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Abstract

Solid oxide fuel cells (SOFCs) have the potential to become one of the efficient and cost-
effective system for direct conversion of a wide variety of fuels to electricity. The performance,
stability and durability of SOFCs depend strongly on the materials used for the fabrication
of electrodes as well as the fabrication process. For anode supported SOFCs, the tape cast-
ing method has been the de facto standard for constructing cell components. Furthermore,
organic solvents such as ethanol, propanol, terpineol and poly-ethers are generally used in
industrial tape casting as the solvent medium to make the chemical slurries out of ceramic
powders. Although, the use of organic solvents makes the dispersion of solid chemical particles
relatively easier, it is not an environmentally friendly solution.

In this thesis, we address this issue by investigating the possibility of fabricating anode
supported SOFC cell components using water instead organic solvents. In addition, this
thesis also looks at other aspects of fabricating anode supported cells, namely the need for
active and barrier layers to prevent undesirable side relations during sintering and also to
improve the performance of the fuel cell. We have in particular looked at the variation in the
porosity of the anode support layer and the use of active layers and barrier layers. Hence,
the fabricated SOFCs have five layers, namely the anode, active, electrolyte, barrier and the
cathode layers.

In order to validate the performance characteristics of the fabricated SOFCs, we have also
modelled equivalent theoretical models using COMSOL Multiphysics (version 5.2) software.
Our theoretical models are 3D models that are well suited to developing better approximations
to the actual experimental data.

The experimental performance was comparable to expectations based on literature data
and indicated that our water based formulations are suitable for SOFC development. More-
over, our COMSOL model was able to fit the experimental behavior with careful selection of

parameters.

Keywords: Solid oxide fuel cells, fabrication, modelling, simulation.
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Chapter 1
Introduction

In this chapter, we provide background information on fuel cells including how they operate
along with a brief comparison between the different fuel cell types. Then, we have stated our
contribution and scope of work, research objectives followed by a literature review in the area
of our interest. Finally, an outline describing the structure of the upcoming chapters are

provided.

1.1 Fuel Cell Basics

A fuel cell is a device which is capable of converting chemical energy obtained from fuel into
electrical energy. It produces energy without having any form of combustion while releasing
fewer pollutants (water and heat) to the environment. Hence, fuel cells are environmental
friendly devices utilized for power generation via energy conversion. However, the develop-
ment of fuel cells and the usage of fuel cells for practical applications are not yet widely
developed like other energy conversion technologies such as bio-gas, photovoltaic and wind
energy [8]. The reason is primarily due to the cost of production and the lack of infrastructure
to supply pure Hydrogen (H;) as a fuel. The work described in this thesis is focussed on one
particular type of fuel cell, namely the Solid Oxide Fuel Cell (SOFC) which operates at a
high temperature around 800°C'.

Fuel cells operate like a battery. However, a battery generates electricity with reactions of
chemicals inside the battery while fuel cells are capable of generating an electromotive force
(EMF) continuously, when the required inputs (fuel and oxidants) fed externally. Fuel cells
are mostly used in transportation, stationary power generation and battery replacement. In
transport applications, it is common to use a fuel cell battery hybrid which combines the
best features of both fuel cells and batteries to give optimum performance.

A fuel cell consists of three main parts, anode, cathode and an electrolyte, which is
sandwiched between the anode and the cathode. The operation of the fuel cell is as follows.
In the anode, externally supplied H, reacts on the catalyst creating ionized Hydrogen (H™)

and electrons (e). These electrons passing through the external circuit producing an electrical
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Table 1.1: Comparison of Different Types of Fuel Cells

Fuel Cell Type | AFC PEM MCFC PAFC SOFC
Common Elec- | Potassium hy- | Ion exchange I.m H.lOblhzed I.m H}Oblhzed .
. liquid molten | liquid phos- | Ceramic
trolyte droxide membrane . .
carbonate phoric acid
Operating 90°C — 100°C' | 50°C — 100°C | 600°C — 700°C | 150°C — 200°C' | T00°C -
Temperature 1000°C
For trans-
Efficiency 60% portation - | 45%-50% 40% 60%
60%
plectrical Up to 206 | Up to 250kW | > LMW > 50kW > 200k
Transportation, gD;Zgilgzd Stationary ﬁ:;;lrlary Dis-
Applications Military, Space D1str1b1.1ted Military appli- power genera- | o0 gener-
generation . tion .
cations ation
High per-
Compact No electrode
formance, .
construc- . corrosion, No
Can use non- | . . . . Can use impure
. tion, Solid | High efficiency, need of expen-
Advantages precious metals Hj as fuel, Less | .
electrolyte, Low cost . sive catalysts
catalysts . pollution .
. low  working (Platinum),
(nitrogen temperature Less pollution
doped-carbon) P P
Increased
corrosion, Dif- | Water = man- | Low durability, | Low efficiency, | Need thermally
Disadvantaces ficult to handle | agement, CO | Affect to high | Low power | stable materi-
& in differential | sensitive, temperature density, Ex- | als, Complex
pressure, COs | Cooling issues | corrosion pensive fabrication
poisoning

current while HT passes through the electrolyte. In the case of SOFCs, Oxygen ions (O?")
are the conducting species within the solid electrolyte. In the cathode, Oxygen (O3) from air
reacts with H™ and electrons forming water and heat. The general overview of the operation
(inputs and outputs) of a fuel cell is shown in Figure In the case of the SOFC, the

product water is directly produced on the anode.

Figure 1.1: General overview of operation of fuel cell

There are many types of fuel cells such as Alkaline Fuel Cell (AFC), Proton Exchange
Membrane (PEM) Fuel Cell, Molten Carbonate Fuel Cell (MCFC), Phosphoric Acid Fuel
Cell (PAFC) and Solid Oxide Fuel Cell (SOFC). A comparison of the aforementioned fuel cell
types are tabulated in Table
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1.2 Solid Oxide Fuel Cell (SOFC)

In general, SOFCs have high electrical efficiency and relatively low cost compared to other
types of fuel cells such as AFC, PEM and PAFC. Given that, they were originally conceived
to use coal as the fuel, they were referred as Coal gas cells. Nowadays, both natural gasses
and coal-derived gasses are used as the primary sources of fuel for SOFCs. SOFCs do not
use any kind of liquid for their operation. Therefore, SOFCs are also known as two phase
interface cells (gas-solid) and this property helps in increasing the cell performance as well
as the lifetime. Usually, SOFCs use electrolytes fabricated with Yttria-Stabilized Zirconia
(YSZ) while Nickel Oxide (NiOj) and Strontium-doped Lanthanum Manganite (LSM) are
used for the construction of anodes and cathodes respectively.

The operation of a SOFC is graphically shown in Figure 1.2. O, from air reacts with
the cathode and produce O?~ in the cathode. These ions pass through the electrolyte to the

anode. In the anode, Hy reacts with O*~ and produces water and electrons [9] [10].

Electron Flow

Syngas 3
(hydrogen & carbon monoxide) Oxygen
— - - - - —
——— & 1 1 — I 1
D@2 ot 1 1 1
. 1 I Oxygenlons B 1
: Ky | B P
i 1 1 -
; O o 1 1
) o 1 ] 1
B 1 « g 1
- - - L ) -3
Carbon dioxide & water Excess oxygen

Anode  Electrolyte Cathode

Figure 1.2: Operation of SOFC [1]

The governing equations for anode and cathode reactions are stated below.

Anode reaction :  2Hy + 205 = 2H50 + 4e (1.1)

Cathode reaction : Oy + 4e = 205 (1.2)

In the simplest mode of operation, SOFCs use pure Hy as the fuel for their operation
as shown in Equation [1.1. However, given that SOFCs operate on higher temperatures
(800°C' — 1000°C), it is possible to use other gasses such as Methane (C'H,) and produce
H, internally, with the help of a metal catalyst. Hence, the practical difficulty of externally
feeding pure Hs can be eliminated. In this respect, we used the term fuel flexibility. The

reactions associated with the aforementioned steam reforming process are:

CHy + H50 + catalyst — 3Hy + CO (1.3)
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As a result of the above two reactions, both Carbon Monoxide (CO) and Carbon Dioxide

(COy) are present in the system itself. Then the Boudouard reaction,

C +COy = 200 (1.5)

occurs and it produces Carbon (C') in the form of a fine solid called soot in the system. The
soot will accumulate on the anode, creating a Carbon deposit on the anode surface affecting
the efficiency of the cell. However, when the operating temperature is greater than 600°C,
the Equation triggers towards the forward direction which ultimately helps in eliminating
the accumulation of excessive Carbon in the anode. In practice, excess water in the form of
steam is added to the input to avoid Carbon deposition.

The simpler concept, design and construction, higher efficiency, fuel flexibility and rela-

tively high power density are some of the advantages of SOFCs.

1.3 Solid Oxide Fuel Cell Structure

There are two types of SOFCs based on the geometry, planar SOFCs and tubular SOFCs.
The planar SOFCs are the most general version, fabricated as a stack of thin layers. On the
other hand, tubular cells consist of long cathode tubes where the anode and the electrolyte
are laminated and operates in 900°C' - 1000°C . Short current paths resulting in low
electrical resistance, high power densities and easier fabrication make planar SOFCs more
reliable. However, problems in sealing and interconnections are the main drawbacks for these
types of SOFCs. In comparison to planar SOFCs, tubular SOFCs have higher electrical

resistance.

Inlercomnedt

Current Flow
_ —_I Imtercanmect

Cathade
; — Al

Ane

Figure 1.3: Planar and tubular SOFC

SOFCs can be further divided into two types as anode supported cells (ASC) and elec-
trolyte supported cells (ESC) based on their fabrication as shown in Figure The anode
is acting as the base of ASCs while the electrolyte is acting as the base of the ESCs .
The main advantage of ASCs compared to ESCs is that the thin electrolyte in ASCs provides

lower resistance which helps in improving the performance of the cell.
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Cathode

.« Electrolyte

T~ Anode

Figure 1.4: Electrolyte supported cell and anode supported cell

1.4 Contribution and Scope of Work

This Masters thesis focuses on the development of tape casting formulas for making SOFC
cells based on ASC concepts.

In the past, tape casting has been widely used to make SOFC components and has become
a de facto standard for making ASC types of cells. The method is highly suitable for mass
production and is relatively cost effective. However, most formulas use organic based solvents
and “vehicles” that present an environmental hazard and are not so easily recycled. In this
work, we have prepared water based systems that minimize these types of hazards and present
a more environmentally friendly solution. Similar methods have also been applied in this work
to making water based screen printing inks that otherwise almost always use organic solvents.

One of the main reasons that organic solvents such as ethanol, propanol, terpineol and
poly-ethers are used is that they have very desirable surface tension properties that make
dispersion of solid ceramic particles relatively easy which allows the “paint” or “ink” to
adhere to the substrate without “crawling” or forming droplets. Given that the tapes are
made in a continuous process in a manufacturing context, stability of the cast tape (and
screen printed layer) is essential.

Another aspect is that the use of a water base also avoids the need to have very precise
humidity control. This is a major problem with organic based formulas that can suffer from
“skinover” or non-uniform shrinkage, if the water level in the atmosphere is either too low or
too high. In the case of water based systems, this is completely eliminated thus allowing the
tape layers to dry naturally and fast using forced air dryers. This then allows for much faster
rates of production and simplified quality control - all leading to cost reduction. Moreover,
the minimization of hazardous solvent vapours from the production lab means that personnel
do not need to wear protective breathing apparatus or labs with fume extraction.

This thesis also looks at other essential aspects of fabricating ASCs, namely the need for
active and barrier layers to prevent undesirable side relations during sintering and also to
improve the performance of the fuel cell. We have in particular looked at the variation in the
porosity of the anode support layer and the use of active layers and barrier layers.

To complete the Maters level study, we have also carried out some modelling work to allow
comparison with the experimental data and to increase our understanding of the functionally
of the cell testing set up. For this purpose, we have adapted a finite element analysis approach
using COMSOL Multiphysics software (version 5.2).

b}
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1.5 Research Objectives

SOFCs operate at higher temperatures than other types of fuel cells. Therefore, SOFCs need
thermally stable materials as the electrodes. As stated in Table[I.1] the efficiency of an SOFC
is approximately about 60% [1]. Thus, there is a need for identifying appropriate mechanisms
to improve the performance of SOFCs. We have summarized the main thesis objectives that

are intended to be addressed during this Masters thesis.

e Fabricate SOFC single cells using ASC concepts and replacing conventional organic

solvents with a water base to make an all aqueous ceramic tape casting slurry (paste).

e Fabricate two formulations of the anode support with different sizes of NiOy particles

with the intention of varying and improving performance.

e Perform experiments to observe the characteristics (polarization characteristics and

power characteristics) of the fabricated SOFC cells.

e Develop theoretical models equivalent to the fabricated SOFCs using COMSOL software
and obtain the cell characteristics of the modelled SOFCs.

e Compare the theoretical and experimental results to validate the experimental cell char-

acteristics.

1.6 Brief Review of Related Work

This section provides the related work regarding the theoretical and experimental analysis of
SOFCs. We have provided the related research works regarding fabrication of SOFCs followed
by the research work regarding the theoretical modelling of SOFCs.

1.6.1 SOFC Fabrication

Rotureau D. et al. [15] investigated the capability of using screen printing technology to man-
ufacture planar SOFCs. They have used widely studied materials of Y'SZ for the electrolyte,
LSM for the cathode and Ni—Y SZ (Niand Y SZ) for the anode. Two types of SOFCs have
been considered in their study. First type is called as the conventional two-chamber device,
where the fuel is supplied separately for the anode and the cathode. The second type was
called as the single-chamber fuel cells (SCFC), where both the anode and the cathode are put
in the same side of the electrolyte to have a common atmosphere. In order to evaluate the
performance, two test benches were used for the two test cases mentioned above. The main
drawbacks of their fabrication are that, they use a gold current collector with Platinum (Pt)
layer as a catalyst which increase the cost of the cell as well as the use of N7 — Y SZ for the

anode which affects the performance.
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Stover D. et al. [16] have conducted a research based on the processing methods, properties
and alternative materials for the fabrication of multilayer SOFCs. The chemicals used for
the fabrication of SOFCs are same as in [15]. As processing methods of the SOFCs, they
considered warm-pressing (where the powders are coated with a binder and pressed), tape
casting method, vacuum-slip-casting and wet powder spraying (similar to screen printing) for
their analysis. Furthermore, they have considered tubular and planar SOFCs. By comparing
the processing methods mentioned above, the have concluded that it is better to use the
tape casting or screen printing process for electrode fabrication, which is the cheapest option.
Given that they used the same materials for the fabrication as in |15], the same drawbacks
in [15] are valid to [16] as well.

In Mahata et al [17], details of a tubular SOFC having the anode and the electrolyte
fabricated with co-pressing in cold iso-static press (CIP) is presented. Furthermore, the
dip-coating technique was used to fabricate the cathode and the cathode current collector.
Moreover, co-firing technique (at 1350°C') was used to sinter the anode and the electrolyte.
They have used organic solvents for making the slurries for all the electrodes. High wire
resistance, lack of sealing led to the poor performance of their fabricated cells.

Kim K.J et al [18] suggested a method to fabricate an intermediate temperature SOFC us-
ing tape casting and co-sintering processes. They have used LSGM 8282 (Lag gSr0.2GagsM go.o
O3_g) material to fabricate a thin electrolyte. A buffer layer (LDC) and the anode layer (con-
sisted with Ni/GDC) complete the SOFC. The performance can be further improved by
reducing the thickness of the electrolyte (which was 40 pm).

Beltran-Lopez J.F et al. |19], proposed a method to construct graded anodes for SOFCs
using tape casting and cold lamination plates of different compositions. They have adjusted
the Rheological parameters to obtain a stable suspension for the tape casting process. Fur-
thermore, they have laminated the plates at room temperature without using plasticisers by
introducing two binders which undergo plastic deformation at room temperature. Porosity
and resistivity measurements are used to evaluate the performance of this method. Finally,
they have concluded that fabricating graded anodes for SOFCs using this method is cost
effective and versatile.

In this thesis, we have used the tape casting and screen printing processes for fabricating
the electrodes of the SOFCs. Furthermore, we have used NiOy — Y SZ as the anode material
(instead of using Ni — YSZ as was in [15,/16]), and Y.SZ as the electrolyte material to

investigate whether it will provide a superior performance.

1.6.2 SOFC Modelling

This subsection provides the related work regarding modelling of SOFCs. Laksmi T.V.V.S. et
al. [20], proposed a method to evaluate the performance of a single cell SOFC with the help of
a MATLAB/Simulink theoretical model. They have developed a model to obtain the steady

state characteristics. They have considered two different operating temperatures (800°C' and
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850°C") as well as four different flow rates (31 ml/sec, 36 ml/sec, 41 ml/sec and 51 ml/sec)
for the simulations. In order to obtain better performance activation loss, concentration loss
and ohmic loss were considered in the model. Finally, the simulation results were used to
validate their experimental results provided in [21].

Gebregergis A. et al. [21] proposed a method to analyze the dynamic response of a SOFC
by introducing the distributed modelling approach and lumped modelling. They have used
the lumped model which can be extended to a fuel cell stack and used it to the computation
of real-time control. In developing the lumped model, the basic electrochemical equations
were used. Furthermore, the partial pressures of gases were used as the exit pressures for the
model and this model was developed by using the PSpice software. The distributed model
was used to obtain the experimental results. They have considered the anode supported
counter-flow tubular cell design and assumed that the partial pressures of Oy, Hy and water
vary throughout the length of the fuel cell. In this paper, they have also provided the I-V
curves for different flow rates as in [20], the polarization curves for different temperatures
and the dynamic response of the cell. It is observable that both models have similar time
responses and the response time does not change significantly with the SOFC temperature.

A computational fluid dynamics (CFD) 2D model for SOFC unit cell is modelled using
COMSOL Multiphyiscs (version 3.5) for an anode supported intermediate temperature SOFC
in [22]. Authors have considered equations for heat, mass and momentum transport for
the model. Furthermore, a local temperature non-equilibrium (LTNE) approach is used to
calculate the temperature distribution in both gas and solid phases of the model. They have
also extended the aforementioned basic model to investigate the effect of internal reforming
reactions of SOFCs. The main findings of their study is that, the activation polarization in
the anode and the cathode and the ohmic polarization of the electrolyte have major influence
on the efficiency.

Paradis H. [23] developed a CFD model by using COMSOL Multiphysics (version 3.5a)
software as an extension of [22] by introducing different internal reforming reactions. Both [22]
and |23] considered 2D models for their analysis. Furthermore, [23] compared the obtained
results with two different models in terms of reaction rates and effects of the transport pro-
cesses.

In our thesis, we have used the COMSOL Multiphysics software (version 5.2) to develop the
equivalent theoretical models for the fabricated SOFCs to validate the characteristics obtained
by carrying out the experiments on the fabricated SOFCs. We have used the COMSOL
models for our theoretical simulations, given that the COMSOL models provide a superior
approximation to experimental scenarios than MATLAB simulation models. However, there
are no any documented previous research work in relation to the 3D modelling of SOFCs
using COMSOL for the best of our knowledge.




1.7. THESIS OUTLINE

1.7 Thesis Outline

This report is organized into six chapters. The first chapter provides a brief introduction to
fuel cells in general and their operation along with an introduction to SOFCs. Furthermore,
we have briefly described the operation of SOFCs, with the help of governing equations. Then,
we have put forward our contribution and scope of work, research objectives along with the
related research work regarding the SOFC fabrication and modelling.

The second chapter consists of the theoretical background information related to the
thesis. We have introduced the different techniques which we have used when fabricating the
SOFCs namely tape casting, screen printing and sintering along with a brief description of
the measurement technique which is used during experiments.

In Chapter 3, we have given a detailed description of the SOFC fabrication process along
with the assembling of SOFCs which is necessary for carrying out experiments. In addition,
we have also described the experimental setup followed by the experimental procedure. Fi-
nally, we have presented how the equivalent theoretical models of the fabricated SOFCs were
modelled using COMSOL.

The Chapter 4 is dedicated to document the theoretical and experimental results corre-
sponding to the fabricated SOFCs and their equivalent COMSOL models. In this chapter, we
have put forward the experimental and theoretical characteristics (polarization characteristics
and power characteristics) of the fabricated and modelled SOFCs respectively.

The experimental results obtained from the fabricated SOFCs are validated in Chapter 5,
by comparing them with the theoretical results. In addition, the main limitations associated
with our thesis work are also discussed.

In Chapter 6, we have summarized the main findings of our thesis and pointed out our
contribution to the scientific community. Finally, important extensions to the thesis are also
presented in the form of future work.

In Appendix A, we have explained the equations related to the different processes associ-
ated with the COMSOL simulation model.

Finally, in Appendix B, the step by step procedure associated with modelling the equiv-
alent SOFC models is described with the help of screenshots captured from the COMSOL
Multiphysics software.







Chapter 2
Theoretical Background

In this chapter, the main focus is to provide the relevant theoretical background information
regarding the thesis as a foundation to understand the SOFC fabrication and modelling which
we are going to provide in the following chapters. In the first part of the chapter, we provide
the fabrication processes related to SOFC electrode construction. Then, we have described the

four wire measurement technique which we have used during experiments.

2.1 SOFC Electrode Fabrication

When fabricating a SOFC, we need to fabricate three electrodes namely anode, electrolyte
and the cathode. We used the tape casting process for constructing the anode while the screen
printing method is used to construct the electrolyte and the cathode. In order to convert the
fabricated tapes (anode and electrolyte) into solid ceramics, sintering process is carried out.

The following subsections describe the tape casting, screen printing and sintering processes.

2.1.1 Tape Casting Process

Tape casting (also referred to as the doctor-blade process) is the casting process used to
produce thin tapes using a liquid slurry [24]. The liquid slurry contains a powder (eg: NiOs
for anode tape), a binder, plasticisers and a solvent and mixed them together until they form
a smooth mixture. A knife called Doctors blade and a glass plate are the main equipments
used for the tape casting process. With the help of the doctors blade, it is possible to apply
a thin layer of the slurry on top of the glass plate according to the required thickness of the
tape. The thickness can be adjusted with the help of the adjustable blade in the doctors
blade. Tape casting process is graphically illustrated in Figure 2.1]
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2.1. SOFC ELECTRODE FABRICATION

(c n=a “}Q [DQ N/ o)

7\ 7 N\

Figure 2.1: Tape casting process [3]

One of the major advantages using tape casting is that it is a low cost process for manufac-

turing thin ceramic films [24] [25].

2.1.2 Screen Printing

Screen printing is a method used for fabricating thick films of electrodes on top of another
electrode surface. There are several advantages of screen printing method such as cheap, no
need of complex machinery as well as the possibility of printing even without flat surfaces.
In order to perform the screen printing process, we need a screen, a sweeper (or a squeegee),
a mesh and a printing medium. Normally, a thick liquid slurry which contains chemicals (eg:
Y SZ for electrolyte construction) and solvent is used as the printing medium. A popular
solvent for making screen printing inks is terpineol. This is a quite viscous liquid with low
vapour pressure and good wetting characteristics, but has the disadvantage of a very strong
smell and is considered a hazard in chemical processing. In order to define the pattern either
a square or a circle, a screen is used. Furthermore, the liquid slurry is placed on top of the
screen and the sweeper is used to press the liquid slurry onto the surface making sure that an
even layer is applied on top of the surface. Figure shows the basic screen printing process.
In the thesis, this method is used to fabricate the electrolyte and the cathode of our SOFCs.

Squeeges Screen mesh
~. [
il Paste |,‘
== o y _om
Screen frame % = }
I Emulsion
Substrate ————— I
- |

Nest —

=

Figure 2.2: Screen printing process [4]
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2.2. MEASUREMENT TECHNIQUES

2.1.3 Sintering

Sintering also known as firing, is the process of compacting the ceramic powder or ceramic
slurry and transform it into a solid state at a relatively high temperature. The process
temperature should be below the melting point of the materials allowing to create strong
bonds between particles. As a result of these bonds, the material density is increased which
makes sintered ceramics suitable to be used in higher temperature applications. This is also

referred to as solid state sintering [26].

O 0o
0n

oLOf P
09050 —» —-
) o C o D forming aintering
020 0

C o0
Raw powder Formed product Sintered produet

Figure 2.3: Sintered process [5]

2.2 Measurement Techniques

In the following subsection, we describe the measurement technique which we applied when

obtaining the current-voltage characteristics of the experimental SOFCs.

2.2.1 Four Wire Measurement Technique

The 4-wire method for measuring accurate voltage is much preferred over 2-wire measurements
that are obtained with a normal multimeter. The essence of the 4-wire method is to have
separate current and voltage wires that connect together at a point as close as possible to
the desired measuring point. In the case of an SOFC single cell, the electrodes are made
with separate voltage and current wires which are then fed though the apparatus to the
instrumentation to achieve the desired 4-wire measurement. This then eliminates almost all

of the ohmic drop that would otherwise be seen in the current wires.

13



2.2. MEASUREMENT TECHNIQUES

The 2-wire method is shown in Figure [2.4

DR
Ryenn Test Current (I}
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Vi = Voltage measured by meter
Vg = Voltage across resistor

HI

o v,
Measured Resistance = l—"' = R+ (2% Rygn)

Figure 2.4: 2-wire measurement technique [@]

Here, the voltmeter reading (V) is not exactly same as the voltage across the SOFC (Vg).
The voltage drop of the wires needs to take into account resulting the V), is greater than the
Vg.

The complementary 4-wire method is shown in Figure[2.5] In order to avoid the ohmic loss

issue, the voltmeter and an ammeter are used to measure the voltage and current separately.

DM
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O T AAA i =1
Lead L
ICT> G'D Vi RESisI‘!nnes Vg Rgmﬂ??::t
Rienn
Lo
SAYAY

Vi = Voltage measured by meter
Vi = Voltage across resistor

Measured Resistance = "rl_l.l. = R+ (2% Rygn)

Figure 2.5: 4-wire measurement technique [@]

In this method, there are two sets of wires used for the voltmeter and the ammeter

connections. The current through the ammeter is high while the current through the voltmeter

is very low. Therefore, V), is approximately equal to Vg .
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Chapter 3

SOFC Fabrication and Modelling

This chapter provides the fabrication procedure of our fabricated SOFCs in a descriptive man-
ner. In addition, we have described the procedure associated with assembling of the SOFC' for
the experiments followed by the experimental setup and the experimental procedure. Finally,
we mention the modelling process of theoretical models equivalent to the fabricated SOFCs to

obtain the theoretical characteristics.

3.1 Fabrication Methodology with Tape Casting and

Screen Printing

ASCs require a thick and mechanically strong support onto which the other much thinner
layers are screen printed. Tape casting has been selected as the method for making the anode
support.

First we fabricated the anode using the tape casting process. Then, the cathode, active
layer, electrolyte, barrier layer and the cathode are screen printed as separate stages. The

overview of fabrication procedure is shown in Figure (3.1}
Process Fabrication
Electrolyte
SOFC Fabrication
Fabrication Completed Assembling
SOFC SOFC
Cathode
Fabrication
Screen Printing
Process

Active Layer
Fabrication
Barrier Layer
Fabrication

Figure 3.1: The overview of fabrication procedure
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3.2. WATER BASED FORMULA FOR TAPE CASTING

In order to make a working cell we have considered five layers as given in Figure[3.2| First,
we fabricate the porous anode using tape casting. We have used N:O, with large particle
sizes (see table for Dsy values) to make sure that the sintered substrate is porous enough
to allow Hy gas to pass through. In the “green” state the tape is casted at about 1 mm in
thickness, but will later shrink down to around 0.3 mm after sintering. In this study, we use
a co-firing strategy in which the substrate and intermediate active layers are co-sintered. The

final cathode layer is then screen printed and sintered in a separate firing cycle.

Cathode

YSZ ‘ / GDC Layer
(Electrolyte)

(about 30 m)\‘ :

W “—___ Active Layer
(10 pm)
Porous Anode
(200 pm)

Figure 3.2: The cross section of a fabricated SOFC single cell

The next layer is an active layer which contains smaller particles of NiO;. The reason
for using finer particles of NiO, (as mentioned in Table 3.1) is to increase the number of
triple phase boundary points. On the other hand the larger particles of NiO, are to ensure
adequate porosity in the substrate to ensure free diffusion Hs. This layer is screen printed
on top of the porous anode ensuring that it has a thickness about 10 um. The electrolyte
(which contains Y SZ) is screen printed on top of the active layer. Before we screen print the
cathode, a thin layer of Gadonium doped Ceria (GDC) (consisting of Gadolinium(I1T) Oxide
(Gdy03) and Cerium Dioxide (CeO,)) is first screen printed on top of the electrolyte. This
layer acts as a barrier to prevent the reaction of Lanthanum Strontium Cobalt Ferrite (LSCF)
(LaSrFeCoO; - the cathode ink) with the Y'SZ (Zirconium Dioxide (ZrO3) and Y503) of
the electrolyte. Note that, if we allow this reaction to occur, it will create an insulation layer

of Strontium Zirconate (SrZrO3) between the electrolyte and the cathode.

3.2 Water based Formula for Tape Casting

Our main objective was to develop a water based tape casting slurry that avoids using organic
solvents. This meant that we have to select binders and plasticisers and dispersants that are
water compatible and allow a uniform a stable film to be formed after the slurry has been
tape casted.

To make a stable tape cast slurry we need to have 4 components Binder, Plasticiser,
Dispersant and Solvent (water in this case). We then add the ceramic powder to the recipe

to complete the formula. Typically, the ceramic content is around 80% by weight.
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3.3.

CELL FABRICATION PROCEDURE

. Binder: PVA-polyvinyl alcohol is a common binder that is soluble in water up to 40%

and when dry it can form a stable adherent film when cast onto glass. This was selected
as our main choice. In our case, we made a stock solution of 20 % which was then added
in various proportions to make a particular batch for casting. Adding too much binder

will cause excessive shrinkage during the sintering process.

. Plasticiser: Glycerol is a very good choice as it is non-toxic, safe and dissolves in water

in all proportions. It has a relative low vapour pressure and this makes a tape that can

remain stable in air for several weeks before becoming too brittle.

. Dispersant: The dispersant is necessary to ensure that the ceramic particles do not form

agglomerates. A low foaming surfactant such as Tween 80 is a suitable choice as it is
miscible in water. Only a small addition is required around 1% of the weight of ceramic
powder. The dispersant is added to the ceramic powder during the ball milling stage.

This ensures that the slurry will be free from agglomerates.

3.3 Cell Fabrication Procedure

We have fabricated two SOFCs which we denote as SOFCy and SOF(Cpg. The difference

between these two SOFCs are the chemical composition used for the construction of the anode

and the electrolyte. The percentage of chemicals we used for fabrication of both SOFCy and
SOFCpg are shown in Table 3.1l The detailed description for fabrication of two SOFCs are

mentioned below. The term “polymer” in the table refers to the combined binder, plasticiser

and dispersant combination.

Table 3.1: Comparison of chemical compositions of SOFCs (wt%)

Particle  Sur- )
Particle Den-
SOFCy SOFCpg face Area .
; sty (um)
(m/g)
NiOy 60% 55% 7.23 0.63
Porous Anode | 3YSZ (3Y) 40% 50% 11 0.43
Polymer 30% 40% - -
NiOy 60% 55% 8-12 0.3-0.6
Active Layer 3YSZ (3Y) 40% 50% 11 0.43
Polymer 30% 40% - -
8Y 75% 75% 8.3 0.45
Electrolyte
Polymer 25% 25% - -
GDC Layer 20 GDC 46% 46% - -
Cathode LSCF 53% 53% - -
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3.4. FABRICATION OF SOFCj4

3.4 Fabrication of SOFC}y

In the following subsections, we discuss the procedure which we followed when fabricating
the SOFCly.

3.4.1 Anode Fabrication

As stated in Table |3.1] we need three chemicals. In addition to that we need water as a
solvent. The procedure associated with fabricating the anode tape is as follows.

First of all, we put all the chemicals (NiO,, 3Y and polymer) into a container and add
5 g of water and mixed them until dissolved. We used an electric mixer to mix the chemicals
together for 1 hour forming a viscous liquid called the slurry. Finally, with the help of a

vacuum chamber, we removed the air bubbles in the slurry we made for the anode. The

procedure mentioned is also described with the help of the Figures 3.3, 3.4 and 3.5.

Figure 3.3: Measuring the Figure 3.4: Mixing the Figure 3.5: Removing the air
chemicals chemicals using an electric bubbles
mixer

Next step is the construction of a tape for the anode. For this process, we need the slurry
made earlier, a glass plate and a doctors blade. The prepared slurry is placed on top of the
glass plate. By using the doctors blade, the slurry was spread along the glass plate by gliding
it on top of the plate in such a way that the tape is having 1 mm of thickness. This process

is called as the tape casting process which is shown in the Figure |3.6

Figure 3.6: Tape Casting Process
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3.4. FABRICATION OF SOFCj4

Then, we let the prepared tape to be dried out in air for few hours. The fabricated anode

tape is shown in Figure Then, the tape was removed carefully with the help of a scraper.

Figure 3.7: Fabricated anode tape using tape casting process

3.4.2 Electrolyte Fabrication by Screen Printing

In order to fabricate the electrolyte (on top of the anode tape), first we make a thick slurry
using the pure 8Y (8% of Yttrium of Y503), polymer and water as solvent and the percentages
of the chemicals used are mentioned in Table 3.1} The process of making the slurry for the
electrolyte is similar to the process of making the slurry for the anode as given in Section
3.4.1.

Before we fabricate the electrolyte on top of the anode, first a thin layer of NiO, is screen
printed (using the previously made anode slurry) on top of the anode tape. This layer helps
in improving the current collection capability of the SOFC. For the screen printing process, a
printing medium (in this case the anode slurry), a screen, a mesh and a sweeper are required.
The sweeper and the mesh which is required to apply an even layer of the slurry on top of

the anode are shown in the following Figures 3.8 and 3.9.

Figure 3.8: The sweeper used to spread the paste
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3.4. FABRICATION OF SOFCj4

Figure 3.9: The mesh with the required pattern

Furthermore, it is necessary to keep a constant distance between the mesh and the cell to
have a consistent layer. The setup which is used for the screen printing, including the mesh is
illustrated in Figure 3.10. After screen printing the layer of NiO, on top of the anode tape,
the electrolyte is screen printed on top using the electrolyte slurry (made of pure 8Y) as the
printing medium. The detailed description of the screen printing method is given in Section

3.4.3 when we describe the screen printing of the cathode.

Figure 3.10: Setup for the screen printing

Next step is to convert the fabricated tape into a ceramic. In order to do this, we used
the sintering process described in Section and thereby increase the temperature of the
SOFC in a systematic way (with the help of a temperature curve) as shown in Figure m
First, we increased the temperature up to 750°C' (with the rate of 15°C'/hour) and left the
fabricated tape at 750°C' for 2 hours to allow the polymer to be burnt out completely. Then,
we increased the temperature up to 1300°C and left 15 hours to solidify the tape. Finally,

the temperature is reduced to room temperature at a rate of 100°C'/hour.
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1300 1300

750 75,

Temperature (C)

Time (hours)

Figure 3.11: Temperature curve for sintering process

The final ceramic tape (both the anode and the electrolyte) after the sintering process is

illustrated in Figure |3.12

Figure 3.12: Fabricated tape after sintering process

3.4.3 Cathode Fabrication and Application

The cathode was made as a separate slurry using a method similar to the tape casting
procedure. In our case, we selected LSCF as the cathode material as it has been shown to
be very active in the temperature range that we are using in our tests (750°C' - 800°C').

The associated steps in screen printing of the cathode (on top of the layer of GDC) is
illustrated with the help of the Figure 3.1.A to Figure 3.1.G respectively.
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3.4. FABRICATION OF SOFCj4

Figure 3.1.A shows the base plate of the

screen printer.

Figure 3.1.B illustrates the placing of the
sintered cell on top of the base plate with
the electrolyte side on top.

Figure 3.1.C shows the required mask pat-
tern for the cathode either round shape or
square shape. In this case, we used round
shape with a diameter of 50 mm. In or-
der to achieve this, the required shape is
carved on top of the tape and stick it on
top of the mesh.

Figure 3.1.D illustrates the place where to
apply the cathode ink on top of the mesh
to perform screen printing. As the cath-
ode ink, we have used LSCF.
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3.5. FABRICATION OF SOFCp

Figure 3.1.E illustrates the procedure of
screen printing. The ink needs to press
towards the cell which is on top of the base
plate. The sweeper (squeegee) is used to

press the ink.

Figure 3.1.F shows the final position of the
sweeper after finishing screen printing. It
is obvious to make sure that an even layer

of ink is applied.

Figure 3.1.G illustrates the fuel cell after
the screen printed cathode has been ap-

plied.
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3.5 Fabrication of SOF(Cpy

The fabrication procedure for the anode, the electrolyte and the cathode for SOFCpg are
identical to the fabrication process of SOFCy. Note that, the only difference between the
two SOFCs is the chemical compositions used for the construction of the anodes in respective

SOFCs.

3.6 Assembling the SOFC

After making the cells, the next stage is to test them in the SOFC setup. This comprises of
a furnace able to achieve 1300°C, a gas mixing station and instrumentation to measure the

cell characteristics.
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3.6. ASSEMBLING THE SOFC

The associated procedure is described with the help of the following Figures.

Figure 3.2.A shows the base plate of the
experimental setup with H, intake for the

anode.

Figure 3.2.B shows the compressed Nickel
foam placed on top of the setup which has
a thickness about 0.5 mm. This Nickel
foam helps to distribute Hy throughout

the surface of the anode.

Figure 3.2.C illustrates the sealing gel
which is used in between the plate and the
insulation layer to make sure that there is

no leakage.

Figure 3.2.D shows the placed single insu-
lation layer on top of the sealing gel as-
suring that there is no gap between the
plate and the insulation layer. Moreover,
this layer prevents contacting any corner
of the anode with any metal parts of the

setup.
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3.6. ASSEMBLING THE SOFC

Figure 3.2.E illustrates the SOFC on top
of the insulation layer. The sealing gel is
applied around the SOFC to ensure that

there is no leakage.

Figure 3.2.F shows the gold current collec-
tor which is placed on top of the cathode
and the upper insulation layer around the

SOFC.

Figure 3.2.G illustrates the thermocouple
connectors which are connected to the cell
in order to measure the actual cell temper-
ature. Furthermore, the insulation cap is

placed on top of the cathode.

Figure 3.2.H shows the final insulation
layer placed on top to cover all the com-

ponents.
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3.7. EXPERIMENTAL SETUP

Figure 3.2.1 shows the final plate of the
setup which contains air intake for the
cathode.

Figure 3.2.J illustrates a close-up picture
of the screw going through the assembly.
The pressure applied to the SOFC dur-
ing the experiment depends on the length
of the spring. Therefore, it is necessary
to have the same distance for all the four
springs in the setup. The set of 4 springs is
used to apply the correct amount of pres-
sure that is require to make good ohmic
contact between the mesh current collec-
tors and the cell under test. In our setup,

each spring is 26.45 mm in length.

Figure 3.2.K shows the final experimen-
tal setup which is placed in the furnace to
increase the temperature to the operating
temperature of the SOFC prior to perform

the experiments.

3.7 Experimental Setup

In order to carry out the experiments on the fabricated SOFCs, first an experimental setup is
formed as mentioned below. The setup includes a furnace, two digital multimeters, a power
supply, a thermocouple, a gas flow controller and a temperature controller. Given that a single

SOFC produces low power, we have connected the power supply in series with the SOFC.
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3.7. EXPERIMENTAL SETUP

Furthermore, we have used the 4-wire measurement technique (as described in Section [2.2.1])
to measure the voltage of the SOFC. Figure |3.13| illustrates the equipment layout whereas

Figure [3.14] shows the snapshot of our experimental setup.
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Figure 3.13: Equipment layout for the experimental setup

Figure 3.14: Snapshot of our experimental setup
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3.8. COMPONENTS USED FOR EXPERIMENTAL SETUP

3.8 Components used for Experimental Setup

This section describes the functionality of the components used in the experimental setup.

3.8.1 Temperature Controller

It is necessary to keep the SOFC within the operating temperature which is 755°C. Hence,
we increased the temperature from room temperature to the operating temperature of the
SOFC using the temperature controller. We did not increase the temperature instantly to
755°C. The temperature was increased according to a temperature curve shown in Figure
[B.15] Then, we kept the temperature at 755°C' during the experiments, which is the operating
temperature of the SOFC.

755 755

400 40

Temperature (C)

Time (hours)

Figure 3.15: The temperature curve for raising the temperature of the SOFC to 755°C'

3.8.2 Gas Flow Controller

Gas flow controller is used to control the flow of gases. For the experiments, we have used
three channels of the controller to pump the gas as the fuel to the SOFC. Those channels
are used to control the flow of Hy, Nitrogen (/N3) and air. The reason for inserting N, is to
prevent the reaction of Hy and Oy from air. If we inserted H, and air directly to the system,

they will react and ultimately damage the SOFC.
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3.9. EXPERIMENTAL PROCEDURE

3.8.3 Thermocouple

Although, we program the temperature controller to a certain temperature (755°C) as the
operating temperature, this might not be the actual temperature of the SOFC inside the
furnace. With the help of a thermocouple attached to the SOFC, we can measure the ac-
tual temperature of the SOFC. Thus, it is possible to adjust the temperature through the

temperature controller until the thermocouple shows the value 755°C.

3.9 Experimental Procedure

In this section, we have described the experimental procedure we used for our experiments. We
have inserted air to both the anode and the cathode electrodes of the SOFC until temperature
reaches from room temperature to 755°C. Then, we fed N5 to the anode side while air supply
remains the same in the cathode side. Finally, we have replaced N, with pure Hy and let the
system run for 30 minutes to have a steady open circuit voltage (OCV). In order to obtain
the cell characteristics, we have decreased the voltage of the SOFC by steps of 50 mV from
OCV to 450 mV and obtained the corresponding current values. In order to evaluate the

performance of the fabricated SOFCs, the following characteristics are considered.
e Polarization curve (SOFC Voltage vs Current density)
e Power curve (Power density vs Current density)

The obtained cell characteristics and cell data are presented in Chapter 4.

3.10 Theoretical Model

In order to validate the performance of the fabricated SOFCs, we developed theoretical models
equivalent to the fabricated SOFCs using the COMSOL software. The following subsection
describes the construction of the equivalent COMSOL models.

3.10.1 Model Construction

The first step is to construct the geographical model. We have selected y-z plane as the 2D
plane for our model. Then by using rectangle shapes, we constructed the cross section of the

2D model as shown in Figure 3.16.
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Figure 3.16: Constructed 2D model

For this model, we used two porous gas diffusion electrodes (GDEs) as the anode and
the cathode. Furthermore, the anode flow channel, cathode flow channel and the electrolyte

were also included. Then, we extruded it to generate the 3D model. The constructed 3D

geographical model is shown below.

Cathode x1073

Cathode Flow Channel

Electrolyte

Figure 3.17: Constructed geometry for the model

The next step is to configure the model according to our requirements. In order to achieve

that, we need to select the appropriate physics related to the model. We have defined mass
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3.10. THEORETICAL MODEL

fractions for the anode and the cathode of the model by using the physics related to the
chemical species transport. Then, the related velocities and the pressure for both the anode
and the cathode are defined by using free and porous media flow. Furthermore, we have
considered that the Hs rich gas is entering to the anode from the left while air is fed from the
right of the cathode. We have used the secondary current distribution for two porous GDEs
and for the electrolyte. Then, we need to set the parameters for the electrodes and for the

anode flow channel as well as the cathode flow channel. The relevant parameters are given in
Table 3.2

Table 3.2: Parameters used for the model

Description Value Description Value
Atmospheric pressure 1.013e5 Pa Kinetic volume Ho le—6
Temperature 755°C' Kinetic volume Oq le—5
Viscosity, air 3e —5 Pa.s Kinetic volume N, 6e — 6
Pressure drop, anode 2 Pa Kinetic volume H>O 1.7e — 6
Pressure drop, cathode 6 Pa Molar mass, Ho 2 g/mol
Exchange current density, an-
* & v 0.1 A/m? Molar mass, Ha 2 g/mol
ode
Exch t  densit
XCRAnge - curen I 0,01 A/m? Molar mass, O 32 g/mol
cathode
Specific surface area, anode 200 1/m Molar mass, No 14 g/mol
Specific surface area, cathode | 200 1/m Molar mass, HoO 18 g/mol
Initial cell polarization 0.06V Reference diffusivity 3.16e — 8 m?/s
Anode permeability le — 10 m? Porosity 0.4
Cathode permeability le — 10 m? Diffusivity, Hy — H2O 0.0010759 m? /s
Equilibrium voltage, anode oV Diffusivity, O — HoO 2.0927e — 4 m?/s
Equilibrium voltage, cathode | 1V Diffusivity, O — Na 2.5329¢ — 4 m?/s
Cell voltage 0.95V Diffusivity, No — H30 2.8882¢ — 4 m?/s
Electrode effective conductiv- .
] 1.5/m Gas flow channel width 5¢ —4m
ity, anode
Solid effective conductivity, o
1000 S/m Rib width S5e —4m
anode
Electrode effective conductiv- Gas diffusion electrode thick-
) 1.8/m 0.001 m
ity, cathode ness
Solid effective conductivity, .
1000 S/m Electrolyte thickness 0.001 m
cathode
Electrolyte conductivity 25 .5/m Gas flow channel height 5e —4m
Current collector conductiv-
N 5000 S/m Flow channel lenght 0.01 m
ity
Inlet weight fraction, Hs — 04 Inlet weight fraction, Oy — 015
H>0 ' H>0 '
Inlet weight fraction, Oy — No . 3
0.37 Total molar concentration 11.853 mol/m
y
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3.10. THEORETICAL MODEL

After configuring the parameters, we have created the mesh to discretize the model. We
used finite element method which divides the model into small geometrical shapes. Hence,

we can get more accurate results for our simulations. The constructed mesh for the model is
shown in Figure [3.18

Figure 3.18: Constructed Mesh for the Model

As the final step, we need to obtain the theoretical characteristics of the modelled SOFC.
In order to do that, we need to define the mode of study. For our analysis, we selected the
stationary study mode assuming that the load and temperature are independent of the time.

Finally, the model was simulated to obtain the theoretical SOFC characteristics.
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Chapter 4
Theoretical and Experimental Results

In this chapter, our main focus is to illustrate the theoretical and experimental results of the
newly constructed SOFCs and the equivalent theoretical COMSOL simulation models. First,
we provide the corresponding results for the fabricated SOFCs and then the simulation results

obtained from the equivalent COMSOL models are presented.

4.1 Experimental Results

In this section, we have provided the experimental results obtained in relation to SOFC4
and SOF(Cpg. First, the polarization curves for both SOFCs are presented followed by the

power curves.

4.1.1 Polarization Curves for SOFC4 and SOFCp

Figure and Figure shows the polarization curves plotted for SOFC4 and SOFCp

respectively.
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4.1. EXPERIMENTAL RESULTS
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4.1. EXPERIMENTAL RESULTS

4.1.2 Power Curves for SOFC4 and SOFCpy

Figure and Figure [£.4] shows the power curves plotted for SOFC4 and SOFCp respec-
tively.
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Figure 4.4: Power density vs Current density for SOFCpg
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4.2. THEORETICAL RESULTS

4.2 Theoretical Results

This section provides the simulation results we have obtained through simulating the COM-

SOL models which are equivalent to SOFC 4 and SOFCg. We have developed two COMSOL
models equivalent to both SOFCy and SOFCpg by changing the parameters of the model.

4.2.1 Current Density Distribution

The following figures show the current density distribution of the cathode side along the

z direction.

—~ =103 y
xlo-s _—— ,,_,,_,..,.,. S — =
Figure 4.5: The Current density of SOFC4
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Figure 4.6: The Current density of SOFCp
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4.2. THEORETICAL RESULTS

4.2.2 Polarization Curves for the Theoretical Models

The variation of voltage with current density obtained from the simulation of equivalent
COMSOL models for SOFC,4 and SOFCp are shown in Figure [£.7] and Figure respec-
tively.
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Figure 4.7: Voltage vs Current density for SOFCy
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4.2. THEORETICAL RESULTS

4.2.3 Power Curves for Theoretical Models

Figure [£.9] and Figure represent the variation of power density of the theoretical SOFCs

with current density results obtained from equivalent COMSOL models respectively.
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Chapter 5
Discussion

In this chapter, our aim is to validate the results documented in the previous chapter and
evaluate the performance of the fabricated SOFCs. We start the chapter by comparing the
characteristics of the fabricated SOFCs with the results obtained from the equivalent COMSOL
models. Then, the characteristics of our fabricated SOFCs are compared to determine which

SOFC performs better. Finally, the limitations which we faced during the thesis are discussed.

5.1 Comparison of theoretical and experimental results

In this section, we have compared the experimental results obtained from the fabricated
SOFC, and SOFCp with the simulation results obtained from the equivalent COMSOL
models. Figure [5.1] shows the theoretical and experimental polarization characteristics for

SOFCy.

Voltage comparison
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0.3
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o 200 400 600 800 1000 1200
Current density {A;"mzj

Figure 5.1: Voltage vs Current density
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5.1. COMPARISON OF THEORETICAL AND EXPERIMENTAL RESULTS

Figure [5.2| represents the comparison between theoretical and experimental power curves for

SOFC,4.

Power density comparison
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Figure 5.2: Power density vs Current density

When considering Figure[5.1}, we can see that the voltage of both curves gradually decrease
with the increase of the current density. Moreover, at lower values of current density, theo-
retical and experimental curves tend to match than for the higher values of current density.
Note that, we cannot reduce the cell voltage below 450 mV', since it may damage the SOFC.
Hence, we are unable to plot the experimental curves for the full range of current density
values.

In Figures 5.3 and 5.4, we provide the comparison between experimental and theoretical
results in relation to SOFCp. Theoretical and experimental polarization curves for SOFCg
is almost identical to the respective polarization curves of SOFC4. However, it is observ-
able that the theoretical and experimental power curves for SOFCpg exhibits less deviation

(between curves) than the corresponding power curves for SOFC.
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5.1. COMPARISON OF THEORETICAL AND EXPERIMENTAL RESULTS
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More importantly, we can see that the experimental characteristics curves for both fab-
ricated SOFCs resembles their corresponding theoretical characteristics. Hence, it is evident
that our experimental results are valid. Furthermore, some of the possible reasons for the
deviations in theoretical and experimental characteristics are discussed in Section [5.3] where

we pointed out the limitations associated with our work.
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5.2. PERFORMANCE COMPARISON OF SOFC4 AND SOFCp

5.2 Performance Comparison of SOF(C4 and SOFCp

In this section, we compare the performance of SOFC4 and SOFCg. Figure |5.5| represents
the comparison of polarization characteristics while Figure [5.6| represents the power charac-
teristics of SOFCy and SOFCpg. According to the figures, it is evident that SOFC,4 has
better characteristics than SOFCp.
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Figure 5.5: Voltage vs Current density
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5.2. PERFORMANCE COMPARISON OF SOFC4 AND SOFCp

In comparing SOFCy and SOFCp, it is evident that the performance of SOF'C} is better
that SOFCp. The reason can be determined by the composition of the anode support as
given in the Table 3.1 (copied below)

Table 3.1: Comparison of chemical compositions of SOFCs (wt%)

SOFC, SOFC), Particle Surface | Particle Den-
Area (m?/g) sity (um)
N10, 60% 55% 7.23 0.63
Porous Anode| 3Y 40% 50% 11 0.43
Polymer 30% 40% - -
N0, 60% 55% 8-12 0.3-0.6
Active Layer | 3Y 40% 50% 11 0.43
Polymer 30% 40% - -
Electrolyte 8Y 5% 5% 8.3 0.45
Polymer 25% 25% - -
GDC Layer | 20 GDC 46% 46% - -
Cathode LSCF 53% 53% - -

In SOFC 4 we used 60% N0, whereas in SOF C'g we decreased this to 55%. The deviation
of 5% will have the effect of increasing the amount of NiO; in the substrate and decreasing
the amount of Y'SZ. This can affect the microstructure of the substrate and also the active
surface area (number of 3-phase contact points). In a simple assessment we can conclude
that by increasing the NiO, content by 5% will increase the porosity of the substrate towards
hydrogen diffusion and thereby increasing the supply of Hs to the active parts of the electrode
where the triple phase boundaries exist. Overall this gives rise to a better cell performance.

It was outside the scope to this study to perform a full microstructural investigation on
the fabricated cells, but we intend this to be a subject for the further studies. However in both
cases we obtained very respectable performances from a formulation that has far from been
optimized. Quoting power at the standard value of cell voltage at 0.7 V', for the fabricated
SOFCs are tabulated in Table [5.1]

Table 5.1: Quoting power at the standard value of cell voltage at 0.7V

Cell Type Power (mW cm™2)
SOFC4 190
SOFCpg 150
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5.3. LIMITATIONS IN THE TAPE CASTING PROCEDURE

5.3 Limitations in the Tape Casting Procedure

In this section, the limitations associated with this thesis are discussed. We have pointed out
the limitations which we faced when fabricating the SOFCs as well as performing experiments.

When fabricating the anode and the electrolyte, we need to add 1.6 g of water for 1 g of
ceramic powder. In addition, we require polymer and dispersant liquids to make the slurry.
However, we do not know the exact water percentage associated with the polymer and the
dispersant used for our fabrications. Therefore, the percentage of solvent added may not be
exactly 1.6 g for 1 g of ceramic powder.

During the sintering process, we need to place the anode and the electrolyte in between
two setting plates to avoid uneven surfaces. In the lab, we have only one set of plates. If the
weight of these plates are high, it might not create a good ceramic and may also create cracks
in the ceramic.

When fabricating the cathode using screen printing, the cathode slurry is applied on top
of the sintered SOFC with a certain angle. If this angle is too high, the amount of paste
passing through the screen will be low, creating a thinner cathode. Furthermore, if the angle
is too low, the amount of paste passing through the screen will be high, which might lead to
a cathode with an uneven surface.

It is necessary to supply gases through a channel to the middle of the anode and the
cathode during experiments in such a way that the gases evenly distribute through the surface.
If the gas supply is not evenly distributed through the surface, it may cause uneven voltage
and current levels along the surface of the electrodes. Furthermore, we can only vary the
voltage of the cell from OCV to 450 mV, since reducing the cell voltage less than 450 mV
could potentially damage the SOFC. Hence, we cannot obtain the complete experimental
characteristics as evident from Figure [5.2]

These limitations may have lead to the slight deviations in the theoretical and experimental

characteristics.
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Chapter 6
Conclusion

In this chapter, we conclude the thesis by providing a summarization on the objectives, main
results and our contribution as well as introducing new research directions that have invoked
as a result of our analysis.

The main objective of this thesis was to analyze the effect of electrode chemical compo-
sitions on the performance of the planar anode supported SOFCs as well as validating the
experimental results with the help of equivalent theoretical models. Furthermore, we fabri-
cated the SOFCs in such away that there is an active layer (NiOz) in between the anode and
the electrolyte as well as a barrier layer (GDC') in between the electrolyte and the cathode.
Hence, the SOFCs have five layers instead of the more common 3 layer architecture. For the
analytical purposes, we fabricated two SOFCs (SOFC4 and SOFCp) with different chemical
compositions. To be exact for the SOFC}y, we used 60% NiO,, 40% 3Y and 30% polymer
for the anode whereas 75% 8Y and 25% polymer were used for the electrolyte. Furthermore,
we used cathode ink with 53% LSCF for the cathode fabrication. However, for SOFCp we
used 55% NiOq, 50% 3Y and 40% polymer for the anode while the chemical compositions
for the electrolyte and the cathode were same as in SOFCy4. When fabricating the anode
and the electrolyte, we used water as the solvent rather than using organic solvents which
is the most common industrial standard. Hence, our fabrications are more environmentally
friendlier due to the fact that we minimized the use of hazardous organic solvents.

To evaluate the performance, we obtained the polarization and power characteristics for
both of the fabricated SOFCs by carrying out experiments. In order to validate the obtained
experimental characteristics, two theoretical 3D COMSOL models equivalent to the fabricated
SOFCs were developed. Furthermore, with the help of appropriate simulations, we obtained
the theoretical polarization and power characteristics for both SOFCs. Finally, we compared
the experimental characteristics of the two fabricated SOFCs with the simulation results
obtained from the equivalent theoretical COMSOL models.

With the help of Figures 5.1 to 5.4, we have shown that the experimental characteristics
for both fabricated SOFCs resembles their corresponding theoretical characteristics. Hence, it
is evident that our experimental results are valid. According to Figure 5.5 and Figure 5.6, we

can see that the SOFC4 has better performance by means of both the polarization and power
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characteristics than SOFCg. Thus, it is evident that the chemical composition we have used
for fabricating SOFC4 yields better performance. Hence, it is fair to conclude that, when
the percentage of NiOs is higher in the anode, SOFCs exhibits better performance.

Our performance data obtained on the two SOFC compositions (SOFC 4 = 190 mW cm ™2
, SOFCp = 150 mW e¢m™2, both at 0.7 V) are very encouraging and show that an all water
based tape casting procedure can produce results that are comparable to more convention
solvent based systems. In future work, we will optimise the composition to increase the power
densities.

In order to fabricate the anode and the electrolyte of our SOFCs, we used water as the
solvent when making the respective slurries whereas for the cathode, we used a commercial
cathode ink made of organic solvents. These organic solvents are expensive and therefore it
affects the total fabrication cost of a SOFC. However, if we can use water as the solvent for
the cathode as we used for the anode and for the electrolyte, the cost can be reduced and
the fabrication process will be much more environmentally friendlier. Therefore, investigating
the possibility of using water as a solvent for cathode fabrication instead of using an organic

solvent might also be an interesting extension to our work.
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Appendix A

In Appendiz A, we have described the processes along with the respective governing equa-
tions associated with the modelling of theoretical SOFC model using COMSOL Multiphysics
software.

When simulating the developed COMSOL models, the equations for momentum, charge
balances and mass transport are solved simultaneously. The main processes associated with

the functionality of the model are stated below.
e Multicomponent transport

— Mass balances in gas phase in gas channels and porous electrodes (Maxwell-Stefan

Diffusion and Convection)
e Gas diffusion

— Flow distribution in gas channels (Navier-Stokes)

— Flow in the porous GDEs (Brinkman equations)
e Charge Balances (Ionic and Electronic)

— lon charge balance (Ohm’s law)
— Electronic charge balance (Ohm’s law)
— Butler-Volmer charge transfer kinetics

In the following sections, aforementioned processes and the related governing equations

are mentioned.

A.1 Multicomponent Transport in Model

Although SOFCs support fuel flexibility, we used pure Hy and air as fuels for this model. As

the anode fuels, combination of Hy and water vapor (humidified H,O) are used. Furthermore,

in the cathode, we used a combination of air, water vapor and N, as the cathode fuel.
When considering the transport of fluid, we have included both diffusion (the distribution

of chemical species uniformly in space with time) and convection (the bulk motion of fluid)

o1



A2, GAS DIFFUSION

of the fluid. For each electrode flow compartment (anode and cathode flow channels), the
material transport is modeled by the Maxwell-Stefan’s diffusion and convection equations [28].

The base of the Maxwell-Stefan diffusion and convection equation is,

Opwi
ot

where p denotes the density, w; the mass fraction, j; is the molecular mass flux and R; is the

reaction rate of the i'" species, u is the velocity.

The boundary at the walls (the interfaces between the porous electrodes and the gas flow
channels) of the gas channels and the electrodes are considered as zero mass flux (insulation
condition). We have specified the inlet conditions (as given in Table 3.2) while considering
the outlet conditions as convective flux. This means that the component transport is per-
pendicular to the boundary. Furthermore, it is assumed that there is continuity in all the
transport compositions [29]. In our model, we have used the concentrated species interface

to solve the above equations.

A.2 Gas Diffusion

In order to define the velocity field and the pressure in gas channels, we used a free and
porous media flow interface. Gas flows in open channels are modelled by using the weakly
compressible Navier-Stokes equation [29] as given below.
ou 2
p(a +u.Vu) = =Vp+ V(u(Vu) + (Vu)") — gu(Vu)]) +F
where u is the fluid velocity, p is the fluid pressure, p is the fluid density, and u is the fluid
dynamic viscosity. This equation is constructed by combining several independent parameters.

Those are
o p(g—;‘ + u.Vu) : Inertial forces of the system.
e Vp : Force created by pressure of the fluid.
o V(u(Vu) + (Vu)) — 2p(Vu)I) : Viscous forces of the system.
e [': The external forces applied to the fluid.

The flow velocities in the porous GDEs are enforced with the help of the Brinkman
equations [30] [31]. The Brinkman equation is given by,
1

Vp = —7v+ Vi (v)

where v is fluid velocity, p is fluid viscosity, p. is the effective viscosity parameter.
The momentum equations are used to define the boundary conditions of the inlet channels

(Hy and air) while the outlet pressure is made equal to 1 atm.
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A.3. CHARGE BALANCES (IONIC AND ELECTRONIC)

A.3 Charge Balances (Ionic and Electronic)

A secondary current distribution interface is used to determine the ionic and electronic charge
balances of the electrolyte. This includes the two GDEs as well as the anode and the cathode
current feeders. We have assumed that the charge transfer current density can be described
by using the Butler-Volmer charge transfer kinetics [32] [33]. Furthermore, assuming that
the first electron transfer in the anode as the rate determining reaction, the equation for the

charge transfer kinetics can be written as,

Ch2 0.5F Ch20 )6 —1.5F

Jexp( n) — ( zp( BT 1))

Z.avct = Zoya((
Ch2,ref RT Ch20,ref

where ¢, is the anode exchange current density, cj2 is the molar concentration of Hs, cp,, is
the molar concentration of H,O, ¢; is the total concentration of species, cpo ey and cpoores 1S
the reference molar concentrations, F' is the Faraday’s constant, R is the gas constant, T is

the temperature and 7 is the overvoltage. All values are in SI units.

The overvoltage is defined by,

n= ¢electronia - ¢ionic - AQﬁeq

where A¢e, is the equilibrium potential difference.

The cathode charge transfer kinetics is given by,

3.5F Ct —0.5F

ic,ct=@'o,c(6:1:p(ﬁn)—fcoz(CO2 f)eﬂfp( =T n))

where 7 . is the cathode exchange current density and z,, is the molar fraction of O,
We used the anode inlet voltage as a fixed reference voltage which is equal to zero. The

cathode inlet voltage (V) is given by,

‘/cell - Agbeq,c - AQbeq,a - vaol
where V), is the polarization voltage.
For the model, we used Agege =1V, Apega =0V and 0.05V | Ve | 0.8 V. We have applied

the insulating boundary conditions for all the external boundaries for the ionic charge balance

equations of the model.
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Appendix B

In Appendixz B, the step by step procedure associated with modelling the equivalent SOFC mod-
els is described with the help of interface screenshots captured from the COMSOL Multiphysics

software.

605 MB | 758 MB

Untitlec.mah - COMSOL Multiahysics

First, the model wizard in COMSOL Multiphysics software is selected.
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