were being offered a new possibility to 
learn and to consolidate their previous knowledge.  
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3 Algebra  
Although my focus is on the mathematics offered, students’ experiences 
of this mathematics, and on the classroom setting, a central part of the the-
sis is devoted to algebra and number. The topic taught during the observa-
tion was mainly algebra as a revision of what had been taught in lower 
secondary school. Therefore, this chapter will be a review of studies done 
in the area of algebra learning, but first comes a section with a discussion 
about what algebra is. 

3.1 What is algebra?  
If going to an encyclopaedia looking for the word algebra, a long list of 
topics within the area of algebra would appear. However, if one were to 
ask students in secondary school: What is algebra? my guess is that most 
of them would answer: calculation with letters instead of numbers. For the 
students in this study the aim when introduced to algebra in grade 8, was 
that they should have “opportunity to work to develop their understanding 
of the use of letters and brackets in simple mathematical expressions and 
formulae …” (Hagness & Veiteberg, 1999, p. 179). This makes it likely 
that they were introduced to algebra as extended arithmetic; calculating 
with letters as substitute for numbers.  

Charbonneau (1996) claims that history of mathematics provides a 
warning against this view, algebra is much more, and he proposes further 
that algebraic symbols behave like many other mathematical objects not 
only numbers, and he points especially to geometry where the mathemati-
cal objects, are closer to algebraic symbols than numbers. He exemplifies 
this by addition of two numbers, then their sum is represented by a quite 
new number, and the original numbers have vanished. In contrast, when 
two segments of a line are put together one after another, the new segment 
includes both the two original ones. This is similar to algebraic symbols. 
However, when using letters, “then the letter representing the new seg-
ment does not have a meaning by itself and therefore cannot be interpret-
ed without specific references to the original segments” (ibid p. 34).  

Sfard (1995) presents different views about what algebra is. She pro-
poses that writers mostly have agreed about algebra as the ‘science of 
generalized computations’, but she asserts that some authors suggest that 
algebra as such started with the introduction of the modern algebraic sym-
bol system, and thus a definition of algebra must imply this algebraic 
symbol system. For others this symbol system is not required. Sfard her-
self states that she uses “the term algebra with respect to any kind of 
mathematical endeavor concerned with generalized computational pro-
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cesses, whatever the tools used to convey this generality” (ibid, p. 18). 
This definition, emphasises the operational origin of algebraic thinking. 
By computational processes she refers to the theory of reification (Sfard, 
1991). Mathematics is hierarchical and reification occurs on any level, 
therefore it is possible to talk about computational processes also in ab-
stract algebra, for example as group operations related to plane symmetry. 
In this way Sfard, as also Charbonneau above, relates algebra to a wider 
scope than only to numbers.  

Although traditional school curricula emphasise the letter-symbolic 
aspect of algebra, Stacey and MacGregor (2001) say it has been important 
for educators and researchers also to let other characteristics of algebra 
come to the forefront. This view has been promoted by recent research 
done with children in preschool and in lower grades, which shows that 
small children are able to generalise and to recognise patterns, and even to 
work with variables (Carraher, Schliemann, & Brizuela, 2001; 
Schliemann, Carraher, Goodrow, Caddle, & Porter, 2013). Algebraic 
thinking or algebraic reasoning are the notions used to include these as-
pects of algebra rather than the letter-symbolic one.  

To define algebra is “fraught with difficulty” according to Lins and 
Kaput (2004, p.48), however, they say that a group of researchers in 
mathematics education had come to an agreement on two characteristics 
of algebraic thinking. The first characteristic is based on generalisation, 
both the acts of generalisations and the expressions of generality. The 
second involves “reasoning based on the forms of syntactically-structured 
generalisations, including syntactically and semantically guided actions” 
(ibid p. 48). As I interpret these characteristics, the first can be referred to 
as generalisation in the way children explore patterns, and the argumenta-
tion made to justify their generalisation. This argumentation may be ex-
pressed by normal language or by use of more formal mathematical nota-
tion. The latter characteristic is based on formal algebraic notation with 
emphasis on transformational processes. It can be exemplified by the al-
gebraic expression 3(a + 2). A syntactically guided action would be to 
remove the brackets and get 3a + 6. In a semantically guided action the 
whole expression a + 2 has to be multiplied by 3, that means that a has to 
be multiplied by 3 and also 2 has to be multiplied by 3. The result is the 
same in both occasions; what guides the actions is different. The seman-
tics here is semantics within the syntactics. Semantically the expression 
can also be interpreted based not on the syntactical form, but for example 
it may be interpreted as the area of a rectangle with one side of length 3 
and the other of length a + 2.   

Mason (1996) says that what he calls algebraic thinking, is an aware-
ness of “detecting sameness and difference, making distinctions, repeating 



 
A case study of a Norwegian mathematics classroom   45 

and ordering, classifying and labelling” (ibid p. 83). He also emphasises 
the importance of the processes in mathematics. According to him what 
he includes in algebraic thinking, is the core of algebra. And further he 
claims that generalisation is the “heartbeat of mathematics” (ibid p.65).  

That generalisation is at the core of mathematics is not denied by 
Wheeler (1996). He, however, pointing to Masons’ definition of algebraic 
thinking, proposes that to break algebra down to its basic components 
leads to a list of actions, “in which all the mathematical content appears to 
have been stripped away” (ibid p. 319). Wheeler asserts that the list pro-
posed by Mason could be a list which could also fit into other subjects, 
and he mentions biology as an example. Further he suggests that the prob-
lem to define algebra may be solved in two different ways. One is to fol-
low Mason in his use of the notion of algebraic thinking; without a de-
mand for mathematical symbols. The other way is to acknowledge these 
mental operations of very general character, but not to define them to be 
algebraic before they are linked to an algebraic symbol system.  

Kieran (2004a) offers a definition of algebraic thinking in the early 
grades of school which is aimed to make a bridge from these early grades 
to the algebraic activity in later grades. She had already suggested a model 
of algebra built on the different activities students are engaged in in 
school algebra (Kieran, 2004b). This model involves three categories of 
activities. Students are involved in the first category, the generational ac-
tivity, when forming algebraic expressions and equations. Kieran com-
ments that “much of the meaning-building for algebraic objects occurs 
within the generational activity of algebra” (2004a, p.142). The next cate-
gory she calls the transformational activity. This involves the rule-based 
activity of transforming expressions and equations, always on the basis of 
maintaining equivalence. The last category is the global, meta-level math-
ematical activities. Within these activities algebra is used as a tool. Kieran 
mentions “problem solving, modelling, noticing structure, studying 
change, generalizing, analyzing relationships, proving and predicting” 
(ibid p. 142). These last activities she claims students can be engaged in 
without using any algebra. This claim seems to be in accordance with 
Wheeler’s (1996) critique of Mason’s (1996) definition of algebraic think-
ing.  

Kieran brought in a definition of algebraic thinking, which is integrat-
ing algebraic thinking from lower to higher grades: 

Algebraic thinking in the early grades involves the development of ways of think-
ing within activities for which letter-symbolic algebra can be used as a tool but 
which are not exclusive to algebra and which could be engaged in without using 
any letter-symbolic algebra at all, such as, analyzing relationships between quanti-
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ties, noticing structure, studying change, generalizing, problem solving, modeling, 
justifying, proving, and predicting (Kieran, 2004a, p.149). 

This definition of algebraic thinking is closely connected to what she has 
called the ‘global meta-level mathematical activities’ (see the paragraph 
above) in which algebra might be used as a tool. 

As the above reveals, algebraic thinking, or reasoning is discussed 
within the research community of mathematics education. Research done 
on early algebra’ shows that “young students benefit from opportunities to 
start from their own intuitive representations and gradually adopt conven-
tional representations, including the use of letters to represent variables as 
tools for representing and for understanding mathematical relations” 
(Carraher, Martinez, & Schliemann, 2008, p. 4). In the latest Norwegian 
curriculum for lower grades one competence to be attained is to find and 
recognise patterns. Implicitly this is part of algebraic reasoning.   

I think it is appropriate to talk about algebraic reasoning in the way 
Blanton and Kaput (2005) have formulated a definition: “We take alge-
braic reasoning to be a process in which students generalize mathematical 
ideas from a set of particular instances, establish those generalizations 
through the discourse of argumentation, and express them in increasingly 
formal and age-appropriate ways” (ibid p. 413).  

Traditionally school algebra has been, as Pimm (1995) expresses it, 
about “form and transformation” (ibid p. 88), what Kieran calls the trans-
formational activity (Kieran, 2004a, 2004b, 2007a). This Pimm claims to 
be at the core of algebra. The result has been, that many students seem to 
manipulate algebraic expressions based only on rules without giving 
meaning to the symbols they act upon, and without any consideration 
about why the rules work.  

Lee (1997b) interviewed mathematicians, researchers, teachers, and 
students about algebraic understanding. She exposed seven metaphors for 
what algebra is: “algebra is a tool, an activity, a way of thinking, a culture, 
a generalised arithmetic, a language, and a school subject” (ibid p. 92). 
Algebra as a language and algebra as an activity were, according to Lee, 
the richest metaphors she found. Syntactic and semantic were words con-
nected to the view of algebra as a language. These words were also used 
by interviewees not holding algebra as language in the foreground. The 
syntax in algebra is related to the rules for manipulation of algebraic ex-
pressions and fluency in performing these rules. It was discussed if the 
semantic had to be associated with the meanings of its referents outside 
algebra, however, it turned out that several interviewees meant that stu-
dents had to concentrate on the “semantic of the syntax” (ibid p. 96). And 
therefore the traditional view of students’ mindless work with symbols 
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and rules perhaps has to be reconsidered. Meaning may be gained from 
the algebra itself.  

What is then algebra and what is to be taught? As seen in the literature 
above, algebra is not easy to define. Anderson (1978) also posed this 
question. He writes that some have called algebra the “study of structure” 
others “the language of mathematics” in the meaning of syntax and 
grammar, others again “the codification of mathematical laws”. None of 
these alone define algebra, however all of them are part of what algebra is.  

For this study algebra is taken as synonymous with school algebra, 
meaning algebra taught in school. Caspi and Sfard (2012) define algebra 
in school to be formalised meta-arithmetic. Building on the view that 
mathematics is a discourse creating its own objects, algebra is seen as a 
sub-discourse. This view is building on Sfard’s (2008) theory of com-
mognition (Thinking as communicating), which will not be the basis for 
my research, however, I find the definition to be useful. There are accord-
ing to Caspi and Sfard (2012) two basic types of meta-arithmetical tasks 
giving rise to algebra. These tasks are questions of numerical patterns, 
normally described by equalities, and tasks about unknown quantities de-
scribed as equations.    

3.1.1 Approaches to algebra 
The students in my study in grade 11, are not expected to have been ex-
plicitly exposed to teaching that emphasises algebraic reasoning from the 
early grades. According to the syllabi they have been following, algebra 
was introduced in grade 8.    

 It seems as if it is easier to distinguish between different ways of ap-
proaching algebra, and to describe the content that is typical for the differ-
ent approaches, than to define it. Although the approaches are different, 
and the content which is emphasised in the different approaches is not 
quite the same, it is not a talk about disjoint sets of content, rather differ-
ent aspects and emphases.   

As early as 1978, Anderson came up with four different ways of ap-
proaching algebra: 

 Algebra as generalised arithmetic or classical algebra,  
 Algebra as a study of patterns and structure,  
 Algebra as an axiomatic study, and  
 Algebra through concrete situations (Anderson, 1978, p. 9). 

In 1996 different perspectives on algebra were proposed to reflect upon, 
and the result was the book: “Approaches to algebra; perspectives for re-
search and teaching” (Lee, Bednarz, & Kieran, 1996). The approaches for 
introduction of algebra were: 

 A generalisation perspective  
 A problem-solving perspective  
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 A modelling perspective 
 A functional perspective. 

Both lists complement each other and include the generalisation perspec-
tive. Anderson (1978) has generalised arithmetic, however, algebra as a 
study of patterns and structure also involves a generalising perspective. 
He mentions that an awareness of structures can be reached from the 
source of children’s search for patterns. The problem-solving perspective 
is implicit in classical algebra, although Anderson when referring to clas-
sical algebra sees the problem of too much emphasis on manipulative 
skills.  

These examples only illustrate that whatever approach is chosen, it is 
one out of several possibilities. What is to be noticed, is that the way stu-
dents have been introduced to algebra will make impact on their further 
work with the subject. 

The functional approach is a fairly new way of approaching algebra. 
Historically the concept of function came rather late in the development of 
mathematics. Because of new technology with opportunities for students 
to easily produce functions and make tables, this approach has been intro-
duced to give meaning to the concept of variable. Some researchers have 
argued against this approach from different points of view; Pimm (1995) 
while he meant there was a redefinition of algebra going on in the USA “ 
triggered I feel more by the potentialities of these new systems and the 
drawbacks of an over-fragmented mathematics curriculum than by any 
novel epistemological insight” (ibid p.104). Others like Lee (1997a) criti-
cise the functional approach while functions can be expressed without al-
gebra and also algebraic expressions do not need to describe functions.  

Kieran (2007a) describes how the influence of new technology has 
made impact on the curricula in many countries. Approaches to school 
algebra and content of school algebra have changed from being a topic 
where form and transformations were the main characteristics to a topic 
with a new emphasis on the study of families of functions, for example in 
Israel (Sfard & Linchevski, 1994b).  

In Norway it seems as if the functional approach to algebra has not 
been in focus for curriculum makers, although one of the competencies to 
promote, is digital competence as a competence on all levels and related 
to all subjects in the last curriculum (Ministry of Education and Research, 
2006). 

The students in this study met algebra (letter symbols) in grade 8. This 
might indicate that the students have met algebra as generalised arithmetic 
with emphasis on the transformational activity.  

In the next section the focus will be on this shift from arithmetic to al-
gebra.  
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3.2 Algebraic symbol system 
Often the distinction between algebraic reasoning with informal represen-
tations and algebra expressed by the formal algebraic symbol system has 
been denoted as a shift from pre-algebra to formal algebra. Students in the 
study being reported in this dissertation have reached the stage in the cur-
riculum of formal algebra.  

Although it is said in the general part of the L97 curriculum that “pat-
terns and regularities in the elementary school should serve as a basis for 
the further work with the concept of variable”, the mathematics syllabus 
introduces algebra in relation to literal symbols.  

In the literature this shift from arithmetic to algebra has been in focus 
for many research projects, and there has been said to exist a cognitive 
gap (Herscovics & Linchevski, 1994) between the two. When dealing 
with mathematics in lower grades, one has already dealt with a mathemat-
ical symbol system. There are symbols for arithmetical operations; and the 
numerals are symbols. However, after becoming familiar with these sym-
bols, the numerals are often not seen as symbols anymore; they are more 
likely to be seen as part of the daily life language. It seems as if it has 
been forgotten for example how the numerals once had to be connected to 
the concept of numbers. The linkage  between concept and its referent has 
become automatic (von Glasersfeld, 1994) or the name of the concept has 
come to be seen as the concept itself (Skemp, 1987, p. 12). Steinbring 
concludes that: “The true mathematical object, that is the mathematical 
concept, may not be identified with its representations (Steinbring, 2006, 
p. 137). 

The symbolisation in algebra is important and also central for mathe-
matics as a whole. Algebraic symbolism leads to simplified problems in 
the sense that when confronting a problem, it is possible to translate this 
into algebraic symbols. Then it is possible to forget the problem in case 
and operate on the symbols until a solution is reached. This solution then 
has to be interpreted in terms of the initial problem. This minimises the 
cognitive workload. It is not necessary to keep in mind the referents for 
the symbols while working on them. 

According to Wheeler (1996) the commonality between words and 
symbols in arithmetic and in algebra is a general obstacle in algebra learn-
ing. The positive side of these commonalities is that students can get ac-
cess to some of the simpler expressions without much effort. The prob-
lematic side is that the symbols and words that are recognised from arith-
metic do not always mean the same in an algebraic context. The meaning 
and the use of the equals sign is an example of a sign whose meaning for 
most students has to be changed or expanded. Another result of such an 
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obstacle is the tendency to conjoin numbers and letters in algebra. Also 
invisible signs cause problems in this shift from arithmetic to algebra. In 
arithmetic we have the number 43 which means add 3 to 40, while in al-
gebra 3n means multiply 3 by n.  

Instead of distinguishing between arithmetic and algebra on the basis 
of the literal symbols, Kieran (1992) distinguishes between the structural 
and procedural character of mathematics. In arithmetic the result of a 
computation is a specific number, while in algebra the result might be an 
expression with several terms. This led Kieran and other researchers to 
introduce the process-object duality in algebra. This will be the focus for 
the next section. 

3.3 The process-object duality in algebra 
In textbooks in school, the notion of the variable is normally introduced 
by substituting numerical values by letters to build algebraic expressions. 
This introduction is smooth; however, students are expected to go directly 
on to transform these expressions and to solve simple equations. Accord-
ing to Kieran (1992) it is often not recognised how demanding this shift is 
for students; to go from the smooth introduction to work upon these ex-
pressions as if they were objects. This requires a structural view on alge-
bra in opposition to a procedural view. By procedural Kieran (ibid) means 
arithmetic operations carried out on numbers and where the outcome is 
numbers. She uses the equation 2x + 5 = 11 as an example. Here students 
can substitute x with different numbers until the solution is found. Then 
students act seemingly on an algebraic equation, however, what they in 
reality do, is to work arithmetically. When tasks are getting more compli-
cated, this way of handling algebraic expressions and equations is not suf-
ficient in order to be proficient. Instead algebraic expressions have to be 
viewed as objects in their own right. To solve equations of the form 
ax b cx d    one has to view the left side and the right side of the equal 
sign as two different algebraic expressions which are equivalent. Then the 
operations to be carried out have to be carried out upon the algebraic ex-
pressions, not on numbers. Another example is the algebraic expression 
3x + y + 8x, which can be manipulated to be 11x + y, which has to be ac-
cepted as the solution or answer. Kieran interprets this change in perspec-
tive from an arithmetic view on operations to an algebraic one “as a 
movement from a procedural conception to a structural conception” (ibid, 
p. 393). 

By the term procedural, Kieran (ibid) refers back to Sfard’s notion op-
erational. Sfard (1991) analysed different mathematical definitions and 
representations  from an ontological – psychological perspective and in-
troduced the duality of structural and operational interpretations of math-
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ematical notions. According to her, mathematical concepts can be con-
ceived in two different ways; as objects or as processes. When a mathe-
matical concept is conceived of as an object, Sfard talks about structural 
conceptions, and when a concept is conceived of as a process, she talks 
about operational conceptions. The relationship between the two concep-
tions is according to Sfard complementary and hierarchical. In the case of 
algebra Sfard and Linchevski (1994b) use the expression 3(x+5) + 1 as an 
example. This expression may be interpreted in four different ways: As a 
“computational process” with a series of steps to be carried out; as repre-
senting a certain number although not specified because of the unknown 
x; or as a function mapping one number onto another with the whole ex-
pression representing change. If one of the coefficients is substituted by a 
new letter this expression may be interpreted to represent a whole family 
of functions or as a function in two variables.  

In the first case, if the expression was interpreted as a series of steps to 
be carried out, “it was the computational process rather than any abstract 
object (except the processed numbers) which gave meaning to the sym-
bols” (ibid, p. 89). That means that in this case the expression is con-
ceived of as an operation, not as a static object to be operated on, as in the 
fourth interpretation when the expression was seen as a family of func-
tions. The example used, also demonstrates that the same mathematical 
notion can be interpreted both structurally and operationally.  

 Gray and Tall (1994) introduced the notion proceptual thinking for 
this capacity to see the algebraic symbol 3x + 2 as the process add three x 
plus two, and at the same time see it as the outcome of the process, the 
algebraic expression ‘3x + 2’. Proceptual thinking is characterised by the 
ability to “compress stages in manipulation to the point where symbols are 
viewed as objects that can be decomposed and recomposed in flexible 
ways” (ibid, p. 132). This process is by Sfard (1991) called reification. 
Gray and Tall (1994) use the term encapsulation, a term used by Dubinsky 
(1991). The ability to use the same mathematical notion to “represent both 
a process and the product of that process” (Gray & Tall, 1994, p. 119) is 
crucial in the learning of mathematics.  

When referring to this area of cognitive psychology, Cobb sums up 
that “proficiency in a particular domain is therefore seen to involve the 
conceptual manipulation of mathematical objects whose reality is taken 
for granted” (Cobb, 2007, p. 19). 
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4 Reported findings – a review 
This chapter is devoted to research on algebra and number. One of the ap-
proaches used in this study, is to establish what is known about learning 
and learning difficulties in the area of school algebra, and to use this liter-
ature in categorising students’ responses found in this study. The search 
for literature was guided by the sequencing of the different topics in the 
textbook used in class. In addition, some issues were searched for, which 
were more general, such as the equal sign and the different conceptions of 
the letter symbol.   

Much of the reviewed research is done in lower grades, it is, however, 
relevant for this study for more than one reason. The students in this study 
have their first weeks in the upper secondary school, and are in the transi-
tion from lower to upper secondary school. The study might thus be said 
to be located within the research field of this transition. Another reason is 
that knowledge of basic problems lays the foundation for understanding 
more about what problems students have on higher levels. Some of the 
reports are rather old, however, the same problems still exist.  

There is not much classroom research done in Norway when it comes 
to teaching and learning algebra in upper secondary schools. In Sweden, 
however some research similar to mine has been done (Olteanu, 2007; 
Persson, 2005). Both of them found that also in upper secondary school 
students struggle with algebra. Some problems are related to students’ 
conceptions of the variable and interpretation of letter-symbols, others are 
related to problems in arithmetic. Especially, they both report that nega-
tive numbers and the minus sign cause problems. In addition, fractions are 
a stumbling block for students.   

In lower grades some studies on algebra have been done in Norway. 
The KIM project- Kvalitet i Matematikkundervisningen (Quality in math-
ematics teaching) in the 1990s was a large scale study carried out in lower 
secondary to investigate students’ performance and understanding of al-
gebra and number. Tasks from the CSMS study (Hart, 1981) were used, 
and booklets were produced to inform teachers about problems students 
meet in learning mathematics, and also to help teachers to understand why 
these problems occur so that they might, if possible, be avoided (Brekke, 
1995a; Brekke, et al., 2000). Other studies also examining aspects of al-
gebra, are the PISA and TIMSS studies (Grønmo, 2004; Grønmo, et al., 
2010; Kjærnsli, 2007; Kjærnsli, et al., 2004; Lie, et al., 1997) see section 
2.1 . In my master study (Espeland, 2006) I analysed tests given to 230 
students in grade 11, and I also interviewed some students with tasks from 
the tests as a basis for the interviews. Those tasks were used in the CSMS 
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study, and in the KIM study in Norway. It was noticeable that the students 
in grade 11, whom I was considering, performed weaker than the students 
in the KIM study 10 years earlier. In addition, the students in my study 
were more than one year older. Furthermore, whereas the students includ-
ed in the KIM study, represented all students, my study did not include 
students who were weak in mathematics. It was assumed that weak stu-
dents struggling with mathematics had not opted for theoretical courses at 
upper secondary school.  

Internationally many studies have been carried out in order to find out 
what causes problems for students and hinders their learning in algebra. 
Some studies have focused on students’ interpretations and use of sym-
bols and the conception of the variable (Booth, 1984; Brekke, 2005; 
Küchemann, 1981; Quinlan, 1992; Ursini & Trigueros, 1997; Usiskin, 
1988; Wagner, 1981).  

Others have been more focused on students’ conception of equiva-
lence and the equal sign (Behr, Erlwanger, & Nichols,1976; 1980; Darr, 
2003; Demby, 1997; Falkner, Levi, & Carpenter, 1999; Kieran, 1981; 
Vlassis, 2002). The role of the equal sign is tightly connected to the 
awareness of algebraic structure and the notion of reification (Sfard & 
Linchevski, 1994b), encapsulation (Dubinsky, 1991) and procepts (Gray 
& Tall, 1994). Structure sense is a notion developed by Linchevski and 
Livneh (1999) and used by others (Hoch & Dreyfus, 2004; Linchevski & 
Livneh, 2007; Novotná & Hoch, 2008).  Another source of problems is 
the concept of negative numbers and the minus sign (Gallardo, 1995, 
2002; Kaur & Sharon, 1994; Linchevski & Williams, 1999). This problem 
has been investigated further with the focus on the notion of negativity 
(Vlassis, 2004, 2008).  

4.1 Algebraic notation and the variable  
Perhaps the most important concept in algebra is the concept of variable. 
In school algebra a letter is normally used as a place holder for a number. 
This number can be a specific unknown like the unknown in an equation, 
it can be a general number as in the general rules for arithmetic, or it can 
be a number which varies in relation to other numbers as in the case of 
functions. 

In mathematics, this notion of variable is used for all the above-
mentioned situations. Some researchers in mathematics education also 
used the notion variable for all these cases (Drijvers, 2002 ; Usiskin, 
1988). Küchemann (1981) who investigated students’ different interpreta-
tions of letters in algebra warned against the “blanket use of the term “var-
iable” in generalised arithmetic” (ibid p. 110). He asserted that this use 
had blurred the meaning of the term itself and also the different meanings 
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that students assign to the letters. For him it was important to emphasise 
that the concept of variable includes an interpretation of an unknown, not 
a specific unknown, but an unknown with a changing value.  

Küchemann (ibid) focused on different ways in which students inter-
preted letters in algebra. His work was part of a large-scale survey of 
Concepts in Secondary Mathematics and Science in England, the CSMS-
project. One of the aims of the study was to categorise mathematics un-
derstanding according to Piagetian developmental stages. This aspect of 
the research has since been questioned; however, the study is still relevant 
in that it gives a valuable insight into students’ thinking about mathemati-
cal concepts.  

In the study the underlying assumption was that algebra was viewed as 
generalised arithmetic. Küchemann (ibid) identified six categories of how 
students interpreted literal symbols. In the first two categories letters are 
ignored or given a numerical value from the outset.  

In the third category letters are used as objects. In this category letters 
are regarded as shorthand for an object or as an object in its own right. 
When students are introduced to collecting like terms in algebra, as in the 
example 2a + 5b + a, teachers often use the “fruit salad” method of say-
ing for example 2 apples + 5 bananas + one more apple, which can totally 
mislead students. Another possibility is to see the letter as an object in its 
own right collecting a’s and b’s and so on. It is fundamental in algebra 
that students understand that letter symbols are substitutes for numbers. A 
lack of such understanding might initially lead to success in solving some 
types of tasks, it will, however, mislead students and cause problems in 
the further work with algebra. Another problem occurs when students 
have to distinguish between the objects themselves and the numbers of 
objects. If students are given the problem: If cakes cost c pence each and 
buns b pence each, and 4 cakes and 3 buns are bought, what does 4c + 3b 
stand for? Many students also in higher levels tend to interpret this to be 4 
cakes and 3 buns, instead of seeing the expression as an expression for the 
total price for the 4 cakes and the 3 buns. 

The last three categories are as follows: letter used as a specific un-
known. Here the letter is regarded as a specific, but unknown number, that 
can be operated upon directly as in equation solving, or for example in 
tasks where it is asked for the answer when 4 is added to 3n. The next cat-
egory is letter used as a generalised number. This means that the letter is 
seen as representing, or at least as being able to take, several values rather 
than just one, for example letters in formulas. 

The highest level of understanding, according to Küchemann, is 
reached when letters are used as variables. By this he asserts that the letter 
is seen as representing a range of unspecified values, and a systematic re-
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lationship is seen to exist between two such sets of values (Küchemann, 
1981a, p.104). One example he uses is the statement 5b + 6r = 90. If the 
letters here are interpreted as specific unknown numbers, the statement is 
seen to be true for an unknown, particular pair of numbers. It is also pos-
sible to interpret these letters as generalised numbers without having in 
mind how they change, only that they are different isolated pairs of num-
bers making the statement true. For these letters to be interpreted as varia-
bles, according to Küchemann’s meaning of a variable, it is important that 
there is an established relationship between the two letters b and r in the 
example above, so that it is seen by the students that for example a change 
in the value of b causes a change in the value of r. 

 In a follow-up study, Strategies and Errors in Secondary Mathematics 
(SESM) (Booth, 1984), the tasks and the findings from the algebra part of 
the CSMS study were used in order to investigate the reasons for the most 
frequent errors. The researchers interviewed 50 students from the same 
population as in the CSMS study. In addition, teaching experiments were 
carried out both in small groups and in whole classes. Booth (ibid) found 
that some problems students had in interpreting letters as generalised 
numbers, were due to their cognitive development. Other problems re-
ported seemed to have been resolved during the teaching experiment. An 
emphasis on open expressions led for example students to accept expres-
sions as x + 3 as a final result. This was not obvious in the start, but they 
developed an acceptance of the ‘lack of closure’ (see the next section 4.1). 

In a recent intervention study in England, the Increasing Competence 
and Confidence in Algebra and Multiplicative Structures (ICCAMS), the 
first phase was a large scale survey using tasks from the CSMS study. It 
was concluded that the tasks were still relevant, 30 years on. The algebra 
test was administered to ca 5000 children from 12 to 14 years old. It was 
reported (Brown, Hodgen, & Küchemann, 2012) that the results were the 
same or slightly worse than the results from the CSMS project, and that 
less than 10 % interpreted the letter symbol as a variable.  

Based on the test results and interviews with students in phase 1, on 
pedagogical principles, and research literature about algebra, rich tasks 
were designed, and collections of interlinked lessons were outlined. The 
research team worked with teachers, and after implementing the lessons 
and the material, many teachers told that the intervention project made 
them change their ways of teaching. Students’ responses on tests indicated 
that the rate of learning had been double over a year for those who had 
joined the project compared to those who had not (Brown, Hodgen, & 
Küchemann, 2014) 

When investigating students’ conception of variable, Wagner (1981) 
inquired into students’ ability to conserve equations and functions when 
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changing the literal symbols. In interviews with 29 students between 10 
and 18 years from schools in the USA, she found that fewer than half the 
students, having studied algebra, could state that the functions and equa-
tions presented, were conserved when the letters denoting the variables 
were changed. They seemed to believe that the value of the variable was 
changed by the changing of the letter symbol, even though the structure of 
the functions and equations was kept the same. Some gave values accord-
ing to the ordering of the letters in the alphabet.  

Usiskin (1988) describes many uses of the letters (he uses the term 
variable to be synonymous with the word letter) to which secondary stu-
dents are exposed. He asserts that these different uses are related to the 
purposes to which algebra is used, and this again is determined by which 
approach to algebra is chosen (see section 3.1.1).  

MacGregor and Stacey (1997) reported from a longitudinal study in 
Australia including 22 schools from grade 7 to grade 10. The students 
were tested at several occasions during three years, and some students 
were interviewed. They found that students were making the same errors 
as reported in earlier studies (Booth, 1984; Küchemann, 1981; Wagner, 
1981). Also they (Stacey & MacGregor, 1997) found that the difficulties 
students have in learning to use algebraic notations, appear to have several 
origins. The authors found evidence that “intuitive assumptions and sensi-
ble, pragmatic reasoning about an unfamiliar notation system” caused 
problems in interpreting and using letter symbols correctly.  

‘Interference from new learning in mathematics’, was one such obsta-
cle for some students, especially the older ones. The researchers found 
evidence that students wrote the right expression or equation, however, 
misused newly learned rules for solving equations. Another example was 
students’ use of exponential notation to express multiplication, e.g.  x³ in-
stead of 3x. 

‘Poorly-designed and misleading teaching materials’ was another 
source for problems with letter symbols. In some schools, students’ per-
formance was relatively poor compared to the others. In these schools the 
authors discussed with the teachers and found for example that textbooks 
used in the first algebra course, explicitly stated that letters could be used 
as abbreviated words and labels.  

In one school, they found that students interpreted letters according to 
their order in the alphabet. The teachers told that they had been working 
with puzzles and codes in the mathematics lessons. The authors character-
ised this source of mis-interpretations as: “analogies with symbol systems 
used in everyday life, in other parts of mathematics or in other school sub-
jects”.  
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In this section, it is shown that many students have problems in their 
interpretation and use of letters (the variable) in algebra, and Küchemann 
(1981) in the CSMS study categorised these different interpretations in six 
categories. Other studies reported the same problems as was found in the 
CSMS study.  

It was also shown that many students considered that functions and 
equations changed by changing only the letter variable (Wagner, (1981). 

Booth’s teaching experiment was promising in that a focus on specific 
problems helped some students to resolve some of their problems. Also 
the more recent intervention project, ICCAMS, reported a positive devel-
opment in students’ conception of algebra (Brown, et al., 2014).   

Later in this thesis, when referring to students’ work, the notion ‘vari-
able’ will be used only in accordance with Küchemann’s definition of the 
variable. The reason for this is that the notion ‘variable’ was only used in 
class in relation to linear function, and that observation done when stu-
dents were working with functions created a question if all students had 
the conception of the letter symbols as variables even in that context.  

4.2 Lack of closure 
One important difference from arithmetic to algebra is that expressions 
can be the final result in the transformational activity. Collis denoted this 
as the ‘acceptance of lack of closure’ (Collis, 1972). In the literature it is 
reported that many students show a reluctance to accept this lack of clo-
sure. 

Tall and Thomas (2001) use the example of  7 + 4 in arithmetic and 
the expression 7 + x in algebra to describe this difference between arith-
metic and algebra. Although 7 + 4 is an open operation or a procept in the 
vocabulary of Gray and Tall (1994) (see section 3.3), it has a built-in pro-
cess of computing the numbers to reach to a number result. When it 
comes to the algebraic expression this is not possible without knowing the 
value of x. The last expression therefore has to be left open. For students it 
is not easy to accept this lack of closure. For many this tends to lead stu-
dents to conjoin the terms, which means that they for example regard 
3 4n  to be equal to 7n, or that they alternatively might assign values to 
the letter symbol (Küchemann, 1981). Several researchers have reported 
these phenomena (Booth, 1984; Brekke, 2005; Chalouh & Herscovics, 
1988; Küchemann, 1981). 

The reluctance among students to accept open expressions is more 
likely in the beginning of the algebra learning.  
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4.3 The minus sign and negative numbers  
Negative numbers and the meanings of the minus sign are introduced in 
the lower grades. However, “it is in the transitional process from arithme-
tic to algebra that the analysis of students’ construction of negative num-
bers becomes meaningful”(Gallardo, 2002, p. 189). In algebra students are 
faced with equations and problems where negative numbers are coeffi-
cients, constants or solutions.  

Studies carried out in Mexico among students in secondary school 
(age 12-14 years) have shown that students have difficulties in accepting 
negative solutions when solving linear equations (Gallardo, 1995, 2002; 
Gallardo & Rojano, 1994). Also students were seen to engage in a lot of 
acrobatics to avoid negative solutions (Gallardo & Rojano, 1994). 

In a study in Sweden, Kilhamn (2011) concluded that students who 
had a well-developed conception of natural numbers, incorporated nega-
tive numbers more easily than students with a poorly developed number 
sense. She recommended that students were offered more opportunities to 
develop general number sense and that more time should be spent on sub-
traction and zero on lower levels.  

Gallardo and Rojano (ibid) found that the students invent different 
rules to combine the operation signs for addition and subtraction, some 
are correct, others lead to errors. Double signs such as – (– a) or + (– a) 
cause difficulties, and the authors report that the students expressed sur-
prise when they were confronted with the fact that subtraction does not 
always make smaller; that adding does not always make bigger, and that 
multiplication is not always repeated addition.  

Gallardo (2002, 2003) used historical tasks for students to solve. In 
their solutions many students avoided using negative numbers where it 
was possible to figure out the solution without it. This should not be a 
surprise. This Sfard (2007) took into consideration when designing tasks 
for her study in which negative numbers were the focus for teaching. She 
noted:  

The choice of the mediators was made carefully, so as to ensure they would not be 
treatable in terms of the “old” (unsigned) numbers more easily than in terms of the 
new ones (as is the case with the majority of real-life situations supposedly sup-
porting the use of negative numbers; e.g., questions about changes in temperatures 
do not, in fact, necessitate manipulating negative numbers) (p. 586).  

In Sfard’s study (ibid) investigating the introduction of negative numbers 
in a grade 7 class it was evident that it was hard for students to come to 
grips with operations on negative numbers.  

However, for students the notation and the use of negative numbers is 
one obstacle, another is the minus sign. When studying the influence of 
using the balance model in equation solving Vlassis (2002) found the 
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same difficulties as reported by Gallardo and Rojano (1994). She then 
went on to consider the problems not so much to be related to the concept 
of negative numbers as to students’ conception of the minus sign. She 
used the term negativity (Vlassis, 2004, 2008) to represent the multidi-
mensionality of the minus sign.  

She categorises the different uses of the minus sign according to the 
classification given by Gallardo (2002): the unary, the binary and the 
symmetric functions, and in addition the categorisation from Sfard (2000): 
operational and structural signifiers. She proposes that the overview of the 
different uses and functions of the minus sign, illustrates how limited the 
focus is, when focusing only on the negative number as such.  

The unary function is related to the minus sign signalling that the 
number is a negative number, also called the isolated number. Vlassis 
(2008) follows Gallardo (2002) in the division of this category into two 
subcategories, the solution number and the result number. The solution 
number occurs as a solution to an equation or a problem, when the result 
number is a result of an operation.  

The binary function of the minus sign is the sign for subtraction; an 
operation sign. This again is divided into two main categories: the arith-
metic subtraction which involves completing, taking away and finding the 
difference between two numbers (Gallardo & Rojano, 1994). The other 
subcategory is algebraic subtraction. The reason for this category is the 
change in the meaning of the operation when negative numbers are in-
volved, more generally she (Vlassis, 2008) defines it to be subtraction 
with rational numbers.   

The last function of the minus sign is the symmetric function. Here the 
operation is about taking the opposite of a number or of a sum. She uses 
the example of 2 (4 5 2 )a a b c   . Here the first minus sign is an opera-
tion to take the opposite. When talking about relative number, the minus 
sign is a structural signifier used in examples like (-x) + x = 0. In the rela-
tive number she explains the minus sign to be part of the number, not rep-
resenting an action as is the case for taking the opposite of a number. In 
the table below, the different functions and examples of the minus sign are 
presented: 
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   Table 4-1: Interpretations of the minus sign  
Unary function 
(structural) 
Notion Example Reference 
Relative number (- x) + x = 0 (Gallardo, 2002; 

Gallardo & Rojano, 
1994; Vlassis, 2004, 
2008) 

Solution number x + 7 = 4   x = (-3)  
Result-number 15 – 17 = (- 2)  
Formal negative number (-5), (-4), etc. 
Binary function 
(operational) 
Arithmetical subtraction  
  
Taking away 

John has 3 marbles, he loses 2. 
How many does he have left? 
3 - 2   

(Gallardo, 2002; 
Gallardo & Rojano, 
1994; Vlassis, 2004, 
2008) Completing John wants 6 marbles, he has 2. 

How many does he need? 
2 + ? = 6  

Difference between  
two numbers 

16 – 14 = 2 

Algebraic subtracting 
Subtracting negative 
numbers 

7- (- 3) = 7 + 3 (Vlassis, 2008) 

Symmetric function 
(operational) 
Taking the opposite of a 
number  
 

( 3) 3    

2 (4 5 2 )a a b c   (the first 

minus in the expression) 

(Gallardo, 2002; 
Vlassis, 2004, 2008) 

 
In her study Vlassis (2004) tested students in grade 8 from six classes in 
three schools in the French speaking part of Belgium. On the basis of their 
results on a test where they had to simplify 28 polynomials, 12 students 
were chosen to be interviewed. No polynomials consisted of more than 4 
terms, with only one letter symbol in each. In the interviews students were 
asked to solve tasks from the tests and were asked which models they 
used.  

Vlassis reports that a widespread type of reasoning was to put imagi-
nary brackets around like terms if those were preceded by a minus sign. 
An example of this was the polynomial 20 + 8 - 7n - 5n. Some of the stu-
dents then operated on this expression as if there was a bracket after the 
first minus sign. The result was then 20 + 8 – (7n - 5n) = 28 – 2n. Also 
high achieving students made this mistake, This was also reported in a 
study by Herscovics and Linchevski (1994) when investigating equation 
solving, and was also found when students should simplify number strings 
(Linchevski & Livneh, 1999). The phenomenon was then classified as one 
type of ‘detachment of a term from its indicated operation’. Vlassis (2004) 
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found that this reasoning occurred also in tasks where like terms were not 
grouped initially, but then after students had grouped them. She labelled 
this phenomenon ‘bracket reasoning’.   

Another tendency was to use ‘the signs rule’ especially in the version 
minus by minus gives plus in not appropriate situations. Vlassis (2004) 
found that when several minus signs were present in a polynomial, this 
rule was used. An example is 6 – 5a – 3 – 4a where one student said that 
it would be 5a + 4a because of the signs rule, and then she wrote 9a minus 
and then she said that it would be the same 6 + 3, and the result should be 
9a – 9. It was also found that one student could use ‘the signs rule’ in one 
occasion and ‘bracket reasoning’ in another, it depended on the numbers 
and the structure of the task.  

There was also evidence of confusion in selecting correct operation 
sign (ibid). Vlassis found two forms of this incidence. One was students’ 
tendency to ‘operate from right to left’. One example was the expression 
7 – 6n + 13. Some students subtracted 7 from 13 and then subtracted 6n 
getting the result 6 - 6n. Vlassis reports that this also was found in the 
written tests. This tendency she assumed to have its source in students’ 
avoidance of subtracting a larger number from a smaller one. Another 
tendency caused by confusion in selecting the correct sign, was that stu-
dents ‘chose the sign following the number or term’. This tendency was 
labelled ‘jumping off with the posterior operation’ by Herscovics and 
Linchevski (1994) and Linchevski and Livneh (1999). One example of 
this tendency is 6y – 20 + 3y – 12. Here some of the students subtracted 3y 
from 6y in that they use the minus sign following directly after 6y. Vlassis 
(2004) hypothesised that the reason for this may be due to students early 
learning of subtraction with natural numbers, and she uses the example of 
6 – 4 and says if children are told to take away four apples from 6 apples 
then it is possible that the minus sign is seen to be associated with the 
term placed before it.  

When asked which meaning the minus sign had, all students agreed 
that the minus sign generally is used for subtraction. Three out of twelve 
interviewees thought of the minus sign as ‘a sign to split’ the polynomial. 
And one thought it was there in order to signal the use of the signs rule. 
None of the students said explicitly that the minus sign could have more 
than one status. 10 students out of twelve considered the minus sign in the 
start of a polynomial to be the sign of a negative number.  

A striking result was that the high achieving students although per-
forming the manipulations in a correct way, when explaining their strate-
gies, their explanation were poorly described, or they had no explanation. 
Vlassis (ibid) comments that students were not used to talk mathematics, 
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and she asserts that this is a sign of a lack of meta-conceptual awareness, 
which has to be developed in order to use the minus sign flexibly.  

Another study carried out by Vlassis’ (2008) involved eight grade 8 
classes  from two schools. All students in these classes were given a test, 
and on the basis of the results 17 students were chosen for interviews. In 
the interviews students should solve equations and then prove the solu-
tions to be correct. The students had four possible methods to solve the 
tasks; to substitute the unknown directly by a number, or to do the inverse 
operations. Vlassis (ibid) calls these methods arithmetical in line with 
Filloy and Rojano (1989). The last two methods involve using formal 
methods, one is to perform the same operation on both sides of the equal 
sign, and the last method is a shortcut of the latter; to move terms from 
one side to the other side, changing sign.  

The tests and the interviews showed that students had difficulties in 
distinguishing between the different meanings and uses of the minus sign. 
The students were given the tasks shown in the table below. These tasks 
were basis for the interviews. 

 
Table 4-2: Interview tasks and results (Vlassis 2008 p. 563) 

 
It is worth noticing that no student used brackets when presenting nega-
tive solutions.  

Vlassis reports several difficulties. One is related to the situations 
where two successive signs emerge, when proving the solution of the 
equation. It was especially visible in the tasks including multiplication 
such as in the equations - 6x = 24 and – x = 7.  

The first problem she claims, is when there are two consecutive signs 
as for the multiplication sign and the minus sign in 6 4   . Those stu-
dents who did not succeed, did not identify the unary function of the mi-
nus sign in the solution number - 4. The two signs were seen to have the 
same status. Some students were helped when Vlassis suggested to write 
brackets.   

Some students corrected their solution number during the interview, 
while one student asserted he had problems with negative solutions. He 
could see “how many times 6 goes into 24, and it’s 4. But with the minus 
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I don’t feel sure. I often don’t feel sure about minuses”. Another student 
did not accept the negative solution suggested by the interviewer. He as 
well as the others found that 6 goes into 24, 4 times, but “since there is the 
minus, it can’t be done”. They failed to see the unary function of the sign 
attached to the solution (- 4).  

Another problem with this task was that some students omitted the 
multiplication sign. The task turned out to be – 6+x = 24. The invisible 
multiplication sign led students to turn the multiplication into a sum. This 
was actually done by several students and was reported to be the main dif-
ficulty in this task.  

In the task 7x  , students’ problems were that there was a minus 
sign in front of the x, and that the solution was a negative number. Some 
succeeded by what Vlassis called the meaningless technique of bringing 
the minus from the left side over to the right side; from the x to the 7. For 
those students there was only one minus sign which was moved from one 
side to another. 

 Thus they were stuck when they tried to substitute x with (-7). When 
prompted they came to the result 7 7  . Vlassis (ibid) comments that it 
helped when she suggested to put brackets around negative 7. One student 
interviewed meant that –x should be replaced by -7. When prompted he at 
the end wrote 7 7  , arguing that this was not possible. He had said that 
minus minus was plus but hesitated to write it. At the end he admitted that 
he should have used a bracket, because in algebra they had learned to use 
brackets.  

In this task both minus signs were interpreted to be unary, but when 
substituting the unknown with the solution number, the opposite value 9 is 
to be found which means that the first sign has a symmetric function. 
Vlassis (ibid) relates the problem again to the fact that most students can’t 
see the different functions of the two minus signs.  

This fact has been basis for other studies as well, and some researchers 
have studied students’ conception of the ‘opposite number’. Gallardo and 
Hernandez (2005) suggested to focus on the number zero and the number 
line to enhance students’ conception of the symmetric function of the mi-
nus sign.  

In a rather small study of high school students’ conceptions of the mi-
nus sign (Lamb et al., 2012b), nine students were interviewed on the basis 
of several tasks including the minus sign. All nine students seemed to 
have grasped two of the three main meanings of the minus sign; the minus 
sign as an operator for subtraction, and the minus sign as a symbol for the 

                                           
9 The notion opposite number will be used for the mathematical notion additive invers in this 
thesis. This notion, in Norwegian ‘motsatt tall’, is used synonymously with ‘additive invers’.  
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negative number. Some of the students also moved flexibly between these 
two meanings. The tasks for students to solve are listed in the figure be-
low: 
1)    5 4

2)   5 8

3)   5 2

4)   5 1

5)   5 8

6)     4 and 4

7)      and 

Compare

Compare x x

 

 

  

  

  
  


 

 
 
8) In one textbook we found this 
    definition of ‘absolute value’. 

 
 

           Can you explain this 

Figure 4-1: The tasks given to the students  (Lamb, et al., 2012b, p. 40) 
 
The five first tasks were solved without problems, however, the next three 
happened to cause more struggles than expected. Two of the tasks given 
to the students will be reported here. In task number 6: “Compare 

4 4?and   ” (ibid, p. 40). Six of the nine students compared the two 
expressions correctly, but five of those referred to the rule that two minus 
signs make a positive sign and were unsure why the rule works. Only one 
of the nine students described explicitly that 4   was opposite to -4.  

 In the other task, “Compare – x and x.” (ibid, p. 40), five of the nine 
compared the expressions correctly. Four of those five referred to the rule 
of two negatives make a positive also here. When doing so they tested dif-
ferent values of x. The four students comparing incorrectly asserted that x 
is always larger than –x, because negative x always represents a negative 
number.  

The authors conclude that students mostly move flexibly between the 
meaning of the minus sign as an operator for subtraction and as a sign 
symbolising a negative number. This flexibility helped students to effi-
ciently solve the first tasks. However, in the study it was found that those 
shifts were taken implicitly and that students struggled to explain their 
executions.  

The authors assert that a conception of the minus sign also as a unary 
operator, taking the ‘opposite of’ might promote a deeper understanding 
of the variable, algebraic expressions, and symbolically represented defi-
nitions. They also suggest that students must be given opportunities to 
discuss and develop a sense of the different meanings of the minus sign in 
order to be flexible and to develop a robust concept image of the sign. In 
another report they suggest tasks and actions for teachers to promote this 
symbol sense (Lamb et al., 2012a). 
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Another type of error reported by Vlassis (2008), was related to tasks 
in which there was a number from which the x should be subtracted as in 
the equation: 4 5x  . The 4 was subtracted from both sides, or moved 
over and changed sign. Then the equation should be 5 4x   . The mi-
nus preceding the x, however, was omitted. It turned out to be the case 
that the binary sign for subtraction was no longer needed so now it could 
be removed. The students were not aware of the possibility that the same 
sign could change status. Here it changed from being a binary sign to a 
unary sign for the negative x.  

To sum up, negative numbers as well as the minus sign cause students 
a lot of struggles. The different meanings of the minus sign are not easy 
for students to be aware of, especially since there is no difference in the 
symbolisation. There are three main functions of the sign: the minus sign 
as an operator signalling subtraction, as a sign for negative numbers and 
as a sign for taking the opposite number. In addition, there are occasions 
in which the same sign changes function, as in the equation 4 5x  when 
it is transformed into 5 4x    as in one of the examples above. 

Students are normally taught to write negative numbers in brackets, 
however, when a minus sign is placed in the start of an equality or a poly-
nomial, the negative number is mostly not written within a bracket. There-
fore, it should perhaps be no wonder that students are not consistent in 
placing negative numbers in brackets when substituting letter symbols 
with negative numbers. As seen above this omission of brackets often 
causes students to change operation. In cases where two successive minus 
signs appear as in example 5 ( 4)  , it is often just rote learned that two 
minuses give plus. This rule is often incorrectly generalised to be used 
also in examples as 6 – 5a – 3 – 4a = 9a – 6 as shown above. 

In a longitudinal study in Sweden in upper secondary school (Persson, 
2005) it was found that one important obstacle when transforming alge-
braic expressions and solving equations was students’ lack of competence 
in arithmetic operations and especially a lack of understanding the differ-
ent functions of the minus sign. In that study it was found that it was cru-
cial that the teacher was searching for the reason for the errors made. It 
was not obvious to see that the problem could be the minus sign or nega-
tive numbers. The researchers observed that when the obstacles were ad-
dressed, it was possible to overcome the problems.   

The type of problems reported in the studies of students’ manipula-
tions with polynomials will be applied as categories in the analysis of sim-
ilar tasks.  
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Table: 4-3: Minus sign - Problem categories  
Categories Examples 

Detachment of a 
term from the 
indicated opera-
tion10 

From right to left  7 – 6n + 13 = 6 - 6n 
Jumping off with the  
posterior operation 

6y – 20 + 3y – 12 =3y - 32 

Bracket reasoning: The 
minus sign as a splitting 
factor 

3 – 5 + 4= (-6) 
20 + 8 - 7n - 5n=28 – 2n 

Sign rules - overgeneralised 6 – 5a – 3 – 4a = 9a - 6 
Taking the opposite of -(-3) 

2 (4 5 2 )a a b c    

Omitting brackets – change operation 6 4 6 4       
Not acceptance of division by negative num-
bers  

24

6
    is impossible 

 
In this section research revealing problems students have when working 
with negative numbers and the minus sign, have been presented. These 
problems are closely related to the phenomenon of operating according to 
the correct ‘order of operations’. In this thesis it is chosen to group all 
problems related to the the minus sign together, although many of those 
problems cause students to operate in an inappropriate order. 

4.4 Order of operations 
From early school years students are familiar with carrying out the com-
putations from left to right, however, addition and multiplication are 
commutative operations, and in strings of numbers within those fields it is 
no problem to compute also from right to left. When introduced to the op-
erations of subtraction and division this switch is no longer a possibility. 
And in problems including multiple operations, the students have to re-
flect on which operations have to be carried out first. 

Herscovics and Linchevski (1994) had experienced as Vlassis (2004) 
that students calculated from right to left. In Herscovics and Linchevski’s 
study 22 grade 7 students were interviewed about equation solving. All 
were from the same class in a school in Montreal and none of them had 
followed algebra courses. During the interviews they experienced that 
students when solving the equation 364 = 796 – n, first transformed the 
equation to be n – 796 = 364. They assumed the reason was that the stu-
dents had not developed a relational conception of the equal sign, and 
commented that if the signs had been positive, it would not have mattered 
if the direction was changed. 

                                           
10 The notion ‘detachment of a term from the indicated operation’ is taken from Linchevski 
and Livneh (1999). 
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They also found ‘bracket reasoning’ (Vlassis, 2004) (see the section 
above). In Herscovics and Linchevski’s (1994) terminology this was 
called ‘detachment of a term from the indicated operation’.  

Another problem occurred when students performed addition before 
multiplication. A large proportion, nearly 30 %, of the students failed in 
the equation 6 9 60n    because they performed the addition before 
multiplication. However, in similar tasks in which there was a minus sign 
instead of the plus sign, the students performed the operations in the cor-
rect order. This was explained to be caused by the students’ view of the 
minus sign as a splitting factor.  

In a follow up study Linchevski and Livneh (1999) interviewed 53 
students at the end of grade 6. In this study the tasks were designed with 
the same structure as in the equations, but now as pure numerical strings; 
no letters included. These students had been taught about order of opera-
tions.  

The authors found the same problems as in the work with equations. In 
the expression 5 + 6 × 10 = ?, the task was performed by adding 5 and 6 
before the multiplication. When there appeared to be a minus sign such as 
in the task: 17 - 3 × 5=, this happened for only three students, the others 
correctly carried out the multiplication before the subtraction. This may be 
due to an interpretation of the minus sign as a splitting factor resulting in 
bracket reasoning (Vlassis, 2004) as seen above. However, they (Linchev-
ski & Livneh, 1999) also found that when there were both division and 
multiplication in the expression (24 :3 2 ), the multiplication was per-
formed first, and in tasks with both addition and subtraction (27 5 3  ) 
the addition was performed first. 

Linchevski and Livneh (ibid) interpret these errors to be caused by 
students generalising the rules for order of operations incorrectly. They 
had learned that the order of operations is given as: brackets first, then 
multiplication, division, and then addition and subtraction. The research-
ers suggest that one reason could be that students interpret the rule to 
mean that addition and multiplication were on the same level, and there-
fore it did not matter which was performed first, and that the same was the 
case with division and subtraction. One could choose what was most con-
venient. Another suggestion was that the students had interpreted the rule 
to mean that addition took precedence over subtraction and multiplication 
over division. 

However, the task with both subtraction and addition (27 5 3  ), is 
similar to those referred to earlier in which the phenomenon was called 
the ‘detachment of intended operation’. For Vlassis (2004) when she 
asked students about it, they explained that the minus sign was seen as a 
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splitting sign; as a bracket, and what comes after, has to be operated on 
first. It might be that students have the same view of the division sign.  

Linchevski and Livneh (1999) do not consider such an interpretation 
here, but later on when reporting other problems in the same article not 
involving order of operations, they use the examples 24 :3 2  and 
27 5 3   to make visible what they call detachment of the term from its 
indicated operation. Some students had then even put brackets around 5+3 
and 3∙2.  

It might be that the authors do not see this bracket reasoning as a rea-
son for the problem, but as a description of the phenomenon only.  

Linchevski and Livneh (1999) asked the students in the interviews if 
there were other ways of solving the problems, showing them alternative 
student solutions. Many students changed their minds, also from correct to 
incorrect, some kept to their solution. Others accepted both solutions, and 
meant that one task could give other correct solutions; it depended on the 
rules.  

Linchevski and Livneh (ibid) used the findings to create an interven-
tion program “teaching arithmetic for algebraic purposes” (Linchevski & 
Livneh, 2007). The aim was to help students to develop structure sense. 
The results indicated that students who were assumed to have low scores 
in algebra, progressed in that they avoided making the mistakes reported 
in the other studies. It was also observed that the other students improved 
from the instruction program.  

Another problem related to order of operations occurs when powers 
are included in strings of numbers or in algebraic expressions. In the ex-
ample 22 3 some students tend to multiply the base by two before execut-
ing the exponentiation.  

In higher grades there have been studies about order of operations 
(Lee & Messner, 2000). College students were reported to discuss the 
meaning of 23 ; the negative number with an exponent without grouping. 
Some argued that 23 9   rather than 23 9   . The argument they gave 
was that the minus sign should be considered before the exponent.  

4.5 Powers – base and exponent  
Powers are mentioned in relation to order of operation in the foregoing 
section. However, the concept of power and what it means for the stu-
dents, has been in focus for some  studies (Pitta-Pantazi, Christou, & 
Zachariades, 2007; Weber, 2002). 

Traditionally students have been introduced to the definition of powers 
as repeated multiplication of the base. This definition is meaningful as 
long as the exponents are natural numbers, but can cause troubles when 
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the powers are more complicated with negative exponents or with frac-
tions as exponents (Weber, 2002).  

For this thesis, the basic definition holds for most occasions, however, 
the students are introduced to scientific notation in which they have to ex-
pand their conceptions of exponents from natural numbers to include all 
numbers within the set of integers, ℤ.  

In a study (Cangelosi, Madrid, Cooper, Olson, & Hartter, 2013) identi-
fying persistent errors students make when working with powers, and 
teasing out the reason for those errors, the researchers tested 904 students 
at a university and then interviewed 18 of them.  

Students were asked to decide if some powers would be positive or 
negative and also to simplify them. Two persistent errors were found. One 

was what they called the ‘sticky sign’. The expression was 
3

29 . When 
calculating the power, 13 out of 18 treated the expression as if it was in an 
imaginary bracket, their conception was that the minus sign was ‘stuck’ to 
the number 9, whether there was a bracket or not. The authors claim this 
is caused by a lack of a conception of the ‘additive inverse’ or as Vlassis 
(2008) labelled it; the opposite number. 

According to the authors, the other error was due to a lack of the con-
cept of the multiplicative inverse. The power was 32 and 10 out of 18 

failed. Alternative solutions were 
1

32 , 32 , 
3/1

2 , 
1/3

2 , and 3

2
. Some stu-

dents’ conception of powers with negative exponents was that something 
should be flipped. However, what to flip and why, was not clear to them. 
They talked about flipping; not to find the multiplicative inverse of 2³. 

The authors recommend that textbook authors and teachers should in-
corporate the additive and multiplicative inverses, when introducing stu-
dents to the general laws for addition and multiplication.  

One error, somewhat related to the ‘sticky sign’, was that some stu-

dents were reported to equal 2ab and 2( )ab (Seng, 2010). 
Errors occurring when calculating with powers are often caused by in-

terferences from other symbol systems according to MacGregor and 
Stacey (1997). One example is the tendency shown by some students to 
mix exponentiation and multiplication. MacGregor and Stacey (ibid) refer 
to some students’ conceptions of exponents as an instruction to multiply, 
which causes them to write the multiplication as a power with the multi-
plicator as the exponent. This confusion between what was ‘met before’ 
and new learning is also reported by de Lima and Tall (2006a), to cause 
problems when working with powers. This might cause students to multi-
ply the base by the exponent.  
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4.6 Algebra and fractions 
In this section I will present some research on the concept of fraction as a 
rational number. In the next sections research on students work with frac-
tions will be presented. Then research on simplification of algebraic ra-
tional expressions will be reported.  

Fractions are often experienced by students as one of the stumbling 
blocks in mathematics. The concept of fraction is complex, and according 
to Kieren it includes five different sub-constructs which represent five dif-
ferent “rational number thinking patterns” (Kieren, 1980, p. 134). These 
sub-constructs are: part-whole, quotients, measures, ratio and operators. 
To form the full rational number concept, the learner must control these 
different constructs. However, too often students have learned algorithms 
and have not been offered opportunities to go in depth into the concept of 
rational numbers. A well-known example of this is Benny (Erlwanger, 
1973) who is enjoying his work with fractions, but, is using different rules 
for different calculations with fractions. 

Kieren (1980) emphasises that the different thinking patterns are not 
mathematically independent, nor are they psychologically independent. 
They are closely related, but represent different ways of thinking. Accord-
ing to Kieren (ibid), the part-whole sub-construct is historically the main 
basis for students’ development of the fraction concept. This sub-
construct is according to Marshall (1993) related to situations in which 
continuous or discrete quantities are divided into equal parts. The fraction 
a

b
 is then seen as a comparison between the part and the whole. The nu-

merator represents the actual number of units in the part, and the denomi-
nator represents the number of units in which the whole is partitioned. In 
part-whole situations a b . Although, the units are made smaller or big-
ger, the part-whole relation is conserved. This unitising gives basis for the 
understanding of equivalent fractions (Lamon, 1999).  

The quotient sub-construct is closely related to the part-whole sub-
construct in that it depends on partitioning. According to Marshall (1993) 

the difference is that in part-whole situations a and b in the fraction 
a

b
 

yield the same object or thing. In quotient situations a and b represent dif-
ferent things or objects. The situation represents fair sharing/division of a 
elements into b groups. One example is “How would you share three piz-
zas among four friends? How much would each person receive? (ibid, p. 

275).” Lamon (1999) comments that in such a context the fraction 
3

4
 has 

multiple meanings. It stands for the division 3 divided by 4, and is at the 
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same time the result of that division, the quotient. However, it might also 
be interpreted as a ratio, pizza per person. In a quotient situation there are 
no constraints regarding the size of the fraction.  

According to Marshall (1993) the ratio sub-construct is representing a 
situation in which two quantities are related to each other, not represent-
ing a partition of one object. Some number of one object is compared to a 
number of a second object. One example of such a situation is: “In her 
recipe, Susie adds 1 cup of sugar for every 3 cups of water. How much 
sugar should she add for 6 cups of water?” Lamon (1999) asserts that the 
situation describes ordered pairs and that it implies a proportion. In the 

fraction 
a

b
, a change in a will cause a predictable change in b.  

For students this means that they have to grasp that the relationship be-
tween the two quantities is constant, and that a change in one of them im-
plies a change in the second. Lamon emphasises that although students 
seem to have grasped the concept of equivalent fractions, it does not mean 
that they have a valid conception of the invariance property of ratios.  

Marshall (1993) describes the measure situation to be a situation in 

which a fraction 
1

b
 “is used repeatedly to determine a distance”.  Accord-

ing to her, the most frequent representation is the number line, alternative-
ly the ruler. Lamon (1999) claims that: “It is unlikely that any other frac-
tion interpretation can come close to the power of the number line for 
building number sense” (p. 228). In addition, Lamon asserts that students 
are scaffolded by fractions as measurement to develop understanding for 
operations on fractions. She refers to her studies which show that students 
who started learning fractions through the measurement sub-construct of 
rational numbers, had a good conception of the relative sizes of fractions 
and were more likely to discover errors when operating on fractions, than 
students who had started out from other sub-constructs. 

The last subconstruct, fraction as operator, is linked to the function 
concept by Marshall (1993). The operator serves as a function machine, 
mapping some set or region onto another set or region. For students it is 
understood as shrinking and enlarging, contracting and expanding or mul-
tiplying and dividing (Lamon, 1999). Lamon (ibid) uses the example of 

the operator 
2

3
. This operator instructs one to take 

2

3
 of something, which 

means to divide by 3 and multiply by 2, or it might be regarded as one 
single operation. The result will be the same no matter in which order the 
calculations are made.  
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When discussing the different sub-constructs and approaches in teach-
ing fractions, Lamon concludes that the different interpretations do not 
give the same access to a deep conception of fractions or rational num-
bers. She emphasises as does Kieren (1980) that the sub-constructs are 
intertwined and one construct can enhance another if the teacher is aware 
of the different interpretations.  

Recent research has shown that there is a strong predictive relation be-
tween fraction knowledge and later mathematical achievement (Bailey, 
Hoard, Nugent, & Geary, 2012; Siegler, Fazio, Bailey, & Zhou, 2013). 
Siegler et al. (ibid) applied two national longitudinal data sets; the ‘British 
Cohort Study’ from 1980 and 1986 and the ‘Panel Study of Income Dy-
namics - Child development Supplement’ (PSID-CDS) from 1997 and 
2002. In the first study 3677 children born in the United Kingdom during 
one week in 1970 formed the dataset. The latter dataset included 599 stu-
dents from USA. The students in both datasets had been tested twice; first 
as ten years old and then as 15-17 years old. Analysis of the data showed 
that knowledge of fractions among students in high school correlated 
strongly with overall mathematics achievement, also with algebra. 
Knowledge of fraction and their overall mathematics achievement corre-
lated stronger than algebra with overall mathematics achievement.  

Across the dataset from both countries, elementary school children’s 
fraction knowledge and whole number division predict their mathematics 
performances in high school. This was the result even after controlling for 
IQ, reading abilities, working memory, family income and education, and 
knowledge about whole numbers. Bailey et al.’s (2012) study confirmed 
this result.  

Wu (2001) suggests that fractions could be the gateway to algebra and 
the concept of variable, since the rules for operating on fractions can be 
generalised. He also claims that for students when meeting fractions, they 
are introduced for the first time to the world of abstractions (Wu, 2009). 
Both Wu (ibid) and Siegler et al. (Siegler, Thompson, & Schneider, 2011) 
propose that fractions should be dealt with as numbers located on the 
number line. This location on the number line is the property fractions 
have common with whole numbers. One advantage of applying the num-
ber line according to Wu (2009), is that it is possible to present both prop-
er and improper fractions in conceptually similar ways, and that equiva-
lent fractions have the same location on the line. He proposes that defining 
“a fraction as a point on the number line is a refinement of, not a radical 
deviation from, the usual concept of a fraction as a ‘part of a whole”’ 
(ibid, p. 12). Siegler et al. (2011) proposed an integrated theory of numer-
ical development which seems to be in accordance with the ideas in the 
work of Wu (2009). The main point is that “numerical development in-
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volves coming to understand that all real numbers have magnitudes that 
can be ordered and assigned specific locations on number lines” (Siegler 
et al., 2011, p. 274). The researchers propose that knowledge of the mag-
nitude of fractions would help students in algebra to consider if solution 
numbers are reasonable.  

Although there has been a large amount of research reports on algebra 
and students’ problems in the topic, only a few have focused on the con-
nection between students’ algebraic reasoning and their knowledge about 
fractions. However, researchers have claimed that proficiency in dealing 
with fractions is an important prerequisite in algebra learning e.g. (Brown 
& Quinn, 2007a, 2007b; Kilpatrick & Izsak, 2008; NMAP, 2008; Wu, 
2001). Also researchers have reported that one problem in algebra learn-
ing is that students have problems with fractions (Hoffer, Venkataraman, 
Hedberg, & Shagle, 2007).  

4.6.1 Students’ problems with ordinary fractions 
There is a long history of research on students’ work with fractions and on 
their conceptions of rational numbers (Eichelmann, Narciss, Schnaubert, 
& Melis, 2012). In upper secondary school it is expected that students 
should have control over and master operations on fractions. However, 
studies show that also students at higher levels struggle (Brown & Quinn, 
2006, 2007a, 2007b). In upper secondary school when working with alge-
bra, students are not asked to transform mixed numbers into improper 
fractions or opposite. Fractions larger than 1 mostly appear as improper 
fractions, however, the students have to solve tasks in which there are 
both whole numbers and fractions. It is also expected that they can trans-
form fractions into whole numbers. This is not obvious for all students.  

Eichelmann et al. (ibid) refer to (Shaw, Standiford, Klein, & Tatsuoka, 
1982) who found that some junior high school students did not simplify 
fractions with equal numerator and denominator; they were not trans-
formed into the number 1. This was seen at the end of adding fractions, 
and according to the author the reason might be that the students simply 

forgot to do it. It was also found that some regard fractions of type 
1

a
 to 

be equal to a. No reason is given for this. The students were not asked to 
explain their reasoning.  

Padberg (1986) found in his study of 861 students in grade 7 that one 
of the main problems for students was to work out tasks in which there 
were both fractions and whole numbers. The types of such tasks are: 

,  ,  ,  ,  : ,  :
a a a a a a

n n n n n n
b b b b b b

    . There were two main categories of 

ways to solve the problem. One was to substitute the whole number n  by 
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n

n
, or to treat the whole number as if it were a numerator with the same 

denominator as the closest fraction. The same was found in a study among 
9 and 10 graders (Brown & Quinn, 2006). Padberg (1986) claimed that 
the students just followed rules; formal or invented. In many of these tasks 
it should have been simple for students to check if their results were ap-
propriate, but they did not.  

When adding and subtracting fractions with both equal and unequal 
denominators, most students succeeded in Padberg’s study (1986). In 
Brown and Quinn’s study (2006) of 9 and 10 graders, however, 48% did 

not find the correct sum of 
5 3

12 8
   In both studies the most common error 

was to treat the numerators and the denominators as distinct whole num-

bers and follow the ‘rule’ 
a c a c

b d b d


 


. This ‘rule’ was explicitly ex-

pressed by some students in Padberg’s study (1986). It is seen as a logical 
extension of the natural number system. Padberg found that this phenom-
enon increased if the addition task followed after a multiplication task, 
which means that some students generalised the structure in the algorithm 
of fraction multiplication to fraction addition.  

Quinn and Brown asked the students in grade 9 and 10 to find the 

product of 
1 1

 and 
2 4

. Only 42 % found the correct product. 26 % misap-

plied the algorithm for multiplying fractions. Some of them (nearly 6% of 
all in the study) added the numerators and multiplied the denominators. 
Others (the same amount) had found the least common denominator be-
fore executing the multiplication. The main error found by Wittmann 
(2013) when testing 428 German students in grade 6 and 7, was of this 

type: 
a c a c

b b b


  . It was more likely that the tasks were correctly solved 

when the denominators were unequal. The same was found in the earlier 
study worked out by Padberg (1986). He reported that this error was more 
likely to occur if addition/subtraction tasks were solved before the multi-
plication tasks. Padberg also found that some students solved multiplica-

tion tasks in this way: 
a c a c

b b b b


 


.  They multiplied the numerator and 

added the denominators. One reason, he suggested, might be that the stu-
dents interpreted b multiplied by b to be equal to 2b. When the denomina-
tors were unequal, some students tended to expand one or both to reach to 
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equal denominators. After this expansion some followed the erroneous 
path as with the equal denominators (Padberg, 1986; Wittmann, 2013).  

In Padberg’s study students were asked to respond to the question: 
“Why do we multiply fractions in exactly this way?” None of the students 
in the study provided any answer. It seems to be that the rule was just 
memorised.  

In division tasks Padberg (ibid) found that the same structure was used 

as for multiplication: 
:

:
a c a c

b b b
 . In his study 20 % did this at least once, 

while 4 % did it in all division tasks with equal denominators. One of the 

tasks was 
4 2

:
5 5

. The researcher had expected that the students could solve 

this problem intuitively, but that was not the case. They tried to rely on 
rules. But it was obvious from the way the rule for fraction division was 
applied, that the rule gave no meaning for many of the students. Some 
students inverted both fractions, and some inverted the first one. Also for 
division; none of 681 students could give any reason for the rule and only 
few could formulate the rule in words. From the article, however, it has 
not been stated if the students have been taught the reason for the rules.   

Brown and Quinn (2006) asked students to reduce the fraction 
24

36
 to 

the lowest factors. The result was that 9 % could not demonstrate any 
method for reducing it, and 9 % did not reduce it to the lowest factors. 
73% of the students reduced it correctly. These were 9th and 10th graders. 
Padberg (1986) reports that it was more likely that the students simplified 
fractions if simplification was the aim of the task. More often it happened 
that result or solution numbers were not reduced. The reason was suggest-
ed to be that the students forgot to do it, because simplification was not in 
focus, and their feeling was that the task was done.   

In their study, Brown and Quinn (2006) found that some (4 %) solved 

the addition task in this way: 
5 3 5 3 4 5 7

12 8 12 8 4 12 12


    


. These stu-

dents expanded the fraction by addition, not seeing the fraction as a ratio; 
an indication that those students lack the conception of equivalent frac-
tions.  

When fraction tasks were formulated as word problems many students 
had problems. As with decimal numbers (Fischbein, Deri, Nello, & Ma-
rino, 1985) students had problems choosing the correct operation (Brown 
& Quinn, 2006; Wartha, 2009).  

In a longitudinal study in Germany Wartha (ibid) focused upon stu-
dent’s understanding of fractions, and the development of their concep-
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tions from grade 5 until the end of grade 7. A pencil and paper test was 
administered among 2000 students from these three school years, then 36 
students were interviewed on the basis of their results on the tests. Wartha 
(2009) gave students word problems to solve. The students understood 
that the amounts should be smaller and many students chose division or 
subtraction, this happened both with unit fractions and other fractions. 
The researcher claims that the reason for this is the over generalisation of 
the properties of division and subtraction within the set of natural num-
bers, where those operations ‘make smaller’. The same was found in word 
problems in Brown and Quinn’ study (2006).  

Another frequent error found, was that some students avoided ordinary 
fractions and converted the fraction into decimal numbers, which made 
the solution process even more complicated. 

Wartha (2009) also found that many students do not regard fractions 
as numbers, and this causes problems when trying to compare fractions. 
The study confirmed that although many students are able to apply the 
algorithmic rules for operations on fractions, it does not mean that they 
have a well-developed concept image of fractions as rational numbers.  

Wittmann (2013) when studying the consistency of error patterns in 
operations on fractions, found four distinct groups of students.  

The first group consisted of students who solve all fractions tasks with 
one operation resulting in a correct result. Out of 428 students in seventh 
grade between 25 % and 33 % belonged to this group. Within this group 
there are two sub-groups. One contains the students who solve the prob-
lems in a flexible way which means that they take the number into consid-
eration, and execute mental computations when that is convenient. The 
other sub-group represents students who apply one approach, whether it is 
the most appropriate method or not. 

The second main group represents students who consistently show the 
main error patterns. Wittmann (ibid) asserts that those students might have 
“internalized an incorrect procedure while performing automation exer-
cises”. The students in these two first main groups represent students who 
are consistent in their work.  

The third group consists of students who mainly proceed well, but oc-
casionally make mistakes. The researchers assume that the reason for the 
inappropriate approaches might be due to careless mistakes caused by in-
tuitive forms of error patterns, by numbers fitting into an “error pattern”, 
or caused by the sequencing of the tasks.  

In group four are students who are not consistent at all. Wittmann sug-
gests that the reason might be that the students’ choices of approaches are 
dominated by the given numbers.  
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The studies reported above indicate that although students meet frac-
tions in early school years, some will still have problems and have a rather 
limited conception of rational numbers even when entering upper second-
ary school. In upper secondary school, the algorithmic rules are just reca-
pitulated, and students are expected to move on to more advanced mathe-
matics. Wittmann’s study about consistency in carrying out fraction tasks, 
shows that at least in German seventh grade there is a group of students 
that is consistent in applying error patterns, and one group in which the 
students have no clear approach at all. Both groups need help and guid-
ance in applying algorithms, but even more so to gain a concept image of 
rational numbers that can help them to see the reason behind the rules.  

4.6.2 Students’ problems with algebraic fractions 
There are many studies showing that students have problems simplifying 
algebraic fractions or strings of fractions. The older studies are focused on 
typical errors found in testing, not so much on students reasoning when 
solving the tasks. In more recent studies students have been interviewed 
on the basis of tasks, or they have been asked to reflect on the solution 
process. Some studies in this area will be referred to in this section. 

The simplest algebraic fractions consist of monomials in both numera-
tor and denominator. For some students it is a challenge to find common 
factors, for others it is a problem to interpret powers in the correct way. In 
a study investigating which problems students at grade seven in Malaysia 
had when simplifying algebraic fractions, it was found that some students 
interpreted expressions of the type 2ab to be equal to 2( )ab or to 2a b  (Seng, 
2010). This will of course lead to problems with fraction simplification. 
Another misinterpretation of the exponents in powers, is to view them as 
ordinary numbers. Storer (1956) found that some students when simplify-

ing the task 
2a

ab
 seemed to equal this with 

2

b
. He asserted that the error 

might be caused by “striking without leaving a trace”, which means that 
they had cancelled the literal symbol. The index was left, and then the 
students had written the index as an ordinary number. 

Storer and his colleagues at the university of Birmingham tested more 
than 1000 students from the age of 14 in different English schools. The 
test included 52 algebraic fractions which should be simplified. Students 
who had less than 20 correct answers were left out and this means that 
tests from 539 students were analysed. The errors were organised into 15 
categories. He found that the most frequent category of errors was that the 
students did not find the common denominator or numerator, one example 

was 
1 1 1

b d b d
 


.  Another frequent error was categorised as partly can-
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celling. There were different forms of this. Examples are: 
3 1

6 2a b a b


 
, 

3
3 1

a b
a

b


   and  

2
2

a
b

ab
 . Other categories are those where the gener-

alisation of addition of whole numbers into the area of rational numbers, 
results in the addition of numerators and/or denominators. One example 

from the test is:
1 1 1

b d b d
 


. Another problem revealed in half the re-

sponses, was to deal with whole numbers and fractions in the same task, 
which was also a problem in arithmetic (see the section above). One ex-

ample is: 1
a

b
 . Here 62 % of the students made mistakes. Another mis-

take made in 8 out of the 52 tasks was to involve subtraction in simplify-

ing fractions. One example is:
5

4
a

a
a
 . This error was made by only few 

students.  
Lee and Wheeler (1989) found that a large number of the students in 

their study executed ‘partly cancelling’. They tested 354 students in grade 
10 and then interviewed 25 of them. One task in the test used in the inter-

views was the statement: 
2 1 1

2 1 7 8

x

x




 
 in which students should decide if 

the statement was definitely true, never true or possibly true. In addition, 
they should justify their answers. Generally, students concluded that the 
statement was definitely true, and justified it by telling they cancelled the 
terms 2x. The students who cancelled were asked to put in a numerical 
value for x, but none of them were able to recognise the solution of 
x=zero, and that the statement was true for this value.  

 Hall (2004) conducted a study in a Bermuda school. He interviewed 5 
students in order to investigate the reasoning behind the strategies stu-
dents chose when simplifying a complex algebraic expression. The author 
claims that he chose this area for two reasons. He had experienced that 
students have problems and make errors when simplifying algebraic ex-
pressions, and he had found that little research is reported on this topic 
compared to the topic of equation solving.  

180 students were asked to simplify the expression: 
2

2
3 10

2 8

x x

x x

 

 
. The 

students were in grade 9, 10 and 11. Only 41 of those students (23 %) 
gave a correct answer, 44 (24 %) simply cancelled the x² in both numera-
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tor and the denominator and stopped there. 20 (11 %) factorised correctly 
but stopped without simplifying the expression.  

The focus for the study was five students who factorised 
( 5)( 2)

( 4)( 2)

x x

x x

 
 

 

correctly, and correctly cancelled the factors (x - 2) before they cancelled 

the x-es and reached the solution:
5 5

4 4

x

x





.  

These five students were interviewed the next day based on their solu-
tions. The questions posed were: 

1) Why did you factorise initially? 
2) Why did you cancel the (x-2)’s ? 
3) Why did you cancel the x-es ? 
4) If you felt it was sensible to cancel the x-es, why not cancel the x² at the begin-
ning? 
5) Do you now want to cancel the x² at the beginning? 
6) Free discussion based on responses. (ibid p. 6) 

Hall (ibid) found that the students justified their factorising of the quadrat-
ic expressions by saying that they knew or remembered that those should 
be factorised. The x squared seemed to be a trigger for this, although one 
student said he tried to cancel, but then he did not know how to go further 
on and then factorised. On the question why they cancelled the brackets, 
four claimed them to be the same, and that they therefore had cancelled 
them. One student told that she cancelled each term in the bracket. It was 
not possible to be aware of this from the written solution.  

The reason for cancelling the x-es was also that they were the same, or 
the same on the top as on the bottom. On the questions why they did not 
cancel the x², since they had cancelled the x-es, there were different an-
swers. This was the question the author had expected to be the most re-
vealing for his focus of investigation, however, “the consensus was that 
one simply did not cancel x squared at the beginning albeit for a variety of 
reasons which had more to do with closure and ease of simplifying than 
with the meaning of the algebraic terms” (ibid p. 12). On question 5, three 
of the students claimed it would be the same if they cancelled the 2x  in 
the first line, while one said it then would be another solution, and she 

knew that 
4

5
was the right one. The last one told that if she cancels x 

squared, she cannot get any further.  
It seems as if Hall (ibid) is searching for evidence of students’ prob-

lems of accepting the lack of closure, and also evidence to place the stu-
dents in levels according to Blooms taxonomy (Bloom, Engelhart, Furst, 
Hill, & Krathwohl, 1956), which he at the end finds difficult. 
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He concludes that there is a variety of rationalisation behind the pro-
cess of simplifying rational expressions, and that not all of these are visi-
ble in the written material.  

Olteanu (2012) worked with teachers in a developmental study in 
Sweden. The teachers were asked to express what they expected to be dif-
ficult for students when learning how to simplify algebraic rational ex-
pressions. They supposed that students would have problems in perceiv-
ing the expression as a whole, and in understanding the relation between 
parts and the whole, and that for the students there could be different 
wholes. The difference between terms and factors they presumed students 
knew, and that only factors would be cancelled. However, test results 
showed that students struggled to see the difference between factors and 
terms. The result was that the teachers focused upon what in their view 
were the problematic issues for students, and ignored what was the really 
critical aspect for students. The students, however, could not perceive the 
whole as long as they did not understand the components in the expres-
sions and the relationship between them. 

The next phase in the study was a follow-up on one of the teachers. In 
the next class he taught, he focused on the critical issues, such as the 
components, not the whole in the expressions. He focused on the differ-
ence between factors and terms, on identifying common factors in numer-
ator and denominator, and on the difference between expressions and 
equations. In addition, it was shown how brackets around the numerator 
and the denominator could help highlight the whole, and that polynomials 
had to be factorised. In addition, during classroom discussion, he kept on 
asking:  

What does factorising look like for a polynomial expression?; How do we know 
when we are finished factorising?; What is the process we use to cancel?; What 
does cancelling look like?; When do we know we are finished cancelling?(ibid). 

It is reported in the article that the result is an essential improvement of 
students’ learning and a successful communication in the classroom. It 
might though be questioned if this learning was on the procedural level of 
learning only.    

In a study building on the instrumental approach (Guzmán, Kieran, & 
Martínez, 2011), the researchers asked the question: Which technical and 
theoretical aspects are promoted [or emerge] in students’ thinking by the 
use of CAS and an activity designed with a technical-theoretical approach 
to the simplification of rational algebraic expressions? (ibid, p. 482). Eight 
students in grade 10 in Mexico simplified algebraic rational expressions in 
pairs. The students worked out some paper-and-pencil tasks before solv-
ing the same tasks with CAS calculators. The students were observed dur-
ing the work session and interviewed. After solving the tasks with calcula-
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tors, the students found that they had solved the tasks incorrectly. The 
tasks and their solutions are shown below: 

2
2(3 ) 3

1) 3

4 4
2) 4 4 8

3 4
3) 3 4 7

x x x x
x

x x
x y

x y

x y

x y

 
  


  




  


 

The students discussed what might be wrong. In the first case they found 
that they had to cancel two x-es, and adjusted their solution, without fac-
torising the numerator. 

The next CAS solution, they found difficult to explain. After some 
discussion one student found that the task involved division of polynomi-
als. The division was executed and the problem was solved. In the next 
task the calculator gave the same result as the original task, which showed 
the students that the fraction could not be simplified.  

The researchers concluded that CAS technology could promote theo-
retical reflections by students, and also help them to find new ways of 
solving problems as in the example with the division of the polynomial. 
However, it did not lead the students away from cancelling the variables 
in the first task, without taking into account that they needed factors. The 
question was raised: “How to promote in students’ thinking a focus on 
seeing the expressions in terms of factors?” (ibid, p. 487). Thus, the re-
searchers claimed that the teacher’s role is critical in order for students to 
take advantage of the CAS technology.  

The studies referred above, show that students have had, and still have 
problems when the task is to simplify algebraic rational expressions. One 
critical aspect seems to be to make distinction between terms and factors. 
All the studies above confirm this. Many students still prefer to execute 
‘partly cancelling’ in the terminology of Storer (1956). Guzmán, Kieran, 
and Martínez (2011) reported that all students in their study multiplied the 

premultiplyer x by the bracket before simplifying the first task: 
(3 )x x

x


. 

This means that they did not have a sense for the structure in the expres-
sion (Hoch & Dreyfus, 2004; Kieran, 1992), which is required in order to 
see what could be done.  

Olteanu’s (2012) study shows that when the teachers became aware of 
what was difficult for their students, they could help by illuminating the 
critical aspects for them. 
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Yantz (2013) reported from a study in which the focus was to investi-
gate the relationship between algebraic rational expressions and rational 
numbers. 107 undergraduate students at a university in the USA were 
asked to solve three sets of tasks. Each set included two tasks; one numer-
ical and one algebraic. The tasks are shown below (ibid, pp. 37, 38 and 
39).  

     Set A 

     
 
     Set B   

    
 
     Set C    

   
In all the sets of tasks there was a big difference in the frequency of cor-
rect solutions between the numerical and the algebraic task, which is 
shown in the table below: 
 
Table 4-4: Frequency table based on the findings p. 55 and 56 (ibid) 

Correct (%) Numerical Algebraic Both cor-
rect 

Set A 48,6 6,5 3,7 
Set B 37,3 6,5 5,6 
Set C 41,1 5,6 2,8 

 
In analysing the solutions, the author found the same errors and mistakes 
that are reported in the studies above. The students in Yantz’ study strug-
gled with both the numeric expressions as well as with the algebraic. Less 
than 14% of the participants answered one or more of the algebraic ra-
tional expressions correctly, while 69,2 % answered correctly on one or 
more of the numerical tasks.  

On the basis of statistical analysis of the material the author concludes:  
A correlation between participants’ abilities with algebraic and numeric rational  
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expressions was found only in the division problem set, and then it could only be  
categorized as a small effect. The small correlation seen between numeric and al-
gebraic division operations in this study may be related to the consistency with 
which participants applied procedures in both contexts. The absence of medium or 
strong correlations between the algebraic and numeric items would suggest that 
although the participants were more likely to get a numeric item correct and the 
corresponding algebraic item incorrect, there was no relationship between their 
abilities in both contexts. Since Hiebert and Carpenter‟s (1992) framework tells us 
that algebraic procedural knowledge is connected to conceptual knowledge of 
number properties, these results suggest that very few participants in this study 
had made the connection between the two contexts (ibid p. 157).   

Eight students were interviewed on the basis of the tasks. Three of them 
used the same strategies in both tasks in the sets, and expressed that they 
related algebraic rational expressions to rational numbers. This connection 
was not found or was found to be weak, by the other students which con-
firmed the quantitative results from the data.  

The author recommends, as does Olteanu (2012), that it is important 
on higher levels not to assume that the students have a well-developed 
concept of rational numbers and algebraic rational expressions. Yantz 
(2013) recommends that in order to create connections between them, it is 
important not to assume that the students will develop new knowledge and 
make connections by presenting new material. Instead students should be 
given the opportunity to develop a conceptual understanding of fractions 
before entering into new fields of mathematics.   

In this chapter the different sub-constructs of fractions have been pre-
sented. Also according to research it is claimed that there is a strong cor-
relation between fraction knowledge and high achievement in general 
mathematics including algebra. 

In the two last sub-sections former studies are reported that reveal 
problems students have working with both numeric and algebraic frac-
tions. These reports show that fraction problems are highly present also in 
higher grades, and it is recommended that teachers at higher levels take 
these problems into account and provide new opportunities for students to 
develop viable conceptions in this area.   

4.7 Interpretations of the equal sign 
The concept of equality is fundamental to mathematics. From primary 
school it is represented by the equal sign. After the initial introduction it is 
handled as a matter of course, and it is rare that it is explicitly the subject 
of later instruction. However, research has shown that many students at all 
levels have not developed an adequate conception of the equal sign.  

The equal sign is a convention chosen by mathematicians to represent 
the concept of equality. However, from primary school, children are used 
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to seeing the equal sign as a sign which demands computation (Behr et al, 
1976; Falkner, et al., 1999; Kieran, 1981). All the studies referred to 
above, state that the meaning of the equal sign is restricted to the context 
in which it is learned; the context of arithmetic. In arithmetic the interpre-
tation of this symbol as an operator symbol holds for most occasions.  

Behr, Erlwanger, and Nichols (1976) were among the first to study 
students’ conception of the equal sign. They carried out clinical interviews 
of 6 to 12 year-olds and found that: ‘‘There is a strong tendency among all 
of the children to view the = symbol as being acceptable in a sentence on-
ly when one (or more) operation signs (+, –, etc.) precede it. Some chil-
dren, in fact, tell us that the answer must come after the =.’’ (ibid, p. 10) 

Arithmetic is about calculation of numbers. Many times this calcula-
tion involves several steps on the way to the answer, and it is possible to 
find examples of students in all grades who write their solutions in this 
way: “15 + 20 = 35 + 5 = 40 + 1 = 41”  (Saenz-Ludlow & Walgamuth, 
1998, p. 165). Saenz-Ludlow and Walgamuth claim this to be caused by 
the arithmetic calculation from left to right, and a view of the equal sign 
as a ‘stop’ or ‘punctuation’ on the way to reaching the goal; that is the an-
swer. Such examples of writing are evidence of not seeing the equal sign 
as a sign for a relation between the right and the left side of the equal sign. 
When dealing with algebra, the interpretation of the sign has to be extend-
ed to be understood as a relational symbol; including the reflexive, sym-
metric and transitive properties (Kieran, 1981).  

 To move from arithmetic to algebra requires an extension in the inter-
pretations of the equal sign described above, which helps the students to 
also read from right to left (Herscovics & Linchevski, 1994). Kieran 
(1981) reported from a study of 12 to 14 years old students. These stu-
dents when asked to explain what they meant by the equal sign, clearly 
showed evidence of interpreting it in terms of signalling the answer. Also 
they limited themselves to have one operation on the left side and the an-
swer on the right. Kieran (ibid) proposed that many of students’ difficul-
ties when dealing with polynomial expressions, were due to a limited con-
ception of the equal sign. Students found it difficult to give meanings to 
expressions like 3a, a + 3 and 3a + 5b, because there was no “equal sign 
with a number after it” (ibid p. 324). This is clearly connected to the re-
luctance to accept the lack of closure (see section 4.1). 

Other studies show that even some college students, university stu-
dents, and student teachers have not developed the conception of the equal 
sign as a sign for equivalence (Clement, 1980; Grevholm, 2003). It might 
be that some students even at these levels tend to “interpret the equal sign 
in terms of an operator symbol, albeit at a more sophisticated level, rather 
than as a symbol for an equivalence relation” (Kieran, 1981, p. 325).  
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Alibali, Knuth, and Hattikudur (2007) followed 81 students in a three 
years period from grade 6 to the end of grade 8. The students were all stu-
dents from an ethnically diverse middle school in the American Midwest. 
The students were tested at four points in time. In the tests they were 
asked to tell what meaning they gave to the equal sign. In addition, they 
should decide if pairs of equations were equal. The number of students 
who provided a relational understanding of the equal sign increased from 
grade 6 to the end of grade 8. Also the number of students who used a 
“recognize - equivalence” strategy in determining whether the equations 
were equivalent or not, increased, compared to the students who had to 
solve the equations in order to make a statement about equivalence. The 
researchers also claimed to have found evidence that students who early 
on developed a relational understanding of the equal sign, were more suc-
cessful in solving the equivalent equations problems. 

A study (McNeil et al., 2006) about the presentations of the equal sign 
in four mathematics textbooks used in the USA, and a follow-up study on 
students in the grades 6, 7, and 8 about their interpretation of the equal 
sign, indicates that the context in which the equal sign occurs seems to 
influence students’ interpretation of the equal sign. The results showed 
that students when presented with equalities in which operations occurred 
on both sides of the equal sign, were more likely to show a relational in-
terpretation of the equal sign. The authors therefore were concerned about 
the low percent of occurrence in the textbooks where the equal sign was 
presented with operations on both sides as in the equality 3 + 4 = 5 + 2. 
They concluded that students might hold both interpretations, however, 
the relational interpretation was for some students only activated in the 
context of equalities with operations on both sides of the equal signs. The 
same result was shown in other studies (de Lima & Tall, 2006a; McNeil 
& Alibali, 2005). This may not mean that all students able to give a rela-
tional interpretation on some occasions, have grasped the full concept of 
equivalence. Studies have, however, shown that relational understanding 
can be enhanced also in the early school years (Carpenter, Levi, Franke, & 
Koehler, 2005 ; Falkner, et al., 1999; Whitman & Okazaki, 2003). 

4.8 Linear equations 
In this section a formal definition for equations will be presented. Then 
comes a section with review on research revealing students’ conception of 
equations and equivalence. Thereafter research revealing students’ prob-
lems related to equation solving will be presented. 

Although equations are presented very early for students in the learn-
ing of algebra, one can ask: What is an equation and how is it defined? 
The Concise Oxford Dictionary of Mathematics offers this definition: 
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An equation is a statement that asserts that two mathematical expressions are 
equal in value. If this is true for all values of the variables involved then it is called 
an identity, for example 3(x-2)=3x-6, and where it is only true for some values it is 
called a conditional equation; for example x²-2x-3=0 is only true when x =-1 or 3, 
which are known as the roots of the equation (Clapham & Nicholson, 2009). 

This definition is not clear about expressions with only numbers, but an-
other definition for an equation is: “A mathematical statement of the form 
"A = B"; A is the left member (or side), and B is the right member (or 
side). When A and B are expressions containing variables, then the equa-
tion is an identity in case it is …” (Karush, 1962, p. 94). In this latter defi-
nition it is clear that also statements with only numbers as in the example 
3 + 4 = 5 + 2, are in mathematics defined as equations.  

Herscovics and Kieran (1980) chose to use the term arithmetic identi-
ties when no literal symbol was involved; this in order to avoid confusion 
for the students, and to make distinction between algebra and arithmetic. 
The notion equation they used only for algebra.  

In the classroom during observation for the research reported in this 
thesis, the notion equation, was applied only in the algebraic context with 
specific unknown(s). Thus the notion equation in this thesis will be ap-
plied as in Herscovics and Kieran’s (ibid) study.   

4.8.1 Conceptions of equations 
Some researchers (de Lima & Tall, 2006a, 2006b; Dreyfus & Hoch, 2004; 
Godfrey & Thomas, 2008) have asked students about their conception of 
equation. De Lima and Tall (2006b) analysed students’ concept maps 
about equations. Altogether 117 students from 4 classes in Brazil partici-
pated. The students were from 15 to 16 years old and they came from 
three different schools.  

The teachers in each class wrote the word equation on the blackboard, 
asking each student to give at least one word coming to mind, when see-
ing this word. In the analysis, the researchers found that many of the 
words were the same in all classes despite differences of schools and ages. 
Words like calculation, number, addition, subtraction, multiplication, di-
vision, signs, solution, number, unknown, rules, and results led the au-
thors to conclude that “it is likely that students who had suggested these 
words, see an equation as a calculation in which it is necessary to use 
rules to find the solution, the value for the unknown” (ibid, p. 2).  

There were words in all classes relating equations to the subject of 
mathematics, and to what is going on in the school. No words related 
equations to real-world problem solving. There were also no word indicat-
ing the balance of two sides in an equation, although the teachers told that 
this metaphor was applied in the classes.  
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Only in one class, the word equals was mentioned, but that word was 
put in categories named symbols, sign and operations. Only two classes 
mentioned the word unknown. However, the other two classes included 
letters in their concept maps, and one student said “x and y”. One class 
had the word “variable”, but when grouping the words, the word variable 
was in 4 out of 8 groups put in categories not related to mathematics at all, 
indicating that although the word is mentioned, it might be that they do 
not see the role of the variable, the unknown or letters in equations. Two 
of the classes had written words representing emotions, like fear, panic, 
happiness and wish. There was no evidence that the formal meaning of 
equivalence was familiar to the students.  

In another report the investigation was taken further (de Lima & Tall, 
2006a). 77 students from three classes participated, and 15 of them were 
interviewed. These students were also asked about what an equation is. 
The most frequent response to that question, was that it has to do with cal-
culation, and/or that it is about to find the x. 21 out of 77 students men-
tioned the unknown, however, none said anything explicitly about the 
equal sign. The researchers conclude that this might indicate that the stu-
dents do not see the equal sign as part of the equation, and thus hold a ra-
ther operational interpretation of the sign.  

In an investigation (Godfrey & Thomas, 2008) students at different 
levels in the school system were asked to describe what is an equation. In 
addition, they were asked to describe how to decide from a group of ex-
pressions what are equations, and what are not. One task was afforded in 
which they had to show if they could recognise and use the symmetric, 
reflexive and transitive properties of equivalence. 

The study was carried out in Australia, and three groups of students 
participated. One group was from lower secondary school, grade 10 (29 
students), one group from upper secondary school grade 13 (76 students), 
and one group from the first year of university studies (30 students). In the 
latter group, 25 of 30 students studied engineering.  

The students were asked to pick out equations in a questionnaire. 
Those equations, differed according to the grades. Both algebraic expres-
sion without an equal sign, conditional equations and identities were in-
cluded.  

The result was that most students did not see equations as equivalence 
relations, also not the first year university students. Among the other stu-
dents there was a large group of students whose conception of equation 
was tied to procedures; an operation was requested in addition to the 
equals sign. For a minority, but significant group of students this need of 
an operation overruled the request for an equal sign. Only students at the 
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university level showed signs of “moving towards a ‘formal world think-
ing’ about equality” (p.86).  

The researchers conclude that a large group of students in lower and 
secondary school have a ‘strong sense of procedural necessity’ (Godfrey 
& Thomas, 2008, p. 84), and had not developed a relational understanding 
of the equal sign. They claim that the development from ‘embodied 
world’ thinking to ‘symbolic thinking’ and then to the ‘formal mathemati-
cal’ thinking might be a slow process, and in this process students’ con-
ception of equation changes gradually. From their study they assert that 
approximately 25% of the students during transition to university still 
have an input/output view or a procedural view of equations. Also they 
found that students’ conception and ability to recognise and use the reflex-
ive, transitive, and symmetric properties develop slowly.  

At the end, the authors claim that one reason for students not to devel-
op a relational view on the equal sign, is that the properties for equiva-
lence are used by teachers without mentioning them explicitly. They give 
the example 6 3 1x x    and say that if teachers just transform it into 
2 1 6x    instead of 6 2 1x  , then they are using the symmetric proper-
ty implicitly, leaving to the students to abstract this themselves. The same 
is the case with the other properties. The advice is given that teachers 
should help students by being explicit about structures and properties of 
equations. 

Dreyfus and Hoch (2004) who were interested in structure sense (see 
section 3.3) asked some Israeli students about their conceptions of 
equation. They organised the reponses in five groups. The two first were 
about exercises and doing, which they related to a pure procedural 
conception of the equation object. The two next were about the form, how 
to recognise an equation on the basis of the surface structure. Only one 
type of response they found to be related to an internal structure of 
equations: “Two sides connected by an equals sign and certain rules for 
solving” (ibid p. 153). The clue here was the mentioning of some ‘certain 
rules’. However, there was no student referring to the mathematical prop-
erties. The authors conclude that if these responses are typical for high 
school students, then structure is not in the “realm of awareness of high 
school students” (ibid, p. 153).   

Equivalence of algebraic expressions is at the heart of transformational 
work in algebra (Kieran & Saldanha, 2005, p. 193), and is the basis for the 
transformations of one equation to another in the solution process of equa-
tions. For students who still have an arithmetic conception not recognising 
the internal structure and the properties of equations, still holding a con-
ception of the equals sign as an operational sign, it will be problematic to 
grasp the concept of equation.  
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Another study (Steinberg, Sleeman, & Ktorza, 1991) reports that many 
students competent in equation solving and in transforming algebraic ex-
pressions, seemed to have no conception of equivalence. In their study 
Steinberg, Sleeman, and Ktorza (ibid) asked 98 students in the USA in 
grade 8 and grade 9 to decide if pairs of equations were equivalent. In 
addition, they were asked to justify their decisions. These students had 
learned to solve linear equations, by adding or subtracting the same 
number on both sides of the equation. However, the teachers reported they 
had not emphasised explicitly the notion of equivalence. One example of 
the tasks given was the pair of equations:  

2 5 2 99 5 99x                     x       
The results were grouped in three, due to the justifications. One group 
included the students who had to solve one or both equations to decide if 
they were equivalent. The next group based their justifications on 
transformations of the equations. Some did this on immediate recognition 
of the second equation as derived from the first, or by transformation of 
one to fit the other. In the third group the students had given incorrect 
reasons. Some were based on the surface structure; one justification was 
that the equations could not be equivalent since one was longer than the 
other.  

 Almost a third of the students applied mainly calculations to justify 
their judgements. The researchers concluded that this result indicates that 
“many students are not sure that an equation that has been derived by a 
valid transformation, has the same solution, or they are unable to 
recognize when an equation has been transformed in a way that does not 
alter the answer” (ibid, p. 119).  

In a study (Ball, Pierce, & Stacey, 2003) the authors had designed a 
computer test; the ‘Algebraic Expectation Quiz’. Students were shown 
pairs of algebraic expressions in a limited time, and should decide if the 
expressions were equivalent or not. 50 students were tested twice; in 
grade 11 and 12. The authors concluded that to recognise equivalence, 
even in simple cases, was revealed to be a significant problem (ibid). 

Knuth, Stephens, McNeil, and Alibali (2003) found that there is “a 
strong positive relation between middle school students’ equals sign un-
derstanding and their equations-solving performance” (ibid, p. 309). They 
agreed with Kieran (1992) who argued that “one of the requirements for 
generating and adequately interpreting structural representations such as 
equations is a conception of the symmetric and transitive character of 
equality- sometimes referred to as the ‘left-right equivalence’ of the equal 
sign” (p. 398). This means that the students in order to have a well-
developed conception of equation, need to understand what these charac-
ters or properties mean. 
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4.8.2 Equation solving 
Some researchers have claimed that there is a “didactic cut” (Filloy & 
Rojano, 1989) or a “cognitive gap” (Herscovics & Linchevski, 1994) be-
tween arithmetic and algebra, and that this demarcation is visible when 
students go from solving equations of the form ax + b =c to solving equa-
tions of the form ax + b = cx + d. Filloy and Rojano found that students 
solved the problems arithmetically when having only one single unknown, 
and that there was a shift when the unknown was present on both sides of 
the equal sign.  

Herscovics & Linchevski (1994) questioned that the delineation be-
tween arithmetic and algebra only was a question of the form in which the 
equation was presented. They asserted that the mathematical processes 
involved in the activity of solving the tasks, were of importance. When 
studying 7 graders before being taught any algebra, they found that the 
students performed rather well. Their result showed that most of the stu-
dents were also able to solve equations with the unknown occurring on 
both sides of the equal sign. The same was found by Tall and de Lima 
(2006a). On the basis of these findings Herscovics and Linchevski (1994) 
claimed the cognitive gap to be characterised by students’ inability to op-
erate with or on the unknown. Their result also indicated the need to ex-
pand the meaning of the equal sign. 

Equation solving is about transformations. Then it is important to un-
derstand that these transformations are producing new equations and that 
the truth-value has to be conserved (Cortés & Pfaff, 2000). According to 
the relational function of the equal sign it is possible to execute all arith-
metic operations, as long as they are performed on both sides of the equal 
sign. The main point is to choose effective operations to reach the aim; to 
find the value of the unknown(s).  

Most textbooks in lower secondary school instruct students to add or 
subtract on both sides of the equal sign, before the students are told that 
this is the same as ‘change side-change sign’. This last rule, the action of 
transposing, is often said to be a short-cut of the rule ‘do the same opera-
tion on both sides’. Kieran, however, asserted:  “The procedure of per-
forming the same operation on both sides of an equation emphasises the 
symmetry of an equation; this emphasis is quite absent in the procedure of 
transposing” (Kieran, 1989, p. 51). 

Cortes and Pfaff (2000) investigated 45 students (17 years old) in 
grade 10 in a technical high school in France about their processes of 
equation solving. The data were data from tests, data from recorded group 
work, and data from individual interviews. The data was collected from 
two different classes in two subsequent years.  
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The researchers report that the students used self-justified rules such as 
“A term passes to the other side by changing sign” and “the coefficient of 
the unknown passes to the other side by dividing” (ibid, p. 195). The stu-
dents were grouped into three categories due to their justifications for 
their solutions:  

a) Students that justified transformations as being identical operations on the two 
sides of the equation.  

b) Students that provided arithmetical justifications for transformations used in 
processing numbers. 

c) Students that did not provide any mathematical justification for transfor-
mations (ibid, p. 195). 

There were only few students in group a) 1 or 2 per class. They were con-
fident in their work also when it came to negative coefficients; they divid-
ed by the negative number on both sides of the equal sign.  

Some students used different rules; one for multiplication and one for 
addition. They could say that “a term passes to the other side by changing 
sign” and “multiplying or dividing on both sides”. Those students came 
up with the correct properties of an equation when becoming aware of 
their own justifications. And they correctly answered the question about 
what is conserved in the solution process.  

 About half the classes (group b); justified the transposition of num-
bers by for example saying that addition becomes subtraction and so on, 
and that the coefficients are transferred to the other side by dividing. 

The third group in which students gave no acceptable justification, in-
volved nearly half the students. 

 There was one interesting student quoted from that group: 
Mathieu: 2x - 4.2 = -5.4; that makes 2x = -5.4 + 4.2 
Teacher:  Why "plus" 4.2? 
Mathieu:  You transpose it and the "minus" sign is transferred as a "plus" sign. 

Therefore,... in any case, I learned it like that. I do it automatically. In              
my head... that, for me, doesn't really mean anything. 

Teacher:  For you, writing "plus" 4.2 doesn't mean anything? 
Mathieu:  Here, I do it directly and I don't try to understand. I put the "plus"    

sign, and that's how I transfer the term. 
Teacher:  In your opinion, did you learn it like that? 
Mathieu:  In my opinion, no, I didn't learn it like that. But, for me, I've forgotten it 

(the justification), I do it automatically... (ibid, p. 198) 
This is an example of a student performing operations without any math-
ematical justification and with no need for one. But he was efficient in his 
solution process. However, for some students this led to failures. One stu-
dent solved the equation in this way: 4y + 49 = 93 became 4y = 93 - 49, 
then he made the following error: y = 93 - 49 – 4 (ibid, p. 198). He trans-
ferred the coefficient in the same way as the number terms.  
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The students in group b) had a tendency to make errors when the un-
known was present on both sides, as in the task: 13x+28 = 5x +49. This 
was transformed to 13x+5x=49-28. And in another task 3x+15= - 50 the 
transferring of the coefficient by dividing, led to this error: x +15= - 50/3. 
Some students had problems when the coefficient was negative, then they 
removed the minus sign from one side to the other side as a plus. 

The authors conclude that the self-produced rules: ‘the coefficient is 
transferred to the other side by dividing’ and ‘you transfer a term to the 
other side of the equation by changing sign’ are effective for many stu-
dents to solve equations of the type ax + b = xc + d and some inequalities. 
However, those students do not necessarily understand the symmetric 
property of equations, and that the transformations conserve the initial 
‘truth value’; the value of the unknown (Steinberg, Sleeman, & Ktorza, 
1991).   

De Lima and Tall (2006a) gave the students in their study some tasks 
to solve. The linear equations are listed below: 

a)3  -  1  3              b)5  -  3  8x x t      and     c) 2m=4m 
When solving them, none of the interviewed students made any claim 
about doing the same operation on both sides of the equal sign. They 
talked about ‘change side - change sign’, and the reason they gave, was 
that it was the way to get to the correct answer.  

These students as the students in the study reported by Cortes and 
Pfaff (2000), talked about shifting symbols and moving them around as 
mental objects. Some utterances were: “pick this number and put it on the 
other side of the equals sign”; “I take off the bracket”; “the power two 
passes to the other side as a square root” (ibid p. 239).  

In task c) some students gave the response that the result would be 6m, 
and then they found that m was equal to negative 6. The authors conclude 
that those students probably felt they had to do some operations. This is in 
line with Godfrey and Thomas (2008) who found that some students did 
not regard mathematical statements to be equations if no operation sym-
bols were included.  

Students were also given some second grade equations in de Lima and 
Tall’s (2006a) study. One task was:  

To solve the equation ( 3)( 2) 0x x    for real numbers, John answered in one 
line: “x=3 or x=2”. Is the answer correct? Analyse and comment on it (ibid, p. 
235). 

This task was solved and explained in written form. Some students 
checked the solution by substituting the values for x and calculated. The 
most common response was to try to solve the equation and compare re-
sults. Only three students reached a correct solution.  
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The way the others solved this task varied, but most of them started di-
rectly on multiplying the brackets, only 6 did that correctly. Five students 
tried to use the quadratic formula. None of the students used the fact that 
‘if the product of two numbers is zero, then one of them must be zero’. 
According to the authors the students relied on one algorithm, or they 
used ‘guess and check’, concluding that the students responded on a pro-
cedural level.  

In conversations, the teachers told that they were concerned about the 
problems students have in algebra, and in order to help them they strongly 
emphasised the rules for equation solving. However, this emphasis on one 
rule for solving quadratic equations, seemed to hinder students in being 
flexible. The authors advice is to base the instruction on experiences that 
give meaning. 

The balance model has been discussed by several researchers (Filloy 
& Rojano, 1984, 1989; Pirie & Martin, 1997; Vlassis, 2002) and there is 
no clear agreement about the usefulness of it. Filloy and Rojano (1989) 
observed that the balance model, and also the geometric model they used 
in their study, did not allow the students to deal with the unknown value.  

Pirie and Martin (1997) argued that the model makes no sense for 
modern students, because the scale is rarely in use, and it is therefore 
problematic to relate the model to real life. Another problem if students 
should accept the model, would be the action of taking away terms on 
both sides, the same was argued in de Lima and Tall’s study (2008). In 
their study, however, no student related their equations to the balance 
model.  

Pirie and Martin (1997) asserted that to use the model would increase 
the complexity in grasping the concept of equations. They, however, em-
phasised the effectiveness of the balance model in explaining the meaning 
of the equal sign, and also the advantage of the model to see the whole 
equation at one time.   

Vlassis (2002) in her study used the balance model. The result shows 
that where the scales are used, the students created a mental image of the 
manipulations to be carried out, and also a mental picture of the concept 
of equality. She expressed the need to emphasise that the model is just a 
way to demonstrate the principles of equality; the physical object, the 
scales, are not important. In her study students had comprehended this, 
and the author reports that the model had in no way created an obstacle 
for the students. The problem about removing-subtracting mentioned by 
Pirie and Martin (1997) occurred in Vlassis (2002) study as well, however 
only in the first lessons. In interviews with 5 students later on, it did not 
appear at all, and eight months after the experiment students still solved 
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the equations using the principles correctly by remembering the images of 
the scales.  

Godfrey and Thomas (2003) emphasised in their study the need of be-
ing explicit about the properties of equations. In the figure below, they 
have presented what they see as parts constituting the mathematical equa-
tion object. The parts are the variables, the equals sign, the numbers, and 
the operators. Students’ perspective on these parts influence their view of 
equations.  

The figure below illustrates this framework: 
 

 Figure 4-2: Factors influencing the perspectives on equations. Adapted from Godfrey 
                     and Thomas (2003, p.402) 
 
The aim is not just to recognise an equation on the basis of its surface 
structure; that an equals sign and letter symbols are included. In addition, 
one has to grasp the mathematical object as an entity. This requires a well-
developed conception of the letter symbols, both as specific unknowns 
and as general numbers (section 4.1), and that the perspective on the equal 
sign is expanded from being an operation sign to the point where the sign 
is linked with the properties for equivalence; the symmetric, reflexive and 
transitive properties (section 4.7). Students’ perspectives on operations 
and number are also influencing on their perspective of the concept of 
equation, although the operations are mostly well-known. 

Godfrey and Thomas (ibid) emphasise that the conception of equation 
is developing, as the perspectives on the different components in the mod-
el develop. Each of them influence on the perspective of the equation ob-
ject as a whole. A consequence for teaching is to explicitly address and 
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explain the important properties of the equation object and its compo-
nents.  

4.9 Word problems in algebra 
What is outlined above is research on students’ equation solving. Many 
word problems are used in the learning of equations in order to lead stu-
dents into algebraic thinking. The generational activity of generating al-
gebraic expressions and equations from word problems is part of the 
meaning making activity when students start to learn about algebra 
(Kieran, 2004b). Another dimension of this activity is the benefit of alge-
braic symbolism which might unload the cognitive work load in that a 
problem can be converted into mathematical symbolism, manipulations 
can be carried out, and then one can go back to the initial problem with 
the solution and interpret this in the context of the initial problem (see sec-
tion 3.2).  

For students it is often not easy to see the benefits of this way of solv-
ing problems in the early phase of algebra. In a brief overview of stu-
dents’ struggles when introduced to algebra, Kieran (2007b) mentions 
students’ problems in converting word problems into algebraic equations. 
A large body of research shows that “students prefer to solve word prob-
lems by arithmetic reasoning rather than first representing the problem by 
an algebraic equation and then applying algebraic transformations to that 
equation” (ibid p.1). Also de Lima and Tall (2006b) found that no student 
seemed to relate equations to real world problems (section 4.8).  

Another problem is that although students are confident working on, 
and manipulating mathematical expressions including letter symbols, it 
does not mean that they work algebraically. This was discussed by Janvier 
(1996). Although functions, formulas, and equations may look identical, 
the different interpretations of them call for different mental processes 
when solving problems. A formula calls for direct computation as in the 
formula for finding the area of a circle. If the formula has to be trans-
formed to find the radius, a different reasoning is requested. Then one has 
to work on the unknown.  

Bednarz and Janvier (1996) presented a detailed analysis of typical 
word problems presented to students in introductory algebra. Generally, 
they assert that if one can tease out the structure of a problem, then the 
quantities, known and unknown, and their relationships to each other be-
come clear, open to the problem solver. In order to analyse tasks and pre-
sent the structure, the authors made schemas. These schemas illustrate the 
nature of the relationships between the quantities and the links between 
them and the known and unknown quantities. They realised that the text-
books afforded tasks which could be categorised within three main classes 
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based on their structure; the quantities, (both known and unknown) in-
volved and the relationships between them. The classes were: Problems of 
unequal sharing, problems involving a magnitude transformation, and 
problems involving a non-homogenous magnitude and a rate.  

 One example of the first class, problems of unequal sharing, they pre-
sented in this way: 

380 students are registered in three sports activities offered during the season. 
Basketball has three times as many students as skating and swimming has 114 
more students than basketball. How many students are registered in each of the ac-
tivities? (p.118) 

 
Figure 4-3: General structure of the problem  (Bednarz & Janvier, 1996, p.119) 
 
The figure illustrates that the number of students participating in the dif-
ferent types of sport, are linked to each other through the relationships: 
multiply by 3 and add 114. The known number 380 is the sum of all the 
unknown quantities. By means of the schema the complexity of the task is 
teased out. The authors analysed tasks in this way, and through this they 
could indicate which type of tasks were more problematic for students to 
solve. 

In a study carried out by Stacey and MacGregor (1999) 900 Australian 
students from 12 schools were tested in solving word problems. In addi-
tion, 30 out of them were interviewed individually to illuminate their rea-
soning behind the written solutions. In the study report, four items and 
their solutions are presented. In all items students were asked to use alge-
bra.  

The problems on the test were simple problems, straight forward ap-
plications of linear equations, and the situations described in the problems 
should be familiar to the students. The students had already learned to 
solve linear equations.  
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  Table 4-5: Word problems on test  (Stacey & MacGregor, 1999, p. 154) 
1.  Triangle 

The perimeter of this triangle is 44 cm. 
Write an algebraic equation and work 
out x. 

 

     2.   Mark 
Some money is shared between 
Mark and Jan so that Mark gets $5 
more than Jan gets. Jan gets $x. Use 
algebra to write Mark’s amount. The 
money to be shared is $47. Use al-
gebra to work out how much Jan 
and Mark would get. 

3.   Bus 
A bus took students on a 3-day tour. The 
distance travelled on Day 2 was 85 Km 
farther than on Day 1. The distance trav-
elled on Day 3 was 125 Km farther than 
on Day 1. The total distance was 1410 
Km. Let x stand for the number of Km 
travelled on Day 1. 
Use algebra to work out the distance 
travelled each day. 
 

4.  Number 
I think of a number multiply it by 8, 
subtract 3, and then divide by 3. The 
result is twice the number I first 
thought of. What was the number?  
 
(Hint: write an equation and solve 
it.) 

 
The first three problems lead to equations with the unknown on only one 
side of the equal sign. In the terminology of Filloy and Rojano (1989) 
these are arithmetic equations and should be easy to solve. The last one, 
the authors expected to be harder to solve, since in this problem the un-
known would appear on both sides. However, the last problem was ex-
pected to be easier to convert into an equation since it can be translated 
phrase by phrase.  

The authors report that for 10 graders (the majority of the sample) one 
third of the students wrote correct equations for all 4 problems. Not all 
students used the equations in their solutions, and some wrote the equa-
tions after they had solved the problem arithmetically. Students from clas-
ses in which word problems had been taught to be solved algebraically by 
using equations, were more likely to set up equations and also to solve 
them correctly. The authors take this as evidence for the claim that alge-
braic thinking does not develop spontaneously; it has to be taught.  

All in all, a great variety of methods were used to solve the problems. 
Stacey and MacGregor analysed the different routes students went along 
to reach their answers. Although it was written in the text that students 
should use algebra, many students ignored it and solved the problems by 
arithmetical reasoning, or by trial and improvement. Others started by 
writing an equation, and then switched to arithmetical methods.  The au-
thors divided the different non-algebraic solution methods in three catego-
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ries: ‘Arithmetic reasoning’, ‘trial and error’, and ‘superficially algebraic 
route’.  

Many students solved all problems by arithmetic reasoning. In the first 
three problems they mostly succeeded. However, in problem 4 it was 
harder to reach a correct answer. In problem 2 (Mark), students who ini-
tially saw the problem as the division of a whole into parts, divided $47 
by 2 and then adjusted up and down by half of the $5. Others followed 
this procedure: first, give Mark his extra $5. This leaves $42. Share equal-
ly, giving each $21. Jan gets $21. Mark gets $26.  

The category ‘trial and error’ was again divided into three sub-
categories:  

a) Random: guessing answer in no particular order hoping to guess the correct 
answer sooner or later by chance 

b) Sequential: trialling numbers in sequence, as in a spreadsheet, hoping that the 
correct answer will be reached. 

c) Guess-check-improve: Carrying out one or more trials, using the result to 
choose the next one (ibid p. 157). 

In the category superficial algebra, the authors put solutions in which stu-
dents had written the equations as formulas. For the first three problems 
this is possible. One example was:   1,410 85 125 / 3x     

The letter x was set to label the unknown; however, in this case the 
student did not use an algebraic approach working on the unknown. This 
is in accordance with how students solve formulas. A formula defines a 
procedure for calculation, while an equation “specifies the structure of an 
equality among variables” (ibid, p. 158). One student in the study ex-
pressed it like this: “It seems easy that way. You don’t have to rearrange it 
for working it out” (ibid p. 157).  

The authors concluded on the basis of the test and the interviews that 
there were mainly two reasons for students not choosing an algebraic so-
lution or route to the answer. Students often do not see the logic of formu-
lating the problem into an equation, and for them “using algebra to solve a 
problem is an extra difficulty imposed by teachers for no obvious pur-
pose” (ibid p. 165). The priority is to calculate the answer. This interferes 
with what they think an equation is, and also with what they think an un-
known is. Students interviewed wanted to start finding the answer and 
were surprised to be asked to set up an equation. Their comments gave the 
impression that they did not find it helpful at all.  

The other reason was that some students had not learned to transform 
word problems into equations and had to be helped during the interview. 
It was evident from the answers students gave, that they saw a separation 
between finding an answer to the problem and that of doing algebra. The 
authors concluded that it is crucial for students to grasp the concept of an 
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equation as a statement of equality, rather than as a formula, in order to be 
competent in using an algebraic method for solving problems. Another 
important issue is that many problems in textbooks which students are 
told to solve algebraically, can easily be solved by arithmetical reasoning 
or by trial and improvement. The tasks should be designed in order to let 
students experience the power of algebraic solutions.    

For those students who saw the equations as useful on their way to-
wards solving the problems, the researchers found that some students let 
the letter for the unknown stand for different quantities in one equation. 
Others let the unknown refer to different quantities at different stages in 
their solutions.  

To sum up, the figure below taken from Stacey and MacGregor (1999) 
illustrates the different routes the students in the study chose on their way 
from problem statement to solution. It is evident that although choosing to 
try algebra, it does not mean that the task is solved algebraically. The dif-
ferent routes in the diagram illustrate this. Even after having written an 
equation it is not certain that it is solved as an equation; some solutions 
are also then categorised as ‘trial and error’ solutions.  

 
Figure 4-4: Routes from problem statement to solution (Stacey and MacGregor, 1999,  
                    p. 155). 
In this section word problems are treated as a subject on their own. The 
figure above illustrates clearly that there is no straightforward way for 
students to solve a word problem. A word problem is presented as a text 
in normal language. It cannot be solved directly, it has to be read and in-
terpreted. Then the structure of the problem has to be teased out; the con-
nections between the quantities both known and unknown. Then comes 
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the process of solution which can follow several routes as is illuminated in 
the figure above.  

The literature referred to above shows that it is more likely that stu-
dents who have been explicitly taught about how to reason in the trans-
formation of word problems into mathematical language, actually solve 
the problems as equations.  

4.10 Linear inequalities  
Wagner and Parker (1993) wrote that the two most investigated algebraic 
concepts at that time were equations and functions, and added that con-
ceptually there is a big difference between the two concepts. Inequalities 
they assert to be a ’conceptual intermediary’ between equations and func-
tions. In equations the literal symbols represent discrete unknowns, in 
functions they represent independent and dependent variables, while in 
inequalities they represent a “whole continuum of numbers” (ibid, p. 126).  
Their view might hold on most occasions for school algebra, however, the 
literal symbol in an inequality can be one single number and not a set of 

numbers as in the inequality 2 0x  , or it can represent sets of discrete 
numbers if related to real life problems. However, what Wagner and Par-
ker describe, is that the unknown in inequalities with few exceptions dif-
fer from those in equations and functions. This difference might cause 
problems for students when interpreting their solutions when solving ine-
qualities. 

Sfard and Linchevski (1994a) describe from Israel how equations and 
inequalities were treated simultaneously as two closely related parts of a 
single mathematical notion: the propositional formula. Every proposition 
has its true set, namely the set of all substitutions that turn the proposition 
into a true proposition. Also the process of solving equations and inequali-
ties was described in set-theoretic terms. This top-down approach is not 
described in other studies, however, inequalities are reported to be taught 
in secondary school as a sub-ordinate subject in relationship with equa-
tions (Bazzini & Tsamir, 2004). 

The concept of inequality is an important concept in mathematics 
when it comes to trigonometry, linear planning, and investigation of func-
tions (Tsamir, Almog, & Tirosh, 1998). Later on, for those studying 
mathematics at higher levels, the study of inequalities “include the formal 
notion of limits, where the epsilon-delta method will certainly benefit 
from meaningful grounding of inequalities” (Tall, 2004).  

In another study from Israel, Tsamir and Almog (Tsamir & Almog, 
2001; Tsamir, et al., 1998) comment that little attention is given to the 
topic. They claim that inequalities are only discussed in the upper grades 
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of secondary school by mathematics majors, and that this discussion usu-
ally is rather poor since the emphasis is on the execution of algorithms 
instead of focusing on the reason why these algorithms work. Also Boero 
and Bazzini (2004) claim that inequalities are mostly taught as a sub-topic 
to equations, not emphasising inequalities as a concept in their own right. 
This close connection between equations and inequalities is seen in many 
studies as a frequent reason for students making errors in solving inequali-
ties (Blanco & Garrote, 2007; Sfard & Linchevski, 1994a; Tsamir & 
Almog, 2001; Tsamir, et al., 1998; Tsamir & Bazzini, 2002; 
Vaiyavutjamai & Clements, 2006; Verikios & Farmaki, 2006) . 

Garuti, Bazzini and Boero (2001) propose that teachers often reduce 
“the difficulties inherent in the ‘variable’ concept and the complexity of 
the solution process by treating inequalities as a ‘special’ case of equa-
tions” (ibid p.10). The inequalities are dealt with in an algorithmic manner 
which leads to a trivialisation of the topic. The authors assert the result is 
that  students have problems distinguishing between equations and ine-
qualities.  

Boero and Bazzini (2004) claim that a functional approach would help 
students gaining a richer understanding of the concept of inequality, and 
ensure a “high level of control over the solution processes” (p. 141).  

The underlying study (Garuti, Bazzini & Boero, 2001) involved two 
classes in grade 8 in Italy. The aims of the study were to investigate the 
feasibility of an early functional approach to inequalities, and to reveal 
students’ potential and difficulties in learning inequalities through a com-
parison of functions. The concept of function and variable had been dealt 
with through work with graphs, tables, and formulas. At first they had 
used the model of a function machine, transforming values of x into val-
ues of y, then the variation of y depending on the variation of x had been 
emphasised. This was done to enhance a dynamic view of functions and 
variable as a contrast to the static view of ordered pairs. The result was a 
“peculiar aspect of variable as a ‘running variable’, i.e. a movement on a 
set of numbers represented on a straight line (Boero & Bazzini 2004, p. 
141). The next stage was to introduce inequalities as a comparison be-
tween functions based on the analysis of their formulas. The point by 
point construction of graphs was discouraged. One individual task is con-
sidered in the paper: 

Compare the following formulas from the algebraic and graphic points of view. 
Make hypothesis about their graphs and motivate them carefully, finally draw a 
sketch of their graphs. A) first function. B) second function.  

2         2A) 4 4 B) 4y x x y x        
What does happen with y when x>0 or x< 0? Does it increase, decrease? 
Are there meeting points between the two graphs? Where? When? 
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Does the first graph overcome the second one? Where? (ibid p. 12) 
The paper shows little evidence of enhanced conceptions of inequalities; 
however, the authors claim that the approach of studying inequalities 
within a functional approach seems to be promising for the development 
of the concept of variable and function.  

Sackur (2004) warns against a view that students’ use of graphic cal-
culators always will help them in solving inequalities. In a study she con-

ducted, students solved this given inequality problem, 
3

2x
x
  . In the 

algebraic transformations made, the expected error of multiplying by x 
whatever the sign of x could be, occurred. The students who used graphs 

and compared the two functions 
3

y
x

  and 2y x   made errors as well. 

These errors appeared to be of two types. One error was due to the reading 
of the solution of the inequality. The other came from the writing of the 
solution although the reading was correct. On the basis of Duval’s theory 
on semiotic registers (Duval, 2000) and Frege’s theory of denotation 
(Frege, 1984), Sackur shows that there are problems arising when an al-
gebraic problem is changed into a problem of graphs. Thus she claims that 
the use of graphs for solving inequalities needs careful preparation by the 
teacher.  

Kieran (2004c) criticises the studies mentioned above (Garuti, et al., 
2001; Tsamir & Almog, 2001; Tsamir, et al., 1998) as being too narrow 
since there is almost no focus on the manipulative/symbolic aspects of 
inequalities. While the other researchers set out that the relation between 
equations and inequalities is a problem, she uses a mathematics lesson 
from the TIMSS-R 1999 video study of grade 8 classes from seven coun-
tries to show how the relation between the two concepts can be used to 
promote and enhance the learning of the inequalities. She analyses a Japa-
nese algebra lesson to show how it is possible to start with the global me-
ta-level activity of contextualised problem solving, and then end up with 
the full symbolic form of inequalities. The task given in class was: 

It has been one month since Ichiro’s mother entered the hospital. He has decided 
to give a prayer with his small brother at a local temple every morning so that she 
will soon be well. There are 18 ten-yen coins in Ichiro’s wallet and just 22 five-
yen coins in the younger brother’s wallet. They decided to place one coin from 
each of them in the offertory box each morning and continue the prayer until ei-
ther wallet becomes empty. One day after prayer, they looked into their wallets 
and found the younger brother’s amount was bigger than Ichiro’s. How many days 
since they started prayer? (translated version) (ibid, p. 144). 

The students worked individually on the task while the teacher circulated 
and wrote notes about which solutions students had used. Afterwards stu-
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dents were asked to come to the blackboard to present their solutions: the 
teacher had already planned it and made spaces on the blackboard for the 
different solutions, from the most elementary to the symbolic ones. The 
students were asked to come to the front in the order of abstractness of 
their solutions.  

The first student actually put coins in a box fixed to the blackboard, 
and showed his solution by manipulating concrete objects. The next made 
a table presenting the amount of coins in the wallets each day. On the 14th 
day the amount was the same and he concluded that the solution had to be 
day 15. The third student said: “Well, in the beginning, Ichiro had 180 
yen, and the smaller brother had 110 yen. And since there is a difference 
of 70 yen, and since the difference between them becomes smaller by five 
yen each day, so it’s 70 divided by 10 minus 5. And since by the four-
teenth day it becomes exactly the same amount of money, so since on the 
day after that there will be a difference, so 14 plus one is 15 and it’s the 
fifteenth day.”  

Student four chose x to be the day the brothers have the same amount 
of money in their wallets and set up a system of simultaneous equations, 
and found that x is 14 so the fifteenth day is the solution. The fifth student 
to the blackboard provided a symbolic inequality that was used by the 
teacher to introduce the inequality symbols and the inequality in its sym-
bolic form. For students to grasp this concept of the inequality the teacher 
then asked students to find out which values of x would make the ine-
quality true. He asked them to complete a table, and after some minutes 
they discussed the different values. The teacher said: ” “x holds true for 
15, 16, 17, and 18; these are the ‘<’. The first value of x [13] was a ‘>’; 
the second one [14] was equal = ‘the standard’” (ibid p. 146). He also 
asked about the value 19, but then one student reacted and said that then 
the second wallet was empty and the situation was finished.  

Kieran makes the comments that in this situation most students used 
their prior knowledge about equations and equalities to solve the problem. 
However, this was the teacher’s intention; to let students come up with 
their own solutions and build on them to make an adaptation into the con-
cept of inequality. Kieran expresses it in this way: 

The solution to this inequality, having already been found by the students by 
means of non-algebraic methods, was regenerated by substituting values, from the 
vicinity of the solution, into the two algebraic expressions that formed the algebra-
ic inequality. In this way, the relationship between the solution to the linear equali-
ty (180-10x=110- 5x) and those of its two related inequalities (180-10x>110-5x 
and 180-10x<110-5x) could be drawn out – implicitly appealing to a number-line 
interpretation of these solutions (ibid p.147). 

She also mentions that none of the students draw graphs in the solution 
process. Kieran criticises former studies to a certain degree for ignoring  
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and avoiding approaches to inequalities which links equations and ine-
qualities. She asserts that this study from Japan with grade 8 students 
might indicate that this interweaving between the two concepts is deeply 
rooted, and has to be taken into account. She agrees, however, with the 
findings from other studies that this interweaving is also problematic since 
the properties underlying valid transformations made in the solutions pro-
cesses in the two mathematical domains, are different. The question is 
then how it is possible to help students to be aware of what she calls traps 
in this connection between the two. She points to the Japanese class and 
how the contextualised problem solving activity provided meaning for 
inequalities and their symbolic form. The challenge is, however, how this 
approach and activity may help students create meaning for the transfor-
mational rules which are specific for inequalities. Her last question is: “In 
which ways, if any, and for which age-ranges of students, can symbol ma-
nipulation technology be harnessed so as to provide viable approaches for 
developing students’ algebraic theorizing with respect to inequalities and 
their manipulation? (ibid p. 147). 

Sfard and Linchevski (1994a) reported that students in spite of a mod-
ern and well-designed curriculum based on set theory, did not “follow the 
path they were supposed to take while building their concepts” (ibid p. 
299). On the basis of three questionnaires given to 280 Israeli students in 
three different schools, and clinical interviews of some of the same stu-
dents aged from 14 till 17 years, they concluded that for the majority of 
students it seems as if equations and inequalities “are meaningless strings 
of symbols to which certain well-defined procedures are routinely ap-
plied” (ibid p. 306). For both equations and inequalities, a standard solv-
ing procedure is to simplify until no further simplification can be made. 
This end of the chain of transformations is then seen to be the solution, 
and the students were rarely seen interpreting the solution. For inequalities 
this was even harder than for equations. Probably it is easier to interpret a 
single number as a solution, than a set of numbers as in x > a. The authors 
express it in this way: “An equation or an inequality seems to be for a stu-
dent a thing in itself, for which the formal manipulations are the only 
source of meaning” (ibid p. 306).  

Cortes and Pfaff (2000) experienced the same problems with equa-
tions, see section 4.8. In order to help students making meaning of equa-
tions and show how the manipulative activity was based on the properties 
of equation, they decided to go the opposite way; to teach inequalities 
first. Their reasoning was that the students had already proceduralised 
their own limited rules for equation solving, and that it would be wise to 
try another approach. The researchers took linear functions as a basis. At 
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that time the students in the class had already failed on one test with ine-
qualities.  

The concept of inequalities was constructed as a relationship between 
the functions f(x) = 3,4x and g(x) = -1,2x + 1 which they were familiar 
with. The inequality was -1,2x+1>3,4x. The students (10 graders) were 
first asked to substitute the unknown by different values, to see which 
values kept the inequality true. Then the solution was determined graph-
ically, which was no problem. Afterwards the students were asked to exe-
cute algebraic transformations. The idea was to challenge students when 
coming up with solutions that according to the graphical representation 
were incorrect. This would afford opportunities to talk about identical op-
erations executed on both sides of the unequal sign, and to discuss why 
some solutions appeared to be incorrect. The students were then guided to 
analyse which operations conserved the direction of the sign. Number ex-
amples were applied in order to justify that it was allowed and necessary 
to flip the unequal sign when multiplying or dividing by a negative num-
ber. Later on, the teacher wrote the operations executed on both sides and 
reminded the students that in order to conserve the truth-value (the solu-
tions) of the inequalities, they had to do the same operations on both sides. 
In addition, the flipping of the unequal sign when dividing/multiplying by 
a negative number, was made meaningful to them. 

A post test showed that the students had made considerable progress 
both in solving inequalities and also in solving equations, and they now 
had tools to justify their transformations although still making the short-
cut of ‘changing side-changing sign’, and to check if their transformations 
conserved the ‘truth-value’ given in the initial task. 

The problem of interpreting the solution of inequalities is reported by 
Vaiyavutjamai and Clements (2006). They conducted a study in Thailand 
where 231 grade 9 students in six classes from two schools participated. 
The students belonged to high-, medium-, and low-stream classes. The 
students were tested before and after a session of 13 lessons on linear 
equations and inequalities. In addition, they were given a retention test 6 
months later. 18 students were interviewed on the basis of the tests. In 
grade 7 and grade 8 the students had been working on linear equations, 
and they were expected to have met inequalities of the form ax + c > d and 
also they had learned how to solve them before the study was carried out.   

The tendency was that students gave single numbers as answers. An 
example is the inequality: 1 0x  . The percentages of all the students 
giving ‘single number answers’ at the pre-test, post-test, and retention-test 
were 68 percent 39 percent and 56 percent respectively. Except from the 
test shortly after the teaching of the topic, more than half the students 
gave a ‘single number answer’. 
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When reading the report, it could be argued that the layout of the test 
might be one reason for this. The students were asked to show their way 
of solving the tasks, however at the end they should write the solution in a 
box. Many students then, wrote only a single number as the answer, also 
for equations. What strengthens the conclusion, however, is that in inter-
views students showed clearly that they were not able to interpret the re-
sult of their solution processes.  

Students in high-stream classes were more likely to think that the an-
swer was a set of numbers, however, interviews revealed also that most of 
those students had no clear conception of how the solution was related to 
the initial task. For almost all interviewees; they did not know how to 
check the solution. The authors conclude that for all but the best students, 
to solve an inequality meant to perform the same operations as when solv-
ing equations. The fact that the solutions were mostly correct, led teachers 
to think that the students had grasped the concept of inequality. All the 
teachers in this study thought their students were able to solve all the tasks 
in the test. The result, however, was that in the end the mean result was 
less than 10 out of 27.  

 A similar study in Spain by Blanco and Garrote (2007) was carried 
out with students in the first year of a two year non-obligatory course for 
students aiming at studies at the university.  91 students were asked to an-
swer a questionnaire. The students were from 4 different educational cen-
tres. They were studying either the option Technology, or the option Na-
ture and Health Sciences. The questionnaire was given after the students 
had received instruction in the topics that it covered. Most of the partici-
pants had studied the concept of the inequality for the first time that 
school year; only some had prior ideas about the objects being studied. 

One of the tasks given was    5 3 2 x   4 3 1 x     . The students ac-

cording to their answers were divided in three distinct groups. One was a 
group where students had solved the task correctly coming to the results: 
1>1 or 0>2. In addition, they had interpreted the solution to be that there 
is no value of the unknown satisfying the inequality. The next group had 
arrived at the correct algebraic solution, but could not interpret the solu-
tion correctly. In the third group, the students had not been able to reach 
the correct symbolic solution.  

In this task it seemed to be that many students used the sym-
bols:‘greater than’ and ‘less than’ without attaching meaning to them. 
They carried the symbols through the steps in the solution process correct-
ly, at the end; however, the sign was replaced by an equal sign when pre-
senting the solution. That the difference between equations and inequali-
ties was blurred for a large proportion of the students, was also evident in 
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the way they talked about their solutions. Sometimes they were using the 
term equation to refer to inequalities.  

According to the authors this treatment of inequalities as equations 
caused students to find no meaning in the solution they reached. 
Grevholm (2003) found that also among student teachers there was a 
problem of finding the meaning of inequalities. One fourth of the students 
in her study, could either not justify their answers correctly or they circled 
a wrong alternative to the task (proposition E):  

Decide if the following propositions A to E are true always, never or sometimes. 
Draw a circle around the correct answer. If you circle “sometimes” then explain 
when this proposition is true. 
E)     2n > n + 2    always      never           sometimes, when ………. 

The same student teachers when they should guess how many students in 
the school who would succeed in solving this task, they estimated it to be 
30 % of the students.  

That also students in higher education have problems in understanding 
their solutions to inequalities and also problems relating their solutions to 
the initial problem, is taken up by Warren (2006). She refers to studies in 
secondary school (Tsamir & Almog, 2001), and aims in her study with 
children in elementary school to go beyond the structural similarities be-
tween equations and inequalities which creates what Tsamir and Almog 
(ibid) call a “strong intuitive feeling that similar strategies hold for solving 
the two types of mathematical entities” (ibid p.522). While Tsamir and 
Almog (ibid) emphasise the structure, Warren (2006) looks at the devel-
opment of the conceptions of the notions ‘greater than’, ‘less than’, and 
‘equal to’.  

These notions are used to describe inequality and equality, and she 
proposes that a lack in understanding of this terminology may cause stu-
dents to be confused when working with equations and inequalities. She 
conducted a longitudinal study in Australia with children from grade 2 
and followed them till the end of grade 5. Warren (ibid) found that few 
children were able to use ‘more’ and ‘less’ in situations where they com-
pared quantities. She analysed textbooks and found that only 5 % of the 
material was aiming at development of the concepts of the notions ’more’ 
and ’less’. Although her study concerns small children her findings might 
indicate that students at higher levels have not had the opportunities to 
develop sufficient conceptions of these notions. She claims that students 
fail to operate on the level of using the notions in situations where quanti-
ties are compared, which is essential in further work with inequalities. Re-
searchers have claimed (Falkner, et al., 1999) that it is important to work 
with the concept of equivalence in early years. Warren (2006) on the basis 
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on her findings proposes the need to explore ‘more’ and ‘less’ as non-
equivalence. 

The study reported by Tsamir & Almog, (2001) included 160 Israeli 
mathematics majors students in high school. They were given an ‘equa-
tion and inequalities’ questionnaire. There were five equations and 10 in-
equalities to solve in a 90-minute mathematics lesson. Students were 
asked to explain each step of their solutions. The students had already 
worked with inequalities for about three months. In addition, they were 
familiar with drawing graphs of the functions related to all the expressions 
given. Also they had investigated interrelated behaviour of combined sys-
tems of two functions and examined for which values of x, f(x)<g(x). 25 of 
the students were in individual interviews asked to solve the tasks and to 
explain their solutions; both the process and the solutions. On the basis of 
tests and interviews the data was analysed.  

Only one of the inequalities in the test was a linear inequality which is 
the focus for this study. The inequality was: 8 0x  . 76 % of the stu-
dents solved this inequality algebraically correctly. 17 % divided by nega-
tive 8 without changing the direction of the sign. Some of the interviewed 
students referred explicitly to the analogy they drew between equations 
and inequalities. They assumed that the same solving procedures hold for 
both types of tasks.  One of the students interviewed, understood, when 
trying to substitute the variable with a value to verify his solution, that 
there are limitations of this analogy between equations and inequalities.  

None of the students mentioned the algebraic expression as a linear 
function to be presented as a graph, which is assumed to be the best 
known of the types of functions. In the other more advanced tasks the 
presentation of the expressions as graphs helped students to reach correct 
solutions. However, most students in solving all the tasks used algebraic 
manipulations which often led to incorrect results. The authors discuss 
whether it should be promoted to teach one way of solving all types of 
inequalities or if it is useful to teach different procedures for different 
types of inequalities. The students in their study had been taught the latter; 
different procedures for different types, and they tried to use those in the 
test. 5 % of the participants changed the inequality sign to an equal sign in 
almost all of the nonlinear inequalities, and solved the tasks as equations. 

The referenced literature shows that there are problems related to the 
close connection between equations and inequalities, and that little atten-
tion is devoted to inequalities compared to the concept of equation. Some 
students even regard the solution processes to be identical. In addition, 
problems are reported in interpreting the solutions found. It is claimed by 
some researchers that the solution process is a meaningless manipulation 
of symbols. 
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However, the example from Japan (Kieran, 2004c) and the study 
carried out by Cortés and Pfaff (2000) show that it is possible to connect 
inequalities to equations by careful planning of teaching and tasks. 

 In the foregoing sections, former research and findings related to the 
topics treated in the textbook and in the classroom during observations are 
reviewed. Some of them are old, others are rather new. They cover a long 
period of mathematics education, and they are based on different theoreti-
cal perspectives. In the next section, there will be a short overview of the-
oretical perspectives in algebra research.   

4.11 Theory in algebra research  
During the past century the theoretical and philosophical basis for re-
search in algebra and also in all branches of mathematics education has 
undergone changes. Most research in the first half of the foregoing centu-
ry was worked out within the positivistic paradigm with behaviouristic 
ideas on teaching and learning (Thorndike, 1914, 1922; Watson, 1913). 
Learning was explained without any reference to internal mental process-
es (Skinner, 1953). Behaviourism presented a simple explanation of learn-
ing from an external viewer’s perspective and was diminished to be a set 
of stimulus-response connections.  

Two other movements concerned with learning and development ap-
peared during the century; the grand theories: constructivism and socio-
cultural theories. Both of them are still the main streams in educational 
research with their different branches and bridging theories to practice.  

Behaviourism had not been concerned with concept development; 
however, Piagetian genetic epistemology played an important role in the 
change of focus for research. Genetic epistemology:  

deals with both the formation and the meaning of knowledge. We can formulate 
our problem in the following terms: by what means does the human mind go from 
a state of less sufficient knowledge to a state of higher knowledge? … Our prob-
lem, from the point of view of psychology and from the point of view of genetic 
epistemology, is to explain how the transition is made from a lower level of 
knowledge to a level that is judged to be higher. The nature of these transitions is a 
factual question. The transitions are historical or psychological or sometimes even 
biological … (Piaget, 1970, first lecture) 

From focusing on behaviour, the shift implied a focus on students reason-
ing and conceptions. Clinical interviews were used as a method to inquire 
into children’s and students’ beliefs and theories of mathematics.   

Behr, Erlwanger, & Nichols’ (1976) study of students’ conceptions of 
the equal sign is a good example of how researchers through clinical in-
terviews tried to tease out what students were thinking when solving tasks 
(see section 4.7). In addition, these authors were interested in studying the 
development of the concept. They  interviewed students from several 
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grades to see if older students had a more developed conception than chil-
dren in the lower grades. They found that students in grade 6 had the same 
problems in interpreting the equal sign as a sign expressing equality, as 
students in grade 1. They claimed then that the students had an “incom-
plete conception – indeed a misconception”. 

Piaget’s stage theory which followed from the genetic epistemology is 
another source for many studies. Küchemann’s study (1981) as part of the 
CSMS study is an example of these studies (see section 4.1). The underly-
ing assumption was that by using carefully chosen tasks, it should be pos-
sible by investigating children’s reasoning processes, to find out about 
their level of understanding (Hart, 1981). Tasks were created in order to 
check if students’ performances on tests indicated to which cognitive de-
velopmental stage they belonged; comparing them to the stages in Piage-
tian stage theory.  

In Piagetian theory development precedes learning (Piaget, 1997), 
while in the socio-cultural theories learning and development proceeds 
dialectically. In the tradition of Piagetian stage theory there is the notion 
of readiness. This follows from the assumption that each stage is charac-
terised with qualitatively different structures of mental schema, and for a 
child to cognitively move from one stage to another he/she must be cogni-
tively ready for it. Herscovics & Linchevski’s (1994) study is one exam-
ple in the review above. They stated that “the pupils’ lack of readiness 
may explain the dismal results achieved in algebra in our secondary 
schools” (ibid p. 59).  

As noted above genetic epistemology is about how knowledge is con-
structed and is a theory that attempts to explain both how knowledge de-
velops and its origin. Confrey defines it to be “the study of the develop-
ment (or genesis) of particular concepts over time in children” (Confrey, 
1990, p.5). That is why researchers with a constructivist view have partly 
justified their studies by emphasising the importance of knowing students’ 
conceptions and difficulties, and the importance of  making the results 
open to teachers (Hart, 1983). To take students’ pre-knowledge into ac-
count in teaching was seen to be important, and research investigating 
students’ conceptions could inform educational practice. Much work in 
mathematics education is still carried out in this tradition, although re-
searchers do not see the algebraic “curriculum as a given”  anymore 
(Kieran, 2006, p.13). Instead research is done to emphasise the need for a 
change in school algebra, not just to trace the conceptual development.  

In the socio-cultural perspective there is a distinction between sponta-
neous or everyday concepts and scientific concepts (Daniels, 2001).  
Spontaneous concepts are concepts a child acquires outside school in in-
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formal settings. Scientific concepts are concepts which are introduced by 
teachers in school.  

Vygotsky (1987) writes that concepts are formed from two directions; 
from the general and from the particular. The scientific concept develops 
downwards from the abstract to the concrete and to its referent. The spon-
taneous concept develops in opposite direction from the concrete to the 
abstract, outside formal systems. In praxis this means that it is possible to 
use a concept without having grasped the whole meaning of it. When the 
integration process described above is finished, then the concept is inter-
nalised or appropriated. Vygotsky (ibid) warns against rote learning of 
concepts, as a mindless memorising of words. He uses the concept of 
flowers as an example of concept formation. He writes that after the con-
cept of rose is assimilated and if the rose is the only type of flower when 
the concept of flowers is introduced, for a long time the concept of flower 
is not more general than the concept of rose, however, after having gener-
alised the concept of flowers, the concept of rose is subsumed under the 
general concept.   

The implication for teaching is for teachers to help students to create 
links between every day and scientific concepts. According to Daniels 
(2001) the result is that “scientific concepts are developed through differ-
ent levels of dialogue: in the social space between teacher and taught; and 
in the conceptual space between the everyday and scientific” (ibid p. 53).  
In this way, a web of patterns or of conceptual connections is produced.  

In an overview of algebra research in the last 30 years Kieran (2006) 
asserts that the first years were dominated with research on the basis of 
Piagetian and constructivist theories, focused on students’ errors and mis-
conceptions and teaching experiments to overcome difficulties reported in 
research. One reason for this cognitive and constructivist basis was mostly 
that the socio-cultural theories were not that well known among scholars. 
Another reason may be found within the theory itself. As a reaction to the 
behaviour oriented focus in the positivistic paradigm, it was of interest to 
investigate and gain knowledge about the mental learning processes in 
mathematics. The socio-cultural theories, with their underlying fundamen-
tal basis that all higher mental functioning is in its essence cultural and 
social, seemed not to have had as much to offer in research, as the con-
structivist theories had at that time. Mathematics as a subject in which one 
has to act upon abstract objects, is decontextualised in its character, it is 
also a language with its own symbol system. 

According to Confrey (1995) this should fit with how Vygotsky de-
scribes the “sign-sign relationships and decontextualized knowledge” 
(ibid p. 203). In addition, the mathematical symbol system is a cultural-
historical achievement which through teaching is to be taken further, or to 



 
A case study of a Norwegian mathematics classroom   113 

be reproduced by new generations. However, working from a socio-
cultural perspective will create different research questions than working 
from the constructivist perspective. Lerman (2006) proposes that the stud-
ies reporting weak conceptual knowledge among students, places the re-
sponsibility on the students. In a socio-cultural perspective where the so-
cial and the cultural are the basis for development, research would have 
given other answers.  

The research on students’ conception and problems, with its focus on 
students errors are by some called the collection of “sad stories”  (Lins & 
Kaput, 2004, p. 53) about what students were not able to do. Although 
they are sad stories, scholars in mathematics education have gained a con-
siderable amount of information about students’ thinking and obstacles in 
the learning of algebra and other topics in mathematics from these sad sto-
ries. As noted above, from another perspective there would have been 
other stories to tell because the questions would have been different, but 
as long as the formation of concepts is the focus, the stories would have 
been sad, however, with supposedly other explanations than those given 
in the studies above. 

Cobb (2007) compares different theoretical perspectives and claims 
that cognitive perspectives are useful on the classroom level seeing the 
individual as “reorganiser of activity”, while the socio-cultural perspective 
or social perspective sees the “individual as participant in cultural practic-
es”. In this study both perspectives are present.  
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5 Interpretive framework 
This study is trying to answer questions about what students starting in the 
upper secondary school, experience from the mathematics they are offered 
during instruction within the classroom setting, and how the setting of the 
mathematics classroom might influence students’ experiences. The focus 
for instruction and work during the time of observation was number oper-
ations and algebra. The students had met these concepts and operations 
earlier in lower grades, but they are given new opportunities to recapitu-
late, and to expand their knowledge. 

As outlined in section 2.9 the students and the teacher are situated 
within a larger institutional system; the Norwegian national school sys-
tem, on the more local level within the institution of one particular upper 
secondary school, and on the micro level within the particular observed 
class. Many factors influence the activity in the classroom which are out-
lined in chapter 2, however, in this thesis, the investigation is limited to 
focus upon those factors directly influencing the work in the classroom. 
The background factors will not be investigated, however, during the ob-
servation and also during the time of analysis, it is kept in mind that other 
factors also are playing a role for the students.  

The students have 10 years of experiences within mathematics class-
rooms, and when they enter upper secondary school, they bring these ex-
periences into this new classroom. Each one of the students has his/her 
own personal experiences, influencing their view on mathematics, how it 
is to be learned, their view of themselves as individuals, their view of 
what matters in class, and what they assume is expected of them in rela-
tion to their classmates, and to the teacher; the tacit didactical contract 
(Brousseau, 1997).  

When studying the relationship between the mathematical learning 
goals in this classroom and students’ experiences manifested in their re-
sponses within the specific mathematics classroom, a theoretical frame-
work is needed. According to Niss (2007), one purpose of a theory is to 
“provide a structured set of lenses, through which aspects or parts of the 
world can be approached, observed, studied, analysed or interpreted” 
(ibid, p. 1309), another is to provide a “safeguard against unscientific ap-
proaches to a problem” (ibid, p. 1309). Niss (ibid) further points to the 
fact that there is no overarching theory or framework not even for specific 
topics in mathematics education. Instead he suggests to be open about 
what he denotes an investigational framework. This framework should 
consist of: 

 A perspective on the issues and question to be investigated. 
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 A set of theoretical constructs (e.g. concepts notions, and assumptions) more 
or less sharply defined, coined to capture essential entities of significance to 
the issues and questions in focus of the framework 

 A set of preferred methods considered suitable for the investigation of the is-
sues and questions of interest, with particular regard to the ways in which the 
theoretical constructs come into play. (p. 1297) 

The individual student and his or her experiences within the classroom is 
in focus. At the same time the mathematics offered and the opportunities 
given to experience the mathematics is central. This means that although 
the individual student’s responses are at the core, the mathematics class-
room and what is going on there has to be taken into account. In line with 
Kilpatrick and colleagues (2001), teaching and learning of mathematics is 
seen as a product of interactions between the teacher, the students, and the 
mathematics. In addition, different types of interactions are seen to create 
different learning opportunities. Therefore, theoretical constructs from 
different theories will be used. 

The epistemological basis for this thesis is to be found in the landscape 
of constructivism. In accordance with the constructivist assumption about 
mathematics the underlying assumption for this study is that mathematics 
is a “human creation, evolving within cultural contexts” and that mathe-
matics is a socio-historical product with its own norms and rules (Heintz, 
2000).  

Duval explains why mathematical knowledge is different from other 
knowledge: 

  ... there is an important gap between mathematical knowledge and knowledge in 
other sciences such as astronomy, physics, biology, or botany. We do not have any 
perceptive or instrumental access to mathematical objects, even the most elemen-
tary .... We cannot see them, study them through a microscope or take a picture of 
them. The only way of gaining access to them is using signs, words or symbols, 
expressions or drawings. But, at the same time, mathematical objects must not be 
confused with the used semiotic representations. This conflicting requirement 
makes the specific core of mathematical knowledge. And it begins early with 
numbers which do not have to be identified with digits and the used numeral sys-
tems (binary, decimal) (Duval, 2000, p. 61). 

Mathematics for the learners is different from the mathematics of the pro-
fessionals. The latter group has over years learned how to interpret math-
ematical signs and symbols and to communicate with them and work on 
them, while the learners are in a developmental process of acquiring 
mathematical knowledge (Steinbring, 2011).  

In order to communicate and to operate with mathematics, certain 
signs and symbols are needed. These signs and symbols are, like words in 
ordinary language, not bearers of meanings of their own. The meaning has 
to be constructed by the individual learner. 
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The signs have to be interpreted, and this interpretation requires experiences and 
implicit knowledge – one cannot understand these signs without any presupposi-
tions. Such implicit knowledge, as well as attitudes and ways of using mathemati-
cal knowledge, are essential within a culture. Therefore, the learning and under-
standing of mathematics requires a cultural environment (Steinbring, 2006, p. 
136). 

Mathematics is thus not to be learned in isolation. Every mathematics 
classroom might be seen as a sub-culture in which mathematics is to be 
learned. In order to focus both on the individual learner and on the inter-
action between the participants in the classroom, Cobb and Bauersfeld 
(1995) suggestion to coordinate sociological analyses of the micro culture 
of the classroom with cognitive analyses will be followed.  

Some researchers have claimed that this combination of theories is 
impossible. Lerman (1996) is one of them. He claimed from a socio-
cultural perspective that intersubjectivity is not at all in line with the radi-
cal constructivist view of learning that each individual constructs its own 
way of knowing. Steffe and Thompson (2000) objected to this, they 
claimed that intersubjectivity was part of constructivism from the outset. 
In a later article in the encyclopaedia of Mathematics Education, Thomp-
son (2014) claims that the core of the misunderstanding was that the no-
tion intersubjectivity was interpreted in different ways by the two ‘fronts’. 
According to Thompson (ibid) for Lerman (1996) intersubjectivity meant: 

“agreement of meanings” – same or similar meanings. Steffe and Thompson 
meant “non-conflicting mutual interpretations”, which might actually entail non-
agreement of meanings of which the interacting individuals are unaware of” 
(Thompson, 2014, p. 99).  

Thus he concludes in the constructivist tradition of intersubjectivity that 
they both meant they understood what the other meant; but actually they 
did not, and “they each presumed they understood what the other meant 
when in fact each understanding of the other’s position was faulty” (ibid, 
p. 99). 

Although there is no consensus within the community of mathematics 
education, the two different perspectives the individual and the collec-
tivistic or social, will both be present in this thesis. Research done in this 
tradition has provided much knowledge about the culture of mathematics 
classrooms (Voigt, 1989, 1994, 1995, 1996), and of sociomathematical 
norms (Yackel & Cobb, 1996).   

Cobb called the combination of the individual and the social perspec-
tives the emergent perspective (Cobb, 1995), another notion is socio-
constructivism, which was one of the ‘bridging theories according to Con-
frey and Kazak (2006). Within this perspective learning is seen both as a 
“process of active individual construction and a process of mathematical 
enculturation” (Cobb, 2000, p. 309) and thus the importance of analysing 
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students’ individual mathematical activity as it is situated in the social 
context of the classroom is emphasised (Cobb, 2000).  

To see the mathematical classroom as a specific kind of culture (Voigt, 
1998) seems to be useful for the investigation of the classroom situation. 
Within the culture of the mathematics classroom, the individual learner 
constructs his/her own conceptions of the concepts to be learned. To de-
scribe such processes, constructs from cognitive theories will be applied. 
In the next sections the constructs from social interactionism and from 
cognitive theories will be presented and described.  

5.1 The social perspective 
The main construct from the social perspective is ‘pattern of interaction’, 
other related constructs are ‘negotiation of meanings’, and ‘taken as 
shared’. These constructs will be outlined in this section. 

Communication is one important notion accounting for the social or 
collective perspective. The individual student must actively construct 
meanings from the experiences in the environment. Language is seen to 
be the main medium for the individual’s available meanings. However, 
language cannot be transmitted.  

A speaker's utterances can function for the listener like ‘pointing at something’ on-
ly, or better as directing the focus of attention, whereas the construction of what 
might be meant, the construction of references, is with the listener. The speaker's 
utterances and intentions have no direct access into the listener's system. What the 
listener’s senses receive, undergoes spontaneous interpretation” (Bauersfeld, 1995, 
p. 273).  

For the interactionists this includes more than language; also gestures, 
body language etc. (Bauersfeld, 2000). The communication in the class-
room is seen as a process in which the participants mutually adapt to each 
other. This is done through negotiation of meanings (Bauersfeld, 1980, 
1994).  

Negotiation of meanings 
Negotiation of meanings (Bauersfeld, 1995; Voigt, 1994, 1995) concerns 
the notion of the interaction going on in the classroom. With the view that 
meanings are not transmitted by language, and that each individual con-
structs its own interpretation from what is experienced, it is not possible to 
know if two people are assigning the same meaning to one utterance. It is 
evident from classroom situations that teachers and students often differ in 
what meaning they assign to an object of classroom discourse. To find a 
way to resolve this problem of ambiguity, the participants in the class-
room have to negotiate meanings in order to arrive at a meaning that is 
taken-to-be-shared. They are continually modifying their interpretations. 
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This does not mean that this meaning is held by the individuals in the 
classroom, but that each individual meaning is compatible with the others. 

Meaning-taken-as-shared 
Meanings-taken-as-shared is the notion for the meanings negotiated in the 
classroom, but does not mean that these meanings are actually shared. The 
discourse is developing as if the participants hold the same conceptions.   

Students in the classroom and the teacher come to the classroom with 
different background experiences and thus interpret the classroom situa-
tions in different ways. The tension between these different interpretations 
Voigt (1989) claims to be the motor for the negotiation of the meaning in 
the classroom. In spite of these tensions the classroom discourse mostly 
happens to go on in a smooth way because of a “provisional willingness to 
cooperate” (ibid, p. 652). This willingness is based on a tacit and implicit 
agreement, but there is always a risk that the discourse will break down. 
However, regularities constituted in the classroom minimises the risk. 
Routine actions are one type of regularities. One example of such a rou-
tine in the mathematics classroom is for students to reduce verbal utter-
ances to numbers and key words, which enables the teacher and other stu-
dents to identify their own expected meanings in what is said.  

The term taken as shared describes the participants' conviction that meanings are 
shared, or the participants' willingness to neglect doubts in view of inevitable am-
biguities, or the presumption that the meanings will be shared if the others will 
"read between the lines." (Voigt, 1995, pp. 172-173). 

As time goes on in the classroom, the participants in the classroom consti-
tute a culture through the negotiation of meaning, which leaves the stu-
dents holding an impression that they know what mathematics and math-
ematics learning is (ibid). Cobb called this the ‘institutionalized 
knowledge’ which might differ from one classroom to another (Cobb, 
1989). 

Patterns of interactions  
Patterns of interactions are to be found in all social groups.  When observ-
ing everyday life, it is possible to reconstruct patterns of interactions, so 
also in the mathematics classroom. The teacher and the students are most-
ly unaware of them (Bauersfeld, 1995, 2000; Voigt, 1989, 1995): 

If the observer looks at the classroom life in the way an ethnographer does who 
investigates a strange culture, the observer might be astonished by what is taken 
for granted by the members of this classroom culture. However, in the treadmill of 
everyday life, the participants would say that they know what mathematics and the 
classroom practice really are. In everyday classroom situations, the teacher and the 
students often constitute the context routinely without conflicts and without being 
aware of the ongoing accomplishments. So, in the participants' experiences the 
context can seem to be pre-given. In everyday classroom practice the teacher and 
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the students assume that the context is known which is, in fact, taken-to-be-shared, 
vague, and implicit (Voigt, 1994, p. 181). 

In mathematics classrooms the negotiation of meaning is fragile. One rea-
son is that the mathematical objects in focus are ambiguous to students. 
Patterns of interaction minimises the risk of collapse, in that the students 
take their classroom culture to be given and definite, although it is consti-
tuted jointly by the participants in the classroom.  

Routines reduce the complexity in the classroom and are necessary el-
ements of the classroom. In addition, both teacher and students feel obli-
gations of different kinds in ongoing discourses. When a mathematical 
task, for example, is intended by the teacher to give students the oppor-
tunity to construct conceptual knowledge, and the students do not respond 
as expected, the teacher may feel obliged to make the problem easier, and 
to lead students step by step, resulting in students focusing on the proce-
dures. At the same time students might feel obliged to react to teacher’s 
question in a way they interpret teacher’s expectation to be (Voigt, 1989). 
This will result in the kind of pattern which is called the funnel pattern or 
elicitation pattern, in which the teacher leads the students in small steps to 
the solution of the problem.  

Obligations and routines are prerequisites for patterns of interactions. 
These patterns are always jointly constituted and offer one reason for 
classroom discourses to go on, and to develop without too much effort and 
without being ever changing (Bauersfeld, 2000; Voigt, 1995). They might, 
however, be an obstacle for learning mathematics if the patterns turn out 
to be only joint work in order to arrive at a correct solution narrowed 
down to small steps (Steinbring, 1989; Voigt, 1989, 1995). It is also a risk 
for observers to equate successful participation in patterns of interactions 
with the learning of mathematics. The routines and felt obligations make 
students think that they know what classroom praxis is and should be 
(Voigt, 1995).  

The result is that it is often difficult to change practice, in that students 
avoid changes from what is understood to be mathematics and mathemat-
ics classroom. Often a culture is constituted in the classroom in which 
mathematical symbols are mostly connected to particular conventions and 
methodical rules (Steinbring, 1997, p. 50). Mathematics might then be 
experienced as rules and conventions rather than as relations and struc-
tures.  

5.2 The individual perspective 
On the individual level, the students construct their own conceptions of 
mathematics from what they experience. As seen in the foregoing sections 
mathematics for students is ambiguous, and during the time in mathemat-
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ics classes the students have tried to create meanings for abstract mathe-
matical concepts and operations.  

Tall and Vinner (1981) proposed the notion ‘concept image’ to denote 
the conceptions students hold of the formal mathematical concepts they 
meet. This notion (see section 2.8) “consists of all the cognitive structures 
in the individual’s mind that is associated with a given concept” (ibid, p. 
151). A person’s concept image is developing on the basis of his/her expe-
rience and is changing and expanding as the individual gains new experi-
ence. The aim is that the concept images will develop to be in line with 
the formal definitions for the actual concepts.  

Gray and Tall (2007) emphasise the importance of language and nam-
ing in the formation of mathematical concepts. When a concept is named, 
it can be referred to, be related to other concepts and situations, and it is 
possible to focus on its various aspects.  

Through the process of mental compression11 of what has been con-
ceived of as extremely challenging in mathematics, it can when suddenly 
understood, be seen as a whole, and be easily recalled and worked upon 
(Thurston, 1990). Gray and Tall (2007), see this compression as the un-
derlying mechanism of abstraction that makes mathematical thinking pos-
sible “to operate at successively higher levels of sophistication” (ibid, p. 
25).  

In algebra this flexibility is of great importance. Related to this ability 
is the ability to see the structure of algebraic expressions. Linchevski and 
Livneh (1999) used the notion “structure sense”. The authors claimed that 
if this sense was developed by students, then they are: 

able to use equivalent structures of an expression flexibly and creatively. Instruc-
tion should promote the search for decomposition and recomposition of expres-
sions and guarantee that the mental gymnastics needed in manipulating expres-
sions makes sense (ibid p.191).  

Hoch and Dreyfus (2004) refer to Linchevski and Livneh (1999), however 
they miss a definition for structure sense. They decided to define the no-
tion of structure sense like this: 

Structure sense, as it applies to high school algebra, can be described as a collec-
tion of abilities. These abilities include the ability to: see an algebraic expression 
or sentence as an entity, recognise an algebraic expression or sentence as a previ-

                                           
11 Compression is the word Thurston used to describe how previous learned mathematical 
ideas and processes can be transformed into compact and more precise mathematical objects, 
seeing them as a whole. He describes: “…once you really understand it and have the mental 
perspective to see it as a whole, there is often a tremendous mental compression. You can file 
it away, recall it quickly and completely when you need it, and use it as just one step in some 
other mental process” (Thurston, 1990, p. 847). 
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ously met structure, divide an entity into sub-structures, recognise mutual connec-
tions between structures, recognise which manipulations it is possible to perform, 
and recognise which manipulations it is useful to perform (ibid p. 51). 

Structure sense should, according to this definition, be a necessary condi-
tion for students to be efficient and precise in their manipulative work 
with algebra. Implicitly the students then have developed proceptual 
thinking (Gray & Tall, 1994).   

Tall et al. (2001) proposed that the development of mathematical ob-
jects followed the routes from perceiving things in the environment, then 
to act upon those, and finally to reflect on those actions to build theories. 
The authors express though that there are discontinuities in the learning 
path taken by different students and that “perception, action and reflection 
occur in various combinations at a given time and a focus on one more 
than the others can lead to very different kinds of mathematics” (ibid, p. 
82).  

5.3 Different kinds of mathematics 
When learning mathematics, students might have different impressions 
and thoughts about what mathematics is. It depends on the classroom cul-
ture and what type of mathematics is presented through theory, example 
and tasks. In this section the discussion in the mathematics education 
community about mathematical knowledge, especially the divide between 
conceptual and procedural knowledge will be outlined. 

It is stated that “the relationship between computational skills and 
mathematical understanding is one of the oldest concerns in the psycholo-
gy of mathematics” (Resnick & Ford, 1981, p. 246). Skemp (1987, p. 156) 
proposed that there are actually two different subjects being taught in 
school under the name of mathematics. The difference is recognised in 
that one of them emphasises instrumental understanding and the other re-
lational understanding. Relational understanding Skemp defined to be 
“knowing both what to do and why” (Skemp, 1987, p. 153) and instru-
mental understanding was defined as “rules without reasons” (ibid, 
p.153). Skemp comments that he was not aware of this latter type of un-
derstanding, but realised that many teachers and students mean that to 
possess rules and to be able to use them is to them understanding, also 
without a comprehension of why they work.  

 In his way of distinguishing between different kinds of mathematics, 
Skemp (ibid) uses the notion understanding, and he describes that “to un-
derstand something means to assimilate it into an appropriate schema” 
(ibid, p. 29). This definition emphasises the individual nature of under-
standing. It is therefore not always the case that to understand means to 
have a full understanding.  
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Other researchers make distinction between skill learning and learning 
with understanding, between semantics and syntax or between rote learn-
ing and meaningful learning, Hiebert and Lefevre (1986) claim that re-
gardless of the labels; the divisions referred to, correspond approximately 
to their division labelled by procedural and conceptual knowledge. It has 
to be noticed that it is rather confusing since by this claimed correspond-
ence they do not really distinguish between understanding, knowledge and 
learning.   

Hiebert and Lefevre (ibid) acknowledged that to decide what knowledge should be 
denoted one or the other type is not always easy, and they do not argue that all 
mathematical knowledge fits within the definitions they gave of the two types.  

Conceptual knowledge they defined to be “knowledge that is rich in rela-
tionships” (ibid, p. 2) forming a web of knowledge, where the connections 
are as important as the discrete pieces of information. It is also important 
to note that Hiebert et al. (ibid) claim that a unit of conceptual knowledge 
cannot be an isolated piece of information, and that it is part of conceptual 
knowledge only if the holder recognises its relationships to other pieces of 
information.  

Conceptual knowledge develops in that pieces of information are 
linked. This linking process can occur between already existing pieces of 
information stored in the memory. This happens when students gain new 
insights and suddenly see unrelated information as related in some way. 
Another way of developing conceptual knowledge is through connecting 
new information to existing networks. This latter phenomenon they equate 
with the labels ‘meaningful learning’ (Ausubel, et al., 1978) and ‘under-
standing’ (Skemp, 1987).  

The connections between pieces of mathematical knowledge can be 
established on two levels according to Hiebert and Lefevre (1986). At the 
primary level; knowledge is tied to the context in which it is presented. 
The degree to which the knowledge can be transferred to other contexts or 
freed from context, tells about the level of abstractness of the relation-
ships. At the abstract level the knowledge and its relationships are context 
free or at least less tied to the context. This level is called the reflective 
level because at this level one might be able to step back and reflect on the 
pieces of information being connected.  

Procedural knowledge is made up of two distinct parts. The formal 
language or formal symbol system of mathematics forms one part. This 
means familiarity with mathematical symbols and knowledge of the syn-
tactic rules for operating on them. In addition, the authors (ibid) exemplify 
that at advanced levels also the knowledge about the syntactic configura-
tion of formal proofs is included in procedural knowledge, however, not 
the logic behind them, but the style in which they are written.  
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Algorithms, rules, and procedures for solving mathematical tasks 
make up the other part of procedural knowledge. These are step-by-step 
instructions to be performed in a linear sequence. The authors also suggest 
that the procedures they describe are characterised as a production system 
with an input “firing the system” (ibid, p. 6). They also see procedures as 
built up hierarchically which means that procedures can be developed to 
be sub-procedures in super-procedures.  

Hiebert and Lefevre although differentiating between the two types of 
knowledge, emphasised: “Mathematical knowledge in its fullest sense, 
includes significant, fundamental relationships between conceptual and 
procedural knowledge” (ibid, p. 9). To be mathematical competent one 
must posess both types. 

Star, however, criticised them for being vague in their definition of 
conceptual knowledge, and claims “it is defined in terms of the quality of 
one’s knowledge of concepts, particularly the richness of the connections 
inherent in such knowledge” (Star, 2005, p. 407). He further claims that 
concepts do in themselves imply connected knowledge, and asserts that 
Hiebert and Lefevre’s definition includes only a sub-category of concep-
tual knowledge which is richly connected to other knowledge or infor-
mation.  

However, my reading of Hiebert and Lefevre, suggests that their no-
tion of levels of abstractness may include levels of richness, although in 
their definition they refer to conceptual knowledge only as rich in connec-
tions.  

The primary level of conceptual knowledge is context bound, and lack 
of rich connections limits the application of the conceptual knowledge 
from being transferred to non-familiar contexts or to more abstract levels. 
The possibility to develop conceptual knowledge from being weak in 
connections and context bound, to knowledge rich in connections on an 
abstract level freed from context, mirrors an interpretation of conceptual 
knowledge as lying on a continuum from weak connected knowledge to 
knowledge rich in connections. 

This is also what Star (2005) suggests in his own model, however, 
claiming that there is also another dimension; deep and surface levels of 
conceptual knowledge and of procedural knowledge. He defines concep-
tual knowledge as knowledge about concepts and principles. This means 
that conceptual knowledge might be on a surface level with weak connec-
tions or on a deep level with rich connections. Procedural knowledge, he 
asserts (ibid), has been equated with superficial and sparsely connected 
knowledge, often learned by rote. In his view procedures might be learned 
superficially or deeply with rich connections within the procedural 
knowledge domain only, without connections to conceptual knowledge. 
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He defines procedural knowledge to be knowledge of procedures. The 
characteristics of a deep level of procedural knowledge should be 
“knowledge of procedures that is associated with comprehension, flexibil-
ity, and critical judgement and that is distinct from (but possibly related 
to) knowledge of concepts” (ibid p. 408). Especially flexibility he intro-
duces as a key indicator of deep procedural knowledge.  

The reason for his re-conceptualisation of procedural knowledge is his 
concern about the status of procedural knowledge in schools and also in 
research. By detaching knowledge type and quality of knowledge, he pro-
poses that it would be easier to foreground procedural knowledge in re-
search (Star, 2005, 2007). His claim is that most recent research in math-
ematics education has concentrated on investigating conceptual 
knowledge with procedural knowledge as a “necessary afterthought” 
(Star, 2007, p. 134). 

Baroody, Feil and Johnson (2007) offer an alternative reconceptualisa-
tion of procedural and conceptual knowledge to that outlined by Star 
(2005). They acknowledge Star’s work and agree that both types of 
knowledge can lie on a quality continuum between superficial and deep. 
However, they argue against the characterisation of deep procedural 
knowledge.  Procedural knowledge might exist independently, however 
deep procedural knowledge includes both knowing how and why proce-
dures work. According to them this is impossible without procedural 
knowledge being connected to conceptual knowledge. 

When introducing these notions of deep and surface levels of 
knowledge Star (Star, 2000, 2005) refers to de Jong & Ferguson-Hessler 
(1996) who in turn cite Marton & Säljö (Marton & Säljö, 1976). Marton 
and Säljö carried out a study in Sweden within a phenomenographic 
frame-work. They studied students in higher education and their process 
of reading academic articles. The interest was mainly to explain why 
some students understood the text very well, when others did not. They 
found within this framework, in which the focus was on the experience of 
the learner, that students’ reading process could be categorised into two 
main levels. These were described as deep and surface levels of pro-
cessing, which seemed to correlate with students’ outcomes of learning. 
Students showing a deep approach to learning, seemed to approach the 
text with an intention to understand the meaning of the text or to relate it 
to their own experiences. In contrast, students with a surface approach 
searched for facts and tried to remember the text. They seemed to see the 
text as an end in itself. However, when investigating what led to those dif-
ferent levels, it came out that it paralleled students’ initial intentions. 
Therefore, instead of levels of process of learning or reading one adopted 
the term surface level and deep level ‘approaches’ to learning’. “This dis-
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tinction between deep and surface approaches to learning thus appears to 
be a powerful form of categorisation for differences in learning strategies” 
(Entwistle, Hanley, & Ratcliffe, 1979. p. 103). Entwistle and Peterson 
(2004) equate the deep approach to learning with seeking meaning, and 
the surface approach with an intention to reproduce content. 

Related to this surface approach of learning is Mellin-Olsen’s (1981) 
notion instrumentalism, which he introduced as an educational concept. 
He defined instrumentalism as a learning strategy derived from a meta-
concept of understanding as instrumental understanding. The learner aims 
for rules, not for relations and structures (ibid, p. 351), and the motivation 
is not an interest in the mathematics itself, but to demonstrate some 
knowledge.  

From the above it is clear that there is no easy way to define or to 
make distinctions between different types of knowledge, and it is shown 
that students’ intentions are important for which type of knowledge is ac-
quired. This is also what Novak (2002) emphasises in his model of mean-
ingful learning which is shown below: 

 

 
Figure 5-1: Meaningful learning (adapted from Novak (2002. p.552). 

 
In this model, meaningful learning occurs on a continuum from rote learn-
ing till meaningful learning.  

In Novak’s and also in Ausubel’s theory of learning, students’ own 
commitment to seek knowledge is a prerequisite for learning. This is in 
line with what was found to characterise a deep approach to learning 
(Entwistle & Peterson, 2004) which correlated with students’ outcomes of 
learning (Marton & Säljö, 1976). Also prior knowledge is emphasised to 
be highly important as the well-known quote from Ausubel states “If I had 
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to reduce all of educational psychology to just one principle, I would say 
this: The most important single factor influencing learning is what the 
learner already knows. Ascertain this and teach him accordingly" 
(Ausubel et al., 1978, iv).  

In the model above it is also claimed that meaningful learning implies 
that the learner has a well organised and relevant knowledge structure and 
that new knowledge has to be connected to that structure. This is what 
Hiebert and Lefevre (1986) described as one type of development of con-
ceptual knowledge.  

Novak (2002) proposes that in early years most concept learning is 
meaningful and imbedded in context. In school much learning is rote 
learning of concept definitions or statements of principles, and there is 
often no careful integration of new concepts and meanings of propositions 
into already existing knowledge structures, which might result in pure rote 
learning.  

As shown in the figure above, meaningful learning requires both a 
well-organised relevant knowledge structure, and a high commitment to 
seek relationships between new and existing concepts and propositions. 

Prior knowledge and also students’ commitment to seek meaning and 
connections in their mathematical work is crucial in order to learn, and to 
avoid instrumentalism. However, to orchestrate optimal classroom situa-
tions for meaningful learning is a challenge for teachers. At the level of 
grade 11 the students have been in schools for years being accustomed to 
specific cultures of the mathematics classroom and to different patterns of 
interactions (see section 5.2).     

In this section it is shown that there is no agreement in the research 
community about how to make a distinction between types of knowledge, 
and in addition, there is a blurred use of notions.  

In “Adding it up” Kilpatrick and colleagues (2001) have presented a 
model of what is required in order to be mathematically proficient. The 
model includes five different strands, where all the strands are intertwined 
and none of them can alone describe mathematical proficiency or compe-
tence. These strands will be defined and they will also be used in the anal-
ysis of students’ work. 

5.4 Mathematical proficiency 
The above section reveals disagreement among mathematics educators 
about how to distinguish between procedural and conceptual knowledge 
and learning, however, what is important is to find out what constitutes 
mathematical competence or proficiency. 

Both Niss and Højgaard Jensen (2002) in Denmark and Kilpatrick, 
Swafford, and Findell (2001) in the USA have worked out criteria for 
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what mathematical proficiency or competence means. According to the 
KOM-project mathematical competence: 

means the ability to understand, judge, do, and use mathematics in a variety of in-
tra- and extra-mathematical contexts and situations in which mathematics plays or 
could play a role. Necessary, but certainly not sufficient, prerequisites for mathe-
matical competence are lots of factual knowledge and technical skills, in the same 
way as vocabulary, orthography, and grammar are necessary but not sufficient pre-
requisites for literacy (Niss, 2003, p. 7). 

In addition, eight distinct competencies were listed: 
 Thinking mathematically (mastering mathematical modes of thought) 
 Posing and solving mathematical problems 
 Modelling mathematically (i.e. analysing and building models) 
 Reasoning mathematically 
 Representing mathematical entities 
 Handling mathematical symbols and formalisms 
 Communicating in, with, and about mathematics 
 Making use of aids and tools (IT included)  

The KOM-project has had an influence on the last curriculum in Norway, 
and has also made an impact on the design and analysis of the PISA stud-
ies. However, in this thesis limiting the focus to algebra and mostly to the 
transformational activity of the topic, led to the choice of mathematical 
proficiency as the applied framework. This framework was worked out by 
Kilpatrick et al. (2001). Five intertwined strands constitute mathematical 
proficiency. The strands are: 

 Conceptual understanding 
 Procedural fluency 
 Strategic competence 
 Adaptive reasoning  
 Productive disposition (ibid p. 116-117).                                                       

The strands are interwoven and interdependent and to be proficient means 
that all strands have to be present. A prerequisite developing proficiency 
is that thinking strategies are emphasised.  

In the next section the different strands will be outlined. 

5.4.1 Conceptual understanding 
Conceptual understanding correlates with what is outlined above about 
conceptual knowledge and is defined to be “comprehension of mathemati-
cal concepts, operations, and relations” (ibid, p. 118). It means knowing 
more than facts and rules, knowing both how and why. This knowledge 
may be tacit, in that students can understand before they are able to ex-
press their understanding.  

One indicator of conceptual understanding is that students are able to 
use different representations for mathematical situations and choose the 
most useful representation.  
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The advantage of conceptual understanding for students is that they 
need not have to ‘learn’ so much because they can see connections. What 
is already learned is encapsulated; they have made compressions and 
knowledge is stored in clusters. What is learned with understanding is less 
likely to be forgotten, and what might be forgotten can be reconstructed 
on the basis of the connections made to what is known from before.  

What is learned with understanding creates the basis for new learning. 
It enables students to check themselves, to solve unfamiliar problems, to 
analyse similarities and differences between different mathematical situa-
tions, and to give arguments for why procedures work. Conceptual under-
standing makes students confident, which again helps them to reach new 
levels of understanding.  

5.4.2 Procedural fluency 
Procedural fluency correlates to what is written above in section 5.3 about 
procedural knowledge, and it is defined to be “skill in carrying out proce-
dures flexibly, accurately, efficiently, and appropriately” (ibid, p.116). 
Procedural fluency supports conceptual understanding in analysing differ-
ences and similarities between methods and procedures for mathematical 
work. One advantage of procedural fluency such as skills in performing 
operations and working out procedures efficiently and accurately, is that 
the focus can shift from a concentration on, and a struggle to follow 
known procedures step by step. Instead the students can use energy on 
developing connections and gain an overview of the topics at hand. In that 
way procedural fluency supports conceptual understanding. Students who 
learn procedures with understanding can adapt and modify procedures 
making them easier to use, and transfer them to new contexts.  

Procedures learned without understanding are stored as isolated bits of 
knowledge, and then students often think that there are different proce-
dures for different contexts. They see no connection.  

However, students have often learned procedures and methods without 
understanding. To engage students in activities later, from which an un-
derstanding could be developed, is experienced to be a problem. It is thus 
important to promote teaching for understanding from the beginning. 

It is important to practice in order to gain procedural fluency, which 
can promote knowledge of ways to estimate and to control the results of 
procedures. This control is also part of procedural fluency.  

Kilpatrick et. al. (ibid) claim that procedures can be developed to be 
general procedures, which can solve classes of problems. Examples are 
the general rules for arithmetic operations. These rules or procedures can 
be concepts in their own right. Hiebert and Lefevre (1986) call them su-
per-procedures (see section 5.3).      
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5.4.3 Strategic competence 
Strategic competence is defined to be the ability to formulate, represent, 
and solve mathematical problems. This strand is connected to problem 
solving, and problem formulation. For this thesis, this is related to solving 
word problems. Having strategic competence implies that the students 
have grasped the problem situation and the relations between the known 
and the unknown quantities. Then they must represent the problem situa-
tion in one way or another and then reformulate it in mathematical sym-
bols and operations before the problem is solved.  

It is important that students can represent individual problems, but it is 
also necessary that they can see that some problems have the same math-
ematical structure.  

In becoming proficient problem solvers, students learn how to form mental repre-
sentations of problems, detect mathematical relationships, and devise novel solu-
tion methods when needed (ibid, p. 126). 

When students have not learned procedures to follow, they have to seek 
for new approaches. This promotes development of flexibility. One indi-
cation of a well-developed strategic competence is that a person is able to 
choose flexibly between different approaches. Related to this study a stra-
tegic competent person could choose between reasoning, use of tables, 
guess and check, or equations depending on what is most suitable in the 
situation. It is of great importance that students are offered non-routine 
problems in order to develop strategic competence.  

Related to strategic competence is also the competence in choosing the 
most efficient procedure in computations; which is related to a well-
developed procedural fluency.  

Strategic competence is intertwined with the other strands. Procedural 
fluency develops as students use their strategic competence to solve tasks 
efficiently. In order to solve cognitively challenging problems students are 
depending on procedural fluency. Also experiences in dealing with com-
plicated problems promote conceptual understanding.   

5.4.4 Adaptive reasoning 
Adaptive reasoning is defined as thinking logically about the relationships 
between concepts and situations. The authors claim this strand to be the 
‘glue’ that holds everything together. Students with adaptive reasoning 
can think logically about what is going on in the mathematical activity. 
They can explain and justify their work and their arguments.  The word 
justify is used in the sense of ‘provide sufficient reason for’ (ibid, p. 130). 
To promote adaptive reasoning, it is said to be important to establish 
classroom norms which make it an expectation that students shall provide 
arguments and reasons for their solutions. This is a way to improve con-
ceptual understanding. For students in this thesis it could be to explain 
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why the rules for fraction operations work. Adaptive reasoning interacts 
with the other strands especially when working with non-routine prob-
lems. When determining if a procedure is appropriate for the actual prob-
lem, adaptive reasoning is required and interacts with the strand of strate-
gic competence.  

5.4.5 Productive disposition 
This strand is defined to be the tendency to see sense in mathematics, to 
perceive it as both useful and worthwhile, to believe that steady effort in 
learning mathematics pays off, and to see oneself as an effective learner 
and doer of mathematics.  

This strand has to do with students’ motivation and attitude to mathe-
matics and learning (Marton & Säljö, 1976; Novak, 2002) which was a 
theme in section 5.3. The point in mathematical proficiency is that this 
productive disposition can be promoted by conceptual understanding and 
confidence in mathematics. The more concepts a student understands and 
the more fluent and flexible he or she is in working out procedures, the 
more sensible mathematics is for him or her.   

All the strands are of interest for this study, however, the emphases 
will be on the first three of them. 

5.5 Chapter summary   
In this chapter, constructs for both the cognitive and the social perspective 
have been presented. Although there is disagreement within the mathema-
tics education community about possibilities to combine the two perspec-
tives, in this thesis it is chosen to follow Bauersfeld and Cobb’s (1995) 
suggestion to look at the mathematical activity within the classroom from 
both perspectives.  

Constructs from the social perspective used in this thesis are constructs 
developed within social interactionism: ‘Patterns of interaction’, ‘negotia-
tion of meanings’ and ‘meaning taken as shared’ (Bauersfeld, 1988; Cobb 
& Bauersfeld, 1995; Voigt, 1989, 1994, 1996). Another construct is 
Brousseau’s notion ‘didactical contract' (Brousseau, 1997).   

 From the cognitive tradition, the constructs used in the analysis of the 
data are ‘concept map’ (Tall & Vinner, 1981), ‘procept’ and ‘proceptual 
thinking’ (Gray & Tall, 1994), and ‘structure sense’ (Hoch & Dreyfus, 
2004; Linchevski & Livneh, 1999). Further an outline was given of differ-
ent types or perspectives of mathematics (Hiebert & Lefevre, 1986; 
Skemp, 1987), and different approaches to learning (Entwistle, et al., 
1979; Marton & Säljö, 1976; Mellin-Olsen, 1981; Novak, 2002). 

The last sections in this chapter were devoted to an outline of the dif-
ferent strands constituting mathematical proficiency (Kilpatrick et al., 
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2001). For students to reach the goal of being mathematically proficient, 
they must be offered opportunities to develop all strands in the proficiency 
model.  

In the next chapter research linking teaching and teaching material to 
students’ learning will be reviewed.    
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6 Opportunities to learn 
In “Adding it up” (Kilpatrick et al., 2001), the ‘opportunity to learn’ is 
said to be the “single most important predictor of students’ achievement” 
(p. 334). This opportunity to learn, the authors assert “can be influenced 
by individual students, their teachers, their schools or school districts, or 
even the country’s educational system” (ibid, p. 334). Within the class-
room the opportunities are dependent on the actual culture constituted in-
teractively among the students and the teacher. In addition, for a mathe-
matical topic to be learned it must at least be covered. However, it also 
means that if a learning goal is for students to be fluent in using proce-
dures they must have opportunities to develop such fluency. The same is 
the case for conceptual understanding, problem solving skills and so on.  

In this chapter, research done on links between teaching and learning 
of mathematics, will be presented. In addition, some research done on 
teaching material such as the mathematics textbook, example tasks, and 
assigned tasks will be reviewed.  

6.1 Teaching and learning - connections 
Hiebert and Grouws (2007) reviewed research done on the effects of 
classroom mathematics on students’ learning. Their aim in the review was 
to describe patterns found in research that were significant across grade 
levels. In addition, they looked for studies describing classroom teaching 
which included well-described measures of students’ learning. Those 
studies should have been designed to examine the connections between 
the nature of teaching and what and how students learned.  

The investigation of research according to the criteria above, showed 
that teaching promoting procedural fluency, was characterised by teaching 
which is: 

rapidly paced and includes frequent teacher modelling of procedures, the use of 
many teacher directed product-type questions, and the making of smooth transi-
tions from demonstration of procedures to substantial amounts of error free prac-
tice. The teacher plays a central role in organizing, pacing, and presenting infor-
mation in this type of teaching in order to meet a well-defined learning goal (ibid, 
p. 382). 

It is noted that none of the studies on which the claim is based, was set out 
to investigate specifically the relationship between students’ procedural 
fluency and the teaching, but the tests used in those studies included most-
ly tasks in which students had to use procedures. Those studies were 
mostly from the 1970s and 1980s.  
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Conceptual understanding which was defined to be “the mental con-
nections among mathematical facts, procedures and ideas” (ibid, p.382), 
the authors found to be promoted by two key features. The two are:  

 Teachers and students attend explicitly to concepts 
 Students struggle with important mathematics (ibid, p. 383 and 387).  

The first point stresses that concepts and connections between mathemati-
cal facts, procedures, and ideas must be explicitly presented. Discussions 
of different solution strategies and how they are related, and attention to 
relationships among mathematical ideas were reported to enhance concep-
tual understanding.  

The second point emphasises that students should struggle with im-
portant mathematics. It is stressed that the word struggle is used “to mean 
that students expend efforts to make sense of mathematics, to figure 
something out that is not immediately apparent” (ibid, p. 387). These find-
ings seem to correlate with the goal to encourage students’ ‘commitment 
to learn’ (Novak, 2002), and a deep level approach to learning (Entwistle 
& Peterson, 2004; Marton & Säljö, 1976), see section 5.3).  

The authors (ibid) claim this is the opposite of presenting facts to be 
memorised, or asking students to solve only familiar tasks with demon-
strated solution methods. 

To investigate the links between teaching and learning, or between 
curriculum materials and students’ learning is not a straightforward task. 
This is evident also in the review carried out by Stein, Remillard, and 
Smith (2007). Much of the research they refer to, are comparative studies, 
and they (ibid) differentiate between what they call ‘conventional’ curric-
ulum materials and ‘standard-based’ curriculum materials.  

Conventional programs or materials are characterised by their tenden-
cy to explain directly the material and definitions to be learned. The topics 
are carefully sequenced in that lower-level skills are accumulated before 
students are given “the opportunity to engage in higher order thinking, 
reasoning, and problem solving with those skills” (ibid, p. 331). Defini-
tions are explicitly given, and students are expected to master those in ad-
dition to standard procedures before they are given opportunities to apply 
their knowledge. 

In contrast, students working with ‘standard-based’ materials are ex-
pected to deal with carefully designed tasks in order to engage with math-
ematical concepts before they are explicitly explained or defined. The 
purpose is that students themselves should explore features within the 
concept. Then, the students are exposed to formal definitions and notions 
and problems in which they are applied. It is expected that the teacher is 
there to guide in the process to guarantee that students’ conceptions are 
aligned with formal definitions accepted by the mathematical community.  
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The studies referred to in the review (Stein, et al., 2007) were carried 
out in the USA, and they are not immediately transferable to the Norwe-
gian situation. It seems from the studies that at least the standardised 
(NCTM-standards) materials offer detailed guidelines for each lesson. Al-
so in studies investigating textbooks, what Stein et al. (ibid) call conven-
tional material, it seems as if there is an expectation that each lesson is 
planned in detail by the author of the textbook.   

In Norway the situation has been that the curriculum presented 
through directives and plans for the mathematics subject has contained 
detailed prescription of goals to be reached at each level. Out from this the 
publishers have offered textbooks in which an interpreted version of the 
official curriculum is presented (see section 2. 5). Normally there are few 
guidelines for teachers on how to use the textbooks except for timetables 
containing the estimated time allocated to each chapter. In addition, the 
publishers offer tests for students after each chapter and before the end of 
each semester. In recent years, the publishers also offer web-sites for stu-
dents with interactive exercises, links to related web-sites, and sometimes 
software for computers. Guides for teachers are relatively rare. This 
means that the normal situation in Norway is as outlined in section 2.5 
that most teachers rely on the textbooks, at least in upper secondary 
school, and most often these textbooks can be said to fit within the catego-
ry of conventional material in the vocabulary of Stein et al (ibid).  

Hiebert and Grouws (2007) as well as Stein et al. (2007), emphasise 
that in order to look for links or relationships between teaching or the use 
of curriculum materials and students’ learning, one has to investigate 
mathematics classrooms and how the curriculum materials are imple-
mented. However, much research has been carried out under the assump-
tion that the influence of curriculum materials on students’ learning is di-
rectly measurable from standardised tests. These studies according to 
Stein et al. (ibid) are valuable in the sense that they confirm that content 
matters. This is in accordance with the claim that students must have the 
opportunity to learn; and what is not included in the content, students will 
presumably not learn. This is one reason why the textbook and other re-
sources will be investigated in this thesis.  

6.2 Mathematics textbooks  
The strong position of the textbook in Norwegian mathematics classrooms 
is reported in several studies (see section 2.5).  In addition, the mathemat-
ics textbook is one important factor within the setting of the mathematical 
classroom in this study. Thus some literature on mathematics textbooks 
will be reviewed, and this will be followed by a review of some studies on 
mathematical tasks relevant for this study. The intention is not to equate 
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the content of mathematics textbooks with what is enacted in the class-
room.  

Also internationally mathematical textbooks or curriculum material 
are widely used. This has over the years resulted in studies investigating 
mathematics textbooks (Haggarty & Pepin, 2002; Herbel-Eisenmann & 
Wagner, 2007; Love & Pimm, 1996; Weinberg, 2010; Weinberg & 
Wiesner, 2011). 

Love and Pimm (1996) examine visible features of texts in mathemat-
ics textbooks, and investigate their pedagogical functions. They claim that 
the most prevalent way to structure mathematics textbooks is the “exposi-
tion-examples-exercises model” (p. 385). The exposition part is intended 
to support students’ learning of specific concepts or topics in mathemat-
ics. Sometimes the author(s) may use questions, visual material or tasks 
for the students to work out (ibid, p. 387). Love and Pimm assert that this 
part of the model is most influenced by the writer’s own theory of learn-
ing. Since the text is written in order to explain or expose a particular part 
of mathematics, the text is heading to a particular destination which is 
clearly signalled. Often this destination is signalled by fonts, colours, or in 
other ways that will catch students’ attention.  

The examples in a textbook might serve different purposes. Love and 
Pimm (ibid) suggest that they are meant to be paradigmatic or generic in 
some sense. By reading or working out the examples, the students are of-
ten offered models of how to solve the following exercises by imitating 
the worked examples. The assumption is that the students will generalise 
from the examples. In reviewing research on examples in mathematics 
education Bills and colleagues (Bills et al., 2006) distinguish between ex-
amples of a concept and examples of how to apply a procedure. The latter 
is further divided into two categories; examples as worked out by the 
teacher or the textbook author; mostly accompanied with some explana-
tions or comments and exercises for students to complete. How useful an 
example is, is subjective, depending on the context as well on the learner 
(ibid). They argued that two attributes make an example pedagogically 
useful:  

 Transparency: making it relatively easy to direct the attention of the target 
audience to the features that make it exemplary. 

 Generalisability: the scope for generalisation afforded by the example or 
set of examples, in terms of what is necessary to be an example, and what 
is arbitrary and changeable (p. 135). 

In addition, they emphasise that it is important to make underlying gener-
alities and reasoning explicit because students seem to try to generalise 
from examples; even those students, who are not really engaged in what is 
being taught. Studies about misconceptions (Clement, 1980; Kaur & 
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Sharon, 1994; Nesher, 1987) and learning obstacles (Brousseau, 1997) 
confirm this. Bills and colleagues (2006) emphasise that it is important to 
give students opportunity to meet a variety of examples, non-examples 
and counter examples.  

However, what teachers or textbooks provide is just one part of the is-
sue. The authors (ibid) stress that the most critical influence is what op-
portunities students are offered in order to work on and with examples. 

Pimm and Love (1996) emphasise the transparency but conclude that:  
…many texts do not state directly what generalisations the students are assumed to 
have made. Whether this is to encourage students to form the generalisations for 
themselves, or whether it indicates the assumed presence of a teacher – or even 
whether it is simply not thought necessary to include such material – is not clear 
(ibid, p. 387).  

Some books do highlight difficulties, and explain explicitly the steps in 
the solution processes of worked examples. Some present more than one 
approach and explain why they are applied. This might be part of a meta-
cognitive strategy which reflects the author’s presence in the text (Pepin 
& Haggarty, 2001).  

The last part of the ‘exposition – examples – exercises’ model, is the 
part with exercises made for students to solve. Love and Pimm (1996) 
claim that this is the principle means by which the students are encour-
aged to be active readers of the text. They assert though that the exercises 
often are similar to the immediately previous solved examples and graded 
from easy to more difficult. This organisation of tasks is according to 
them (ibid) reflecting a belief that learning is best achieved when students 
are progressing in small well-defined steps. The risk is that the students 
develop fragmented knowledge. 

The exercises may also be presented in parallel sets of differing levels 
of difficulty in order to offer encouraging exercises for students needing 
extra practice or for those who need to be stretched. This was the case in 
the textbooks investigated by Johansson (2006). In some textbooks there 
is a collection with more varied exercises at the end of each chapter or at 
the end of the textbook. The parts in the textbook with exercises can com-
bine a variety of those aforementioned structures. 

  Studies of textbook use have shown that students often skip the expo-
sition part of the text. Instead they go directly to examples, rules or didac-
tical advice emphasised by fonts and colours (Love & Pimm, 1996; 
Weinberg, Wiesner, Benesh, & Boester, 2011). 

Herbel-Eisenmann and Wagner (2007) studied the language used in 
mathematics textbooks. They claim that there is almost no use of the first 
personal pronouns, I or we, and that this might distance the reader from 
the author. The use of the second personal pronoun, you, address the read-
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er directly and thus connects the reader to the mathematics, however, it 
might also be used in a general sense not addressing any particular person. 
The expressions such as ‘you think’, ‘you know’, ‘you find’, are examples 
of defining what is common knowledge. In other cases, this pronoun 
might mask human agency. Examples are: the graphs show you, the equa-
tion tells you. Only the reader him/her self decides what the graph shows, 
or what the equation tells12.  

The imperative mode of verbs is commonly use in mathematical tasks 
and in rules presented in mathematics textbooks. Morgan (1996) suggests 
that the imperative mode implies a competent model reader, who can per-
form and follow the orders given. Rotman (1988) distinguished between 
inclusive and exclusive commands. Inclusive imperatives in linguistics are 
verbs of the type, ‘Let’s go’. Verbs such as ‘consider’, ‘define’, ‘prove’ 
and all their synonyms imply according to him (ibid), that the writer and 
the reader share a common ‘world’ of mathematics and are thus inclusive 
imperatives. Herbel Eisenmann and Wagner (2007) call the inclusive im-
peratives, ‘thinker’ imperatives. The other imperatives are commands de-
manding that the reader performs specific actions.  

The notion ‘closed text’ was applied by Love and Pimm (1996). This 
notion is used to describe authors’ attempts to lead the reader to follow a 
clearly defined path. The danger is then that the students might experience 
mathematics as a subject which is indubitable, and that problems can be 
solved in only one way. Open texts are on the other hand textbooks offer-
ing resources for students to reason about the actual topic, with an expec-
tation that students construct their own conceptions.  

Most textbooks lie on a continuum between these two authorial stanc-
es; the closed texts and the open texts. The extreme positions might both 
lead to problems for the reader. If the writer acts solely as a guide, the 
reader is in danger of missing the important points, while on the other end, 
a too narrow step by step directing of the reader might lead to a fragmen-
tary conception of mathematics. 

Most textbooks relate mathematics to contexts which are expected to 
be known by the reader. This is the case for both the expository part, the 
examples, and the exercises. In the report from TIMSS video study 1999 
(Hiebert et al., 2003) two tasks are used to describe the distinction be-
tween  tasks with a real-life context, and one without such a context: “Es-
timate the surface of the frame in the picture below” (p.84), and “Find the 

                                           
12 As distinct from the English language, the Norwegian language has different forms in singu-
lar and plural of the second personal pronoun, making the distinction between the two forms 
clearer. Examples from the actual textbook: …når du har lest - …when you (sg) have read.  
Kanskje opplever dere … - perhaps you (pl) are experiencing …  
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volume of a cube whose sides measures 3,4 cm” (p.84). The difference 
between the two examples is that the first is related to a picture, some-
thing “real”, while the other problem is about a hypothetical cube. This is 
a simple illustration distinguishing between real life problems and prob-
lems without real life connections.  

In this study there are no real ‘real life’ tasks according to this defini-
tion. It is well known that within the mathematics education community 
there has been, and still is, discussion about what is ‘real life’ and what is 
not, and if it is useful for students when problems, examples and exercises 
are connected with real life situations. All contextual tasks are set in an 
imagined or hypothetical context in the actual textbook in this study. The 
notion ‘real life’ will be used though.   

6.3 Mathematical tasks 
Mathematical tasks or exercises are important in all mathematics class-
rooms. In the TIMSS 1999 video study, classrooms in seven countries 
around the world13 were videotaped. It was found that at least 80 % of les-
son time was commonly devoted to mathematical tasks (Hiebert, et al., 
2003). Although this study concerned mathematics in grade 8, the results 
from TIMSS advanced (Grønmo, et al., 2010) showed that the situation in 
grade 13 did not differ that much. Students in upper secondary school par-
ticipating in mathematics courses, and their teachers answered in ques-
tionnaires that the most common activity in the mathematics classes was 
to solve tasks; tasks similar to the examples provided in the textbook.  

The considerable time spent on mathematical tasks in mathematics 
classrooms is one reason for focusing on them. Another reason is that the 
tasks students work on, influence their view of the nature of mathematics 
and what they learn. Stein, Remillard and Smith (2007) claim:  

Tasks that ask students to perform a memorized procedure in a routine manner 
lead to one type of opportunity for student thinking; tasks that demand engage-
ment with concepts and that stimulate students to make connections lead to a dif-
ferent set of opportunities for student thinking. (p. 347). 

Studies done on tasks implemented in the mathematics classrooms con-
clude that tasks which are cognitively challenging, and which are not tak-
en over by teachers or higher achieving peers, promote students’ concep-
tual understanding (Henningsen & Stein, 1997; Stein, Grover, & 
Henningsen, 1996; Stein, et al., 2007). In the work on mathematical tasks 
and students’ learning (Stein, et al., 1996; Stein & Smith, 1998) Stein and 
colleagues developed a framework for analysing mathematical tasks ac-
cording to the potential levels of cognitive demand. They categorised the 

                                           
13 The countries were Australia, Czech Republic, Hong Kong SAR, the Netherlands, Switzer-
land, Japan, and the United States. 
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tasks into two levels ‘the low level of cognitive demand’ and the ‘high 
level of cognitive demand’, which in turn were divided into two sub-
categories each. For the first category, the two subcategories were: ‘mem-
orisation tasks’ and ‘procedures without connections to meaning’. The 
latter main category was divided into the ‘procedures with connections to 
meaning tasks’ and ‘doing mathematics tasks’ (for a thorough description 
of each category see appendix 4). 

This categorisation was done for assigned tasks. During classroom ob-
servation, however, it was clear that although a task was categorised to be 
a ‘high level demand task’, it was difficult to keep the high level of chal-
lenge (ibid), and often high level tasks were experienced declining into 
lower cognitive levels. The reason was mostly that students pressed for 
help, and thus they avoided the mental struggling period, which according 
to Hiebert and Grows (2007) was one prerequisite for the development of 
conceptual understanding (section 6.1).  

There are several definitions for what is a task. Doyle claims that the 
concept of task: 

calls attention to four aspects of work in class (a) a goal state or end product to be 
achieved; (b) a problem space or set of conditions and resources available to ac-
complish the task, (c) the operations involved in assembling and using resources to 
reach the goal state or generate the product, and (d) the importance of the task in 
the overall system in the class (Doyle, 1988, p. 169). 

A task he said, is defined “by the answers students are required to produce 
and the routes that can be used to obtain these answers” (Doyle, 1983 p. 
161). This means that for him a task (he used the notion ‘academic task’) 
includes the products students are to produce, the operations they have to 
execute in order to generate the expected products, and the resources 
available for students in this production process. Stein et al. (Henningsen 
& Stein, 1997; Stein, et al., 1996; Stein, et al., 2007) based their definition 
on Doyle’s work. The difference lies in the duration or length of a task. In 
their work, a mathematical task is defined to be a classroom activity, 
whose purpose is to focus students' attention on a particular mathematical 
idea.  An activity is not classified as a new task unless the underlying 
mathematical idea of the activity changes.  

Niss (1993) defines a task to be “an oriented activity, i.e. a set of ac-
tions oriented towards undertaking certain missions such as orders, pro-
posals, or challenges” (ibid p.17). He further asserts that a task can be 
formulated orally or in written form, often by using the imperatives: com-
pute, solve, draw, construct, determine, describe and so on. They might 
also be formulated as questions. In all cases the ‘mission’ is to carry out 
the task and to come up with a solution or an answer. He listed three cate-
gories of tasks: questionnaires, exercises, and problems. The first he de-
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fines to be “a collection of questions that usually concern facts” (p.18). 
There are normally only one or very few options for correct answers to 
each question. The next category, exercises, are tasks which involve pri-
marily routine considerations or operations to be executed in straightfor-
ward combinations, and which are set within a well-defined part of  a giv-
en mathematical topic. The last category, problems, Niss (ibid) are tasks 
involving non-routine considerations, or operations, or they are set within 
a context not related to a specific topic in the syllabus.  

Problems and exercises are emphasised as not being absolute concepts. 
The reason for this is that an exercise might be a problem to one person, 
while it might be a routine task – an exercise - to another. Types of tasks 
which have been problems for a student might later in the development be 
perceived as an exercise for the same person.  

In the report from the TIMSS Video Study 1999 (Hiebert, 2003) all 
mathematical tasks are termed problems, no matter if they are problems to 
the persons trying to solve them or not. According to the coding manual 
from the TIMSS Video study a mathematical problem is defined to be a 
an explicit or implicit problem statement that includes an unknown aspect, 
something that must be determined by applying a mathematical operation. 
Included in the mathematical problem is the solution or answer, as well as 
the checking of the answer. This means, in the TIMSS terminology, that 
as long as there is an expected answer to be found by mathematical opera-
tions, there is a mathematical problem. 

In this thesis a mathematical task will be defined according to the   
definition of a mathematical problem in the TIMSS Video Study, and it 
will include questionnaires, exercises and word problems (Niss, 1993). 
This means that as long as there is an expected answer to be found by 
mathematical operations, there is rather a mathematical task than a math-
ematical problem as in TIMSS. 

The reason for the choice of the notion task, instead of problem, is that 
as Niss (ibid) emphasises, a problem is a problem in relation to the indi-
vidual student. Another reason is that the assigned tasks were mostly of 
short duration. This might be due to the mathematical content and to the 
case that only a short time period was allocated to basic algebra.  

However, the investigation has to go beyond the content and the quali-
ty of tasks and examples. Stein, Grover, and Henningsen (1996) provided 
a model in which a task is seen to pass 3 phases. The first phase is the task 
in the textbook or in other written materials, the second phase is the task 
set up by the teacher, and the last phase is the task implemented and 
worked upon by the students in the classroom. This means that the task as 
it appears in the textbook or in other materials might be altered from 
phase to phase and even in the classroom situation.  
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In this thesis the tasks will be categorised in line with former studies 
about number and algebra, and analysed according to levels of cognitive 
demand. Then the implementation of the tasks will be focused upon.  

6.4 Mathematics syllabus and tasks 
According to the perspective outlined above it is important to provide op-
portunities to learn mathematics. The ultimate aim of mathematics teach-
ing is to enhance students’ mathematical proficiency (Kilpatrick, et al., 
2001) or mathematical competence (Niss, 2004). According to both 
frameworks one cannot hold isolated strands of proficiencies or individual 
mathematical competencies, and at the same time claim to be mathemati-
cally competent or proficient. However, in school, different strands or 
competencies are emphasised at different times, although the aim is to 
promote connections and an overview of mathematical strands.  

The conventional curriculum model as Stein et al. (2007) describe it, is 
focused on carefully sequenced theory and tasks. This is still the case for 
most commercial textbooks. Although the goal is that students are to 
reach a level where mathematics is seen as connected and meaningful, one 
has also to practice skills in order to be fluent.  

One concern has been that the focus on conceptual learning of mathe-
matics would result in students having problems executing procedures and 
computations. Studies, however, show that students who have followed a 
reform based curriculum with emphasis on conceptual learning tend to 
perform  as well as students following a conventional program on stand-
ardised tests (Swafford, 2003). In addition, those students outperformed 
students following a conventional program, when it came to tasks testing 
what had been emphasised in the reform curriculum.   

In this chapter, curriculum material, textbooks and tasks have been 
discussed and related to students’ opportunities to learn. It is problematic 
to make direct links between curriculum material and learning although 
there are indications that the different features of curriculum material 
might influence students’ learning in different ways (Remillard, Harris, & 
Agodini, 2014). One result from earlier studies is clear though. Topics 
covered in the material are more likely to be learned than topics not cov-
ered (Stein, et al., 2007). It is also clear that cognitive challenging tasks 
promote another learning than tasks of a low level of cognitive demand 
(ibid). Grouws and Hiebert (2007) in a meta-study found that different 
teaching promoted different learning, and came to a conclusion about 
what promoted conceptual understanding and what promoted procedural 
fluency (see section 6.1). This will be drawn upon in the further work with 
the data in this thesis.  
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7 Methods and methodological  
considerations 

The word methodology has often been used as a synonym for methods. 
Burton (2002), however, asks researchers to make clear, on which 
grounds the decisions about methodological issues are made. According 
to her it is not sufficient only to outline what is done, it is also necessary 
to explain the rationale for the choices, which are undertaken. She says:  

I do not believe that there is ever a case where the researcher's beliefs, attitudes, 
and values have not influenced a study (p.3). 

The purpose of this chapter is to meet Burton’s demands and let the reader 
have a chance to follow the ’journey’ of this research process, and to 
make my assumptions, beliefs and attitudes open to the reader.  

The study was carried out within the TBM – LBM projects (see ap-
pendix 1) that were based on the philosophy of creating ownership to the 
projects among all participants, both researchers and teachers. Thus the 
teachers and their schools worked out local goals to reach within the larg-
er project. This implied an aim of not imposing anything on the teachers, 
but instead to collaborate with them aiming at what Wagner (1997) calls a 
co-learning relationship. This made an impact on the way to cooperate 
with the teachers in the project (Espeland, Goodchild, & Grevholm, 
2009). The aim was to join an authentic mathematics classroom, not mak-
ing impact upon the teaching and the structure of the mathematics lesson.   

My main data was collected in the first months of the project, and the 
study was not aiming at describing a developmental process within the 
project. Instead, I see the study as a snapshot within the frame of a long 
developmental project, exploring the mathematical activity within the 
context of an ordinary classroom. 

7.1 The research questions 
As a teacher in upper secondary school, I had seen high achieving stu-
dents struggling with simple fractions, with decimal numbers and with 
manipulation of simple algebraic expressions, when solving tasks related 
to more advanced mathematics. This led me to a question about how 
teachers might respond to students’ problems when these basic elements, 
expected to have been assimilated in lower grades, would occur. Another 
question was what rationale teachers might have for their responses. 

Therefore, the purpose of the study at the outset was to investigate 
teachers’ actions and the rationale for their actions when meeting stu-
dents’ problems related to number and elementary algebra, when working 
with new topics in upper secondary school.  
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As time went on within the TBM project the focus changed from being 
explicitly focused on teachers’ action, and rationale for those actions, to 
focus on the mathematics, and student’s mathematical activity when num-
bers and algebra are recapitulated at the start of upper secondary school. 

The purpose for this research is thus to explore the relationship be-
tween the mathematics offered in the classroom, and students’ experienc-
es of that mathematics within the setting of the mathematics classroom. 
The research questions are (see section 2.9 at the end): 

 
What mathematics are students offered in the classroom for learning, 

or to consolidate already learned mathematics as they enter the upper 
secondary school? 

What experiences of the mathematics offered do students reveal 
through their responses? 

How does the setting of the mathematics classroom influence students’ 
experiences of the mathematics offered? 

Sub-questions to answer the main questions are: 
 What are the learning goals? 
 What mathematics is presented in the classroom? 
 What can we observe of students’ responses to that mathematics? 
 What patterns of interactions are observed? 

The word response in this context includes all students’ task solutions, 
answers, questions and comments both oral and written during the les-
sons, interviews and tests.  

The setting of the mathematics classroom includes the textbook in use, 
the work plan, the computer with provided software, teacher’s exposition, 
and the interaction in the classroom.  

7.2 The case and the context 
Since a classroom has to be investigated in order to explore the mathemat-
ics offered, the mathematics students’ experience, and how the classroom 
setting influence students’ experiences, it followed that the study would 
be a case study and that the methods would be qualitative methods. In this 
section, case study as such is discussed. Then the actual case and its con-
text is presented.  
 

7.2.1 Case study 
In a case study the researcher has little control or no control of the factors 
influencing the events in the classroom. A case study is a  “study of singu-
larity conducted in depth in natural settings” (Bassey, 1999, p. 47).  
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Mertens (1998) discusses different definitions and views on case stud-
ies and concludes that “the commonality in the definitions seems to focus 
on a particular instance (object or case) and reaching an understanding 
within a complex context” (ibid, p.166). She also referred to literature dis-
cussing whether case study is a method or a research design. Yin (2009) 
claims that a case study is a method with its own research designs.  

What according to Yin (ibid) decides if a case study is an appropriate 
method for research is the form of the research questions. The most ap-
propriate questions are the ‘how’ and ‘why’ questions. In this thesis, the 
research questions involve also ‘what’ questions: ‘What mathematics 
…and what responses…’ Although ‘what’ questions, the answers 
searched for are descriptions of the mathematics and of the responses. 
Thus, the case study as a research method is seen to be appropriate.  

In a case study, the theoretical framework and the research questions 
are the steering guides of how to define the case. Also Miles and Huber-
mann (1994) give the advice to: “attend to several dimensions of the case: 
its conceptual nature, its social size, its physical location, and its temporal 
extent”. 

In this thesis, the case is the specific class under observation. Accord-
ing to the chosen theoretical framework, the class includes many sub cas-
es, the individual students.  

In following Miles and Hubermann’s (ibid) advice above, the bounda-
ries for the case related to the social size, the physical location and its 
temporal extent was set. The specific class is a class located in one of the 
upper secondary schools participating in the LBM project described in 
appendix 2.4. The class had 27 students during the time of observation. 
The contact with the teacher started two weeks before the class started 
school, then the observation went on intensively in two periods in Sep-
tember and November 2007 with some meetings in between. Then there 
was a new meeting with the class in May 2008. This means that this case 
study has boundaries when it comes to size, location and time.  

The unit of analysis is the student within the classroom setting. This 
includes the didactical means: the textbook and its resources, the comput-
er and the software in use, the teaching, the classroom interactions, and 
student’s mathematical activity working with mathematical tasks. 

 

7.2.2 Participants and the classroom 
To talk about a random sample of a population has no significance in my 
case; also it is not an extreme case. Working in the TBM-project entailed 
cooperating with someone within the project. I aimed to work with a 
teacher from upper secondary school. The teacher who accepted to join 
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this study is an experienced teacher, and she has worked in the same 
school for many years. When her school decided to participate in the pro-
ject, she signed on as did four others in her school. As she said, she is 
used to working in projects since she, together with some colleagues, had 
recently worked out and set up a plan to use lap-tops in mathematics for 
all students in the “Programme for Specialization in General Studies” (see 
section 2.2.2).  

The teacher was engaged in teaching many mathematics classes. The 
class in this study was a class in grade 11. This was the second year of the 
K06 curriculum (see section 2.2.2) which implied working with a new 
textbook and a new curriculum. The teacher expressed that the pressure of 
the lack of time weighed heavily as the new curriculum included more 
topics than the former curriculum.   

The 75 students, attending the programme in this school, came from 
different schools and mostly they did not know each other. At the start, 
they made a judgement about their own abilities and goals in mathemat-
ics. On the basis of those judgements, they were divided into three differ-
ent groups. The observed group or class was seen as a high achieving 
group of students since all of them were aiming towards the highest math-
ematical education in upper secondary school. In the class, 27 students 
started; two went to another group and two came as new students during 
the autumn. 

All students had their own computer. The classroom was equipped 
with all facilities making it convenient for both teacher and the students to 
use their computers in their daily work. In addition, the technical support 
was reported by both teacher and students to function well. When I was 
there, they used their computers to write mathematics and to draw graphs. 
The programs were MathType and TI-interactive. All written tests includ-
ing the examination were done on the computer. The classroom can be 
classified as a paperless classroom. The teacher, however, wrote mostly 
on the whiteboard during plenary sessions. Exceptions were when the 
technique of writing the tasks in MathType on the computer was intro-
duced at the end of the plenary sessions.  

More background information about the school, the classroom, the 
teacher, her practice and thoughts, the students and students’ use of, and 
opinions about the use of computers in mathematics lessons is to be found 
in appendix 2 and its sub-sections. 

7.3 Data and data collection  
In the attempt to answer my research questions, I regarded it appropriate 
to collect different kinds of data. Although classroom observation and in-
terviews play a considerable role in my study, I also draw upon data from 
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students’ written work, from meetings with the teacher about the teaching, 
and learning, the class and the school, and from some meetings within the 
TBM/LBM project when teachers’ views on topics covered in the ob-
served class came to the fore. In this section I will go into what data I 
have collected and what methods I have used. An overview of the collect-
ed data is presented in the figure below. 
  

 
 

Figur 7-1 Types of collected data 
 

In the case study method different kinds of data might be collected, both 
quantitative and qualitative data (Yin, (2009). This thesis will rely on 
qualitative data, and is located within the interpretivist paradigm.  
 

7.3.1 Classroom observations 
My main data corpus is data from the classroom. The collection started 
two weeks after the start of school, after one week with mathematics les-
sons. I divide the observations into two parts according to the mathemati-
cal topic taught and to the period of time. The first period was devoted to 
number operations and elementary algebra, the second was devoted to lin-
ear functions and systems of equations. The teaching followed the text-
book, and these periods correspond to chapter 1 and chapter 4 in the text-
book. The data from the second period is drawn upon as a comparison to 
the teaching of the topics in the first chapter. In addition, students’ work 
with tasks related to the learning goals for the first chapter is drawn upon.  

To collect data, I videotaped each observed lesson from the start to the 
end. In addition, the teacher carried with her an audio recorder. The rea-
son for this was to audio tape the conversations between the teacher and 
the students during seatwork. During the plenary sessions I either admin-
istered the video camera, or I sat at the back or in the front of the class-
room taking notes. This depended on whether a colleague assisted me or 
not during the data collection. Mostly we were two.  
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During the seatwork, I went around with an extra camera, videotaping 
students’ PC-screens and thus students’ work. On occasions, I interacted 
with them during the seatwork asking them questions about what they 
were doing. It happened that students asked me or my colleague for help. 
We had discussed this and agreed that ethically we could not refuse to 
help, when there were others waiting for the teacher. However, mostly 
they waited for the teacher, or asked their peers.  

7.3.2 Interviews 
During the collaboration with the teacher, I had many meetings with her, 
and sometimes with her and some of her colleagues. All the meetings 
were audio taped. Most of these meetings I will characterise as unstruc-
tured interviews, conversational in style. Some of those interviews took 
place right after a lesson, when we were discussing the lesson, some were 
planned in the sense that we had made an appointment to meet and to hold 
an interview. Other interviews were semi-structured in the sense that I had 
a list of questions to ask, however, the teacher was free to lead the inter-
view in the direction she wanted. For me it was important to listen to her 
opinions and thoughts. Although this was a strategy, it was as well for me 
a genuine interest in her practice.  

 All the students had a short interview twice as to their opinion about 
using computers instead of paper and pen. Another time they were asked 
about their experiences of working in groups to find the solutions without 
the teachers’ explanation beforehand. These interviews were structured in 
the sense that they all were asked the same few specific questions; more in 
the style of a survey.  

Five students were interviewed based on tasks picked out from both 
the algebra test, and the first ordinary test. Four students were interviewed 
twice; once in the autumn and once again in the springtime right before 
finishing the school year. One interviewed student, a girl, changed class 
during the school year. Another girl, from whom I had a considerable 
amount of data from the classroom observation, was chosen for interview 
in the spring.  

The reason for choosing task-based interviews was to illuminate the 
reasoning behind students’ solutions. Test results alone give limited in-
formation about students’ reasoning. Goldin (2000) claims: 

In comparison with conventional paper-and-pencil test-based methods, task based 
interviews make it possible to focus research attention more directly on the sub-
jects’ processes of addressing mathematical tasks, rather than just on patterns of 
correct and incorrect answers in the result they produce (ibid, p. 520).  

The questions were focused on the solution of the tasks, descriptions of 
the strategies, and assessment of the solution.   



 
A case study of a Norwegian mathematics classroom   149 

The five students were chosen based on their results on tests. I wanted 
students representing both top, bottom and middle level. Two girls and 
three boys were chosen. In the class the proportion between girls and boys 
was 10:17.  

In the autumn the interviews were video and audio taped. Some stu-
dents felt the filming uncomfortable, and the camera was moved to vide-
otape from a relatively long distance. In the spring the interviews were 
only audio taped. 

From my master study I had positive experiences with focus group in-
terviews. When the students talked together during task solutions, they 
were more open than when being interviewed alone. Therefore, my inten-
tion was to do the same in these interviews, however, this did not function 
as intended. One of the girls remained rather quiet during the whole inter-
view session. She had to be prompted. This resulted in the boys being in-
terviewed one by one and in the spring all were interviewed individually. 

All students had paper and pencil available and their notes were col-
lected. The interviews were of different time duration. They lasted from 6 
to 40 minutes. The short interview was with Tord. He had made few er-
rors and was extremely quick in his answers. In addition, he wanted to 
reach the next lesson, he answered all the questions though. 

  

7.3.3 Tests  
Based on my findings from my master study, I conducted an algebra test, 
this was a paper and pencil test. This test was administered by the teacher 
after the first week of the school year. At that time algebra had not been 
the focus for teaching. The tasks were taken from studies such as the 
CSMS study (see section 4.1) and the KIM-study (see section 1). Most of 
the tasks were also present in the tests in the LCM-study14. The reason for 
not making my own tasks, was to be sure that they had been revealed as 
purposeful in earlier studies. Another reason was that I could compare the 
results in this study to the results from the LCM, KIM, and CSMS studies. 
This test was given twice for students to solve; in August 2007, and 8 
months later in May 2008.  

In September, 25 out of 27 students were present. In April, 26 students 
solved the test tasks. At that point in time two students had moved to an-
other class, and two new students had moved in. One student was missing. 

                                           
14 The LCM study was part of the KUL Programme (Kunnskap, Utdanning og Læring – 
Knowledge, Education and Learning) of the Norwegian Research Council (Norges For-
skningsraad, NFR). My master study was part of this study. The study relied mainly on tests in 
grade 4, 7, 9, and 11. The tests were administered by the teachers in the participating schools 
and were given twice a year in three consecutive years.  
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That means that only 22 students participated in both test situations. Since 
only 24 out of the students had followed the same teaching in the autumn, 
the other students are left out when I refer to the test in the spring. To 
conclude: 25 students in the autumn and 24 in the spring are in the sam-
ple. 22 of them can be compared from autumn to spring. Both tests were 
administered by the teacher. In May I was there observing. It seemed as if 
the students worked seriously trying to do their best.  

All the ordinary tests were written on the computers and delivered to 
the teacher as computer files, and I was allowed access to these files. In 
the first lessons after both periods of observation, students were tested in 
the topics taught during these observations. Some tasks from the algebra 
test and some from the ordinary test in September were the basis for the 
interviews with the students. In addition, one test in December, concern-
ing all the topics taught during the autumn is part of my material. From 
the latter, only tasks related to the learning goals expressed in the first 
chapter of the textbook are taken into account. (All tests are presented in 
appendix 6.) 

 

7.3.4 Questionnaire 
At the outset of my study, I planned to give the students a questionnaire 
with some questions about their views and experiences of mathematics. 
This questionnaire was mainly a translation of a questionnaire applied by 
Persson in his study (Persson, 2005). In order not to disturb the teaching, 
it was decided to send this to the students electronically and ask for an-
swers by e-email. This was not a success, as less than half the students 
replied (12 students). In the parts of the thesis describing individual stu-
dents, the answers in the questionnaire will be drawn upon for the students 
who answered. (The full questionnaire in Norwegian is to be found in Ap-
pendix 7).   

 

7.3.5 The ‘learning book’ and students’ solutions 
The teacher and her colleagues had created a web site for all the students 
attending the mathematics course in Vg1. They had worked out examples, 
mainly from the textbook, and short versions of rules and didactical ad-
vice stored in data files; one file to each sub-chapter in the textbook. The 
collections of these files were called the ‘learning book’, and were created 
to help students to be focused on the white board and to participate in the 
plenary session. For the fast writers the teachers had experienced that stu-
dents were often distracted by the computers; with a keystroke they could 
mentally leave the classroom. Thus all worked examples, rules and advice 
were to be found later on the web-site. In addition, the teachers encour-
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aged students later to write their own notes in the same files, and save 
them on their private computers.  

I was interested to see if students had saved their own notes and thus 
made changes in their ‘learning books’. All students answered a short sur-
vey, in addition some students down loaded their files in order to show me 
their work. This was done at the end of the second period in November. 
Later when looking into their files I realised that some had sent me their 
complete work done during the autumn term.  

At the outset I had rejected the idea of looking into their work with as-
signed tasks. One reason for this was that students had answers to all the 
tasks in the back of the textbook, another was the overwhelming amount 
of data. However, when I looked into the files I had been given access to, 
I realised that many students had not bothered to check their answers, or 
they had adjusted them to the right solution in different ways. At that 
time, I also saw the advantage of comparing the files with the observa-
tions made in class. I went back to school, and the students willingly 
shared the solutions to their assigned work during all the time of observa-
tion.  

From the date on the files I could see who had changed the files or 
who had down loaded ready-made solutions from the publisher. The latter 
files were rejected. In addition, some students had suffered a computer 
crash which had deleted all their files. Data from 18 out of 27 students 
constitutes the data from students’ saved computer files.   

For the students it was helpful to have their computer well organised, 
because they were allowed to use any resource apart from communication 
and internet access on tests.  

 

7.3.6 Other data 
Other data are official documents from the school, the textbook and its 
resources, official documents related to the syllabus, and data from meet-
ings and workshops within, or related to the TBM/LBM projects.  

In the table below most of the data is presented, with date for the col-
lection, the type of data and who was present. 
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       Table 7-1: Data collected (R-researcher, T teacher)* 
Date Event/Purpose Kind of data Present 
070508 Meeting with teachers: 

Information about the project 
Audio R1, R2, R3 

teachers 
070619 Meeting in order to start cooperation  Audio + notes R1, T1, T2 
070827 Planning the cooperation Audio + notes R1, T1, T2 
070904 Classroom observation (2 lessons) Audio/video/notes R1, R2 
070904 Algebra test Test on paper  
070910 Classroom observation (3 lessons) Audio/video/notes  R1, R2 
070911 Classroom observation (2 lessons) Audio/video/notes R1, R2 
070917 Ordinary test algebra + numbers Students’ test on 

computers 
 

August-
Sept. 

Students work on textbook tasks (18 
students) 

Computer files  

070918 Short meeting with T1 Audio  
070925 Interview with T1, Watch video  Audio R1 + T1 
070925 Interview with five students Audio/video 

+ students’ notes 
R1 

Oct.-Nov. Meetings with teachers in the school Audio  R1, T1, T2, 
T3, T4 

071112 Classroom observation (2 lessons) Audio/video + 
students’ notes 

R1 + T1 

071113 Classroom observation (3 lessons) Audio, 2 videos 
+ students’ notes 

R1 + T1 

071119 Classroom observation (2 lessons) Audio, 2 videos R1 
071126 Classroom observation (2 lessons) Audio, 2 videos R1 
071127 Classroom observation (3 lessons) Audio, 2 videos R1, R5 
071204 Ordinary test - Linear function Students’ tests  
071218 Ordinary test - All topics taught  Students’ tests  
080122 Interview teacher + class meeting Audio R1, T1 
080310  Short questionnaire - digital files   
080519 Interview 4 students Audio + students’ 

notes 
R1 

080602 Interview one student Audio + student’s 
notes 

R1 

Nov. 2008 Collecting students’ computer files Computer files 
From 18 students 

 

Meeting 
Dec. 2008 

Meeting in TBM/LBM Notes   

Sept. 2009 Conference presentation sept 2009 Notes shortly 
afterwards 

R1 + confer-
ence partici-
pants 

2010 Comments on workshop presentation  Video TBM/LBM 
members 

2010 Presentation – County’s School leader  
meeting 

Notes afterwards School lead-
ers  

   * T1 is the class teacher, R1 is me. 
 
All data occurring in the TBM project is stored systematically with per-
mission from the NSD - Norwegian Centre for Research Data. In accord-
ance with regulations from the Inspectorate, the data can be stored for an 
undefined period, however, from 2015 the data is made anonymous and 
all name lists are deleted. Access is restricted to the participants in the 
TBM project at the University. 
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All names of data files have the same format. One example could be:  
SM-070580-TBM-C-au-ABF-MB-HE.MSV. The first two initials indicate 
which type of event is recorded. The next is the date, then the initials for 
the project, and initials for the location. The abbreviation au indicates that 
this recording is an audio recording. The next initials are for the partici-
pants in the event. 

This particular file is an audio recording from a school meeting on the 
8th of May 2007 within the TBM project. The meeting took place in 
school C and the participating researchers were ABF, MB, and HE. Msv 
is the type of file, a voice file. In this way the file names give precise in-
formation about what, when, where, who, and which type of recording. 

 

7.4 Work with the data 
Since the data corpus is of different types, different methods of analysis 
were applied in the work with the data. In this section these methods will 
be described. 

7.4.1 Video and audio recordings 
Many hours of video recordings and audio files were watched and listened 
to before a data reduction was made.  

Data from school meetings in the particular school were partly tran-
scribed after being searched for statements about the particular course and 
class. Recordings from interviews and meetings with the teacher were ful-
ly transcribed, and regular statements were categorised. All references 
from the teacher are shown to her. She was sent the manuscript for the 
whole thesis, and in a meeting all text that directly refers to her was 
shared with her in a process of informant checking. 

All the interviews with students were fully transcribed. Afterwards the 
students’ reasoning behind the solutions, and their strategies were catego-
rised according to earlier studies reviewed in chapter 4. This work served 
as a background for the interpretation of other solutions of the same task 
and solutions of similar tasks solved by other students on tests and in reg-
ular classroom sessions. 

The short interviews, more in the style of surveys taken in the class-
room about the students’ opinions on the paperless classroom and about 
the use of the ‘learning book’, were also fully transcribed. Categories 
were created based on students answers. These were then compared with 
what was observed in the classroom or said in other interviews. 

The data from classroom observation were watched and listened to and 
a data reduction was made. Then parts of the data material were tran-
scribed, but as time passed, and the video and audio tapes were watched 
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and listened to time after time, more and more of the data were fully tran-
scribed. As the the transcripts were read over and over again, some pat-
terns of interactions appeared to be regularly repeated. These were catego-
rised.  

Since the recordings from the classroom were stored in different files, 
some of the work with the data was to combine the files. This was done in 
that the transcripts from the different sources were combined in one text 
file where the time schedule was the common reference.   

This file was later combined with the data from students’ written 
work. The computer files with students’ written work helped to illuminate 
what tasks students worked on, and thereby gave a better understanding of 
the students’ responses when solving the tasks in the classroom. The same 
was the case with the data from the interviews with students. 

7.4.2 Students’ written task solutions 
The computer program excel was used as the main tool when structuring 
the data. One file was made for each test and one was made for the as-
signed tasks. First, all students were listed in rows, then the tasks in the 
columns. All task solutions were investigated for the way they were 
solved and for errors.  

All results were documented with the code 1 for correct solutions, 
code 0 for not solved, and 11 for errors. Afterwards the worksheets were 
copied to other worksheets where the errors were categorised according to 
findings in earlier studies reviewed in chapter 4. 

  From these excel files it was easy to get an overview of each student 
and to see if an error occurred only once or more frequently. It also 
showed how many tasks each students had solved both of the assigned 
tasks and of test tasks. Changing rows and columns also gave a good 
overview over which errors occurred in each task.  

The next step was to combine the excel file with the solutions of the 
assigned tasks with the transcripts from the classroom. For each task 
which was observed to have been solved in the classroom, additional in-
formation was written into the excel file. This information from observa-
tions was written in a different colour than in the excel file in order to dis-
tinguish between the solution process and the saved solution. In addition, 
data of students from whom I had no saved data files were added into the 
same excel file. In this way all data from task solving during seatwork 
was collected in the same file, giving an overview of what was done, and 
what was observed done, during the time of data collection. 

Also the data from the excel file was included in the transcripts as 
notes about how the tasks were saved in the computer.  
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Despite all this work done, though, I am fully aware that all the data 
gives me only a limited overview of what was going on in the classroom. 
The activity in the classroom is too complex to be grasped by one person 
although the activity was both video and audio taped. During plenary ses-
sion a video recorder with its focus on the teacher, the white board and 
parts of the classroom cannot capture everything, but helped me to get an 
overview of the interaction between the teacher and the students. The 
teacher also had the audio recorder in the plenary sessions, which helped 
me to better capture what was said, because the video recorder was at the 
back of the classroom and the audio recorder in the front by the teacher. 
However, sometimes it was still difficult to hear what was said, and it 
took a long period of listening repeatedly to the two, and sometimes three 
sources to discern what was said. The positive aspect to this, was that this 
time-consuming work with the transcriptions and the combination of those 
with the data from the excel files, helped me to really become familiar 
with my data. 

The findings from the test tasks were compared with the data from the 
classroom, making it possible to make interpretations of students’ mathe-
matics and about some development in time. Contrary to tasks worked 
upon in the classroom, the test tasks could not be checked and changed. 
The test situation is different from working in the classroom and this can 
influence students’ task solving since they are in a stressful situation. On 
the other hand, it might give a better view of their competencies solving 
tasks, than what is seen from written solutions in the classroom.  

It is important to be humble, because test results, as with all written 
material, does not inform about students’ holistic mathematical competen-
cies; only a small area is tested, and it is not known what thoughts lie be-
hind their solutions.   

It might be argued that this way of working; focusing on errors shows 
a negative focus on students’ work. It is, however, the case that when 
working correctly, there is no information about the reasoning. The errors, 
however, set in the light of earlier studies, give an indication of what rea-
soning might lie behind the solutions. 

Few students (12 out of 27) answered the questionnaire. The responses 
were delivered in written form, by e-mail. The answers were categorised, 
and this data is drawn upon in relation to some individual students, and 
when illuminating students’ view of mathematics.   

7.4.3 Interviews and conversations with the teacher 
The transcriptions of the interviews and the conversations with the teacher 
both in school and within the setting of project meetings were read, look-
ing for statements about learning, teaching, students’ mathematics, the use 
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of computers in mathematics, and her situation as a mathematics teacher. I 
searched for patterns within these categories and the results are collected 
in appendix 2.4 and its sub-sections.  

The data are used to ensure that the conclusions drawn about the 
teacher and her practice in the thesis are in line with her own views and 
opinions.  

7.4.4 The mathematics textbook  
Although the classroom was a paperless classroom, the main resource 
apart from the computer, was the textbook with its resources. In this sec-
tion the textbook will be presented15, the reason being the steering role of 
this book.  

The sequencing of the topics in the classroom followed the textbook, 
and all example tasks were example tasks from the textbook during the 
first period of observation. The publisher had produced two volumes for 
the course VG1T, the theoretical mathematics course in grade 1. The first 
volume is intended to be used in the autumn, and the second in the spring. 

The textbook can be said to be a conventional textbook (see section 
6.2) in the sense that it follows the exposition-example-exercise model, 
described by Love and Pimm (ibid). The different parts are short, mostly 
including the whole model. Love and Pimm (ibid) assert that textbooks 
following such a model often have a summary at the end of each main 
chapter, as does this textbook. The different rules and definitions are as-
sembled on the last pages before a collection of tasks. These tasks are 
tasks related to more than one sub-chapter and thus more challenging than 
the other tasks. They were, however, not seen to be assigned during the 
time of observation. 

All example tasks in the first chapter are solved examples; many of 
them with explanations or recipes for the way they are solved (Bills, et al., 
2006). The tasks following the expositions in the sub-chapters are with 
few exceptions similar to the example tasks, and can be categorised as 
exercises (Niss, 1993); monitoring common textbooks described in the 
TIMSS study (see section 2.2.1). The rules and definitions listed up for 
the reader, might be a sign of a belief that mathematics is best learned in 
small step presentations of mathematical topics (Love and Pimm, 1996).   

At the back of both books are complete lists of answers to each task. 
An alphabetical register makes it possible to apply the books as reference 
books. The syllabus for the course, with aims to be reached within each 
mathematical domain, is presented in the back of the book together with 
different formulas, and the metric system for length, area and volume.  

                                           
15 All quotes from the book and from the resources are my translations from Norwegian to 
English. 
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Both books are divided into two parallel tracks, coded with red and 
blue triangles in the text, signalling the estimated level of difficulty for the 
current section. The red track is the more challenging. It was followed by 
all students in this study. The tasks at the end of each main chapter are not 
differentiated. 

In accordance with Love and Pimm's (1996) description of common 
mathematics textbooks, distinct fonts and coloured boxes are used to in-
form the reader about important parts in the texts. Rules are placed in col-
oured boxes, definitions within coloured frames, reminders in coloured 
elliptic boxes, and example tasks are announced as follows:  

 

Example  
This use of coloured boxes and frames makes it easy to distinguish be-
tween rules, definitions, examples, reminders and advice.  

Although the textbook was a central factor in the classroom, there is 
no evidence that students read the textbook systematically. One student 
said that he first tried to solve tasks, if he was stuck he asked one of his 
classmates, then the teacher. The textbook was used if the teacher was not 
available, or if he was stuck when working at home. Students, working in 
the classroom however, were seen looking back to examples, and rules in 
the textbook. It therefore seemed to be the case that students also in this 
class tended to skip the exposition, going directly to the rules and exam-
ples emphasised by specific fonts or colour boxes (Love & Pimm, 1996; 
Weinberg, et al., 2011), which might engender the risk that they focus on 
rules instead of seeking for connections and reasons for the rules.  

Every main chapter starts with the learning goals for the actual topic. 
Then comes an introduction to the chapter; mostly a paragraph or a short 
section with references to the history of mathematics, or to ‘daily life’.  

The exposition and the example tasks in the first chapter can be cate-
gorised as closed text. The mathematics is divided into parts or sub-
chapters, with their exposition and example tasks, which might cause stu-
dents to develop a fragmentary conception of mathematics without con-
nections between the different parts (Love & Pimm, 1996). Only one ap-
proach to task solutions is presented.  

Throughout both books, rules, expositions, examples and rules are 
with some few exceptions presented by the authors using the personal 
pronoun ‘we’. Mostly this ‘we’ is inclusive not referring to the authors 
alone. The authors are thus clearly present in the text (Pepin & Haggarty, 
2008), which is the opposite of the formal distance often created between 
author and reader in many mathematics books (Herbel-Eisenmann & 
Wagner, 2007). An example of this, is the solution of the example task (p. 
16): 
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5 3(2 5) (2 5 )                     

                            We multiply  within the brackets

5 - (6 - 3 15) (2 5 )

                            We remove the brackets and change sign 

           

a b b a

a b b a

    


  


                        when there is a minus in the front

5 - 6 3 15 2 5  

                             We collect like terms

10   

a b b a

a b

   


  

    

The procedures and rules are in focus, which seems to be the case in most 
of the two actual chapters (chapter 1 in the first period and chapter 4 in the 
second period). The examples are transparent, in that it is made clear what 
it is important to focus upon, and what make them exemplary (Bills, et al., 
2006). No activities are suggested for students, other than to solve ordi-
nary textbook tasks; most of them exercises in the way Niss (1993) de-
fined them to be (see section 6.3). An exception to this are some activities 
in the first chapter (see appendix 8.1). These were, however, not observed 
to be used in class.   

The publisher had in addition to the textbook created a web-site for 
students and teacher; www.paralleller.no16. Here one could find work 
plans17 for the whole school year, and for shorter periods. Available for 
the teacher are tests to control if students have achieved the goals for each 
chapter, and tests for each semester. Both work plans and tests are written 
in different formats so that teachers can easily make changes.  

For students there were interactive tests with each chapter. These tasks 
were multiple-choice tasks, and feedback was given in the form of results, 
explanation of the errors made, and reference to information given in the 
textbook. During the time of observation, neither the teacher nor any stu-
dent was observed referring to this web-site. The teacher, however, made 
use of the work plan and the tests.   

The work plans were set up with aims and the number of items to be 
done. Some aims and items were written with bold fonts and some with 
normal fonts. In the information given, students were told that learning 
goals written with bold fonts were the most central and important goals. 
Numbered items written with bold fonts were said to be the easiest or 
most important items. (A detailed description of the first sub-chapter of 
the textbook is to be found in appendix 8 with its sub-sections.)  

7.4.5 The analysis of the textbook and the assigned tasks 
In the two periods of observations the first and the fourth chapter in the 
textbook were worked through. The analysis of the textbook tasks is thus 

                                           
16 It seems that the website has been removed or it has been given another location (in 2015). 
The textbook is still for sale. The syllabus has been slightly changed.  
17 A description of the work plan is given in appendix 8.6. 
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limited to the tasks belonging to the parts of those two chapters that were 
focus for the work in the classroom. 

The text, the organisation of the text and the layout in the different 
sub-chapters were compared to findings in earlier textbook research (see 
section 6.2), and then compared to the text in the digital ‘learning book’.  

The assigned textbook tasks, were compared to example tasks in the 
textbook, before they were analysed according to the mathematical tasks 
framework (Smith & Stein, 1998) see appendix 4. The categories were 
tasks of low level of cognitive demands, and tasks of high level of cogni-
tive demand. Tasks belonging to the first category were further divided 
into two subcategories: ‘memorisation tasks’ and ‘procedures without 
connections to understanding, meaning or concept tasks’. Tasks belonging 
to the latter main category were then investigated in order to put them in 
either the sub-category of ‘procedures with connections to understanding, 
meaning or concept tasks’ or the sub-category ‘doing mathematics’.  

It appeared that most tasks were tasks categorised as ‘low level de-
mand tasks’ within the sub-category of ‘procedures without connections 
to understanding, meaning or concept tasks’ (appendix 4). Since many 
students though seemed to struggle when solving those tasks, the tasks 
were further analysed according to the ‘procedural complexity’ categori-
sation from TIMSS 1999 Video study (Hiebert, et al., 2003). Procedural 
complexity is defined as “the number of steps it takes to solve a problem 
using a common solution method” (ibid p. 70). In line with Hiebert et al. 
(ibid) the tasks were categorised into three levels of procedural complexi-
ty. For all levels the students could use conventional procedures. The lev-
els were: 
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Table 7-2: Procedural complexity. Adapted from Hiebert et al. (2003, p.70) 
Procedural complexity 

 Characteristics Examples from Hiebert et 
al. p. 71.  

Low 
level 

Solution process requires maximum four 
decisions by the students and contains no 
sub-task. 

Solve for x  
2x + 7 = 2 

Moderate 
level 

Solution process requires at least five de-
cisions by the students and can contain one 
sub-task. 

Solve the set of equations 
for x and y: 
 2y = 3x - 4; 2x + y = 5 

High 
level 

Solution process requires at least five de-
cisions by the students and contains two or 
more sub-tasks. 

Graph the following linear 
inequalities and find the 
area of intersection:  
y ≤ x+4;  x ≤ 2; y ≥ −1 

 

7.4.6 Ethical considerations 
As a teacher myself I realise how difficult it can be to be a teacher and to 
handle the complexity of a classroom on the spot. Therefore, I went to the 
classroom with a sense of humility. To start a study with other people in-
volved, is always a daring deed. Cooperation means using oneself, to 
make a personal investment. I wished to meet the participants in an “I-
you” relation (Buber & Simonsen, 2003), to meet them as whole persons 
not only as informants. 

In a study with only one teacher and one class, the participants will au-
tomatically be exposed. Of course all the work done adheres Norwegian 
laws according to the guidelines and permission given by the NSD. That 
means that all participants had been given information about the project 
and thereafter had signed in to the project. It had been emphasised in the 
information that: anyone who wanted, could withdraw their participation 
at any time. No one has done this. It was also made clear that what would 
be written or said, would be done in such a way as to secure the anonymi-
ty of participants. In conversations with students, and when I asked some 
of them for interviews, no one was adverse to participation. Also when I 
asked for papers they had written, or when I asked them to download what 
they had done in mathematics on their computers, they willingly did this 
for me.  

Although confidentiality is taken care of, I have been concerned about 
how to report my study in a way that the participants and especially the 
teacher recognise as familiar. In order to meet this concern, the teacher 
has had access to the whole thesis, and as far as possible I have tried to let 
participants speak for themselves. 
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7.4.7 Reflections  
The data is from different sources: classroom observations, test results 
from the class’ regular tests, and from a test provided by me taken both in 
the autumn and in the spring, students’ stored computer files including the 
solved assigned tasks. In addition, the textbook is part of the data. I have 
triangulated (Yin, 2009) the data in order to corroborate the same phe-
nomena.   

The analyses of the data, I have mostly made on my own. I have had 
little opportuny to have my data investigator triangulated (Denzin, 1970) 
apart from some discussions right after classroom observations and some 
comments on my analysis in meetings with my supervisors. The lack of 
this type of triangulation I see as a weakness in my study.  

I have tried to compensate by providing a thick discription  of the 
classroom, the tasks, and students’ responses both in the thesis and in the 
appendices. In addition, I have tried to give voice to the participants and 
to bring in their perspectives in the analysis. On the basis of this thick 
desription it ought to be possible for others to make a judgement of the 
analysis, of the findings, and to what degree it is possible to transfer the 
findings to other mathematics classes.  

After interviews with the teacher, I had a member check; she has re-
ceived what is written on the basis of interviews and conversations. The 
students have not had any possibility to check what is written about them. 

The thesis is detailed and I have tried to make it readable without loos-
ing the aim of being open to the reader about my choices and my analysis.  

One of the main methods has been to categorise students’ responses 
according to findings in former algebra research. The tasks used in class 
and on ordinary tests, are not diagnostic tasks. Only tasks in the algebra 
test can to a certain degree be categorised as diagnostic.  

If I were to do this again on the basis of the findings from this study, I 
would have made some changes in the sample of the tasks in the algebra 
test. There is a lack of tasks revealing explicitly students’ conceptions of  
letter symbols, equivalence and of fraction operations. Such tasks would 
have added valuable information  to the study. I have, despite this, catego-
rised the problems found in the tasks worked on in the classroom and on 
tests.  

On one hand this might be criticised as drawing the conclusions too 
far. What strengthens the conclusions though, are the observed responses 
from interviews, and from the interactions in the classroom. In this thesis 
it has been regarded to be a strength to rely on the responses on these 
tasks because they are mathematical tasks used in the classroom. The situ-
ation is authentic. 
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Another issue is my role in the study. Gold (1958) presents four theo-
retically possible roles in ethnographic research. These roles range from 
being a “complete participant”; unknown as researcher among the partici-
pants, to the other extreme being a “complete observer”. Between these 
two he suggests two other roles: “participant as researcher and “observer 
as participant”. He further emphasises the danger “to go native”; to be too 
familiar with the group under investigation, when taking the two latter 
roles.  

According to Gold’s definitions of roles, I was never a complete ob-
server. I sometimes interacted with students when they worked with tasks. 
I did, however, not feel the danger of ‘going native’ but rather the danger 
of slipping into the role of a teacher. I think the teacher often looked at me 
rather as a colleague than as a researcher. I have been aware of this, and 
also to some extent welcomed it. As a teacher myself, I appreciate the 
generosity the teacher showed me, letting me come into her private prac-
tice. I could also offer personal experience to illuminate that I know the 
complex situation a teacher has to confront every day in school.  

Another reflection made is on the interpretative framework. I have 
chosen a conceptional framework with concepts from different theories 
and former studies. I might have used a theoretical framework. I consid-
ered the French theory: The theory of didactical situations in mathematics 
(Brousseau, 1997). However, my aim, in addition to inform the mathemat-
ics community of mathematics and add to the considerable work done in 
the area of algebra and classroom research, has been that the thesis should 
be readable for practitioners in the field, and, as I see it, the concepts and 
notions used in the theory of didactical situation are too unfamiliar for that 
purpose.  

 In this chapter there has been an outline of the data this thesis is built 
upon and the methods used. In the following chapters the findings will be 
presented.    
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8 Students’ calculation with numbers and 
letters  

In this chapter there will be an outline of strengths and problems revealed 
in students’ work when it comes to the understanding of literal symbols, 
invisible operation signs, the commutative law, the distributive law, order 
of operations, the minus sign, negative numbers, operations on negative 
numbers, and powers. Except for the interpretation of letters, invisible 
signs, and the minus sign, the topics were themes in the first chapter of the 
textbook. (Appendix 8 is an outline of this sub-chapter). 

The algebra test will be drawn upon in order to illuminate strengths 
and problems students had at the outset of the observation. The algebra 
test focused on an understanding of the literal symbols, which was not 
addressed in the textbook; supposedly taken for granted by the textbook 
authors.  

When students were solving tasks in the textbook, they had the oppor-
tunity to check their solutions. This was not the case when solving test 
tasks. Test results might thus give a more trustworthy picture of the situa-
tion. Some students were interviewed based on some test tasks, which 
give an illumination of their strategies and reasoning. All tests can be 
found in appendix 6; the algebra test in 6.1.  

In addition, this chapter in the thesis will be based on data from the 
whole observation period and from interviews. Task solutions and expla-
nations in the classroom related to the aforementioned topics, will be 
drawn upon to give a picture of the received curriculum. The ordinary 
tests in September and in December will be used to give a picture of stu-
dents’ performances after being taught and after having practiced in class. 
Those tests were composed by the authors of the textbook and supposedly 
adapted by the teacher.  

Data from students’ seatwork (saved computer files, 18 students) and 
data from the classroom (27 students) reveals errors known from earlier 
studies in mathematics education and are categorised according to the re-
viewed studies (see chapter 4 in this thesis). In appendix 9, there is a more 
detailed background for the results presented in this chapter. 

8.1 Understanding of literal symbols 
In this thesis I have used the notion literal symbol instead of the notion 
‘variable’ (see the end of section 4.1). No example task, assigned task, or 
part of the exposition in the textbook offered opportunities to reason about 
the meaning or use of literal symbols in algebra. Some few tasks, howev-
er, in the algebra test, were given in order to test if students accepted let-
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ters as substitutes for general numbers, that different letters could take on 
the same value, and if students were able to differentiate between the val-
ue or number of an object and the object itself (see section 4.1). 

The results from the test tasks show that all but one student seemed to 
accept literal symbols representing number values. In three tasks asking 
students to pick out expressions representing a certain value of a general 
number, item 3, 40 % solved all three tasks correctly. One student did not 
respond, and four  students regarded inequivalent expressions to be equiv-
alent. The others picked out only one of two correct expressions, although 
in the text it was expressed that they should pick out “the or those expres-
sions”. Taking into account that some students might have been satisfied 
by picking out the first correct expression in the list, it might be inferred 
that at least 20 % had some problems with equivalent expressions in addi-
tion to the 16 % equalling inequivalent expressions. In item 4 in the alge-
bra test; the ‘student-professor problem’ (Clement, Lockhead, & Monk, 
1981; MacGregor & Stacey, 1997) was given: 

In a school there are 10 students to each teacher. 18 Which of the expression(s) 
represent the correct relation? 
L=number of teachers, E = number of students. Mark the, or those correct expres-
sion(s).  

10L=E             10E=L             L=10E         E=10L        10L+E       11E 
 
76 % picked out two expressions (60 %, though, picked out expressions 
representing the opposite relation). This strengthens the interpretation that 
some of the students had problems which expressions were equivalent in 
item 3. In the spring though, the proportion solving all three tasks correct-
ly in item 3, had risen to 67 %; a considerable improvement (see appendix 
9.1, and the diagram in appendix 6.1)  

   Another task similar to a task in the CSMS project (Küchemann, 
1981) asked students to consider if a statement is always true, never true 
or true for a special case. The result is shown in the table underneath.  

 
Table 8-1: Algebra test, item 6 with results (%) and alternative answers 

Task 6a) Correct  Alternatives No response 
     x + y + z = x + p + z  
This:  
 is always true     is never true  
 
  could be true, if ……... 

 

 
48 

 
Never true    48 
  

 
4 

 

                                           
18 In Norwegian teacher is ’lærer’ (L), and student is elev (E). 
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48 % of the students regarded correctly the equality to be true if y was 
equal to p. 48 % of the students regarded the equality to never be true. 
This means that nearly half the students did not seem to regard the two 
letter symbols to be able to take on the same value. In the spring, nearly 
70 % chose the correct alternative and gave a correct explanation, which 
is an indication of a positive development. They had then had the experi-
ence of working with functions and had seen that two different letter sym-
bols could take on the same value, which might be one reason for the bet-
ter result.   

An important ability according to Küchemann (ibid) is to distinguish 
between the objects themselves and the numbers/values of objects. One 
task similar to one in the CSMS study was chosen to check this:    

    
   Table 8-2: Algebra test item 7 with results (%) and alternative solutions 

Task 7 Correct Alternatives 
One cake costs c kroner. One 
sandwich costs s kroner.  
I buy 3 cakes and 4 sandwiches: 
What does the expression  
3c + 4s mean? 

40 Expression representing numbers of 
objects (20%) 
 

No response or had stopped in the mid-
dle of the solution process (36 %) 
 

Letters given specific values (4%) 
 

In this item, 40 % or ten students gave an acceptable interpretation of the 
expression. Five students (20 %) interpreted clearly the expression to be 
the amount of sandwiches and cakes. They did not differentiate between 
the price of the cakes/sandwiches and the objects themselves (see section 
4.1). The choice of the letters in the task makes it probably more likely to 
happen since students let c represent the object cake and s the object 
sandwich19. One student answered by assigning values to the letters. In the 
spring, the result was not better; then only nine students (38 %) stated cor-
rectly that the expression was the total price.  

The interviews confirmed the problems, but when given a similar ex-
ample in which they had to convert text into mathematical notation, it 
seemed to be easier. However, when led back to the initial problem, it still 
was a source of difficulty to differentiate between the price (value) of the 
object and the object itself. In the lessons, students solved no similar 
tasks. 

In the CSMS-project (Küchemann, 1981; Booth, 1984) and in the 
KIM-project (Brekke, 2005) it was reported that some students conjoined 
terms. This was rarely seen during observation, and only by two students 
on two occasions; an indication that all accepted the lack of closure. 

                                           
19 A cake is “kake” in Norwegian, and sandwich is “smørbrød”, the expression was: 3c + 4s.  
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The problem to differentiate between the number or value of objects 
and the objects themselves, might cause problems for some students in 
transforming word problems into algebraic equations; one student ex-
pressed this explicitly when converting text into equations when working 
with straight lines. The problems of deciding if expressions are equivalent 
or not, might also create difficulties when solving equations, and when 
reducing expressions to simpler forms.  It was though evident that a larger 
group of students succeeded in picking out equivalent expressions in the 
spring than in the autumn. 

No example or assigned task was offered for students to discuss or 
compare expressions, or to interpret the letter symbols. The concept of 
equivalence was not mentioned in the textbook. This means that there was 
no new opportunity given (Hiebert & Grouws, 2007; Kilpatrick, et al., 
2001) for the students to develop a proper concept image (Tall & Vinner, 
1981) of the concept of equivalence, which is the basis for all manipula-
tive work with algebraic expressions (Kieran, 2007).  

8.2 The basic properties of addition and multiplication 
The first part of the first sub-chapter in the textbook is devoted to the 
basic properties of addition and multiplication; the commutative, the asso-
ciative and the distributive properties. These mathematical notions are not 
applied, but instead explained by daily life language as rules for calcula-
tions. Only numbers from the set of natural numbers are used. (A detailed 
description is to be found in appendix 8.2). There was no task assigned to 
reason about these properties.  

In the algebra test, one task was given that tested the commutative 
property of both addition and multiplication. In addition, the issue of the 
invisible multiplication sign was present. The students should decide if 
two expressions were equal. The result is shown in the table below.  
 
  Table 8-3: Algebra test, item 6b with results (%) and alternative answers 
Task 6b)     
 a + b·2 = 2b + a 

Correct  Alternatives No response 

This: 
   is always true      is never true 

 
   could be true, if……………  

72 Never true 
(12%) 
 
Could be true if 
b=2           ( 4%) 

12 

 
A large part of the group correctly regarded the proposition to be ‘always 
true’. However, 12 % regarded it to be ‘never true’ and 12 % did not re-
spond. One student responded that it could be true if b was equal to 2.  



 
A case study of a Norwegian mathematics classroom   167 

It might be that the invisible operation sign on the right side of the 
equal sign, was one reason for some of the students to regard the proposi-
tion to be never true. It was evident from the classroom that some students 
were unsure about the invisible operation sign and asked the teacher about 
it. The teacher had remarked earlier that she was aware of students’ prob-
lem with these signs (Herscovics & Chalouh, 1985; Lee & Messner, 
2000). During plenary sessions, she used all opportunities given in the 
example tasks to emphasise that in algebra the invisible operation sign is a 
multiplication sign. In the spring all students answered correctly; an indi-
cation that it was the invisible sign more than the commutative property 
that had caused a problem for the students in this task.  

When working with tasks, the students mostly showed evidence of act-
ing in accordance with the distributive law, although it was a recurring 
problem that students made mistakes. During seatwork, when checking 
their results, they mostly realised by themselves, what had gone wrong. 

Only four students saved solutions in which they had not followed the 
distributive law. Three of them did it only in a task with a post-multiplier. 
Later when working with equations, they mostly put the common denom-
inator as a post-multiplier and performed correct operations.  

On the ordinary test in September there were five tasks including eight 
brackets to be multiplied by a pre-multiplier. Six students out of 27 (22%) 
failed to follow the distributive law. Five of them failed only once, while 
one student made this error in three out of eight tasks.  

This indicates that the students in general seemed to be competent fol-
lowing the distributive law, and that none consistently made errors.  

8.3 Negative numbers and the minus sign 
The minus sign was the focus for many discussions in the observed les-
sons. One problem in Norway is that exactly the same sign is applied both 
as a sign for the operation of subtraction and as a sign for negative num-
bers. This was not mentioned in class or in the textbook. Some few tasks 
in the textbook were tasks focusing only on operations on negative num-
bers. However, students revealed many problems related to the minus 
sign. During observation, questions caused by what Vlassis (2004) called 
negativity, were some of the most frequent questions in the classroom.  

In this section all the different problems related to negativity will be 
reported and related to the textbook and the teaching. All available data is 
drawn upon. (Additional information is to be found in appendix 9.3 with 
its sub-sections.) 
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8.3.1  Negative numbers in the teaching material  
The textbook (Ekern, Holst, & Guldahl, 2006) had one section devoted 
explicitly to negative number and the introduction of the set of integers 
including zero. (A more detailed description is to be found in appendix 
8.3). This set was presented in set notation: ℤ=…-3, -2, -1, 0, 1, 2, 3… 
and on the number line. The number line was used to visualise the opera-
tions of addition and multiplication of a natural number by a negative 
number. Negative numbers were symbolised by red arrows, the length 
representing the size of the number, and positive numbers by blue arrows. 
It was not explicitly said that the size of the number and length of the ar-
rows correlated, but the metaphor was used to exemplify and give mean-
ing to addition and multiplication of negative numbers. One example, 
3 ( 4)  was illustrated as shown below: 

 
 
Addition of a negative number 5+ (-3) was shown in the same way, 

but said to be normally written as subtraction: 5-3 =2 There was no com-
ment about this shift in the function of the minus sign from being a sign 
signalling position to being an operation sign. There was also no presenta-
tion of opposite numbers, but the sign rules were highlighted:  

 
In the margin was a short cut: “two like signs give plus, two unlike 

signs give minus” (ibid, p. 15).  
The sign rules for operating on brackets were also presented in a rule 

box; but there was no explanation of why the rules work (ibid, p. 16). 

  
There was only one item in the textbook offered for operating on nega-

tive numbers. The minus sign however, was included in many tasks.  
In the plenary session one example task from the textbook was solved: 

 

   
   

5 3 2 5 2 5

5 6 3 15 2 5

5 6 3 15 2 5

10

a b b a

a b b a

a b b a

a b
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This task was an exercise in applying the rule of distributivity and the 
sign rule shown above.  

In the next sections students’ work with negative numbers and the mi-
nus sign is presented and categorised in accordance with problems re-
vealed in the reviewed literature. 

8.3.2 Students’ work with negative numbers 
Only three textbook tasks were offered explicitly for students to practice 
operations on negative numbers. One task, 1.10d, is presented under the 
headline ‘double minus sign’. In addition, one task from the algebra test 
required that a literal symbol was substituted by a negative number and 
operated upon. (Analyses and more detailed descriptions can be found in 
appendix 9.3 and its sub-sections).   

The table below presents the textbook tasks. The number of students 
who solved them, and the number of correct answers are listed in the table 
together with students’ alternative answers. (Dataset 18 students.) 

 
Table 8-4: Negative numbers - Textbook item 1.1.10 (Number of students) 

Item  Task  Correct 
 solutions 

 Students 
 solving 
 the task  

 Alternative solutions 
 

 1.1.10a ( 3)( 2) 4    13 14 ( 3)( 2) 4 ( 6) 4 24          
 1.1.10b ( 1)( 2)( 3)( 4)     10 13      1 2 3 4 2 12 14        (A) 

( 1)( 2)( 3)( 4) 3 12 36        (B) 

( 1)( 2)( 3)( 4) ( 10) 10         (C) 

 
One student came to a negative solution in both tasks. In the second task it 
seems that she has added the numbers, although the numbers were written 
in brackets (C). It might be that the invisible multiplication sign caused 
the error (the responses are copied from the data files). The other two 
have also applied other operations in parts of the task (A) and (B).  

One task in the algebra test included negative numbers; task 5b. This 
task though, was more complicated than those in the textbook, because 
literal symbols had to be substituted by given numbers. In addition, there 
were two terms, one with a power. The task was:  

Calculate the expression 23b abc  when  3,   1,  and   5.a b c     

This task was solved correctly by 4 out of 25 students in the autumn and 
by only 3 students in the spring.  

The last term –  3( 1)5abc     is of the same type as those above, but 
the substitution makes it more complex. Most of the students had substi-
tuted the letters by the numbers correctly, but few set negative 1 in a 
bracket. It was not written within a bracket from the outset, and it might 
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be that a greater number of the students would have succeeded if that had 
been done. However, students who initially wrote brackets also showed 
uncertainty as in the example below: 

 
This student has correctly put the negative number within a bracket in the 
start, has nevertheless changed the multiplication signs into minus signs. 
The reason behind this cannot be elicited from the data. 

If the task had only this last term, the result might have been better. 
Since the bracket was omitted in the givens, and the students had to focus 
on the first term before coming back to the last term, it might have caused 
students to lose sight of the multiplication (they wrote by hand). The re-
sults are shown in the table: 

 
Table 8-5: Task 5b algebra test: 23b abc  given 3, 1,a  b  c=5    

2nd term 
3 ( 1) 5 15abc        

Autumn (August)  
25 students 

Spring (May) 24 students 

Correct  24 %   21 % 
-15 24 %   54 % 
Mixed operations          51 %   25 % 

 
Only one student solved the last part of the task correctly both in the au-
tumn and in the spring. Although there is no progress from autumn until 
spring when it comes to correct solutions, there is a development in that 
the proportion of students who mixes the operations (multiplication and 
addition/subtraction) decreased. The invisible operation signs seem to 
cause fewer problems in the spring. The reason might be that more stu-
dents wrote brackets, but also the emphasis on invisible operation signs 
during plenary sessions during the year might have helped many of the 
students to choose correct operations (see section 8.2).  

75 % in the spring multiplied correctly but more than 50 % of the stu-
dents arrived at a negative solution. This might be due to the  double mi-
nus sign in their solution process which is reported to be a problem 
(Gallardo & Rojano, 1994; Vlassis, 2004). The minus sign is still a prob-
lem in the spring for more than half the students in this task.  

8.3.3  The double minus sign  
Only three tasks in the textbook were given with two successive minus 
signs. Only one was on the work plan: 12 ( 7 2)   . Four of 13 students 
solved it incorrectly. For two of them the error might have been caused by 
a mis-interpretation of the double minus sign.  
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One task with a double minus sign was given on the ordinary test after 
the work with the textbook tasks:    3 3a b b     . Three students failed 

in this task because of the double sign. Thus, it seems to be that nearly 
90 % of the students were confident that two consecutive minus signs are 
equivalent to a positive sign in this task. But more students seemed to 
have problems when a double minus sign appeared during the solution 
process (see section 8.3.5).  

For those students it might have helped them to be aware of the differ-
ent meanings and functions of the minus sign (Gallardo, 2002; Lamb, et 
al., 2012a, 2012b; Vlassis, 2004), but these were not addressed in the 
textbook nor in the classroom.  

8.3.4  Result and solution numbers 
According to Gallardo and Rojano (1994) students in their study made 
efforts to avoid negative solutions.  

On the first work plan there was no task with negative numbers as re-
sult numbers (Gallardo, 2002; Vlassis, 2004, 2008). On the next plans 
there were three assigned tasks with negative result numbers, and four 
tasks with negative solution numbers.  

Although a large number of the students made errors in the tasks with 
negative results numbers (see appendix 9.3.3), it cannot be argued that the 
students had a tendency to avoid negative solutions. Only one student 
seems to have ignored the sign in two of the tasks, while having correct 
solutions in the others.  

There were, however, other problems with negative solutions. In one 

task, three students (dataset 18 students) came to the result 
3

3


. It is cor-

rect, but they had not simplified the fraction. In other fraction tasks, when 
numerator and denominator were equal, but positive, they had written that 
the result was 1. The lack of simplification, might thus partly be caused by 
the minus sign.  

One episode with Sven working with task 2

12 4 3

a a a
   illuminates this 

suspicion. He had solved the task so far: 2 3 6 4 6

12 4 3 12 12

a a a a a a    
    . 

He checked it and found that it should have been 1

2
 . He then simplified 

the fraction and came to the result 1

2

 . He points to his solution and asks 

the teacher: 
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Sven:    In the textbook the solution is said to be 1

2
 . But I have this.  

T: That’s what you have. You didn’t see that?   
Sven: Yes, but in the textbook the minus is written in front of the fraction. 
T: Minus divided by plus is minus. 

(The teacher goes to the whiteboard and writes: 1

2

 . She then puts in the 

plus  sign: 1

2




 and equals this to 1

2
 ). That was what I showed you now.  

Sven: Are they equal?  
T:        They are equal. Because minus divided by plus is minus. If you have a 

fraction like this (she writes 1

2
), then this will be equal to 1

2
  as well. 

Thus your solution is correct. 
Although having reached the correct solution, Sven could not see the 
equality between the fraction he had written, and the one in the textbook. 
Even after the teacher had shown him on the white board that the two rep-
resentations were equal, he was not convinced. The location of the minus 
sign caused him to think that he was wrong.  

Most students ended their solutions without writing the minus in front 
of the fractions. They placed the sign either in the denominator or in the 
numerator. It was first interpreted to be so because of convenience, but the 
episode with Sven shows that there might be a conceptual reason for this.  

When helping Sven, the teacher referred to the sign rules, not why 
they work, which is in line with the exposition part in the textbook (see 

section 8.3.1). In the case with the solution 
3

3


, it might be that some stu-

dents avoided simplification because they were not sure where the minus 
sign ‘belonged’  

As a conclusion it does not seem that the students tried to avoid 
negative solutions or negative results as was reported by Gallardo and Ro-
jano (1994). It was at least not a consistent error. From observation in 
class, it seemed, however, to be a problem to come to this negative 
solution.  

8.3.5  The sign rules 
The different sign rules were not easily grasped by all students. By the 
end of November when working with system of equations, Oscar could 
not accept the answer in the back of the textbook. He had come to the re-
sult - 3x=- 6, and he meant the solution should be negative 2: 

Oscar:  This here, I can’t understand that it will be 2. I thought it was only  
 when multiplying it could be for example minus 6 multiplied by minus 3. 

(He points at the screen). I really thought it was only when we multiply.  
R 3: No, it is as if you think in this way: 2 times minus 3. (She writes 

2 ( 3)  on paper). How much will that be? 
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Oscar: 2 times minus 3?  
R 3:  Yes?  
Oscar:  Minus 6? 
R 3:   That’s what you have applied here. When you divide minus 6 by minus 3, 

then it will be 2. That means that 2 times minus 3 is equal to minus 6. 
Oscar: Okay. 
R 3: Do you understand then? 
Oscar: Yes. 
R 3: That’s good. 
Oscar:  And now I am going to find the y. 

He had learned the sign rules, but had restricted the sign rules to the oper-
ation of multiplication and shows surprise in the above episode. It was 
evident from classroom observations that he was not the only student 
thinking that it was impossible to divide by a negative number.  

Rakel expressed their problem when solving an equation, which 
caused many students to wonder about the minus sign. At the end of the 
process she had 5 3x  . She expressed her problem in this way: “but if we 
divide by minus 5, the minus sign will come down there?” It seemed to be 
that some students thought that was impossible.   

In the episode above, Oscar was given a mathematical reason for the 
result that goes beyond the rule. 

For many students the rule about brackets and signs was not an easy 
matter. This can be illustrated by an example from the plenary session 
when the topic was equations. The example task was:  

2(3 8) 5 3( 1)x x    . The teacher asks the students about the multipli-
cation on the right side of the equal sign:  

Tord: It will be 3x  
T: 3x and? 
Tord: Minus 1, no, no, minus 3.  
Tone:  -1 
Arne: Plus  
Some say plus but most students say minus. 
Tord: It is minus 3.  
Arne:  Plus and minus give minus.  
T:  Do all agree that we will have minus? If I keep the bracket, then I keep 

that sign (she points to the plus sign). Sometimes it is smart, not to exe-
cute more than one operation at a time. Here it is pretty simple, then we 
can do it. But, you have to be conscious about what you are doing. And 
the reason for us removing the first bracket was? 

Eli:  There was a plus in the front  
T:  And when there is a minus in the front, then you have to be aware of it, 

because it is so easy to make mistakes. 
The equation was then solved, but the example shows that not all students 
would change the sign in the last bracket when removing it. Teacher’s ad-
vice was that it would be wise to keep the bracket during the operation of 
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multiplication, and then in the next step remove the bracket and change 
sign. The same didactical advice she gave several times during seatwork.  

In the textbook, examples illustrating the sign rule for brackets and 
pre-multipliers in the first sub-chapter, the authors followed the same ad-
vice; showing two steps in the solution. In the example tasks related to 
equations, however, the authors executed both operations in one line.   

Teacher’s advice seemed to work in most cases, but one task: 
2(2 3) (2 ) 5( 3)a a b b       on the test in September caused problems. In 
this task 8 students or 30 % wrote  5b  instead of 5b . The students had 
learned that if there is a negative sign in front of a bracket, the signs with-
in the bracket have to be changed when the bracket is removed. Then for 
the students it might be a problem if they think that the signs are changed, 
resulting in + 5b, and there is still a negative sign preceding the bracket 
causing them to change once again.  

The lack of meaning of the sign rules for brackets, might have caused 
the error. There was only one similar task offered in the work plan, solved 
by three students, who solved the text task correctly.  

It is evident from the saved computer files (18 students) that eight stu-
dents removed the bracket without changing signs in one or more of the 
assigned tasks. For five of those students (28 %) it seemed to be a rather 
stable error in that they also made this error on the ordinary test.  

In September, three tasks in the test included brackets preceded by a 
minus sign, with or without a pre-multiplier. Nine students or 36 % of the 
students did not change signs correctly when removing the brackets. Two 
others changed signs when removing a bracket preceded by a positive 
sign, which might indicate that the rules gave no meaning for them either. 

According to Vlassis (2004) this was denoted to be algebraic subtrac-
tion and was an algebraic version of the ‘opposite of’. The reasoning be-
hind the action of changing sign, might have been more based in mathe-
matics if students had been taught about taking the ‘opposite of’ (Gallardo 
& Hernández, 2005; Lamb, et al., 2012a).  

In a conversation with the teacher more than one year after the obser-
vation period, she referred to Alf, a student who seemingly at the time of 
classroom observation, had no problems with sign and brackets, saying 
that he had never really understood why the signs had to be changed.  

The teacher said that she knew it could be a problem for some stu-
dents, but she was surprised that he did not understand the reason for the 
rule, something she had taken for granted. Her problem, under the severe 
time pressure, she said, was to know how deeply she should go into the 
reason for the rules, reasons that she assumed students had become ac-
quainted with earlier.  
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8.3.6  Detachment of terms from indicated operations 
This notion was used by Herscovics and Linchevski (Herscovics & 
Linchevski, 1994; Linchevski & Herscovics, 1996), and can be divided 
into several sub-groups. In the classroom and in students’ written materi-
al, it is found that terms are just rearranged ignoring the signs. There is 
evidence in class of what Vlassis (2004) called ‘bracket reasoning’, and 
perhaps of ‘jumping off with the posterior operation’ (Herscovics & 
Linchevski, 1994; Linchevski & Herscovics, 1996; Linchevski & Livneh, 
1999). There are also episodes in which students calculate from right to 
left (see section 4.3 and section 4.4 and table 4-1). The rest of the section 
is divided into sub-sections for each of the subgroups.  

Rearranging terms – ignoring signs 
One of the first assigned tasks was: 5(2 3 5)b a  . Four students executed 
correct multiplications, then they seem to have intended to reorganise the 
terms in alphabetical order. They just changed the location of two of the 
terms, ignoring the operation signs: 10 15 25 15 10 25b a a b     .  

The other students solved it correctly, which might be interpreted as 
that the students were mostly confident with which signs and terms be-
longed to each other. However, it might also mean that there were no oth-
er tasks in which this was tempting to do. The textbook, in all the other 
tasks in the first chapter, presented the letter symbols in alphabetical or-
der.  

One student was observed asking the teacher if she could change the 
order in an expression while she wanted the first term not to be preceded 
by a minus sign. That girl rearranged the terms correctly. In other epi-
sodes it was evident that a large group of students had problems deciding 
which operation belonged to which term, and to decide which operation 
should be applied. 

Jumping off with the posterior operation 
This was the notion used by Herscovics and Linchevski (1994, 1999) to  
describe the phenomenon of applying the operation to the right of a term 
instead of the preceding operation. There is only one possible example of 
this in the material. Task 1.1.12c was solved by Bill in this way:  

3(2 5) (6 2 ) (3 1)2 6 15 6 2 6 2 2 19a a a a a a a              

12 a disappears. Here the reason might be that the minus behind the 
first term is applied for the fifth term 6a. It might also be that he calculat-
ed from right to left. This student was observed at one other occasion 
changing the direction of calculations. 
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Bracket reasoning and/or calculation from right to left  
Bracket reasoning was the notion applied by Vlassis (2004, 2008), and 
was caused by seeing the minus sign as a splitting factor. Another phe-
nomenon is to calculate from right to left if that seems to be convenient 
according to the numbers in play (Herscovics & Linchevski, 1994; 
Linchevski & Herscovics, 1996; Linchevski & Livneh, 1999). In many 
cases it is not easy to determine what is caused by the minus sign as a 
splitting factor, and what is caused by changing direction. Both are related 
to students’ uncertainty of what operation sign belongs to which term. 
This uncertainty was evident in much of the work done both in class and 
on tests.  

Two fraction tasks had a structure that invited bracket reasoning: 
 
Task 1.2.2b                                         Task   1.2.2c 
2 3 4 5

5 5 5 5
                                            5 10 2 7

3 3 3 3
                                

 
The three students solving these tasks, came to the results shown above. 
There were no other textbook tasks with the same structure. It can be dis-
cussed whether the reasoning has been caused by first grouping the two 
fractions with addition sign in between, before subtracting the first frac-
tion, or if the students have been starting from the right at the outset.   

Three of the tasks in item 1 in the algebra test are shown in the table 
below together with the distribution of correct answers and alternative an-
swers (25 students): 

 
Table 8-6: Algebra test, item 1 with results (%) and alternative answers  
Item Task Correct  Alternatives No response 
1a) 2x  + 5x  96 6x*  
1b) x + x + 2x   88 23 ;   5 ;   2 ;   x x x x   

1e) a – 3a + 2a  44  4a (48 %) 8 
 

Nearly all students solved the first two tasks (1a and 1b) correctly. How-
ever, there is a dramatic change when it comes to the task 1e. The main 
difference from the other tasks is that 1e includes a minus sign. In addi-
tion, there is an invisible coefficient in the first term, as also in the two 
first terms in task 1b. In task 1b only three students might have been in-
fluenced by the case that the number 1 is invisible. 

Olav and Selma, who had come to the solution 4a in task 1e, were 
asked about this task in interviews. Olav calculated from right to left, but 
when the invisible coefficient was made visible and larger than in the sec-
ond term, he calculated correctly from left to right. He said he knew that 
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the first coefficient was 1, but assumed that he had felt it easier to start 
from the right since the second term had a larger coefficient. This tenden-
cy to change direction when the number, or the coefficient, in the first 
term is smaller than in the following term, is reported by (Linchevski & 
Livneh, 1999; Vlassis, 2008).  

Selma, the other student first wrote the answer 4a, but without any in-
terruption she changed her solution to zero. She explained that her first 
strategy was to subtract a from 3a: 

Selma: It was the case that I thought you should take away from 3 (a). This means 
that you should take away the one a. However, there is still a minus so 
there is a plus there (she points in the front of the first a). Therefore, you 
should just take away from the one so there is still a negative.  

From her utterance it seems that she calculated the difference between the 
two first terms from right to left. She further explained what helped her to 
find the right solution.  

Selma:  I forgot there was no plus there (in front of 3a), but a minus. You can sort             
of say there is a number there, a number there and a number there. (She             
points to each term.) There are several groups. In addition, we have to re-            
member that, this one is a minus, this one before the 3, and that it is not 
that one, which is minus (she points to the first term, the a). That’s why I 
thought it was 2(a).  

In the last sentence she talks about the difference – 3a a . She tells that she 
has to remember that the minus sign belongs to the term 3a and not to the 
a as it would be if she went from right to left. She tells that she resolved 
her problem by focusing on terms (calling them groups). She explained 
how she drew circles around each of them, including the operation signs. 
From this circling she made clear for herself  which operation sign be-
longed to which term. She had written: 

 
Her notes show that her first solution was 4a, and then, after realising that 
she had to be aware of the terms and their signs, she managed to find the 
right solution. She was also fully aware of the invisible number 1.   

None of the two interviewed students seemed to group 3a and 2a be-
fore subtracting it from a. The two interviews show that there is different 
reasoning behind equal results.  

In the autumn 48 % and in the spring 38 % came to the result: 4a. The 
proportion of correct responses had increased in the spring, 50 % had then 
a correct solution. Some with an incorrect solution in the autumn seemed 
to have progressed, but some with a correct solution in the autumn failed 
in the spring. What is clear, is that many students have no clear concep-
tion of operation signs and terms. For Selma it helped her to consider this 
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and to make circles around the terms and their operation signs in order to 
visualise what belonged together. 

This could perhaps also have helped Carl and Jone when solving the 
textbook tasks below:  
   
 Carl’s task 1.1.12b 

3 2(4 3) 10

3 8 6 10

5 16

x x

x x

x

   
   
  

  
Jone’s task 1.1.12d 

3(2 ) 2(3 1) (8 3)( 3)

6 3 6 2 24 9

21 11

a a a a

a a a a

a

      
      
  

 
Carl has seemingly calculated the difference 3 8x x  in task 1.12.b from 
right to left. 3 is smaller than 8 so then it is tempting to change the direc-
tion to be 8 3x x .  

Both students were observed doing the same on other occasions. Sev-
en students seemed according to the written data in two of the textbook 
tasks to either partly calculate from right to left or to rearrange terms 
without taking the signs into account. All students, except for one, who 
detached terms from their intended operation in one or more textbook 
tasks, had the solution 4a when solving the task 1e) in the algebra test. 

8.3.7  Summary negativity 
The minus sign and negative numbers were the reason for many errors. 
When looking through the material from students saved computer files, 
only three students in the data set of 18, had no errors related to negativity 
although the solutions to the textbook tasks could be checked in the text-
book key. Thus this might indicate that the students felt confident that 
they had arrived at the correct solution.    

It was also heard in the classroom that the answer is correct though; 
only the signs differ. This might indicate that some of the students were 
not so much focused on the signs, their goal was to reach a “correct” 
number. Ruth even asked if it mattered if the sign was wrong. 

In the test in September, shortly after finishing the first chapter in the 
textbook, two students made no errors related to negativity, six students 
made only one error, which means that 70 % had made two or more errors 
related to negative numbers or the minus sign 

The table below presents results from the September test related to 
negativity. The errors are distributed as shown in the table below: 
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Table 8-7: September test - Errors related to negativity (27 students) 
Types of errors Number of 

students %  
Double negative sign (section 8.3.3) 11 
Do not change signs, or not correctly, when removing brackets pre-
ceded by a minus sign or a negative pre-multiplier (section 8.3.5) 

44 

Do not change sign in binominal numerator if the fraction is negative  30 
Ignore the minus sign, addition instead of subtraction  33 
Positive solution number; should be negative  19 
Detach the term from indicated operation  30 

 
The two first categories are discussed in the sections above. The third cat-
egory is related to fractions with binomial numerators. The task was20: 

3 2

2 4

a a b

a b ab


  .  Eight students (30 %) did not change the sign in the bi-

nomial when subtracting the fraction. Four students (15%) were not 
among those who failed in the foregoing category (changing signs when 
removing brackets). It seemed new to students to meet this, and the teach-
er reminded the students to treat the numerator as a whole; as an object 
(Gray & Tall, 1994; Sfard, 1991).  

The next category, addition instead of subtraction, refers to two frac-

tion test tasks: 3a) 1 5 4

3 3 3
   and 3b) 3 3 7

2 7 5
  . Nine students added all 

fractions; five in both tasks. There is no explanation for this. 
Five students in the test ignored one negative solution num-
ber, however, they have negative solutions in other tasks, an 
indication of not avoiding negative solutions (Gallardo & 
Rojano, 1994). The task was an equation. It might be that the 
error depends on the switching of sides; keeping the un-
known positive, while the solution number changes sign 
(Cortés & Pfaff, 2000). The symmetric relation symbolised 
by the equal sign is not taken into account. Both the observa-

tion in the classroom and the tests do not reveal a tendency to avoid nega-
tive result and solution numbers as such (section 8.3.4).  

In two tasks during the solution process, the students could be tempted 
to detach the terms from their indicated operation. One task was 1c:  
-3a -3b +3b. Five students answered -3a + 6b probably calculating from 
right to left, or by seeing the minus sign as a splitting factor (Vlassis, 
2004). Eight students were seen doing this in at least one of the two tasks.   

The textbook and the conversation in the classroom was focused on 
rules. When the teacher asked for reasons for choice of signs, the students 

                                           
20 This task will be discussed later related to fraction operations. 

6 4

9 3
6 3 9 4

18 36

36

x

x




   




36

x

1

2
x 
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referred to rules, and these short arguments were accepted. Didactical ad-
vice was given rather than reasons for why the rules work. What can be 
seen is a focus on instrumental understanding (Skemp, 1987) and proce-
dural knowledge (Hiebert & Lefevre, 1986) without connection to con-
ceptual knowledge.    

The problem of detachment of indicated operations is not addressed, 
and seems to be a problem not recognised either by the textbook authors 
or by the teacher. The different functions of the minus sign is also not ad-
dressed. 

Kilpatrick et al. (2001) use the example of the general procedures for 
arithmetic operations, when describing how procedures can be developed 
to be general procedures. It does not seem that all students have come that 
far in this area, and that the problem might be that they still lack confi-
dence in the basic matter of what sign belongs to what term. There 
seemed not to be much progress during the time of observation. In the 
spring only 50 % succeeded in the algebra test task 1e: 3 2a a a  .  

8.4 Powers 
Two of the sub-topics in the first sub-chapter in the textbook are powers 
and scientific notation (see appendix 8.4). There was not much focus on 
either of these topics. To know about, and to master operations on powers 
is important in the work with arithmetic and algebraic expressions. The 
work with scientific notation seems to be the reason for the introduction 
of powers at the start of the school year. In order to convert decimal num-
bers into scientific notation the students should have a sense of the size of 
the numbers written in both forms. Analyses and a more detailed descrip-
tion of students’ work is to be found in appendix 9.4. 

 The textbook had just a short presentation of powers as repeated mul-

tiplication. It was defined to be: ...........

n factors

na a a a  


 and related to scientific 
notation as a multiple of ten. It was said that the denominator in a fraction 
could be a power, but then the exponent should be negative as in the ex-

ample 5
5

1
10

10
  . Some example powers were written as repeated multi-

plication and calculated. Some with positive exponents: 
4 3)  3 =3 3 3 3=81      )  ( 5) =( 5) ( 5) ( 5) ( 5) 25 125    a b               

and some with negative exponents:       
1 2 6

1 2 6

1 1 1 1 1 1
) 10 , ) 10 , ) 10

10 10 10 100 10 1000 000
a    b     c  

 
        . 

The assigned tasks related to powers and scientific notation were simi-
lar to the example tasks (details in appendix 9.4); and were seemingly 
solved without problems in the classroom. The saved computer files indi-
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cate though, that the meaning of negative exponents, and the size of the 
powers they created were not grasped by all students.  

The September test included two tasks presented in the next table: 
 

Table 8-8: September test - Powers – item 2 scientific notation (27 students) 
Transform to 
 scientific notation 

Correct Alternatives No response 

 
a) 0,000065   

 
(59 %) 

A: 56,5 :10 ; 66,5 :10  

B: 66,5 10 ; 106,5 10  

C: 56,5 10   765 10  ;  10 40,65   7 % 
 
b) 234000000   (85 %) 

62,38 10 ; 72,38 10 ; 10 82,38   4 % 
 

The table shows that task 2b) is solved correctly by 85 % of the students 
while only 59 % succeeded in the first, 2a). In category A) the students 
have divided the decimal number by a power. In this way they avoided the 
negative exponent which probably carried no meaning for them (Weber, 
2002). Two of those had the correct power. In category B, two students 
multiplied by a power of 10 but with an incorrect negative exponent. Five 
others (category C) seemed to know that there should be a ‘minus’, and 
solved the problem in different ways. As the students in Cangelosi et al.’s 
(2013) study, those students seemed to know about a minus sign but not 
why and not how.  

In one textbook item solved by nine (of 18) students, the same prob-
lem with negative exponents was seen, and three students skipped the 
base 10 when converting decimal numbers to scientific numbers like Else 
in one of the tasks: 2432,1 4,321 .  

These solutions indicate that the students making errors, lack a sense 
for the numbers they are creating, or they have not clearly grasped the 
concept of the number system. The textbook did not help much here. The 
procedure was said to be to move the comma as many steps as the value 
of the exponent.  

Powers as a topic will show up later in the course, then related to the 
rules for calculating powers with the same base, also with rational expo-

nents. Then the equality 1
n

na
a

   is again briefly given in the textbook as 

a definition of 1;a  also related to bases other than 10. However, this is in  
the textbook chapter 7.  

Results from one task in the algebra test, asking to write t t t   as a 
power, showed that all students knew the definition of powers as repeated 
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multiplication. However, when solving an assigned textbook task, Kari 
and Rakel were observed discussing powers and the writing.   

Kari had expanded the last fraction 3

2 3

a a

a




 in a string of fractions and 

was going to execute the multiplication:   
Kari: Three a squared, do you think that’s it?    
Rakel: Yes, isn’t it, when there are to a-s?   
Kari: I can’t really see the difference between a squared and just adding another 

a. 
Rakel:   Neither do I.  

They agreed to check the solution in the textbook, and found that their 
assumption was right. On the test in September, however, Kari did not use 
the correct notation in a similar task.  

Olav was observed having the same problem with powers. His solu-

tion so far was: 3 2 5 2 2 2 2

2 2 2 2

b a a

a b a b b a ab

     
  

     
. He found that his solution was 

not in line with the solution in the textbook, and asked for help. The 
teacher focused on the third term: 

T: You have to multiply by a both places because you lack an a in the de-
nominator, and you multiply by a there, and then you have to do the same 
here as well (she points to the denominator and then to the numerator). 

Olav: But shouldn’t I write 2a then? 
T: No, you already had 2. (She points to the number 2 in the denominator). 
Olav: So then it will be a squared.  

From the conversation it seems that the teacher thinks that Olav’s problem 
is expansion of fractions, and asks him to multiply by the same factor (a) 
in the numerator as in the denominator. Olav seems to think that is what 
he has done. His reply is: “But shouldn’t I write 2a then?” 

He seems to be as unsure as Kari and Rakel in the episode above, 
when deciding how to write repeated multiplication. He was observed on 
other occasions revealing the same confusion between multiplication and 
exponentiation reported by Macgregor and Stacey (1997) (section 4.5).  

Several other students were also confused, and at least Olav and Arne 
continued making this error. 

In addition to the interference between the two symbol systems for 
multiplication and for powers, students’ casual talk might promote extra 
confusion. On several occasions students were observed to talk about 2x-
es or 2 a-s meaning x or a squared. When confronted with this, they al-
ways answered correctly that they had to square. This casualness might 
though have caused trouble when writing. 

In the September test five students (19%) made one or more power er-

rors. One example is Ane’s solution: 
215 15

5

ab

b


3
a b

2

5 b
23a . Two others 
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cancelled in the same way, but their solution was 23a b . It might be that 

they have not distinguished between 2ab and (ab)², a problem reported 
earlier (Seng, 2010), or that they have regarded the exponent to be a ‘left 
over exponent’ to be used. At least it must be a mis-interpretation of the 
components in powers (Cangelosi, et al., 2013). One student wrote 2a in-

stead of a². 
Another reported problem is to distinguish between exponentiation of 

negative numbers and the exponentiation of a number preceded by a mi-
nus sign (Lee & Messner, 2000). There were two assigned tasks including 
the power of a negative number: 4( 3)  and 3( 5) , but no task challenging 
students to reason about this distinction.  

In December on the semester test, seven (26 %) of 27 students made 
errors related to powers. Most of them were caused by not following the 
correct order of operations, and in addition some students multiplied base 
and exponents in that they equated 32 and 6.  

To sum up, although knowing the definition of powers as repeated 
multiplication, some students were unsure about how this should be writ-
ten when solving tasks. Also some students did the opposite; they wrote 
ordinary multiplication as powers.  

There were few tasks and little talk about numbers written in scientific 
notation and powers, but the results on the test tasks indicate that a large 
group of the students lacked a sense for the numbers represented by the 
powers. This might also be the reason that some students multiplied base 
and exponent. Another reason might be that there was no clear under-
standing of the different components constituting a power. In addition, the 
sloppy talk about powers, might have caused confusion.  

Despite these errors, most students seemed to know how to deal with 
powers in algebraic expressions. The problem was that some students, 
those who were struggling, seemed not to have progressed at all during 
the first year in upper secondary school.  

Also in the next section, powers will be discussed related to order of 
operations.  

8.5 Order of operations 
Some categories under negativity (Vlassis, 2004) (section 8.3.6) could 
have been categorised under order of operations. However, I have chosen 
to gather all troubles caused by the minus sign and negative numbers in 
one section. The reason is that the order of operation would not have been 
disturbed if the minus sign or negative numbers were not involved in 
those situations. Another reason is that there were so many questions in 
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the classroom about tasks with minus sign(s) and troubles in finding the 
correct solution due to the appearance of that sign. 

In the textbook and in the ‘learning book’, the order of operations was 
presented as plain rules, and there was no task on the work plan offered 
for students to explicitly practice order of operations (appendix 8.5).  

According to Linchevski and Livneh (1999) one frequent error is to 
add two like ‘terms’ before executing multiplication. One such error was 
observed in the September test. Carl was the only one, solving the task 1b) 
in this way: (5 2) 4 ( 1) 2 (5 2) 4 ( 1)b b b b b b b b b        . The other stu-
dents succeeded. In the textbook only two tasks of this type were offered 
and both were not written with bold fonts; only three students had solved 
them; correctly. One task had a structure that could cause the same mis-

take 1 5
1 ( 5)

2 6
x  . The occurrence of the fraction might have prevented 

students from adding before multiplying.  
One item was designed to practice the rules for order of operations, 

but was not offered on the work plan, four students, however, solved some 
few tasks in that item. Thus, few students solved tasks including both 
brackets, powers, multiplication, division, addition, and subtraction.  

Else, solving one of those tasks:    2 2
4 2 3 4 8    , suggested to per-

form multiplication before exponentiation:  
T:  No, you are not going to multiply by 2. First, you have to deal with the 

power. (Else performs the exponentiation and comes to the second brack-
et).  

Else: Yes, look, now am I going to multiply by the power there? 
T:  Yes, but since there are numbers only, you can just calculate the bracket 

before you take it to the power of 2.   
Else: Oh yes. 
T: Yes, when it comes to order of operations you have to calculate the pow-

ers first.  
The tendency to multiply the base by the preceding factor was observed in 
the December test. Five students (19%) made this mistake.  

Another issue is the exponentiation of a negative number (Lee & 
Messner, 2000). In the example above, Else suggested that the result 
would be negative. The teacher first repeats the rule for Else: powers be-
fore ordinary multiplication. Secondly, she suggests writing the negative 
number twice, in brackets, to visualise that she has to multiply two nega-
tive numbers, again presenting a rule; the sign rule.  

One task in the algebra test had one term with a power. The task was 
discussed in relation to negative numbers (see section 8.3.2): Calculate 

23b abc  when  3,   1,  and   5.a b c     One solution was: 



 
A case study of a Norwegian mathematics classroom   185 

 
When solving the task, a large group of students multiplied the base by 3 
before exponentiation in the first term. Those students wrote either 9, or 
making a sign error, writing minus 9. Others multiplied the base by 3, and 
then multiplied this result by the exponent, writing either 6 or minus 6. 

      
   Table: 8-9: Algebra test – task 5b the first term   

23 3, 1,b  given a  b  c=5    Autumn Spring 

Correct 36 % 50 % 
9 or -9 24 % 25 % 
6 or -6 4 % 13 % 

Other responses 36 % 12 % 
 

The result is better in the spring, but a considerable group of students still 
have problems, both with the order of operations related to powers, and 
with the exponent in relation to the base. In addition, many students made 
sign errors. 

This indicates that in the spring, many students still do not follow the 
correct order of operations. If the students had a well-developed concept 
image (Tall &Vinner, 1981) of powers and the numbers they represent, 
they would have executed the operations in correct order.  

Another frequent error was to ignore the possibilities to work out the 
brackets before the other operations (test task December): 

   2 3

2

2 3 4 3 4 2

5 3 7

    

 
.  Nearly 80 % of the 21 students who chose this task, 

carried out the multiplication first. This might be a result of interference 
from having worked with algebraic expressions. In addition, 39 % of the 
students did not distinguish between factors and terms and multiplied both 
3 and 4 by 2.   

The rule for order of operations is one side of the coin. Another is to 
choose the most efficient order of operations. Some students tended to 
expand fractions also when the operation was multiplication, or to multi-
ply before checking for possibilities to simplify. This has to do with stu-
dents’ strategic competence (Kilpatrick et. al., 2001), their structure sense 
(Hoch & Dreyfus, 2004; Linchevski & Livneh, 1999), and the develop-
ment of proceptual thinking (Gray & Tall, 1994).  

8.5.1 Summary order of operations 
No task was assigned explicitly for students to practice order of opera-
tions. During observation though, problems were observed, and they were 
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mostly related to bracket reasoning (Vlassis, 2004), and calculations from 
left to right depending on the size of the numbers (Vlassis, 2004); all re-
lated to the minus sign discussed in section 8.3.6.  

Other problems were related to the powers in that the base of the pow-
ers were multiplied before exponentiation; presumably based on misinter-
pretation of the components in powers (Cangelosi, et al., 2013) and a lack 
of number sense (McIntosh, Reys, & Reys, 1992). 

In addition, most students did not check the possibility either to calcu-
late brackets before multiplication or to simplify fractions before multipli-
cation. Both phenomena indicate a low level of flexibility and a lack of 
strategic competence (Kilpatrick et. al., 2001).  

8.6 Chapter summary 
The topics presented in the textbook, and worked with in collaboration 
within the classroom, the students have met in earlier grades. The analyses 
of students’ responses indicate that several students have had little experi-
ence with some basic mathematical concepts. Basic concepts and princi-
ples are neither addressed in class nor in the textbook. Some of these are 
the meaning of the letter symbols, the concept of equivalence, the differ-
ent functions of the minus sign and the meaning of powers.  

Although most of the assigned tasks are exercises (Niss, 1993), and 
could be solved by imitating example tasks, the responses give evidence 
that some students fail or are unsecure because they lack rich experiences 
with the aforementioned issues.  

The properties or rules of the arithmetic operations seem to be known. 
One issue, the invisible operation sign is addressed and focused upon by 
the teacher, and the students’ performances in that area developed posi-
tively. 

The main focus is on procedures and rules, without connection to the 
concepts they are based on. Those students who are challenged and ask 
for help seem though to have resolved their problems.  
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9 Fractions – exposition and students’ work 
In the textbook fractions are in focus for sub-chapter 1.2: Calculating with 
fractions. As the headline indicates, the emphasis is on the rules for opera-
tions on fractions.   

Fractions, or rational numbers, are as already mentioned an obstacle in 
mathematics learning (section 4.6). More sub-concepts of the fraction 
concept (Lamon, 1999; Marshall, 1993) are presented in the textbook.  

Ordinary fractions are introduced as a result of division; as quotients. 
When introducing simplification and expansion of fractions the two op-
erations are exemplified as a result of partitioning; as part of the whole. 
Related to the presentation of the set of rational numbers, ℚ, fractions are 
presented on the number line with equivalent fractions located in the same 
point on the line; which implies that fractions are presented as numbers 
(Wu, 2009). Two of the fractions with the same location on the number 

line are equated: 3 6

5 10
 . It is commented that this equality is in accord-

ance with expansion of fractions. Equivalence is not explicitly introduced.  
Fractions as ratios are not mentioned, but implicitly fractions as meas-

ure, and fractions as operators are included by the use of the number line 
and through multiplication of fractions. The main emphasis, however, is 
on the rules for fraction operations and on how to apply them, but no ex-
planation is given of the rules.  

In this chapter students’ work with fractions will be presented in the 
light of the presentations given in the textbook, in the ‘learning book’, and 
in the classroom. The chapter is divided into sub-sections according to the 
operations involved. Detailed descriptions of the textbook expositions are 
to be found in appendix 10.1 and 10.4. The work in the classroom is de-
scribed in the appendices 10.6 and 10.7     

9.1 Factorisation and simplification  
The technique and formal writing of expansion is exemplified in the text-
book. Simplification of fractions is written in two different ways. First, it 
is explained as dividing the numerator and denominator by the same num-

ber:
:515 15 3

25 25:5 5
  . Then it is said that this operation is mostly written: 

15

25

53



5 5

3

5
 , and the rule is given: “Before simplifying a fraction, one 

has to factorise numerator and denominator. Then numerator and denomi-
nator must be divided by the same factors” (p. 26). In addition, it is em-
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phasised that expansion and simplification do not alter the value of the 
fraction.  

In the classroom, expansion was introduced by the example: 3 2 6

4 2 8





, 

and simplification was shown to be the opposite operation 
6 : 2 3

8 : 2 4
 . In 

addition, this was written in MathType on the computer by cancelling the 
initial numerator and denominator, with the remaining factors written as 

superscripts: 6
3

8
4

3

4
 . The focus was to find the factor in common for the 

numbers, 6 and 8, and perform mental factorisation. Most students fol-
lowed this pattern of writing, shown in MathType.  

Solving the first task, only two of 18 students, prime factorised the 

numbers 10 2 5 2

15 3 5 3


 


 before cancelling equal factors. Five students made 

the division visible; dividing both numerator and denominator by 5. The 
others followed the pattern the teacher had shown. 

One frequent tendency, when the numbers involved were larger num-
bers, was that the fractions were not reduced to their simplest form. One 

example is: 
642

630
90

6

90
 . In this task 25 % of the students observed to solve 

the task, solved it this way. This tendency is in accordance with Brown 
and Quinn’s report (2006), and is even more frequent, when the results of 
addition/subtraction tasks should be simplified. Another tendency, report-
ed by Shaw and colleagues (1982), but not so frequent, is to avoid simpli-
fication of result fractions when numerator and denominator are equal. 
There is evidence of this in some students’ solutions.   

In the classroom it was observed several times that students struggled 
to find common factors although the numbers were not that large. One 
such example is the episode with Glenn and Sven. They were observed 

discussing how it could be possible to go from 56

21
 to 8

3
. (They had found 

the correct answer in the textbook). They were challenged by the teacher 
to find the factors in each of the numbers 56 and 21.  

T: 56 and 21 has one factor that goes into both numerator and denominator. 
If you write 21 as factors, what will it be? 

Sven: Factors? 
Glenn: 7 times 3. 
T:  7 times 3, yes, correct. And then you have to check. Either must 7 go into 

56 or 3, this in order to simplify.  
Sven:  That… (he stops there) 
T:  56. Goes 3 or 7 into 56?  
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Glenn:  7 goes. 
T:  Yes 7. 
Glenn:  7 times 8. 
T:  7 times 8, yes. 
Glenn: Yes. 
T: Yes, and then you can simplify by seven, you see? 
Glenn: Should we just divide by 7? 
T: Yes, when you simplify, you must divide by the common factor. 

Here Sven seemed to be surprised by the word factors. Although the 
teacher had stressed the notion of factors and terms earlier, it seemed to 
mean nothing to Sven. However, when the teacher prompted them, Glenn 
seemed to grasp what factorisation is about, and he factorised both num-
bers. However, he asked: “should we just divide by 7?” From this, it 
seemed that for him the problem was not only the numbers, he seemed to 
see no connection between simplification and division.  

Some of the other students struggling with this task, found that they 
could use the calculator in the program TI-interactive.  

Norwegian students are familiar with the use of hand-held calculators 
from the early grades (see section 2.3), and it was observed several times 
that they struggled to perform correct multiplication or division on num-
bers without that tool. One example of this is from a lesson in November. 
Ronny is observed when he is going to divide 5 by negative 1: 

Ronny: Let me see. How am I dividing 5 by minus 1 on this cell-phone? (He is 
struggling with his cell-phone. He has no calculator and the students were 
asked not to use the computer).  

Glenn:  Oh, 5 divided by minus 1? Five divided by… 
             (Ronny waits and calls to Tore) 
Ronny: Tore, what is the result of 5 divided by minus 1? 
Tore:  That’s minus 1.  

Ronny seems not to be satisfied by the answer. It is a session of group 
work and he walks around asking others the same question.  

This episode illustrates how simple calculations could be experienced 
as difficult. It also illustrates how dependent the students are on the tech-
nological tools. It might be that the minus sign caused him and the others 
to wonder (see section 8.3.4). However, at this level this is expected to be 
known. All students used their cell-phones before they became used to the 
calculator in the IT-program, and it might be that the habit of relying on 
these tools prevented them from developing a good number sense 
(McIntosh, et al., 1992). 

 When binomials were included in the fractions, all students seemed to 
be unsure about what to do, and how to simplify. The exposition part in 
the textbook introducing this, is extremely short. It is stated that the same 
rules are valid for algebraic fractions as for fractions with only numbers, 
and when simplifying fractions with binomials, one has to factorise by 
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setting common factors outside a bracket. Afterwards one can simplify by 
dividing numerator and denominator by the same expression. It is said to 
be the opposite of expanding the bracket.  

   The example task: 3 6

6 9

a

a




 was applied in the classroom. The immediate 

suggestion was to cancel the a’s, the literal symbols, reported to be one 
strategy in Guzmán, Martínez and Kieran’s study (2011).  

Students also offered other not efficient suggestions, and after a while 

the teacher applied the number example 
25 5

5


 in order to create mean-

ing; to help students realise that the operations they suggested, did not 
work.  

It seemed as if the students accepted her argument, but when asked 
why their suggestions will not work, the students only pointed to the fact 
that the answer would be wrong, or that there is a minus sign in the nu-
merator. The teacher clearly waited for the mathematical notions of 
‘terms’ and ‘factors’. After many hints and a time of silence Jarl answers 
‘factors’ to the question of what makes a product; an example of a funnel 
pattern (Voigt, 1995). The teacher had to bring in the notion of ‘term’ her-
self, and to explain what it means.  

By gesturing, the teacher made circles around each binomial on the 
whiteboard. She emphasised that both binomials had to be dealt with as 
entities, and from this she deduced that the terms within the binomials 
cannot be cancelled; one has to factorise. 

Few students had suggestions to what could be done. One was to 
change the operation sign within the binomial, another to factorise only 
the first term. The impression from the classroom was that the students 
really struggled, and the teacher let them take their time.  

Her next move was to write the expression 3( 2)a  asking what could 
be done. Now many students responded, and they told her to execute the 
distributed multiplication; 3( 2) 3 6a a   . The teacher directed the at-
tention to the latter expression and asked them to compare it with the ini-
tial task, before emphasising that the operation executed in the factorisa-
tion is division. 

Neither was to factorise the denominator 6 9a   easy. To set the factor 
3 outside a bracket, was agreed upon, but some responses involved sub-
traction (Storer, 1956). When the factorisation was completed, the simpli-
fication seemed to be a simple matter.  

In the example task presenting division of fractions with binomials: 
3 4

:
1 3 3a a 

, it was evident again that the students suggested to cancel the 
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literal symbols after having flipped the last fraction and transformed it 

into the operation of multiplication
3 3 3

1 4

a

a





. Tore seemed to have 

grasped the notions, factors and terms emphasised by the teacher earlier, 
and he applies them in his argumentation.  

The teacher wrote both binomials in brackets, and emphasised that the 
whole brackets constitute factors, and had to be handled as such. Some 
students suggested to carry out the multiplication. As a response, the 
teacher asked for possibilities to simplify. Again there were suggestions to 
subtract. The process of factorising the binomials took a rather long time. 
The problem was to see brackets as factors, as entities.  

There were only few tasks offered on the work plan to practice factori-
sation and simplification of fractions with binomials; one task in which it 
was asked for simplification only, one multiplication task, and one divi-
sion task. In addition, there was one task, where the result had to be fac-
torised in order to be simplified. 

It was clear that many students were unsure when solving the first as-

signed task 4 8

5 10

a

a




. It was the task with most frequent questions from stu-

dents. Some just needed the teacher’s confirmation on what they were do-
ing. Others were stuck and needed help to factorise and/or to be told once 
again what factorisation of binomials was about. For many the problem 
was to find the common factor in the two terms in the numerator. They 
divided by 2 instead of by 4 in the numerator, and could not cancel the 
brackets. Others had problems seeing what should be left in the bracket, 
they did not perform division.  

Some students cancelled the literal symbols before they added the re-
maining numbers, as was also suggested by some students in the plenary 
session. The structure of the task was such that they then came to the same 
solution as was written in the textbook. Ronny and some peers were ob-

served solving the task in this way: 4 8 4

5 10

a a

a





8

5 a

 12 4

15 510
 


, arguing that 

they had reached the correct solution. Ronny speaks for them. He argues 
that there is no need for factorisation: 

Ronny: Why should we have to factorise this here, it’s just 5 times a plus 10. We 
can do it like this? (He points to his solution) 

T:  What do you mean by doing it this way? 
Ronny: But the answer is correct. 
T:  You can’t do like this. 

  Ronny: But why not?  
(The teacher goes to the whiteboard and points to the number example 
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she applied in the plenary session: 25 5

5

 . She repeats that to cancel the 

5’s is not what is to be done.) 
Ronny: Yes, but that’s why there was a minus?  

(The teacher then changes the minus in the example to a plus sign). 
T:   I can do like this.  
Ronny: Okay. 
T: Okay? (She waits for Ronny’s response. He watches the white board). 
Ronny:  But I got the correct result. 

The teacher emphasised that it was just by coincidence that his result and 
the result in the textbook were identical. She applied the number example 
once again and told him and his peers to factorise, pointing to the fact that 
the whole numerator is one factor. Ronny does not seem to agree, but the 
teacher tells him and the others “to do it the hard way; by factorisation”.   

From the example above it is clear that these students did not see the 
necessity of factorisation in order to simplify; they did not see the binomi-
al as an object (Sfard, 1991). It also illustrates the view they had on the 
‘correct answer’. Since their solution was in line with the answer in the 
textbook, they did not question their solution method. Ronny argues as if 
he does not regard the process as important.  

Eli was observed when she worked on the same task. She had factor-
ised the fraction, however, not correctly. Her last move is then to cancel 

term by term within the bracket: 1( a 2 )

5( a 2
1

5)
 .  

Hall (2004) experienced this phenomenon in his study. He commented 
that he as a teacher would not have been aware of such a reasoning if he 
had not interviewed the students. Here it is visible because of the cancel-
ling markers. It might though be that also other students were reasoning in 
the same way as Eli, although seemingly cancelling the whole bracket.  

When asked what she would have done if the expression in the numer-
ator was 3a + 2, she indicated that a request for simplification is that one 
of the brackets could be completely cancelled.  

In the two other assigned tasks, the main problem was the factorisation 
or to see the need for factorisation. Not many students, 6 and 11, respec-
tively (dataset 18 students) solved the tasks. Four of them did not succeed 
in either of them. Also for these two tasks it was possible to come to the 
same result as was written as correct in the textbook; performing partly 
cancelling. The tasks were told to be worked out at home.  

In the class Ane and ine solving one of the tasks had written: 
2 6 3 2( 3) 15

:
5 15 5 3

a a a

a

  
  


. Ane asked:  

Ane:  Now we have done this. What are we then going to… 
Ine:  Eh… Is it correct? 
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T:  It is perfect. 
Ine:  Can we… What are we going to do now?  
T:  Yes what should we do? 
Ine:  Can we remove this and this? (She highlights a+3 in the numerator and in 

the denominator). 
T:  Yes, can’t we?  
Ane:  And the others like that? 
T:  Yes, and then you simplify there, yes.  

It seems as if they are not sure it is correct, and will not cancel any factor 
before they have asked the teacher; they want her confirmation. The stu-
dents tell that they like this type of task. 

 

In students’ work plan there were no more opportunities to practice 
factorisation of binomials. It is clear from the observation that these tasks 
did not serve their purpose. All assigned tasks were of such a structure 
that the result would be the same either they were factorised, or if the stu-
dents started their solutions by cancelling the literal symbols. Actually, 
students could work out the tasks without having grasped the important 
difference between factors and terms and carry on with their mathematical 
work without their erroneous concept images being challenged. Former 
studies have though showed that it is likely that some students would sim-
plify in the same way as these students did (Guzmán, et al., 2011; Storer, 
1956). 

In another assigned task with another structure the result had to be 
simplified in order to reach the solution written in the textbook.  

Ronny was observed when recognising that his answer, 3 3

6

a  , differed 

from that in the textbook. He was claiming that he had no clue about how 
to reach the desired result. He turns to his classmate Jarl: 

Ronny:  But, you can’t simplify 3a, there is no a underneath. 
Jarl:  What do you want to simplify? 
Ronny:  I don’t know, but …yes, look here  … No, I can’t simplify. 
Jarl:  You have to factorise. 
Ronny: Yes, I have to factorise.  
Jarl:  It will be 3 and a -1  

Ronny was stuck about how to come to the answer in the textbook. He 
thought at first that it was impossible to simplify the fraction since the lit-
eral symbol was present only in the numerator, this was his only strategy. 

The result 1

2

a   in the textbook, made him ask Jarl for help. 

Half the students in the data-set of 18 students had solved this task. 
Three of them did not factorise the numerator, but two of them, Rakel and 
Tord, correctly divided all terms by 3. It might be that they know why this 
is functioning. They found at least a way to reach to the expected result.  
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Ruth in her solution seemed to perform some acrobatics in order to 
come to the desired result: 

  2 3 2 4 (3 ) 2 4 (6 2 ) 4 6 2 2

3 6 3 4 6 2 12 12

a a a a a a a a       
     

 
6a 

1

12
2

1

2

a 


 

This episode and Ronny’s solution are examples of how the answers in 
the textbook influenced students’ actions. Ronny asked for help and his 
peer instructed him. Ruth just searched for a way to adjust the result she 
had. The conclusion in Guzman et al.’s study (2011) about rational frac-
tions and the use of CAS, was that when the result using CAS differed 
from students’ solutions, they had the opportunity to try to find another 
way to a correct result. The answers in the textbook can challenge stu-
dents in the same way. It is, however, of crucial importance that the stu-
dents are not left alone (ibid). They need the guidance of a teacher or 
peers who are more capable. In addition, they must be committed to learn 
(Entwistle & Peterson, 2004; Mellin-Olsen, 1981; Novak, 2002), not just 
to find the correct answer. 

In September the students should solve a test task, dividing and simpli-
fying rational fractions. The table below shows the test result. 

 
Table 9-1: September test task 4c. Solutions (%). Dataset 27 students 

3 15 2 10
:

6 8

a a 

 

 
% 

 
Alternative solutions 

Correct 19  
Not  
finished 

   3 

(A)
3 15 2 10 3 15 8 (24 120) :12 2 10

:
6 8 6 2 10 (12 60) :12 5

a a a a a

a a a

    
   

  
 

Partly can-
celling 
 

60 

(B)

3 15 2 10 3 15 8 24
:

6 8 6 2 10

a a a

a

  
  



12
a 12120

1212 a 1260

2 10 12
2

1 5 6


  



(C) 
3 15 2 10 8(3 15) 24

:
6 8 6(2 10)

a a a

a

  
 



2
a 120

2

12 a 60
4  

 
Other  
solutions   7 

 

No  
response 11 

 

 
All 24 students who solved the task, had flipped the last fraction, which 
means they know the algorithm for fraction division. Three students did 
not solve this task. Only five (19 %), had correctly factorised the binomi-
als and simplified the rational expression. The others, except for two, had 
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multiplied the factors before trying to cancel/simplify. When simplifying 
rational expressions with binomials, it is crucial that students have a sense 
of the structure (Hoch & Dreyfus, 2004; Linchevski & Livneh, 1999), that 
they see the binomial as an object (Sfard & Linchevski, 1994b), and have 
strategic competence (Kilpatrick et al., 2001).  

One student, (A) after multiplying the factors, he correctly divided all 
the terms by 12. He was not very successful, however, since he did not 
factorise the binomials. During seatwork, he was seen doing the same. 

The solutions B and C were the most frequent solutions (60 %). In 
both of them, the students cancelled the literal symbols. Then the solu-
tions differed. In solution B, the students divided all terms by 12. (This 
student has written the divisors as superscripts). In solution C the first two 
terms in both numerator and denominator were divided by 12, the two last 
terms were divided by 60. In B the remaining factor 1, was taken into ac-
count. In C there should be a remaining factor 1 in each term in the de-
nominator, these, however, just disappeared. Storer (1956) asserted that 
this type of error was probably caused by “striking without trace”. This 
was reported to be a recurring student error when working with numerical 
fractions (Eichelmann, et al., 2012). It therefore might be that they con-
sider the simplification as an act of pure cancelling (Storer, 1956), forget-
ting that it is division.  

When comparing the solutions on the test with the solutions to the 
similar textbook tasks, only three students had correct solutions both in 
the textbook tasks and on the test. Four students solved the tasks correctly 
in the classroom, however, did not show competence in factorising bino-
mials on the test, Ine and Ane who said they enjoyed this kind of task 
were in this group. Tore who in the classroom showed that he differentiat-
ed between factors and terms, had not factorised any task. The same was 
the case with Ronny. 

Selma solved the test task correctly, but solved just one of the text-
book tasks related to factorising binomials. She was observed to struggle 
and asked the teacher for help. Here it seems to be that she has grasped 
the concept of factors and terms as she told in the interview (see section 
8.3.6). 

The main problem for most of the students working with binomials 
seemed to be to see them as entities and objects, and to distinguish be-
tween factors and terms. The assigned tasks confirmed misconceptions 
rather than challenging students to develop their conceptions.   

 



 
196  Algebra at the start of Upper Secondary School 

9.2 Multiplication and division  
Multiplication and division of fractions were briefly introduced in the 
textbook by listing the rules for fractions operations. In addition, it was 
noted in both the textbook and in the ‘learning book’ that all natural num-
bers could be written as fractions with 1 as the denominator. One textbook 

example task was solved: 4 12 4 12 4 2 2 3
12

3 1 3 1 3

  
    


2 2

3

 
16 . 

In the classroom the task was solved in this way: 4 12
12

3
 

4
4

3


16 , fo-

cusing on the operation of division. Multiplication and division of frac-
tions were executed without problems in the classroom. The students 
knew the algorithms and followed the rules, there was, however, a ten-
dency to forget to simplify the results.  

 One test task included both multiplication and division as seen in the 
table below. 

 
  Table 9-2: Ordinary fractions – multiplication and division (%) 

Task 3c – September test 4 5 7
:

2 4 5
  

Correct -simplified before executing the operations 7 
Correct result, multiplied before simplification 48 
Correct process - not simplified 17 
Found common denominator - multiplied numerators- kept the 
common denominator 11 
Calculation error  14 
Not solved 3 

 
Although 72 % of the students had followed the rules for multiplication 
and division of fractions, only three (11 %) had looked for the structure 
and simplified before performing the operations. An example 

is: 4 5
:

2 4


7 4 5 5 4

5 2 4 7
   

5 5

2 4

 


25

147



  

The other students, although finding the correct answer, do not seem 
to have been searching for the structure in the task (Hoch & Dreyfus, 
2004; Kieran, 1992; Linchevski & Livneh, 1999). 

One algebraic multiplication task with monomials only, and one divi-
sion task including binomials were solved in plenary. Both were example 
tasks from the textbook. In the textbook there were no explanations relat-
ed to division and multiplication of fractions other than the solved exam-
ple tasks, and the presentation of the rules offered in relation to ordinary 
fractions.  
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In all these tasks most students suggested performing the multiplica-
tion before searching for possibilities to simplify or to factorise, although 
the teacher asked them to search for such a possibility.  

One example of students’ reluctance to follow the teacher’s advice, 

can be the equation task 
3 1

2
2 3

x x    solved in plenary. During the so-

lution process, the teacher together with the students agreed to multiply 
both sides by 6; the least common denominator. On the white board was 

written: 
3 1

2 6 6 6 6
2 3

x x       .  

The students wanted the teacher to multiply 3 by 6 in the second term, 
but the teacher simplified by dividing 6 by 2. There were many negative 
reactions on this, and Tore asked why she did not do, what he had said. To 
multiply 3 by 6 and then divide 18 by 2, since the result would be the 
same. The teacher asked them to look for efficient ways to solve tasks, 
especially when numbers are larger it will pay off to simplify before mul-
tiplying the factors.  

The same example was used by the teacher asking about the relation 
between the unknown x and the fraction in the second term in the equa-
tion. Many students responded, and some meant that the x belonged both 
to the numerator and the denominator. The teacher then used a numeric 
fraction as multiplicand and a natural number as multiplicator in order to 
give meaning to the expression. Not all, however were convinced, ex-
pressing that there was a difference between numbers and letter symbols. 
From this it can be inferred that there is a blurred difference between ex-
pansion and multiplication, indicating that some of the students have a 
limited concept image of equivalent fractions, and fractions as numbers. 

The students were as shown, confident with the rules of multiplication 
and division. However, they did not have strategic competence or flexibil-
ity in reaching their solutions. They multiplied before checking for possi-
bilities to simplify. This prevented students from factorising binomials 
and from simplifying the results, as seen in the foregoing section. For 
many students the difference between expansion and multiplication was 
blurred.  

9.3 Addition and subtraction  
In the textbook it was stated that when adding and subtracting fractions, 
the denominators had to be equal. If they were not equal, the fractions had  
to be expanded. This was exemplified by two example tasks. The first had 
from the outset equal denominators, in the second the two fractions had 
prime denominators; 3 and 5. “The least number divisible by both 3 and 5 
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is 15. We thus choose 15 as the common denominator” (p. 27). Then the 
task was solved. 

Addition and subtraction of fractions seemed to be well-known to the 
students. Nine tasks ranging from simple to more complicated were as-
signed to practice the rules for addition and subtraction of ordinary frac-
tions. Two of the tasks also included multiplication or division.   

Few students had solved these assigned fraction tasks. It might be that 
they felt competent, and had followed the textbook authors’ advice at the 
start of the textbook (Ekern, et al., 2006) about not studying the first chap-
ter thoroughly since the topics should be known.   

Two of those few students who solved the tasks, presented more of the 
fraction errors reported in the reviewed literature in section 4.6. One of 
them, Ruth, was not consistent, as some students in Wittmann’s (2013) 

study. One example is: 3 4 3 3 4 3 7 3 21

5 5 14 5 5 14 10 14 140

               
. Here the stu-

dent has added the numerators and also the denominators before executing 
the multiplication. This tendency to regard the numerator and the denomi-
nator as separate whole numbers is an often reported error in studies about 
students work with fractions (Eichelmann, et al., 2012; Padberg, 1986). 

In another task 1 1 10 2 9 18
:

2 3 9 6 10 60
     
 

 the same student multiplied the 

denominators and added the numerators, before executing the division.  
These two examples are again revealing the issue common for most of 

the students. They do not look for the structure, but multiply the factors 
not taking into account that the numbers invite simplification before mul-
tiplication, as is also commented upon in the former sub-chapters.  

In the textbook, addition and subtraction of algebraic fractions were 
introduced through two example tasks. The only comment is: “When add-
ing and subtracting fractions, one has to expand the fractions in order to 
let them have equal denominators”.  

                 
3 1

4 6

a a 
                               

2 1

2 3 6x x


 
 

During the solution process, brackets are written around the binomials, 
but there is no comment upon this. However, in the margin the advice is 
given, that it is wise to put binomials on one fraction line before the 

brackets are removed: 
( 3) 3 ( 1) 2

4 3 6 2

a a   


 
=

( 3) 3 ( 1) 2

12

a a    
 

There is no instruction given of how to factorise binomials, except for 
one note at the start, saying that we can factorise expressions with two 
terms by setting common factors outside a bracket. During the solution 
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process of the example tasks the brackets are not mentioned any more. 
According to the studies referred to earlier (section 4.6.2) this factorisa-
tion is an obstacle for students at many levels (Guzmán, et al., 2011; Hall, 
2004; Olteanu, 2012) and that many teachers are not aware of what is cru-
cial for students when simplifying algebraic fractions (Olteanu, 2012).   

The same example tasks were worked out in the plenary session in co-
operation between the teacher and the students. In the first, the denomina-

tors were numbers only: 
3 1

4 6

a a 
 . The students told the teacher that 

the least common denominator would be 12, and Carl told her to “times 
up and down” to get the common denominator. She revoices (Herbel-
Eisenmann, et al., 2009) his utterance, but emphasises the word ‘expand’, 

and writes on the whiteboard 3 3

4 3

a  


 asking if she can let it be like this. 

More than half the class tell her to put a bracket around the expression 

3a  . The problem comes when the fraction 1

6

a   is to be subtracted from 

3

4

a  . The two fractions are expanded and are to be placed on a common 

fraction line. The teacher has written 3 9a  in the numerator and asks Else 
to continue:  

Else: It will be minus 2a minus 2. 
(Some of the other students express that it should be plus. The teacher 
writes – 2a - and listens to the students. She turns towards them.) 

T: Now, you seem to be unsure about what to do?  
(The students continue their suggestions. Some say minus, some say plus, 
and some say that negative and negative is plus.) 

T: Is it going to be minus 2 or plus 2? 
(The students continue the discussion.) 

T: Will some of you have minus? (There are some quiet murmurs). We can 
do it like this, (she writes -2a – 2 and says:) but then I do like this. (She 
puts the binomial in a bracket). Sometimes it is smart not to work out too 
many operations at the same time. 

She gives the didactical advice to perform only one operation at a time 
to keep control. The solution so far is shown to 
the right: 

Else interrupts saying there is something that 
she wonders about: 

Else:  The number, 2, there was a plus in front of it? 
            (second line in the solution). 
T: That is true, but it is the negative sign in front 

of  the bracket that causes the change within 
the bracket. 

It seems that Else accepts the answer. The teacher 

3 1

4 6
( 3) 3 ( 1) 2

4 3 6 2
(3 9) (2 2)

12
3 9 2 2

12

a a

a a

a a

a a
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once again emphasises that it is wise to write an extra line, writing the bi-
nomials in brackets signalling that they are entities. She argues that it is 
not much extra work since the copy-function in MathType makes it con-
venient. In addition, the little extra time might give them opportunity for 
some extra reasoning. 

When solving two tasks on an earlier work plan, in which the brackets 
had post-multipliers, some few students showed uncertainty (section 8.2). 
Here Else expresses their problem, and the teacher answers. This was a 
problem not explicitly caused by the fractions. It might be that Else’s un-
derstanding of the rule was bound to the context of earlier tasks with pre-
multipliers.   

The next example, 
2 1

2 3 6x x


 
 causes much more trouble for the 

students. Here one has to factorise the binomials in order to find the 
common denominator. This was as difficult as it appeared to be in the 
former section about factorisation and simplification. Also this time the 
teacher applies a number example. To find the common denominator the 
teacher points to the fact that in the common denominator one has to find 
both initial denominators as factors in the new denominator. 

Overall, 12 tasks were assigned for the students to practice addition 
and subtraction of algebraic fractions. Six of them included binomials in 
the numerator, but none of them had binomials in the denominator; thus 
regarded as being easier than the last example task.  

Most students seemed to find the common denominator without much 
difficulty. Some students, however, wrote expansion as multiplication; 
regarding the factor to “belong to the whole fraction” as some students 
expressed it. Some were corrected by their peers in this matter.   

Another issue exemplifying how the use of the computer could have 
an influence on the formal writing was observed when Glenn was per-

forming expansion: 
3 2

3 2
1 2 ( 1) ( 2)

2 3 2 3

x x x x   
   . Although the mul-

tiplication was written apparently as exponentiation, he correctly expand-
ed the fractions. The teacher noticed his writing and explained that it was 
only when cancelling factors, that the remaining factors could be written 
as indexes. Glenn and a couple of other students changed their writing 
after this. 

Some few students struggled to find the least common denominator 
during seatwork. One of them was Atle who asked for help when solving 

the task: 2 5

3 2

a

a
  . 

Atle:  How can I solve this? 



 
A case study of a Norwegian mathematics classroom   201 

T: What are the denominators then? 
Atle:  Those. (He points to the denominators in the fractions on the screen) 
T: None of them are equal. 
Atle: No, none are equal but what am I going to do then? 
T: When none are equal, then all should be included, shouldn’t they? 
Atle: Yes? (a bit reluctant). 
T:  Yes, they have to. 
Atle:  Yes (his yes is still not convincing). 
T: Because if the 2 has to go into the common denominator, the 2 must be 

included, and if all are different then all must be included. What will it be 
then?  

Atle seems to have no strategy for finding a common denominator in 
this situation. The teacher tries to explain that if the initial denominators 
have no common factors, all factors have to be included. She clearly ex-
presses that she means factors, but for Atle this is not obvious. He comes 
up with the suggestion: 

Atle:  3 plus a minus 2? 
T:  No pluses. 
Atle:  3a minus 2 
T:  No minuses either, but 2 times 3 times a.   
Atle:  2 times 3 times a? 
J:  Yes, that has to be the common denominator.  
Atle: Okay. 
T: Okay. You just accepted it? You did not get it?  
Atle: I did not. 
T:  Okay. But if you had a 5 instead of the a, what would the common de-

nominator be then? 
Atle:  Then it would be 2 times, 3 times a, no, I mean 5.  
T: Yes!  
Atle: I think I grasped it.  

During the conversation, the teacher seemed to recognise that Atle does 
not follow her reasoning. At the end she confronts him with her doubt, 
and he confirms it. Then she changes her strategy in that she substitutes 
the literal symbol a by the number 5 and asks what the common denomi-
nator then would be. Although he makes a mistake at first, his voice and 
also his utterance: “I think I grasped it”, seems to confirm that the use of a 
pure number example helps him back on the right track. This would indi-
cate that the presence of a literal symbol caused the problem. Therefore, it 
might be that he differentiates between factors and terms as long as he 
operates in the area of pure numbers, but that he has not transferred this 
knowledge to the area of algebra.  

Fractions with binomials connected by the minus sign seemed to be 
the main problem for the students. Else came to a wrong solution because 
she had not changed the sign in the last binomial, when bringing two bi-
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nomials together on the same fraction line: 3 2 1 3 2 1

5 5 5

x x x x    
  . 

However, in the next task, when she had to expand the fractions before 
subtraction, she wrote brackets, and this seemed to help her to reach the 
correct solution. This was what the teacher also recommended when there 
was no need for expansion. This is in line with Vlassis (2004) findings, 
that brackets helped students to perform correct actions when working 
with algebraic expressions; not fractions. Also it was reported that the ac-
tion of applying brackets helped students to see the structure of the tasks 
(Hoch & Dreyfus, 2004). 

There were few tasks on the work plan including both whole numbers 
and fractions, but it was observed that it was not easy for students to see 
how whole numbers and fractions were related when it came to the opera-
tion of multiplication.  

Two tasks written with normal font were solved by two students.    

Rakel’s end solution was: 8 4 6 24 24 18
10

12 12 12 12 12

a a a a
     

6
10

12


2

3
10

2

a
  . She 

kept the number 10 through the whole process until she puts it on the frac-
tion line (Padberg, 1986). Her incorrect partly cancelling causes the solu-
tion to be in line with the answer in the textbook. 

 Paul was observed asking the teacher about the same issue in another 

task. 1.2.21 c: 3 ( 3) (4 2 )
2 3

x x
x x x     . It turns out that the problem is 

the term -3x. He says he has multiplied 3x by 4. The teacher asks what 
common denominator he has, and he suggest 9 and then 12. The teacher 
now concentrates on the number 3:  

T: Can you write number 3 as a fraction? What will that be?  
Paul: I thought I had done that. 
T: If you have the number 3, and it should be written as a fraction, what will 

you do? 
Paul: The number 3 as a fraction? Then it will be written 3 over 9. Isn’t it so?  
T:          Over 9? 
Jone: 3 firsts. 
T: 3 firsts. Thank you. So if you now want 12 as the common denominator 

you have to expand by 12.           .  
Paul: Yes 

The teacher focused on the number 3. Jone, after a while, who solved the 
same task, suggested to write 3x as a fraction with 1 as the denominator. 
This helped Paul to resolve his problem. He followed the advice, and 
saved a correct solution. 

 
The revealed problems related to addition and subtraction, were most-

ly not related to fraction operations. More than half the students solving 
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the assigned numerical fraction tasks had one or more errors related to the 
minus sign; they had the opportunity though to check their solutions.  

The table below presents two test tasks. Dataset 27 students. 
 

     Table 9-3: Ordinary fractions –addition/subtraction - September test (%) 

Task 3a and 3b -  September test 1 5 4

3 3 3
   

3 3 7

2 7 5
  * 

Correct solution 70 37 
Write expansion as multiplication  11 
Just addition, ignoring the minus sign 30 14 
Multiplies by the common denominator (treated 
as equation) 

 11 

Calculation error  22 
Not solved  11 

*The sum is not 100%; some solutions fit into more than one category 
 
70 % had reached the correct solution in the first task, while 30 % had just 
added; ignoring the minus sign.  

In the next task, one had to find a common denominator. All solving 
that task, found that it should be 70, but 11 % wrote the expansion as mul-
tiplication, but performed the expansion correctly. Three others (11 %) 
cancelled the denominators. For these students this occurred in only this 
task. This might be an interference from equation solving. Three students 
had not solved the problem. It might be that those students did not find a 
common denominator for three numbers. These students solved the first 
task correctly, and also one algebra task (the table below) with different 
denominators. Five students made different calculation errors.  

Another task in the same test asked students to solve one algebraic 
fraction task. The table below shows the results. (Dataset 27 students). 
     
   Table 9-4: Algebraic fractions – addition/subtraction - September test (%)  

Task 4b   3 2

2 4

a a b

a b ab


 

* 
Correct 33 
Do not change sign in binomial numerator 33 
Expansion written as ordinary multiplication 22 
Treat as equation, cancelling the denominator 11 
Partly cancelling 22 
Errors related to power 3 
Change the sign in the binomial before it is located on a 
common fraction line. 7 

 *The sum is not 100%; some solutions fit into more than one category.  
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Only 33 % solved the task correctly. During observation and from the 
saved computer files, it was evident that some few students struggled 
when searching for a common denominator. Here it seems that everyone 
solving the task, succeeded in that matter, except for Arne who did not 
give any response. The students asking for help during the lessons seem to 
have grasped what it is about, and how to find it. They also seemed to be 
confident in expanding the fractions, although six students still write the 
operation as ordinary multiplication. Three of those then multiply the frac-
tions by the common denominator as if the task were an equation. These 
three were not the same as in the task above.  

The category with most students making errors is the category of ‘do 
not change sign in the binomial numerator’. The teacher gave the didacti-
cal advice to put the binomials in brackets. However, 14 students did not 
follow this advice on the test. In the test task the distribution of bracket 
use and correct results was as follows: 
 
  Table 9-5: Sign and use of bracket - item 4b (Numbers are number of students) 

Bracket No bracket 
Correct sign Incorrect sign Correct sign Incorrect sign 
11 1 6 8 
 

From this single task, the tendency is that it is more likely that the stu-
dents come up with a correct sign when they write brackets, only one stu-
dent did not. Here it was necessary to expand, what might have helped 
students to write brackets. 14 students did not write brackets though, and 
less than half of them wrote a correct positive sign. This is consistent with 
Vlassis’ (2004) observation in her study.  

In December a choice of two alternatives were given, one algebraic 
fraction and one with ordinary fractions. 18 out of 27 students chose the 
ordinary one. The results are presented in the table below: 

 
   Table 9-6: Ordinary fractions – multiplication and addition (%) 18 students 

Task 2b alternative 1 -  December test 2 1 2
( )

3 2 4
  

Correct result, but multiplied before simplification  55 
Multiplies by the common denominator (treated as equation) 17 
The result not simplified 6 
Add numerator and multiply denominator or opposite 11 
Found common denominator for all three fractions. 11 
 

As seen in the table, 55 % solved the task correctly. Some students treated 
the task as an equation in that they multiplied by the common denomina-
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tor and then simplified, as if they were solving an equation. Selma did that 
in both tests.   

Also this time the fractions had such factors in the numerators and in 
the denominators that they invited simplification before the multiplication 
should be executed. None of the students had done that. Some even ex-
panded all the fractions in order to have a common denominator. The 
question is if those students differentiated between terms and factors. At 
least they did not take the structure of the task into account before starting 
to solve it.  

One task (item 1b alternative 2) in the September test was solved by 9 
of 27 students. The others solved the task above. The task was: 

2
1

2
2

a
a

a




= 

The task was given in a form they had not met during the teaching, and 
that might be the reason why so few students chose it. It was evident 
though that the way those students tried to solve the task, was in conflict 
with the properties of and operations on fractions. None of the students 
succeeded.  

There were two main problems in this task. One was to see the need of 
finding a common denominator and to multiply with this in both numera-
tor and the denominator as an expansion. The other main problem was to 
operate on the whole number, in relation to the fractions. Some of them 
split the fraction vertically and divided those fractions. 

9.4 Summary fractions 
The students showed competence in executing the fraction operations. 
Problems revealed in former studies, were though also found in this study. 
There is evidence that many students did not simplify fractions to their 
simplest form (Brown & Quinn, 2006; Eichelmann, et al., 2012; Padberg, 
1986), and some few students did not simplify result numbers when nu-
merator and denominators were identical (Shaw, 1982).  

There is little tradition in upper secondary school to work to develop 
number sense (McIntosh, et al., 1992), and there is no focus on basic num-
ber sense in the textbook. The teacher, challenged those who asked, to 
find the prime factors, and explained how to find the least common de-
nominator.  

Some responses indicated a lack of understanding fractions as num-

bers. One example is: 42
6

630
90

6


2

90
30

2


30
15 15 . Three students had cor-

This task weighted double -twice as many points as the 
task above with ordinary fractions. 
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rectly simplified the fraction, but by cancelling 2 in the numerator, the 
result 1 as an index is not written. It might be that this ‘cancelling without 
trace’ (Storer, 1956) caused them to regard the solution to be 15. It is, 
however, clear that if these students had a well-developed concept image 
(Tall & Vinner, 1981) of the fraction concept, they would not have re-
garded the denominator 15, to be equal to the number 15. In September 
one of those students, regarded to be a confident and high mastering stu-

dent, equated 18

36

 with – 2; an indication that this error was not just a co-

incidence. 
When working with unfamiliar tasks as the complex fraction in the 

foregoing section, and one of the equations in the algebra test, it was evi-
dent that the students’ concept images of the fraction concept was limited. 

The test task was: 1 4

4 5

x

x





. None of the students solved it correctly in the 

autumn. In the spring one student succeeded. The distribution of solutions 
is shown in the table below. 

  
Table 9-7: Task with binomial - algebra test (%) 

Task 9c  1 4

4 5

x

x





 

Autumn % 
(25 students) 

Spring % 
(24 students)  

Correct  4 
A) Multiplies by the binomial (x + 4) but do not 
follow fraction rules/equation rules  13 

B) 
1 4 4 1 3

4 5 5 4 1

x x x

x x x

 
    

 
  

16  

C) Divides the fraction vertically 
1 4

4 5

x

x
    

32 21 
Other not understandable solutions 36 33 
No response 16 29 

 
It was still a problem for students in the spring to regard binomials as enti-
ties. The recurring error of treating fractions as a composite of two natural 
numbers that can be operated on as single numbers, was the most frequent 
error in the autumn (Eichelmann, et al., 2012). This is the reason for the 
solutions in category B. Some students wrote their solution as in the table, 
others as x=3 and x=1. In the autumn eight students did this, in the spring 
it was five. In category C, the fraction on the left side is divided vertically 
from the outset.  

It is though positive that some few students seemed to have viewed the 
binomial x+4 as an entity in the spring, in the autumn there were none.  

From the sub-sections above, the problems students reveal, when solv-
ing fraction tasks can be summarised as follows: 
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 Factorisation/simplification  
o To factorise and simplify larger numbers - (Brown & Quinn, 

2006; Eichelmann, et al., 2012; McIntosh, et al., 1992; Padberg, 
1986) 

o To factorise binomials  (Guzmán, et al., 2011; Olteanu, 2012) 
o To factorise powers - to interpret the different components  

(Seng, 2010) 
o When binomials involved – to avoid partly cancelling 

(Guzmán, et al., 2011; Hall, 2004; Olteanu, 2012) 
o When denominator and numerator are identical – to not simpli-

fy (Shaw, 1982) 
o To distinguish between factors and terms   

 Multiplication/Division/Expansion 
o To differentiate between multiplication and expansion  
o To choose an efficient strategy 

 Addition/subtraction  
o When larger numbers - to find the LCD (lack of number sense) 

(McIntosh, et al., 1992) 
o When literal symbols involved – to find the LCD21  
o When binomials involved – to find the correct sign and the 

LCD 
It is evident from both the classroom and from test tasks that most stu-
dents struggled to factorise binomials. The textbook gave little help. The 
teacher emphasised factorisation of brackets as opposite to multiplying 
brackets. From the plenary session, it appeared that the notions factors and 
terms were not well known. In the textbook those notions are mentioned 
once: “We can factorise a fraction with two terms by putting a common 
factor outside a bracket” (p. 35). The teacher emphasised the difference 
between the two notions, and also asked the students to pick out terms and 
factors in tasks on the whiteboard.     

 The strongest tendencies observed was on one hand that most students 
did not search for possibilities for simplification before they performed 
multiplication. This happened both when monomials and binomials were 
involved. It might indicate an operational (Sfard, 1994) or procedural 
(Gray & Tall, 1991) view of mathematics. They just started performing 
operations without analysing the task or taking the structure into account. 
It seemed as if they had one strategy only. Their limited way of solving 
tasks was somewhat reinforced through the textbook authors’ choice of 
tasks;  presenting only exercises (Niss, 1993) of the same structure as the 
example tasks. In the classroom there was reluctance and sometimes 

                                           
21 LCD – least common denominator 
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heavy argumentation on the part of the students against the teacher’s wish 
to take the structure into account, and to consider choice of strategy.  

On the other hand, the larger group of students (80 %) did not see bi-
nomials as entities or objects, although it was emphasised by the teacher. 
Few tasks including binomials were provided, and they were of the same 
structure resulting in the same solution; whether the simplification was 
partly cancelling, or if the binomials were factorised correctly. They 
seemed to create or consolidate misconceptions rather than offering them 
opportunities to develop their concept images (Vinner & Tall, 1981), and 
prevented students from developing proceptual thinking (Gray & Tall, 
1994) 

The mathematics offered related to fractions was mostly procedural 
mathematics (Hiebert & Lefevre, 1986) focusing on the rules for fraction 
operations without a connection to the reason for the rules; the why 
(Skemp, 1987). Fractions were first introduced for the students in grade 4, 
and the fraction operations should be learned in grade 8 (L97).  

The responses indicated though that most students lacked conceptual 
understanding ( Kilpatrick et al., 2001) of fractions (see table 9-7 above) 
although they knew the rules and mostly performed the operations when 
binomials were not included. They did, however, not take the structure of 
the task into account, what was one reason for the problems working with 
fractions including binomials. They seemed to have one strategy only. 

Although the exposition in the textbook started by introducing more 
sub-concept of fractions, the tasks were of a low level of cognitive de-
mand (Smith, Stein, Arbaugh, Brown, & Mossgrove, 2004; Stein, et al., 
1996) similar to the example tasks. They can be  characterised as exercis-
es (Niss, 1993) on a low to moderate level of procedural complexity 
(Hiebert, et al., 2003). They were ordered from easy to more complicated 
(Love & Pimm, 1996), and no task asked students to reason about why the 
rules work.  

Students’ responses indicate that issues crucial for students’ learning 
were not addressed.  
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10 Equations – exposition and students’ 
work 

Formal equations had been a focus for students’ work in mathematics also 
in lower grades. In the textbook, equations were introduced in a sub- 
chapter under the headline: Equations and inequalities. The first part of 
the sub-chapter is devoted to equations. One word problem is presented: 

Multiply my age by 5 and subtract 23 years. You will get the same answer by mul-
tiplying my age by 2 before adding 25 years. How old am I? (p. 40). 

The text is transformed into two algebraic expressions by letting x stand 
for the unknown age. By equating the two expressions, an equation is cre-
ated. To solve an equation is according to the textbook to find those val-
ues of x making the proposition true.  

Then the rules are highlighted in a rule box: “We can add or subtract 
the same number on both sides of the equal sign. We can multiply or di-
vide by the same number except for the number zero, on both sides of the 
equal sign”. In the margin it is commented: “When we add or subtract the 
same number on both sides, we say that we move over and change signs”. 
In all worked out examples it is written that the numbers or expressions 
are added or subtracted on both sides, but it is not shown in the writing.  

Five example tasks are solved. The first is the word problem presented 
above. The other tasks are presented from simple to more complicated. 
The first is without brackets, the next with brackets. Then comes a ratio 
equation, before the last two example tasks are presented under the head-
ing: Equations with fractions.  

The exposition part is rather short, and there is no explicit reference to 
the properties of equalities nor to equivalence relations. In addition, the 
authors assert that the rules ‘doing the same on both sides’ and ‘change 
side – change sign’ are equivalent. However, Kieran (1989) argues strong-
ly that these two rules indicate two completely different ways of thinking 
(see section 4.8).  

 In the file made by the teacher and her colleagues, the ‘learning book’  
it is stated: 

If you execute an operation on one side of the equal sign, you must remember to 
execute the same operation on the other side as well.  

As an extra piece of advice is given: 
 It is always smart to control the value you find, by substituting the unknown in 
the initial equation with the found value.  

In the ‘learning book’, cross multiplication is presented related to ratio 
equations. In the textbook nothing is said about controlling the result, and 
cross multiplication is not mentioned. 
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The work plan included 20 tasks similar to the example tasks. They 
were ordered according to procedural complexity (Hiebert, et al., 2003). 
The five ‘last’ tasks on the work plan can be categorised to be of moderate 
level of procedural complexity (ibid) with five or more decisions to be 
taken during the solution processes. Those tasks were, however, solved by 
only nine of the students in the data set of 18 students. Three of those had 
picked out only one or two of those five tasks. 

The introduction of equations in the classroom and students work will 
be presented in the following sub-chapters. The sub-chapters will be head-
lined according to categories revealed in other studies (see section 4.8). 
Analyses and more a detailed description can be found in appendix 11 and 
its sub-sections.  

10.1 Equations and the equal sign 
The teacher started the introduction of equations by saying that she was 
intrigued about what students know about equations. Some responses 
were: ‘there is an unknown’ and ‘this unknown is to be found’. ‘The un-
known can be labelled by any letter’, and ‘in an equation there are two 
sides which are equal’. The teacher applies the move of revoicing 
(Herbel-Eisenmann, Drake, & Cirillo, 2009) the responses and asks fol-
low up questions. In line with former studies (de Lima & Tall, 2006b) 
none of the students came up with the equal sign as a required component 
in an equation. At the end, the teacher writes an equal sign on the white-
board saying that there is a left and a right side, and that there has to be an 
equal sign in between them.  

This equal sign seemed to trigger Ivar, who responded: 
Ivar:  Aren’t then all arithmetical tasks equations? 
T: What did you say? (she could not hear his response.) 
Ivar: Aren’t actually almost all arithmetic tasks equations? 
T: No, not all are equations. What we have been working on until now for in-

stance, has been to simplify fractions.  
Ivar:  Strictly speaking, aren’t then those fractions equations? 
T: No, there is no unknown to be found. Instead, the task is to operate on the 

fractions, either to simplify or to add them. What is special about equa-
tions is that we have a left and a right side.  
Some students sitting close to Ivar argue eagerly, but it is hard to hear 
them all. 

Else: But it is an equation, because in a way we have the answer. You have 
something on both sides of the equal sign. That’s why it is an equation. 

T: Is it this what you mean?  
She goes to the white board where it is written: Vs=Hs, which means the 
left side is equal to the right side. 

Else: If you have something to add for instance, then you have to find what will 
be on the other side of the equal sign.  
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T: But you are not going to find the value of the unknown. That’s what is 
special about equations.  

Eli: But both sides are equal? (Eli supports Else’s view) 
T:         Yes, both sides are equal? 

Eli continue arguing, but cannot be heard. Ivar brings in inequalities. 
Ivar:  But the same is the case with inequalities. 
T:  But in inequalities the sides are unequal. One side is less or larger than the 

other. Tomorrow we are going to work on them. 
The students have brought in the unknown, the need of finding this un-
known, and the equality of two sides. From the teacher’s side it is im-
portant to make distinction between equations and arithmetical tasks, and 
thus she uses the word equation for algebraic equations only; as do Her-
scovics and Kieran (1980).  

However, Ivar enters the scene with the question: “are not all arithmet-
ical tasks in some sense equations?” The teacher replies by pointing to the 
fact that although working with fractions, they cannot be said to be equa-
tions because there is no unknown to be found. More students follow up 
on Ivar’s thought, and from Else’s utterance it is clear that she thinks that 
number strings or strings of fractions might be viewed as equations. The 
reason is that when operating on them, one put in equals signs on the way 
to the solution: “You have to find what will be on the other side of the 
equal sign”. The teacher once again emphasises that the point in such 
tasks is not to find the value of an unknown. Eli, however tries to argue 
that “both sides are equal”. The teacher seems to agree, but is interrupted 
when Ivar suggests that the same is the case with inequalities. It is unclear 
if he meant that the left and the right sides are equal also in inequalities, or 
if he meant that also in inequalities, one has to find the value of an un-
known. At least it seems as if the teacher interprets his utterance to mean 
that he regards the left and the right sides to be equal in inequalities as 
well, and she responds to this.  

The students here discuss the definition of an equation. In mathematics 
some definitions are not clear if they include arithmetic equalities (see 
section 4.8). Here it could be that some of the students have equalities in 
mind, however, when talking about fractions and addition and answers to 
come, it is likely that the students here do not differentiate between the 
equal sign as a relational sign and a sign to announce a result or an answer 
to come, and thus have a procedural view of equations rather than a rela-
tional as reported in the literature (de Lima & Tall, 2006a, 2006b; 
Godfrey & Thomas, 2008).  
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The examples below from some students’ work with equations at the 
start of the semester also indicate such a view.22 

 
Selma Olav 

3 5 10

3 5

x

x

  

 10 5

3

  

3

x 15

3

5x

 



 

2 6
)

3

2

2

d
x

x

x

 

18
9

2
 

 

The equal signs at the end of the lines make it impossible for them to 
regard equal sign to signal a binary relation between two sides. After 
some lessons, Selma writes the equations in a formally correct way, while 
Olav continues to write two equal signs in each line in the first 14 tasks. 
He had solved nearly all equation tasks in the textbook. In addition, in the 
example above he cancels the unknown. He was consistent in doing so as 
long as the unknown’s coefficient was different from 1, although in the 
questionnaire (see section 7.3.4) he explained how to divide by the coeffi-
cient in order to find one x.  In the algebra test before the teaching of 
equations his solution on one of the equation tasks was: 
4 15 75

90 4
75 15

4 4

x

x

x x

 

   22,50
 

He is able to find the correct solution but his writing is highly infor-
mal, and his view of the equal sign cannot be a relational view. Little by 
little his writing changes, also he stops cancelling the unknown. However, 
in the first ordinary test this cancelling is back again, but he in his mind 
operates correctly finding the unknown. He was the only one in the ques-
tionnaire explaining that it was smart to substitute the unknown by the 
solution number to check the answer (dataset 12 students).  

This writing of extra equal signs was also seen in the work of two oth-
er students in the test in September. Selma ended her solution writing an 
expression not a solution in two of her test tasks. In December only one 
student wrote more than one equal sign in each line in the solution.   

The teacher showed in the program MathType that it was possible to 
apply a function ‘align at =’, making the equal sign as the centre of each 
line. This might make the structure more visible to the students, but few 
students applied the function; ten students in the first test in September 
and only five in December.  

                                           
22 All solutions to assigned tasks and test tasks presented in the thesis are students’ own solu-
tions.  
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It is not possible to verify the students’ view of the equal sign. The 
students were not asked about it, but some students’ writing might be evi-
dence of an operational view. Others writing the equations in a formally 
correct way might also have the same view though.    

10.2 Equation solving   
When presenting how to solve equations, the teacher used the example 
task: 7 11x   , and asked students what should be done: 

 
Rakel:  We move the number 7 over to the other side and change the sign. 
T: Why are we doing that? Did you hear what she said? 
Rakel: We have to get the numbers on one side and x on the other. 
T:  Yes, it’s right what you say. I have to move over and change sign.  

She writes on the white board  
7 11

        11 7 

x

x

 
 

 

T:  Why am I writing it, like this? 
Tore: x has to stand alone and then you have to… 
T:  What have I actually done when I moved it over?  
Tore: (after a short silence) Actually you have just subtracted 7 from both sides.  
T: Yes, that’s what I have done. Really good that you noticed it. Actually, I 

have subtracted 7 from both sides. When executing the same operation on 
both sides of the equal sign, the balance is kept. Do you see that?  

She draws a balance on the whiteboard and writes minus 7 under the bal-
ance on both sides, and with gestures she acts as if it is in balance. Also in 
the equation she writes negative 7 on both sides.  

Further, she emphasised that even though the 
operation is mostly not written on both sides, math-
ematically the same operation is executed on both 
sides of the equal sign. This she made visible by 
writing the arithmetical operation signs on both 
sides under the balance as shown to the right, saying 
that these are the operations to apply in order to find 
the unknown in linear equations.   

The first example task to work out is 
2(3 8) 5 3( 1)x x    from the textbook.    

To perform distributed multiplication is the first 
suggested step. The teacher agrees, and then the students and the teacher 
execute the operations in cooperation, as in all plenary sessions. When 
solving this equation task, the minus sign causes discussion and uncertain-
ty. In the end, she advises the students to keep the brackets until the mul-
tiplication is performed. Then they can remove the bracket and change the 
sign, if the preceding sign is negative.  
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For each suggested operation, she revoiced (Herbel-Eisenmann, et al., 
2009) students’ utterances and emphasised that the activity of moving one 
term from one side to the other, mathematically is either subtraction or 
addition of the term on both sides of the equal sign, and that the operation 
to choose, is the opposite of the ‘given’ operation. 

Ending up with 9x =18. Arne is eager to participate: 
Arne: We divide by 9. 
T:  Yes, but why should we? 
Arne: In order to find only x.  
T: To have only x? 
Arne: We want to know the value of one x. 
T: Yes, we will know the value of one x.  
Arne: We don’t want the value of 9x  
T: What is actually standing between 9 and x? 
More students answer: Times 
T: Yes, it is times and then I have to…? 
Arne: Divide because that is the opposite function. 

Arne tells what to do, however, the teacher wants him also to explain 
why. In addition, she uses the task to focus on the invisible sign, in order 
to let the students see the need of executing the opposite operation.  

The next example task, 
3 1

2
2 3

x x   , revealed problems related to 

fractions and the task is referred to in section 9.2. In order to visualise that 
the same operation is executed on both sides of the equation, the teacher 
writes the left and the right side in brackets before she multiplies by 6: 

3 1
(2 ) 6 ( ) 6

2 3
x x     .  

Arne interrupts by asking why it is multiplied by 6 and not 4 for ex-
ample. The teacher asks Alf to explain. Alf answers that the reason is that 
6 is the least common denominator for the fractions.  

The last example task was worked out on the computers, the teacher 
on her PC, her screen projected on the whiteboard, and the students on 

their PC-s: 4 1 2 3
(2 1) ( )

3 5 3 5

x
x x    . The challenge in this task is that the 

brackets have to be multiplied by fractions. When discussing with the stu-
dents what to do first, the teacher advises them to multiply the brackets by 
the fractions first of all. The reason for this, she says, is that since there 
are fractions, and one has to multiply by a common denominator, there is 
a risk that one multiplies the common denominator by both the bracket 
and the factor outside the bracket. She does not, however, go into the dif-
ference between factor and terms this time. It shows, however, that, from 
her experience, she is aware of the risk of regarding each factor as a term 
when multiplying by a common denominator.  
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When approaching the solution to this equation, Ronny is a bit wor-
ried:  

Ronny: Yes, but then we have 4 3x   . 
T:  Yes? What about that? 
Ronny: I just wonder about what am I to do? 
T:  Okay, I come to 4 3x    and then you think it was a bit strange that it was 

negative 3 on the right side? 
Ronny: No, but, I can’t remember what to do! 
T: But remember? You have to be focused. We are executing opposite opera-

tions all the time. I have multiplied in order to get rid of the fractions. And 
now I have?  

Ronny: Yes, but now it will be a fraction again. 
First it seemed as if he was stuck because of the minus sign on the right 
side, however, the utterance “but now it will be a fraction again” indicates 
that he is stuck because the solution will be a fraction, and the point in the 
start was to get rid of the fractions by multiplying by the least common 
denominator. Other students had similar utterances during seatwork; they 
did not want fractions as solutions. The teacher, however, explained that 
fractions always represented an exact number. Some few students seemed 
to interpret this to mean that the teacher preferred fractions, and they were 
observed discussing how to transform the solutions into fractions. Ronny, 
however, was concerned about fractions as solution number.   

The first tasks on the work plan were simple. Some of them were of 
the form with the unknown on only the left side. Filloy and Rojano (1989) 
proposed such tasks to be solved arithmetically. However, all students 
seemed to operate on the unknown (Kieran, 1992).  

When solving the tasks, many students asked for help when checking 
their solutions. Others made errors seemingly without noticing it. Howev-
er, their expressed problems were not related to the equations as such. The 
problems were mostly related to the minus signs, the fractions, the distrib-
utive law and so on. None were seen to control their solution except for 
the comparison with the textbook answers. 

 One episode from the classroom illuminates students’ limited concep-
tion of equations as a symmetric relation. Tone and Ruth were working, 
and Tone seemed to be stuck and glanced at Ruth’ work. They had on 
their screens: 

Tone: Do we have the same on the screen now? However, look here.  
She points to her own screen, and she follows the terms on her right side 
of the equation, while she calculates. 

Tone Ruth 
( 1) 2 5(1 ) 2

2 2 5 5 2

2 5 2 5 2

x x x

x x x

x x x

    
   
    

 
( 1) 2 5(1 ) 2

2 2 5 5 2

2 2 5 5 2

x x x

x x x

x x x
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Tone: Minus 2x minus 5x will be minus 7x 
Ruth: Yes, minus 7x 
Tone: And then plus 2x is minus 5x. (She correctly calculates the x-es on the 

right side of the equal sign.) 
Ruth: But that 5x! You have the 5x on the other side. When you take the 5x 

over to that side, then it will be plus. Since you have the 5x on that side, 
that is the reason that it has not become positive yet. That’s why the 
two… 

Tone: Isn’t it actually the same now? 
Now Ruth has correct numbers on the right side and the 5x-es on the left 
side of the equal sign, while Tone has them on the right side. Ruth dis-
covers this and denies that they have the same solution: 

Ruth:  No. You will have a negative solution and I will have a positive one.  
Tone, who believes what Ruth claims, deletes her third line and starts over 
again.  

This is an example of how students can mislead each other. Ruth did 
not regard Tone’s solution to lead to a correct result. Neither of them had 
the competence to understand that in an equation it does not matter from 
which side you read. These two students had not really discovered the 
power of equations and the property of symmetry. Their cooperation on 
this task did not help them to advance their thinking.  

Also other students asked if it mattered on which side the x was locat-
ed. One example is Paul. He is going to solve one of the more complicat-
ed tasks and asks: “Can I move the x over to the other side?” He had dis-
covered that he would then avoid a negative coefficient, but he is not sure 
if it is allowed. This is also an example of students’ talk when solving 
equations. They ‘move’ numbers and expressions as if they were physical 
objects (Lima & Tall, 2006b, 2008).  

This was also evident in the questionnaires from 11 of the 12 students 
who answered it (see section 7.3.4). Selma who wrote more than one 
equation sign above, expressed equation solving in this way:  

”I would have moved all x-es over to one side and the numbers to the 
other. Afterwards I would remove the number in front of the x, and that is 
done by division. However, when one divides on one side, the same has to 
be done on the other side”. From her explanations it seems that she 
thought of the terms as physical objects (de Lima & Tall, 2006a), and that 
they had two rules to follow, one for division and one for addi-
tion/subtraction (Cortés & Pfaff, 2000).  

This was at the start of equation solving, and it might be that teacher’s 
recurring emphasis on ‘doing the same operation on both sides’, has influ-
enced their thinking. However, during observation it was heard only once 
that a student referred to balance and of doing the same on both sides (Alf 
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explaining for Atle), others overheard were talking about ‘moving and 
changing sides’.  

In her explanation of equation solving, Selma did not mention that the 
signs should be changed when terms are moved from one side to another, 
but she changed when solving tasks. There were, however, examples of 
students ‘changing side, but not sign’; which according to Cortes et al. 
(2000) and Kieran (1989) is a common error when relying on the rule 
‘change side-change sign’. One student still did that in the tests both in 
September and in December. Others were not consistent.  

In addition, there was evidence of performing different operations on 
the two sides in that some multiplied or divided by different numbers on 
the two sides. One example was Ruth’s solution. The task was: 
3

4 1
2 2

x x
   . In the next line she wrote: 3

2

x
2 4

2

x
  2 1 . Here she has 

multiplied only the fractions by 2. She must have had a problem seeing 
the left and the right sides as entities or objects (Sfard, 1991). More stu-
dents made such errors when both fractions and whole numbers were in-
cluded. Fractions and whole numbers is one problem, but it also illustrates 
not seeing the equation as a binary relation.  

10.3 Ratio equations 
Some tasks were categorised in the work plan as ratio equations. They 
were solved in the textbook by multiplying both sides by the common de-
nominator. The teacher demonstrated how they could perform cross mul-
tiplication in such tasks. The reason for this method, she told the students, 
was that it might be a benefit for them later when working with trigonom-

etry. She applied the example task from the textbook: 
1810

3 x
 . When she 

solved it, she said that she multiplied in this way 3

10


18

x , but at the same 

time she swopped the products to the opposite sides, resulting in10 54x  .  
She applied the symmetric property of equations without making it 

explicit to the students. When solving equations, some students, who 
strictly followed the teacher’s example also when solving inequalities, got 
into trouble later when solving inequalities (section 11.2.3).  

Most students who applied this method succeeded, but some students, 
who performed cross multiplication solved the tasks unconventionally, the 
example underneath is from Ruth’s files: 

In the second line (in all her solutions) she seems to cross only from.  
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2 6

3
2 2

3 6 18
2 18

2 2
9

x
x x

x

x











                            

right to left:  This could have been mathematically correct 

if she had equated 2

3 6

x


 with 1, but the next thing she does, 

is to leave the equation and just carry out the multiplica-

tion 2

3 6

x


 = 2

18

x . This is an identity, however, she has prob-

ably in her mind applied the equal sign as a ‘here comes 
the result’ sign. Then in the third line, she is back to the 
equation. It is a question if she is aware that she is going in 
and out of equation solving. 

 It is also a question what she is thinking mathematically going from 
line 2 to line 3. She did this in all similar tasks. 

During the lessons, some students asked if they had to perform this 
cross multiplication. The teacher told them to apply the most convenient 
method.  

10.4 Summary equations  
All assigned tasks were variants of the solved example tasks, and the pro-
gression in the textbook went from easy to more procedurally complicated 
tasks. This might reflect a belief that learning is best achieved when the 
topic is presented in small well-defined steps (Love & Pimm, 1996). 

In the model made by Godfrey and Thomas (2003) (section 4.8) they 
found that students’ perspective on the four factors: the equal sign, letter 
symbols, operations, and the structural form, influence how students will 
perceive the object of equation.  

In the textbook, the perspective on the equal sign as such is not ad-
dressed. The perspective: ‘equivalence relation’ is implicitly there through 
equation solutions presented as operating in the same way on both sides of 
the equal sign, and through the metaphor of a balance used in the class-
room.  To perform the same operation on both side, was heavily empha-
sised by the teacher, but also then without applying the word equivalence. 
At the same time the latter is blurred in the textbook through the rule 
‘move over and change sign’ which is equated with performing the same 
operations on both sides.  

In all tasks offered in the former sub-chapters, the perspective of the 
equal sign is highly procedural, announcing the result of a procedure. In 
the plenary, there was no student heard opposing Else’s and Ivar’s per-
spective about all arithmetical tasks as equations. Also those students 
writing more than one equal sign in each line in the solution of equations, 
seemed to have a perspective on the sign as a result of a procedure. It 
seemed, however to be the case that most of them changed this form of 
writing during the work with equations. In the December test only Tone 
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had one occasion of this in her solution. Two students, however, reverted 
to their former habit in the spring.  

It is hard to say which perspective those students writing the equations 
in a formally correct way hold on the equal sign, Students’ talk about 
‘moving over and changing sign’ seems to be evidence against holding a 
perspective on the equal sign as an equivalence relation with symmetric, 
transitive and reflexive properties. Another example is Tone and Ruth’s 
conversation about solutions depending on which side the unknown is 
written on (section 10.2). 

One task in the algebra test asked students to transform the formula of 
the volume for the cylinder, to be a formula for the height in the cylinder. 
The formula was: hrV  2 . In the autumn, 32 % succeeded, in the 
spring 40 %. In a task in the December test, task 7c, the relation: 

( ) 90 3v t t  was given. The students were asked to find a formula for t; 
six students (22 %) succeeded. 

These results indicate that a large group of students have not grasped 
the symmetric property of the equal sign, and to transform what is taught 
about performing the same operation on both sides of the equal sign, from 
equation solving to transformation of formulas. Godfrey and Thomas 
(ibid) stressed the need of being explicit about the properties of equations, 
and the equal sign. It might have helped these students.    

In the equations solved during observation, the perspective on letter 
symbols is implicitly the specific unknown. Letter symbols are applied 
also in the other sub-sections in the textbook, but the perspective on letter 
symbols is not explicitly stated; the danger being that the students ex-
trapolate from the specific unknown which they are more familiar with. 
There is no occurrence leading students to a perspective of letter symbols 
as generalised numbers or variables in Küchemann’s (1981) sense. It 
might be inferred that the authors take it for granted that students have an 
adequate conception of letter symbols.  

In the classroom it was asserted that in an equation it did not matter 
which letter was applied for the unknown, no one argued against it and the 
teacher confirmed it (section 10.1); a meaning taken to be shared (Voigt, 
1995). In the algebra test, however, the students were asked to create an 
equation in which the solution should be 4y  . Both in the autumn and in 
the spring some few students changed the letter symbol for the unknown 
to be x.  

In section 8.1, it was shown that a rather large group of students had 
problems differentiating between the value of an object and the object it-
self. The students seemed though in the algebra test to accept letter sym-
bols as generalised numbers, and when solving equations, it was clear that 
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the students searched for the specific unknown. There was, however, no 
sign of students controlling their solutions.   

Another perspective according to Godfrey and Thomas (2003) was the 
perspective on number. There is no indication that students had an inade-
quate conception of numbers as such, but there is evidence that the num-
ber sense was rather poor in some situations; especially related to powers 
(section 8.4) and fractions. Powers were not included in the equation 
tasks, but fractions were found to be a problem for students when solving 
equations.  

 The perspective on operations was the next perspective. The problems 
were related to the minus sign and to fraction operations. The textbook 
presented the rules, but gave no explanation about why they work. In ad-
dition, many students seemed to struggle when multiplication, division 
and factorisation should be performed. This is evident in many solutions 
in all topics; most students though are not making those errors consistent-
ly. They seemed to rely on technological tools.   

The structural form of equations seemed not to be clear for all stu-
dents. In December Tore wrote the solution as an expression 3x . It 
might be that he just made a writing error. In September, Selma ended up 
with two solutions written as expressions. In the algebra test, when asked 
to write two equations, given the solutions, Alf wrote expressions in the 
autumn. In the spring both Olav and Alf presented expressions instead of 
equations. Also the writing of extra equal signs indicates an improper 
conception of the form of linear equations.  

The table below presents the proportion of correct solutions on equa-
tion test tasks: 

 
            Table 10-1: Test tasks – equations. Correct results.  

Equation test tasks September test  
(27 students) 

December test 

 Item 6 (September)   
a) 6 4

9 3

x
  

44 %  
b) 7 5

2
25x

 
 44 %  

c) 2
2( )

2 2 3

x x
x  

 48 %  
 Item 1c (December)   
Alt 1 2 5 1x x     83 %  (6 students) 
Alt 2 2 3 1

( ) 1
3 4 6

x x    
 52 % (21 students) 
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In the test, one week after the work in the classroom, less than half the 
students solved the equations correctly. Only five students solved all 
equations correctly. In the December test the proportion of correct solu-
tions was slightly higher (52 % of those solving alternative 2 solved it cor-
rectly). Some students might have progressed. However, it shows that the 
perspective on the different components and the conception of equations 
as objects are not satisfactory among many of the students.  

When solving equations, few students asked questions specifically re-
lated to equation solving. Few students solved all tasks on the work plan, 
and even fewer the tasks of moderate level of procedural complexity. 
However, most problems are seemingly related to fractions, the minus 
sign, differentiation between factors and terms, and it was evident that 
students struggled more to find the correct solution when the denomina-
tors were larger numbers, and when the fractions included binomials. The 
latter types of errors are discussed under negative numbers and signs in 
section 8.3.5. and in section 9.3. 

It can be concluded that the mathematics offered in the textbook, is fo-
cused on the rules and routines for equation solving; making no distinc-
tion between ‘change side – change sign’ and ‘performing the same opera-
tions on both sides of the equal sign’. The teacher although accepting stu-
dents’ utterances about ‘changing side – changing sign’, encouraged them 
to think that they performed the same operations on both sides. She even 
showed it in the writing, implicitly emphasising the relational meaning of 
the equal sign.  

Students’ oral responses indicate though that most students are used to 
mentally move numbers and expressions as if they were physical objects 
(de Lima & Tall, 2008), and it seems that they continue this way of think-
ing from lower grades.  

The properties of the concept of equation is not addressed, and it 
might be that the students would have been better solving equations, if 
those properties were explicitly offered. In relation to the solving of ine-
qualities, it would have been helpful to know the properties of equations. 
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11 Inequalities – exposition and students’ 
work 

In this chapter the introduction of the concept of inequality will be pre-
sented, both as introduced in the textbook and in the classroom. Then 
comes a part with a model of students’ conceptions of inequalities inter-
preted from their written materials, from interviews, and from classroom 
observations. Analyses and more detailed descriptions can be found in 
appendix 12 and its sub-sections.   

11.1 Introduction of the topic  
In the textbook, the concept of inequality is presented in the same sub-
chapter as equations, directly after equations, and before tasks to practice 
rules for both equations and inequalities. This organisation of the topic of 
inequality as a sub-topic of equations is reported by researchers (Boero & 
Bazzini, 2004; Tsamir & Bazzini, 2002).  

The authors focus in the textbook on the different inequality signs and 
their meanings. The number line is used as a tool to show that numbers to 
the right are larger than those to the left. Then an example of an inequality 
is presented and solved; x + 3 > 5. The solution x > 2 is commented upon 
in this way: “we see that x has to be a number larger than 2” (p. 45).  

In the classroom the teacher started by asking students what they know 
about inequalities from before. One immediate response was: 

Tord:  It is sort of, as an equation, but the sign is different, it is to be drawn 
like this. (He draws an inequality sign in the air). 

The teacher building on this response introduces the inequality signs, by 
asking for the meanings of the signs. Jarl says that the two signs are ‘less 
than’ and ‘larger than’. The teacher remarks that in the primary school 
they had presumably been talking about crocodiles, and writes x > 2 on 
the whiteboard. Arne, tells her that the statement means x larger than 2, 
since the number on the side with the opening, is the larger number. He 
recognised the signs because of the remark about the crocodile. The 
teacher built further on this metaphor, when talking about the different 
inequality signs, before she turned over to focus on how the inequality 
statement 2x  could be interpreted and presented on the number line. 

T:  Have you thought about what this expression means on the number line? 
Else: It means all the numbers up to 2. 
T:  Up to 2? 
Else: No, it means all the numbers from 2 and upwards. 
T:  Is the number 2 included? 
Else:  Yes. 
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The teacher asks students to join her interpreting the algebraic statement 
by illustrating it on the number line. She continues asking the students 
which sign they would use to illustrate that the number 2 is included in the 
set of numbers. There is silence in the classroom. Then Arne responds by 
gesturing and telling that he would apply a special sign for brackets.  

The teacher draws a number line on the whiteboard and puts in this 
‘special bracket’ which shows the set from 2 and upwards, 2 included. 
She marks the set which satisfies the inequality: 

 

 
 

She also introduces other inequality expressions such as number sets and 
presents them both in set notation and on the number line, emphasising 
that all numbers in the sets are included. The explanation in the textbook, 
might be interpreted to mean one specific number within the set; an inter-
pretation held by some students.  

Solutions of inequalities as sets of numbers was not mentioned in the 
textbook. The teacher, however, introduced set notation before she, in line 
with the textbook, applied an inequality to check if the rules for equation 
solving would hold also for inequalities. The actual inequality was 4 2 .  

After adding and subtracting numbers on both sides, the teacher divid-
ed and multiplied the inequality by a positive number on both sides. All 
students agreed that the statement was still true. Finally, she divided both 
sides by negative 2: 4 2

2 2


 
 

T:  If I  divide 4 by negative 2, what will it be? 
Tord:  Minus 2 
T:  I will have negative 2? Plus, divided by minus; you remember? That will 

be minus, and 4 divided by 2, is 2. The result is minus 2. And the rest?  
What will that be? 

Student chorus: Minus 1 
T:  Is minus 2 larger than minus 1?  (She writes 2 1   .) Yes, isn’t it? can it 

be correct?  
Else:  If you write plus instead of minus in the front, then it will be correct.  
Others: We could remove both minus signs. 
T:  Do you know what we have to do? 
Tord: We flip it. 
T:  Yes, we flip the sign, and when do we have to flip the sign? 
Tord:  When we multiply or divide by something minus. 

Multiplying and dividing the statement by positive numbers on both sides 
of the sign were found by the students to be satisfactory; the statement 
was still true. However, when dividing by a negative number, the result 
turned out to be a contradiction. One suggestion was to remove the minus 
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sign in front of 2, others wanted to remove both minus signs. Tord then 
tells her to flip the sign, and he explains that the sign must be flipped, 
when it is divided or multiplied by a negative number in order to keep the 
statement true. The number line was then used to illustrate that he was 
right.  

In the class, the conclusion was that one could operate on an inequality 
as if it were an equation with the exception of division and multiplication 
by a negative number. 

The textbook listed the rules for inequalities:  
We can: 

 add and subtract the same number on both sides of the inequality sign 
 multiply and divide by the same positive number on both sides of the ine-

quality sign 
 multiply and divide by the same negative number on both sides of the ine-

quality sign, if we at the same time flip the sign 
 not divide by zero (p.46). 

 
Three context free inequality tasks were presented and solved in the text-
book. Each step was explained as in the example underneath: 

1 1 7

3 2 6

2 3 7 6           multiply  both sides by  the common denominator 6.

2 6 7 3         We subtract 3 and 6  from both sides. 

4 4           divide both sides by  - 4 and have to fli

We

We

x x

x x

x x x

x

  

  

  

  




p the inequality sign

   1x  
This task was also used as an example task in the plenary session. The 
students, however, did not seem so eager to participate as in the other les-
sons. After having no response, the teacher says:  

T: We can think that we have an equal sign, because we are going to solve it 
as if it were an equation. 

Arne: What sign is written between one half and 7 sixths?  
T: What sign it is? Does anybody know?  

Both Arne and the other students seem to be unsure. There is silence until 
Jone finally tells what is correct, and the teacher revoices it before she 
adds that the sign shows that the task is an inequality not an equation.  

Although the plenary session had started with an introduction and a 
presentation of the different inequality signs, it did not seem that Arne and 
the other students were sure about their meanings, especially of the sign 
‘larger or equal to’; at least Arne needed a confirmation. 

The fraction in the task caused some questions about the relation be-
tween the fraction and the unknown as in the equation task in section 9.2.  

After a while the interaction went on as follows: 
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T: Now we have 4 4x  . Have you, Ine, an idea about what to do? 
Ine: We can divide by minus 4. 
T: Divide by minus 4, and why? 
Ine: In order to search for one x. 
T: Now I have an inequality and I want to divide by minus 4, what do I need 

to take into account? 
Ronny: We have to flip the sign. 
T: Yes, we have to flip the sign, and then we have larger than or equal to. 

What is the result? 
Roy: Minus 1.  

The teacher has changed the sign only in the last line 1x   and points to 
the line above saying that the sign has to be changed already when writing 
the sign for division. She deletes the sign ‘less than or equal to’ and sub-
stitutes it with the sign ‘larger than or equal to’. She sums up that to solve 
an inequality is nearly the same as solving an equation. The exception is 
that the sign has to be flipped when dividing or multiplying by a negative 
number as demonstrated by dividing the example 4 > 2 by a negative. 

The teacher followed students’ inputs about the inequality sign. This 
was in line with the exposition in the textbook. But then she led the focus 
over to the meaning of expressions of the kind 2x  , and to sets of 
numbers. This was not mentioned at all in the textbook related to inequali-
ties. However, when solving the task, she is again in line with the text-
book about the close connection to equations. 

11.2 Students’ work with inequalities  
The first textbook chapter offers only two items. The reason for this might 
be that in relation to functions and graphs the topic will be handled once 
again later. All tasks in both items are in pure mathematical language. (A 
detailed overview of solutions and other responses is to be found in ap-
pendix 12.3 and 12.4). In this section the responses will be categorised 
according to problems mostly reported in earlier studies about inequalities 
(see section 4.10).  

The assigned items included 14 tasks. Four of them would have a neg-
ative coefficient at the end of the solution process, if collecting the x-es on 
the left side of the inequality. That means that in only four out of 14 tasks 
it was required that students took into account that the properties of ine-
qualities are not the same as for equations. This might mask a not well 
developed concept image of the concept, as in most of the tasks it is pos-
sible to perform exactly the same operations as for equations and reach a 
correct solution (Vaiyavutjamai & Clements, 2006).  

In the fourth chapter, one word problem was given where it would be 
natural to apply an inequality. All students who solved the task, solved it 
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as an equation before they checked the result and decided which interval 
was the correct one.  

11.2.1 The signs  
The signs symbolising inequality were introduced and discussed, and 

inequality expressions were visualised on the number line. Some students, 
however, seemed not to be sure about their meanings, especially the signs 
  and  . Ane was one of them; she was observed having this solution: 

3 2 5(3 )

3 2 15 5

5 2 15 3

3 12

x x

x x

x x

x

  
  
  



 

She raises her hand for help, and the teacher ap-
pears. She watches Ane’s screen, and realises that 
she has stopped having found the solution set for 
3x. She asks Ane to finish it; to divide by 3, the 
coefficient. But Ane has another question: 

Ane:  Does it matter if there is an extra line? 
T: An extra line? 
Ane: A line underneath there? (She points on the screen) 
T: Do you mean that double line there? (she seems to mean the double line 

below the end result). Is it that line you are talking about? 
Ane: I’m going to show you (she uses her cursor and points to the inequality 

sign). That line under there.  
T: Oh, is that what you mean? That means that the values can also be equal.  
Ane:  It can be equal?  
T: Yes, but it doesn’t matter for the solution process. But you have to finish 

this and find the x. 
Ane does not finish the task while the teacher watches her at work, but it 

can be seen that she ends up dividing by 3: 3

3

x 12

3
 and the solution 4x  . 

It might be tempting to interpret that she wrote the equal sign because of 
the teacher’s utterance: “the values can also be equal” above. She had 
however, already solved several inequality tasks writing the solution as 
equalities. 

Another student wrote some solutions as equalities during seatwork, 
although operating correctly on the inequality in other matters. On the test 
in September one task was a simple inequality:  3 6 2( 8)x x    . In this 
task 7 students or 26 % ended with an equality. This was also seen in oth-
er studies and regarded to be caused by the blurred connection between 
the two concepts, equations and inequalities (Blanco & Garrote, 2007; 
Tsamir & Almog, 2001). 

In the interviews the five students were asked to solve the test task 
above and explain their actions and thoughts. On the test they applied the 
correct inequality sign. During the whole process of solving the task, they 
all spoke about ‘x is’ or ‘x is equal to’ when explaining their actions in the 
interview situation. This was also heard from other students during seat 
work. The signs though were correctly written. 
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When solving an inequality task on the test in December, 4 out of 27 
students ended up with an equality statement. None of them did the same 
in September. Two of the students who did this in September did not par-
ticipate. Four of them avoided a negative coefficient before x by keeping 
the unknown on the right side of the inequality sign. One did not complete 
the solution.  

 

11.2.2  Flipping the sign 
Both the textbook and the teacher offered an example inequality in order 
to check which of the procedures from equation solving would hold for 
inequalities. The interaction between the teacher and the students seemed 
to show a negotiation of meaning resulting in all students taking the rea-
son for the flipping of the inequality sign as shared. 

This appeared not to be the case. In the break Arne, who participated 
in the interaction in the plenary session stopped the teacher asking:  

Arne: Can you explain why we have to flip the inequality sign? 
T: Of course. Yes? 
Arne: At the end there. Why is the sign pointing that way?  

He points to his solution. He has aligned the end result to be the same as 
that in the textbook.  

T: Oh. Because…but I showed that on the white board.  
Arne: Yes, you did, but I did not really grasp it. Why should we?  
T: Because otherwise the inequality will not be true.  

She goes to the white board and Ivar comes and joins them. She applies 
the example written on the white board.   

T: You agree that 4 > 2 is true?  
Arne: Yes.  
T: And then I divide by negative 2. You see, if I do not flip, I will have -2 

>-1. which is not true.  
Arne: Yes. 
T: However, if I flip the inequality sign, it will be true. Thus we have to flip 

the sign every time we divide or multiply by a negative number, if not, 
the inequality will not be true.   

Arne is an active listener, he participates in her explanation by nodding 
and confirming his acceptance. In the rest of the tasks, he correctly turns 
the sign when dividing. This is also the case for most of the students ob-
served during seatwork, but several students ask when the sign has to be 
flipped. One issue is that many of them flip the sign only at their end solu-
tions. They clearly do not see the expressions as objects but as procedures 
to be performed (Sfard & Linchevski, 1994b) not regarding the division to 
have been executed before the result of the division is found. In December 
all who flipped the sign, seemed to follow this thought. 

Some few students consequently collected the x-es on the side where 
the coefficient would be positive. In that way they avoided problems with 



 
A case study of a Norwegian mathematics classroom   229 

the inequality signs. In the December test 7 students (30 %)23 did that, 
three of them, however, failed in other ways. Three students flipped the 
sign although dividing by a positive number.  

11.2.3 The connection inequalities – equations 
It has already been shown how more than a quarter of the students wrote 
the solution as an equality on the first test, and how Tord expressed an 
inequality to be a kind of equation at the start of the plenary session 
above. Also there was other evidence that this connection was blurred.  

In the lessons about equations, the teacher had solved a ratio task, and 
introduced the students to cross multiplication. The example was a word 

problem and it was transformed into mathematical notation as: 
1810

3 x
 . 

When the teacher solved it, she said she cross multiplied, and in the next 
line she wrote 10 54x   (see section 10.3). She had applied the symmetric 
property of equations implicitly, leaving to the students to create meaning 
to the action (Godfrey & Thomas, 2008). Here it made no difference to 
the result, because the relation was an equality relation. However, when 
working with inequalities it was found to be a problem for Ronny.  

He was working on the task 
3 4

4 3

x
 . He had cross multiplied coming 

to the result 16 9x  and from this to 
16

9
x . When checking his result 

with that in the textbook he is really confused. He asks his classmates (the 
teacher is in the adjoining room): 
Ronny:When we cross multiply equalities, is there then some “mumbo-jumbo” about 

it? Is it okay to cross multiply?  
He is sitting in the first row and turns around waiting for answers from his 
peers. Nobody responds, he gets no response and calls for the teacher: 

Ronny: Listen, when I cross multiply, do I have to do something to this thing? 
(he means the inequality sign).              

T: With that thing (she laughs). You don’t have to do anything to that thing. 
 (She has not seen the task yet).  

Ronny: But I don’t remember.  
T: Okay? 
Ronny: When it is larger than or equal to, should I flip it or what should I do? 

The teacher asks the students to take a break and sits down beside Ron-
ny. He tells his departing classmates that he can’t find what is wrong. 

Ronny: I have got x larger than. 
T: But you have to read it in opposite direction. You have to start from x. 

                                           
23 The test had two alternative tasks, only one task ended in a negative expression with the 
unknown. 23 students solved this alternative. 
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3 4
          line1

4 3
16 9          line2

9 16
       line3

9 9
16

9

x

x

x

x








 

He is asked to read it from the side where the x is. For the teacher who has 
not the right solution in mind, it seems at first that she thinks his problem 
relates only to how to read the solution, and this leads to a discussion 
about how to read the inequality.  

However, Ronny at the end asserts that his solution is not in line with 
that in the textbook, and he shows the teacher the initial task.  

T: Okay, but you should have placed the x on the other side. 
Ronny: I multiplied like this and like this. That’s what I did. 

He explains by words and by gestures how he has multiplied. He has mul-

tiplied in this way: 
a c

bc da
b d
    and his result is 4 4 9x  . He has 

followed teacher’s demonstration when she cross multiplied, and at the 
same time implicitly applied the symmetric property of equations.  

Here the teacher asks him instead to multiply by the common denomi-
nator, since the x then will be kept on the side where it was from the out-
set. She makes the comment that for him perhaps it is not a good idea to 
cross-multiply inequalities. Ronny replies: 

Ronny:  But I can then multiply the other way.  
T: Yes, you can do that. 
Ronny: If I multiply in the other direction, it will be okay. Then I keep the x on 

that side.  
He suggests to multiply in the opposite direction. 
Then the x will be kept on the left side. The teacher 
agrees. What was not discussed, was the difference 
between equations and inequalities. There is a ques-
tion whether the teacher understands his thinking. 
When looking into his saved task, (solution to the 
left) it turns out that he has just changed places for 
the two sides, operating as if the symmetric property 
for equations also holds for inequalities. 

Actually it is an example of a problem caused by being not explicit 
about the properties applied (Godfrey & Thomas, 2008), and also that the 
distinction between equations and inequalities is blurred. 

Later in the lesson, Tore, had the same experience as Ronny and he 
asks his classmates for help: 

Tore: What was your result on that cross multiplication? 
Ronny: You must remember always to multiply by the x, so that x ends up on the 
             correct side. You must not do as usual. 
  He moves his right hand from bottom right, up to left. It  seems as if he 

means that the way he had cross-multiplied, is the ‘correct’ way to do it. 
Ronny: Because if you have 3x on one side and 4 on the other, then you have to 

multiply upwards in such a way that you keep x on the correct side. (He 
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points to the left). This is not what you normally would have done, but it 
is not the same as for equations.  

Bill: There is no difference. 
Ronny: I‘m sure. It makes a difference. I just did it.  
Carl: It doesn’t matter if x is on the ‘wrong’ side.  
Ronny: It does.  

What they mean by correct and wrong side is not easy to say, but it might 
be that at least Carl means that the left side is the correct side, and the 
right is the incorrect, however, his saved computer files show that he 
sometimes avoids negative unknowns by collecting the x-es on the right 
side. It might be that he then thinks that he places them on the ‘wrong’ 
side.  

That day some students started the seatwork working on equations; 
others started on inequalities and then went back to the equations. It might 
therefore be the case, that the others were working on equations, when 
joining the discussion. Tore is focused on finding the correct solution:  

Tore: What was the result then?  
Ronny ignores Tore’s question and he continues: 

Ronny:  Yes, because, if you multiply 3 the way I did it; 3x times 3. Then you get 
the answer on the wrong side. Then you have to turn the sign. 

Tore: Then I have to turn it? 
Bill: But, if you multiply towards left, then you get it on the left side. 
Carl: If the x is on the left or on the right side doesn’t matter. 
Ronny: Though. For sure it does. 
Carl: No, not really. Actually it doesn’t matter. The result is the same. It is just 

the same. 
Ronny: But then you will get it less than, you are going to… 
Carl: Yes, ok. If it is like that. 
Ronny: That was what I meant. 
Carl: I didn’t think about that. 

Here the discussion goes from focusing on which side to put the x, over to 
the reason for being concerned about it. Ronny introduces the sign when 
saying: “then you have to turn the sign”. What really makes Carl aware of 
the importance of Ronny’s explanation is the utterance “But then you will 
get less than”. This changes the situation from being disagreement to get 
insights into the difference in handling an equation in relation to an ine-
quality. This means that there might be other situations where one has to 
be careful about how to handle the inequality signs apart from the situa-
tion of multiplying or dividing by negatives.  

Tore who started the discussion seems to be pragmatic. He has not re-
ally participated in the discussion. He just accepts that the sign should be 
turned, and he ends the episode by asking for the solution: “Yes, but you 

got x something, x is 
16

9
, isn’t it?”. From his responses, it is impossible to 
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say anything about his interpretation of the inequality sign. He does not 
mention it at all when asking for the solution. He talks about x is. Howev-
er, his solution is exactly the same as Ronny’s above. He just moves the 
terms over to the opposite sides of the inequality, as if symmetry was one 
inequality property.  

The discussion is important, but it is possible it just resulted in another 
rule: If you cross multiply in an inequality you have to take care that the x, 
after the multiplication, is on the side that x was initially; before transfor-
mations. It also represents students’ poor command of mathematical lan-
guage, and how this blurred the discussion.  

It is clear in this class that the work with equations (Garuti, et al., 
2001) influenced students’ conception of inequalities. At least in this epi-
sode with Ronny, he is becoming aware that equations and inequalities 
have to be treated differently, however, it does not appear that he has a 
mathematical justification for it, it seems rather likely that he produced a 
self-made rule, which worked in this situation (Cortes & Pfaff, 2000).  

Neither in the classroom nor in the textbook are the properties of ine-
qualities and of equations made explicitly visible for students. In order to 
promote conceptual learning these properties should have been introduced 
and exemplified (Hiebert & Grouws, 2007). The examples in the textbook 
and in the classroom demonstrate that division and multiplication by 
negative numbers make the statements not true. They give meanings to 
the rules, but do not really give mathematical arguments for why execut-
ing the same operations on both sides do not work for all numbers, as it 
does when solving equations.   

11.2.4 Interpretation of solutions 
No task was designed to promote discussion about the result. Although 
the introduction started by interpreting the conventions for writing sets 
and solutions of inequalities, no one was heard, during the observation, to 
mention anything about what the produced solutions meant. One student, 
Alf, was prompted by me, to explain what his result 2x   meant. His an-
swer was that the unknown is a number between 2 and “upwards”. This 
might mean that he sees the solution to be one specific number in the set, 
not the whole set.  

In the interviews when the students were asked about how they inter-
preted the solution 2x   on the test task, two of five showed evidence of 
regarding the solution as a set of numbers. 

Kristin said she had no clue, while the other two students’ responses 
can be exemplified by one of them: 

Olav:    It is minus 1, minus 2, zero, 1, 2… They are lying there, and then it is   
minus 2, but at the same time you don’t know the x. 

R1: You don’t know the x?  
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Olav: No, but you know that it has to be larger than minus 2. 
R1: What does that mean?  
Olav: It means that it is larger. 
R1: Some specific number which is larger? 
Olav: Yes. 

Olav clearly felt that he did not know the x. According to him it had to be 
one specific number within the set of numbers. The way one solution in 
the textbook was commented on, gives rise to the same interpretation.  

The teacher was not so concerned about this because she had experi-
enced that the concept of inequality would develop during the work with 
functions and graphs related to inequality. 

Some students seemed to solve the tasks in a correct way, but did not 
find the solution set for one x. In several tasks Roy saved his solution be-
fore he had found the solution set for one x. The responses on the tasks he 
was observed to solve, show that he finished the solution finding a num-
ber set for x if the result of dividing by the coefficient resulted in a whole 
number. When not, he ended his solution as in the first solution presented 
below. Both examples are from his work (video-taped on his computer 
screen).   

             1)  

5 2 2 8

5 2 8 2

3 7

x x

x x

x

  
  


                         2)      

3 2 15 5

3 12

3 3
4

x x

x

x

  





 

If the division by the coefficient resulted in a whole number, the solution 
set was given for one x (example 2 above). It might be that he avoided 
fractions in the final solution. He was consequent in this matter. The in-
teresting question is if he reflects over the solutions. It seems as if he in-
stead performs the procedures and has made his own rules for what a solu-
tion is. It does not seem that he is aware of what solution set satisfies the 
inequality. The same was the case with Ane in the example above (section 
11.2.1). Their solutions might indicate a lack of reflection, and they are 
clearly not controlling their solutions.  

11.2.5 Summary inequalities 
The assigned tasks afforded had different levels of difficulties, however, 
not according to the concept of inequality. All tasks were variations of 
example tasks in the textbook, and thus not of a high level of cognitive 
demand (Smith, et al., 2004; Stein & Smith, 1998). The students could go 
to the examples and imitate the solutions. There was no contextual task 
offered in the first chapter under the heading inequalities.  
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The table below shows the inequality tasks in the December test. The 
students could choose either one of the two alternatives; both are shown in 
the table. 

 
Table 11-1: Inequality test tasks results.  Data set 27 students  (%) 
Inequality tasks September 

(27 students) 
December 
alt 1  (3students) 

December  
alt 2 (24 studemts) 

Task  
3 6 2( 8)x x         

1
2

4 3

x
    1

2 1 3 4
2 2

y
y y

         
   

 

Correct  
                   22 67                                       50 

Equal sign                   22 33                                       13                 
Not flipping sign                      26                                          8 

 
It is evident that the students performed better in December than in Sep-
tember. In September a large proportion of the students had sign errors 
causing the x coefficient to be positive when keeping the unknown on the 
left side, and it is thus not easy to know if they would flip the sign. How-
ever, 26 % did not flip the sign having negative coefficient either, and one 
student flipped it, although he had a positive coefficient. 22 % ended their 
solution with an equal sign.  

In December the result was better, 50 % had a correct solution, but all 
who kept the unknown on the left side, 30 %, flipped the sign only after 
the result of the operation was presented; in the last line. They did not 

seem to see the expression 4

4

y


 as both an operation and the result of that 

operation (Gray & Tall, 1994), which might indicate a lack of proceptual 
thinking.  

In the textbook the inequality signs were presented, and it was told 
that the larger numbers were located to the right on the number line. In the 
classroom the focus was on set notation and in interaction with the stu-
dents, number sets and set notation was exemplified and explained on the 
number line.  The crocodile mouth was used as metaphor for the signs at 
the start. In the classroom set solutions were said to be interpreted as in-
cluding all numbers within the set. The exposition in the textbook could 
be interpreted to mean one specific number within the set.  

The distinction between the solution process of equations and ine-
qualities was exemplified with a number inequality both in the textbook 
and in the classroom. From then on the focus was upon the rules for solv-
ing inequalities, and the close connection between solving equations and 
inequalities was emphasised.  

In the table below the main problems related specifically to the pro-
cess of solving inequalities are presented.  
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Table 11-2: Inequality problems 
Problems  Revealed by Possible reasons 
 
 

 

/

Blurred relation

inequalities equations





 

 
    

 

   

 

 

Use of the equal sign

Inequality sign not flipped

Sloppy language









  

 

 
 
Properties for the two con-
cepts are not addressed 
 
 

 
 

  

Interpretation

of solutions





 

 
   

 

   

Interpreted as a

specific number

within the solution set







 

 
Interpretation of textbook 
exposition  
 

No tasks requesting inter-
pretation of the solution 
 

 
There is strong evidence that students regarded inequalities as types of 
equation which blurred the distinction between the two concepts and led 
students to make errors (Blanco & Garrote, 2007; Sfard & Linchevski, 
1994a; Tsamir & Almog, 2001; Tsamir, et al., 1998; Tsamir & Bazzini, 
2002; Vaiyavutjamai & Clements, 2006; Verikios & Farmaki, 2006). 

The teacher, and also the textbook authors, applied a simple inequality 
to give meaning to the operation of flipping the sign. That example might 
be obvious for mathematicians, but it is not so for many of the students. 
Arne asked above: “why do we flip?”, and Kristin, Ane and others asked 
the teacher during seatwork: “when do we have to flip, is it only when 
there is a minus sign?”  

 Neither in the classroom nor in the textbook are the properties of ine-
qualities and of equations made explicitly visible for the students. In order 
to promote conceptual learning, these properties should have been intro-
duced and exemplified (Hiebert & Grouws, 2007).  

One student claimed that inequalities were even easier to solve than 
equations. She was careful and kept the unknowns such that she could di-
vide by a positive number. She failed, however, in both the September and 
the December test because she treated the tasks in accordance with her 
utterance, but forgot to keep the unknowns positive as she did in the class-
room.  

In the second period of observation, one assigned word problem was 
expected to be solved as an inequality, none of the students wrote inequal-
ities. They solved the problem as an equation and had to reason about 
what interval could fit the word problem. 
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It can be concluded that the mathematics offered in the textbook also 
in the area of inequalities is focused on rules and procedures. Except for 
showing that to divide or multiply by a negative number leads to contra-
diction, and that to flip the inequality sign then makes the proposition 
true, there is little or no explanation of the concept of inequality.  

The explanation of the solution set, is written in such a way that it can 
be interpreted to mean a specific number within the set, not the whole set. 
The teacher though went beyond the textbook when it came to the set no-
tation and the meaning of inequality solutions. The tasks were, however, 
context free and did not challenge students to reflect over their solutions.  

Students’ responses indicate that they regarded the process of solution 
as a sequence of routine actions, not worth spending much time on. The 
interviewees told that they had no strategy when they saw the task. One 
said that he thought of equations, and went on solving the task, while 
keeping in mind the exception of not dividing/multiplying by a negative 
number without flipping the sign. Nobody checked their solutions. When 
students talked during the work with inequalities, they talked about ‘x is’. 
Sfard and Linchevski’s (1994a) conclusion that students’ conception of 
inequalities “are meaningless strings of symbols to which certain well-
defined procedures are routinely applied” (ibid p. 306), seems also to fit 
for this class. However, as the teacher emphasised; the topic will be intro-
duced once again in relation to functions.  

Neither in class, nor in the textbook the properties for inequalities 
were presented, and thus not compared with the properties of equations. 
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12 Word problems 
In the textbook and also in the plenary sessions there was no explicit ex-
position about word problems, and how to transform problem situations 
into formal mathematical language. One problem, however, was trans-
formed in the introduction to equations (see section 10):  

Eli says to her friend: Multiply my age by 5 and subtract 23 years. You get the 
same value by multiplying my age by 2 before you add 25 years. How old am I? 
(p. 40) 

This problem is not complicated in that it is possible to transform it phrase 
by phrase, by direct mathematising (Voigt, 1995). In addition, the age was 
said to be written as x, the unknown.  

A ratio word problem was also introduced:  
Trude is going to mix juice with 20 litres of water in the ratio 3:10. How much juice 
does she need?  

We call the unknown volume of juice for x. Then we have: 
3

20 10
3

20 20
20 10

60

10
6

x
             

x
 We multiply by 20 on both sides

x

x           Trude needs 6 liters of juice



  





 

 
In the first chapter, nothing more was said about converting word prob-
lems into mathematical notation. In chapter 4 in the textbook, coded the 
blue track (the easy track), there was a short paragraph about converting 
word problems with two unknowns into two equations. The blue track 
was not for the students in this study, and the location of this exposition 
might be evidence of the authors regarding this transformation to be trivial 
for students interested in mathematics.   

In the next section, the tasks in which students are asked to convert 
word problems into mathematical language, will be presented together 
with their responses. Those tasks and their results will be compared with 
some tasks on ordinary tests. To solve word problems at this level requires 
that students formulate the problem as an equation and that they solve this 
equation. 

12.1 Converting text into equations 
In total there are 18 word problems in the sub-chapters of the first main 
chapter of the textbook. Then the items at the end of the chapter are not 
taken into account since none of those tasks were included in the work 
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plan from the publisher. Five of the 18 tasks were written with bold let-
ters; which means that they were most likely to be solved.  

The table below presents those tasks and the number of students who 
solved them. Dataset 18 students. 

 
Table 12-1:  Work plan – word problems (equations)  
 
 

Item 
1.3.2 

Item 
1.3.5 

Item 
1.3.6 

Item 
1.3.9 

Item 
1.3.10 

Students who solved the task  9 7 14 7 6 
Not solved 9 11 4 11 12 
 

The table shows that a large proportion of the students generally seemed 
to be reluctant to engage in word problems, or they were lacking compe-
tence to solve them.  

In the plenary sessions in September only one word problem was pre-
sented as an example, the ratio word problem about juice and water re-
ferred to above. This task represents a class of problems; ratio word prob-

lems. The structure of the task is a c

b d
 ; one of the letter symbols repre-

senting the unknown. The structure is straight forward if the students are 
familiar with the notation of ratios, and what this notation means.  

The teacher presented the problem and the students responded imme-
diately saying that Trude needs 6 litres of juice. The teacher, however, 
stressed the point that they together should make it formal and write an 
equation. She asks some girls: 

Ane: As an equation? 
T:  Yes, can’t we? Can we try?  
Ane: But, it is 6, it is 6 litres of juice. 
Tore:  We have no unknown. It is only a simple calculation.  

The teacher realises that the numbers in the example task are not conven-
ient, and thus she changes 20 litres into 18. Bill respond immediately:  

Bill:  18 times 3 divided by 10 is equal to x.  
T:  How did you reason to come to that solution? 
Bill:  I just multiplied by the ratio. 

The example task was initially an example of how to convert the word 
problem into an equation. The students however, did not see the point in 
this transformation. This corresponds to the findings in Stacey and Mac-
Gregor’s (1999) study (section 4.9). After the quantity of  water was 
changed, and when prompted, Bill presents the volume of juice, as a for-
mula, which is not to work algebraically according to Janvier (1996). 

The first assigned word problem in the textbook is not more suitable 
than the example task for converting normal text into an equation. The 
task is:  
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Berit buys 15 apples and pays 48 Nkr. Call the price for each apple x and write an 
equation. Solve it and find the price for one apple (p. 47). 

To find the answer to the problem was indeed not the problem, but to set 
up the equation. Most students had to be reminded by the teacher to do 
what was requested according to the textbook, although she herself agreed 
with the students that there really was no point making an equation in that 
problem. The data showed that most students put in an x and wrote 

48

15
x  , which is arithmetical reasoning despite the presence of the x 

(Janvier, 1996).   
The next task was about sugar and berries. Here the ratio 1: 4 between 

sugar and berries in jam was given, and students were asked to find the 
amount of sugar needed to make jam from 2 kg of berries.  

Tore and Ronny discussed if the solution should include an equation. 
They had written the answer only. Tore wonders how it should be done, 
while Ronny asserts that it is not written in the task that they have to write 
an equation. Both agree that on a test they would certainly not solve the 
problem as an equation. The teacher comes: 

Ronny: We can just simply write the answer, can’t we? 
T: No, you have to explain how you found it.  
Ronny: Then we have to try to write it as an equation? 

She admits that an equation is not requested in the text, but says they have 
to explain their method, not just present the solution. Tore expresses that 
he does not know how to convert the problem into an equation. The 
teacher explains when the ratio is given, they have one side of the equa-
tion already. Tore is still waiting for instruction on how to proceed, then 
the teacher asks him what represents the berries and what represents the 
sugar in the given ratio. Tore is not sure, and the teacher tells him what is 
mentioned first in the text, represents the first number in the ratio. Then 
Tore claims he understands.  

Here it seems that both the textbook and the teacher have taken it for 
granted that the students knew about ratios, and how to write equations 
based on equal ratios. Although struggling to convert the problem into an 
equation, the students must have had practical experience of proportional 
thinking, since most of them solved the tasks arithmetically without any 
struggle.  Only few students, as shown in table 12-1 above, solved the 
other three items on the work plan. 

 Two of the tasks had a similar structure, task 1.3.5 and task 1.3.10. 
The two tasks are presented below: 
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Task 1.3.5 The structure 
 
 
Nina has an equal number of 
each coin value:  
1 NOK coins, 5 NOK, 10 NOK 
coins and 20 NOK coins. It adds 
up to 144 NOK. How many 
coins does Nina have? 

 

                                                    Figure 12-1: The structure of item 1.3.5                                             
 

In this task each coin value has to be multiplied by the number of coins of 
each value. What eases the task is that this number of coins are the same 
for all values. If the students can see that this amount is the unknown, the 
x, it should be easy to set up an equation. However, what might compli-
cate the task is that the question is not directly about the unknown, the x, 
but to find the amount of coins Nina had altogether.  

The next task is shown below: 
 
Task 1.3.10 The structure 

 
Silje returns bottles. For the 
bigger ones she gets 2,50 NOK 
each, and for the smaller 1,00 
NOK each. Silje has three times 
as many smaller bottles as big-
ger ones. Altogether, she gets 
110 NOK. Create an equation 
and find the amount of each 
kind of bottle. 

                                                    Figure 12-2: The structure of item 1.3.10 
 

This task is a bit more complicated in the structure because in addition to 
the additive relation between the values of the two types of bottles, the 
relation between the numbers of the two types of bottles is multiplicative. 
Here it becomes problematic if the students have problems differentiating 
between the values of the objects at hand and the amount of those objects 
(Küchemann, 1981), which seemed to be the case for a large proportion of 
the students (see section 8.1).  

The third task, an age problem, is presented below: 
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Task 1.3.9           The structure 
 

The age of Knut and Ka-
rianne is altogether 36 
years. Knut is two years 
older than Karianne. Let x 
be the age of Karianne. 
Create an equation and 
solve it. How old is 
Knut?  
                                                Figure 12-3: The task and the structure of item 1.3.9 

 
This task might be easier although the unknowns here are also related to 
each other, but it is an additive relation.  

Nine students had saved some of the solutions (9 out of 18). One of 
those had solved only 1.3.5, and two others had solved only 1.3.9. The 
other 6 had solved all three items. Three of those had solved the ratio 
items by setting up a formula, while they solved the others by proper 
equations.  

One of the students, Tone, really struggled with the item 1.3.5 and 
asked for help. She had written 144/4 on her screen. 

T:  What does the text say? You have an equal amount of each type of coin. If 
you call the amount of one type of coin x, that is where you can start.  

Tone: What? 
The teacher asks her for each type of coin and, Tone comes to the expres-
sion 1x + 5 x + 10 x + 20 x. The teacher follows up and explains that in 
order to get an expression for the sum, one has to add, since the sum of 
the value of the coins should be 144. She emphasises that the amount of 
each value is the same. Tone asks if this will be equal to 144.  

Tone: Am I going to do it like this? (she writes =144) 
T:  Yes, fine. Did you understand what you did? 
Tone: (whispering) No.  
T: Hm? 
Tone: I do not know why I should write x.  

Her first suggestion was to divide 144 by 4. One reason might be that her 
strategy was to divide the total value by the number of different coin val-
ues or it might be that she guessed and checked to come to the number 4. 
In this problem it is important to differentiate between the amount of 
coins and their values (Küchemann, 1981). Tone seems not to have seen 
this difference, and that might be the reason for her not to understand why 
she should write an x. In the algebra test she was the one assigning values 
to the unknown in the expression representing the total price (see section 
8.1). 
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The dialogue between Tone and the teacher is an example of the fun-
nel pattern (Voigt, 1995). Tone is led in small steps through the solution, 
but at the end she admits that she has not grasped the point of using the x. 

The teacher responded to Tone’s statement about not knowing why 
there should be an x, by saying that x is equal to 4 and then she patiently 
goes through the solution; substituting x by 4. Her strategy seems to be to 
help Tone to create meaning for the found solution, and to show that it fits 
into the initial word problem.  

In the age problem above, Tone was stuck again. She worked together 

with Ruth who had written: 
36

2
2 2

x
   and then she asked for help.  

The teacher came, but Ruth did not explain her thinking behind what 
she had written. The teacher asked her what Karianne’s age is and Ruth 
answers it is x. 

T:  And what is Knut’s age then? 
Ruth:  Must be y or something like that.  
T:  He is then, read the text once again. 
Ruth:  He is, oh yes, Knut is x + 2.   
T:  Okay. Then you have x and x + 2.  
Ruth:  Yes then x + 2 is equal to 36.  
T:    That sounds okay. You chose Karianne’s age to be x. 
Ruth:  Yes. 
T:  Just delete what you had written.  
             Now Ruth writes: x + 2 = 36.  
T:  Yes, then you have only Knut’s age. And he is two years more than Kari-

anne. He is x + 2. 
Ruth:  Then it will be x + x +2 

Ruth although struggling, seems to be comfortable with the concept of the 
unknown, however, she struggles with how to express the relationship be-
tween the unknown and the known quantities. Led by the teacher’s com-
ments, she managed to find the equation. Tone sitting next to her says at 
the end that she did not understand.  

The teacher then asks Ruth to explain for Tone. She does this eagerly 
and explains in detail. The teacher listens and puts the two expressions for 
ages in brackets during Ruth’s explanation. After Ruth had explained for 
her, Tone says she understands.  

In this episode, the teacher encouraged Ruth to express her under-
standing of the problem, and in this way Ruth guided her peer, and at the 
same time had the experience of expressing orally a mathematical expla-
nation.  

In contrast to Tone, Ruth seems to have grasped the representations of 
the ages, although her start was incorrect. This is confirmed in her way of 
explaining what the expressions represented. The teacher at the end points 
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to the text and says that they always should follow it closely and reason 
about how to represent the information given.  

Item 1.3.10 was solved by six students. One of them, Kari, had formu-
lated an incorrect equation. The others had saved their correct solutions 
and had related their results to the initial question in the task. Arne had to 
ask for help though, because he had written multiplication as power.  

12.2 Word problem - Test tasks 
On the first regular test students had in September, they were given 

two word problems; one of them was a ratio problem: 
In a children’s party Stine decides to mix some juice. She has 2 litres of juice in a 
bottle. On the bottle is written that the ratio between juice and water should be 1:7. 
How much water does Stine need if she is going to follow the recipe on the bottle?  

The other was an age problem: 
The brothers Tor, Erling and Jonas are altogether 37 years. Tor is double the age 
of Erling and 3 years older than Jonas. How old are the brothers? 

The table below shows the results: 
 
Table 12-2:  September test – word problems (27 students)  
 Ratio problem % Age problem % 

Correct equation 15 37 
Correct arithmetic solution  51 19 
Correct answer no justifica-
tion 15 11 
Incorrect equation 4 7 
Incorrect calculations 11 11 
No response 4 15 

 
From the table it is seen that in the ratio problem, few students (4) felt the 
need or felt competent to apply equations to solve the problem. The main 
group gave some explanation for their arithmetic calculations and came to 
the correct solution. Four just gave the answer, giving no justification for 
their solutions.  

In the age problem, 10 (37 %) students solved the task by setting up 
and solving a correct equation.  

The age problem on the test was more complicated than those prob-
lems students had solved in the textbook. Here two quantities are related 
to a third one.  
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Age problem from textbook Age problem from Sep-
tember test 

  
Figure 12-4:  Comparison of the two age problems  

 
In the figure above the structure of the problems are illustrated according 
to the schema developed by Bednarz and Janvier (1996). As shown in the 
other schemas, none of the problems on the work plan had the same struc-
ture as this test problem. However, most students gave the correct answer 
(67 %). Only seven in the class had solved the textbook problem. Four of 
those students solved the test task correctly, solving an equation. In this 
problem, the structure is so complicated that it seems as if nearly half the 
students felt that equation solving was the best strategy, although two of 
them did not succeed.  

Two students justified their correct solutions by saying that they ‘tried 
and failed’. One student, Tone, who in the classroom had a problem un-
derstanding why there should be an x involved, (see the foregoing sec-
tion), succeeded in finding the correct solution by applying a table.  

12.3 Summary word problems 
The data confirms what has been shown in other studies that students are 
reluctant to set up equations if the structure of the problem makes it easy 
to solve it arithmetically (Stacey & MacGregor, 1999). It seems as if stu-
dents prefer to rely on arithmetic reasoning, also when they know that 
equation solving is the focus for learning, as long as the structure of the 
problem is easy enough. As Ronny said: “I would never write an equation 
if I got such a problem on a test” (about the ratio problem). He and Tore 
were not among those who applied an equation in the test task with a giv-
en ratio. However, both wrote equations in the age problem. Tore who 
asked for help in the lesson succeeded and got a correct solution.  

On the work plan for chapter 4 in which students had to work with lin-
ear equations and solve system of equations, five items required that stu-
dents represented relationships in mathematical notations before solving 
the problems.  
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In two tasks they should find out the algebraic expressions for linear 
functions from a text. This did not seem to be a problem for the students, 
all in the dataset of 18 students (saved computer files) had solved the task. 
The reason might be that in such problems they knew that the equations 
should have the form: y = ax + b. Very few students solved the other as-
signed word problems in that chapter.  

There is no data explaining students’ reluctance to solve word prob-
lems, but in addition to the fact that some of the tasks were more easily 
solved arithmetically, it might be that the students had to use more effort 
to solve those with a more complicated structure than to start on tasks al-
ready written in mathematical notation. Another reason for some students 
might be the problem of distinguishing between letter symbols standing 
for the object, and the value/amount of that object (see 8.1). 

The result was that few students experienced the generational activity 
of algebra (Kieran, 2007a) which is regarded as being the meaning mak-
ing activity of the topic. 

From this chapter it can be concluded that the generational activity of 
algebra is not devoted much space in the textbook although one goal for 
the first textbook chapter is: “To convert a practical problem into an equa-
tion” (see section 2.9). It might be that the textbook authors expect that 
the students at this level have had rich experiences with such work, and 
that it is not needed to go into this topic for students in order to learn or 
consolidate basic algebra.  

The examples offered are poor, and especially in the ratio problem the 
numbers are of a size not inspiring students to create equations. The same 
is the case with the ratio problems assigned for students to solve. In the 
plan from the publisher only three tasks were written with bold fonts, and 
in addition five tasks were written with normal fonts. The teacher had 
chosen five of them and written them with bold fonts thereby demanding 
the students to solve them. The students were nevertheless offered few 
opportunities to experience the meaning-making activity of algebra.  

The responses in the classroom and the reluctance to engage with 
word problems, might indicate that most students have had few experi-
ences with this activity also in lower grades.  
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13 Patterns of interaction 
Patterns of interactions are jointly constituted (section 5.1) by the teacher 
and students on the basis of routines and obligations (Bauersfeld, 2000; 
Voigt, 1995). Also from this class, it is possible to reconstruct such pat-
terns. In this chapter, these patterns will be described. The reason for this 
is that different patterns of interaction might provide different learning 
opportunities (Anghileri, 2006; Voigt, 1994; Wood, Williams, & McNeal, 
2006). Another reason is that the patterns of interactions gives an im-
portant insights in the learning situation.  

In the plenary sessions the interaction between teacher and students 
followed much the same pattern from lesson to lesson. 

Every time a new24 topic was introduced, the teacher asked for prior 
knowledge (Ausubel, et al., 1978) (see section 10.1and 11.1). One exam-
ple is from the introduction to equations: 

T: The topic for today is equations. And so I am very intrigued about what 
you already know about equations. 

Ronny: Unknown! 
T: An equation is something that you will meet over and over again especial-

ly for those of you who will choose to study mathematics all the three 
years here in school. The sooner you learn the principles the better. But 
you said that there is an unknown. That is right. What do we call it then?  

Else:  That depends on what name you will give it. 
The conversation went on in the same style, with the teacher listening to 
students’ input. Her style was to revoice (Herbel-Eisenmann, et al., 2009) 
what students said, which made it easier for the whole class to capture 
what was said, and thereby to make it easier for students to join in. In ad-
dition, this revoicing was applied to focus on correct terms as in the epi-
sode with Carl who told her to “times up and down” to get the common 
denominator. She revoices his utterance, but applies the word ‘expand’ 
(section 9.3). On other occasions revoicing was applied to emphasise im-
portant underlying concepts, when students responded, as when students 
suggested to ‘move over and change sign’ she revoiced the utterance and 
added that this ‘movement’ mathematically was to apply the same opera-
tion on both sides of the equal sign (section 10.2). At other times this re-
voicing was followed by ‘why questions’ as in the episode with Arne in 
the same section (10.12).    

All inputs were taken seriously, and she built on them, no matter how 
elementary they seemed to be. In the plenary session when students were 
asked about inequalities, there was also a discussion about the inequality 

                                           
24 New in the sense that it was introduced for the first time in this class. It does not mean that it 
was new to the students. 
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sign and how to read it. After a remark from teacher’s side about the use 
of the metaphor of a crocodile’s mouth in primary school, one student re-
sponded correctly using the metaphor. The teacher then used it in her fur-
ther explanation (section 11.2.1). The fact that prior knowledge was taken 
seriously, was probably one reason for students to feel confident to en-
gage in such patterns of interaction.  

Another pattern was that example tasks were solved on the whiteboard 
with the teacher asking students to join her in the solution process. Most 
often a large number of students were eager to participate. As the teacher 
was writing on the whiteboard, the students suggested what to do. Stu-
dents’ responses were mostly rather short.  

When, drawing from her experience, the teacher wanted to emphasise 
reasons for suggested operations, she asked follow up questions. One ex-
ample is from the plenary session about simplifying algebraic fractions. 

The fraction 
28

24

x y

xy
 should be simplified:  

Ine:  Can’t we cancel some which are similar? 
T:  Yes, tell me which of them.  
Ine:  We can cancel the y’s. 
T:  Yes, I can simplify by cancelling the y. What am I doing then? 
Ine:  We cancel both. 
T:  What operation is it? 
Ine:  We divide.  

In this example Ine suggests to simply cancel the y’s. The teacher is not 
satisfied and asks what operation that is. To that Ine answers “we divide”. 
This is one of several examples of a routine of reducing verbal utterances 
to numbers and keywords, which is often seen especially in mathematics 
classrooms (Voigt, 1989). The example is at the same time an example of 
a move the teacher makes in order to emphasise what is going on mathe-
matically, although the responses are very short.  

When students seemed not to agree about what would be the next step 
in the solution, the teacher gave them time to discuss without intervening. 

One example is when the task 
3 1

4 6

a a 
  is going to be solved (see sec-

tion 9.3). The teacher and the students take turns smoothly until the frac-

tions after being expanded 
3 9 2 2

12 12

a a 
  are going to be subtracted. 

Then one student has the opinion that the number 2 in the last fraction is 
going to be subtracted. Other students join in, some agree and others sug-
gest it should be added. They discuss what the sign is going to be, some 
give arguments others just agree with their peers. Also then the inputs are 
short, pointing to rules, without mathematical argumentation. 
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The teacher asks after a while if they want a minus sign, the students 
continue their discussion, until the teacher finally gives the advice to put 

the numerators in brackets:  
(3 9) (2 2)

12

a a  
. After being presented 

with this, all the students seemed to agree that the number 2 has to be 
added; the meaning was taken to be shared. However, that was not the 
case before the teacher intervened.  

She let them discuss until she herself or some student presented a con-
vincing argument. Several times the teacher used number examples as 
counter examples. One example is when the students argued for simplify-
ing fractions term by term (see section 9.1).  

Sometimes the interaction was not that smooth. One example is to be 
seen in section 9.2, when the teacher challenged the students to change 
strategy; to be more efficient and flexible. Then some of the students re-
sponded negatively, they did not want to change. Another example can be 
seen in section 12.1 when the students could see no benefits in applying 
equations to solve the given ratio problems.  

Most of the interaction patterns shown above can be said to be exam-
ples of the initiation-response-follow up/evaluate pattern. This pattern is 
characterised by the teacher posing a question, students respond, and the 
teacher follows up or evaluates the responses. Former studies have shown 
that the students had little or no impact on the classroom discourse within 
such interaction patterns (Cazden, 1988; Mehan, 1979). Studies of Nor-
wegian classrooms, however, have shown that this is not the case (Klette, 
2010) 

 Norwegian students have possibilities to participate and contribute; 
their roles have changed in terms of their “possibilities for initiation, ne-
gotiation and involvement”, so also in this study. The teacher was open to, 
and developed on students’ ideas, and problems, as shown in some of the 
episodes above.  

Students answers are short in style though, pointing to rules, possibly 
through a long-time familiarity with the didactical contract for traditional 
mathematics classroom (Blomhøj, 1994) which has conditioned them to 
respond in this way. If the teacher expects more than short answers is not 
known, at least she responds to students’ suggestions in such a way that 
they do not feel unsuccessful, but are willing to carry on. She offers them, 
however, opportunities to go beyond the rules and the procedures. 

During the seatwork other patterns of interaction were observed. Most-
ly when students asked for help, they did it because they had checked 
their answer with that in the textbook key, and had found that it did not 
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correspond. If they did not find the error, they asked for help. Mostly the 
teacher went patiently through their solutions together with them.  

Another frequent pattern occured when in their solution process stu-
dents asked questions such as: what am I going to do now, or I do not 
know how to carry on. Then the teacher’s reaction often was to ask ques-
tions. One example is an episode with Ronny solving a fraction task: 

Ronny: What am I going to do in order to multiply a fraction by a bracket?  
T: Yes? Can you tell me. Do you have any suggestion? 
Ronny: We multiply the fraction by those. (He points to the terms in the bracket). 
T: Yes, you multiply. (Ronny seems to hesitate) What will you have then?  

You multiply 1
  by 
4

x ? 

Ronny: It will be one fourth of x? 
T:  Yes. 
Ronny: Just like that? (he writes) 
T:  Yes, that’s how it is.  

Another pattern which may be called the confirmation pattern, occurred in 
situations when students had solved a problem, or were in the middle of 
the solution process. It seemed they did not feel secure and asked if the 
method or part of the solution was correct. If this was a way to make con-
tact with the teacher, when she was nearby, or if they really felt uncertain, 
is hard to say. The teacher confirmed what they had done. One example of 
this is from the lesson working with equations. The teacher is watching 
Peter’s screen from behind: 

Peter: Is it just like this. Is it okey what I have done? 
T: Yes, it is.  

This last pattern was more frequent in the first lessons, then nearly one 
quarter of the interactions during seatwork were of this kind. In the last 
part of the observed lessons there were fewer such episodes. 

When students were working on tasks, they interacted with each other 
as well as with the teacher. The interaction between the students was not 
so well captured, but from both video- and audio-recordings it was possi-
ble to capture some of the conversations. 

One typical pattern observed, was interactions in which one student 
asked one peer or group of peers about their solutions or answers. When 
their solutions did not coincide, they either asked others or they started to 
search for differences or for errors.  

One example of this is the episode when Tone and Ruth compared 
each others screens in section 10.2. Another is when Tore turns to his 
peers and asks if they have got the same result as his, in section 11.2.23.  

Mostly it seemed that students were more focused on getting a correct 
answer, than to discuss the mathematics. However, some such episodes 
were also observed. One is the episode when Ronny realised that it was 
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not straightforward to cross multiply when solving linear inequalities in 
section 10.2.3. However, also this time the arguments were held on the 
surface level, pointing to rules. They did not go into the properties of 
equations and inequalities.  

Other patterns, not interaction pattern between students and teacher or 
between students, were also observed in the classroom. One pattern dis-
covered during seat work, and confirmed by the saved computer files, was 
that a large number of students mostly skipped the few assigned word 
problems.  

Another pattern, seen in those files, was that students did the first as-
signed tasks, then ever fewer students solved tasks further on in the work 
plan. This might mean that a significant number of students did no home 
work.  

The students worked on the computers, which made it easy for the 
teacher as well as for the observer(s) to follow the work on the screens. 
Often when students asked for help, they just pointed to the screen using 
the indexials ‘this’ and ‘that’.  

It is possible that the use of the computer made ‘reduced verbal utter-
ances’ even more reduced. In the introduction to linear functions, the stu-
dents wrote on paper. The teacher had prepared tasks in which students 
had to give reasons for their answers. The writing on the paper was often 
not easy to read, which caused students to have to explain what was writ-
ten. The utterances were also then not rich in words, but richer than when 
working with tasks on the computers. 

The transformational character of the activity during the work with the 
first textbook chapter, the topics presented which the students had met in 
earlier grades, and also the limited time, might explain the focus on the-
matic patterns heading towards a specific solution.  

A summary of found patterns is presented in the table below: 
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Table 13-1:  Patterns observed in the mathematics classroom 
Patterns of interactions:  
Connecting to prior knowledge Teacher’s action at the start of each topic 
Revoicing Students’ utterances were revoiced by the 

teacher, sometimes just to broadcast what was 
said, other times to widen it, to emphasise 
mathematical terms or to ask follow up ques-
tion 

Prior knowledge and suggestions 
 

Teacher treats seriously what students bring in, 
and builds on those inputs in such a way that 
they continue coming with responses 

Tasks solved in cooperation Teacher works out tasks on the whiteboard to-
gether with the students  

Emphasise reasons for sugges-
tions 

The teacher asked follow up questions 

Use of number examples as coun-
ter examples 

To create meaning as to why operations work 
or do not work, number examples were applied 

Didactical advice Experienced difficulties – teacher gave didacti-
cal advice about how to avoid errors 

Initiated discussions by the 
teacher  

Experienced problems – teacher challenged 
students, provoking discussions about strategies 
and old habits.  
The students were given time to discuss when 
there was no agreement about an answer to 
teacher’s input. 

Confirmation  Many students asked if their solution was cor-
rect 

Return questions When asking ‘what to do’, the teacher respond-
ed with a new question 

Comparing solutions What is your solution? Comparing screens to 
see what went wrong, or the end result. Focus 
on the ‘correct answer’. No student was seen to 
control their equation/inequality solutions 

Other patterns:  
Correct answer Students were seen to search for the correct 

answer in the textbook. Often the initial answer 
was just adjusted. Also there was evidence of 
students not regarding the process as important; 
although incorrect. 

Skipping word problems Few students had solved word problems 
Doing little or no homework The saved files showed evidence that few stu-

dents had solved the last tasks on the work 
plans 

Using the cursor instead of using 
mathematical language 

The pointing on the screen with the cursor min-
imised the need for explanations 

A reluctance to do work ‘not usu-
al’ in mathematics lessons 

Expressed that they preferred the lesson pattern: 
teacher’s exposition and then seat work 

 



 
A case study of a Norwegian mathematics classroom   253 

Although coming from different schools, no one seemed to question the 
culture of the mathematics classroom, which might indicate that they are 
following a familiar didactic contract (Brousseau, 1997). The interaction 
was already characterised by routines (Voigt, 1989) even though they had 
only seen each other a few times, when the observation started. The 
teacher and the students in a class are according to Voigt (1994) interact-
ing and communicating with each other through the rules and expectations 
they already have with each other, and the style of interaction is hard to 
change. Voigt (1995) claimed there is a risk that patterns turn out to be 
just joint work in order to arrive at a correct solution narrowed down to 
small steps, which in reality is an obstacle for learning.  

These students have had 10 years in school and in mathematics clas-
ses. It might thus be argued that most patterns observed were also patterns 
students had experienced from lower grades. This was confirmed in con-
versations with some of the students.  

The teacher was expected to introduce the topics and to lead to the so-
lution process on the white board. This expectation was explicitly ex-
pressed by the students in an interview about their preferred way to work. 
She was also expected to help them find their errors and correct them. 
These expectations were based on former experiences with mathematics 
classrooms, and correlate with the features of a traditional mathematics 
classroom (Blomhøj, 1994).  

When the teacher challenged the students to change strategy, the 
smooth interaction (the didactical contract) was broken. Then some stu-
dents objected so powerfully that the teacher succumbed, and seemingly 
no learning occurred (section 9.2 and section 12.1). They wanted to act as 
they always had.  

The interaction patterns, shown above, constituting the classroom cul-
ture seemed to confirm that students’ experiences of mathematics, at least 
in this part of the syllabus, are mostly based on rules and conventions and 
that they have not experienced mathematics as relations and structures 
(Steinbring, 1997).  

There are examples of focusing patterns (Wood, 1994) when the 
teacher draws students’ attention to critical aspects by posing questions, 
and then letting the students discuss themselves, thus leaving to the stu-
dents the responsibility of solving tasks. Students’ argumentation, howev-
er, was held on a superficial level of pointing to rules.   
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14 Findings: Summaries and Discussion 
In chapters 8 to 12, students’ work with mathematics in the first weeks of 
attending upper secondary school is presented. The expositions in the 
textbook, teacher’s explanations, the teacher and the students’ joint work 
with example tasks, and the students’ work with assigned tasks have been 
presented. Students’ responses, are compared with, and categorised ac-
cording to findings from earlier studies, and reveal that problems and 
common errors found in earlier studies are also found here. That is one 
level of this study; to present and dicuss the mathematics offered and to be 
informed about what experiences the students’ have of the mathematics 
offered at the start of upper secondary school.  

The study has also a further aim; to study how the learning situation; 
the setting of the mathematics classroom influences students’ experiences. 
The learning situation includes the learning goals, the teaching, the text-
book with its expositions and tasks, the computer, classroom interactions 
and the didactical contract.  

In  this chapter I will provide short summaries of the findings in chap-
ter 8 to chapter 12, categorised according to findings of students’ respons-
es in former studies. In the subsequent sections, those findings will be dis-
cussed more explicitly in relation to the interpretative framework in chap-
ter 5, and in relation to the research questions. 

14.1  Problems and common errors 
In this section the findings are presented in accordance with the ordering 
of the topics in the textbook. 

14.1.1 Literal symbols and calculations 
The textbook examples, assigned tasks and the first plenary sessions dur-
ing the time of observation25 revolved around manipulation of number 
strings and algebraic expressions. The assigned tasks were exercises 
(Niss, 1993) similar to the example tasks and thus of low cognitive de-
mand (Smith & Stein, 1998), and also of low procedural complexity 
(Hiebert, et al., 2003).  

The students manipulated and transformed algebraic expressions, 
without referring to the meaning of the letter symbols, or what they repre-
sent. Steinbring (2006) emphasised that signs have no meanings of their 
own, and have to be interpreted. It seemed that the textbook authors had 
taken for granted that students have no problems with the different inter-

                                           
25 The students had been instructed on how to use their computers and the software programs 
MathType and Word in plenary sessions before the observation started.  



 
256  Algebra at the start of Upper Secondary School 

pretations of the letter symbols (Küchemann, 1981). The textbook did not 
explicitly focus on the mathematical symbol system, and there were no 
examples or assigned tasks to provoke errors that commonly occur. Thus 
there were no or few opportunities (Hiebert & Grouws, 2007; Kilpatrick, 
et al., 2001) given for students to explicitly develop their interpretation of 
the symbols. 

The algebra test indicated that less than half the students, 40 % in the 
autumn and 38 % in the spring (section 8.1), differentiated clearly be-
tween an object and the value of that object (Küchemann, 1981). The dif-
ficulty in making this differentiation might be one reason why few stu-
dents solved the assigned word problems (see chapter 12). To solve those 
tasks they had to decide what the letter symbols should represent. Tone’s 
interaction with the teacher (section 12.1) is an example of this problem. 
She did not know why she had to bring in an x.  

It may be questioned whether all students were aware of the possibility 
that different letter symbols could take on the same value, since only half 
the students in the autumn, showed evidence of accepting this in a task in 
the algebra test (section 8.1, table 8-1). In the Spring the proportion had 
risen to 72 %; indicating a positive development. The work with simulta-
neous equations and different functions might have offered the students 
opportunities to develop their concept images (Tall & Vinner, 1981). 

The concept of variable in the sense of Küchemann (1981) (section 
4.1), was not in focus, and there was no sign of such an interpretation 
among the students in this period of observation. This is the reason for 
using the notion letter symbol, instead of the notion variable, in this thesis. 
All students seemed though to accept the ‘lack of closure’ (Collis, 1972) 
and letter symbols representing specific unknowns and possibly general 
numbers.  

Students’ responses indicate that nearly all students are confident 
when it comes to elementary calculation with numbers and letters. The 
introduction of the minus sign, powers, or fractions caused difficulties (ch. 
8 and 9). Most students seemed to follow the law of distribution although 
some students failed occasionally. It seemed not to be a consistent error. 
The tasks were simple though; no assigned task included two binomial 
factors.   

The concept of equivalence, underlying all transformational work in 
algebra (Kieran, 2007), and thus tacitly and implicitly present in students’ 
work, was not addressed by the textbook or in the classroom. Results from 
the algebra test indicate that one third had problems picking out equiva-
lent expressions (section 8.1). The results in the spring were far better, 
indicating a positive development.  
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Earlier studies about learning, confirm the importance of being explicit 
about the concepts students are going to learn (Hiebert & Grouws, 2007), 
and also to name the concepts (Gray & Tall, 2007) in order to give the 
students possibilities to refer to the concept and to discuss its properties. 
Equivalence seemed not to be part of the students’ vocabulary. No student 
was observed to use equivalence as a tool to control their work.  

There was no task or discussion in the classroom about letter symbols 
as such, apart from one episode in which a student suggested that it did 
not matter which letter represented the unknown in equations (section 
10.1). The teacher welcomed that comment.  

One cannot say for certain how the work with algebra was introduced 
in lower secondary school for these students since they came from differ-
ent schools using different textbooks. The former curriculum (L97, see 
section 2.2.1) emphasised the need to encourage discussion and reflection 
in the classrooms. Alseth and colleagues (2003) studying mathematics 
textbooks, and the introduction of algebra in these books, found that not 
much was asked about reflection and discussion. 

In a recent study of six mathematics textbooks introducing algebra in 
lower secondary school in Norway, Kongelf (2015) found that there was 
little or no emphasis on letter symbols representing general numbers. The 
connection to numbers was weak, and the way algebra was presented laid 
the ground for misconceptions especially ‘letter symbols as objects’. The 
focus was on manipulation with little explanation of why these manipula-
tions were being performed. He concludes that, “the incorrect formula-
tions, illustrations and mathematical reasoning, create conditions for de-
velopment of misconceptions” (ibid, p. 104).   

14.1.2 Invisible signs 
The teacher addressed the invisible operation sign when it was ‘present’ in 
example tasks. It was not addressed in the textbook. Those who asked for 
help, seemed to have been helped, and in the spring all came to the correct 
solution of the task presented in section 8.2, table 8-3.  

In tasks involving negative numbers the invisible operation sign was 
still a problem for many students. In the spring, 25 % mixed the invisible 
multiplication sign with the addition/subtraction signs or chose incorrect 
operations (algebra test). This proportion decreased from 51 % to 25 % 
from autumn till spring (see table 8-5 section 8.3.2); a positive develop-
ment. 

The invisible number (number 1) was addressed several times by the 
teacher during both plenary sessions and during seatwork. The students 
seemed to be aware of it. This was confirmed in the interviews (section 
8.3.6). It might however, still be a factor causing students to change direc-
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tion in calculation (see section 8.3.6 - Olav’s response solving task 1e in 
the algebra test). 

14.1.3 The minus sign and negative numbers 
The minus sign gave rise to many problems in students’ work. The use of 
the number line indicates that the textbook authors wanted to give mean-
ing for the work with negative numbers, but the exposition ended in the 
sign rules without any explanation. The function of the minus sign as a 
sign for ‘taking the opposite of’ and the concept of ‘opposite numbers’ 
(the additive inverse) were not addressed at all. 

 The responses on the few tasks offered explicitly to practice opera-
tions on negative numbers, indicate that some few students were not con-
fident with these operations. One issue was to handle two successive mi-
nus signs (section 8.3.3); to take the opposite number, another was nega-
tive numbers as base in powers. 

One issue was the sign rules for brackets. On the first ordinary test,   
37 % did not change the sign in at least one task when the bracket was 
removed (section 8.3.5 and 8.3.7), and two changed sign when the bracket 
was preceded by a plus sign. Repeatedly in the classroom, students were 
observed to choose an incorrect sign when removing brackets, but then 
the students could check their results and ask for help.  

In tasks with binomials as numerator the same problem occurred. The 
teacher had given the advice to write the binomials in brackets. This 
helped many students to write the correct sign. However, if they had not 
understood the reason for the sign rules for brackets, it was just another 
rule. Alf’s correct solutions and his comment (section 8.3.5) that he had 
never understood why the signs should be changed, exemplify this.  

Students had no tools to control their work, but if the concept of 
equivalence had been known, they could have substituted the letter sym-
bols by numbers, and compared their end solutions with the initial expres-
sions to see if the value was equal. This might also have helped them to 
see the brackets and binomials as objects (Sfard, 1991).    

Students stating that they did not know that the sign rules also worked 
when dividing by a negative number (section 8.3.5), is an indication that 
they had been offered little variation in the examples (Bills, et al., 2006), 
but most importantly that they should have learned why the rules work. 

The tendency to detach the terms from their indicated operations, 
causing students to either calculate from right to left, operate as if there 
was a bracket involved, or to rearrange terms without considering the op-
eration signs was also caused by the presence of the minus sign. This hap-
pened both with arithmetic and algebraic expressions (see section 8.3.6). 
No assigned task was designed to provoke such errors, but in one task in 
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the algebra test 48 % in the autumn, and 38 % in the spring failed because 
they detached terms from their indicated operations. They had no clear 
conception of what sign belonged to which term.  

The errors revealed related to negativity (Vlassis, 2004) show a lack of 
conceptual understanding (Kilpatrick et al., 2001) for basic mathematics, 
and that such a lack creates problems for students in developing procedur-
al fluency (ibid).  

It might certainly have helped students to have a conception of the mi-
nus sign including all three functions of the sign (Gallardo & Hernández, 
2005; Gallardo & Hernández, 2007; Vlassis, 2004). In addition, there is a 
large group of students who need to be informed about the importance of 
considering which sign ‘belongs’ to which term. To interpret and to un-
derstand the mathematical language, was not addressed in the learning 
material.  

The mathematics offered was highly procedural (Hiebert & Lefevre, 
1986) and promoted instrumental learning (Skemp, 1987). The tasks were 
exercises (Niss, 1993) and did not challenge students’ concept images 
(Tall & Vinner, 1981).  

14.1.4 Powers 
The concept of power was presented in the textbook in relation to scien-
tific numbers. In the work with powers, problems revealed in former stud-
ies, were also found here. The textbook presented the definition of power 

as ...........

n factors

na a a a  


 and used the example 5
5

1
10

10
   to introduce negative 

exponents. The method to transform scientific notation into decimal num-
bers was told to be to move the comma as many steps as the value of the 
exponent. There was no explicit connection made to the number system. 

In the algebra test all students showed that they knew the definition of 
powers as repeated multiplication. Errors included writing the multiplica-
tor as exponent (Glenn in section 9.3), or the opposite; writing exponen-
tiation as ordinary multiplication. Some students expressed uncertainty 
about the writing (see section 8.4). This phenomenon was reported in ear-
lier studies (de Lima & Tall, 2006a; Stacey & MacGregor, 1997). Some 
few students seemed to lack an understanding of the meaning of the dif-
ferent components in a power. This was evident when simplifying frac-

tions as in the example: 
215 15

5

ab

b


3
a b

2

5 b
23a .  

Some had problems in deciding in which order the powers should be 
calculated; either to multiply the base before exponentiation or to calcu-
late the power first. One example is the episode with Else in section 8.5. 
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In December 24 % (task 1a) failed because of calculating in an incorrect 
order. Some of those calculated also the base by the exponent (12 %). 

 Most students who at the outset had a problem, still seemed to have 
troubles in the spring. This might indicate that they had not been offered 
rich experiences of the concept of powers, their concept images had not 
been developed (Tall & Vinner, 1981).  

Later in the school year, the powers were in focus in the textbook once 
again. Also in that textbook chapter, the underlying assumption was that 
powers and the operation of powers are well known. The focus is to learn 
more efficient methods through new rules.  

The results on the test (task 2a section 8.4, table 8-8) indicate that 
nearly 40 % of the students had problems with powers with negative ex-
ponents. If those students do not develop an understanding of what this 
negative exponent means, and a sense for the size of the numbers the 
powers represent, it does not help learning the new rules for adding and 
multiplying exponents when multiplying/dividing powers. They will still 
lack the meaning of those rules and operations.  

14.1.5 Order of operations 
The responses indicating problems related to order of operations, were 
mostly related to powers and the minus sign. In the textbook, only rules 
were presented in relation to ‘order of operations’, and no task26 was ex-
plicitly offered on the work plan to practice the rules for order of opera-
tions. There were no opportunities offered to solve tasks including both 
powers, multiplication/division and addition/subtraction.  

Two test tasks, however, one in September and one in December, had 
the potential for challenging students. In the first task, the design was such 
that it might have been tempting to add before multiplication, but only one 
student did this (see section 8.5), indicating that the students were confi-
dent in this matter. There was, however, no other task to challenge them. 
In one test task, December, 24 % of those who solved the task, multiplied 
by the base before the exponentiation (see the foregoing section).  

Problems related to the minus sign were grouped together, although 
the category ‘detachment of indicated operation’ could have been classi-
fied as problems with order of operations. 

 

                                           
26 This must have been a mistake from the publisher’s side, since the item said to be related to 
order of operations, was an item about scientific notation. The task designed for practicing the 
rules for order of operations was listed on the work plan, but in a font signalling it as not being 
important. Only three students in the sample had solved some few of the tasks in the item. 
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14.1.6 Fractions 
As in the foregoing sections, the assigned tasks offered for students to 
solve, were all similar to the example tasks; of low cognitive demand 
(Smith & Stein, 1998) and of low procedural complexity (Hiebert, et al., 
2003). The textbook introduced the concept of fraction by some of its sub-
concepts, but the focus was on the rules for fraction operations. There was 
no explanation given for the rules in the textbook.  

Students’ responses related to the work with fractions, reveal that most 
students were confident using fraction operations related to ordinary frac-
tions. It was observed to be a problem to factorise larger numbers. The 
teacher’s exposition was focused on finding a common factor for reducing 
the fractions, not so much on prime factorisation, but the students who 
asked about factorising numbers, were helped (Glenn and Sven in section 
9.1). Mostly the fractions were not reduced to their simplest form, when 
they were result numbers after calculations. These issues were reported in 
earlier studies (Brown & Quinn, 2006; Eichelmann, et al., 2012; Padberg, 
1986).  

The work with algebraic fractions was more difficult. Errors reported 
earlier (Brown & Quinn, 2006; Guzmán, et al., 2011; Hall, 2004; Olteanu, 
2012; Storer, 1956) were also found in this study.   

Some few students struggled to factorise powers (section 8.4), and the 
majority of students had problems simplifying fractions with binomials. 
Few tasks including binomials were offered, and those were of the same 
structure, resulting in the same answer either the binomials were factor-
ised, or if the students cancelled the letter symbols before they added and 
simplified what was left (partly cancelling, see the test task in section 9.1, 
table 9-1).  

In the classroom, some students even argued with the teacher, saying 
that there was no need for factorisation; they had the ‘correct’ result (the 
episode with Ronny in section 9.1). The teacher’s number example did not 
seem to convince all of them, 81 % failed on the subsequent test task.  

It seemed that the students had no clear conception of simplification of 
fractions and the difference between factors and terms. Although some 
could point out the factors and the terms, there seemed to be no strong 
connection between factors and simplification.  

The teacher emphasised the difference between factors and terms and 
that simplification is division; dividing both numerator and denominator 
by the same factor. It might be that the poor sample of tasks, hindered 
them from developing conceptual understanding (Kilpatrick, 2001) for 
simplification of fractions with binomials. The teacher used the opportuni-
ties she had, to emphasise that binomials were entities and as such factors. 
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Implicitly she tried to help them to see those expressions as objects (Sfard, 
1991) or as procepts (Gray & Tall, 1994).  

Students’ main problem might be that they had only one strategy when 
multiplying fractions. With few exceptions they performed the multiplica-
tion before they searched for common factors. When binomials were in-
cluded they then had terms not factors; they nevertheless simplified by 
partly cancelling. They seemed not to be used to reflect or consider the 
structure of the task. This is a sign of a purely operational interpretation of 
the expressions; not seeing the expressions as objects (Sfard, 1991; Sfard 
& Linchevski, 1994b). Students’ lack of proceptual thinking (Gray & Tall, 
1994) might be one reason for their inefficient strategy. 

The teacher tried to convince them to change this strategy and look for 
the structure of the tasks (Hoch & Dreyfus, 2004; Linchevski & Livneh, 
1999) before carrying out the operations. Students were observed disa-
greeing with her in the episode with Tore in section 9.2. In that episode it 
might have been the small size of the numbers involved, that led students 
to see no need for a change in their strategy. This is also an example of 
how difficult it is to change thinking when procedures without connec-
tions are already learned (Kilpatrick et al., 2001). This form of thinking 
seemed to be the reason for errors both when working with ordinary frac-
tions and with equations.  

In general, addition and subtraction went well, although some students 
were seen to struggle in the first tasks, when letter symbols were included 
in the denominator (Atle in section 9.3). The test results show that all stu-
dents succeeded in finding a common denominator. It was evident though 
both from task solutions and from responses during plenary that the dif-
ference between expansion and multiplication was quite blurred for some 
students (see at the end of section 9.2). The teacher was aware of this and 
addressed the issue.  

Another issue was the problem of subtracting or adding fractions with 
binomials in the numerator (no assigned addition/subtraction task includ-
ed binomials in the denominator). The students were reminded by the 
teacher to handle the binomials as entities, and gave the advice to place 
the numerators in brackets. In the test in September, most students using 
brackets changed the sign if the fraction was to be subtracted (see section 
9.3 and table table 9-5). However, a third of the students did not change 
sign; bracket or not, an indication of not regarding the binomial as an ob-
ject (Sfard, 1991) and of having problems with the sign rules (see section 
8.3.5).  

One can question though, whether the use of brackets, was just another 
rule for the students, like the rule for changing sign when the bracket had 
to be subtracted. From the test task about simplification it did not seem to 
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help them to regard the binomials as entities or objects in relation to 
multiplication and factorisation.   

There was little variation in the assigned textbook tasks, and none of 
them seemed to challenge students to change inefficient strategy, that is to 
proceed to ‘go on doing’ without first reflecting on the structure of the 
task. The students were not offered fraction tasks explicitly challenging 
their conception of fractions, or which asked them to reflect over the rea-
son why the fraction rules work.  

Unfamiliar fraction tasks revealed that most students struggled when 
the tasks involved binomials. This was evident when they should simplify 
a complex fraction (test task section 9.3), and when they should solve the 

equation  1 4

4 5

x

x





. None in the autumn and only one in the spring solved 

the latter task correctly.  (Algebra test task section 9.4).  
These examples and the fact that some students equated the fraction 

1

15
 with the natural number 15 (section 8.4) illustrate a lack of conceptual 

understanding of the concept of fraction. Instead they used self-created 
procedures violating mathematical laws.  

The concept of equivalent fractions was not explicitly focused upon in 
the textbook, although some fractions with the same value had the same 
location on the presented number line.  

The responses revealed a lack of conceptual understanding of the dif-
ferent components in rational binomial expressions and how these relate 
to each other (Olteanu, 2012; Seng, 2010), a lack of structure sense (Hoch 
& Dreyfus, 2004; Linchevski & Livneh, 1999) and proceptual thinking 
(Gray & Tall, 1994). The students had, however, been offered very few 
tasks and thus little or no opportunities for such thinking during the ob-
servation.  

The focus was on learning rules and not on why they work; promoting 
instrumental rather than relational understanding of mathematics (Skemp, 
1987). 

14.1.7 Equations 
The teacher emphasised the relational aspect by focusing on the left-right 
balance, when she introduced equations. She accepted, however, students’ 
rule of thumb, change side-change sign, but demanded that they perform 
the same operation on both sides of the equal sign. The textbook equated 
those two approaches, which are two completely different ways of think-
ing. To execute the same operation on both sides is based on the symmet-
ric property, which is absent in the transposing activity (Kieran, 1989).  

It was evident from the classroom that the symmetric property was not 
part of all students’ concept images of equations (Tall & Vinner, 1981) 
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although the teacher explicitly emphasised that they always performed the 
same operation on both sides. One example is the episode with Tone and 
Ruth (section 10.2),. 

When equations were introduced, some students expressed clearly that 
they had not a relational conception of the equal sign (section 10.1). Some 
of them wrote more than one equal sign indicating the same (see Selma’s 
example section 10.2) during the first weeks of observation. They 
changed their writings but whether the students then had changed their 
way of thinking, may be questioned. They continued saying that they 
changed side and changed sign. Some students, though, ‘forgot’ to change 
sign. Both responses indicate a  transposing procedure (Cortés & Pfaff, 
2000; Kieran, 1989). A couple of students went back to the same writing 
later.   

When the unknown had visible coefficients at the end of the solution 
process, it was evident that the students executed the same operation on 
both sides, which indicates that the students had two rules, one for sub-
traction/addition, and one for division/multiplication. It might also be that 
they had one rule; to move numbers and expressions from one side to the 
other as if they were physical objects (Lima & Tall, 2006b, 2008).   

The equations in the textbook tasks were as in the other sub-chapters 
exercises according to Niss (1993) and thus similar to the example tasks 
in the textbook. However, some of them might be categorised in the mod-
erate level of procedural complexity (Hiebert, et al., 2003). In general, the 
problems revealed were mostly related to fractions, the minus sign, nega-
tive numbers, or the problem to differentiate between factors and terms 
(section 9.3).  

The teacher introduced cross multiplication as a tool when solving ra-
tio equations. For some few students this seemed to complicate the pro-
cess of equation solving, as seen in Ruth’s solutions in the classroom (sec-
tion 10.3). 

The properties of equations, the symmetric, the reflexive and the tran-
sitive properties were not explicitly presented. The concept of equivalence 
was not addressed in relation to equations either, and none of the students 
were seen to control their answers; a procedure which could have prevent-
ed many errors, and promoted more meaning.  

14.1.8 Inequalities 
The teacher related the topic to the notation of number sets, which was not 
presented in the textbook related to inequalities. The main point, however, 
was to learn the procedures to solve inequalities algebraically. The differ-
ence between the procedures for solving equations and inequalities was 
emphasised. The main point was: solve it as an equation; the difference 
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turns up when the coefficient before the unknown is negative, then the 
inequality sign has to be flipped. Both in the textbook and in the class-
room, this rule was exemplified by a numerical example.  

There were few tasks offered, and all were similar to the example 
tasks; and thus of low cognitive demand (Smith & Stein, 1998). In No-
vember, related to straight lines, one word problem was an inequality. All 
the students, however, solved it as an equation, and afterwards they rea-
soned, based on the solution and the context, as to how they should ex-
press the solution.  

Although the number sets were introduced in the classroom and the 
meanings of those sets were ‘taken as shared’ (Voigt, 1994), it seemed 
that some students thought of the unknown as a specific unknown within 
the set (Olav in section 11.2.4). This could also be interpreted from the 
short exposition part in the textbook.  

Some students solved the inequalities in exactly the same manner as 
they solved equations, but with inequality signs. They talked about x is. 
Others followed the rules for inequalities, but wrote an equal sign at the 
end. On the test in September 46 % of the students followed one or other 
of these options.  

The observations in class and the responses from the tests, illuminate 
the problems caused by the juxtaposition between the solution processes 
of equations and inequalities. To differentiate between the two, is im-
portant in order to develop rich concept images (Tall & Vinner, 1981) of 
the two concepts. The teacher laid a foundation in that she related inequal-
ities to sets of numbers. There seemed to be consensus in class that the 
solution included all numbers within the solution set. This meaning taken 
as shared, was not part of each individual’s conception though. The teach-
er, however, was not so concerned since the topic would be presented lat-
er, in relation to graphs and functions. Then the concept of inequality 
would become clearer for the students.  

The students, however, might have benefited from working with the 
properties of inequalities and to compare these with the properties of 
equations before the work with functions and graphs. Then the students 
would have had an opportunity to go beyond the work of manipulating 
expressions in order to come to a result. They would have a possibility to 
reach a new level of understanding of the concepts. Students’ concept im-
ages (ibid) are always constrained by their experiences, and an emphasis 
on one part of a concept might constrain students’ possibility to develop a 
concept image in line with the formal definition of the concept.   
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14.1.9 Word problems 
To convert texts into mathematical notation is the generational activity 
and the meaning giving activity in algebra according to Kieran (2007).   

The work plan included only five word problems, and few students, 
solved these. It seemed that they preferred to solve the tasks already ex-
pressed in mathematical notation. Some of the few students solving these 
tasks, struggled to convert the problems into mathematical notation. 

There was no exposition in the textbook related to word problems. 
Thus it seems that the competence to convert text into equations was tak-
en for granted in the textbook, although it was stated as a learning goal for 
the first chapter.  

Ratio problems were offered both as example tasks and as assigned 
tasks (section 12.1). Some students responded that they would not solve 
these as equations. One issue was that the numbers invited arithmetical 
thinking, another was that the students seemed unfamiliar with writing 
ratio equations. Thus some wrote formulas when prompted to write equa-
tions (Bill in section 12.1). Students’ informal proportional thinking 
seemed to be correct though. In the test in September only a small number 
of students, 11 %, solved the ratio problem as an equation, most students 
just wrote the result, presumably after mental calculations.  

In the other assigned word problems, it seemed hard to tease out the 
relation between the different quantities; known and unknowns. Some 
very few students solved them without any problem, while some, such as 
Tone and Ruth, had to be led by the teacher through each step in the pro-
cess (section 12.1). 

One test task (September) was an age problem. 14 students (dataset 
27) set up an equation, 11 of those came to a correct equation and a cor-
rect solution. It might be that it was harder to solve this problem arithmet-
ically, causing students to see the benefit of writing equations. In addition, 
students had been practicing more equation solving.  

Later in the autumn when working with straight lines, the students 
were more successful. The reason might be that they used the formula for 
linear functions, and thus the relations were given. At that time too, stu-
dents were observed to struggle to differentiate between values of an ob-
ject and the object themselves (section 8.1). The assigned word problems 
not related to linear functions were solved by only few students at that 
time (22% solved some of them). 

14.2 Discussion 
In this section the findings will be discussed. The first part is devoted to a 
discussion of the mathematics offered in the classroom. The next section 
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discuss students’ experiences, before the learning situation is discussed in 
the last section.   

14.2.1 The mathematics offered  
The first research question leading this study has been: 
What mathematics are students offered in the classroom for learning, or 
to consolidate already learned mathematics as they enter the upper sec-
ondary school? 

In the chapters 8 to 12, the mathematics offered is presented together 
with students’ responses. In those chapters the findings are presented in 
accordance with the different topics covered during observation. Those 
topics constitute one level of the mathematics offered. The next level is to 
discuss what kind of mathematics is offered.  

The mathematics offered in this classroom during the first weeks of 
term, is mostly focused upon rules and procedures; the transformational 
activity of algebra (Kieran, 2007). The topics were not new to the stu-
dents. Therefore it might be that the textbook authors regarded the actual 
concepts to be known, and that the recapitulation of  rules is what was 
seen to be needed to develop fluency in the application of known proce-
dures.  

The tasks, except for the word problems, were, of low cognitive de-
mand (Stein & Smith, 1998). In addition, the tasks were sequenced ac-
cording to the topic at hand. One student expressed explicitly, that his 
strategy was to check the location of the tasks, in order to find out what to 
do. Love and Pimm (1996) warned against such a sequencing (see section 
6.2), in order to avoid fragmentised knowledge. 

According to Bills and colleagues (2006), example tasks are of crucial 
importance for the learning of mathematics, and they emphasise the im-
portance of giving students a wide variety of examples. 

There was little or no variation in the sample of textbook tasks and ex-
amples. Most of them were non-contextual tasks, written in mathematical 
notation to be solved by applying known procedures. Both the example 
tasks and the assigned tasks were sequenced from easy to more compli-
cated. The possible complexity was of procedural character (Hiebert, et 
al., 2003). The assigned tasks were exercises (Niss, 1993) and could be 
solved by imitating the example tasks in the textbook. Exceptions were 
the word problems. There were also no counter examples or non-examples 
presented, which is important according to Bills and colleagues (2006). 
Only one way to solve the example tasks was presented, and reflection 
was not encouraged.  

In the classroom, however, the teacher presented counter examples, 
when students’ hypotheses of the next step(s) in the solution process was 
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against mathematical conventions (one example in section 9.1). These 
counter examples were pure number examples, and appeared to help some 
students to gain conceptual understanding (Kilpatrick et al., 2001).  

In this study, it is shown how textbook expositions, example tasks and 
assigned tasks failed to address important issues. The example tasks, and 
also the assigned tasks related to simplification of fractions including bi-
nomials, are examples of how the selection even can lead to, or maintain 
misconceptions. The structure of those tasks made students feel that they 
were competent reaching a ‘correct’ answer although acting contrary to 
the mathematics they were intended to learn (see section 9.1). The struc-
ture of the tasks prevented students from being challenged and so to expe-
rience a need to change their incorrect concept images (Tall & Vinner, 
1981).  

The algebra learned prior to the start of upper secondary school was 
allocated little time for recapitulation. The aim seemed to be to hasten 
through a series of tasks to freshen up already known rules. The introduc-
tion to the first chapter in the textbook is symptomatic of this attitude: 

 Supposedly, you will not need to study everything in this chapter thoroughly. Get 
an overview of the content, and look into it later if you need to (p. 8). 

Some sub-concepts of fractions are presented in the textbook, some opera-
tions of negative numbers are illustrated on the number line, and some 
rules are exemplified by examples from ‘daily life’; an indication of a 
willingness to give a basis for some of the rules. However, important 
basic concepts and properties are not addressed. Examples thereof are 
equivalence and the properties of equations and inequalities. Most rules 
are presented without any connection to conceptual understanding (Kil-
patrick et al., 2001). According to the textbook, “The aim of this chapter 
is to give you a basis for the mathematical work in Vg1” (p.8).  

International comparative studies, TIMSS and PISA, identify algebra 
as the weakest topic at the end of lower secondary school in Norway (see 
section 2.1). The tests administrated by the Norwegian Mathematics 
Council show that first year Norwegian university students, entering stud-
ies requiring mathematical knowledge, are still struggling with basic 
mathematics after ending upper secondary school (section 2.9).  

Thus it should be known that many students entering the upper sec-
ondary school need a new opportunity to go into basic mathematics con-
cepts. They need more than to practice rules. Those rules must be con-
nected to conceptual understanding (Kilpatrick et al., 2001).   

Educational studies suggest that the conceptual basis for rules and pro-
cedures should be explicitly presented (Hiebert & Grouws, 2007; 
Kilpatrick, et al., 2001) in order to create opportunities for learning. 
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In their work about concept development, Tall and Vinner (1981) em-
phasised that the students have no chance to develop a rich concept image 
without rich experiences with the concepts. Hiebert and Grouws (2007) 
found from their review of former studies, that conceptual understanding 
requires that concepts are explicitly presented, and that students be offered 
tasks which cause them to struggle; tasks with a high level of cognitive 
demand (Stein, et al., 2007; Stein & Smith, 1998). It seems that the text-
book expositions and the tasks design are not based on these research 
findings. 

The teacher, introduced some issues of conceptual character, for ex-
ample: the presentation of terms and factors (section 9.1), equations as 
relations (section 11.1) and inequalities related to sets and set notation 
(section 11.1). In situations when individual students clearly were chal-
lenged and asked questions, they seemed to make progress. Examples are 
Atle in section 9.3 (common denominators) and Else in section 8.4 (pow-
ers). Selma, who was observed not to know the difference between factors 
and terms, and thus had problems in following the correct order of opera-
tions, and to factorise binomials asked, for help. In the interview (section 
8.3.6) she told that she had learned the difference. She was one of five 
students who correctly solved the test task simplifying fractions with bi-
nomials (section 9.1).  

The mathematics textbook is closely followed by the teacher and by 
the students in their work with tasks. The learning goals for the first chap-
ter was stated in the start of the textbook, 
When you (singular) have read this chapter, you should be able to  

 calculate with powers and numbers in scientific notation 

 solve linear equations and inequalities  

 convert a practical problem into an equation 

 interpret, process and evaluate the mathematical content in various texts (p. 7) 
The textbook and the teacher introduce the rules for arithmetic calcula-
tions, the negative numbers and fractions before presenting equations and 
inequalities. The two first goals are thus addressed. The third goal, to con-
vert word problems into equations, is not given any exposition, but some 
few tasks were offered.  

The last goal in the list might have been thought of as being implicit in 
the work with the example tasks and assigned tasks. There were no explic-
it references made to interpretation or evaluation of tasks, results or texts 
in the textbook. Nor was there any mention of reflection about results or 
premises. Neither was it set as a learning goal in other chapters of the 
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textbook, and it was not suggested to read other texts apart from the text-
book. 

The mathematics offered in the textbook in this part of the mathemat-
ics course is thus highly procedural (Hiebert & Lefevre, 1986) focusing 
on rules and procedures, the how in mathematics (Skemp, 1987) and with 
little or no connection to conceptual understanding (Kilpatrick et al., 
2001). In the classroom, some conceptual issues were though addressed 
by the teacher. 

14.2.2 Students’ experiences 
Students’ experiences cannot be observed directly. Thus, students’ re-
sponses, oral and written, are the means illuminating students’ experienc-
es. Students’ responses are presented topic by topic in the chapters 8 to 
12. In this section, these responses will be discussed on a more general 
level. 

The second research question leading this study was: 
What experiences of the mathematics offered, do students reveal through 
their responses? 

The students in this study have finished ten years in compulsory 
school, and are in the transition from one school to another school. Thus, 
the responses observed, are to a large degree, responses also on the math-
ematics they have been offered in lower grades. 

The teacher asked for students’ pre-knowledge in the topics presented, 
and the responses revealed that a large group of the students have partial 
conceptions and limited experiences with the topics in focus during the 
first weeks in upper secondary school.  

The students mostly knew the rules, but some responses gave evidence 
that those rules were not connected to conceptual understanding. One ex-
ample is the sign rules for brackets (section 8.3.5).  

When the teacher asked follow up questions, or invited for argumenta-
tion, the students’ arguments were held on the superficial level of rules, 
often expressed with keywords (see chapter 13).  

The heavy emphasis on rules did not help all students to develop pro-
cedural fluency (Kilpatrick et al., 2001) in the work with equations and 
inequalities. In the regular test in September, students should solve three 
equations. For each of those tasks, less than half the students solved them 
correctly, and only 19 % solved all three test tasks correctly. In December, 
half the students solved the equation test task correctly. In September, on-
ly a fifth solved the inequality task correctly. In December, approximately 
half the students succeeded.  

The problems were mostly related to basic mathematics; fractions, the 
minus sign and the difference between factors and terms. In addition, the 
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blurred difference between equations and inequalities seemed to cause 
problems when solving inequalities. 

None of these issues were addressed in the textbook. The teacher, 
though, introduced some of them, but it seemed difficult to engage the 
students in issues they meant were learned on lower levels (Kilpatrick et 
al., 2001); an example is teachers’ suggestion to search for the structure of 
the task before multiplying fractions (section 9.2).  

The letter symbols and possible interpretations of these symbols 
(Küchemann, 1981), were not addressed. Students’ responses indicate that 
nearly 40 % interpreted letter symbols as objects (section 8.1). The stu-
dents in general accepted letter symbols as specific unknown. There is an 
indication that most students interpreted letters as general numbers, but 
both from a test task and from interviews, there is a question whether all 
students accepted that different letters could take on the same value (sec-
tion 8.1).  

In general, students did not use the formal mathematical vocabulary. 
They had a limited grasp of mathematical language, and talked about 
‘times up and down’ (section 9.3), which might be one reason for some 
students not to differentiate between multiplication and expansion of frac-
tions. They talked about ‘x is’ in the meaning of ‘x is equal to’ when 
working with inequalities (11.2.4), and we have ‘two x-es’, meaning x 
squared, and we ‘change side and change signs’ when solving equations. 
This way of talking is perhaps a consequence of blurred conceptions of 
the actual concepts, or it may lead to blurred conceptions.  

The concept of equivalence and the different properties of equations 
and inequalities were not presented, neither in everyday Norwegian lan-
guage, nor in formal mathematical notation. Whether they were known 
from lower grades is difficult to say.  

In the process of developing proceptual thinking Gray and Tall (2007) 
emphasise the importance of abstracting and compressing expressions into 
entities or thinkable objects. In this process they point to the importance 
of naming. In order to think of and talk about a concept, it must be named. 
The students in this study do not seem to have words for some important 
concepts underlying the work they perform. Examples are factors and 
terms (section 9.1); although introduced by the teacher, and equivalence. 
There is evidence of how difficult it is to ask and to explain when the stu-
dents have no word for what they they try to express. The episode in the 
classroom when Ronny tried to explain that cross multiplication might be 
a problem when working with inequalities, is an example of this lack of 
concepts and naming (section 11.2.3). 

When working with binomial numerators, it was evident that few stu-
dents showed evidence of proceptual thinking (Gray & Tall, 1994), or 
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looked at the binomials as objects (Sfard, 1991). It might also be ques-
tioned if the same was the case with brackets.  

The responses give evidence that students are aiming for answers and 
results more than to reason about why they reach these results. The ques-
tions they asked, were mostly specific to the individual task, few ques-
tions were asked about general mathematical issues. Both their oral re-
sponses, and the way they worked, indicate a procedural view of mathe-
matics. This view was confirmed in the interviews. When asked what their 
strategy or thoughts were when going to solve a task, one student an-
swered: “I just want to finish it, to try to find the correct answer”. The 
others did not respond to the question, they just started the work telling 
about their actions as they proceeded. There was no evidence of prior 
analysis about what to find, or what sort of task was to be solved. When 
asked if they afterwards thought about what was found, they all said “no” 

Most students, though, expressed a positive attitude to the learning sit-
uation, and worked eagerly solving tasks in the classroom. 

14.2.3 The learning situation  
The third and last question has been: 

How does the setting of the mathematics classroom influence students’ 
experiences of the mathematics offered? 

Included in the expression ‘the setting of the mathematics classroom’ 
is the mathematics textbook in use, with its examples, tasks and work 
plan. Teacher’s expositions, and the interactions going on in the class-
room are other components of this setting. In addition, the computer with 
its programmes in use is part of the setting. In this section, these factors 
will be discussed in relation to students’ responses on the mathematics 
offered.   

The textbook was a steering factor in this part of the course27 and it is 
evident that concepts and principles crucial for students’ learning were not 
addressed. The understanding of the minus sign with its different func-
tions and meanings (section 8.3.7), and the conceptual basis for the sign 
rules are examples of issues not addressed. 

The expositions in the textbook and the tasks offered, indicate that the 
textbook authors mainly have interpreted the goals to be to learn tech-
niques to solve tasks. They have emphasised and highlighted rules to fol-
low. Even the number properties, the commutative, the distributive and 
the associative properties were presented as pure rules to be followed 

                                           
27 In the second part of observation when working with functions, the textbook was not fol-
lowed so tightly. The teacher offered other tasks and other examples than those in the text-
book.   
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when calculating with numbers and letter symbols. The formal notions, 
though, for these properties were not presented.  

The example tasks were mostly context free, solved in one way only, 
and are classified as exercises (Niss, 1993). There was thus little or no 
possibilities offered from the authors’ side to discuss the basic underlying 
concepts for the applied procedures; to link procedural fluency to concep-
tual understanding (Kilpatrick et al., 2001).  

 Except for the few word problems, the mathematics was related to the 
transformational activity of algebra (Kieran, 2007a). The activity of con-
verting word problems into equations, represented the generational activi-
ty of algebra, but was not devoted any exposition in the textbook in this 
first chapter.  

As stated in section 6.2, it is not possible to predict a direct link be-
tween the textbook and students’ learning. The implementation of the 
learning material has to be investigated. However, Stein and colleagues’ 
(2007) review of research in this area, confirm that content matters, and 
that it is likely that what is not included will not be learned. In this study, 
the implementation of the textbook examples and tasks have been studied, 
and students’ responses confirm that the missing links in the textbook be-
tween the rules presented and a conceptual understanding of those rules, is 
also a missing link for at least a large group of the students in this class.   

In the classroom the students used their computers, and pen and paper 
were absent during the work with the first chapter. The topics in focus in 
this part of the course were not made easier or more understandable by the 
use of the computers, something the teacher was highly aware of (see ap-
pendix 2.4.1 about teacher and computers). The computer were used as a 
tool for writing in this part of the course. What was a problem earlier, re-
mained a problem. Although the students later in the course were intro-
duced to CAS (Computer Algebra System) it is a question whether they 
had a satisfactory understanding of the reasons for the answer the comput-
er generated. The basis for the transformations of algebraic expressions 
was not a theme in the textbook further during the course.  

There were few questions and problems related to the use of the com-
puters and the software. For each topic, the teacher solved one task in co-
operation with the students; she writing on her computer, the students on 
theirs. During these solution processes, the problems students had related 
to the computer and the software were resolved. The teacher patiently an-
swered questions and showed on her projected computer screen what to 
do and how to do it. She also went around if that was needed. The service 
system in school functioned well. 

One benefit of the computer in the work with the first textbook chap-
ter, was that students when working with tasks on the computer, were so 
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absorbed by what was on the screen that they many times forgot to take 
breaks. It was also easy to follow their process towards solutions; they 
used the copy functions and did not hesitate to write many lines, and it 
was easy to read. The stored computer files gave them easy access to 
solved tasks.  

Later in the school year, they expressed that the internet connection 
turned the computer into a distraction during the mathematics lessons. The 
teacher was well aware of this, and she had taken precautions. She had in 
advance created computer files, the so-called ‘learning book’ including 
the task process through to the solution of the example tasks. These files 
were located on the web site so that students could download them later 
(see section 7.3.5). By so doing she encouraged them to focus on the 
white board and the classroom interaction, and most students participated 
willingly. 

In chapter 13, the patterns of interaction in the classroom have been 
described and categorised. The teacher was sensitive to students’ pre-
knowledge and responses, and she built on them in line with the IRF pat-
tern typical for Norwegian classrooms, described by Klette (2010). She, 
also drawing from her extensive experience, brought in issues not ad-
dressed in the textbook, those she was aware of as being problematic.  

It is evident that both the teacher and the students were mostly bound 
to the tacit didactical contract of a traditional mathematics classroom 
(Blomhøj, 1994). Taking into consideration that the class is observed in 
the first weeks in upper secondary school, it might be concluded that the 
students have brought their expectations from lower grades into this class-
room. Students, who were asked, confirmed this assumption. This contract 
seemed also in this class to lead to a form of mathematics closely bound 
to the mathematics classroom with responses short in style, based on rules 
and conventions rather than on structure and relations and reasons why 
rules work.   

In the episodes when the contract was broken, some students immedi-
ately resisted. One example is the teacher’s resistance to follow students’ 
suggestions to multiply before simplifying fractions. She wanted them to 
change strategy and be more flexible (section  9.2). When working with 
later chapters in the textbook, she also broke with the contract, let them 
work to find regularities on their own and reflect on them. The students 
then told that the optimal learning situation was to work with tasks after 
the teacher had told them what to do, and how to do it. 

The students were focused on the correct answer. This was evident 
when they asked for help. Most students wanted to find the errors in order 
to correct them, not to find out why they made these errors. This question-
ing and some students’ tendency to align their answer with that in the 
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textbook, might indicate that at least some students had an instrumental 
approach to learning (Mellin-Olsen, 1981). The motivation might not be 
an interest in the mathematics itself, but to demonstrate some knowledge. 
In this study this means to have a good mark or grade. The answers in the 
questionnaire (section 7.3.4), to the question: Is mathematics important 
for you? confirm such a view. None of the twelve, who responded, 
showed signs of personal interest in the subject as such, it was even seen 
by some as a hindrance to be overcome, in order to get access to further 
studies.   

The textbook taking for granted that the needed conceptual basis for 
the work with procedures and rules in the first chapter are known to the 
students, and the provided tasks of a low level of cognitive demand, did 
not challenge the students to reflect over the work they carried out. Some 
tasks even promoted misconceptions, such as the tasks about simplifying 
rational expressions (section 9.1).  

This fact together with the tacit didactical contract, the task discourse, 
and the patterns of interactions thus limited the teacher’s opportunities to 
provide rich experiences with the concepts. Although the teacher from her 
teaching experience, knows much about the problems students have, relat-
ed to elementary algebra, she is hampered by the example tasks in the 
textbook, the assigned textbook tasks which all are of a low cognitive de-
mand (Smith & Stein, 1998). She is also impeded by the task discourse 
(Mellin-Olsen, 1996) which is reinforced by the work plans.  

Another problem expressed by the teacher, is the short time frame al-
located to this recapitulation. She told that the curriculum (K06)28 includ-
ed more topics than the former (L97), and thus she felt even more stressed 
timewise. The teacher knows that students have many problems. Her di-
lemma is how to help students to resolve those problems within the lim-
ited time, knowing that there are many more topics to cover which are 
new to the students29. 

The setting of the mathematics classroom is thus not optimal for 
providing opportunities to learn or to consolidate already learned mathe-
matics in the start of the upper secondary school.  

                                           
28 The two curricula are outlined in chapter 2 section 2.2.1 and 2.2.2. 
29 The school has later changed textbook, one more lesson is allocated during the school year 
to give students extra time with basic mathematics.  
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15 Conclusion and implications 
In this study, the mathematics offered was highly procedural (Hiebert & 
Lefevre, 1986) focusing on rules and procedures with few or no connec-
tions made to conceptual understanding (Kilpatrick et al., 2001). Students’ 
responses reveal that a large group of students in this class entered the up-
per secondary school with partial conceptions and errors reported in stud-
ies done on lower levels. It is clear that the mathematics offered does not 
help these students to develop conceptual understanding for the rules and 
procedures they are set to practice. Thus the students do not reach the goal 
of procedural fluency (ibid) either.  

Concepts and properties are not explicitly expressed; a prerequisite for 
conceptual learning (Hiebert & Grouws, 2007; Kilpatrick, et al., 2001). 
All tasks are solved in one way, and the low level of cognitive demand 
does not challenge students to raise important questions about conceptual 
matters. The result is that students’ experiences with concepts and proper-
ties are limited. The prerequisites for development of their concept images 
(Tall & Vinner, 1981) are missing, and the result is a fragmentary 
knowledge in the area of basic algebra.  

This situation seems to be due to poor resources. It is also due to the 
tacit didactical contract (Blomhøj, 1994); the students’ expectations to 
what mathematics and a mathematics classroom is. The limited time allo-
cated this recapitulation is another reason.  

The students in this class seemed to be on a journey (Mellin-Olsen, 
1996) through, at least, this first chapter in the textbook. They followed 
the work plan and were guided by the teacher and peers, working with 
topics they had met on lower levels, while the time available was a strong 
constraining factor. 

The responses give evidence that students are aiming for answers and 
results more than to reason about why they reach these results, and that 
their experiences of mathematics is that mathematics is about rules and 
procedures. There are also indications of students’ holding an instrumen-
tal approach (Mellin-Olsen, 1981) to learning mathematics.  

From the observations in class, it seems to be hard to change this view 
of algebra and mathematics in general, as long as the participants stick to 
the tacit didactical contract (Blomhøj, 1994).  

15.1 Implications - teaching resources 
The Norwegian school system with little or no contact between the two 
school levels, the lower and the upper secondary school, might be one 
reason for the way the topics are treated both in the classroom, and in the 
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textbook. Neither the authors, who are often upper secondary teachers, nor 
the teachers in upper secondary schools have much knowledge about how 
the topics have been presented and worked with on the lower levels. 

The textbook and the way the recapitulation of basic mathematics is 
presented and tasks offered, is said to be one reason for the problems re-
vealed. Other available Norwegian textbooks for this course do not differ 
much when it comes to the way they treat the recapitulation of algebra. 
None of the most frequently used textbooks (Andersen, Jasper, Natvig, & 
Aadne, 2006; Oldervoll, Orskaug, Vaaje, & Hanisch, 2006; Pedersen, 
Erstad, Heir, Borgan, & Engeset, 2006; Sandvold et al., 2006) go into why 
the rules for fraction operations work, or present fractions as numbers. 
One book presents opposite numbers (the additive inverse), but none pre-
sent the function of the minus sign as ‘taking the opposite of’, and none 
give reasons for the sign rules. All the textbooks present the rule for equa-
tions ‘change side, change sign’ although they start with an explanation of 
doing the same on both sides. There is no explicit explanation of equiva-
lence in either of them related to this basic algebra, and there is no en-
couragement to control the solutions of equations. This shows that the 
textbook used in this study was not exceptional.  

This study has shown the importance of the tasks offered. In Norway 
there is no central authority controlling the textbooks (see section 2.5), 
and thus the responsibility lies with the teacher and her colleagues. In the 
daily work the teacher feels pressure from many instances, with many in-
dividual students, a heavily-felt time pressure and demands from school 
authorities, students and their parents. This additional responsibility for 
what is presented in the textbook, and what is afforded in each task, is an 
almost impossible task for a teacher, especially when a new syllabus is 
being introduced. 

In summer, 2015, there were bold headlines in the newspapers about 
the result on the final exam in lower secondary school. One headline was: 
This year’s mathematics exam, the weakest ever. Kjersti Væge, the leader 
of the National Centre for Mathematics Education in Norway, comment-
ed30 that: “The mathematics teaching for students is mostly about learning 
rules – and finding a correct answer”. In addition, she claims that there is 
a need to emphasise understanding in mathematics, with not so much fo-
cus on memorising rules. These were comments on the situation in lower 
grades, but also from this study it seems to be that memorised rules was 
steering students’ work. 

                                           
30 Kjersti Væge in the Norwegian newspaper, VG, 2015.07.02. The translation into English is 
mine. 
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 In her work studying students’ difficulties with learning algebra, 
Naalsund (2012) pointed at a number of issues that should be given atten-
tion in the teaching of students in the lower secondary school. Some of 
them are highly relevant also in upper secondary school, although it might 
be harder to engage students in the activities since they have already met 
and applied what should have been learned with more conceptual under-
standing from the outset (Kilpatrick et al., 2001). One such important is-
sue according to her, is the equal sign. The equal sign representing the 
symmetric, reflexive and transitive properties is the basis for students’ 
conception of equation as a left-right balance. Another issue was the lack 
of understanding of equivalence.  

In a meeting in the TBM/LBM projects, after I had reported my find-
ings about equations, teachers in both lower and upper secondary school 
expressed that they had not been aware of the importance of the meaning 
of the equal sign. This indicates that also many teachers are not conver-
sant with research in the area of mathematics education. It is very im-
portant that mathematics teachers be made aware of basic underlying 
mathematical concepts, particularly those leading to common students’ 
errors.  

Despite the important work done within the KIM project about diag-
nostic teaching (see the introduction to chapter 4), the results and booklets 
produced seem not to be well known by Norwegian teachers, and have not 
influenced the introduction of algebra in Norwegian mathematics text-
books.   

In the future there will still be a need for teachers in upper secondary 
school to meet students’ need when it comes to number sense and to basic 
algebra, and to help them gain an understanding that goes deeper than to 
understand how the rules are to be used in familiar settings. All the 
strands in ‘Mathematical Proficiency’ (Kilpatrick et al., 2001) should be 
involved. For teachers to reach these goals they need didactical means, 
textbooks or other resources, affording research based expositions, exam-
ple tasks and assigned tasks designed to challenge students and to provide 
opportunities for new learning to occur.  

The work done by Swan and colleagues in England (Swan, 2006), give 
evidence that carefully designed teaching material and tasks, together with 
encouragement of teachers to use the material, have made impact on stu-
dents’ learning and on the beliefs and practices of experienced teachers. In 
the intervention study, ICCAM (Increasing Competence and Confidence 
in Algebra and Multiplicative Structures) teachers were enabled to use 
formative assessment in their mathematics classrooms (Hodgen, Coe, 
Brown, & Küchemann, 2014). As in Swan’s project above, the teacher 
were encouraged to assess students’ pre-knowledge and to offer appropri-
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ate tasks challenging students. Tasks designed on the basis of former re-
search findings were offered. The researchers (Hodgen et al., 2014) re-
ported that the intervention in their study had a considerable positive ef-
fect on students’ learning compared to control groups. 

This could also be a way to enhance students’ learning in Norway. 
Rich tasks offer opportunities for students on all levels of performance, 
and also well-performing students would have benefitted from tasks pro-
moting discussion, reflection and conceptual understanding.  

15.2 Implications for teaching 
The study has identified several problems students have when recapitulat-
ing basic algebra. Those problems are exposed in the chapters from 8 to 
12. One common implication for all topics is that in order to enhance pro-
cedural fluency, it is important to give opportunities to develop conceptual 
understanding for the rules and algorithms. One aim is then to offer chal-
lenging tasks promoting reflection. 

Some issues, which should be attended to in the recapitulation of basic 
algebra, are listed below: 
 General issues 

 Interpretation of letter symbols 
 Invisible operation signs and coefficients 
 The minus sign – and its different functions including ‘taking 

the opposite of 
 Reasons for the sign rules and brackets as procepts 
 Factors and terms and the differences between them in connec-

tion to simplification of fractions  
 Scientific numbers – connected to the position system 
 Explicit presentation of the concept of equivalence  

Fractions  
 Fractions as numbers, fractions as measure 
 Explicit presentation of equivalent fractions 
 Explicit differentiation between multiplication and expansion  
 Reasons for fraction operations 
 Focus on the different components in rational expressions 
 Binomials as procepts  

Equations   
 Focus on the equal sign  
 Focus on the properties of equations  
 Emphasis on the relational structure – (work against ‘change 

side –change sign’).  
 Check the solutions by use of the concept of equivalence.  
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Inequalities  
 Present the properties, and make the differences between equa-

tions and inequalities clear. 
 Focus on the result and its meaning 
 Check the solutions by use of the concept of equivalence.  

Word problems 
 Explicit focus on the relations between the known and un-

knowns 
Kieran (2007) categorised and described algebra in relation to activity. 
Norwegian classrooms are characterised by activity, but it is shown in this 
study that not all algebraic activity promotes learning.  

Many of the issues listed above are mostly implicitly present in math-
ematics textbooks and tasks. The main point is to make them explicitly 
visible for students, and to offer challenging tasks promoting reflection. 
Olteanu’s study (2012) about simplification of rational expression is a 
study of how explicit attention to known issues helped students to gain 
understanding of the different components involved, and thus also about 
the whole expressions.  

The time pressure is heavily felt by both teacher and students, but the 
question is whether it is possible to implement some of the issues above 
by giving other more challenging tasks, tasks of a high level of cognitive 
demand, promoting connections. This requires new textbooks that go 
deeper and make more connections than the former textbooks 31. Another 
suggestion is, to encourage students to ask more ‘why’ questions. Exam-
ples could be to ask students in groups to find arguments for the rules. It 
could also be to give different solutions – the whole process – of manipu-
lative tasks and let them decide what is correct and what is not and to ar-
gue for their decision; with arguments that go deeper than referring to 
rules or procedures.  

The aim of the teaching should be to promote reflection and meta-
cognition. This means to break the didactical contract of a traditional 
mathematics classroom, in which task solutions are expected to be very 
short. The socio-mathematical norms must be changed (Yackel & Cobb, 
1996), which is a challenge after many years in school. There is though a 
golden opportunity for change when students enter a new school.  

                                           
31 In a meeting, the teacher told that the school has changed the textbook, and have allocated 
one more mathematics lesson per week, in order to focus more on basic algebra. 
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15.3 Contributions to and implications for the communi-
ty of mathematical education 

The aims in this study have been to investigate the mathematics offered, 
students’ experiences of that mathematics, and how the learning situation 
influences students’ experiences.  

One of the approaches was to compare students’ responses with find-
ings in earlier research in the area of algebra learning. The result of this 
comparison shows that problems found in former studies, are problems 
also in this class. It means that the findings are not novel findings, but 
they add on to the rich area of research done on algebra. 

In Norway, there have been no studies of this kind at the upper sec-
ondary school level. This study is thus first and foremost a study of Nor-
wegian students in the context of a Norwegian classroom.  

Some specific findings should be of interest for the community of 
mathematics education: 
 
The minus sign  
The way students treated the minus sign is revealed in many studies relat-
ed to negative numbers, and to the phenomenon of detachment of indicat-
ed operations on lower levels. This study gives evidence that the latter 
phenomenon has a high frequency in this class. This came as a surprise on 
this level, and in 2014 the students entering another upper secondary 
school were tested (123 students) and more than 40 % failed in the task 

3 2a a a   which was one task in the algebra test (section 8.3.6). Some 
classes in the same school have later been asked to solve similar tasks. 
When asked for their solutions, they appeared  to fall into two groups; one 
correct and obviously one incorrect, and half the class supported each one. 
When discussing the results, some students declared that “both are cor-
rect; it depends on how you think”.  

These findings should lead to more attention to such phenomena in 
school on higher levels. Further research on this issue would be fruitful. 

Another issue for further research is the introduction of the opposite 
number in the teaching and in the mathematics textbook. 

 
Lack of strategic competence and flexibility in algebra 
It was evident that students lack strategic competence, it was especially 
visible when multiplying/dividing fractions. When asked in interviews, 
the interviewed students showed clearly that they did not reflect on or 
analyse tasks before solving them. One reason might be the character of 
the topics and the kind of tasks offered. Another might be limited experi-
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ences with example tasks, or a procedural thinking that one had to follow 
procedures only.  

There has been little focus on strategic competence and flexibility in 
relation to manipulative work in algebra. In the class some students ob-
jected to the teacher’s suggestion to search for possibilities to simplify 
before multiplying fractions, and they seemed to have only one way to 
solve tasks with no control mechanism at the end.   

It seemed that lack of strategic competence and flexibility was con-
nected to a reliance on learned procedures, to a lack of mathematical ar-
gumentation and a lack of understanding of equivalence.  

This lack of strategy and flexibility is mostly connected to problem 
solving and to contextual tasks, but it would have been worthwhile to in-
vestigate the connection between the aforementioned issues in further re-
search. 
 
Similar research or intervention studies 
In this study, the teacher was a competent and experienced teacher devot-
ed to her work, and the students were eager to work and committed to 
learning in their sense of the word. This study has shown that the teaching 
material, the learned patterns of interaction and the tacit didactical con-
tract were constraints to students’ learning, although the students were 
keen to reach the learning goals.  

The mathematics offered, students have met before, and it would have 
been worthwhile to study how algebra is introduced in classroom on lower 
levels.   

As long as Norwegian results related to algebra and number are lower  
than desired, intervention programmes such as those reported from the 
ICCAM project (Hodgen, et al., 2014) and from the work carried out by 
Swan and colleagues (Swan, 2006) should be of interest also in Norwe-
gian classrooms.  

15.4 Afterword 
The study is a case study of a Norwegian mathematics classroom. Based 
on the outline of the Norwegian context in chapter 2, I argue that this 
mathematics classroom is not an atypical mathematics classroom. This is 
the first and only existing study of Norwegian upper secondary students 
learning algebra, exploring the classroom mathematical activity  in such 
an in-depth analysis. 

The basis and validation for this study is Norwegian students’ prob-
lems reported in TIMSS and PISA, related to number and algebra. In ad-
dition, the problems students still encounter with basic mathematics when 
entering university studies requiring knowledge in mathematics (Nortvedt, 
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2014), make the study relevant. The initiative for this study was also 
based on my own experiences seeing students struggling with basic math-
ematics.  

The rich data collected is scrutinised and analysed not alone based on 
earlier research, but also on the interviews and conversations with the 
teacher about students’ mathematics, about her own practice, and on stu-
dents’ responses through their work, in interviews, and in the classroom.  

The thesis provides not only a rich description of what is going on in 
this Norwegian classroom, but relates the observations to findings in other 
parts of the world and analyses them based on theoretical constructs and 
views. 

My findings confirm research findings from earlier studies about the 
learning of algebra. Those studies are mainly studies of students on lower 
levels, but they are still highly relevant as they deal with the pre-
knowledge of upper secondary students. The study of this particular math-
ematics classroom is thus a contribution to the community of mathematics 
education. It provides an exploration of what strengths and problems ex-
ist, and how the learning situation influences students’ experiences in this 
classroom. It gives evidence that what is not addressed cannot be learned. 
It also confirms that concepts, their properties and mathematical princi-
ples must be explicitly presented also on this level even though the stu-
dents have met them before.  

It reveals the potential for improvement in mathematics textbooks, 
provided they base their exposition on research results. The deep and de-
tailed image of what is actually going on in the classroom has the poten-
tial to enlighten teachers and other researchers in a way which has not 
been available earlier. My wish is that Norwegian mathematics teachers 
can be inspired from the results of this study. 

My activities with the data from this specific classroom and my re-
search into the literature has inspired me in my own work to eagerly 
search for students’ reasoning and to base my teaching on their thinking. 
It has also given me a solid basis in understanding how students may ex-
perience what is offered, what problems may occur, and why they occur. 
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About the appendices 
My study is a qualitative case study within the interpretivist paradigm, 
and it is not possible to apply the same quality criteria as for studies car-
ried out within the positivist paradigm. In these appendices, I will pro-
vide a more thorough description of the context, the tasks, the tests and 
the interaction in the classroom.  

In the first appendix the twin projects LBM and TBM are presented. 
The school, the class, and the teacher are presented in the second appen-
dix. 

A complete list of the data collection, both the first and second peri-
od, is included in the third appendix. 

The fourth appendix is a presentation of the levels of cognitive de-
mand in the Mathematical Tasks Framework (Smith & Stein, 1998). 

In appendix 5, an example of the digital ‘learning book’ (a digital 
file) is presented; written by the teachers in the observed school.  

Appendix 6 includes the tests; the algebra test they had in September 
2007 and in May 2008. In addition, the regular tests in September and 
the test in December32 are included. The results are presented in dia-
grams.  

Appendix 7 is the questionnaire sent to the students per e-mail, and 
appendix 8 includes an outline of the first textbook chapter. 

The appendices 9 to 12 are appendices including students’ work and 
examples of the interaction going on in the classroom. These appendices 
are organised by topics as the chapters 8 to 12 in the thesis. The purpose 
is to provide the reader with a more thorough description of the learning 
situation, the tasks offered, students’ responses and examples of my 
analyses.  

There is no appendix devoted to word problems. There was no expo-
sition offered on this topic and all students’ work related to this topic is 
described in the thesis. 

I have chosen not to include references.   

                                           
32 The whole test is included, but only the tasks related to the topics in the first textbook 
chapter, are written with bold fonts. 
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Appendix 1: The LBM and the TBM  
projects 
The research reported in this thesis was carried out within the projects 
‘Learning Better Mathematics’33 (LBM) and ‘Teaching Better Mathe-
matics (TBM), hereafter referred to as TBM and LBM.  

TBM was a joint project involving a consortium of five institutions 
of higher education located in different regions in Norway. University of 
Agder headed the project. Each institution within the consortium was 
running its own local project, in which they collaborated with local 
schools and school owners. The main aim of the TBM project, as stated 
in the project description was:  

To develop and improve mathematics education in Norway with special refer-
ence to the improvement of learning experiences for pupils in mathematics class-
rooms and to the education of new mathematics teachers.34  

The TBM project was a developmental research project with the aim to 
improve students’ learning, and at the same time investigate and report 
the characteristics and the nature of the developmental process and its 
outcomes.  

At the University of Agder, the TBM project was connected to a lo-
cal project, the LBM project. The two projects existed as twin projects, 
although LBM was supported by ‘Sørlandets kompetansefond’, and 
TBM by ‘The Research Council in Norway’ (Project No. 76442/S20). 
Through LBM, the TBM-project collaborated with regional pre-schools, 
schools and teachers within these schools. A council of school authori-
ties in the region ran LBM.  

The local council owns pre-schools, primary schools, and lower sec-
ondary schools, while upper secondary schools are owned by the region-
al county. This division of ownership and leadership has traditionally led 
to little contact and collaboration between teachers from different school 
levels in Norwegian schools. In that sense the project was unique, cover-
ing all levels of lower education.  

Each participating school appointed a leader. These leaders, The B-
leaders, met regularly together with the TBM-group at the university. 
Another leader group, the A-leaders, consisted of the TBM - project 
leader at the University and three leaders representing the owners of the 
participating pre-schools and schools. This leader group met regularly to 
discuss financial and management issues.  

                                           
33 The title LBM in Norwegian means ’Lær bedre matematikk’ which literally translated 
means ’Learn better Mathematics’.  
34 From the web-site: http://prosjekt.hia.no/tbm/ProjectDescr/AUC_PFoU_Proposal.pdf 
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Each participating school set its own developmental goal for the 
work within the project. This was important in order to promote owner-
ship and leadership within each school. Although two leader groups ex-
isted, the organisation and the pace of the developmental work, was led 
by the participating teachers within the schools. Nothing should be im-
posed upon them from the group at the University. However, the mem-
bers of the research group at the University supported and guided teach-
ers according to the teachers’ wishes and needs. Researchers visited 
schools when invited to school meetings or classrooms.  

All participating members met regularly at workshops. In these 
events, TBM members often presented some theory, that the teachers 
through the B-leaders had asked for. Consistent with the conceptual basis 
of the project, however, much time was spent in small group activity. 
The groups solved tasks, mostly mathematical problems, but it occurred 
often that the tasks were didactical issues to be discussed. The group 
work included preparations for innovative work in the classrooms and 
reflection on experiences from such work. One of the aims was through 
the work with mathematical problems to find ways to implement them in 
the classrooms in a way that could make students wonder and ask ques-
tions. Another aim was to build long-lasting communities of teachers 
from different schools.  

During the study with this thesis, I was employed as a doctoral stu-
dent within the TBM-project.  
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Appendix 2: The specific context of the 
class 
This appendix presents the specific school, the class, the teacher and the 
students. The information about the school is taken from the official web 
site and from conversations with teachers and the principle of the school. 
The presentation of the teacher and the class is based on audiotaped con-
versations both in school and in meetings within the LBM-project, and 
on videotaped classroom observations.  

2.1 The school 
The school is a large school in Norway. About 1200 young people were 
students. The school had more than 200 teachers and 50 other support 
staff. Although the school offered the more academic Programme for 
Specialization in General Studies, most students attended the vocational 
training programs. In the program for general studies, students had to 
choose courses within the program for Science and Mathematics. 

Since 2004, the school had been running an internal project integrat-
ing computers in the teaching. The teacher in this study was one of two 
leading this project. The aim was that all students should have their own 
laptops. The students had to pay a fee or a deposit for the machines and 
the software to be used. When the students finished their course of stud-
ies at the school, the computers became their properties.  

The school was divided into departments according to grades and 
study programs. In the spring of 2007, the school joined the LBM pro-
ject, five teachers started to attend the LBM workshops regularly, and 
they continued with this until the end of the project in the autumn of 
2010. 

2.2 The classroom  
The classroom was equipped with desks and chairs arranged in rows. 
Although looking like a traditional classroom, it can be described as a 
technology-enhanced classroom. All the students had their own laptops. 
Electric contacts for students to connect their computers, were hanging 
from the ceiling. In addition, electric cables were on the floor for stu-
dents not located close to those from the ceiling. A wireless network op-
erated throughout the whole school area. A video projector was installed 
hanging from the ceiling, and on the front wall, covering most of the 
wall, was a whiteboard.  

Although the classroom was a paperless classroom, the class might 
be characterised as a traditional mathematics class during the time work-
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ing with the first chapter in the textbook. The students at that time used 
the computers only as a tool for writing. The programs in use were 
MathType and Microsoft Word.  

Together with a parallel class, the observed class had their own hall 
and a large ‘quiet’ room with desks having partitions for students to 
work independently and in silence. The students could work in this room 
after plenary sessions in the classroom. It was mostly the same few stu-
dents who went there from lesson to lesson. The teacher sometimes went 
into this room to see if anyone needed of help. Also from time to time, I 
went in there with the camera and video recorded students’ work on their 
lap top screens and talked with the students.  

2.3 The class  
75 students starting in the 11th grade attended the course Vg1T (Theoret-
ical Mathematics). Most of these students were aiming at studies in 
mathematics and science and then this course is required. Shortly after 
coming to school, they were asked to estimate their skills in mathemat-
ics. Based on those responses, they were divided into three classes. In the 
observed class there were from the start 17 boys and 10 girls. The course 
was allocated five 45 minutes lessons each week grouped in two blocks 
of two and three lessons.  

15 of the students in the class were following a special study program 
following the ‘normal’ curriculum three days a week. The other two days 
they worked in industry. Those students had to spend one extra year at 
upper secondary school to prepare for further studies at universities. Af-
ter 4 years, they had a general university and college admission certifica-
tion, and in addition a trade certificate. This class was called 1TAF 
(Technical and general subjects)35. Most of those students explained that 
they were aiming at education in engineering. All the students in the 
class, also the students following the TAF program, were hoping to 
complete the highest education in mathematics possible in upper second-
ary school. 

When the lessons started, the students started the work quickly. They 
plugged in and turned on the computers without being told to do so. This 
contrasts to my experience both as a teacher and as an observer in other 
classes. Normally it takes some minutes for students to find the right 
notebook, the pencils, the calculator, the ruler and other necessary items. 
The students in this class had their ordinary textbooks, but apart from 
this, the environment was paperless.  

                                           
35 In Norwegian: Teknisk, allmennfaglig utdanning (TAF) 
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When the teacher in the second period of observation introduced lin-
ear functions, she wanted students to draw the graphs by hand. Then she 
had to bring paper and pencils since the students normally did not use 
these items in the class. 

2.4 The teacher 
The teacher had more than 20 years of experience. She had specialisation 
in mathematics as do most Norwegian teachers at upper secondary 
school (see section 2.4 in the thesis). Although she had a high achieving 
class, she was aware that despite good marks from lower secondary 
school, many students would struggle with algebra and mathematics in 
general.  

Both from observation in class and from conversations with the 
teacher, it was evident that she cared about the students and tried to help 
them with their individual mathematical problems, no matter how basic 
they were. The challenge was, according to her, to balance between the 
time available and the demands from the syllabus.  

Many times during our collaboration, she mentioned that the content 
in the new syllabus had increased compared to the former one, and that 
she had experienced this as problematic. There was just too little time 
available to let students have the possibility to become confident with the 
mathematical topics. She asserted that the time pressure she felt, many 
times prevented her from working as she would have liked to.  

When watching the films from the classroom, she expressed that she 
was surprised that she seemed to be calm and patient in her work in the 
classroom. That was not always what she felt during the lessons. Her aim 
was to encourage the students to think for themselves, and to create situ-
ations promoting mathematical thinking, but sometimes, when many 
students were waiting for help, she admitted that she told them what to 
do. 

Another experienced challenge, was to ask the right questions and 
ask them in such a way that she could meet students on their own level. 
Her aim during seatwork was to listen so carefully that she could find the 
roots of students’ problems. 

When talking about her way of teaching, she said that she searched 
for students’ thoughts and their prior knowledge, in order to build on 
that. From her experience, though, she usually had a prior expectation of 
what would come. She welcomed comments and answers fitting in, but if 
they caused a shift in focus, she mostly asked for alternatives. Although 
being fully aware that some students are quiet during plenary sessions, 
she assumed they probably had some of the same ideas or questions as 
those who were orally active.   
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In order to promote students’ learning, she emphasised the im-
portance of teachers’ dedication and enthusiasm for what they teach.  

2.4.1 The teacher and computers in mathematics 
The teacher and her colleague were the first in their school to introduce 
the use of computers in all lessons in mathematics. When the LBM-
project started, they had already worked 2 years with classes where all 
the students had their own laptops. Both teachers emphasised that the use 
of computers does not make mathematics easier, and that a recurring 
problem is that often students do not use the computers as they should in 
the lessons. Students sometimes communicated with others, played 
games, or checked Facebook during seatwork. This was especially seen 
among first graders. Later on, most students realised that they had no 
time for this36.  

In order to keep the students focused on what was going on in plena-
ry, the teachers had made what they called ‘The learning book’. This was 
a collection of digital files containing the examples presented in class 
during plenary sessions. In addition, a summary of rules related to each 
sub-chapter was included. The teachers experienced that if students 
should write notes on their laptops during plenary sessions, it would be 
too tempting for the fast writers to sneak into other computer programs.  

The reason for introducing the computers as students’ main tool in 
their mathematical activity, was that digital competence is one of the 
basic competencies in the new curriculum. In mathematics, the ad-
vantage of working with functions and their graphs was emphasised by 
the mathematics teacher. A graph, she said, is drawn by just some few 
keystrokes, and therefore students have the possibility to get experience 
from many different types of graphs and functions. She clearly had seen 
benefits from this, in her mathematics classes in grade 13. Her experi-
ence was that those students could sketch graphs given the algebraic ex-
pressions. They were also seen to check algebraic results by drawing a 
graph. This did not happen automatically earlier without the computers.  

In addition, she regarded it better to use computers than graphical 
calculators. Graphs are more visible on the computer screen, and it is 
easy to change units on the axis. Another advantage was that students’ 
writings on the computers are easy to read. The copy function in Math-
Type makes it easy for students to copy lines when solving algebraic 

                                           
36 In a conversation with a group of students in the observed class in the spring, the students 
uttered the same as was observed by the teacher. They admitted they had wasted a lot of time 
during the school year, but at the time of the conversation they had realised that there was no 
time for this. The aim for the following year was to be more focused on the mathematics. 
During the first period of observation it was rarely seen, but in the second period, students 
were observed going into other programs as soon as they had finished the assigned tasks.  
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problems. It is thus likely that students write more lines compared to 
when hand writing, and thus it is easier to see which operations are exe-
cuted, and the order of those operations. This is an advantage since all 
tests and exams are digital. 

 For students it is easier to find their earlier work, since all material is 
stored in the computer. In addition, they do not forget calculators, note-
books rulers etc.; all are to be found on their laptops.  

The school had a well-functioning service system for the computers, 
and the Wi-Fi functioned well throughout the whole school. The teacher 
appreciated the system and the service people. When a student had prob-
lems with the computer, it was delivered for service, and the problems 
were solved smoothly and fast.  

2.4.2 The teacher and students’ mathematics 
The teacher meant that students often do not analyse the tasks, searching 
for the structure, neither do they form a strategy about how to solve 
tasks. Many of them just start doing. Mathematics for them is often 
fragmentised knowledge. The result is that they sometimes succeed and 
sometimes fail, even when solving similar tasks. Thus, she wanted stu-
dents to express their reasoning, giving her the opportunity to help them 
analyse mathematical problems and tasks. She wanted to teach them to 
be systematic and strategic in their work, and to give them time to prac-
tice and work. 

Methods can be shown and explained, the students, however, have to 
make the mathematics their own through mathematical activity. She 
questioned that students should explore all methods on their own; that 
would take too much time, and time is a constantly-felt constraint.  

She expressed the need for students to understand, but she had also 
experienced how students can come to understand later. She said it thus 
is possible to practice rules and methods without understanding immedi-
ately; understanding can come later, and for some students it takes a con-
siderably time to learn. The main thing is that the students themselves 
are committed to learning.  

From three years’ experience of teaching the same students, she had 
learned what to emphasise at the start in order to ease further learning in 
mathematics.  

The start in upper secondary school gives students a new opportunity. 
She was aware that some students might feel unsecure starting in a new 
school. They have to find their roles in the new class. Some lose confi-
dence in mathematics since their new classmates seem to be more suc-
cessful. The teacher told about some students also in the observed class 
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with whom she had had individual conversations about such problems. 
Some students developed positively after individual feedback.  

She expressed that she would like to encourage students to talk more 
mathematics. Students often do not see the point of communicating 
mathematics orally since for them mathematics, is written mathematics. 
She tells that her emphasis at the start of the school year is mostly on the 
formal writing of mathematics. The oral mathematical argumentation is 
then often not focused upon. She had also experienced that students 
when asked to write explanations, found it difficult to know what to 
write. They were not used to giving reasons for their actions.  

Another problem she mentioned, was that even in grade 13 students 
have problems using correct mathematical notions. They talk about 'mi-
nusing', multiplying 'up and down' etc. To come to grips with this, she let 
them write definitions in their own words, before writing them in precise 
mathematical language.  

 She expressed the need for summing up and showing connections. 
This is what she does after each textbook chapter. Again, it is a time 
constraint because she then has to push students to work faster, to free 
time for this summary. For students it is often before tests and exams 
that they see these connections as being worthwhile since they then are 
motivated to work with the mathematics as a whole not only as frag-
mented parts as in the textbook.  

2.4.3 The teacher and our collaboration 
The teacher is positive, and open for new things. This is evident in her 
involvement in the internal IT-project, and in her participation in the 
LBM project. She has also had former experiences with observers in her 
class. Several times, she told, that she just forgot that my colleague, the 
cameras, the audio recorder and me were present. She also confirmed 
that the students did not change behaviour when observers were present 
in the class. 

She said that she used a lot of time in planning her teaching, and that 
our discussion, and the discussions in the workshops at the university, 
gave her ideas for the work in the classroom. 
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Appendix 3: Overview over data collection 
Table 3-1: Overview of data (R for researchers and T for teachers; T1 is the 
class teacher, R1 is me) 

Date Event/Purpose Kind of data Present 
070508 Meeting: Information about the project Audio R1, R2, R3 

Mathematics 
teachers  

070619 Meeting in order to start cooperation  Audio + notes R1, T1, T2 
070827 Planning the cooperation Audio + notes R1, T1, T2 
070904 Classroom observation (2 lessons) Audio +  

2 video + notes 
R1, R2 

070904 Algebra test Test on paper  
070910 Classroom observation (3 lessons) Audio + 2 video R1, R2 
070911 Classroom observation (2 lessons) Audio + 2 video R1, R2 
070917 Ordinary test algebra + numbers Students’ test on 

computers 
 

August-
Sept. 

Students work on textbook tasks (18 
students) 

Computer files  

070918 Short meeting with T1 audio  
070925 Interview with T1, Watch video  audio R1 + T1 
070925 Interview with five students Audio 

+ video 
+ students’ notes 

R1 

071030 Meeting  Audio  R1, T1, T2, T3, 
T4 

071030 Meeting to plan linear function audio R1, T1 
071106 Meeting to plan linear function audio R1, T1, T2 
071112 Classroom observation (2 lessons) Audio 

+ 2 videos 
+ students’ notes 

R1 + T1 

071113 Classroom observation (3 lessons) Audio 
+ 2 videos 
+ students’ notes 

R1 + T1 

071119 Classroom observation (2 lessons) Audio 
+ 2 videos 

R1 

071126 Classroom observation (2 lessons) Audio 
+ 2 videos 

R1 

071127 Classroom observation (3 lessons) Audio 
+ 2 videos 

R1, R5 

071204 Ordinary test 
Linear functions 

Students’ tests 
Computer files 

 

071218 Ordinary test 
All topics taught in the autumn 

Students’ tests 
Computer files 

 

080122 Interview teacher + class meeting Audio R1, T1 
080310 A questionnaire about the ‘learning 

book’ 
 
Audio 

Students 

080519 Interview 4 students Audio + students’ 
notes 

R1 

080602 Interview one student Audio + student’s 
notes 

R1 

Novem-
ber 2008 

Students work on textbook tasks from 
the first chapters in the textbook 
 

Computer files 
From 18 students 

 

Meeting Meeting in TBM/LBM Notes shortly af- All participants 
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Decem-
ber 2008 

terwards in the project 

Presenta-
tion 

Conference Sept.  2009 Notes shortly af-
terwards 

R1 + conference 
participants 

Work-
shop  
2010 

Comments after my presentation Video TBM/LBM 
members 

Meeting  
Spring 
2010 

Presentation 
School leader meeting 

Notes shortly af-
terwards 

School leaders 
in Agder 
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Appendix 4: Mathematical tasks – levels of 
cognitive demands  
Lower-level demands (memorization) 

 Involve either reproducing previously learned facts, rules, formulas, or defini-
tions or committing facts, rules, formulas or definitions to memory. 

 Cannot be solved using procedures because a procedure does not exist or be-
cause the time frame in which the task is being completed is too short to use a 
procedure. 

 Are not ambiguous. Such tasks involve the exact reproduction of previously 
seen material, and what is to be reproduced is clearly and directly stated. 

 Have no connection to the concepts or meaning that underlie the facts, rules, 
formulas, or definitions being learned or reproduced. 

 
Lower-level demands (procedures without connections to meaning) 

 Are algorithmic. Use of the procedure either is specifically called for or is ev-
ident from prior instruction, experience, or placement of the task. 

 Require limited cognitive demand for successful completion. Little ambiguity 
exists about what needs to be done and how to do it. 

 Have no connection to the concepts or meaning that underlie the procedure 
being used.  

 Are focused on producing correct answers instead of on developing mathe-
matical understanding. 

 Require no explanations or explanations that focus solely on describing the 
procedure that was used. 

 
Higher-level demands (procedures with connections to meaning) 

 Focus students’ attention on the use of procedures for the purpose of develop-
ing deeper levels of understanding of mathematical concepts and ideas. 

 Suggest explicitly or implicitly pathways to follow that are broad general 
procedures that have close connections to underlying conceptual ideas as op-
posed to narrow algorithms that are opaque with respect to underlying con-
cepts. 

 Usually are represented in multiple ways, such as visual diagrams, manipula-
tives, symbols, and problem situations. Making connections among multiple 
representations helps develop meaning. 

 Require some degree of cognitive effort. Although general procedures may be 
followed, they cannot be followed mindlessly. Students need to engage with 
conceptual ideas that underlie the procedures to complete the task successful-
ly and that develop understanding. 

 
Higher-level demands (doing mathematics) 

 Require complex and non-algorithmic thinking – a predictable, well-
rehearsed approach or pathway is not explicitly suggested by the task, task in-
structions, or a worked-out example. 

(Smith & Stein, 1998, p. 348) 
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 Require students to explore and understand the nature of mathematical con-
cepts, processes, or relationships.  

 Demand self-monitoring or self-regulation of one’s own cognitive processes. 
 Require students to access relevant knowledge and experiences and make ap-

propriate use of them in working through the task. 
 Require students to analyze the task and actively examine task constraints 

that may limit possible solution strategies and solutions. 
 Require considerable cognitive effort and may involve some level of anxiety 

for the student because of the unpredictable nature of the solution process re-
quired. 
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Appendix 5: The ‘Learning book’ – an ex-
ample 
Examples and summary of rules from the first sub-chapter, an example 
from the ’Learning book’ made by teachers at school (digital file): 

Tall og regneregler (Kap 1.1) 
 

Regneregler for addisjon og multiplikasjon 
 

( ) ( )

( ) ( )

( )

a b b a

a b c a b c

a b b a

a b c a b c

a b c a b a c

  
    
  
    
       

 
Negative tall 
 

Produktet av to positive tall blir positivt, a b ab   
Produktet av to negative tall blir positivt, ( ) ( )a b ab     
Produktet av et positivt og et negativt tall blir negativt, ( ) ,a b ab    ( )a b ab      

 
Skal vi løse opp en parentes med minustegn foran, må vi endre fortegnet foran alle 
leddene i parentesen. 

 
Potenser 
 

En potens består av et grunntall og en eksponent. I potensen 52 er 2 grunntall og 5 
eksponent. 

52 2 2 2 2 2 32       
 

Tall på standard form 
 

Vi bruker standard form når vi må regne med svært store eller svært små tall. Et tall 

er skrevet på standardform når det er skrevet som ± a·10
n

, der 1 ≤ a < 10 og n er et 
helt tall. 
Eks. 11245.000.000.000 2, 45 10km km   

 
I et regnestykke hvor du må gjøre flere operasjoner gjelder disse regnerekkefølgene: 

Parenteser 
Potenser 
Multiplikasjon og divisjon 
Addisjon og subtraksjon 
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Appendix 6: Tests 
In this appendix, the different tests are presented: The algebra test, and 
the regular tests: the September test and the December test. 

6.1 Algebra test 
 

Test i algebra          Navn………………………………. 
Testen skal gjøres uten lommeregner, men du kan bruke kladd. Svar 
skal skrives på arket.  Vis utregning der det er mulig. 

 
1) Forenkling av algebraiske uttrykk  
         Skriv enklere dersom det er mulig: 
 

a 2x  + 5x      ............................................................................. 
 

b x + x + 2x    ............................................................................ 

 

c t · t · t      ................................................................................. 
 

d     
22 yy    .................................................................................... 

 

e a – 3a + 2a  .............................................................................  
 

f 10x  + 3 (4 - 3x) + 8 ................................................................ 
 

g      5a  2(7  a)  6   ....................................................................... 

 

h       8x + 15 + 4x – 5    …………………………………………..              

 
2)  Lag en likning der:  

 
  a       Løsningen er x = 10  
                                            …………..…………………………….     

 
b       Løsningen er   y = 4  

                                       ………………………………………… 
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3)    Skriv opp det/de utrykket/uttrykkene nedenfor som står for et  
       tall som er:  

   
            k + 5;     k + 2;      2k;      k + k ;     0,5k ;       

2

k  ;     
5

k    ;     5k 

 
         a       Dobbelt så stort som k    ............................................. 
 
 
         b       Halvparten av k              …………………………….     
 
 
         c        2 mer enn k                   ……………………………. 
 

4)     På en skole er det 10 elever for hver lærer. Hvilke av disse ut 
        trykkene forteller dette? 

L = antall lærere,  E = antall elever. Sett ring rundt det eller de 
riktige uttrykkene. 

 
 10L = E        10E = L    L  = 10E    E = 10L  10L + E 11LE 

   
 
 

5)      Finn verdien av uttrykkene (vis utregning):  
 

         a       a + b – c      når   a = 1, b = 2 og c = 3  
 
 
                   a + b – c =    …….……………………………………. 

 
   
  b      abcb 23    når  a = 3, b = –1  og  c = 5.  
 

 
abcb 23 =   ……………………………………………………….. 
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6)        Alltid sant, aldri sant eller kan være sant 
 
    
      a       x + y + z = x + p + z   Dette:   

 
 er alltid sant        er aldri sant      kan være sant, nemlig 

når………….. 
 
 
 

      b      a + b·2 = 2b + a             Dette:  
 

  er alltid sant      er aldri sant     kan være sant, nemlig 
når………….. 

    
 

      c       2 1 1

2 1 5 6

x

x




 
              Dette: 

 
 er alltid sant       er aldri sant    kan være sant, nemlig 

når…………....   
 

 
 
7)      En kake koster c kroner. Et smørbrød koster s kroner. Jeg 
kjøper 3 kaker og 4 smørbrød.  

 
         Hva står da 3c + 4s for? 

 
   .................................................................................................... 
 

 
8)     Volumet av en sylinder er: hrV  2  

         
        Kan du skrive denne om slik at vi får en formel for høyden i en syl  
       inder  

 
 
         h= ……………………… 
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9) Løs likningene nedenfor:                     
          

 a      4x - 15 = 75   
 
 
 
 
 
 
                        

b      123 + 2x = 195 – x  

c     
1 4

4 5

x

x





 

 
 
 

 
 
 
 
 
 
 
 

d      5x = 45      
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6.2 September test – 90 Minutes (Computers allowed) 
 

Kapittel 1 Regning med tall og bokstaver 
 

Oppgave 1 
Løs opp parentesene og trekk sammen: 

 
a) (12 4 ) 10a b a   

 
b) 2(2 3) (2 ) 5( 3)a a b b       

 
c) (5 2) 4 ( 1)b b b b b     

 
d) 3( ) ( ) 3a b b      

 
Oppgave 2 

Skriv svarene på standardform: 
 
a) 0,000065  

 
b) 234000000  

 
 

Oppgave 3 
Regn ut: 

a)  
1 5 4

3 3 3
              b)         

3 3 7

2 7 5
          c)    

4 5 7
:

2 4 5
  

 
 

Oppgave 4 
Regn ut og forkort så mye som du kan i svarene: 

 

a) 
215

5

ab

b
 

b) 
3 2

2 4

a a b

a b ab


   

 

c) 
3 15 2 10

:
6 8

a a 
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Oppgave 5 

Stine skal arrangere bursdag for sønnen sin Jarle og vil glede alle åtte-
åringene med å lage 12 liter av Stines brusspesial som består av Cola og 
Appelsinbrus. 

 
a) Stine har bare to liter Appelsinbrus.  Hva blir blandingsforholdet i 

Stines brusspesial? 
 

To timer ut i selskapet begynner Jarle og vennene å bli slitne av all le-
kingen.  For å gi barna litt energi bestemmer Stine seg for å blande saft 
til dem.  Hun har to liter saft, og på flaska står det at blandingsforholdet 
mellom saft og vann skal være 1: 7 . 

 
b) Hvor mye vann må Stine bruke dersom hun skal følge oppskriften 

på flaska? 
 

Oppgave 6 
Løs likningene og ulikhet: 
 

a) 
6 4

9 3

x
  

b) 
7 5

2
25x

   

c) 2
2

2 2 3

x x
x     

 
 

 
d) 3 6 2( 8)x x     

 
 

Oppgave 7 
Brødrene Tor, Erling og Jonas er til sammen 37 år. Tor er dobbelt så 
gammel som Erling og  tre år eldre enn Jonas. 

Hvor gamle er brødrene? 
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The diagram underneath shows the results for each task %.  
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The next diagram shows students results on the test. There were 19 tasks. 
The students are ordered according to the results achieved on the test.  
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6.3 December test 
This test was given in December as a Semester test. Not all tasks were 
actual in relation to the focus for this study. The actual tasks are outlined 
with bold font.  

The accepted means were: Computer programs: MathType and TI-
interactive, downloaded files: ‘The learning book’ and solved textbook 
tasks.  
 

Heldagsprøve i matematikk 
 

Oppgave 1 

I denne oppgaven er det deloppgaver med valgfrie alternativer. I hvert tilfelle skal du 
velge enten alternativ 1 med lavest vanskelighetsgrad eller alternativ 2 med størst 

vanskelighets-grad.  
Ved sensuren vil du få mer uttelling for riktig løsning av alternativ 2 enn for rik-

tig løsning av alternativ 1. 

 
a) Skriv så enkelt som mulig: 

alternativ 1 
–5 · (7 – 5) – 23 · (4 – 5) 

alternativ 2 
2 3

2

2 (3 4 3 ) (4+2 ) 

5 3 7

   
 

 

 
b) Regn ut: 

alternativ 1 
2 1 3

( )
3 2 4

  

alternativ 2 
2

1

2

2

a
a

a




 

 
c) Løs likningene ved regning:   

alternativ 1 
2 5 1x x    
 

alternativ 2 
2 3 1

( ) 1
3 4 6

x x    

 
d) Regn ut uten bruk av tilnærmingsverdier: 

alternativ 1 
1

2
4 3

x
   

alternativ 2 
1

2(1 ) 3 4( )
2 2

y
y y     
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Oppgave 2 
Løs likningssettet grafisk og ved regning. 

   
2 3 5

5

x y

x y

 
    

Oppgave 3 
Harry har en stor bil som bruker 1,2 liter bensin på mila. Bensintanken til denne bilen 
tar 60 liter. Ronny har en mindre bil som bruker 0,7 liter per mil. Denne bilen har en 
bensintank som rommer 48 liter. Harry og Ronny fyller opp tanken på samme ben-
sinstasjon og kjører etter hverandre på langtur. 

a) Hvor mye bensin har Harry og Ronny igjen etter 15 mil? 
 

b) Finn grafisk når Harry og Ronny har like mye bensin igjen. 
 

c) Hvor langt kan Harry kjøre før han må fylle bensin igjen, og hvor langt kan 
Ronny kjøre før han igjen må fylle? 

 
Oppgave 4 

En rød blodcelle har en diameter på 67 10 .m Et voksent menneske har ca 
132 10 røde blodceller. Hvor langt ville blodcellene rekke hvis de ble lagt 

etter hverandre? 
 

 
Oppgave 5 

 
Oppgave 6 

  
 

 

a) Regn ut lengden CD. 
b) Finn B  

c) Regn ut arealet av tre-

kanten. 

 

På figuren under er sidene BC og EF paral-
lelle. AF = 4,6 m, FB = 0,8 m, AE = 4,2 m og 
BC = 4,2 m. 
d) Forklar hvorfor ABC  og AFE  er 

formlike  
e) Finn sida EF ved regning 

f) Finn A  
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Oppgave7 
Martin kjører bil med farten 90 km/h på en motorvei. Rett foran seg ser 
han en hindring og begynner å bremse. t sekunder senere er farten v målt 
i kilometer per time (km/h) redusert til 
 
 ( ) 90 3v t t   
a) Framstill sammenhengen mellom  v  og  t  i et koordinatsystem. 
b) Finn grafisk og ved regning når farten er 45 km/h. 
c) Gitt ( ) 90 3v t t  . Finn en formel for t uttrykt ved v.  
d) Hvis V er farten i meter per sekund (m/s) i det Martin begynner å 

bremse og T er tiden i sekunder fra han begynner å bremse til han 
stopper, er bremsestrekningen S i meter gitt ved 

  
1

2
S V T   

 Finn bremsestrekningen i meter. 
 

Oppgave 8 
Funksjonsuttrykket for en lineær funksjon f er gitt ved  f x ax b  .  

Grafen er en rett linje som går gjennom punktene  1, 4  og  3, 2 . 

a) Finn stigningstallet a og konstantleddet b ved regning. 
b) Tegn grafen til funksjonen. 

 
En annen funksjon g har stigningstallet 2, og den går igjennom punktet (-
1,0). 

 
c) Finn skjæringspunktet mellom de to funksjonene f og g. 

Oppgave 9 
 

Tabellen viser folkemengden y i millioner i Norge noen år mellom 1900 
og 2005.  
x = 0 svarer til 1900, x = 30 svarer til 1930, osv. 
 

 
x (år) 0 30 60 90 105 
y (millioner) 2,10 2,85 3,59 4,23 4,61 

 
a) Hvor mye økte folkemengden i gjennomsnitt per år fra 1900 til 

2005? 
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b) Bruk lineær regresjon på TI til å vise at funksjonen 
( ) 0, 24 2,1f x x  er den modellen som passer best med dataene i 

tabellen.  
c) Tegn grafen til f(x) i et passende koordinatsystem og plott inn 

punktene fra tabellen. 
d)  Hva vil folketallet i Norge bli i år 2050 i følge denne modellen? 

 
Oppgave 10 

I trekant ABC er vinkel 30 , 10 .A AC og BC a    
      Finn antall løsninger for ulike verdier av .BC a  
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Appendix 7: Questionnaire 
Spørreundersøkelse om matematikk generelt og algebra spesielt.  
Spørsmålene du får, kommer som et ledd i prosjektet, “Lær bedre matematikk”, som 
skolen din er med på. Hensikten er å få vite mer om hvordan du som elev tenker, for 
så å ha et grunnlag for å forbedre undervisning og læring.  

 
Husk å skrive på navn. Selv om alt senere blir anonymisert, er det viktig å kunne 

finne fram til hvem du er for eventuelle intervju senere. I alle andre sammenhenger 
blir navnet tatt bort, og du får et fiktivt navn om noe fra din besvarelse blir brukt.  

 
Når du svarer på spørsmålene, kan du bruke dine egne ord. Om du ønsker å svare 

på flere måter, er det helt i orden. Det er bare fint om du gir eksempler.  
 
Navn: ___________________  
      

1. Hva er matematikk?  Forklar kort med egne ord. 
 
2. Hva syns du om matematikk? Du kan godt bruke ord som kjekt - kje-
delig, lett - vanskelig osv.  
 
3. Har synet ditt på matematikk forandret seg noen gang (var det anner-
ledes før)?  Hvis ja, skriv kort om hvorfor og når det skjedde! 
 
4. Hva er algebra? 
 
5. Forklar med ord hvordan man løser likningen: 4x + 35 = 95 – x. Tenk 
deg at du hjelper en som ikke kan løse likninger. 
 
 
6. Vi skriver y = x + 5. hva betyr det? Hvordan henger f. eks. x og y 
sammen? 
     Du kan gjerne forklare på mer enn en måte.  
 
7. Er matematikk viktig for deg? Forklar hvorfor eller hvorfor ikke. 
 
 
Hvis du vil at læreren din skal se hva du har svart, krysse av her.       
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Appendix 8: Textbook – the first sub-
chapter 
In this appendix, the textbook exposition, examples, and tasks from the 
start of the textbook are presented. The headlines follow the headlines in 
the textbook.  

8.1 Fun with numbers 
Under the headline ‘Fun with numbers’, the authors suggest some activi-
ties for students: a game, mind reading, and a magic square. The two 
first activities can be classified as examples of open texts according to 
Love and Pimm (1996). The style is authoritative with use of impera-
tives, however, at the end students are asked not only to do the activity; 
they are asked to find patterns and to reason about how and why. In the 
following sub-chapters, such tasks or activities are not present. They 
were also not used in the classroom.  

In the case of the magic square, it seems as if the authors do not ex-
pect students to be able to make such squares of their own. Here the au-
thors first describe the square in detail: 

 We have drawn a square including the whole 
numbers from 7 to 15.  
The numbers are placed so that the sum is the same 
in all rows as well as in the diagonals. Can we do 
the same with the nine numbers 1, 2, 3, …, 9? Al-
ternatively, with nine other consecutive positive 
numbers? Yes, we can, and the procedure is as fol-
lows: … (p. 9). 
The reader is directly addressed with the 

pronoun singular ‘you’ (‘du’) when asked if he/she can make one such 
square. The question is immediately answered positively by the authors, 
and the recipe is given. At the end, it is said that the squares are restrict-
ed to contain an odd number of numbers. 

While the first two activities ask students to reason and to explain, 
this last activity is an example of a closed text. The reader is led step by 
step; only the choice of the sequence of numbers is left to the reader.  

8.2 General rules for addition and multiplication   
The first sub-chapter starts with the introduction of the set of natural 
numbers introduced in the context of counting before even and odd 
numbers are defined. A list of symbols for Roman numerals is offered, 
and it is stated that the numerals we use today were developed in India. 
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The set ℕ = 1, 2, 3, 4… is then presented on a number line, emphasising 
equal intervals between the numbers.  

The rules for addition and multiplication are introduced within  , 
because that is claimed to be easier, but it is stated that the rules are the 
same for all sets of numbers.  

The commutative property of addition is presented as a rule; firstly 
by a number example: 4 + 11 and also 11 + 4 is equal 15. Then the gen-
eral rule is presented in a ‘rule box’: 

 
In addition, an imagined ‘real life’ example is of-
fered. A carpenter is building a floor. The length of 
the floor is the same, no matter how the wood is 
laid. This is illustrated as in the figure to the right. 
The word commutative is not used. 

The associative law of addition is based on the 
need of grouping pairs of numbers when one mentally has to add more 
than two numbers. It is commented that this grouping can be visualised 
by brackets. A number example is offered before the rule for the associa-
tive law of addition is presented in a rule box.  

The general rules for commutativity and associativity of multiplica-
tion is just presented in rule boxes. It is said that we mostly use these 
rules without recognising them. The rules are then exemplified in solved 
example tasks. The examples are set in ‘real life’ contexts.  

The distributive law of multiplication over addition is presented by 
another ‘real life’ example before it is presented in a coloured rule box.  

 
This law is then applied in a contextual example task in which a school 
class has been out eating. The students have eaten the same; a main dish, 
a dessert and a bottle of soft drink, however, they wanted to know what 
each of the dishes costs for all students in addition to the total bill. 
Therefore, they have to apply the distributive law.  

Another example:6 3( 5) (1 )a b    is presented and worked out. Each 
step in the solution is explained using the inclusive ‘we’. 

In this section with the general properties of number, in the textbook 
called rules, the exposition is written in ordinary language. Only the 
words addition and multiplication are used from the mathematical vo-
cabulary. Commutativity and distributivity is explained by the authors in 
ordinary language. 
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8.3 Negative numbers  
The first short paragraph in the textbook is devoted to the Indian astron-
omer Brahmagupta who calculated with negative numbers already more 
than 1300 years ago. He is said to have called the negative numbers dept, 
while the positive numbers then were called fortune. 

Then the integers are presented as follows: 

 
The negative numbers are introduced in the textbook by the context of an 
imagined negative bank account. More is used than was contained in this 
account. Then the owner, the student, owes money to the bank and this 
amount of money is negative. Negative numbers are illustrated on the 
number line. It is said that the red arrows symbolising negative numbers 
are always pointing to the left, while the blue arrows representing posi-
tive numbers point to the right (p. 14) as shown in the example below: 

 
Addition and subtraction including negative numbers and multiplication 
with one negative factor are explained by arrows on the number line, but 
first it is said that calculation with negative numbers follows the same 
rules as the natural numbers. Addition of a negative number is presented 
on the number line: 

 
It is commented that to add negative 3 means to subtract 3. Thus 

 5 3  is the same as 5 3 . Thus the latter way of writing it, as subtrac-

tion is mostly used. 
The next illustration has no comments: 

 
 

Multiplication of a positive number by a negative number is exemplified 
through the product 3 ( 4)  . This multiplication is illustrated by repeated 
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addition of the negative number (- 4) on the number line as shown be-
low.  

 
The commutative law of multiplication is applied to verify that ( 4) 3   
will be the same as 3 ( 4)  , and thus makes it reasonable to equate 
( 4) 3   with 3 ( 4)  . 

The rule of signs is then presented: 

  
As a note, it is said that the rule concerning two negative numbers will 
not be proved.   

Three example tasks are worked out without any explanation. The 
tasks are:  
a) ( 7 4)     b) ( 7) ( 4)       c) ( 7) ( 4) ( 5)       
Then it is stated:” Often we meet a plus sign or a minus sign before an 
expression within a bracket. Then we follow the rules below” (p. 16): 

  
Two examples are then shown in which brackets are to be subtracted:  

 
Multiply, open the brackets and simplify:  

2

a)   5 3 (2 5) (2 5 )

b)  2  (3 4) 6 ( 2)

a b b a

u u u u

    

   
 

The second example task is solved in this way (p. 16): 
2

2 2

2  (3 4) 6 ( 2)           

                                            We multiply into the brackets.

(6 8 )  (6 6 12)

                                           We remove the brackets a

   



    



u u u u

u u u u

2 2

nd change the signs, 

                                                      when there is a minus in front.

6 8  6 6 12

                                          We collect like terms. 

2 12

    


 

u u u u

u
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In both examples, there is a guideline to each line about what to do. Ex-
ample task b includes u to the power of 2. There is, however, no com-
ment on this.  

8.4 Powers and scientific notation 
Powers are introduced in the context of large and small numbers. It is 
told that those can be written shorter by scientific notation; with powers 
of 10.  

The number example 1000 000 000 is said to be 10 multiplied by it-
self 9 times: 910 10 10 10 10 10 10 10 10 10          
“It is not a presentation of a new number; it is just another way of writ-
ing the number”. (p. 17). Then a power is defined as repeated multiplica-

tion: ...........

n factors

na a a a  


. n is a natural number and a is an arbitrary number. 
a is the base and n the exponent.  
 
This is followed by three worked out example tasks: 

4 3)  3 =3 3 3 3=81      )  ( 5) =( 5) ( 5) ( 5) ( 5) 25 125    a b               
 

c) 53,14 3,14 3,14 3,14 3,14 3,14 305, 24              
Negative indexes are introduced in relation to powers of 10, and it is 
stated that zero as a base cannot be raised to a negative power, because it 
is not possible to divide by zero.  

Some powers of 10 with negative exponents are converted into frac-

tions with this equality in the margin: 1
n

na
a

  . This equality is not 

commented upon. The example tasks are:      
1 2 6

1 2 6

1 1 1 1 1 1
) 10 , ) 10 , ) 10

10 10 10 100 10 1000 000
a    b     c  

 
         

A general formula for a number a written in scientific notation is pre-

sented:  10na k   . Here k is a number with one digit in front of the 
decimal sign, and n is a whole number. Two decimal numbers, one large 
and one small, are then converted into scientific numbers. The explana-
tion is about how many steps the comma has to be moved. This is not 
connected to the number system in any way.   

At the end, a recipe is given for which buttons to push on the calcula-
tors (Texas and Casio) in order to write numbers in scientific notation. 
This section ends with an example task in which the transformation of 
numbers from normal form to scientific form is demonstrated. In addi-
tion, a task from a ‘real life’ context is applied to demonstrate multiplica-
tion and division of numbers written in scientific notation.   



 
346   Appendices 

8.5 Order of operations 
The first sub-chapter in the textbook ends with a recipe for the orders of 
operations: 

Simplify the expressions in the brackets 
Calculate the powers 
Execute the operations of multiplication and division 
Execute addition and subtraction (p. 21). 

Three example tasks are then solved; no comments or hints are made to 
the solutions: 

Calculate and write the answers as simple as possible: 
3

3

)  2 3 2                        ) (2 ) ( 2 )

)  (2 3) 2

a c a b b a a b a

b

     

 
 

One question is posed at the end: “How can we interpret the expression: 
100:10·2?” In the answer, it is emphasised that multiplication and divi-
sion have the same priority according to the rules, and in situations such 
as the one above, one has to use brackets. Not much space is devoted to 
powers and order of operations in the textbook. Powers are defined, but 
then they are only presented as powers of 10 in the exposition part, in 
relation to scientific notation. Some few tasks however, are offered with 
powers of numbers different from 10. 

8.6 Work plan and tasks 
The work plan for the first two weeks was: 

 
Table 8-1: Work plan for the students. Adapted from the web site above:  

Time Aims Textbook 
pages 

Items 

Week 35  
 

To know the rules 
 a + b = b + a and 
(a + b) + c = a + (b + c) for addition, 
and the rules a b b a     and 
( ) ( )a b c a b c       for multiplication 

11–12 1.1.7, 1.1.8 

To use the rule ( )a b c ab ac     
multiplying brackets 

12–13 1.1.9, 1.1.12, 
1.1.13 

To calculate with negative numbers 14–16 1.1.10, 1.1.11 
To define powers 17 1.1.14, 1.1.15, 

1.1.16 
To know scientific notation and cal-
culate with such numbers 

18–20 1.1.17, 1.1.18, 
1.1.20 

To know the order of operations 20–21 1.1.20 
  
This plan was made by the textbook authors. The plan included learning 
aims for the period, and the plan showed where to find the exposition 
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and example tasks (textbook pages). The assigned tasks were placed at 
the end of the first sub-chapter; 20 numbered items including 67 tasks. 
The students were given the plan for the first two sub-chapters un-
changed from the publisher.  
      All tasks are numbered according to the chapter, sub-chapter and 
number within the sub-chapter. Task 1.1.17b, is task b in item number 17 
in subchapter 1 in the main chapter 1 (see the table below).  

 
Table 8-2: Numbering of tasks in the textbook 

Chapter Sub-chapter Numbered item within sub-chapter Number in the 
item 

1 1 17 b 
 
Thus, it can be seen in the work plan above that some tasks in the text-
book are left out on the plan. The aims, according to the plan, are for 
most of the exercises to practice explicitly stated rules or procedures. It 
is also stated where these rules are to be found. For the students, this 
means that they should know exactly where to find examples to follow in 
their solution process.  

On the plan, it is explained that aims written in bold are the most cen-
tral and important aims for learning, while numbered items written with 
bold fonts are said to be the easiest or most important items. Students’ 
saved computer files, and the observations in the classroom confirm that 
students mostly skipped the items not written with bold fonts. 

Two items including six tasks are questionnaires requesting students 
to reply to facts from the exposition part of the sub-chapter. None of 
them were listed in the work plan. Two numbered items including 7 
tasks might have been ‘potential problems’ according to Niss (1993). 
The tasks are different from the examples and there is from the outset no 
known strategy to solve them. The authors, however, have posed ques-
tions that lower the cognitive demand and lead the students through 
small steps to the solutions. One example is item 1.1.7.  No student had 
solved it (p. 22): 

1.1.7 a:  Make a new order of the numbers 1 + 2 + 3 + 4 + 5 + 6 and group them 
in such a way that you will have 7 +7 + 7. 
1.1.7 b What will the sums be if you perform the same rearrangement of the 
numbers in the sums 1 + 2 + 3 + 4 + 5 + 6 + 7 and 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8? 
1.1.7 c Could you suggest a rearrangement of the sum  
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + ……………. + 100? Use this rearrangement 
to calculate the sum.  

The table below gives an overview over type of tasks offered. Tasks 
from the textbook, not present on the work plan are left out. The column 
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headed fonts, gives the number of tasks in each category written with 
bold fonts.  
 
Table 8-3: Examples of tasks on the work plan for sub-chapter 1.1 
Themes Number  

of tasks 
Examples of tasks  Bold 

fonts  
Grouping and adding sequences 
of numbers (no examples in 
textbook) 
 3    

1 2 3 4 5 6

      

7 7 7

Order the numbers

so that you get the sum

    

 

 
0 

Negative numbers 
Multiplication 2   3 2  · 4   2 
Addition/subtraction 2  12 7 2    2 
Powers 
Notation 1   

 7·7·7·7·7·7·7·7·7    

Write the product

in a simpler way
 1 

Calculation 7 3( 5) ; 410    7 

Scientific notation 
Notation 7   number 

12 300 000   

Write the

in scientific notation
 6 

Calculation 2    Word problem from chemistry   0 
Multiplying single expressions 
 3 2 5 3s b   0 
Collecting like terms in polyno-
mial with: 
Brackets preceded by + 3 ( 3 7 ) (4 6 )x y y x     0 
Brackets preceded by -  

1 
8 3 (7 3 6)

13 ( 3 2 ) 8

a b b a

a b a

   
    

 0 

Brackets with a ‘positive’ pre-
multiplier    

 
7 

 
2 (3 2 )a a b   

 
4 

Brackets with a ‘negative’ pre - 
multiplier 

 
2 

 
3 2(4 3) 10x x    

 
0 

Brackets with a negative post-
multiplier 

3  
3(2 2) 2(3 1) (8 3)( 3)a a a       

 
2 

Sum of tasks 43  24 
 
Only one task on the work plan is a task not set up in mathematical nota-
tion. It is from the context of chemistry: 

The diameter of an atom of iron has the length of 102,0 10 m  and the mass of  
269,3 10 .kg  One paper clip contains 0,50g iron.  

a) Transform 0,50g into kg and write the answer in scientific notation. 
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b) How many atoms of iron does the iron clip contain? 
c) How long would a row of the atoms of iron contained in the paper clip be, if 
one was to place all the atoms in a row? (p. 24) 

 
Although the students had to decide which operations to apply, the oper-
ations should be routine operations. The challenge might be the small 
numbers, or perhaps the context of chemistry. This task is on the work 
plan categorised as a task to practice order of operations (item 1.1.20 on 
the plan above), and it is written with bold fonts. It seems to be an error 
in the plan. This item does not have anything to do with the order of op-
erations37. Another item with 8 tasks seems to have been conducted in 
order to practice those rules, but is left out.  
     The tasks are variations of examples in the textbooks, and thus rou-
tine tasks for practicing learned rules and skills, the only exception on 
the plan is the task above. All the tasks are of low level of procedural 
complexity with less than 5 steps using a common solution method. 

16 students solved at least some of the tasks on this plan (data from 
18 students). Three students solved more than 30 tasks, one of them 
more than 40. Five had solved more than 20 tasks, seven between 10 and 
20, one only 7 tasks, and 2 had solved none of the tasks.  

                                           
37 The work plan was still (2011) the same for students to load down from the publisher’s 
web- site. The item numbered 1.1.20 was still listed twice.  
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Appendix 9: Students’ work with numbers 
and letters   

9.1 Understanding of literal symbols 
One task, task 3 in the algebra test, tested if students accepted letters as 
general numbers. The task was: Write down the expression/expressions 
underneath which represent a number that is:    

            k + 5;     k + 2;      2k;      k + k ;     0,5k ;       
2

k  ;     
5

k    ;     5k 

         a)       Double the value of k   ............................................. 
 

         b)       Half the value of k       …………………………….  
    
         c)       2 more than k               ……………………………. 
 

All except for four students had picked out correct expressions. One stu-
dent did not solve this task. She had solved all the others. However, not 
all 20 students, who picked out correct expressions, included both ex-
pressions in the tasks a) and b). The results are presented below. 
 
Table 9-1: Algebra test - item 3 with correct results (%)  
Task  Autumn  Spring 
 Expression(s) Both Only 

the 
first 

Only 
the 
second 

Both Only 
the 
first 

Only 
the 
second 

3a Double the val-
ue of  k 

 
52 

 
36 

  
0 

 
75 

 
21 

 
0 

3b Half the value 
of  k                              

 
52 

  
20 

     
 24 

 
71 

 
17 

 
8 

3c 2 more than k                                    84 96 
 

32 % or 8 students presented only one expression in both tasks in the au-
tumn. In task 3a all of those had chosen 2k; the first expression in the 
sequence of the expressions to choose, while only two of those eight had 
chosen the first correct expression in task 3b. This might indicate that at 
least six students (24 %) had a problem to see that the expressions were 
equivalent since they had chosen the first expression in the first task and 
the second expression in the next task. In addition, four students equated 
non-equivalent expressions. It is visible that there is a considerable im-
provement from autumn to spring.  

From the task, it might be inferred that all, except for one student, ac-
cepted letter symbols representing numbers.  
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The next task on the algebra test was the ‘student professor problem’:  
In a school there are 10 students to each teacher. Which of the expression(s) repre-
sent the correct relation?  
L = number of teachers,  E = number of students.38 Mark the, or those correct expres-
sion(s).   
             10L = E       10E = L        L  = 10E         E = 10L     10L + E 11LE 

 
Table 9-2: Algebra test, item 4 - results and alternative responses (%)  

 Autumn Spring 
Both expressions correct 16 9 
One correct expression 0 0 
Opposite relation - both 60 78 
Opposite relation – one of them 8 13 
Other answers 16  

 
Only two students or 8 %, chose only one expression in the autumn. 76% 
chose two equivalent expressions, although 60 % chose equivalent ex-
pressions representing the opposite relation to the one asked for. In this 
task, a larger group of the students picked out two expressions than in 
the foregoing task above, which can be taken as an indication that many 
students had problems to find equivalent expressions in item 3. 

Only 16 % (9 % in the spring) chose the expressions representing the 
correct relation between teacher and students. Most of the students 
seemed to rely on the syntax rather than on the semantics; the meaning 
of the statement. This is reported to be a common error.    

9.2 Simplification of algebraic expressions 
Tasks given to test simplification of expressions (algebra test). The tasks 
are presented in the table below:  
 
Table 9-3: Algebra test, item 1-Results (%) and alternative answers 25 students 

Item 
 

Task Correct  Alternatives No re- 
sponse 

1a) 2x  + 5x  96 6x *                                        
1b) x + x + 2x   88 23 ;  5 ;   2 ;   x x x x   

1e a – 3a + 2a  44  4    (48%)a  8 

1f 10x  + 3 (4 - 3x) + 8   84  20 (A);  19 20 (B); 15 (C)x x x    4 

1g 5 2(7 ) 6a a     68  3 8 (A)(16 %); 3 20 (B);  

6 8 (C);  7 20 (D)(8%)

a a

a a

 
 

 
 

1h 8x + 15 + 4x - 5       80 6 5;   12 10 (12 %)x x    

*When no percent is given for the alternative solutions, each solution was presented 
by one student (4 %). 

                                           
38 In Norwegian, teacher is ’lærer’ (L), and student is elev (E). 
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In task 1b three students came to the solutions 3x, 5x, and 2 2x x . Two 
of them showed that they also had problems deciding which expressions 
were equivalent in task 3c in the foregoing section (Table 9-1). In the 
spring only Olav wrote the same; the quadratic expression as in the au-
tumn. Then the others solved the task correctly. 

Task 1e is discussed in the thesis.  
In task 1f, Kari presented an equality (A). She did not explain her re-

sult. Eli added 3 and 4 and presented result (C). Selma changed the sign 
in the bracket, result (B).  

In task 1 g, the term 3a, in solutions (A) and (B), is the result of not 
changing sign in the bracket (Rakel, Kristin, Ane, and Selma). The solu-
tions (B) and (D) included the number 20. Those students have either 
seen the minus sign as a splitting factor; -20 (Olav, Kari), or calculated 
from right to left; +20 (Ane). The student in solution C has not followed 
the law of distribution (Sven).  

The solution 12x -10 in 1h is probably due to calculation from right 
to left. Carl, Bill and Jone were observed doing that at other occasions, 
Jone succeeded though in task 1e). Kari came to a correct result but di-
vided both terms by 2, resulting in 6x+5. 

The textbook items 1.1.9 and 1.1.12 is presented below: 
 

Table 9-4: Textbook, item 1.1.9 and item 1.1.12 (number of students) 
Item Task Correct Solu-

tions 
Alternative solutions 
(Number of solutions in the 
brackets) 

1.1.9a   3 2a   15 15  

1.1.9b  5(2 3 5)b a   10 15 Detachment of terms from indi-
cated operations (3) * 
2 3 5b a                            (2) 

1.1.9c 2(2 3) 3(5 4 )a a  
 

13 15 The letter disappears (1) 
Only multiplication; no simplifi-
cation  (1) 

1.1.12a  2( 3) (3 3 )a a    15 15  
1.1.12b  3 2(4 3) 10x x    15 16 5 16x   (1) from right to left 
1.1.12c 3(2 5) (6 2 )

(3 1)2

a a

a

  
 

 10 16 2 19a   (1) Detachment of terms 
from indicated operations  
Multiplication error   (3) 
Law of distribution   (1) 
Do not change sign   (2) 

1.1.12d 3(2 2) 2(3 1)

(8 3)( 3)

a a

a

  
  

 

6 14 Wrong sign in last bracket   (2) 
Law of distribution     (4) 
Multiplication error    (2) 

* Numbers within brackets show how many students had the actual solution 
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The table above gives an overview of solutions and alternative solutions 
of the two textbook items. Since not all students solved the tasks, each 
task is given with the number of students who solved it (number of solu-
tions) and the number of students with correct solution (Correct solu-
tions). Dataset 18 students. 

9.3 Negative numbers and the minus sign 
One reason for the errors in the foregoing table is related to the minus 
sign. The table below presents the textbook tasks explicitly stated to be 
related to negative numbers. Dataset 18 students. 
 
Table 9-5: Negative numbers - Textbook item 1.1.10 (Number of students) 
 Item  Task Correct Solutions Alternative solutions 

 
 1.1.10a ( 3)( 2) 4    13 14 ( 3)( 2) 4 ( 6) 4 24          
 1.1.10b ( 1)( 2)( 3)( 4)   

 
10 13      1 2 3 4 2 12 14        (A) 

( 1)( 2)( 3)( 4) 3 12 36        (B) 

( 1)( 2)( 3)( 4) ( 10) 10         (C) 

 1.1.10c 12 (7 2)   12 12  
 1.1.10d 12 ( 7 2)    9 13 1 2 ( 7 2) 12 ( 5) 7        (D) 

12 ( 7 2) 12 7 2 21        (E) 

 12 7 2 12 7 2 21         (F) 

 
1.1.10c was solved correctly by those who solved it. Else had problems 
with all tasks except for task 1.1.10c. Five other students solved one of 
the tasks incorrectly.  

The solutions in task 1.1.10b show that some students mix addition 
and multiplication. Tord (A) split the task into two terms, each with two 
factors, before he added the products. Kari (B) added the two first fac-
tors, before she multiplied the sum by the product of the two last factors. 
Else (C) added the factors as if they were negative terms. This happened 
although the students had put the negative numbers within brackets.  

The task 1.1.10d includes a double minus sign. The first minus sign 
is an operation sign while the second is a symbol for negative 7. Else 
added 7 2   correctly with the result negative 5, but then  12 5  be-

comes positive 7 (D). Jone and Ane, solution (E), wrote correctly posi-
tive 7 but did not change the sign in front of the number 2 and therefore 
the result was positive 21. Solution (F) is partly correct, having 
12 7 2  . Then the result is written as negative 21. If Jarl calculated 
from the right, grouping 12 and 7 resulting in -19 before subtracting -2, 
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this would be the result. However, he had not presented his strategy or 
thinking.  

Only three tasks in the textbook had two successive minus signs. One 
was on the work plan, the task 1.1.10d shown in the table above. Another 
was on the work plan, but written with normal fonts see table 8-3. Only 3 
students solved it, and they solved it correctly (dataset 18 students).  

Two tasks with double minus signs were given in the ordinary test 2 
weeks after the work with the textbook tasks. One of them was:  

   3 3a b b     . Only three students failed in this task because of the 

double minus sign. In another task in the same test, the situation was dif-
ferent. The task was: 2(2 3) (2 ) 5( 3)a a b b      . In this task, 9 students 
or 33 % wrote  5b  instead of 5b .  

Jarl’s solution can be an example. He solved the task in the way 
shown below: 

     
     
2 2 3 2 5 3                  

4 6 2 5 15     Here he has multiplied the last bracket by 5

4 6 2 5 15                The bracket is removed. 

6 5 21

a a b b

a a ab b

a a ab b

a b ab

      

      

     
  

 

It might be that he had + 5b – 15 after changing the signs in the bracket, 
but the negative sign in front of the bracket might have caused him to 
change again.  

9.3.1 Result and solution numbers 
In the work plans for the first chapter there were three tasks with nega-
tive result numbers, and four tasks with negative solution numbers. In 
the table below the tasks with negative result numbers are listed with 
number of correct solutions and alternative solutions (Dataset 18 stu-
dents): 
   Table 9-6: Tasks with negative result numbers (Numbers of students) 

Item Task Correct  Solutions Alternative solutions 
1.2.2c 5 10 2

3 3 3
   5 10 7

3
; 3

3

   

1.2.17e 2 1 1 5
( )

3 2 3b b b
    8 13 1

2
; 3

6

b

b
   

1.2.18b 2

12 4 3

a a a
   7 10 1

2
; 6

12

   

 
A large group of students solving the tasks, made errors. In the first task, 
the reason for the errors was not related to a lack of acceptance of a neg-

ative result number. The reason for the positive solution 
7

3
is due to cal-
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culation from right to left, or a grouping of the two last terms before sub-

tracting the first term. The alternative solution 
3

3


 is correct, but the re-

sult is not simplified.  
In the next task 1.2.17e, three students ignored the minus sign in their 

result, writing a positive solution. Two had come to a positive solution 
because of erroneous calculations. One student came to a positive solu-
tion, but after checking the textbook answer, the result was changed. On-
ly one student ignored the sign in two of the tasks.  

The next table shows the tasks with negative solution numbers.  
 

   Table 9-7: Tasks with negative solution numbers   
Item Task Correct  Solutions Alternative 

solutions 
1.3.3f 2(1 ) 8 1x x x     13 13  
1.3.4f 2 4

3 5

x
  14 15  

1.3.14c 1 3 1 5
2 ( ) 1 ( 5)

3 4 2 6
x x x      6 6  

1.3.18f 8 2( 3) 3 (5 )x x x x      13 14  
 
The tasks were mostly saved correctly after the students had been 
helped. There were many questions related to the minus sign in all tasks. 
In 1.3.3f the students seem not to regard it possible to divide by ‘minus’. 
Rakel said: “If we divide by minus 5, the minus sign will come down 
there?” In 1.3.4f Kari and Tord made sign errors. Tord corrected his so-
lution, after checking it. In task 1.3.14c, Tone and Ruth asked for help 
and were told to solve the task once again, and they succeeded. In task 
1.3.18.f. Tone, Ane, and Arne asked for help about sign and the brackets. 

9.4 Powers 
The table below (dataset 18 students) shows that nearly all students solv-
ing the tasks in the items 1.14, 1.15, and 1.16, solved them correctly. 
Three students made an error in 1.1.16b but they solved task a and task c 
correctly. Olav came to a negative result in task 1.15.b. 
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    Table 9-8:  Powers and calculation with powers – textbook tasks 
Item Task Correct  Solutions Alternative 

solutions 
1.1.14 Write 7 7 7 7 7 7 7       

in a different way 
15 15  

1.1.15a 32  13 13  
1.1.15b 4( 3)  11 12 81  
1.1.15c 3( 5)  12 12  

1.1.15d 610  11 11  

1.1.16a 210  11 11  
1.1.16b 410  7 10 1

1000
 

1.1.16c 110  11 11  

   
The next items 1.1.17 and 1.1.18 are presented in the table underneath: 

 
   Table 9-9:  Powers and calculation with powers – textbook tasks 

Item Convert to scientific 
 numbers 

Correct Solutions Alternatives 

1.1.17a 12 300 000 8 10 71,23 ; 71,2300000  
1.1.17b 0,0123 5 9 21.23 10   (2students) 

; 21,23 ; 41,23 10  
1.1.17c 432,1 7 8 24,321  
1.1.17d 0,000 043 21 6 8 54,321    (2students) 
1.1.18a 6 380 000 m 8 10 66,38 m    (2students) 
1.1.18b 0,000 000 000 282m 9 10 102,82  

 
One student, Else, does not include the base 10, indicating that the power 
does not mean anything to her. Jone does the same in the few tasks he 
solved, while Tone did that in one of the tasks. Tore, Ronny, and Jarl 
seem not to have understood the use of a negative exponent (1.1.17b). 10 
students solved one or more tasks; three of them made no error.   

Two of the tasks related to powers in the algebra test are presented in 
the next table: 

 
Table 9-10: Algebra test, item 1 with results (%) and alternative answers 

Item Task Correct  Alternatives No respons 
1c t · t · t 100   
1d 22 yy    60  (4%); 22y (12%); 

33y (4%);  3y  (4%) 

16 
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The first task, similar to 1.1.14a, was solved correctly by all 25 students. 

In the next task, task 1d: Simplify the expression 22 yy  , 60 % gave a 
correct expression and 16 % did not answer. An invisible exponent 

might cause the problem since 12 % regarded it to be equal to 22 .y  
Some textbook tasks required some knowledge about powers. Some 

of them were solved by very few students. The tasks,  number of stu-
dents solving the tasks, number of correct solutions and alternative solu-
tion are presented in the table below. (Dataset 18 students). 

 
  Table 9-11: Textbook tasks related to powers (Number of students) 

Item Task Correct Solutions Alternatives 
1.1.13d (2 1)u u u   1 1  
1.1.13e 2(2 ) 2(2 3)u u u u      0 1 46 6u u    
1.2.17c 2 5

3 2

a

a
   

9 12 24 30 3

6

a

a

 
 

1.2.17d 3 5 2

2

a

a b b ab
    

13 13  

1.2.18c a b b a

a b

 
  

9 13 Sign errors 

1.2.21c 
3 ( 3) (4 2 )

2 3

x x
x x x      

3 3  

 
Only in task 1.1.13e, the error is related to powers. Rakel who made the 
error, stated in the classroom, that she was unsure about powers.  

Two students, Kristin and Arne, were observed during seatwork writ-
ing ordinary multiplication as exponentiation, and asked for help. Arne 
continued making this error both in September and in the spring.   

In December on the semester test, six of 27 students made errors re-
lated to powers in the first task. Most of them were caused by not follow-
ing the correct order of operations, and in addition some students multi-
plied base and exponents in that they equated 32 with 6. The table shows 
the distribution of correct and alternative solutions: 

 
   Table: 9-12: December test - order of operations (21 students chose this task) 

Task 1a, alternative 2    2 3

2

2 3 4 3 4 2

5 3 7

    

 
 

Correct 24 % 
View 3 and 4 as different terms 39 % 
Power errors 24 %   (half of those multiplied the 

new base by the exponent) 
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On the test there were two alternatives of item 1a, and this task was an-
nounced to be the more difficult of the two. 27 students were present on 
the test and 21 students chose alternative 2. Thus, the dataset for the ta-
ble includes 21 students. Five made power errors, Alf, Tore, Peter, Ane, 
and Kari. (Roy made a ‘power error’ in alternative 1). 
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Appendix 10: Fractions  

10.1 Numerical fractions - the textbook 
In the textbook fractions are presented as the result of dividing whole 
numbers; as quotients. It is said that dividing one whole number by an-
other whole number, the answer will not always be a whole number, as is 
the case for the other arithmetical operations. The example given is 2 
divided by 5. The calculator gives the answer 0,4 or 4 tenths. The answer 

can also be written as a fraction 
2

2 :5
5

 which is read 2 fifths.  

It continues; fractions can be interpreted as part-whole situations: 
“the numerator tells how many parts we have, and the denominator tells 
what parts they are.” (p. 25), and this is illustrated by a pie chart. A pie 
chart is also applied to illustrate equivalent fractions. The expression 
‘equivalent fractions’ is not applied; however, it is said that after expand-
ing a fraction it will keep its value. To expand is explained to be to mul-
tiply numerator and denominator by the same number. 

Simplification is shown as division by the same number in numerator 

and denominator: 
:515 15 3

25 25:5 5
   mostly written: 

15

25

53



5 5

3
.

5
   

The rule is: “Before simplifying a fraction, one has to factorise numera-
tor and denominator. Then numerator and denominator must be divided 
by the same factor” (p.26). 

To illustrate the need of having a common denominator before add-
ing, an example is given: A tourist wants to add 250 Norwegian kroner, 
420 Euros, and 40 US dollars. In order to execute the calculation, he has 
to convert all amounts to the same currency. The same is said to be the 
case with fractions. In order to add them, they have to be converted into 
the same type of fractions; finding a common denominator and expand 
the fractions.  

For multiplication and division of fractions, the rules are simply giv-
en without reasons for the rules. Whole numbers are represented by a 
fraction with 1 as the denominator. 

In order to present the set of rational numbers, the number line is 
used as the mode of representation. Negative numbers are not included:  
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The interval  0,1  is divided into ten parts, and it is stated if it is divided 

into 5 parts, each part will be one fifth. It is stated that fractions larger 
than one, and negative fractions can also be located on the fraction line.  
The authors conclude that all whole numbers, ℤ, and all fractions with 
whole numbers in numerator and denominator have their locations on the 
number line. Those numbers constitute the set ℚ; the rational numbers.  

The exception with zero in the denominator is not mentioned, alt-
hough zero is included in ℤ, the integers, on page 14.  

At the end, there is one paragraph in which the number line is applied 
to illustrate that it is always possible to divide any interval on the number 
line into smaller intervals, and it ends with the proposition: Any interval 
on the number line includes an infinite number of rational numbers.  

 
The number  is used as an example of irrationals, and with this, the set 
ℝ is introduced: “On the number line we find whole numbers, rational 
numbers and irrationals. Together they constitute the set ℝ of real num-
bers” (p. 30). How to write intervals with set notation is introduced, and 
the meaning of those symbols is explained at the end. 

The example tasks are tasks just to illustrate the procedures of fol-
lowing the algorithmic fraction rules. In the solution processes, the nu-
merators and the denominators are factorised into prime factors before 
cancelling common factors.  

10.2 Ordinary fractions - ‘the learning book’  
The file is a condensed version of the rules in the textbook. Expansion, 
simplification, the operations of multiplication and division are shown 
by examples. Simplification is explained in this way: 

We can simplify fractions by dividing numerator and denominator by the same 

number:  
: 312 12 4

27 27 :3 9
 

 
Prime factorisation is not shown. 

Addition and subtraction is explained in this way: 
In order to add or subtract two fractions, they must have the same denominators. 
When the denominators are equal, we add (or subtract) the numerators, while we 

keep the denominator: 
7 4 3

8 8 8
  . 

If the denominators are not equal, we have to find a common denominator, this 
we find by simplifying or expanding at least one of the fractions. 
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The operations of multiplication and division are given:  
We multiply two fractions by multiplying numerator-by-numerator and denomi-

nator-by-denominator: 
a c a c

b d b d


 

  
We divide two fractions by multiplying the first by the second, after turning the 

second fraction upside down :
a c a d a d

b d b c b c


  


 Ex: 

2 1 2 3 6
:

5 3 5 1 5
    

All number sets actual for this course and examples and interpretation of 
intervals in set notation are presented: 

  

10.3 Work plan and tasks - ordinary fractions 
The work plan for this part is, as for the first plan, identical with the plan 
from the publisher. The plan is presented below: 
 
Table 10-1:  Work plan - ordinary fractions  
Aims Textbook 

pages 
Items 

To expand, simplify, add, mul-
tiply and divide fractions  

24–28 1.2.1, 1.2.2, 1.2.3, 1.2.6, 1.2.7, 
1.2.9 

To know the whole numbers, the 
rational numbers, irrationals, and 
intervals on the number line 

29–30 1.2.10 

 
Only one task, a word problem, might be categorised as demanding a 
high level of reasoning, the others are similar to the example tasks. The 
word problem, item 1.2.9 (not bold) is: “One advertisement says: Take 
three plants, pay for two. The other says: Take five plants and pay for 
three. The question is which offer is the best”. This is a ‘real life’ situa-
tion, and the challenge might be to set up the correct fractions to be 
compared.  
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The other two items, not bold, asked students to write intervals in 
formal set notation, and can be solved by just imitating the examples.   

The table below shows the items and how many students solved all 
tasks in each of them, how many who solved some of the tasks, and how 
many who solved none, according to the data set of 18 students. 
 
        Table 10-2:  Number of solved tasks in each item 

Number of stu-
dents who: 
 

Item 
1.2.1 

Item 
1.2.2 

Item 
1.2.3 

Item 
1.2.6 

Item 
1.2.7 

Item 
1.2.9 

Item 
1.2.10 

Solved all 12 7 5 5 2 3 3 
Picked out some 5 7 7 3 1   
Solved none 1 4 6 10 15 15 15 

 
The table shows that the higher the numbering of the items, the higher 
the number of students not solving any of the tasks.  

In the table below the first item is presented. The number of correct 
solutions, number of saved solutions, and alternative answers are includ-
ed: 
  Table 10-3: Ordinary fractions – textbook items 1.2.1 (18 students)   

Item Task Correct  Solutions Alternative answers 
1.2.1a   10

15
 16 16  

1.2.1b  14

49
 16 16  

1.2.1c  

 42

630
 

8 16 
  (A) 42

6

630
90

6


2

90
30

2


30
15 15   

 

42
(B)  

6

630
90

6

90


   
42 42 : 6 8

   
630 630 : 6 105

(C)      

1.2.1d   24

39
  11 12 

(D)    

24 : 3 8

39 :3 11
  

 
Most students wrote remaining factors as indexes (A and B). Some few 
showed the division in both numerator and denominator (C).  

Jone, Selma and Tone (solution A), dividing by 2 in the numerator, 
did not write the result, 1. No number is left in the numerator, and the 
solution is equalled to 15.  

Paul, Tore, Ronny, and Kari did not simplify the fraction to its sim-
plest form (the solutions B and C). It might have been better if they had 
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prime factorised the numbers before cancelling. Jarl made a division er-
ror (solution D).  

The next item on the work plan includes addition and subtraction of 
fractions. Data set 18 students. 

 
Table 10-4:  Ordinary fractions – textbook items 1.2.2   
Number Task Correct  Solutions Alternative answers 
1.2.2a 3 4

5 5
  

12 12 
 

1.2.2b 2 3 4

5 5 5
   

6 9 
(A)      2 3 4 5

   
5 5 5 5
    

1.2.2c 5 10 2

3 3 3
   

5 10 

(B)      
5 10 2 7

3 3 3 3
  

  
(C)     

 5 10 2 5 10 2

3 3 3 3

 
   

-3
3

  

 
The minus sign and the size of the numbers involved, might have caused 
Tord, Ruth, and Tone to ‘detach some terms from their indicated opera-
tions’ (A and B). They also did not simplify at the end.  

The minus sign might have caused Jone and Paul (C) not to simplify.  
 

Table 10-5:  Ordinary fractions – textbook items 1.2.3  (Data set 18 students) 
Number Task Correct  Solutions Alternative answers 
1.2.3a 1 1

2 3
  

9 9 
 

1.2.3b 1 2 3

2 3 4
   

5 6 

1 6 2 4 3 3 6 8 9 1
(D)  2

2 6 3 4 4 3 12 12 12 12

  
     

  
 

1.2.3c 4 2

9 15
  

7 8 
(E)   

4 10 2 6 18

9 10 15 6

 
 

 

3

90
15

3

15
  

1.2.3d 1 2 5
1

2 3 6
    

6 7 

(F)  
1 3 2 2 1 6 5 3 4 6 5 2

2 3 3 2 1 6 6 6 6 6 6 6

  
       

  
 

 
Oscar’s solution (D) is either due to an addition error, or it is a problem 
to transform improper fractions into a mixed number. The solution (E) is 
due to a calculation error (Tone). The result fractions (E) and (F), are not 
reduced to their simplest form, and Ruth ‘detaches the terms from indi-
cated operation’ (F). 

The next item on the plan 1.2.6 is shown in the two tables below. Da-
ta set 18 students. 
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 Table 10-6: Ordinary fractions – Textbook item 1.2.6 tasks a, b, c, d 
Number Task   Correct  

  
Solutions Alternative solutions 

1.2.6a 2 6

3 7
  

6 7 
Result not simplified    

1.2.6b 3 16

4 9
  

4 7 
Result not simplified   (3) 

1.2.6c 3 9
:

8 4
 

5 6 
(A) 3 9 3 4 7

:
8 4 8 9 72


 

  
1.2.6d 15 5

:
16 8

 

4 5 

15 5 15 8 120
(B) :

16 8 16 5


 



15

80
10

15

10
  

 
There is one clear tendency in the tasks above; all the students multiplied 
before simplifying the fractions, although the numbers and the structure 
of the tasks invite simplification.  

 
 Table 10-7: Ordinary fractions –Textbook item 1.2.6 tasks e, f, g and h 

Num-
ber 

Task   Correct  
 answers 

Solutions Alternative solutions 

1.2.6e 2
6 :

3
 5 6 

 

2
(C)  6 :

12
12 3

9 9
3 3 3

    

1.2.6f 2
:6

3
 6 7 

 

2 2 6
(D)  : 6

3




2

3
4  

1.2.6g 3 4 3

5 5 14
   
 
 

3 5 
(E)  

3 4 3 7 3 21

5 5 14 5 14
      
 

7

70
10

7

10
  

(F)
3 4 3 7 3 21

5 5 14 10 14 140

       
 

1.2.6h 1 2 10
:

2 3 9
  
 
 

6 7 
(G) 

1 1 10 2 9 18
:

2 3 9 6 10 60
     
 

 

 
In task 1.2.6a and 1.2.6b, Tone, Ruth, and Oscar did not simplify the 
fractions at the end.  

Four students had solved all tasks correctly. Tone and Ruth represent 
all the alternative solutions listed. Tone’s problem seems to be that she 
had problems handling whole numbers in relation to fractions (C) and 
(D).  In task 1.2.6e (C), she does not follow the rule for division, and it 
might be that she has subtracted 3 from the numerator 12, giving the an-
swer 9, which she writes as a whole number. The rest, 3, is written as a 
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fraction with the denominator 3. The result is 3

3
, perhaps equated with 1. 

If she multiplies 9 by 1, the result is 9. This is one interpretation, another 
might be that she has seen the answer in the textbook and then has ad-
justed her own answer in accordance with that. In task 1.2.6g (E) she 
does not simplify correctly.  

Ruth in task 1.2.6c (A) turns the last fraction upside down, but when 
going to multiply, she adds the numerators and multiplies the denomina-
tors. In task 1.2.6g (F) she adds the fractions by adding the numerators 
and the denominators before she executes the multiplication. Here she 
performs the multiplication properly. She seems to regard the numerator 
and the denominator as separate whole numbers. In task 1.2.6h (G) she 
finds the least common denominator; however, she does not expand the 
fractions properly, then she adds the numerators and multiplies the de-
nominators.  

It seems as if Ruth has no stable conception of the fraction opera-
tions. At this point in time, she seems not to be consistent at all.  

The other tasks on the work plan were not written with bold fonts, 
however, four students had solved some of them. Task 1.2.7 is about 
placing two sets of fractions on a number line (none of them were equiv-
alent). Ruth, Rakel, Else, and Olav ordered them in two sequences from 
least to the largest with no explanation, as in the textbook key.  

Task 1.2.9 was the word problem (see appendix 10.3). Three students 
solved the task, two by writing the solution as it was written in the text-
book. Only one student, Jone, seemed to have found the fractions before 
comparing them.   

Task 1.2.10 asked students to write sets of numbers in formal set no-
tation, imitating the examples in the textbook. Rakel, Jone, and Olav, 
had done that; correctly.  

10.4 Algebraic fractions in the textbook 
It is stated that the same rules are valid for algebraic fractions as for nu-
merical fractions. When simplifying fractions with binomials, however, 
one has to factorise by setting common factors outside a bracket, and 
then simplify by dividing numerator and denominator by the same ex-
pression. It is said to be the opposite of expanding the bracket. This is 
told in a few sentences, and two tasks are solved as examples:  

       
2 88

24

x y

xy


x x y 

3 8 3

x

x y


 
  and        

3 6 3

6 9

a

a





( 2)

3

a  2

2 3(2 3)

a

aa





                                          

Then the book states that to add or subtract fractions, the denominators 
must be equal, and when not, the fractions must be expanded. Two ex-
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ample tasks are worked out to exemplify this: a) 
3 1

4 6

a a 
  and                    

b) 
2 1

2 3 6x x


 
. During the solution, brackets are written around each 

binomial, but it is not commented upon. A piece of advice is given in the 
margin, that it is wise to put the binomials on one fraction line before the 
brackets are removed.  

In example b), the readers are just told to first factorise the denomi-
nators. Then the solution is shown.  

Two more tasks are worked out as examples of multiplication and di-
vision. It is claimed that one has to follow the same rules as when operat-
ing on numerical fractions. The tasks are solved:  

a) 
26 15 2

5 2

x

x
 

3 x  3 5x  
5 2 x

9x   

b) 
3 4 3 3 3 3 3( 1) 9

:
1 3 3 1 4 ( 1) 4 4

a a

a a a a

 
    

   
 

10.5 Algebraic fractions –in the learning book 
There is one difference between the textbook and the learning book, 
which is worth mentioning. The way to write the simplification is differ-
ent. In the ‘learning book’ the simplification is presented in this way: 

2 88

24

x y

xy


2x y

24
3

x y 3

x


 
In the textbook, the fraction is factorised and written like this: 

 
2 88

24

x y

xy


x x y 

3 8 x y 3

x
  

The same example tasks are presented as in the textbook.  

10.6 Algebraic fractions - introduction  
The teacher points to the day before when they worked with ordinary 
fractions, and introduces the new lesson by saying:  

We are going to work with the same as yesterday. We are going to simplify frac-
tions. Yesterday we worked only with numbers; today we are going to bring in 
letters. Do you think that is difficult?  

There are some few responses. Then she presents six examples one after 
another, all are example tasks from the textbook. The students are ex-
pected not to write since they can find the examples and their solutions 
in the textbook or on the web site, in the ‘learning book’.  
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Simplifying fractions  

The first example is: 
28

24

x y

xy
 

When she writes the fraction on the whiteboard, she says what she 
writes. This she does every time she presents an example on the white-
board. She points to a student and asks if she can start. The first student 
she asks to join her, Ane, says that she does not know how to do it, the 
next, Ine answers, and the teacher writes on the whiteboard: 

Ine:  Can’t we cancel some that are similar? 
T:  Yes, tell me which of them.  
Ine:  We can cancel the y-s. 
T:  Yes, I can simplify by cancelling the y-s. What am I doing then? 
Ine:  We cancel both. 
T:  What operation is it? 
Ine:  We divide.  
T:  We divide. y divided by y is equal to? (The teacher points to the numera-

tor) 
Ine:       One 
T:  And y divided by y is equal to? (She points to the denominator) 
Ine:  One 
T:  Yes, so then we just cancel them. Normally we do not write the  
             number 1. (She draws a straight line over each y.) Ok? Are we going to 

continue? 
Ine knows what to do, and when the teacher prompts her, she explains 
that the operation she executes, is division. The teacher writes, revoices 
Ine’s response, and comments that the remaining factor 1, is normally 
not written. Instead, the y-s are just cancelled by overwriting them. Tord 
then asks a question: 

Tord:     Can’t we cancel the x-es as well? 2x up there and x down there? (He 
         points to the numerator and then to the denominator)  

T:  Are there two x-es up there? 
Jone:  No, that is x times x. 
Tord: Yes, it is x times x. 

Tord talks about 2x but supposedly he means x squared. The teacher re-
acts by asking if there are two x-es, and Jone and Tord respond by giving 
the correct notion. 
She then asks what to cancel. 

Roy: You have to cancel 2 (the index) 
T:           Yes, cancel this against? (She draws a straight line over the index). 
Roy:      The x. 
T: This one? (She points to the x in the denominator) 
Tord:  Then it will be one, sort of. 

At the end when working with this example, Else raises her hand and 
says that 8 times 3 is 24, and thus the numbers can be simplified as well. 
The teacher revoices what Else said and shows the cancelling on the 
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whiteboard, saying that 8 divided by 8 is 1 and 24 divided by 8 is 3. The 
number 1, the remaining factor, she writes as an index over the number 8 
in the numerator, to let the cancelling be visible, the same is done with 
the number three above 24. She has drawn a straight line over the two 

initial numbers. On the whiteboard, she has written 
1 8 2x y
3 24 x y

and asks: 

T: And that will be? 
Some students: x divided by 3.  

T:  Yes, x divided by 3 (she writes
3

x
), and then we are finished. (She turns 

towards the students) Okay? Then we have found those factors that are 
equal. 

The transcripts above describe the style of interaction normally occurring 
in the classroom. The teacher has a distinct goal and engages the stu-
dents. Students are willing to participate, although the first student she 
asked here, said she did not know what to do. The teacher accepted her 
reluctance.  

The questions posed, require only short answers. The teacher ex-
presses no need for a wider explanation, although she asks follow up 
questions in order to emphasise what operation was applied. However, 
the teacher opens up, then waits patiently for the responses, and the stu-
dents have a possibility to expand their suggestions.  

The next example task is: 3 6

6 9

a

a




 

Some students suggest cancelling the a’s, Ronny, however, states it is 
impossible because there is a minus sign. Roy suggests that division will 
give a divided by 2a. It seems that many students ignore the fact that the 
numerator and the denominator are binomials. The teacher stands at the 
front patiently listening to the suggestions, telling them that she does not 
agree with them.  

To illustrate the need of factorising, the teacher applies the example 
25 5

5


, writing it to the right on the whiteboard. From this example, the 

responses show that students agree that to cancel the 5-s will not give the 
correct solution. However, on the question why it will not work, the stu-
dents only point to the fact that the answer will be wrong, or that there is 
a minus sign in the numerator. The teacher wants them to expand on this 
and waits for more. After many hints and a period of silence Jarl answers 
‘factors’ to the question of what makes a product. Nobody, however, 
came up with the notion of ‘term’ and the teacher introduces this notion 
herself.  
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She uses the first example, 
28

24

x y

xy
, to focus on invisible operation 

signs, saying that although there are no visible signs between letters and 
numbers, the operation is multiplication.  

She then goes back to the second example and emphasises by ges-
tures that the expressions in the numerator and in the denominator both 
are entities and must be handled as such. The terms within them cannot 
be cancelled. She points to each term, and again she circles around the 
numerator and around the denominator to make clear that each of them is 
to be seen as one entity. In order to simplify in this case, it is therefore 
needed to factorise. Only factors can be cancelled. 

Jone is the first to try to solve the problem. He suggests to write the 
factors as 2 times 3 times a. The teacher points to the fact that he still is 
operating on one only of the terms. Tord suggests changing the “signs in 
front of the ‘things’ in the numerator and denominator”. He stops saying 
he cannot remember how it should be, but mentions something about 
things that should be equal.  

The teacher then draws the attention to the expression 3( 2)a  , she 
writes it to the right on the whiteboard, and comments that this should be 
familiar, and asks what to do. Many of the students respond, and the 
teacher performs the operation led by the students. She writes 
3( 2) 3 6a a   . She points to the left and to the right of the equal sign 
asking if the two expressions are the same. The students agree. She asks: 
T:  But that is what is here as well? (She points to the initial binomial. The stu-

dents agree). Then what we have to do, is to do the opposite of multiplying 
the bracket, when we factorise. We are going to find a factor common for the 
two terms in the binomial, (she circles with her pen around each term) and 
then we put this factor outside a bracket. We have to think opposite of multi-
plication. Here 3 is a factor in both terms, and 3 is to be set outside the brack-
et. You see that? (There are clear yes-responses from the students). And now 
Ivar, what is the common factor in the denominator? 

Ivar: 3 
T:   Yes, it is 3 also in the denominator. Because 3 goes in 6 and 3 goes in 9. 

What is left then? 
More students: 2a 
T:  And? 
Several students: minus 3 
T:   and minus 3. Is it possible now to simplify? 
Peter: I think you can cancel the 3s beside the brackets. 
T:  Yes, that’s nice. Then the result is ( 2)

(2 3)

a

a




 (she says what she writes)  



 
370   Appendices 

The teacher asks if it was new for them to factorise binomials. Some of 
the students answer it should not be, but they admit they had forgotten. 
Finally, she says: 
T: You have to remember the difference between, terms and factors. It is so im-

portant. Immediately, when you see that you have two terms, not factors, then 
you actually now should know what to do.  

 

Adding and subtracting fractions 
After a break the teacher continues. She presents two examples of 

subtraction of fractions, both are examples from the textbook. And she 

writes :
3 1

4 6

a a 
  on the white board, expressing what she writes. 

She asks what should be done, and Roy says they have to find a 
common denominator. The students, who respond, tell the teacher that 
12 is the least common denominator. She looks around in the classroom 
and asks if all agree. They express agreement. Carl tells her to “time up 
and down” She revoices his utterance by emphasising the word ‘expand’. 

She does what he says, and writes on the whiteboard: 3 3

4 3

a  


. She asks if 

it is okay, but the students tell her to put in a bracket. The real problem 
comes, however, when the last fraction is to be subtracted. Both fractions 
are expanded. There is not agreement among the students if the sign 
should be a plus or a minus sign in the last binomial. The teacher gives 
them time to discuss before she gives them the didactical advice to write 
the binomials in brackets and not perform more than one operation at a 
time; in order to keep control.  

Else interrupts and asks why the sign is a minus sign in the last bi-
nomial. She thought it should be a plus sign because the post-multiplier 
was positive. The teacher points to the preceding minus sign.   

The next example causes more trouble for the students. The binomial, 
however, in the second denominator is identical except for the letter 
symbol, to the numerator in the example with the fraction simplified 
above. Thus. it is not new to the students to factorise this binomial. The 
example task is: 2 1

2 3 6x x


 
.  

The teacher asks for the least common denominator. There is silence, 
but Eli has a suggestion after a while: 3x + 6 should be the common de-
nominator. The teacher asks if she is going to factorise the expression, 
which Eli denies.  

By pointing to the two denominators, the teacher states that they 
seem to be very different, and suggests to write them underneath each 
other on the right side of the whiteboard and to factorise them. She asks 
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if they have applied that method when working with arithmetical frac-
tions. Some of the students confirm this. She writes the binomials asking 
if the first denominator can be factorised. There is no response. She says 
that it is not possible, and asks if it is possible to factorise the next: 

T:  Do we have a common factor?  
Tord:  3  
T:  Yes, it is 3. 3 is a factor in both 3x and in 6.  Then we factorise as in  the 

foregoing example. What is left in the bracket? (She points to the bino-
mial). 

Tord: x + 2 
T: x + and 2, because 6 divided by 3 is 2. Then we can find the common 

denominator. What will that be? What must be included in the common 
denominator? 

Tord:  3 and x 
T:  Yes we must have 3 and  
Tord:  And x.  
T:  And? (she has written 3 and a bracket) 
Tord:  Oh? 
Ronny: x + 2 
T:  x + 2.  Yes, that’s a factor. Both are factors (the denominators). Do I 

have to write that factor twice? 
Else: No. 
T:  No, we must not. And now we have to check the other denominator. I 

have to find that denominator also within the common denominator. x + 
2, is included, 3 multiplied by x + 2, is also there. We have to find all the 
denominators. This is not easy, but what factor do I have to use to ex-
pand the first fraction? 

Tore:  3 
T:   Yes, by 3 (she multiplies both numerator and denominator by 3). And 

we put x + 2 in a bracket, to the right (on the whiteboard) where we have 
the factorised denominators. And the second fraction? 

One student: We do nothing. 
T:  Yes, nothing, and then we write both fractions on the same fraction line. 

Then I have 6 – 1, Here we do not need any bracket, there is only one 
term in each numerator. And in the denominator?  

Roy:  (murmurs) 3x + 6 
T:  3(x + 2). 6 minus 1 is 5, can we simplify?  
Bill:  We can multiply. 
T:  Yes, I can multiply or I can let it be 3(x+2).   
Ronny: Is there any point in executing the multiplication? 
T:  No, actually not. We can let it be like it is. (She goes to the computer) 

This solution is on the web site. (She shows the computer file). I have 
written only the common denominator, not shown how we find it.  

 
Multiplication of fractions  
In the example the rule for multiplication: numerator multiplied by nu-
merator and denominator by denominator is emphasised. In addition, the 
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teacher draws the attention to the benefit of simplifying before multipli-

cation. The example is 
26 15

5 2

x

x
   Some students have suggested multiply-

ing first.  
T:  Do we just multiply now? (she has to wait for an answer) 
Else: No, we can simplify. 
T: Yes, we can simplify. Was Else the only who noticed that? No? Yes, we 

will simplify. 
Tord:  I just didn’t dare to say it (smiling). 
T: You just didn’t dare to say it? (she smiles at him). Okay we simplify, can 

you, Else do it? Take one factor at a time. 
Else: Okay, 2 goes, 2 times 3 is 6.  
T:  Yes, then we have?  
Else: 3 
T: (To the class) We have 3; 2 goes 3 times into 6, you see? 
Else: And then x and x squared.  
T: Okay. Then I cancel that x (in the numerator, she makes a line over the 

index 2), I cancel one of the two x-es, because x squared is x times x and 
one must be left. 

Else: Yes.   
T: Up there we now have 3x and 3 (she points to the numbers left). 3x and 

3. That will be?  
Else: 9x 
T: Is something left down there? 
Else: No 

This last question and answer was not commented upon, but the teacher 
emphasises that the rules are the same for algebraic fractions as for ordi-
nary fractions. Ronny comments that it seems more complicated.  

Division of fractions 

The example is: 3 4
:

1 3 3a a 
 The teacher asks for the rule for the division 

of fractions, and Tord expresses it. The fractions are written on the white 
board once again both on the same fraction line, the last fraction turned 

upside down: 3(3 3)

( 1)4

a

a




. The teacher has put 3a + 3 within a bracket 

without mentioning it. When she comes to a +1, she explains that this is 
a factor and has to be written within a bracket. The teacher asks: 

T: Can we simplify now? 
Ronny: Yes, the a-s.  
T:  Can we? 

Several students are to be heard; their comments go about that it is not 
possible. The teacher asks why not, and Tore answers that it is not possi-
ble since there are terms. Tord at the same time suggests carrying out the 
multiplication. It is not clear if the teacher ignores Tord’s suggestion or 
if she does not hear it, but she replies to Tore’s utterance. She repeats 
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Tore’s claim about the terms, and Tore continues to say that they are not 
factors. The teacher agrees and emphasises that the a’s are within the 
brackets, and that it is the whole brackets that are the factors. The brack-
ets are entities and must be considered as such. She asks if it is possible 
to simplify. Ruth expresses the same suggestion as Tord did, to multiply, 
and now the teacher listens. 
T:         To multiply here, like this you mean? And then multiply there?  
She points to the numerator and then the denominator on the whiteboard 
before she repeats what Ruth said. She then says that she first will check 
if it is possible to simplify the expression. She waits for other sugges-
tions and Tord comes up with a new one: 
Tord:  Can’t we just take away the a down there and then sort of bringing the 2a-s 

up? 
T: Take this away and then two of them? We cannot do that. It is, as he (Tore) 

said, the two of them there, they belong to each other (she circles around the 
bracket with her pen). If a had the value of 4 for example, then this would 
have been 5, (she points to the first bracket) and if we had 4 there, (she points 
to the other bracket) it would have had the value of 3 times 4, which is equal 
to 12 and … 

The teacher tries to exemplify by substituting the letter symbol by a 
number, in order to let it be obvious that Tord’s suggestion will not lead 
to an acceptable solution. But she is interrupted by Tore, who asserts that 
if something should be done, one has to operate on the numbers 3 and 4 
because they are outside the brackets. She now focuses on Tore, and 
leaves the number example. 

Actually what Tord suggested, was to subtract. Peter who was listen-
ing to Tord, follows up on his suggestion, taking the whole brackets into 
account: 

Peter: Can’t we take both the numbers within the bracket? 
T:  Certainly. 
Peter: Then you can do like this; 2a and 2 in the upper bracket. 
T:  No, we can’t. 
Peter:  We cannot? 
T: No, how is it possible to factorise then? 

She patiently waits for responses. Then she explains carefully by circling 
around the brackets, that they are to be handled as entities. They cannot 
be split. She does not go into Peter’s idea which seems to be to take 
3a a and 3 1  resulting in 2 2a  in the numerator. He applies subtrac-
tion. 

The teacher continues, asking how it is possible to factorise. She cir-
cles around the bracket in the numerator, and then Jone says: 

Jone: 3 times, and then a bracket with a + 1. 
T: Nice! What have you done then?  

He replies, and the teacher repeats his reply for the whole class: 
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T: He said that he saw that he had a common factor here. 
Some of the students seemed surprised. 

T: Yes, he did, and then we could place that factor outside the bracket. So 
in that way he factorised that expression. 
The teacher then performs the factorising under Jone’s guidance.  

T: Now we will see. You put 3 outside the bracket (she writes). What was 
left then? 

Jone: a + 1. 
T: Yes, you all have to remember that it will be 1 left, because we divide 3 

by 3. Good! And in the denominator I have a + 1 multiplied by 4 (she 
writes a +1 in a bracket) And then? 

Ronny: (whispers) Then we cancel the brackets. 
T: Yes, now we can see that we have two equal factors. That one is equal to 

that one (she points to the two brackets). Now they are identical and af-
ter cancelling we have 9 fourth.  

She ends the session by stating that they had used a pretty long time to 
come to the solution. Once again she emphasises the need to factorise, 
and that binomials in numerator and denominator have to be handled as 
entities. 
    Immediately after the plenary session, Tone, Ruth and Selma asked 
the teacher to come to their desk and explain once again what was done 

in the worked out example 3 6

6 9

a

a




 from the textbook. The teacher points 

to the whiteboard while she explains: 
T:  You see that 3 is a factor both in the first and the second term in the nu-

merator? 
Selma: Yes?  
T:  Yes and then I put that factor outside the bracket.  
Selma:   Okay, so then you remove it from the a?  
T:  Yes, I am factorising, I put 3 outside the bracket. That was exactly the 

same as we did on the first task today (they are focused on the white 
board)  

Selma: Yes? 
T:  And now we will see. If we look into the textbook, then you will see. 
Selma’s question about removing the 3 from a, and the teacher’s answer does 
not include which operation to execute. However, the conversation goes on. 
Ruth asks where the example is to be found in the textbook and the three students 
look at the book, while the teacher explains.  
T:  Do you remember this, where we factorised and put a number outside? 

That was exactly what we did there (She points to the white board). In 
order to find two equal factors, we had to factorise the numerator as 
much as possible. You see that 3 is a common factor? 

Selma:  Oh, yes.  
T:  Yes, do you see the relationship?  
Selma: Yes 
T:  Fine! (It might be that the teacher is not convinced, that Selma under-

stands, at least she repeats:) 
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T:  You see that example? You see that the number 3 is common in those 
two (terms).  

She points at the whiteboard and also at each term in the textbook, and Selma 
nods. 
T:  Those terms there you see? I write 3 outside the bracket, and when I 

have divided those (terms) by 3, then I have a there, and after dividing 
there by 3, I have 1 left. (She is pointing to each of the terms while she 
explains.)  

Selma: Yes. 
T:  Do you understand? 
Selma:  Yes.  

Although the teacher just had worked out the example on the white 
board, she patiently describes once again what has to be done, and at the 
end she emphasises that factorising is about division.  

10.7 Algebraic fractions work plan and tasks 
The work plan for algebraic fractions: 
 
Table 10-8: Algebraic fractions – work plan 

Aims Textbook Items  

Calculate with fractions 
including letters 

33–34 1.2.12, 1.2.13, 
1.2.14, 1.2.15 

Blue track 

Calculate with fractions 
including letters  

35–36 1.2.16, 1.2.17, 
.2.18, 1.2.19, 
1.2.21 

Red 
track 

 
The students should follow the red track. Those items are listed in the 
table below with number of students solving the tasks (18 students). Also 
here it is evident that the further out in the plan, the smaller is the num-
ber of students solving them: 
 
  Table 10-9: Number of students solving tasks in each item 
Number of students who: 
 

Item 
1.2.16 

Item 
1.2.17 

Item 
1.2.18 

Item 
1.2.19 

Item 
1.2.21 

Solved all 13 11 9 7 1 
Picked out some 3 5 5 4 2 
Solved none 2 2 4 7 15 

 
The items written with bold fonts should be home work if they had not 
been solved during the lessons. The data from the classroom show that 6 
of the 11 students who solved one or more of the tasks in item 1.2.19 had 
done that during the lessons. Five of them must have solved them at 
home. The others had not solved that task.  
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10.7.1 Simplification, multiplication and division of fractions 
The following tables are organised with item number in the first row, and 
the tasks in the second row. The category ‘solutions’ gives the number of 
students solving the tasks from the data set of 18 students (saved com-
puter files). In the last row in each table are responses related to each 
task from the whole class, presented in keywords. 
 
Table 10-10:  Algebraic fractions – Simplification (textbook item 1.2.16 ) 

1.2.16a 1.2.16b 1.2.16c 
220

4

a

b  

3

2
56

21

x y

xy  

4 8

5 10

a

a


  

13 solutions 
(of 18) 

16 solutions  
(of 18) 

16 solutions  
(of 18)   

Selma invisible 
sign, factor and 
terms  
Jone and Paul -
discuss and solve 
the task 
Tone- needs 
confirmation 

Sven, Glenn,  
Ronny, Kristin, 
and Tore- 
do not understand 
how to come 
from 56/21 to 8/3. 
they ask for help 
Sven – factor? 
Jone, Glenn, and 
Olav-ask about  
powers 

Kristin, Kari, and Rakel - how to factor-
ise? 
Eli - cancels term by term within the brack-
ets 
Ine and Ane – factorise by dividing only 
the first term. Teacher asks them to multi-
ply after factorising to control their result. 
Ronny and his peers partly cancelling; no 
sense to factorise, correct answer anyway.  
Tord – computer search for a way to solve 
the task.  
Tone, Ruth, Sven, and Glenn – ask how to 
factorise brackets 
Else- partly cancelling 

 
Selma although saying in the foregoing section that she understood how 
to factorise, is still stuck when solving task 1.2.16a. The teacher asks her 
to make the invisible operation sign visible, and emphasises the differ-
ence between factor and terms. 

Five students asked for help about factorising the numbers in task 
1.216b after being surprised by the answer in the textbook key. Ronny 
and Jarl used the calculator in the TI program. Sven, Kristin, and Glenn 
were challenged by the teacher to find the factors in each of the numbers.  

Olav was videotaped when he worked on the same task. He was 
asked how he would start. He answered: 

Olav: Well yes, with the numbers perhaps. And then for example x, you cancel 
the x and then you cancel the 3. (The x in the denominator and the index 
in the numerator).  

R1:      What is left when you cancel the 3 (the index)? 
Olav:   Then I have x. 
R1:   Hum 
Olav: Let me see. Yes. 
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Presumably since I did not give him a clear positive response, he 
checked his suggestion once again and seemed to be satisfied, saying 
yes.   

R1:  What does the number 3 mean in relation to the x? 
Olav:  It means that, or that x (he points to the x in the numerator on the 

screen). It must, it must be one x left.  
He makes a line over the x in the denominator and a line over the index 
3 in the numerator to visualise the cancelling. From his utterance, it 
seems that he means that there is one x left in the numerator. The con-
versation continues: 

R1:  But when we have x to the power of 3? 
Olav: Yes, that means x times x times x. 
R1:  Okay. So when you then divide by?  
Olav:  No…(In his computer file later his solution was correct.  

Task 1.2.16c 4 8

5 10

a

a




 is discussed in the thesis.  

The next item on the work plan involved fractions with binomial nu-
merators. The tasks are presented in the table below. The row with num-
ber of solutions, gives the number of students solving the task (dataset 18 
students). The last row is based on the whole class. 

  
Table 10-11:  Algebraic fractions – Simplification (textbook item 1.2.17a, b, c) 

Task 1.2.17a Task 1.2.17b Task 1.2.17c 
3 2 1

5 5

x x 


 

1 2

2 3

x x 


 

2 5

3 2

a

a
 

 
13 solutions 

of 18 
14 solutions 

of 18 
11 solutions 

of 18 
Else - minus sign 
error 
Alf - problems both 
minus sign and frac-
tions 
Peder- tells he does 
not write brackets 

 
 
 

Rakel asks for confirma-
tion 
Ine and Ane - changes 
sign in binomial too early  
Tord: 3 2x x x     
Ronny - multiplication as 
exponentiation  
Glenn- multiplicator as 
index  

Kari and Rakel - discuss the 
writing of powers. Fractions for-
mally incorrect 
Ronny- asks about powers, is 
surprised how he has to write 
expansion.   
Selma and Atle – problem LCD, 
ask the teacher 
Jone - sloppy talk about powers 
Peter and Erik- need confirma-
tions 

 
In the first tasks above the errors and the questions are related to the mi-
nus sign and to powers. Else in task 1.2.17a had not changed the sign in 
the last binomial. In the next task, when she had to expand the fractions 
before subtraction, her solution was correct. The last tasks in the item are 
presented below (Number of solutions from dataset 18 students; the last 
row observed from all students): 
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Table 10-12:  Algebraic fractions – Simplification (textbook item 1.2.17d, e, f) 
Task 1.2.17d Task 1.2.17e Task 1.2.17f 

3 5 2

2

a

a b b ab
  

 

2 1 1 5
( )

3 2 3b b b
  

 

4 2 2

2 3

a b

a b ab


 

 
13 solutions 

of 18 
13 solutions 

of 18 
14 solutions 

of 18 
Olav – mixes multipli-
cation/ exponentiation 

 
Selma – how to ex-
pand after finding the 
LCD 

Rakel, Ruth, Bill, Ronny and 
Kari - saved positive solutions  
Ine and Ane ask about bracket 
and sign, and about simplifica-
tion 
Jarl - positive solution, but is 
helped by his peers. 
Glenn- problems with com-
mon denominator, and with 
expansion; is helped by peers. 
Sven - problem with signs, 
asks teacher for help 

Bill, Carl, Ronny, Tore, 
Glenn, and Jone - do not 
reduce to its simplest form. 
 
Ruth asks where to write 
brackets. 
 
Kristin mixes multiplica-
tion/exponentiation 
Eli- simplifies after checking 
the textbook key 

 
The data from the classroom, show that for some few students it is not so 
easy to work with fractions. Alf’s solution of task 1.2.17a will be pre-
sented. He had solved the tasks in item 1.2.16. When the observation 
starts he has written: 

3 2 1

5 5

( 3) 2 (2 1)

5 2 5 3

( 3) 2 (2 1) 3

5 2 5 3

x x

x x

x x

 


  


 
   


 

 

He has copied line 3 and is about to perform the operations. He is asked 
if he thinks this is easy: 

Alf: No, I have no clue about what I am doing really. I just act as if I have.  
He is observed when he performs the operations, and he comes to the re-
sult: 2 6 6 3

10 15

x x 
 . He works when the conversation continues. 

R1:  I see that you have used the number 2 in the first fraction and 3 in the 
other. What thoughts do you have about what you are doing? 

Alf:       Actually I have no thoughts; I just try to multiply the numbers by each   
other. (He points to the screen). That’s what I have done up through the 
whole elementary school. So now I’m just doing the same over again.  

R1:  Okay? 
Alf:  It tends to become somewhat easy. But it… 
R1:  But why did you for example choose the number 2 in the fraction to the 

left? 
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Alf:  Because there is a 2 there (he points to the number 2 in the numerator in 
the next fraction). It is as simple as that. 

R1:  Because you have a 2 there in front of the x?  
Alf:  Yes, and now, then I time with 2 once again, and we will see what hap-

pens then. (He writes). And then I time with … No, that one we time by 
3 (substitutes the number 2 by 3). Then we try to get the two (denomina-
tors) there to be equal. 

R1:  Okay. 
Alf:   It’s not just a stroke of genius, but …oh damn. 
R1:  But the number 3, from where did you choose that? You just took it? 
Alf:  I just pulled it out of thin air. 

Although he said it was accidently, he expanded the second fraction by 2 
in order to have the denominator 30 in both fractions. He was then 
asked if this was his purpose: 

Alf:  Yes, they should be equal (he points to the two denominators). Then I 
get them on one fraction line and there will be some extra lines, but I 
don’t care. 

R1:  How were they in the beginning? Were they then different? 
Alf:  (He watches the screen.) Then they were actually equal.  

He deletes what he has written, except for the first line.  
Alf:   Thanks for the hint. 

He starts from new. The first line he keeps, and in the next line he writes 
only the numerators. He goes to the first line again saying: 

Alf:   Perhaps I should write a line over them. 

He writes in the first line: 3

5

x  2 1

5

x 
  

R1:  What happened with the numbers 5?  
Alf:  The denominators were equal and now at least I hope it will be correct.  
R1:  Hm. Did they disappear now? 
Alf: Yes, didn’t they? I really don’t have a clue.  
R1:  Hum? 
Alf: I really don’t have a clue. That’s why I am just trying things out. 
R1:  Yes? 
Alf:  I should really think I was a bit clever here, but now it didn’t work. 

He continues writing: ( 3) (2 1)x x   before he removes the brackets 

saying: 
Alf: It will be minus anyway.   

He writes his final result 3 2 1 2x x x       

R1: I was a bit surprised about the numbers 5. 
Alf: I think it became very nice, I really do. 
R1:  Hum? 
Alf: It is just the same, isn’t it? (he points back to the denominators in the 

first line). Then it was time to bring all on one fraction line.  
R1:  What if you had no letters, what would you do then? If you for instance 

had the fractions 
5

1

5

3
 ? (He then puts in 5 as denominator in line 2) 

R1:  You probably think fractions are difficult?  
Alf:  I have no idea what I do anyway. 
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The final result he had not changed when I left. He was still working. 
Alf said openly that he had problems, however, did not ask for help or 
advice. He was working continually while we were talking together.  

When I left, he was still working, and I thought he was going to put 
in the denominator also in the final answer, but it might be that he did 
not. Alf is not among the 18 students from which I have the saved com-
puter files. On the test in September he solved a similar task: 
 

3 2

2 4
3 2

(2 ) ( ) (4 )
2 4

6

4

a a b

a b ab
a a b

b a
a b ab

b

ab


 


    

2

4

a

ab


4 8

4

a b

ab




2

2

6 4 8

2 14 4

b a a b

a b a

  

  

 

In the task above he wrote the expansion of 
the fractions in a formally correct way, but 
here (to the left) he has written the expan-
sion as ordinary multiplication. He, howev-
er, performed the expansion correctly. He 
then cancels the denominators before he 
adds the numerators. The sign in the bi-
nominal numerator he changed when the 
binomial still was the numerator in the last 
fraction. In the same test, he kept the de-
nominator when solving ordinary fractions. 

Another student, Ronny, worked with task 1.2.17c. He correctly 
found the least common denominator, but asked how to write the expan-
sion. He was surprised when the teacher told him to multiply in both 
numerator and denominator.  

In the classroom, few students were observed asking for help because 
of signs and binomials, but some asked the teacher to check their solu-
tions.   

Atle asked the teacher how to find the common denominator in task 
1.2.17c. Selma had found it. Her problem was how to find the factors by 
which she should expand the fractions. She says: 

Selma: I have to find the common denominator. It will be 6a, but how am I go-
ing to do it, I mean the multiplication? 

T: You can just think like this: What do I have and what do I miss? 
Selma:  Then I have to multiply by 2 and a in the first term. 

From this it seems as if she was helped in her thinking. Selma performs 
the task correctly.  

Glenn in task 1.2.17e had multiplied only the denominators, when 
performing expansion. He was helped by his classmates.  

Again, in the next table, the number of solutions refers to the number 
of students from the data set of 18 students, and responses in the last row 
are from the whole class.  
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Table 10-13:  Algebraic fractions – Addition (textbook item 1.2.18) 
1.2.18a 1.2.18b 1.2.18c 
2 3

3 6

a a


 

2

12 4 3

a a a
 

 
a b b a

a b

 


 
10 solutions 

of 18 
11 solutions 

of 18 
13 solutions 

of 18 
Rakel and Kari -sign 
errors and partly cancel-
ling. 
Tord and Kari -divide 
each term by 3. Do not 
factorise. 
Ruth –has calculation 
error and partly cancel-
ling. 
Ronny – “it can’t be sim-
plified”, but Jarl helped 
Tone - conjoins 3 +a =3a   

Ruth – asks about 
brackets, has sign er-
ror, and does not sim-
plify 
Bill- does not simplify 
Tone - forgets the first 
term. 
Kari- did not end her 
solution 
Sven-asks about nega-
tive result 

Rakel, Ruth, Ane and 
Tone -sign error. Rakel 
ends with correct solution. 
Ronny, Eli, Victor and 
Ine - ask about the solution 
in the textbook: 

2 2a b a b

ab b a


  . The teach-

er explains how to split into 
two fractions.  

 

 
The main problems in these tasks were: the minus sign, to simplify the 
results, and partly cancelling.  

In item 1.2.19, students were asked to multiply, divide and simplify 
fractions. The tasks are presented in the table below. Numbers of solu-
tions from 18 students, and responses from the whole class in the last 
row. 
 
Table 10-14:  Algebraic fractions – (textbook item 1.2.19) 

1.2.19a 1.2.19b 1.2.19c 
2 215 21

7 5

a b

b a


 
3 9 12

4 2 6

x

x




  
2 6 3

:
5 15

a a 

 
10 solutions 

of 18 
7 solutions 

of 18 
10 solutions 

of 18 
Only Rakel sim-
plifies before 
multiplication.  
Tore and Ronny 
- cancel all letters 

Rakel, Olav and Tone - 
solve the task correctly 
Tore, Ronny and Carl - 
cancel the letters sym-
bols 
Ruth transforms all op-
erations signs into mul-
tiplication signs 

Rakel, Olav, Paul, Jone,  Tone, 
Ine, and Ane – correct results 
All students flip the last fraction 
correctly 
Tore, Ronny and Carl - multiply 
before partly cancelling 
Ruth- transforms all operations 
signs into multiplication signs, but 
changes some of them back again 

Tore and Ronny eliminated the letter symbols. Six of the 10 students, 
had followed the teacher’s advice and looked for the structure. They 
solved the tasks b and c correctly. Not all solved both tasks.  
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Tore’s solution is an example of not factorising: 
93 9 12 36 108 36

4 2 6 8 24

x x

x x

 
  

 
x 27108

28 x 624

99 27 36

8


 

28

9

2
  

Ronny did the same. He was observed earlier, arguing that factorisation 
was not needed. Tore stated in plenary that binomials could not be partly 
cancelled.  

Carl simplified the first terms in both numerator and denominator by 

4 and the second terms by 12:

 

3 9 12 36

4 2 6

x x

x


 



9
108

9

8x
2

24
2

9 9 9

2 2 2

x

x


 


  

Ruth was the fourth student giving incorrect solutions to the two 
tasks. Her two solutions were: 

1.2.19b 3 9 12 3 9 12 3

4 2 6 4 2 6

x x x

x x

   
  

  
3 3 3 2 2    

2 2 2 x   2 3 
27 9

6 2
   

1.2.19c 
2 ( 3)2 6 3 2 6 15 (2 6) 15

: :
5 15 5 3 5 ( 3)

aa a a a

a a

    
  

  

15

5 ( 3)a



 
30

6
5

   

Seven students were observed solving the task 1.2.19c correctly. Olav 

was one of them:  
2 ( 3)2 6 3 2 ( 3) 15

:
5 15 5 ( 3)

aa a a

a

    
  



3 5 

5 ( 3)a 
6   

He factorised the binomial in the numerator and put the other binomial in 
a bracket, clearly signalling that he considered it to be a factor. After that 
he simplified the fraction. 

Ronny and Tore simplified term by term as in task 1.2.19b, Ruth’s, 
and Carl’s solutions are shown above, and Bill who solved only this task 
in the item, left out the binomial a+3. 

It was possible in this task, as in two of the tasks in item 1.2.16, to 
reach the same solution as the ones in the textbook, without factorising 
and following the rules for simplification.  

On the ordinary test in September, 4 weeks later, one similar task was 

given: 3 15 2 10
:

6 8

a a  . The result is presented in the table below: 
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Table 10-15: task 4c from ordinary test September 2007 (27 students) 
 Solutions of task 4c – September test  Number 

of 
students 

A ( 5)3 15 2 10 (3 15)8
:

6 8 6(2 10)

aa a a

a

  
 



8 3

6 2 ( 5)a



 
24 :12

2
12 :12

   
5 

B 3 15 2 10 3 15 8 (24 120) :12 2 10
:

6 8 6 2 10 (12 60) :12 5

a a a a a

a a a

    
   

  
1 

C 3 15 2 10 3 15 8
:

6 8 6 2 10

3 15 8 24

6 2 10

a a a

a

a

a

  
  




 



12
a 12120

1212 a 1260

2 10 12
2

1 5 6


  



4 

D 3 15 2 10 8(3 15) 24
:

6 8 6(2 10)

a a a

a

  
 



2
a 120

2

12 a 60
4  

9 

E 3 15 2 10 3 15 8 3
:

6 8 6 2 10

a a a a

a

   
  


3 5 2 2 2

2 3 2 a 2 5
3  

1 

F 3 15 2 10 3 15 8 3
:

6 8 6 2 10

a a a a

a

   
 

 
120

12

12a
4

10
a


12

4a


1 

G 3 15 2 10 8(3 15) 6(2 10) 24 120 12 60
: : :

6 8 6.8 8.6 48 48
24 120 48 1152 5760

. 1162 2880
48 12 60 576 2880

a a a a a a

a a
a

a a

     
  

 
  

 
 

1 

H 3 15 2 10 (3 15) 4 (2 10) 3 12 60 6 30
: : :

6 8 6 4 8 3 24 24

(12 60) 24 288 1440 2

24(6 30) 144 720

a a a a a a

a a a

a a

       
  

 
  

 
 

(144 720)

2a

 864 : 432 2

432 : 432 1(72 360)
 



1 

I 3 15 2 10 3 2 8 8 8 : 2 4
:

6 8 6 10 15 6 5 30 : 2 15

a a a a a a a  
     

   
 

1 

 No solution 3 

 
In solution E, Else, performs operations as if there are only factors in-
volved. Solution F is Eli’s solution. She was the one, who during lessons 
factorised binomials but simplified term by term within the brackets. 
Here she has not factorised and she performs a form of partly cancelling.  

In the solutions (G) and (H) the students find a common denomina-
tor, before they divide the fractions. Tone, (G) did the same when solv-
ing an ordinary fraction (section 0). Paul, in solution (H), make an erro-
neous factorisation.  
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The last solution, solution I, was written by Glenn. He collects like 
terms as if he should simplify strings of algebraic terms, before he di-
vides the fractions. 

One item, 1.2.20 on the work plan, was written with normal fonts. 
Only two students solved the task: 

 
Table 10-16:  Fractions – word problem (textbook item 1.2.20 ) 

Task 1.2.20.a and b 

Problem 

Jan ate one third of a pizza. Jonas ate 2 thirds of what    
was left.  
a) Which one ate the most?   
b) How much of the pizza was left? 

Paul 
He answers the first question correctly, without showing 
how  

Jone Correct answers in both a) and b)  
 

Another task was item 1.2.21, solved by three students; Jone, Rakel, and 
Paul. Jone solved one of the tasks; correctly. Rakel and Paul had prob-
lems with whole numbers and fractions. Rakel put the whole number on 
the nearest fraction line, while Paul asked the teacher for help. She let 

Jone tell Paul that 3 could be written as 3

1
. Paul had suggested to write 

3

9
. This was the only task on the work plan including both fractions and 

whole numbers when working on algebraic fractions. There was one task 
related to addition in the section with numerical fractions, and two relat-
ed to multiplication/division see section 0 task 1.2.6 e and f.  
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Appendix 11: Equations 
In the introduction of equations in the textbook, ‘change side- change 
sign’ is equated with performing the same operation on both sides of the 
equal sign. 

11.1 Equations – the algebra test 
This test was carried out before the work with equations in class. One 
task was designed to test students’ creation of equations from a given 
solution. Two solutions were given: x=10 and y=4. In the table under-
neath it is shown how students’ solutions were distributed: 
  
Table 11-1:  Equations created - solutions given (algebra test item 2) 
Item 2a 2b 
 10x  4y  

 Correct Incorrect Correct Incorrect 
The unknown on one side 56 %  8 % 48 % 16 % 
The unknown on both sides 20 % 8 % 20 % 4 % 
Expression only  4 %                      4 % 
No response                            4 %                            8 % 

 
Most students in both tasks wrote equations with the unknown on on-

ly one side. One student did not write equations in any of the tasks, but 
expressions; clearly not considering the equal sign to belong to the equa-
tion. Two students applied x as the unknown also in task 2b. One student 
created an equation in 2a, but not in 2b, which might be an indication of 
not accepting y as the unknown.  

Tone had these two equations: 2x=10, and 2y=10. Both are equations 
but none of them satisfies the conditions given in the task. 

 Kristin presented her solution although that was not asked for:  
2x + 6 = 4 - 2x →  2x -2x = 6 + 4 →  x =10.  

The equation is acceptable but not with the solution x=10. In the 
questionnaire, she said she used the rule ‘move over - change sign’. Here 
it seems that she has not changed sign. In addition, she subtracts 
2 2x x which she equals to x. She treated the other equation in the same 
way.  

Six students wrote second grade equations. They were categorised as 
correct if one of the solutions were the same as given in the task. Selma, 

wrote a non-accepted second grade equation; 24 104 x  in 2a (see the 
table above), which might indicate that she has ‘removed’ the number 4 
from both sides of the equation. In the questionnaire, she explained that 
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in order to ‘remove’ the unknown’s coefficient at the end of the solution, 
the operation was division on both sides of the equal sign. 

11 students answered the questionnaire and 10 of them explained the 
solution of equation by giving the rules: ‘move over - change sign’ and 
then at the end, in order to have one x ‘you have to divide both sides by 
the number of x-es’. Selma did not include the changing of signs.  

It seems from the questionnaires that one way of thinking is triggered 
when the operations addition and subtraction are involved, while another 
way of thinking is activated when it comes to multiplication and divi-
sion.  

The tasks presented in the table below were included in the algebra 
test and were solved before equations had been a topic in class.  

 
Table 11-2:  Equation tasks with results – algebra test   
Item 9a 9b 9c 9d 
 4 15 75x  

 
123 2 195x x    1 4

4 5

x

x





* 9 45x   

Correct solution 12    (48%) 18               (72%) 0 23    (92%) 
Calculation based 
error 

7      (28%) 3                 (12%) 0 1      (4%) 

‘Move over’ do 
not change sign 

5      (20%) 3                 (12%)   

Not solved 1      (4%) 1                 (4%) 8      (32%) 1      (4%) 
* all students failed because of the binomials in numerator and denominator 
 
One category is ‘move over’ do not change sign. It seems that also many 
of the students in the correct category are applying the same rule but they 
change signs. At least three of them have written an arrow from the 
number 15 pointing over to the other side.  

Two of the students clearly ignoring equivalence were Kristin and 
Olav. However, when it comes to division Kristin divides by the same 
number on both sides of the equal sign. She succeeds in the last task, 9d, 
where the solution is found by dividing both sides by 9.  

Olav has a correct answer, but the way he solves the task is not in 
line with formal mathematics:  

4 15 75

90 4
75 15

4 4

x

x

x x

 

   22,50
 

He correctly adds 75 and 15 but equals this to 90 before he divides by 4x 

and gets 
90

4x
 which he again equals to 

4

4

x

x
which he claims is equal to 
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22,50 . He has partly applied the equal sign as an announcement of a re-
sult, and at the same time he has cancelled both 4 and x before he pre-
sents the result. He is able to find the value of the unknown, however, by 
ignoring equivalence and cancelling the symbol for the unknown in his 
writing. 

The task 9c is new to the students. None of them, however, tried to 
follow the rule of performing the same operation on both sides of the 
equal sign. Most students have operated as if they had two equations, 
one for the numerators and one for the denominators, resulting in the so-

lution
3

1

x

x
 :, or 

3

1
x  , or 3,  1x x  .  

In task 9d all except for Olav, and Ivar who did not solve the task, 
succeeded.  

11.2 Equations presented in the digital learning book 
The document starts with a description of equations and the purpose of 
solving them:  

An equation always includes an unknown (often this is x) and an equal sign. We 
solve equations in order to find the value of the unknown. We apply the four 
arithmetic operations with the aim to have x alone on one of the sides of the 
equal sign, then we have found the value of the unknown.  

After this description the same rules as in the textbook are listed. Two 
simple tasks are solved to exemplify this:   

  7

7 11

1

18

77 1

x

x

x

 
 


                 

4 24

4 4

4 24

6

x

x

x

 




  
A reminder is given: 

If you execute an operation on one side of the equal sign, you must remember to 
execute the same operation on the other side as well.  

A piece of advice is given:  
It is always smart to control the value you find, by substituting the unknown in 
the initial equation with the found value.  

After this introduction three example tasks from the textbook are solved.   
2(3 8) 5 3( 1)x x     

3 1
2

2 3
x x    

4 1 2 3
(2 1) ( )

3 5 3 5

x
x x     

Related to equations with fractions, students are told to multiply both 
sides in the equation by the common denominator, in order to get rid of 
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the denominators. In a bracket it is explained: “multiplication is the op-
posite of division”.  

Cross multiplication is introduced: “If you have only one fraction on 
both sides of the equal sign, we solve it by cross multiplying”.  
The example task is:  

Trude is going to mix juice with 20 l of water in the ratio 3:10. How much juice 
must she add? (p. 41) 

Solution:  
x – unknown volume of juice  

3

20 10

20

x

x




3

10
10 3 20

10 60

10 60

10 10
6

x

x

x

x

  






 

 
 
 
 
 
She has to add 6  

       liters of juice 

Cross multiplication is 
not shown in the text-
book, and this task is 
solved by multiplying 
both sides with the least 
common denominator in 
the textbook.  

11.3 Equations introduction and tasks 
The introduction and the first example task is presented in the thesis. 

The second example task was: 3 1
2

2 3
x x   . The teacher starts by ask-

ing if the x, standing after the fraction, belongs to the numerator, to the 
denominator or to the whole fraction.  

Arne:  I think it belongs to the whole fraction. 
T: Then it doesn’t matter if it is written in the numerator or in the denomi-

nator?    
Else: No, it is for the whole fraction.  
T: For the whole? 
Else: Yes, it belongs both to the numerator and to the denominator. 
T: To both? 
Else: Yes. 
T: Do you agree? 
More students answer no. 
T:  No, where is it actually to be placed?  
Jarl: In the numerator. 
T: Yes, it could actually be placed up in the numerator.  

 To illustrate this, the teacher applies a numerical example and writes    

2
3

1
 . The discussion in class is loud.  

T: One third taken twice, what will that be, Else? 
Else: Yes, that is two thirds. Nevertheless, if we have whole numbers, then it 

matters where we write it.  
T: We can write it behind the fraction, but we have to know that it belongs 

to the numerator. It doesn’t belong to the denominator. 
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She points to the denominator and writes: 1 1 2
2

3 3 2


 


 saying that this will 

not be okay. Afterwards she deletes this example. 
Here the teacher focuses on the concept of, and operations on frac-

tions. Alf suggests after a while to multiply all terms by 6, because as he 
said, to “keep the balance”. The teacher shows this by putting the whole 

left and right sides in brackets multiplied by 6: 
3 1

(2 ) 6 ( ) 6
2 3

x x     .  

She emphasises that they have to perform the same operation on both 
sides. Arne interrupts by asking why they multiplied by 6 and not 4 for 
example. The teacher asks Alf to explain, and he says the reason is that 6 
is the least common denominator for the fractions. He suggests then to 
execute the multiplication, while the teacher asks for more suggestions. 
She wants them to simplify before multiplying. However, the students 

are reluctant to do that. She had written: 
3 1

2 6 6 6 6
2 3

x x       . None 

seem to see that it is possible and desirable to simplify before multiply-
ing. They argued against her. Some wanted her to write 6 in the numera-
tor. All uttering wanted to multiply before simplifying.  

The last example task was worked out on the computers. She advised 
the students to apply the function ‘align at =’ which placed the equal sign 
in the centre of the solution. The notion of term, was mentioned again, 
and the difference between expansion and fraction multiplication was 
emphasised. She prompted students to look for the possibilities to simpli-
fy before multiplication. 

11.4 Equations –work plan and tasks 
The work plan for equations differs from publisher’s plan; some items 
are left out, one item is added. The work plan is: 
 
Table 11-3:  Equations work plan and tasks  
Aims Textbook 

pages 
Tasks - 
hard version 

Apply the rules for equation solving, linear 
equations with one unknown 

40-41 1.3.3a, b, e-h 
1.3.4d-f 
1.3.6 
1.3.13 
1.3.14 

Write and solve equations about ratios 42-42 
Solve equations including brackets and frac-
tions 

42-43 

Transform word problems into equations and 
solve them 

 1.3.2, 1.3.5, 1.3.9  
1.3.10 
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Although there are different fonts on the aims, all the items are written 
with bold fonts.  

In the table below the items are listed in the same order as in the 
work plan with number of students who solved the tasks in each item. 
The last items 1.3.2, 1.3.5, 1.2.3.9, and 1.3.10 are word problems, and 
include only one task in each item. Dataset 18 students. 
 
Table 11-4:  Work plan - equations  
 
 

Item 
1.3.3 

Item 
1.3.4 

Item 
1.3.6 

Item 
1.3.13 

Item 
1.3.14 

Item 
1.3.2 

Item 
1.3.5 

Item 
1.3.9 

Item 
1.3.10 

Solved all 12 9 15 6 5 9 7 7 6 
Picked out 
some 5 8  5 4 

    

Solved 
none 1 1 3 7 9 9 11 11 12 

 
The first tasks on the work plan, the tasks in item 1.3.3, did not involve 
fractions, but task f and task h involved brackets to be subtracted. Data 
set 18 students (number of solutions). The data set in the last row in-
cludes all students:  

 
Table 11-5:  Equations – textbook tasks (item 1.3.3 a, b, c) 

1.3.3a 1.3.3b 1.3.3c 1.3.3d 
3 5 10x    8 12 5x x   4 2x   16 3 2 9x x    
16 solutions 

of 18 
13 solutions 

of 18 
6 solutions 

of 18 
6 solutions 

of 18 
Olav - cancels the x.  
Selma- shows by ar-
rows that she moves 
terms, and writes extra 
equal signs. 

Rakel- does not end 
her solution  
Selma- has extra 
equal signs.  
Olav- cancels the x. 

Selma-  
shows that she 
moves over  
Olav- cancels 
the x 

Oscar-writes 
5

4
5
  

Olav- cancels the x 
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Table 11-6:  Equations – textbook tasks (item 1.3.3 e, f, g, h) 
1.3.3e 1.3.3f 1.3.3g 1.3.3h 

2( 4) 3 15x    2(1 ) 8 1x x x     ( 1) 2 5(1 ) 2x x x      3( 3) 2 (4 )x x x      
15 solutions 

of 18 
13 solutions 

of 18 
12 solutions 

of 18 
18 solutions 

of 18 
Selma- shows 
the movements 
of the terms by 
arrows 
Olav- cancels x 
Tord- does not 
follow the dis-
tributive law 

Oscar – 
2 4

2

x 
 

Many questions 
about the minus sign 
Selma- signal 
movements of the 
terms 
Olav- cancels x, 
does not follow the 
distributive law 
Rakel and Kari –
asks about dividing 
by minus 
Eli-says she avoids 
negative coefficients 

Olav- cancels the x, 
was helped with the 
minus sign and dis-
tributivity 
Ronny- about the 
invisible sign.  
Ruth and Tone- do 
not understand the 
symmetric property 
 

Arne- asks about 
brackets and sign 

 
Oscar and Olav wrote the equations in an informal incorrect way. The 
minus sign appearing in front of the bracket, and the minus sign at the 
end of the solution process in task f, both caused many students to ask 
for help. Ronny, Else, Selma, Rakel and Kari aligned their result to the 
one in the textbook. Rakel and Kari expressed that they did not under-
stand why the result should be negative. Rakel explained the problem: 
“If we divide by minus 5, the minus sign will come down there” (in the 
denominator). Eli told she collected the x-es on the right side. 

In task h, Arne asked if the signs in all brackets should be changed. 
According to the data, this was his first task with a bracket preceded by a 
minus sign. He solved few tasks.  

Only Oscar and Olav solved the first tasks in the next item: 
 

Table 11-7:  Equations – textbook tasks (item 1.3.4 a, b, c) 
      1.3.4a 1.3.4b  1.3.4c 

3
2

x


 

5

3 6

x


 

2 1

3x


 
Both correct Oscar- Long fraction line  

Olav- cancels the x, has extra equal 
signs 

Olav- cancels the x, has 
extra equal signs  

 
The last tasks in this item were solved by more students. Most students 
performed cross multiplication. Kari, Rakel, and Tord multiplied by a 
common denominator. Ruth found her own informal way because of the 
cross-multiplication, but she found the correct values of the unknown. 
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The results are shown below. Number of solutions from data set 18 stu-
dents and responses in row 4 are from the whole dataset: 
 
Table 11-8:  Equations – textbook tasks (item 1.3.4 d, e and f) 

1.3.4d 1.3.4e 1.3.4f 
2 6

3 x


 

5 1

9 8

x


 

2 4

3 5

x


 
15 solutions 

of 18 
11 solutions 

of 18 
16 solutions 

of 18 
Kari and Rakel- mul-
tiply by the common 
denominator 
The others-cross mul-
tiply 
Ruth- multiplies only 
to the left ending in an 
expression not an 
equation 
 
Olav-cancels the x, has 
extra equal signs 

Kari, Tord, and Rakel- 
multiply by the common 
denominator 
The others- cross multi-
ply 
Oscar- long fraction line  
Ruth- multiplies only to 
the left ending in an ex-
pression not an equation 
Olav- cancels the x, has 
extra equal signs 

Kari and Tord- multiply by 
the common denominator, and 
makes a sign error. 
Ruth- multiplies only to the 
left ending in an expression 
not an equation 
Olav- cancels the x, has extra 
equal signs 
Bill, Carl, Jone, Tore and 
Paul- do not simplify at the 
end 
Ane- changes sides, but do not 
change sign for the x-term 

 
The problems seem to be the simplification at the end, the minus sign, 
and the sign rules. Oscar and Olav write their solutions not formally cor-
rect. Olav started in this item to write equal signs at the end of each line.  

Ane, solved task f correctly before she changed the side of the x in 
the result. The result was positive. It might be that she does not regard 
equations as relations with the property of symmetry, or she thought that 
the rule ‘change side-change sign’ does not yield the unknown term.  

The next item 1.3.13 includes fractions. Number of solutions from 
data set 18 students and responses in row 4, are from the whole dataset: 
 
Table 11-9:  Equations – textbook tasks (item 1.3.13) 

1.3.13a 1.3.13.b 1.3.13.c 
3

4 1
2 2

x x
  

 

5 2 1

2 5 10 2

x x
  

 

15 1 1
(3 1)

4 2 2

x
x  

 
8 solutions 

of 18 
7 solutions 

of 18 
9 solutions 

of 18 
Ruth and Olav- whole 
numbers/fractions  
Olav- cancels the x, has ex-
tra equal signs 

Olav- cancels the x, 
has extra equal signs 
Tord- makes a sign 
error 

Olav- cancels the x, has 
extra equal signs 
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The students with correct solutions in task a solved it by multiplying 
each term by the common denominator 2. Tord seems to change side, not 
sign. 

Ruth’s solution is presented to the right. She 
multiplied by 2, the common denominator, but 
multiplied only the fractions. Actually she mul-
tiplied by 4 (line 3). Then she collected the 
numbers on the right side and the x-terms on the 
left side. Then in line 5, she divides both sides 
by 4, and she writes her solution as 5x  , in 
line with the correct solution in the textbook. 
She was seen eager to check her solutions. 

 

Olav resolved the problem with the whole num-
bers by regarding them as part of the numerators in 
the fractions (line 2). He then multiplies by 4 on 
both sides, before he violates the law of distribution. 
This is the reason why he reaches the same result as 
in the textbook. In addition, he still cancels the un-
known. His use of more than one equal sign, signals 
an operational view of the sign. 

3
4 1

2 2
3 4

2

x x

x

   


4

2 1

2

x 
 4

2

3 8 2

3 2 8

2

2

x x

x x

x

x



  
  

10
5

2
 

 

The tasks in item 1.3.14 were similar to the foregoing tasks, however, 
in addition to fractions and brackets, some of these tasks also involve 
fractions with binomials in the numerator. Some brackets include both 
whole numbers and fractions. It is evident from the classroom that some 
of the students found it too difficult to solve them at home. Others were 
seen to start but then gave up.  

The tasks are presented in the tables below. Number of solutions are 
from data set 18 students. The responses in row 4 are from the whole 
dataset 27 students: 

 
Table 11-10:  Equations – textbook item 1.3.14 a, b, c   

1.3.14a 1.3.14b 1.3.14c 
1 2 1

( 3)
2 3 3

x x   
 

2 1 1 3
(2 5) (5 2 )

5 3 2 5
x x x    

 

1 3 1 5
2 ( ) 1 ( 5)

3 4 2 6
x x x    

 
7 solutions 

of 18 
7 solutions 

of 18 
6 solutions 

of 18 
Ruth- makes sign er-
ror, but aligns the re-
sult to the result in the 
textbook 
Olav- cancels the x  

Kari-  gives up 
Olav- cancels the x 

Olav cancels the x, has 
extra equal signs 
Tone- asks for help sign 
error  

 
 

3
4 1

2 2
3

2

x x

x

  

2 4
2

x
  2 1

6 4 2 1

6 2 1 4

4 5

4 4
5

x x

x x

x

x
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Table 11-11:  Equations – textbook item 1.3.14 d, e and f   
1.3.14d 1.3.14e 1.3.14f 

1 1

5 20 5 4

x x x x 
  

 

4 3 1
2 (3 1)

3 2

x
x x


  

 
1 1 1

3 2( ) ( )
4 3 2

x x   
 

5 solutions 
of 18 

5 solutions 
of 18 

5 solutions 
of 18 

Olav- asks for help, vio-
lates distributive law, has 
sign error, cancels the x, 
extra equal signs 
 
Ruth- problem to collect 
the x-es 
 

Jone - sign error asks for 
help 
Tone- asks for help: mul-
tiplication error, sign error 
in binomial 
Ruth, Ine and Ane- ask 
for help to find what is 
wrong 

Ruth – sign error 
Teacher tries to convince 
her to perform multiplica-
tion before expansion 

 
Olav continues cancelling the unknown, but the transformations are cor-
rect after checking with the textbook key and with help from the teacher. 
He has problems with the signs in the binomials, and in following the 
distributive law. He has one equal sign in each line, except for one occa-
sion in one of the tasks.  

From the table it is seen that even fewer students are solving these 
tasks than in the foregoing item. Many of the students had not solved the 
tasks during lesson, nor at home, and the teacher asked them to solve 
them after finishing tasks related to inequalities. Some students went 
back to these tasks, and solved them the day inequalities had been the 
focus for the plenary session. Although they were encouraged to do so, 
only about one third of the 18 students solved one or more of the tasks.  

Kari, Ruth, and Jone, who saved erroneous solutions, made errors re-
lated to the minus sign. From the observation in the classroom it is evi-
dent that more students struggled when deciding if the sign should be 
positive or negative when opening brackets, when placing binomials as 
numerators on a common fraction line, and even when simplifying 
strings of fractions, numbers or literal terms.  

Ruth, in task a regarded -3x - 6x equal to 3x. Ruth was one of the stu-
dents seemingly adding from right to left in earlier tasks. At the end, she 
just aligned her result to that in the textbook.   

Task 1.3.14b caused more students to ask for help, probably because 
the least common denominator was 30, and it seemed more difficult to 
come to a correct result when the numbers were larger. 

Both in task 1.3.14d and in task 1.3.14e some students were observed 
struggling with the binomials. The teacher once again explained about 
binomials as entities.  
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Jone and Paul asked for help solving tasks e. Jone had changed the 
sign in the numerator, when multiplying all terms by the least common 
denominator. Paul had not:  

Paul: We disagree a bit, because our results differ. 
T: It is okay to disagree.  
Jone: It is a plus sign there? 
Paul: Is there something wrong here? 
T: Yes, this is a unity. It is standing on a fraction line, so you have to take 

that as a whole. There it is correct, but you will have a plus sign, because 
the sign in the front is a minus sign.  

Paul: Then I have to change that one? 
T: Yes, you should remember this. It is so easy to make that mistake if you 

don’t carefully write the bracket after writing the product. You should 
not make such a mistake, since you seem to have control. You should 
avoid this. 

Paul and Jone had consequently chosen one or two tasks in each item, 
and had solved only one subtraction task with binomials in the numera-
tors. They felt confident in their work, but their computer files, show 
they have problems deciding whether the signs should be positive or 
negative, and it seemed during observation that they relied on each other, 
instead of checking the textbook. At the end of this episode, Jone said: 

Jone: We discussed if it should be a minus sign up there as well (he points to 
the bracket on the right side of the equal sign).  

T: No, there is no minus, because you just multiply by 2. It’s correct what 
you have done. Then you just have to write the sum. 

Paul: Can I move the x over to the other side? 
The teacher says it does not matter where the x is located. These two 
boys gave the impression that they were mathematically proficient, and 
especially Jone gave important inputs in the plenary sessions, working 
hard. This conversation illustrates that also the most competent students 
felt unsure about the signs.  

Paul was seen during the observed lessons that he consequently col-
lected the x-es on that side of the equal sign where he avoided negative 
coefficients. Eli asked for help in relation to the two last tasks, it seemed 
that she struggled with the signs as well.  

Tone and Rebekka discussed how to handle binomials in the numera-
tors. They solved some inequalities earlier in the lessons. However, 
when solving the equations in item 1.3.14 they both realise that they 
have added strings of numbers and expressions erroneously in almost all 
tasks. The result in the textbook key caused them to go back and search 
for the error. However, as seen in earlier tasks, they sometimes just 
changed their results after checking the textbook answers.  



 
396   Appendices 

11.5 Equations in tests 
On the ordinary test in September, one week after they had worked with 
equations in the class, three equations were given for students to solve. 
The results are presented in the table below. 27 students participated. 

 
Table 11-12:  Equations – test tasks, ordinary test September. Results (%) 
Equation test tasks Task a Task b Task c 

Item 6 6 4

9 3

x
  7 5

2
25x

 
 

2
2( )

2 2 3

x x
x  

 
Correct  44 44 48  
Solution not simplified 18   
Sign problem 15 4 4 
Term/factor problem  11  
Fraction problem 11 15 15 
Equivalence 11 7 18 
Calculation error   7 
Not solved 4 22 18 
 
The sums are more than 100 %. Some students had more problems, and 
all are listed. One student had expanded the fractions on the right side by 
2 instead of having multiplied by 2, in addition he had multiplied by 6 
only on the right side, violating the equivalence relation. His solution is 
thus categorised both as showing a ‘fraction problem’ and as a problem 
handling the equation as an ‘equivalence’.  

Only five students (19 %) solved all three tasks correctly, Ine, Else, 
Tord, Tore and Ronny.   

In task a, 12 students or 44 % had solved the equation correctly. Five 
more had followed the rules, but not simplified the result. Three of those, 

Kari, Rakel, and Paul, ended their solutions by writing either 18

36
x


  

or 18

36
x 


. This might be caused by uncertainty about where to put the 

minus sign. It was observed that some students were not sure about 
where the sign belonged (see appendix 0). Those solutions are, however, 
categorised as ‘not simplified’ in the table.  

Four students presented a positive solution; categorised as sign prob-
lem.  

Three students had made other errors. They can be said not to have a 
formal concept image of equations. Below are those solutions presented: 
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Kristin Selma Olav 
6 4

2 6
9 3

12
8

18
?

x

x


  


  

6

9




4

3
18

36

x

x

  

6 4

9 3
6

9

x



9

4

3

x
 39

6 12

12 12

x

x






0,5x



 

 

Kristin did not execute the same operation on both sides of the equal 
sign, and she expanded the fraction on the left side although written as 
multiplication. In the lessons, she seemed to work correctly, although she 
in the algebra test before the observation started, was seen not to treat 
equations as binary relations. She did not solve many tasks, and was qui-
et in the plenary sessions. However, she was observed when solving a 

similar task: 2 4

3 5

x
 . She solved it correctly by cross multiplication. 

 

 

Selma was observed during lessons solving the equations properly, 
except for having extra equal signs at the end of the lines in the first 
equation tasks. On the test, she presented her solution as an algebraic 
expression. She seemingly tried to cross multiply but was ending up with 
the expression on the left side ignoring that this equals to 1.  

Olav is still cancelling the unknowns, and here he writes extra equal 
signs at the end of the lines, presumably signalling here comes more. He 
was asked before the test what the result would be if he divided 2x by 2x. 
He meant the result would be x. He responded correctly on a similar 
number example, and thus the teacher thought he had understood what 
was incorrect in his thinking. He then left his habit for a while.  

Ruth’s, Atle’s, and Jone’s solutions are presented:  
 

  Ruth Atle                Jone 
6 4

9 3
6 4

:3 : 3
9 3
2

: 4 4 : 4
3
8

3
8

3

x

x

x

x

x













  

 

6 4
| 9

9 3
54 36

36 36
54

36

x

x

x


 







 

6 4

9 3
18 36

36 18

36 36
2

x

x

x

x
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Ruth was seen to struggle both with the minus sign and with fractions 
during observation in class. She was mostly working together with her 
classmate, Tone, who was also struggling not feeling confident in what 
she did. They were eager to ask the teacher to help. She sometimes sat 
down with them for rather long periods. Tone seems to have progressed, 
while Ruth seems still to have the same problems. 

Atle is multiplying by the common denominator, but he just multi-
plies, probably forgetting to simplify. At least he seemingly ignores the 
denominators.  

Jone has performed all operations correctly until he in the last line 

equals 18

36

  to negative 2. Jone was one of three students who in task 

1.2.1c equalled the fraction 1

15
 to the number 15 (see appendix 10.3), 

which might indicate that this error is not a coincidence, although he dur-
ing the time of observation was regarded both by the teacher and by him-
self to be confident in his mathematical work. 

  The second equation on the test,  7 5
2

25x
  was solved correctly by 

12 students (44%), , while 3 students, Roy, Sven, and Peter, (11 %) per-
formed the operations as if the fraction had to be expanded by 2 instead 
of being multiplied by 2, as in Sven’s solution presented below.  

Three other students, Eli, Bill, and Olav multiplied both sides by the 
least common denominator, but did not differentiate between terms and 
factors. One example is Eli’s solution presented below: 

 
Sven                  Eli 
7 5

2
25

14 5

2 25
10 350

10 10
35

x

x
x

x

 







 

7 5
2

25
7 25 5 25

2 25
25

175
50

x
x x

x
x

x
x

 

 
  

x

125


5

25

x

50 5 175

45

x x 

45

x 175

45

35

9
x





 

Eli’s solution demonstrates skills in solving equations, however, the con-
cepts of terms and factors seem still not well-developed. The problems 
for the six students solving the equations as Eli or Sven do, has to do 
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with the formal writing of expansion/multiplication of fractions and the 
concepts of terms and factors.   

Ruth correctly cross multiplied, but at the end she equated 1 1

70x
 , 

with 1

70
x  . Olav does not differentiate between factors and terms, and 

he multiplies by different factors, 25 and 25x. In addition, he ends some 
of the lines with an equal sign. In one line, the unknown disappeared, but 
appeared in the last line.  

The last equation on the test 2
2( )

2 2 3

x x
x    was solved correctly by 

13 students (48%), and two had minor multiplication errors. Some stu-
dents had more problems and all are listed. Five students act as if the 
equation is not an equivalence relation. Sven expands the fractions on 
the right side, then he ‘moves’ the x-es over to the left side without 
changing signs. It is a question if his solution should be interpreted to be 
a sign problem, because he turns all terms into positive terms. However, 
here his solution is regarded as well to be an evidence of him not execut-
ing the same operations on both sides of the equal sign.   

Alf multiplies the equations on the right side correctly by 2 before he 
expands the fractions; written as ordinary multiplication. At the end, he 
violates the equivalence relation by multiplying only the right side by 6.  

Olav continues cancelling the unknown as in the foregoing tasks. In 
addition, he continues writing equal signs at the end of most of the lines 
in his solution, and he does not apply the distributive law.  

Carl’s solution is shown to the left. It is 
tempting to categorise his error only as a 
sign error. The fraction in the end solution 
has a minus sign, it should have been posi-
tive. However, he writes an extra equal sign 
at the end of each line, which is not in line 
with having a perception of equations as 
equivalence relations. The equal signs are 
there to signal that more will follow. In ad-
dition, it might be that this extra equal sign 
causes him to change the sign before the 
number 8. He collects the x-es on the left 
side, while the number 8 is left alone in be-
tween two equal signs but now the number 
is changed from being negative to positive. 
Carl was not seen solving equations in this 
way during classroom observation. He had 

 2
2( )

2 2 3
2 4

2 2 3
2 4

6 6 6 6
2 2 3

6

x x
x

x x
x

x x
x

x

   

   

       


3

2

2 6
6

x
x


 

3

2

4 6


2

3

3 6 6 8

3 6 6 8

9

x x x

x x x

   
   


9

x


8

9

8

9
x
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solved only few of the simplest equations.  
Glenn seems to have problems with the minus signs. He solved the task 

correctly, ends, however, with the solution 
8

9
x





, which is categorised 

as ‘problem minus sign’. 
Tone wrote extra equal signs in the same way as Carl and Olav. She 

was not observed doing that during seat work. She correctly multiplied 
the fractions on the right side by 2 before she expands them in order to 
let all fractions have 6 as the common denominator. Her mistake seems 
to be that she multiplies the alone-standing x by 3. The fractions she ex-

panded. Then she equals 3
3

2 3

x
x


 


with 0

6
, subtracting as if 3x was a frac-

tion with denominator 6. In the next line she presents only an expression, 

before she in the last line equates this with 0

6
. She does not present any 

solution of the equation. Her main problem seems to be that she does not 
know how to handle the x, standing as a whole number. She worked 
hard, asked the teacher for help and relied heavily on the textbook key. 
On the test, she did not have this possibility.    

Ruth, Selma, and Peter, expanded the fractions by 2 instead of multi-
plying as was intended by the symbolisation of the task. Peter stopped 
his solution process after this expansion. Selma followed the rules for 
equations, ending with an erroneous result because of a fraction error. 
Her solutions in task a and b might have been avoided if she had multi-
plied by a common denominator instead of performing cross multiplica-
tion. Except for the fraction error, she performed the operations accord-
ing to the rules for equation solving in task c.  

Ruth shows the same lack of understanding of the alone-standing x as 
Tone and Olav. She puts it in as part of the numerator of the first frac-
tion. As for Tone, her left side of the equation resulted in zero. She man-
aged to go further on by ‘correctly moving’ the x-es she had on the right 
side over to the left side. However, then she writes that she will divide 
by 12 on both sides. What she actually does, is to multiply by 12 in order 
to cancel the denominators. Her problems are related to the fractions in 
this task.  

One item in the December test included two alternative equations to 
be solved. The students had to choose one of them.  
The distribution of students and results are shown below (data set 27) 
students. 
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Table 11-13: December test - Equations 
December test Alternative 1 Alternative 2 
 2 5 1x x x    2 3 1

( ) 1
3 4 6

x x    

Number of students 6  21 
Correct 83 %  ( 5 students) 52 % 
Sign error     5 % 
Equivalence problems  14 % 
Fraction error 17 %    (1 student)  

Calculation error    5 % 
Factor/term problem  10 % 
Other problems  14 % 
 
Six students, Kristin, Atle, Peter, Glenn, Eli, and Ivar chose the simplest 
one. The three first had no correctly solved equations in the September 
test. The others had one out of three. Kristin was the one having an error 

in the December test. She equalled 1

4
 with - 4.  

In the alternative 2 task, 21 students solved the task and 11 succeed-
ed. Olav is still cancelling the unknown.  

Only one had a sign error. However, the design of the task was such 
that it was not likely that some should have such an error. Ine detached 
the term from its indicated operation; 12 6 6    . She was not seen to 
have done that earlier.  

Tord and Kari changed side but not sign, and the error is categorised 
as an equivalence problem. Tord was observed doing that in the class-
room, but on the September test he solved all equations perfectly. Kari 
was not observed doing it earlier. 

Else had solved the task correctly until she at the end did a minor cal-
culation error, resulting in zero on the right side. Then she carried out 
some acrobatics against the properties of fractions in order to reach an 
answer that she could accept. Alf had only a minor calculation problem. 
He solved none of the equations in the September test correctly. This is 
thus an indication that he has made progression.  

Ane and Tone did not differentiate between factor and term. Both 
avoided that in the September test, since they carried out the fraction 
multiplication before they cross multiplied. The others in this test fol-
lowed the teacher’s advice this time and multiplied the bracket by the 
pre-multiplier before they multiplied by the common denominator. 

In the category ‘other problems’ are Carl’s, Tore’s and Olav’s solu-

tions. Carl came to the result  1 1

3 2
x


  and stopped there. Tore ended up 
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with an expression not a value for the unknown. Olav violated the dis-
tributive law. He does this in two out of five brackets in this test. It 
means that it is not a consistent error. This he was seen to do occasional-
ly in the lessons. 
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Appendix 12: Inequalities  
Inequalities were in focus for the plenary session the day after the con-
cept of equation was recapitulated.  

12.1 Inequalities in the textbook 
Inequalities are presented in the same sub-chapter as equations, treated 
as a sub-topic of equations.  

The signs denoting inequality are introduced and translated into ordi-
nary language. In addition, they are applied in connection to daily life 
contexts of distances between two Norwegian towns, and differences 
between prices. 

The inequalities 3 5   and 8 3    are presented on the number line.  
A question is posed: “For which values of x, is the expression x + 3 larg-
er than 5?”. This question is then transformed into the mathematical no-
tation: x + 3 > 5. To solve this inequality, it is said, means “to find those 
values of x that makes the left side larger than 5. Then we see that x has 
to be a number larger than 2”.  

The rules for solving equations are applied on an inequality to check 
if they hold. The conclusion is: The sign must be flipped when multiply-
ing or dividing by a negative number. 

Three context free example tasks are solved. In the last task, if the x-
terms are kept on the left side of the inequality sign, the sign must be 
flipped:   

5 7 3x             3 5 4 2( 3)x x              
1 1 7

3 2 6
x x    

The introduction is short and the rules are presented in a textbox: 

12.2 Inequalities in the ‘learning book’ 
One inequality example is applied to check which operations are al-
lowed. The example is 4>2. The following is presented: 

We check a number example:   
4 2 We divide by 2

4 2

2 2
2 1 This is true






 

4 2 We divide by negative 2

4 2

2 2
This is not true,  we have to flip the

                  inequality sign in order to let it be true.

2 1 Now it is true

2

.

1




 

  

    

The same rules are said to be applied as for equations, but the inequality 
sign has to be flipped, when division or multiplication by a negative 
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number are executed on both sides of the sign. At the end, one example 
task is solved:  

4 2 12

2 12 4

2 8

2

2
4

2

8

x

x

x

x

x

 
  



 





 

 

The solution of an inequality as a set of numbers, is not mentioned, but 
this was in focus in the classroom.  

12.3 Inequalities work plan and tasks 
On the work plan only two items were set to be solved. The last, 1.3.19, 
was written with normal fonts. However, the students were told explicit-
ly to solve also this item. 
  
Table 12-1:  Inequalities – work plan 

 Aims Textbook Items 

1Solve linear inequalities 44–47 1.3.18, 1.3.19 

 
The textbook offers only those two items. All tasks in both items are in 
pure mathematical language. The tables below presents the tasks in item 
1.3.18 and the number of students who solved the tasks (solutions). The 
dataset is the saved computer files from 18 students. In the next row are 
all students’ observed responses taken in.  
 
Table 12-2:  Inequalities  – textbook tasks (item 1.3.18) 

1.3.18a 1.3.18b 1.3.18c 1.3.18d 
7 10x    5 2 2 8x x    3 4 8x x    10 3 4x x    

6 solutions 
of 18 

4 solutions 
of 18 

4 solutions 
of 18 

4 solutions 
of 18 

Alf –correctly 
interprets the 
solution cor-
rectly to be a 
set of numbers 

Ane – equal sign Ane – equal sign 
Jone- calculation 
error 

Jone- sign error 
Ane- wrote inequali-
ty sign 

 
Not many students solved the first tasks in this item. Alf was asked about 
the solution and clearly interpreted it to mean all numbers larger than 3. 
In addition he told that he did not like these kinds of task. Ane wrote 
equal signs and Jone made calculation and sign errors. 
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Table 12-3:  Inequalities  – textbook tasks (item 1.3.18) 
1.3.18e 1.3.18f 1.3.18g 1.3.18h 

3 2 5(3 )x x    8 2( 3) 3 (5 )x x x x      2 3 4x x    3(4 2 ) 10 5x x    
14 solutions 

of 18 
14 solutions 

of 18 
14 solutions 

of 18 
15 solutions 

of 18 
Ane- writes x=4 
Arne- 4x   
Roy- does not find 
the solution for 
one x, has a sign 
error 
 

Ane- flips the sign incor-
rectly, and shows prob-
lem with the negative 
sign 
Arne- struggled for a 
long time, multiplies the 
bracket by 3x, made a 
sign error, and waited for 
the teacher who was busy 
with others. Afterwards 
he managed the other 
tasks.  
Tone- struggled, would 
give up, but Ruth found a 
sign error in her work 

Carl- does not 
flip the sign  
Ane- writes 
equal sign 
Olav- flips the 
sign incorrectly  
Most students- 
flip the sign 
after having 
performed the 
division 
Arne – sign 
error 

Ane- does not per-
form the same op-
erations on both 
sides.  
Ane and Selma - 
Thought it was not 
possible to divide 
by a neg. number 
Most students- 
flip the sign after 
having performed 
the division 
The others-keep 
the x-es on the 
right side. 

 
Ane wrote equal signs in most solutions. Arne was seen struggling with 
both the equal signs and the solutions of the tasks. He asked for help, and 
after that he solved the tasks seemingly without problems.  

Task d, g, and h resulted in negative x-coefficients on the left side of 
the inequality sign. In task d all four students solved the task correctly.  

Ane in task f , and Olav in task g flipped the sign although having a 
positive coefficient. Ane and Carl did not flip the sign although dividing 
by a negative number in task g and task h. Ane and Kristin were two of 
the students asking about the inequality signs and when to flip them. 
When coming to the statement 2x    Ane asked the teacher how to 
continue. Her problem was the division of a negative number.  

Roy stored his solutions before they were finished in the right sense, 
before coming to the solution set for one x. The pattern seems to be that 
he avoids fractions in the final solution.  

The second item on the work plan is presented in the table below. 
The data set which it is based on, is the same as in the foregoing table 
(18 students). The responses in the last row is from the whole data set, 
27 students.  

Task a and d were solved correctly by those who solved those tasks. 
Two students saved solutions with equality sign, Ane in task b and Tone 
in task f.  
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Only in task c it was necessary to flip the sign, if keeping the x-es on 
the left side. Ane did not flip the sign while Ruth and Jarl did it only in 
the end solution; a bit late, but with correct solutions.  

Most problems are not related to the object of inequality. However, 
in task 1.3.19b the task could be solved by cross multiplication. For a 
couple of students this caused trouble for them.  

 
Table 12-4:  Inequalities – textbook tasks (item 1.3.19 a, b, c) 

1.3.19a 1.3.19b 1.3.19c 

5
3

x


 

3 4

4 3

x


 

1
2

3
x 

 
14 solutions 

of 18 
14 solutions 

of 18 
13 solutions 

of 18 
 Tore and Ronny –problems 

because of cross multiplication.  
Ane- equal sign 

Ane- does not flip the sign 
Those who flip- do it after 
the division is performed. 

 
Table 12-5:  Inequalities – textbook tasks (item 1.3.19 a, b, c) 

1.3.19d 1.3.19e 1.3.19f 
1

2
3 4

x
 

 

4 5 2 1

6 3 2

x x 
 

 

1 2
( 3)

4 3

x
x


 

 
13 solutions 

of 18 
14 solutions 

of 18 
12 solutions 

of 18 
Olav- extra equal 
signs at the end of 
each line (again) 
Roy- does not find 
the solution for 
one x  
Tore-wants to 
cross-multiply on 
the left side 
 

Ane and Else- sign error 
Ane and Jarl- do not follow the 
distributive law 
Glenn- asks about the minus 
sign 

Ane- does not follow the 
distributive law 
Tone- writes equal sign 
Olav- is told not to cancel 
the letter symbol 
Ronny – how to multiply 
fraction and brackets 

 
Oscar and Tord did not solve any of the tasks, 11 students had solved all. 
The others had picked out some tasks.  

12.4  Inequality and test tasks 
On the test in September less than one week after students had worked in 
class with inequalities, one inequality task 3 6 2( 8)x x     was included. 
There were no demands of interpreting or commenting on the result. 

The table underneath includes the results; numbers of students and 
percentages (27 students).  
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Table 12-6:  Inequalities – 6 d  September test  27 students  (%) 
Inequality test task       3 6 2( 8)x x     Frequency 

* 
Cate-
gory 

Correct    19   
Wrote another inequality, but correctly solved 7 A 
Incorrect or no flipping of the inequality sign 33 B 
Calculation errors 7 C 
Solution presented as specific unknown (equals sign) 29 D 
Do not perform same operation on both sides 7 E 
Problem negativity 33 F 
Not solved 4  
* The sum is higher than 100%. Some solutions are located in more than one catego-
ry. 
Peter and Carl wrote a different inequality (A). This eased the task, but 
they solved it correctly.  

In category B, seven students had not flipped the sign, two had divid-
ed by negative 5, without flipping the sign immediately. They waited till 
the last line. A reason for this may be that they think that it is no division 

before the fraction is simplified. This means that this: 5 10

5 5

x


 
 is not 

seen as a division before the division is ‘executed’ as in 2x    and there-
fore the sign is changed here and not in the first case. For Tord this was 
the only mistake, and his solution is thus categorised as correct. Then 
five students (19 %) are regarded to have solved the task correctly. 

Three students (category C), Else, Jone, and Ane made calculation 
errors. Else made just a minor calculation error. Ane simplified the frac-

tion in this way: 10
5

5
 


. She must have subtracted ending up with a neg-

ative result. Tord had  16 - 6 =12. 
The next category (D) includes solutions where the task is treated as 

an inequality from the outset, but when the solution is reached, it is pre-
sented as a specific unknown with an equal sign. Six students were in 
this group, Ane who did the same in the textbook tasks was among them. 
Arne wrote ( 2)x   at the end, but had correctly solved the task so far. 
He had gained control with the conventional notation after struggling for 
a while. There is also the possibility that he thinks orally: x is equal to 
greater than minus 2; interpreting the equal sign to be to announce a re-
sult, however, his reasoning is not known. The others were Jarl, Tone, 
Glenn, Ruth, and Olav. 

3 6 2( 8)        

3 2 16 16

x x

x x

   

   
 

Roy made only a flipping error in that he flipped 
the sign from the second line to the third line (to 
the left). 
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Category E includes two students, Tore and Ronny, they had not per-
formed the same operation on both sides of the inequality sign, resulting 
in erroneous solutions.  

The students in category G showed problems related to the minus 
sign. Ine, Atle, and Kristin detached one term from its intended operation 
at the end of their solutions. Ine was not seen to have done that earlier, 
but in the December test she also made an error related to the minus sign. 
Peter and Kristin ignore the unary minus sign in the start of the task. Alf 
ends with 2x  , probably not knowing how to handle this. Several stu-
dents did not think that they could divide by a negative number.  

Tord, Selma, Kristin, Olav, and Jarl were asked about their strategy 
and thoughts when starting their solution process, and about the meaning 
of the result. 

All five students went directly on to the solution process telling what 
actions they undertook. Tord first says that he just starts working, carry-
ing out the operations, but after being prompted to come with his 
thoughts about this specific task, he says: 

Tord: I regard it to be an equation, but during the solution process I have to 
think… how was it then? If I times by negatives or something similar, 
then I have to change the fraction or that sign (he points to the inequality 
sign). That is sort of what has to be remembered. Otherwise it has to be 
treated as an equation.  

Tord is very clear about the close connection to equations. During the 
solution process he talked about ‘equal to’ although he wrote the ine-
quality sign, the same was the case with the others. 

All told that they did not think about the tasks and what to find. They 
just went on solving it. In the conversation with Olav he extended his 
explanation. After having solved the task he was asked about his 
thoughts when doing the tasks: 

R1: How are your thoughts when you solve the tasks? Do you think about 
what you are aiming at?   

Olav: No, first I think about what topic has recently been the focus in class, and 
what we have done within that topic. Then it is easier to solve the tasks.  

He relates the tasks to what has recently been done and worked with in 
class, and this guides his actions. He also tells that when he has reached 
his solution, he is satisfied. The work is done. I interpret his utterances to 
indicate that he himself left alone with the task, had no strategy to check 
his results. Otherwise I assume that he would relate his result to the ini-
tial task and check it. None of the interviewees expressed that they 
checked their results in any of the tasks. 

In the interviews it was asked about the interpretation of the solution 
2x   . Tord answered:  
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Tord: It means that x is larger than minus 2? It means that the number you are 
searching for, is a number larger than negative 2. It is larger than, it is 
such a sequence, right? You have negative 2, zero and then the numbers 
further on.  

R1: Are all numbers larger than 2 within the solution?  
Tord: Yes. 
R1: Then it might be? 
Tord: Any number larger than minus 2.  

Although he compares inequalities with equations (see above) and solves 
the inequality as an equation except for the case when he has to multiply 
with negatives, he seems to have grasped the concept of inequalities and 
interprets the solution correctly. 

Jarl was also clear about the interpretation of the result. He said: 
Jarl: It means it can be all (numbers) larger than minus 2.  
R1: And then, are all numbers included, or is it a specific number larger than 

minus 2? 
Jarl:     It is really all numbers. 

Kristin said she did not know the meaning of the result. Selma said she 
could not know which number it should be, she just knew that it had to 
be larger than negative 2. From her utterances it seems that she regarded 
the solution to be one specific number, not a set of numbers.  

The same was the case with Olav. He as well found the correct solu-
tion and had flipped the sign correctly. He talked about ‘x is’ during the 
solution process. When asked about the end solution, he asserted:  
Olav: It is minus 1, minus 2, zero, 1, 2… They are lying there, and then it is minus 

2, but at the same time you don’t know the x. 
R: You don’t know the x?  
Olav: No, but you know that it has to be larger than minus 2. 
R1: What does that mean?  
Olav: It means that it is larger. 
R1: Some specific number which is larger? 
Olav: Yes. 
From the interview it seems that he knows that the solution is lying on 
the number line ‘they are lying there’, but that it should be a specific 
number, not the set of numbers larger than negative 2. 
 

 


