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Abstract 
 
Is has been observed that the volatility index, VIX, often ends in a spike peak. The intention 

when introducing VIX was to measure the volatility related to S&P indices. Evidence in the 

literature argue that VIX is an estimate of investors sentiment and fear, by need for insurance 

of portfolio in term of options. In the thesis we outlined three studies related to VIX and S&P 

500. We perform a replica study of the already observed asymmetrical relation between VIX 

and S&P 500, where we include symmetrical models to discuss the results.  Furthermore, two 

studies take the spike peak in VIX into account. The first determine the peaks of VIX in terms 

of rising and falling phases and contains statistical summary of the phases. The second study 

determine the abnormal return in S&P 500 around the peaks in VIX, with use of a window 

including ten days before peak and ten days after peak. The studies are motivated by the 

relationship between the VIX and S&P 500. There are limited literature about VIX in terms of 

phases of rising and falling volatility. The motivation for these studies is to find a clear structure 

of the relationship around the spike peak. To understand investors sentiment, theory from the 

literature about behavioral finance are included. The research goals for the studies are to find 

clear patterns of how return act in relation to volatility. We expect evidence of negative 

relationship between VIX and S&P 500, where S&P 500 increases more slowly then it drops. 

In terms of the abnormal returns we expect the return to be significantly negative before the 

peak and significantly positive in the days after the peak. The results from the replica study give 

evidence of a negative relationship, although we did not reach all the expected results as in 

Whaley (2000) and Whaley (2009). Results for the study of peaks shows that duration of a 

falling phase is longer than duration of a rising phase, and the opposite for amplitude in VIX. 

Results for the abnormal study show a clear negative trend of abnormal return before the peak, 

cumulative abnormal return of – 4.106 percent for the eleven first days of the event study. In 

addition, the abnormal return for the ten days after the peak gave 3.12 percent.  
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1 Introduction 

Practitioners have observed that the stock market return is negative before the volatility peak, 

and positive after the peak. A spike peak in the stock market volatility is said to be a typical 

signal to buy stocks. The Chicago Board Options Exchange has reported the VIX index since 

1993. The VIX index is a measure of implied volatility which is related to the S&P 500 index. 

The dynamics of VIX is characterized by many periodic peaks, and where a spike in VIX is 

related to a drop in the stock market price, S&P 500 index (Whaley, 2000). In the first article 

of VIX presented by Whaley (2000) the VIX index was called the “investor fear gauge”, this is 

because of the contemporaneous relationship between the VIX index and the S&P 500 index. 

Where its argued that VIX is an estimate of investors sentiment and fear. The thesis is motivated 

by the relationship between volatility and return in S&P 500. Where three studies lead up the 

how abnormal return in S&P500 act around spike peaks in volatility, measured by the VIX 

index. Included in the thesis are also theory about behavioral finance, to describe the results 

from the empirical studies by investors sentiment. The research goals are to find clear patterns 

in how abnormal return act in relation to volatility.  

 

When studying the relationship between the VIX index and the S&P 500 index we replicated 

the studies done by Whaley (2000) and Whaley (2009), where we use asymmetric regressions 

as well as we included symmetric regressions. We looked at the symmetric and asymmetric 

relationship when changes S&P 500 predict the changes in VIX, and then we turned the 

equation around and looked at the relationship between the change in VIX predict the changes 

in S&P 500. Even though some of our results were unexpected, the relationship between the 

VIX index and the S&P 500 index is stronger when the market price decreases (VIX increases) 

compared to when the market price increases (VIX decreases). This relationship is asymmetric, 

and can be an explanation why the VIX index can be related to investors sentiment.  

 

In the second study we used the algorithm developed by Bry and Boschan (1971) and Lunde 

and Timmermann (2003) to define turning points in bull and bear markets in the stock market, 

and determine peaks in the VIX index. We divided phases into rising and falling volatility. This 

topic is relatively new when using the volatility divided into rising and falling phases. The 

results showed that falling phases contains of longer periods than rising phases, while rising 

phases tends to increase more than the falling phases decrease. The third and the last study also 
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include peaks in VIX, we used the peaks we found in the second study. In this study we first 

test for mean abnormal return before and after a peak using 5, 10, 15, and 20 days. Second, we 

used the event study methodology with dummy variables to find if there is evidence of abnormal 

returns around peaks in VIX. It is not much existing literature on this topic, while regarding the 

event study methodology we used the event study presented by MacKinlay (1997) and Binder 

(1998). The study was done by using the full sample from January 1, 1990 to December 31, 

2015, then we divided the full sample into two periods, first half (1990.01.01-2002.12.31) of 

the sample and second half (2003.01.01-2015.12.31) of the sample. Further we did a robustness 

test where we divided into above median amplitude and below median amplitude. The first part 

of this study showed that the mean abnormal return was negative before the peak, and positive 

after the peak. We found strong and robust evidence of abnormal returns around peaks in VIX.  

 

In the next chapter we will present a literature review, then theory about behavioral finance and 

the data we have used, including a summary statistic. Further we will divide our methodology 

and empirical results into three sections where we in chapter 5 start with the study of the 

relationship between the VIX index and the S&P 500 index, chapter 6 the study of peaks in 

VIX, and chapter 7 the event study of abnormal returns around peaks in VIX. In chapter 8 we 

will discuss our findings from chapter 5-7 before we in chapter 9 concludes the thesis.  
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2 Literature Review  

There are a few papers explaining how the VIX index is constructed and its statistical behavior. 

Some of the articles which describe the VIX index is Whaley (2000), Whaley (2009), and 

Fernandes, Medeiros, and Scharth (2014). Already in the very first article presented by Whaley 

(2000) the VIX index was called the “investor fear gauge”. He showed that the relationship 

between the change in stock market index and the changes in the VIX index is asymmetric. The 

regression showed that the stock market index is expected to increase by 0.775% if the VIX 

index does not changed, due to premium for risky investments, the stock price is expected to 

increase over time. He included a new variable to make the regression asymmetric, which 

contains of only positive changes in VIX. Further, the results state that if the VIX index 

decreases by 100 basis points, the stock market index will increase by 0.469%, and if the VIX 

index increases by 100 basis points, the S&P 100 index will decrease by -0.707%. The 

interdependence between the stock market reacts stronger to an increase in VIX than to a 

decrease in VIX. Thus, this asymmetry states that VIX is a measure of the investors fear rather 

than the expected future stock market volatility. Whaley (2009) use the relation between the 

VIX and the stock market, where he includes a new variable in the regression which contains 

only of returns when the market is going down to estimate the VIX. The intercept in his 

regression was insignificant which means if the stock market index does not change during the 

day, the change in the VIX index will be negligible. The relationship between the VIX index 

and the S&P 500 index is inverse and asymmetric. His results show if the S&P 500 index 

increases by 100 basis points, the VIX index will decrease by -2.99%, and if the S&P 500 index 

decreases by 100 basis points, the VIX index will increase by 4.493%. Fernandes, Medeiros, 

and Scharth (2014) and Giot (2005) research shows that the relationship between the VIX index 

and the S&P 500 index returns is strongly negative.  

 

Whaley (2000) observed that the VIX index contains of many periodic peaks, and the high 

levels of volatility in the VIX index, the S&P 500 index will result in a drop in the stock market 

price. Some researchers noted that a spike peak in volatility index can be a buy signal for stocks 

because a peak in VIX is followed by a market rally. Results from Giot (2005) support the 

hypothesis about extremely high levels of volatility will be an attractive signal to buy stocks 

for traders which is in a long-term position. His study was based on indices, and not portfolios. 

Banerjee, Doran, and Peterson (2006) confirmed the results supported by Giot (2005). The VIX 

levels is related to future returns, while innovations are not related to future returns.  
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Some articles investigate whether the VIX index is a measure of investors sentiment. Copeland 

and Copeland (1999) states that the VIX index is a leading indicator for the daily stock market 

returns, and the market timing matters. His results show that the returns are different for indices 

associated with different size, values and growth, following the high levels of the VIX index. 

Brown and Cliff (2004) used two measures for their survey, individual investors and investors 

intelligence. Their results show that investors sentiment has little or no power for near-term 

future stock market returns. The strongest relationship they found was between institutional 

sentiment and large stocks, and for individual investors the sentiment is not limited. Baker and 

Wurgler (2006) also did a study based on investors sentiment. They wanted to challenge the 

classical finance theory which claim that investors sentiment has no effect on the cross-section 

when it comes to the stock market prices and returns. In the study they used simple theoretical 

arguments, historical speculative episodes, and a set of empirical results. Their results showed 

that investors sentiment has significant cross-sectional effects. Banerjee, Doran, and Peterson 

(2007) used models in behavioral finance to see if there is a relationship between the VIX levels 

and the returns. Their results suggest that it was not any difference whether the market was 

based on directional movements or volatility levels.  

 

Several studies use bull and bear markets to explain phases of rising and falling prices in the 

market, where bull represents the rising period and bear the falling period in the market. Bry 

and Boschan (BB) (1971) developed an algorithm to define turning points in the business cycle. 

They also define a set of rules for determine the turning points, first the criterion for defining 

the location of a peak or trough, and second the duration between these points. The algorithm 

by BB has been adapted by other researcher. Cashin, McDermott, and Scott (2002) used the 

algorithm in the commodity price cycle. Pagan and Sossounov (2003) also applied a variant of 

the algorithm to find bull and bear markets using monthly stock market prices. When using 

smoothed data, important information could be lost because of the possible large movements 

in the equity markets, therefore they decided not to use smoothed data. Their results showed 

that the bull markets generally last longer than bear markets, and give higher returns. The bull 

markets result in an increase of 20% or more in the stock market price, while a minority of the 

bear markets result in a decrease of 20% or less. In the study done by Gonzalez, Powell, Shi, 

and Wilson (2003) they used the procedure of the BB algorithm where they used a time series 

of monthly stock market data. Their findings show that mean return shifts are associated with 

bull and bear market periods. Another algorithm to identify turning points in a time-series was 

presented by Lunde and Timmermann (LT) (2004). When selecting phases to determine bull 
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and bear markets they look at the changes is the stock market prices and how much the prices 

had change since the previous local peak or trough. The change in the stock market price had 

to be big enough to identify a new peak or trough. We explain the details in the algorithm by 

BB and the algorithm by LT later in this thesis.  
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3 Behavioral Finance 

Related to finance theory are theory about behavioral finance. Usually in finance theory 

assumptions that the investor is rational are made, but in reality that is not always the case. 

When prices drop on the stock exchange, investors are afraid to lose and want to get out before 

it is too late, so they sell instead of buying. To understand behavioral finance; the market prices 

are driven by supply and demand by investors and how investors react to news in the market.  

 

Investors are rational when they behave logically, they buy stocks when the market price 

decreases and sell stocks when the market price increases. In a rational world, trading should 

not be used too much. In the world today the volume of trading is too high related to rational 

models (Barberis & Thaler, 2003). The investors are not as rational as traditionally finance 

theory indicates because humans act on emotions (Baker & Nofsinger, 2010). Behavioral 

finance is a relatively new concept where investors seeks to use their emotions and cognitive 

psychological theory to make economic and financial conclusions. Behavioral finance is of 

interest in this thesis because it can be useful when explaining how the market is responding, 

and why we get the results we got.  

 

The behavioral finance theory states that there exist several irrationalities which seems to have 

an impact on the investors decisions (Bodie, Kane, & Marcus, 2013). These irrationalities can 

be split in two categories, information processing and behavioral biases. The first category is 

mainly how investors can misunderstand certain information, and then the probability 

distributions about future returns will be misleading. The second category is about the investors 

having the correct probability distribution about future returns but make decisions which is not 

optimal or is inconsistent, which results in risk-return trade-offs (Bodie, Kane, & Marcus, 

2013). The irrationalities will affect the efficiency of the market.  

 

Fama and Malkiel (1970) came up with three different forms of markets being efficient, 

depending on the information available. First we have the weak-form efficient which includes 

all information about past prices. Second, the semi-strong efficient which includes all the public 

information in the market, and all the historical prices. Third, the strong-form efficient which 

includes all public and private information in the market. The semi-strong efficient is in 

relevance because we are using the event study methodology to test for this efficiency (Baker 

& Nofsinger, 2010). The efficient market hypothesis is an important statement before making 



 7 

any conclusions. The efficient market hypothesis is where the aggregate supply curve and the 

aggregate demand curve crosses, which is where the price on a given security is equal to the 

expected value of all future cash flow at that given security. This can be violated in different 

forms. One violation is on investors own reaction on news events. Where one event can seem 

efficient in the short-run but when you study it in a long-run perspective it will not be as 

efficient. A reason is that investors react differently when they get “good news” and when they 

get “bad news”. The “good news” will drive the cumulative abnormal return up while “bad 

news” will drive the cumulative abnormal return down. This means that the market is changing 

also after the earnings announcement (Baker & Nofsinger, 2010).  

 

Researchers have argued that investors being irrational, their biases will unlikely be systematic 

(Baker & Nofsinger, 2010). Each investor has different biases, and these biases will eventually 

cancel each other out. An unbiased rational investor should be able to take advantage of 

investors being systematically biased because of the biases, and this will drive out the investors 

not being rational out of the market. Investors mental functioning can be a struggle between 

two well-known principles, the pleasure principle and the reality principle. Regardless of how 

painful a decision can be, investors must have the ability to sense reality as it actually is, and 

not the way other people want it to be (Baker & Nofsinger, 2010). 

 

Investors behavior may have different effects when they buy stocks and when they sell stocks 

(Barberis & Thaler, 2003). Several studies point out that investors are more reluctant to sell 

stocks when they know they are selling it for less than the price they were purchasing. This 

effect is called the disposition effect and was first explained by Shefrin and Statman (1985). 

Furthermore, Odean (1998) and Odean (1999) explains how investors typically acts when they 

must decide when to sell a stock and when to buy a stock. The selling decision says that 

investors are more willing to sell stocks which have increased in price rather than stocks which 

has decreased, relative to the price purchased. With this in mind the study shows on average 

that the stocks the investors sells are more valuable at that time than the stocks they are holding 

at that time, the investor are not that rational. The buying decision is affected more by an 

attention effect (Odean, 1999). According to the selling decision investors will gain some profit, 

this is not always the case when it comes to the buying decision. When investors buy stocks 

they are not always going through the list of all listed stocks but they are choosing a stock based 

on interest and their attention (Odean, 1999). 
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Shiller (2003) states that the market efficiency will be affected by the investors sentiment. This 

could be explained by two reasons; the first reason is that the anomalies discovered was often 

made by under reaction by investors as well as an overreaction. Second, the methodology will 

often be improved and time passes so the anomalies often disappear.  He also mentioned there 

is some weakness about all theoretical models, as every model has properties of the ideal world 

but it is important to also see it from the actual world as it is today. Barberis and Thaler (2003) 

conclude that most of the findings about their study of financial behavior are narrow. The 

investors beliefs, or preferences, or their limits to arbitrage will have an effect on the theoretical 

models; not all of them together but each of them will still have an impact if they are standing 

alone. His conclusion state that in the future more and more theorist will take investors behavior 

to consideration in the models.  
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4 Data 

The datasets used in this thesis are the CBOE Volatility Index and the Standard & Poor's 500 
(S&P 500) index form 1st of January 1990 until 31st of December 2015. 

 
Figure 4-1 S&P 500 and VIX. 

The data of our study. The top panel plots the log of the stock market index. The bottom panel plots the VIX volatility index. 
All data are in daily frequency from January 1, 1990 to December 31, 2015 
 
 

4.1 The VIX Index 

The CBOE Volatility Index, VIX, is a measure of implied volatility related to the S&P 500 

Index. VIX was introduced on the Chicago Board Option Exchange in 1993, the dating of the 

index is calculated back to the beginning of 1990 so investors could compare the VIX Index 

with the previous method of calculating volatility, the VOX Index. Therefore, the data frame in 

this thesis cannot go further back than 1990. The VIX Index is a measure of the 30-day future 

volatility of the S&P 500 Index. The VIX Index is calculated of option prices which is forward 

looking rather than stock prices which is backward looking. The option prices are a reflection 

of the market's expected future volatility. In the calculation of VIX the call and put options with 

more than 23 and less than 37 days to expiration are used (Chicago Board Options Exchange). 

In early stage of VIX, calculating in-the-money and at-the-money options of the S&P 100 index 

(OEX) was used, as S&P 100 index had a higher turnover then the S&P 500. In September 

2003 the VIX index started to use options related to S&P 500 (SPX) as well as out-of-the-

money options. The introduction of out-of-the-money options was included in the calculation 

due to its consistence of important information about the investors needs for insurance. The 
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investors demand for out-of-the-money put options shows a demand for insurance of 

investments, as the demand increases so does the VIX (Whaley, 2009). The formula for 

generalized computation of VIX is as follows, 

 

𝑉𝐼𝑋 = 	𝜎 ∗ 100, 

 

where 𝜎 is computed as, 

 

𝜎+ = 	
2
𝑇

∆𝐾0
𝐾0+

𝑒23𝑄 𝐾0 −	
1
𝑇

𝐹
𝐾7
− 1

+

,
	

0

 

 

where 𝑇 represent time to expiration, 𝐹 is the forward index level from index option 𝑝, 𝐾7 is 

the first strike below the forward index level 𝐹, and 𝐾9 is the strike price of out of the money 

option (Chicago Board Options Exchange). 

 

The calculation of the VIX index is similar to the calculation of internal rate of return. The 

same principal matter for calculation of VIX, the VIX value implies the current price of S&P 

500 index options. And represents the expected volatility over the next 30 days (Whaley, 

2009). The VIX index is a forward looking index, it measures the volatility the investors are 

expecting to see in the future. A backward looking index would measure the already realized 

volatility. In this thesis the VIX index ^VIX quote from Yahoo Finance is used (Yahoo!, 

2016). 

 

 

4.2 Standard & Poor’s 500 Index 

The S&P 500 index are a combination of the 500 largest publicly traded companies in the 

United States. The S&P 500 Index is an indicator of the total market even though the stocks 

included are in the large cap segment. The index is under the Index Committee, a team of 

S&P Dow Jones Indices economists and index analysts. They are responsible for maintenance 

and to keep S&P 500 the leading proxy of the market (S&P Dow Jones Indices , 2016). In this 

thesis the S&P 500 ^GSPC quote from Yahoo Finance is used (Yahoo!, 2016). 
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4.3 Summary Statistics of S&P 500 Returns 

Statistics 1990-2015 1990-2002 2003-2015 
Minimum -9.4695 -7.1127 -9.4695 
Mean, µ 0.0265 0.0273 0.0248 
p-value of H0: µ = 0 0.0589 0.1374 0.2433 
Standard deviation 1.1359 1.0512 1.2139 
Maximum 10.9572 5.5744 10.9572 
Skewness -0.2399 -0.1166 -0.3207 
Kurtosis 8.6505 3.8156 11.0342 
Shapiro-Wilk normality test, p-value 0.0000 0.0000 0.0000 
Autocorrelation, ρ1 -0.0540 0.0100 -0.1020 
p-value of H0: ρ1 = 0 0.0014 0.5664 0.0000 

Table 4-1 Summary statistic for daily log-returns. 

Minimum, mean, standard deviation, and maximum are reported in percentages.  
 
 

The summary statistics is presented in table 3.1 for the full sample and two sub periods, one for 

the first half and one for the second half of the sample. The returns in the data sample are 

computed on the basis of the following formula, 

 

𝑟; = ln
𝑝;
𝑝;>9

, 

 

where 𝑟; is the return at time 𝑡, and 𝑝; is the price of the S&P 500 at time 𝑡. 

 

The daily mean return is quite stable across the periods, while the standard deviation of the 

second period was higher than in the first period. Skewness is negative across all periods 

while the kurtosis is positive. We can see from the table that the first half of the period is 

closer a normal distribution than the full period and the second period. The Shapiro-Wilk test 

is rejecting the null hypothesis about the normal distribution of the sample in all of the 

periods. This is also the case when we test the null hypothesis H7:	µ = 0 using a one sample t-

test, which states that in the full sample as well as in the two sub periods, the daily mean 

return is not statistically significantly different from zero when using a 5% significance level. 

Table 3.1 also reports the value of the first-order autocorrelation for daily mean returns as 

well as the p-value for the Ljung-Box test, testing H7: ρ9 = 0. The full sample, as well as the 

second period, is not autocorrelated using a 5% significance level, while the second period is 

autocorrelated while failing to reject a 5% significance level.  
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5 The Relationship Between VIX and S&P 500 

In the study of the relationship between VIX and S&P 500 we replicate the study of Whaley 

(2000) and Whaley (2009). His study is pioneering within the topic, where he looks at the 

asymmetric relationship. In this thesis we have also included the symmetric relationship.  

 

5.1 Methodology  

5.1.1 Classical Linear Regression Model (CLRM) 
The classical linear regression model can be expressed as,  

 

𝑦; = 𝛽7 + 𝛽9𝑥9 + 𝜀;,	  (5.1) 

 

where  𝑦; is the dependent variable at time 𝑡 (time index), 𝛽7 is the constant, 𝛽9 is the slope of 

the independent variable 𝑥;, and 𝜀; is the disturbance term at time 𝑡. Model (4.1) is based on 

five assumptions that must hold. First, the mean of the disturbance term is equal to zero 

(𝐸 𝜀; = 0). Second, the assumption of homoscedasticity, the variance of the disturbance term 

is constant, finite, independent and identically distributed (𝑣𝑎𝑟 𝜀; = 𝜎+ < ∞). Third, the 

covariance between the disturbance term is equal to zero (𝑐𝑜𝑣 𝜀0, 𝜀P = 0	𝑓𝑜𝑟	𝑖 ≠ 𝑗), the 

covariance is linearly independent and uncorrelated. Fourth, the covariance between the error 

and the 𝑥 variable is equal to zero, thus there is no relationship. Fifth, it is required that the 

disturbance term is normally distributed (𝜀;~𝑁(0, 𝜎+)) (Brooks, 2008). 

 

5.1.2 Ordinary Least Square (OLS) 
In this thesis the ordinary least squared (OLS) method is used to estimate the parameters of the 

model. OLS is a method of linear regression where it wants to find a best fit of a line to the data 

sample. When assumption 1-4 above holds the OLS is efficient (Brooks, 2008). In this thesis it 

is performed two symmetric and two asymmetric OLS regression models to explain the relation 

between the log-returns of the S&P 500 index and the changes in the VIX volatility index, as 

in Whaley (2000) and Whaley (2009). The difference of Whaley’s research and the research 

outlined in this thesis are the time-frame and that the study in the thesis uses log returns. The 

regressions are expressed as follows, 
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𝑟; = 	𝛽7 +	𝛽9Δ𝑉𝐼𝑋; + 𝜀;,	 (5.2) 

∆𝑉𝐼𝑋; = 𝛽7 + 𝛽9𝑟; + 𝜀;,  (5.3)	

 

𝑟; = 𝛽7 + 𝛽9∆𝑉𝐼𝑋; + 𝛽+∆𝑉𝐼𝑋;Z + 𝜀;,	 (5.4) 

∆𝑉𝐼𝑋; = 𝛽7 + 𝛽9𝑟; + 𝛽+𝑟;> + 𝜀;,  (5.5) 

 

where 𝑟; represents the log-return of the S&P 500 Index at time t (time index) and ∆𝑉𝐼𝑋; 

denotes the change in VIX at time t, 𝛽7 is the intercept, 𝛽9 is the slope of the first independent 

variable, for the asymmetric regressions 𝛽+ is the slope of the second independent variable and 

𝜀; denotes the disturbance term. In the first asymmetric regression ∆𝑉𝐼𝑋;Z denotes the positive 

values of change in VIX and are equal to ∆𝑉𝐼𝑋; if ∆𝑉𝐼𝑋; > 0, and zero otherwise (Whaley, 

2000). The second asymmetric regression includes 𝑟;> which is equal to 𝑟; if 𝑟; < 0, and zero 

otherwise (Whaley, 2009). The null hypothesis and the alternative hypothesis will be expressed 

as, 

𝐻7: 𝛽0 = 0, 

𝐻9: 𝛽0 ≠ 0. 

 

The null hypothesis states that there is not a causality between the log-returns of the S&P 500 

and the change in the VIX index. We reject the null hypothesis when the p-value is less than 

the chosen level of significance. If we reject the null hypothesis, we support the alternative 

hypothesis which says that there is a causality between the log-returns of the S&P 500 and the 

change in the VIX index 

 

 

5.2 Empirical Results 

The empirical results include the regression for both symmetrical and asymmetrical relation.  

 

5.2.1 Symmetrical Regression 
To find if there is a causality between the changes in the VIX index and the level of log-returns 

in the S&P 500 index we use the OLS regression (5.2), where the log-returns is the dependent 

variable (𝑟;) and the changes in VIX is the independent variable (∆𝑉𝐼𝑋;). Then we use the OLS 

regression (5.3), where the changes in VIX is the dependent variable and the log-returns is the 
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independent variable. The two regressions are symmetric and regression (5.2) assumes the 

∆VIX has equal impact of S&P 500 on rising and falling periods in the ∆VIX index. Regression 

(5.3) assumes that negative and positive log-returns has equal impact on the ∆VIX index. 

 

The results from the regression in R:  

𝑟; = 	𝛽7 +	𝛽9Δ𝑉𝐼𝑋; + 𝜀; 

 
Coefficient: 

  Estimate  Std. error  t-value  Pr(> 𝑡 ) 
𝛽7  5.158e-04  9.901e-05  5.21  1.95e-07 *** 
𝛽9  -1.247e-01  1.532e-03  -81.38  < 2e-16 *** 

Significant code: ‘***’0.001 
Table 5-1Results of regression (5.2) 

 
Residual standard error 0.00801 on 6550 degrees of freedom 
Multiple R-squared 0.5028 
Adjusted R-squared 0.5027 
F-statistic 6623 on 1 and 6550 DF 
p-value < 2.2e-16 

Table 5-2 Report the model summary of regression (5.2) 

 
𝑟; = 0.0005158 − 0.1247 

 

The symmetric regression shows that there is a causality between the changes in VIX and the 

log-returns of the S&P 500. First, both the constant (𝛽7) and the independent variable (𝛽9) is 

statistically significant different from zero at a 99% confidence interval because their p-values 

is lower than 0.01. The intercept is statistically different from zero, which means if the ∆VIX 

is not changing the S&P 500 would still grow. The results are not surprising; the stocks are 

expected to grow through time in order to compensate investors for risky investments. The 

relationship between the daily change in VIX and the daily change in S&P 500 are as followed, 

if ∆VIX increase by one percent the S&P 500 index decrease by -0.1247 percent. Second, the 

F statistics indicates that one or more variable can explain the daily return at a 99% confidence 

level, also shown by the low p-value. The R-squared is 0.5028 and explains 50.28% of the 

variance. In both the t-test and F-test it is evidence to reject of the null hypothesis and support 

the alternative hypothesis.    

 

The results from the regression in R:  

∆𝑉𝐼𝑋; = 𝛽7 + 𝛽9𝑟; + 𝜀; 
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Coefficient: 
  Estimate  Std. error  t-value  Pr(> 𝑡 ) 
𝛽7  0.0030789  0.0005628  5.47  4.66e-08 *** 
𝛽9  -4.0317169  0.0495399  -81.38  < 2e-16 *** 

Significant code: ‘***’0.001. 
Table 5-3 Report the results of regression (5.3). 

Residual standard error 0.045551 on 6550 degrees of freedom 
Multiple R-squared 0.5028 
Adjusted R-squared 0.5027 
F-statistic 6623 on 1 and 6550 DF 
p-value < 2.2e-16 

Table 5-4 Report the model summary of regression (5.3). 

∆𝑉𝐼𝑋; = 0.0030789 − 4.0317169 

 

Both estimates are statistically significantly different from zero at a 99% confidence interval 

because the p-value is less than 0.01. We reject the null hypothesis and states that there is a 

causality between the daily change in VIX and the daily log-returns of S&P 500. If S&P 500 

increase by one percent, the ∆VIX index will decrease by -4.0317169 percent. We found it 

unexpected that the intercept is statistically significant since ∆VIX is not expected to increase 

over time. 

 

 
5.2.2 Asymmetric Regression  
To test for the significant results with the asymmetric regression we start by using the regression 

(5.4) where a new variable, Δ𝑉𝐼𝑋;Z, are included in the regression. As in the to the study done 

by Whaley (2000) where he regresses the 𝑟; impact on Δ𝑉𝐼𝑋. In the regression he includes a 

new variable which contains of all values which has a positive change in VIX. This is replica 

of his study, to predict 𝑟; in the terms of a rising change in VIX should have more impact on 𝑟;. 

It is expected that the variable with positive change in VIX has a significant negative impact on 

the log-return. 

 

The results from the regression in R: 

𝑟; = 𝛽7 + 𝛽9∆𝑉𝐼𝑋; + 𝛽+∆𝑉𝐼𝑋;Z + 𝜀; 
 
 
 
 
 
 



 16 

Coefficient: 
  Estimate  Std. error  t-value  Pr(> 𝑡 ) 
𝛽7  -9.719e-05  1.436e-04  -0.677  0.499 
𝛽9  -1.414e-01  3.229e-03  -43.797  < 2e-16 *** 
𝛽+  2.705e-02  4.599e-03  5.882  4.26e-09 *** 

Significant code: ‘***’ 0.001. 
Table 5-5 Report the results of regression (5.4). 

 
Residual standard error 0.00799 on 6549 degrees of freedom 
Multiple R-squared 0.5054 
Adjusted R-squared 0.5052 
F-statistic 3346 on 2 and 6549 DF 
p-value < 2.2e-16 

Table 5-6 Report the model summary of regression (5.4). 

𝑟; = −0.00009719 − 0.1414∆𝑉𝐼𝑋; + 0.002705Δ𝑉𝐼𝑋;Z 

 

The result from the new variable is not as expected. The Δ𝑉𝐼𝑋;Z variable are statistically 

significant at a 99% confidence interval because its p-values is less than 0.01, but with a positive 

impact on the return. It is to notice that the estimate for the ∆VIX variable has decreased. The 

betas for independent variables are statistically significant on a 99% confidence level and R-

squared has a slightly higher value the symmetrical regression (5.2). As mentioned before, the 

stock return is expected to increase over time. In this model the intercept is negative but not 

significant in the model. With our time frame and log-return we did not achieve similar results 

as Whaley (2009) did in his study of the impact ∆VIX and ∆VIX+ have on the return in S&P 

500. 

 

Next we wanted to test for the significant results with the asymmetric regression using the 

regression (5.5) where the new variable, 𝑟;>, are included in the regression. This variable 

contains of all daily negative log-returns. It is expected that 𝑟;> have a negative impact on ∆VIX. 

Since 𝑟;> contains only negative values, ∆VIX is expected to increase more with the variable 

included. 

 

The results from regression in R: 

∆𝑉𝐼𝑋; = 𝛽7 + 𝛽9𝑟; + 𝛽+𝑟;> + 𝜀; 
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Coefficient: 
  Estimate  Std. error  t-value  Pr(> 𝑡 ) 
𝛽7  -0.0034725  0.0007558  -4.594  4.42e-0.6 *** 
𝛽9  -3.1500683  0.0845087  -37.275  < 2e-16 *** 
𝛽+  -1.7023846  0.1330371  -12.796  < 2e-16 *** 

Significant code: ‘***’0.001. 
Table 5-7 Report the results of regression (5.5). 

 
Residual standard error 0.007988 on 6549 degrees of freedom 
Multiple R-squared 0.5056 
Adjusted R-squared 0.5054 
F-statistic 3349 on 2 and 6549 DF 
p-value < 2.2e-16 

Table 5-8 Report the model summary of regression (5.5). 

∆𝑉𝐼𝑋; = −0.0034725 + −3.1500683𝑟; + −1.7023846𝑟;> + 𝜀; 
 

The results from the regression is quite similar to the results done by Whaley (2009). The 

exception is that the intercept is significant, meaning the ∆VIX index is to fall if there is no 

daily change in return. The explanation can be that log-returns are used in this thesis. On the 

other hand, the regression clearly states that the daily return and the negative daily return have 

an impact on the change in VIX. With 99% confidence level the variables states that ∆VIX will 

increase more if the return is negative. The R-squared is higher than the R-squared of the 

corresponding symmetric regression. If the log-returns of S&P 500 would decrease by 100 basis 

points, the ∆VIX index will rise by  

 

Δ𝑉𝐼𝑋; = −0.0035 − 	3.1501 −0.1 + 1.7024 −0.1 = 0.4888%	, 

 

while, if the log-returns of S&P 500 would increase by 100 basis points, the ∆VIX index will 

fall by  

 

Δ𝑉𝐼𝑋; = −0.0035 − 	3.1501	 0.1 + 1.7024 0 = −0.3185%. 

 

This study give us a good indications of the causality of the relationship using the symmetric 

regressions, while using the asymmetric regression which has a higher 𝑅+ we get a better 

explanation of the relationship. Testing the relationship between the change in S&P 500 and 

the change in VIX gives us insight in how the two indexes react to each other, this is good 

knowledge when going further to the next studies in this thesis.  
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6 Study of Peaks in VIX 

The purpose of the study of peaks in VIX is to study the relationship with the log-return in S&P 

500. Other studies have studied the relationship between VIX and return in S&P 500, but not 

in terms of rising and falling volatility phases. It has been observed that a rising volatility-phase 

often ends in a spike peak (Whaley, 2000).  

 

6.1 Methodology  

To identify the turning points in the VIX Index, the phases of rising and falling volatility have 

to be identified. The shift from rising to falling volatility-phase is where the peaks are located, 

and the shift from falling to rising volatility-phases is where the troughs are located. To identify 

the phases needed for the turning points two different algorithms from financial literature of 

identifying bull and bear markets are used. In financial markets there is a unison agreement that 

a rising market is a bull state and a falling market is a bear state. One definition of a bull market, 

if the price increase or decrease by a more then a given percent since the latest local trough or 

peak. Another if the duration of an increasing market is longer than a given time frame, with 

more than a given movement in the index. The algorithms for this propose are the Algorithm 

by Bry and Boschan (BB) and the Algorithm by Lunde and Timmermann (LT). The time frame 

of a bull or bear markets can be over a period of many years. In this thesis the time frame used 

for rising and falling phases in the VIX Index is in days, that means the thesis look at the short 

term effect of a peak in the VIX Index have on the log-return.  

 
6.1.1 Algorithm by Bry and Boschan 
The first method to identify rising and falling volatility-phases is the Algorithm by BB (1971). 

The algorithm they developed seeks to isolate pattern in a business cycle by a set of rules, and 

are relevant for all time-series. The method smoothes the data, then set criterions for detecting 

peaks and troughs, criterions for the duration of a phases and cycles and criterion for movement 

in the index value. According to the paper by Pagan and Sossounov (2003) they successfully 

implemented the method to work for stock price data. By remove smoothing the data from the 

original algorithm, interesting and important data of a spike peak will still be in touch. In 

analysis of economic data extreme values from a maxima or a minima, and what happens 

around that point is the most interesting information. Since the thesis have a short term view, 

these extreme values are important to the analysis. In view of the short term effect of economic 
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data and that we are interested in the spike peak observed in the VIX index, the reshaped version 

is a good fit to detecting turning points of volatility. To determine turning points the algorithm 

sets a window of length lwindow on either side of the peak or trough to find out if the VIX value 

is higher or lower than the VIX values around. A margin size on either side is used to eliminated 

local minimum or maximum unless the change is larger than margin size. Two criterions for 

length is used, one for the phase length and one for the full cycle. In addition, the threshold, 𝜃, 

of relative change in VIX invalidates the length criterions if the change exceeds 𝜃. Numbers 

used in the identification of phases are as followed, lwindow equals 4, margin size equals 20 

percent, duration of a cycle equals 22 days, duration of a phase 10 days and threshold equals 

30 percent.  

 

6.1.2 Algorithm by Lunde and Timmermann 
The second method to identify rising and falling volatility-phases is the algorithm by LT (2004). 

According to their definition of the algorithm, the market switches from bull to bear when the 

price decreases beyond a given percentage, threshold, since the latest local peak within the bull 

market. The threshold is set to 30 percent change in VIX for determine bull. The opposite for a 

switch from bear to bull market, the switch takes place when the price increase beyond a given 

percentage, threshold, since the latest local trough within the bear state. The threshold for 

determine bear state is set to 20 percent. 

 

6.1.3 Phase duration and amplitude 
After identifying the peaks and troughs there are two main factors with information of the peak, 

duration and amplitude. Both factors are calculated from the peaks and troughs after the use of 

alogorithm by BB or alogorithm by LT. The duration displays information of how long the 

rising or falling phases are. A long rising duration in the VIX index implies that no new and 

sudden positive information are released to the market, which affects the volatility to 

significantly decrease. Or opposite for a decreasing duration. The formula for rising duration 

are as follows, 

 

𝐷 =	 𝑡ijkl − 𝑡;mnopq	,	  (6.1) 

 

where D denotes the duration in business days, 𝑡ijkl denotes the observation of a peak and 

𝑡;mnopq denotes the corresponding observation of a trough. On the other hand, a long duration 
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says nothing about the increase or decrease in the VIX Index value. To find the height of the 

peak is relative to the corresponding trough, amplitude is used. The formula for rising 

amplitude, 

 

𝐴20s0tp = 	
uvwxyz{>uvw|}~���

uvw|}~���
	,   (6.2) 

 

where 𝐴20s0tp detonates the amplitude of the rising volatility-phase, 𝑉𝐼𝑋ijkl denotes the VIX 

value of a peak and 𝑉𝐼𝑋;mnopq denotes the VIX value of the corresponding trough. To find the 

falling amplitude of how low a trough is relative to the peak the following formula is used, 

 

𝐴�k��0tp = 	
uvw|}~���>uvwxyz{

uvwxyz{
,    (6.3) 

 

where 𝐴�k��0tp  detonates the amplitude of falling volatility-phases.  

 

The amplitude for both rising and falling says something about the relative height of the peak. 

A hypothesis can be drawn that the larger the gap from peak to trough or trough to peak the 

more impact have the switch on the S&P 500 Index.  

 

6.1.4 One sample t-test 

Sometimes we only want to perform a one sample t-test, because we only have one-

sample data. The one sample t-test assumes the sample to be normally distributed 

(𝑁(𝜇, 𝜎+)) with mean 𝜇 and standard deviation 𝜎+. In this test we want to test if the 

sample mean 𝜇 is different from a specific value, 𝜇7, (Dalgaard, 2008). The hypothesis 

will be expressed as follows (Taeger & Kuhnt, 2014), 

 

𝐻7: 𝜇 = 𝜇7, 

𝐻9: 𝜇 ≠ 𝜇7, 

 

where the null hypothesis states that the sample mean is equal to the specific value, and 

the data are normally distributed. The alternative hypothesis states that the data is not 
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normally distributed because the sample mean and the specific value is different. The 

test statistic (Taeger & Kuhnt, 2014) is as follows,  

 

𝑡 = �>��
s
,   (6.4) 

 

where     𝑠 = 9
t>9

(𝜇0 − 𝜇)+t
0�9 ,  (6.5) 

 

and 𝑡 follows a student t-distribution with degrees of freedom of, 

 

𝑑𝑓 = 𝑛 − 1.   (6.6) 

 

To find our p-value we can use a standard table of t-values where we use our test statistic 

value and our degrees of freedom. We can compare the value we find in the table with 

our chosen level of significance. Or if the p-value is less than the significance level, we 

reject the null hypothesis.  

 

6.1.5 Normality Test 
There are different ways to test whether our data follows a normal distribution. A simple test 

for the normality assumption is made by Jarque and Bera (1987) where they use the OLS 

residuals skewness and kurtosis. A normal distribution is not skewed (𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠 = 0) and has 

a kurtosis of 3. Skewness is a measure of the asymmetry about its mean value and kurtosis 

measure the thickness of the tails of its distribution (Brooks, 2008). 

 

There are other formal tests we can perform to check for normality. We used the Shapiro-Wilk 

normality test where we can test random samples to see whether they follow a normal 

distribution. The test statistic can be expressed as (Shapiro & Wilk, 1965), 

 

𝑊 = ( ����)��
���
(��>�)��

���
,  (6.7) 
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where 𝛼0	 represents the constant generated from its mean and covariance of order statistics, 𝑥0 

is the order statistics, 𝑥 is the sample mean, and 𝑛 represents the sample size. The hypothesis 

can be expressed as, 

 

𝐻7: 𝑥~𝒩 0, 𝜎+ , 

𝐻9: 𝑥 ≁ 𝒩 0, 𝜎+ , 

 

where the null hypothesis states that the sample is normally distributed, whereas the alternative 

hypothesis say that the sample is not normally distributed. The null hypothesis can be rejected 

if the p-value is less than the chosen level of significance.  

 

6.1.6 Autocorrelation 
One assumption when using the OLS method is that the disturbance term is not correlated with 

other disturbance. This means that we want the disturbance term in our model to be uncorrelated 

(Brooks, 2008).  

 

To test for autocorrelation, we test if there exist a relationship between the current value and 

the previous value (lagged value). While using an autocorrelation test, the sample disturbance 

will not be observed so the test is conducted using the residuals. Two type of autocorrelation, 

positive autocorrelation which is when the residuals at the previous period (𝑡 − 1) is positive, 

the residual at the current value (𝑡) is also being positive, and the other way around. And 

negative autocorrelation where the residual at the previous period (𝑡 − 1) is positive while the 

residual at the current value (𝑡) is negative, and opposite (Brooks, 2008). The equation can be 

expressed as, 

𝑦; = 𝛽7 + 𝛽9𝑦;>9 + 𝜀;,   (6.8) 

 

where 𝑦;>9 represents the previous lagged value. 

 

6.1.7 Ljung-Box test 
Another way to test for autocorrelation among the residuals is to use the modified test created 

by Ljung and Box (1978). The null hypothesis states that all of the lagged values 𝑚 (in our case 

we deal with only one lagged value) of the correlation coefficients 𝑟l are equal to zero. The test 

statistic can be expressed as (Ljung & Box, 1978), 



 23 

𝑄 𝑟 = 𝑛 𝑛 + 2 m{
�

t>l
�
l�9 ,    (6.9) 

 

where 𝑛 is the sample size. The hypothesis of the test is, 

 

𝐻7: 𝑟l = 0, 

𝐻9: 𝑟l ≠ 0. 

 

We can reject the null hypothesis if the p-value from this test is lower than the chosen level of 

significance. When we reject the null hypothesis it means that the lagged values of the 

correlation coefficient are not equal to zero, and it exist of autocorrelation in the residuals of 

the model.  

 
 

6.2 Empirical Results 

The peaks of the VIX Index are the top values of the index found by the sort of either the 

algorithm by BB or the algorithm by LT. The peak is there due to a shift from rising to falling 

volatility-phases.  

 

6.2.1 Algorithm by Bry and Boschan 
The statistics related to the algorithm by BB shows that there are 147 peaks. The algorithm 

divides the data into 148 rising phases and 147 falling phases in VIX. Duration of falling 

volatility-phases tends to be longer than rising volatility-phases, with an average and median 

of 18.50 and 16.00 for rising phases and 26.00 and 20 for falling phases. The minimum duration 

contains of one day for rising volatility-phases and three days for falling volatility-phases. This 

means that the change in VIX increased more than 30 percent in one day only and decreased 

over 30 percent over three days. The maximum duration is 72 days and 101 days for rising and 

falling volatility-phases respectively. The duration is quite stable over the half samples of the 

period with longer duration for falling volatility-phases. On the other hand, in terms of 

amplitude the rising volatility-phases tends to increase more than the falling phases decreases. 

The average amplitude is 53.25 and 31.54 for rising and falling phases respectively. The 

maximum rising amplitude is 325.62 and are the percentage increase over one phase, in fact 

this maximum phase is from 2008.25.08 to 2008.27.10 when the financial crisis really hit. All 

over the amplitude of rising and falling volatility-phases are stable over the half sample.  
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Duration is measured in days. Amplitude, average cumulative return, mean daily return and daily standard deviation are 
measured in percentages. The estimation of the mean daily returns and the daily standard deviation. 
 

The average cumulative return and the mean daily return is negative in phases of rising 

volatility, while positive in phases of falling volatility. This is the case for the full period, as 

well as the first half and the second half of the period. The skewness is negative for all the rising 

phases, and positive for all the falling phases. This means that the tail is right sided for the rising 

phases and left sided for the falling phases. Kurtosis is higher for the rising phases than it is for 

the falling phases of all periods. A normal distribution has a skewness of 0 and a kurtosis of 3. 

From our data the sample is not normally distributed, the first half of the period is closest to a 

normal distribution. The Shapiro-Wilk test also reject the null hypothesis at a 99% confidence 

interval. This means that the data sample is not normally distributed. We cannot reject the null 

hypothesis about first-order autocorrelation at a 95% confidence interval for the rising phase of 

the full period, both phases of the first period, and the rising phase of the second half of the 

period, this means that these are uncorrelated. We reject the null hypothesis about 

autocorrelation for the falling phases for both the full and second period, this means the 

disturbance term is correlated with other disturbance. The autocorrelation is negative which 

means that the previous value was positive and the current value is negative. 

 

Statistics 
1990-2015  1990-2002  2003-2015 

Rising  Falling  Rising  Falling  Rising  Falling 
Number of phases 148.0000  147.0000  72.0000  71.00000  76.0000  75.0000 
Minimum duration 1.0000  3.0000  1.0000  4.0000  2.0000  3.0000 
Average duration 18.4932  25.9524  20.0694  25.8310  17.4211  25.9733 
Median duration 16.0000  20.0000  17.0000  20.0000  15.5000  20.0000 
Maximum duration 72.0000  101.0000  72.0000  92.0000  46.0000  101.0000 
Minimum amplitude 6.6718  9.9274  10.4505  9.9274  6.6718  10.2672 
Average amplitude 52.2530  31.5431  47.4483  29.4518  57.1839  33.6524 
Median amplitude 41.7870  30.6833  37.6676  27.4027  43.9413  34.2083 
Maximum amplitude 325.6247  60.5642  181.8238  58.8398  325.6247  60.5642 
Average cum. return -7.1054  8.8428  -3.0113  3.9058  -4.1222  4.9325 
Mean daily return, µ -0.2596  0.2318  -0.2084  0.2130  -0.3113  0.2532 
p-value of H0: µ = 0 0.0000  0.0000  0.0000  0.0000  0.0000  0.0000 
Daily std. deviation 1.2152  1.0277  1.1265  0.9477  1.3028  1.0924 
Skewness -0.7052  0.5259  -0.4532  0.5622  -0.8264  0.4883 
Kurtosis 9.1650  7.7525  3.9561  2.8308  11.7496  10.2905 
Shapiro-Wilk test, p-value 0.0000  0.0000  0.0000  0.0000  0.0000  0.0000 
Autocorrelation, ρ1 -0.0060  -0.0480  0.0230  0.0270  -0.0400  -0.1010 
p-value of H0: ρ1 = 0 0.7337  0.0030  0.3860  0.2541  0.1473  0.0009 

Table 6-1 Summary statistics of periods of rising and falling VIX using algorithm by BB. 
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6.2.2 Algorithm by Lunde and Timmermann  
The peaks found by the Algorithm by LT are 127. The algorithm divides the data into 127 rising 

phases and 126 falling phases in VIX. With LT algorithm the phases are less than BB algorithm 

due to the change in relative VIX have to be 30 or 20 percent for rising and falling phases. The 

average duration is longer during falling volatility-phases than rising volatility-phases and are 

stable over half of the sample period. The pattern is equal the results found by the algorithm by 

BB for amplitude as well as the change in VIX has higher percentage for rising phases than for 

falling phases. The rising phases have an average duration of 19.63 and an average amplitude 

of 59.01. For the falling phases the average duration is 31.96 and average amplitude is 34.92.  

 

Duration is measured in days. Amplitude, average cumulative return, mean daily return and daily standard deviation are 
measured in percentages. The estimation of the mean daily returns and the daily standard deviation. 
 
 
The last part of the summary statistics in algorithm by LT is approximate the same as in the 

BB algorithm. The same statements and conclusions are made.  

 

  

Statistics 
1990-2015  1990-2002  2003-2015 

Rising  Falling  Rising  Falling  Rising  Falling 
Number of phases 127.0000  126.0000  58.0000  57.0000  69.0000  69.0000 
Minimum duration 1.0000  3.0000  3.0000  3.0000  1.0000  3.0000 
Average duration 19.6299  31.9606  23.3275  33.7894  16.8116  30.6087 
Median duration 16.0000  23.0000  17.5000  26.0000  15.0000  19.0000 
Maximum duration 161.0000  248.0000  161.0000  130.0000  57.0000  248.0000 
Minimum amplitude 30.0392  20.0480  30.5052  20.0480  30.0392  20.3531 
Average amplitude 59.0104  34.9235  56.4841  34.0231  61.7499  35.8799 
Median amplitude 46.4186  34.0834  45.0809  33.5304  46.9139  34.7229 
Maximum amplitude 271.8767  60.7027  179.0511  60.2194  271.8767  60.7028 
Average cum. return -7.2935  9.0309  -3.0416  3.9360  -4.2455  5.0558 
Mean daily return, µ -0.2925  0.2225  -0.2248  0.2044  -0.3660  0.2394 
p-value of H0: µ = 0 0.0000  0.0000  0.0000  0.0000  0.0000  0.0000 
Daily std. deviation 1.1942  1.0517  1.1208  0.9609  1.2714  1.1251 
Skewness -1.0168  0.5982  -0.5414  0.5489  -1.3309  0.6045 
Kurtosis 6.3556  10.8356  4.1210  2.7178  7.4335  14.4749 
Shapiro-Wilk test, p-value 0.0000  0.0000  0.0000  0.0000  0.0000  0.0000 
Autocorrelation, ρ1 0.0260  -0.0380  0.0390  0.0300  0.0040  -0.0830 
p-value of H0: ρ1 = 0 0.1883  0.0143  0.1528  0.1935  0.8916  0.0001 
Table 6-2 Summary statistics of periods of rising and falling VIX using algorithm by LT. 
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7 Event Study of Abnormal Returns 

In this thesis the event study methodology is used to test abnormal returns around VIX volatility 

peaks determine by rising and falling phases.  

 

7.1 Methodology  

To analyze the phenomenon, we used a parametric two-sample test as well as two 

nonparametric tests to test for the mean abnormal return using 5, 10, 15, and 20 days before 

and after a peak in VIX. The choice of using both tests is because when using a parametric test, 

the residuals have to be normally distributed; this is not an assumption when using 

nonparametric tests. Then we used the event study methodology with dummy variables to test 

for the abnormal returns around the VIX volatility peaks, we applied the procedures of the 

algorithm by BB and the algorithm by LT to identify peaks.  

 

7.1.1 The Welch Two Sample t-test 
The Welch two sample t-test is a method calculated by default. When using a parametric two 

sample t-test we are testing two different groups and assuming that both groups are normally 

distributed with 𝑁(𝜇�, 𝜎�+) and 𝑁(𝜇�, 𝜎�+). The hypothesis will be expressed as, 

 

𝐻7:	𝜇� = 	𝜇�, 

𝐻9	:	𝜇� ≠ 	𝜇�, 

 

where the null hypothesis states that the two samples are equal, whereas the alternative 

hypothesis states that the two samples are different. The test statistics can be expressed as 

follows, 

 

𝑡 = 	 ��>��
���

��
Z
���

��

,	  (7.1) 

where 𝑛� and 𝑛� represents the sample size, 𝜇� and 𝜇� the sample mean, 𝑠�+ and 𝑠�+ represents 

the standard deviation or the sample variance of the two groups. To make the conclusion about 

rejecting the null hypothesis, the following equation must hold, 
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𝑡 > 𝑡9>�/+,�,   (7.2) 

 

where 𝑡9>�/+,� is the critical value of the t-distribution, and 𝑣 represents the degrees of freedom, 

and is calculated as (Taeger & Kuhnt, 2014), 

 

𝑣 =
(��
�

��
Z
���

��
)

(
���
��

)�

�� �
Z	
(
���

��
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�� �

.  (7.3) 

 

The p-value are calculated using the equation, 

 

𝑝 = 1 − 𝑃 𝑇 ≤ 𝑡 .   (7.4) 

 

Rejecting the null hypothesis with regard to the p-value, the p-value must be less than the 

chosen level of significance.  

 

7.1.2 Two Sample Wilcoxon Test 
The two sample Wilcoxon test is a nonparametric test, which means that we can avoid making 

assumption about the normal distribution (Dalgaard, 2008). This is done by replacing 

generally obtained data with corresponding order statistics. The method is based on two 

independent samples, and whether the two samples differ by a shift in location. The two 

samples are randomly drawn. The Wilcoxon test compares two samples 

(𝑥9, 𝑥+, … , 𝑥t	and 𝑦9, 𝑦+, … , 𝑦t)	where the observations is given by 𝑁 = 𝑛9 + 𝑛9. We 

will then compute the sum of the ranks of each of the samples (Tamhane & Dunlop, 2000), 

 

𝑤9 + 𝑤+ = 1 + 2 +⋯+ 𝑁 = ¥ ¥Z9
+

.   (7.5) 

 

The hypothesis are expressed as, 

 

𝐻7: 𝑥 = 𝑦, 

𝐻9: 𝑥 ≠ 𝑦, 
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where the null hypothesis state that the two samples are equal. We can reject the null 

hypothesis if the p-value is lower that the chosen level of significance. 

 

7.1.3 The Kolmogorov-Smirnov Two Sample Test 
The Kolmogorov-Smirnov two sample test is a nonparametric test using two different data 

samples to analyze for independence. The data must contain of two assumptions. First, all the 

observations for data 𝑥t and 𝑦t are both random samples from continuous populations where 

all the values of 𝑥 and 𝑦 is mutually independent and identically distributed. Second, the two 

samples must be independent. When these two assumptions hold we can calculate the two sided 

test statistics 𝑍. The first step is to calculate the empirical distribution of 𝑋t(t) for 𝑥 and 𝑌�(𝑡) 

for 𝑦, where 𝑡 represents the time index.  

 

𝑋t 𝑡 = to�©jm	nª	n©sjm�j«	w¬s­;
t

,   (7.6) 

𝑌� 𝑡 = to�©jm	nª	n©sjm�j«	®¬s­;
�

,   (7.7) 

 

where 𝑛 is the sample size of 𝑥, and 𝑚 is the sample size of 𝑦. Next step is to calculate the 

divergence, 𝐷, where we compute the absolute values of each of the two groups and subtract. 

The equation are expressed as, 

 

𝐷 = 𝑋t 𝑡 − 𝑌�(𝑡) .   (7.8) 

 

We will use the largest divergence when computing the test statistics. The test statistics are 

expressed as, 

𝑍 = 𝐷�k�
t�
tZ�

.   (7.9) 

 

Once we have our test statistics we want to compute p-value to determine whether the two 

samples are statistically significant (Corder & Foreman, 2014). The p-value is calculated 

according to criteria,  

 

𝑖𝑓	0 ≤ 𝑍 < 0.27, 
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𝑡ℎ𝑒𝑛	𝑝 = 1 −
2.506628

𝑍 	 𝑄 + 𝑄° + 𝑄+± , 

 

𝑤ℎ𝑒𝑟𝑒	𝑄 = 𝑒>9.+²²³79´ �, 

𝑖𝑓	1 ≤ 𝑍 < 3.1, 

 

𝑡ℎ𝑒𝑛	𝑝 = 2 𝑄 − 𝑄µ − 𝑄° − 𝑄9¶ , 

 

𝑤ℎ𝑒𝑟𝑒	𝑄 = 𝑒>+´�. 

 

The hypothesis will be expressed as, 

 

𝐻7: 𝑋 𝑡 = 𝑌 𝑡 	𝑓𝑜𝑟	𝑒𝑣𝑒𝑟𝑦	𝑡, 

𝐻9: 𝑋 𝑡 ≠ 𝑌 𝑡 	𝑓𝑜𝑟	𝑎𝑡	𝑙𝑒𝑎𝑠𝑡	𝑜𝑛𝑒	𝑣𝑎𝑙𝑢𝑒	𝑜𝑓	𝑡. 

 

The null hypothesis state that there is no difference between the two samples. The alternative 

hypothesis state that there is a difference between the two samples but do not indicate in which 

direction. When we have the p-value we can find out if the two samples are statistically 

significant or not. We will reject the null hypothesis if the p-value is less than the chosen level 

of significance, 𝛼.  

 

7.1.4 Event Study with Dummies 
The event study methodology has not changed much since it was introduced by Fama, Fisher, 

Jensen and Roll (1969). Event studies have a long history and have many applications. The 

intention is to evaluate the impact of a specific event by measuring the abnormal return (AR) 

as well as the cumulative abnormal return (CAR). The event study analysis is followed by a 

general flow and not by a clear structure (MacKinlay, 1997). It is important to have a clear 

definition about the event of interest and the event period, which include the event date, the 

event window and the estimation window. The days of interest are the peak dates for the VIX 

index, and the intention is to analyze relevant data about the event windows around the event 

dates. The event window is the period studied. In this study the event window contains of 21 

trading days, the peak date, 10 days before and 10 days after the peaks. However, more than 

one event is studied; every peak is one event in itself. The event window consists of the mean 
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of all event windows. Days in a single window that are located in another phase of rising and 

falling VIX are eliminated from the mean by dummy variables. To estimate the parameters of 

the model we use the ordinary least square (OLS) method. This method is also used to measure 

the abnormal returns and cumulative abnormal returns. When modeling the daily returns both 

statistical models and economic models can be used. Statistical models follow statistical 

assumptions and the behavior of asset returns, while the economic model follows economic 

assumptions and rely on the investors behavior (MacKinlay, 1997).  The event date is defined 

where 𝜏 = 0 and it is the main date for the event study. The event window is represented where 

𝜏 ∈ [-10,10], and according to MacKinlay (1997) it should be longer than the specific period of 

interest. The estimation window is the whole period studied. As a basis for the normal return, 

estimation period includes all observations from daily return in S&P 500. The mean for all 

rising and falling periods are used to calculate an overall normal return, 𝜇. To measure abnormal 

return for day 𝜏 ∈ [-10,10], the event windows are of 10 days before and 10 after the event 

dates. Some of the rising and falling periods are shorter than 10 days. To avoid the estimation 

of the event windows to include data of the opposite period dummy variables for each day are 

used (Binder, 1998). The return for each day in the event window can by explained as follows, 

 

𝑟; = 	𝜇 + + 𝛾;𝐷;,¼97
¼�>97 + 𝜀;	,	 (7.10) 

 

where 𝜇 denotes the normal return, 𝛾¼ denotes abnormal return on event day, 𝐷;,¼ is a dummy 

variable with value one on event day, 𝜏, and zero otherwise. The dummy variable makes sure 

not to include observations from the opposite phase on either side of the peak. 

 

Cumulative Abnormal Returns (CAR) in the event window is the sum of abnormal return, 

summarized for each day of the event window. On the 10th day after the peak CAR represents 

the total abnormal return in the window. The formula for CAR is as follows, 

  

𝐶𝐴𝑅¼ = 𝛾¼¼
¼�>97 	.   (7.11) 

 

To investigate further whether the mean daily abnormal return over the event window depends 

on the amplitude of the peak, a sort of the rising amplitude has been done. Afterwards the 

analysis looks at the abnormal return in the below median part of the amplitude and the above 

median part of the rising amplitude to test the robustness of our findings. In addition, the rising 
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amplitude give a good estimation of the height of the peak, but can misplace high peaks to the 

below median side due to only the one side relative height are used, the rising amplitude. If a 

trough has a high VIX value this can give a peak a low rising amplitude but still the peak can 

have one of the largest values of falling amplitude on the other side.  

 

7.2 Empirical Results 

7.2.1 Results of Mean Abnormal Return from Algorithm by Bry and Boschan 
To find out if the volatility peak means something for the results around the volatility peak, 

three tests are used to find if the results before the peak are different from the results after the 

peak. The tests used are the Welch two sample test, the two sample Wilcoxon test and 

Kolmogorov-Smirnov two sample test. The return N days before and after the peak show the 

mean abnormal daily return for N days. The mean abnormal daily return is expected to decrease 

in the days before the peak and increase after the peak.  

 

Mean Abnormal Returns is represented in percentage. N represents days before and after the peak. Before represent the mean 
abnormal return before all peaks at N days. After represent the mean abnormal return after all peaks at N days. 
 

From table 7.1 we can see that mean daily abnormal return for N (5, 10, 15 and 20) days before 

the peak is negative and after the peak the mean daily abnormal return is positive. This result 

is what we expected. The entire test represented in table 7.1 has a p-value lower than 0.01 for 

all N days. This means that we can reject the null hypothesis, and all the three tests are 

statistically significant at a 1% level. The Welch Two Sample t-test states that the daily mean 

abnormal return before the peak and the daily mean abnormal return after the peak are different 

from each other. In this test one assumption is that the data should be normally distributed, 

which is not the case in our data sample. We can therefore not rely on this result. We will 

therefore make our conclusions based on the two other tests which are not parametric tests but 

nonparametric tests. The two sample Wilcoxon test states that the two samples, the daily mean 

abnormal return before the peak and the daily mean abnormal return after the peak, are not 

 

N 

 

Before 

  

After 

p-value 

   Welch test   Wilcoxon test  Kolmogorov-Smirnov test 

5  -0.3505  0.4966  0.0000  0.0000  0.0000 

10  -0.2220  0.3088  0.0000  0.0000  0.0000 

15  -0.1694  0.2217  0.0000  0.0000  0.0000 

20  -0.1273  0.1636  0.0000  0.0000  0.0000 

Table 7-1 Mean abnormal return around volatility peaks, algorithm by BB. 
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equal; there exist a difference. The Kolmogorov-Smirnov two sample test give a p-value that 

will be approximate in the presence of ties. This test also states that there is a difference between 

the daily mean abnormal return before the peak and the daily mean abnormal return after the 

peak, but it does not indicate in which direction. Both tests conclude that there is a difference 

between the mean daily abnormal return before the peak and the mean daily abnormal return 

after the peak.  

 
7.2.2 Event Study of Abnormal Returns from Algorithm by Bry and Boschan 
The results of the estimation of the regression (7.10) is reported in table 7.2. It shows clear 

evidence of abnormal return around VIX volatility peak. The minimum value in the event 

window for all peaks is at the peak day of -1.4090%. The mean abnormal return has negative 

estimates before and including the peak day, where it has 5 days that are significantly different 

from zero. Right after the peak the mean abnormal return has its maximum value within the 

event window of 0.8790%, the estimates after the peak day is positive and seven days have 

significant results. The mean cumulative abnormal return is negative for all days in the event 

window where the minimum estimate is at the peak day of -4.1060%. The mean cumulative 

abnormal return decrease toward and including the peak day while it is increasing towards zero 

right after the peak day. The mean abnormal cumulative return is statistically significant 

different from zero at the end of the event window while the mean abnormal return is 

insignificantly different from zero. The pattern is the same in the two sub periods, which shows 

the first half and the second half of the total period. The table represents the mean daily 

abnormal return and the mean cumulative abnormal return over the event window. Table 7.2 

reports the estimates, and the bold text represents the estimates that are statistically significant 

at a 5% level.  
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Table 7-2 Mean abnormal return over the event window, algorithm by BB. 

AR denotes the mean abnormal return and CAR denotes the mean cumulative abnormal return. All returns are represented in 
percentages. The bold text indicates returns that are statistically significant at the 5% level. Above median denotes the results 
of peaks with amplitude above median while the below median denotes the results of peaks with amplitude below median. 
 

The results for all peaks show evidence of abnormal returns around VIX volatility peak. We 

can reject the null hypothesis of zero mean daily abnormal return of 5 days including the peak 

date, and 7 days following the peak date. The mean daily abnormal return has a clear pattern 

where it is negative and decreasing before and until the peak day, and positive after the peak. 

The mean cumulative abnormal return shows the same pattern, thus the mean cumulative 

abnormal return is statistically different from zero of 9 days including the peak day, and 10 

days following the peak day. The mean cumulative abnormal return is negative and decreasing 

including the peak day, right after the peak day the mean cumulative abnormal return increases 

towards zero, but remains negative.  

 

When looking at the two sub periods, the mean abnormal return in the first half has 12 of 21 

days that are significantly different from zero, where 6 days including the peak day, and 6 days 

following the peak day. While the second half has 14 of 21 days that are significantly different 

from zero, where 7 days including the peak day, and 7 days following the peak day. The mean 

abnormal return in both sub periods has its minimum value at the peak day (-1.2840% and -

1.5102%). Both sub periods have also positive and decreasing values before and including the 

peak day, while positive and increasing values after the peak day.   

 

At the start and at the end of the event window most of the values for the mean abnormal return 

are insignificantly different from zero. The last day in the event window the cumulative 

abnormal return is statistically significant different from zero, as well as the days before. This 
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is also the case when looking at the two sub periods, where in the first half the last days of the 

event window is statistically significant different from zero and this is the case for the second 

half of the period. The results from the event study of abnormal return are presented graphically 

in the figures that follows.   

 

 
Figure 7-1 Mean daily abnormal return over the event window, algorithm by BB. 

The shaded area indicates the 95% confidence interval.  
 

 
Figure 7-2 Mean cumulative abnormal return over the event window, algorithm by BB.. 

The shaded area indicates the 95% confidence interval.  
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Figure 7-3 Mean abnormal return for over the event window for full period, first half and second half of the sample, algorithm 
by BB. 

 

 
Figure 7-4 Cumulative abnormal return for over the event window for full period, first half and second half of the sample, 
algorithm by BB. 

 
 
7.2.3 Robustness Test from Algorithm by Bry and Boschan 
The results of the above median amplitude and the below median amplitude is represented in 

table 7.2. The results are robust and quite stable in both the above median amplitude and the 

below median amplitude. The above median amplitude has 13 days that are statistically 

significant different from zero which is more than the below median amplitude of 11 days. The 

mean cumulative abnormal return has all estimates after and including the peak day statistically 
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significant different from zero, this is the case for both above median amplitude and below 

median amplitude. We can say that there is clear evidence of abnormal returns which depends 

on the amplitude of a VIX volatility peak. 

 

At the peak day the abnormal return is negative and attains its minimum of -1.7907% for the 

above median amplitude, while for the below median amplitude the abnormal return is -

1.0450%. The abnormal return for both above median amplitude and below median amplitude, 

shows evidence of more negative abnormal return the larger the amplitude of the peak is before 

and until the peak day, and more positive after the peak. Thus, it is decreasing before and 

including the peak day, and increasing towards zero after the peak day.  

 

When looking at the cumulative abnormal return it has negative estimates for almost all days 

in the event window. The abnormal return has, as stated earlier negative estimates before and 

including the peak day, while positive estimates after the peak day. This is not the case for the 

cumulative abnormal returns. From table 7.2 we can see that greater the amplitude of a peak, 

the more negative is the cumulative abnormal return at the end of the event window. The above 

median amplitude attains its minimum at the peak day of -6.2334%, at the end it attains -

2.0710%, for the below median amplitude at the peak day attains -1.9735% and at the end it 

attains 0.1535%. The above and below median amplitude over the event window are presented 

graphically in the figures that follows. 

 

 
Figure 7-5 Mean abnormal return for over the event window for all peaks, above and below median amplitude of peaks, 
algorithm by BB. 
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Figure 7-6 Cumulative abnormal return for over the event window for all peaks, above and below median amplitude of peaks, 
algorithm by BB. 

 
 
7.2.4 Results of Mean Abnormal Return from Algorithm by Lunde and 

Timmermann 
 

Mean Abnormal Returns is represented in percent. N represents days before and after the peak. Before represent the mean 
abnormal return before all peaks at N days. After represent the mean abnormal return after all peaks at N days.  
 

The values of the mean daily abnormal return before the peak as well as the mean daily 

abnormal return after the peak is a bit different from what was represented using the BB 

algorithm. These differences will not have too much impact because the conclusions will be the 

same as stated in the BB algorithm. The mean daily abnormal return before the peak is negative 

for all N days, and the mean daily abnormal return after the peak is positive for all N days, same 

as in the algorithm by BB. The conclusions for the three two sample tests will be the same as 

the BB algorithm, thus we will reject the null hypothesis and support the alternative hypothesis. 

 

N 

 

Before 

  

After 

p-value 

   Welch test  Wilcoxon test  Kolmogorov-Smirnov test 

5  -0.4653  0.5497  0.0000  0.0000  0.0000 

10  -0.3132  0.3040  0.0000  0.0000  0.0000 

15  -0.2434  0.2305  0.0000  0.0000  0.0000 

20  -0.1883  0.1685  0.0000  0.0000  0.0000 

Table 7-3 Mean abnormal return around volatility peaks, algorithm by LT. 
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7.2.5 Event Study of Abnormal Returns from Algorithm by Lunde and 

Timmermann 
The results of the estimation of regression (7.10) using the algorithm by LT are reported in table 

7.4. This table show same evidence as in the BB algorithm, it is clear evidence of abnormal 

return around VIX volatility peaks. The table 7.4 reports only the estimates and the bold text 

represents the estimates that are significantly significant at a 5% level.  

 

We can reject the null hypothesis of zero mean daily abnormal return of 6 days (including the 

peak day) preceding the peak day, and 8 days following the peak day. The same number of days 

as in the BB algorithm. The mean daily abnormal return shows the same pattern as in the BB 

algorithm, the estimates is positive and decreasing in value before and including the peak day, 

where it attains its minimum of -1.6207%. The day right after the peak day the mean daily 

abnormal return attains its maximum of 1.1744%, and after the peak day the mean daily 

abnormal return is positive and increasing towards zero. When looking at the mean cumulative 

abnormal return all estimated is negative. The mean cumulative abnormal return is statistically 

different from zero of 10 days including the peak day, and 10 days following the peak day. The 

mean cumulative abnormal return is negative and decreasing before and until the peak day 

where it attains its minimum of -5.7671%, the day after the peak day the mean cumulative 

abnormal return is still negative but increasing towards zero.  

 

 
Table 7-4 Mean abnormal return over the event window, algorithm by LT. 

AR denotes the mean abnormal return and CAR denotes the mean cumulative abnormal return. All returns are represented in 
percentages. The bold text indicates returns that are statistically significant at the 5% level. Above median denotes the results 
of peaks with amplitude above median while the below median denotes the results of peaks with amplitude below median.  
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The mean daily abnormal return is insignificantly significant at the beginning and at the end of 

the event window for all peaks. The mean cumulative abnormal return is statistically 

significantly different from zero for 20 days including the peak day. It is only one estimate at 

the beginning of the event window that is insignificantly different from zero for all peaks. The 

results form table (7-4) are presented graphically in the figures that follows. 

 

 
Figure 7-7 Mean daily abnormal return over the event window, algorithm by LT. 

The shaded area indicates the 95% confidence interval.  
 
 

 
Figure 7-8 Mean cumulative return over the event window, algorithm by LT. 

The shaded area indicates the 95% confidence interval.  
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Figure 7-9 Mean abnormal return for over the event window for full period, first half and second half of the sample, algorithm 
by LT. 

 

 
Figure 7-10 Cumulative abnormal return for over the event window for full period, first half and second half of the sample, 
algorithm by LT. 

 
 
7.2.6 Robustness Test from Algorithm by Lunde and Timmermann 
The results of the above median amplitude and the below median amplitude are represented in 

table 7.4. The results show robustness of the study. The above median amplitude has 15 days 

statistically significant different from zero which is more than the below median amplitude of 

12 days, which 4 days are before and including the peak and 8 out of 10 days after the peak. 

For the mean cumulative abnormal return, the significance indicates a clear evidence of 

abnormal returns which depends on the amplitude of a VIX volatility peak. 
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At the peak day the abnormal return is negative and have its minimum of -1.8878% on peak 

day for the above median amplitude, while for the below median amplitude the abnormal return 

is -1.3681% at peak day. The abnormal return for both above median amplitude and below 

median amplitude give negative abnormal returns before and including peak day, and positive 

returns after the peak day. Cumulative abnormal return is decreasing before and including the 

peak day, and increasing towards zero after the peak day. The above and below median 

amplitude of the event study are presented graphically in the figures that follows.  

 

 
Figure 7-11 Mean abnormal return for over the event window for all peaks, above and below median amplitude of peaks, 
algorithm by LT. 

 
Figure 7-12 Cumulative abnormal return for over the event window for all peaks, above and below median amplitude of 
peaks, algorithm by LT.  
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8 Discussion 

In this thesis we carried out three different studies. One replica study of Whaley (2000) and 

Whaley (2009) about the relationship between VIX and S&P 500. A new study of volatility 

peaks in terms of rising and falling volatility measured by the VIX index. And a new study of 

abnormal daily returns on volatility peaks in terms of rising and falling volatility measured by 

the VIX index.  

 

In the study of the relationship between the VIX index and S&P 500 four models were studied: 

two symmetrical and two asymmetrical regressions. The replica study from Whaley (2000) 

studied the impact ∆VIX and ∆VIX+ have on return (asymmetrical), together with the impact 

∆VIX has on S&P 500 returns (symmetrical). All findings showed significant result on a 1% 

level. However, the results from the symmetrical regression (5.2) were more comforting 

according to the expected outcome. In the symmetrical model the return significantly increased 

if VIX was equal to zero and VIX had a negative impact on return. On the other hand, the 

asymmetric regression (5.4), return was not significantly increasing if VIX was equal to zero, 

the impact of VIX negatively exceeded the symmetrical regressing but the variable consisting 

of positive ∆VIX did not decrease the return, rather increase the return. Whaley’s (2000) results 

from the model is as follows 0.775 – 0.469∆VIXt – 0.238∆VIXt
+. Even though we did a replica 

of Whaley (2000) study, we did not reach the expected results in the model. There can be 

multiple reasons for this. Firstly we use log-returns rather than daily returns. Secondly the time 

frame as our study includes 16 years of data. In the early measurement of VIX, S&P100 was 

used in the calculation rather than S&P 500, as well as Whaley (2000) used S&P100 in his 

study. But these indices give similar return so the difference should be negligible. The third 

explanation is that Whaley (2000) studied weekly returns by Wednesday-to-Wednesday return 

and a weekly change in VIX. In our study the increase in VIX may have a delay before the 

decrease in S&P 500 are in place.  

 

The regression from Whaley (2009) looked at what impact return and all observations with 

negative return have on VIX (asymmetrical), where the thesis included the impact return in 

S&P has on VIX (symmetrical). In the regression the results turned out to be as expected, with 

99% confidence level, except significant result included the constant as well. Return have a 

decreasing impact on VIX in both regressions and the negative return exceeds the decreasing 

change in VIX in the asymmetrical regression (5.5). It is quite strange that the intercept for both 
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regressions gave significant results, since VIX is not expected to either decrease or increase 

over time. The explanation can be daily observations. The results from Whaley (2009) are as 

follows RVIX = -0.004 - 2.990RSPXt – 1.503RSPXt
-. After all, the relationship between S&P 

500 and VIX is clear, the variables are negatively correlated where the asymmetrical models 

gave a bit higher R-squared. But the symmetrical models do give a good prediction of either 

VIX or S&P 500.  

 

The study of peaks in terms of rising and falling volatility phases is a new study with limited 

literature to rely on. The study is carried out by two set of algorithms to determine the rising 

and falling phases, and dating of peaks and troughs, the algorithm by BB and the algorithm by 

LT. We choose not to use smoothed data as in the study done by Pagan and Sossounov (2003). 

This because they apply the algorithm by BB in the stock market rather than in the business 

cycle, and found that not using smoothed data was the best option. In this study we found that 

both algorithms have a higher average amplitude in raising phases than falling phases, but the 

average duration is longer during falling phases. The difference between these two algorithm 

is how they calculate the turning points. By using the algorithm by BB we found 147 peaks, 

and the algorithm defined 148 rising phases and 147 falling phases. While using the algorithm 

by LT we calculated 126 peaks, and the algorithm defined 127 rising phases and 126 falling 

phases. The algorithm by LT consequently has longer average duration in both rising (19.63) 

and falling (31.96) phases than the algorithm by BB (18.49 and 25.95). The average amplitude 

is also higher for both rising (59.01) and falling (34.92) phases in the algorithm by LT than the 

algorithm by BB (52.25 and 31.54), but the algorithm by BB has a higher maximum amplitude 

for rising (325.62) phases and a lower minimum amplitude for both rising (6.67) and falling 

(9.93) phases than the algorithm by LT (271.88, 30.04, and 20.05). The study done by Gonzalez, 

Powell, Shi, and Wilson (2005) find that the bull and bear market is associated with mean return 

shifts. In our study we found evidence that negative mean daily return is associated with rising 

phases, and positive mean daily returns are associated with falling phases. Where we see that 

S&P 500 increases slowly over time until the VIX give a spike peak and the prices drop in S&P 

500. Evidence is found in duration, amplitude and the first study in the thesis.  

 

In the study of abnormal returns the purpose was to look at the short term effect of peaks in 

VIX had on the abnormal return on S&P 500. This is also a new study and we have not found 

any literature or empirical studies to rely on. We found evidence that there is a difference 

between the mean daily abnormal return before the peak and the mean abnormal return after 
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the peak, when using 5, 10, 15, and 20 days. Our results show that the mean daily abnormal 

returns is negative before the peak, and positive after the peak, this is what we expected. We 

also found strong evidence of abnormal returns around VIX volatility peaks in the event study. 

The results of all peaks as well as the first sub period and the second sub period show a clear 

pattern of the abnormal return and cumulative abnormal return. For the abnormal returns the 

minimum value of the event window was at the peak date. The estimates were negative before 

and including the peak date, and positive right after the peak date where it attains its maximum 

value within the event window. Thus, the estimates decrease towards and including the peak 

date, while it increases towards zero after the peak date. The estimates of cumulative abnormal 

return are negative before and after the peak day. The values of the estimates decrease towards 

and including the peak date, at the peak date the cumulative abnormal return attains its 

minimum value within the event window. Right after the peak date the values increases towards 

zero. Almost all the estimates of the cumulative abnormal return are statistically significant at 

a 5% level only a few days at the beginning of the event window which is not significant. To 

show the robustness of our results we used the full sample and divided it into above median 

amplitude and below median amplitude. The results were robust and stable for both above 

median amplitude and below median amplitude. The abnormal return is statistically significant 

in days around the peak date, while the cumulative abnormal return is statistically significant 

some days before the peak date and until the end of the event window.  

 

Behavioral finance theory is more and more relevant, and becoming an important topic. This is 

because the theoretical models from the classical finance theory are not based on the investors 

sentiment, and this can have an impact on the results. From the study done by Brown and Cliff 

(2004) they concluded that the investors sentiment has little or no power for near-term future 

stock markets returns, while the study by Baker and Wurgler (2006) showed that the investors 

sentiment has significant cross-sectional effects on stock market prices and returns. In this study 

it is more interesting to test the impact of investors sentiment on the VIX index, as stated by 

Whaley (2000) the VIX index is called the “investor fear gauge”. Higher volatility results in 

higher fear, because the investors set the VIX index and their view is based on the expected 

future stock market volatility. We have used the behavioral finance theory to make a statement 

of the relevance of the theory, but we have not done empirical studies of this topic.  

 

A question that rises; is the peak in the VIX an indicator to buy? The most obvious answer is 

yes, but this is when looking backward. The problem is to locate the peak on the current day. 
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Furthermore, to understand that, the VIX at some level indicates investors fear (Whaley, 2000). 

Whaley (2009) says that the VIX index is a forward-looking index because it is measuring 

volatility that the investors are expected to see, and not the other way around.  

 

8.1 Future Research 

In this empirical research we have replicated one study, and created two new studies. Our results 

are in line with existing studies, but more research is needed on the subject. As we look at the 

impact of a peak in VIX could be a signal to buy, we could also have looked at if the trough in 

VIX is a signal to sell a stock, because peaks and trough act opposite of each other in the market. 

In further research we can include autoregressive models in the first study. In the third study 

when using the event study methodology, we looked at the short term. To look at the long term 

on behalf of investors we could have used a wider window and a longer perspective. At last, 

empirical research about the behavioral finance in relation to S&P 500 and VIX to see if the 

investors have a significant impact.  
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9 Conclusion  

Even though the asymmetrical relation of S&P 500 and VIX was describe in the literature, the 

thesis outlined empirical studies to amplify the evidence of the relationship. The evidence is 

there to conclude with a negative relationship between VIX and S&P 500. By defining the peaks 

in VIX and analyzing the phases, the statistics clearly states differences between rising and 

falling volatility-phases. Further, the empirical results from the abnormal return of S&P 500 

and what happens in the days around the peaks, gave a clear definition of the significantly 

negative abnormal return before the peak, and positive abnormal return after the peak. In 

addition, evidence discussed in this thesis amplify the observed relation of VIX and investors 

sentiment. The abnormal cumulative return was negative in all periods, including the above and 

below median amplitude. Since the return was significantly negative before and significantly 

positive after the peak, the return in total decreased more than increased. We found evidence of 

abnormal returns around peaks in VIX. 
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11 Appendix 

11.1 R-file 

11.1.1 Filname: Download-Data 
rm(list=ls(all=TRUE)) 
library(tseries) 
library(zoo) 
 
start.date <- "1990-01-01" 
end.date <- "2015-12-31" 
filename <- "sp500vix.txt"  
 
# Donwload data from the Internet 
 
sp500 = get.hist.quote(instrument="^GSPC", start=start.date, 
                       end=end.date, quote="AdjClose", 
                       provider="yahoo", origin="1970-01-01", 
                       compression="d", retclass="zoo") 
vix = get.hist.quote(instrument="^VIX", start=start.date, 
                       end=end.date, quote="AdjClose", 
                       provider="yahoo", origin="1970-01-01", 
                       compression="d", retclass="zoo") 
   
data.zoo = merge(sp500,vix) # merge the data in a single zoo object 
names = c("SP500","VIX") 
colnames(data.zoo) <- names # assign names to columns of data  
 
# Save to a file 
write.zoo(data.zoo, file=filename) 
 
11.1.2 Filename: Identifying-Algorithms  
# BB ALGORITHMS FOR BULL-BEAR PARTITION  
# ======================================================== 
# Bull-Bear partition based on the Change given by some Threshold value 
# LT Algorithm of Lunde and Timmermann (2004) 
 
BBPartition.LTRules <- function(index, threshold.bull, threshold.bear) { 
  # inputs: 
  # index - vector of stock price index 
  # threshold.bull - value of threshold used to detect a Bull state 
  # threshold.bear - value of threshold used to detect a Bear state 
   
  nobs <- length(index) 
  bull <- rep(FALSE,nobs) 
  enter <- vector() 
  exit <- vector() 
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  instocks <- FALSE 
   
  for (i in 1:nobs) { 
    if (i == 1) { 
      enter <- c(enter, i) 
      bull[i] <- TRUE 
      instocks <- TRUE  
    } else { 
      if (instocks) { 
        # check whether we need to exit 
        maxval <- max(index[enter[length(enter)]:i]) 
        change <- (maxval-index[i])/maxval*100 
        if (change > threshold.bear) { 
          exit <- c(exit, i) 
          instocks <- FALSE 
          # now find the BEAR period 
          ind <- which.max(index[enter[length(enter)]:i]) + enter[length(enter)] 
          for(j in ind:i) bull[j] <- FALSE 
        } else { 
          bull[i] <- TRUE 
        }   
      } else { 
        # check whether we need to enter 
        minval <- min(index[exit[length(exit)]:i]) 
        change <- (index[i]-minval)/minval*100 
        if (change > threshold.bull) { 
          instocks <- TRUE 
          enter <- c(enter, i) 
          # now find the BULL period 
          ind <- which.min(index[exit[length(exit)]:i]) + exit[length(exit)] 
          for(j in ind:i) bull[j] <- TRUE 
        } else { 
          bull[i] <- FALSE 
        }   
      } 
    } 
  }  
   
  return(bull) 
} 
 
# =============================================================== 
# Bull-Bear BB Algorithm of Bry and Boschan (1971) 
 
# The parameters of the algorithm 
roll.window.size <- 4   # the half-size of the window to find minima and maxima 
margin.size <- 20  # the size of the left and right margin 
min.cycle.length <- 22 # minimum full cycle length 
Max.Change <- 0.3     # the change in vix/vol that invalidates the minimum cycle length 
min.phase.length <- 10 # the minimum phase (bull or bear) length 
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getBull <- function(local.min, local.max)  { 
  # this is a final function that, given a sequence of local.min and local.max, 
  # creates a single vector that contains TRUE for Bull periods and FALSE for BEAR periods 
  # Input - vectors that contain points of local.min and local.max 
  # both input vectors must be of the same length 
   
  n <- length(local.min) 
  if(length(local.min) != n) stop("Vectors that contain local min and max are of different 
lengths!") 
  bull <- rep(FALSE, n) 
   
  # identify bull and bear markets 
  first.ext.found <- FALSE # first extremum, either local.min or local.max, FALSE if not 
found yet 
  isBull <- FALSE 
  for(i in 1:n) { 
     
    # find the first local min or max 
    if( (first.ext.found==FALSE) & (local.min[i]==TRUE) ) { 
      # beginning is BEAR, next is BULL 
      first.ext.found <- TRUE 
      isBull <- TRUE 
      next 
    } 
    if( (first.ext.found==FALSE) & (local.max[i]==TRUE) ) { 
      first.ext.found <- TRUE 
      # beginning is BULL, next BEAR 
      # mark all previous as BULL 
      for(j in 1:i) bull[j] <- TRUE 
      isBull <- FALSE 
      next 
    } 
     
    # if the first extremum is found 
    if(first.ext.found==TRUE) { 
      if(isBull==TRUE) { 
        bull[i] <- TRUE 
        # this is bull period 
        if(local.max[i]==TRUE) isBull  <- FALSE # Next period BEAR 
      } else { 
        # this is bear period 
        bull[i] <- FALSE 
        if(local.min[i]==TRUE) isBull <- TRUE # Next period BULL 
      }  
    }  
  } 
   
  return(bull) 
} 
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eliminateMultipleMM <- function(index, local.min, local.max) { 
   
  # THIS PROCEDURE ELIMINATE MULTIPLE MAXIMA AND MINIMA IN THE 
BEGINNING, END 
  # MULTIPLE MINIMA WITHIN TWO MAXIMA, MULTIPLE MAXIMA WITHIN TWO 
MINIMA  
   
  n <- length(index) 
   
  #======================================== 
  # eliminating multiple minima and maxima in the beginning 
   
  # find the first min and max 
  i <- 1 
  while(local.max[i]==FALSE) { 
    i <- i+1 
    first.max <- i 
  } 
  i <- 1 
  while(local.min[i]==FALSE) { 
    i <- i+1 
    first.min <- i 
  } 
   
  # eliminate multiple minima in the beginning 
  # find all minima 
  minima <- vector() 
  ind.minima <- vector() 
  for(i in 1:first.max) { 
    if(local.min[i]==TRUE) { 
      minima <- c(minima,index[i]) 
      ind.minima <- c(ind.minima, i) 
    } 
  } 
  # proceed with the counting the number of minima 
  nMin <- length(minima) 
  if(nMin >= 1) { 
    if(min(minima)>index[1]) { 
      # eliminate all of them 
      for(i in 1:first.max) local.min[i] <- FALSE 
    } else { 
      # keep only the minimum of them 
      ind.min <- which.min(minima) 
      for(i in 1:nMin) if(i != ind.min) local.min[ind.minima[i]] <- FALSE 
    } 
  }   
   
  # eliminate multiple maxima in the beginning 
  # find all maxima 
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  maxima <- vector() 
  ind.maxima <- vector() 
  for(i in 1:first.min) { 
    if(local.max[i]==TRUE) { 
      maxima <- c(maxima,index[i]) 
      ind.maxima <- c(ind.maxima, i) 
    } 
  } 
  # proceed with the counting the number of maxima 
  nMax <- length(maxima) 
  if(nMax >= 1) { 
    if(max(maxima)<index[1]) { 
      # eliminate all of them 
      for(i in 1:first.min) local.max[i] <- FALSE 
    } else { 
      # keep only the largest of them 
      ind.max <- which.max(maxima) 
      for(i in 1:nMax) if(i != ind.max) local.max[ind.maxima[i]] <- FALSE 
    }   
  } 
   
  #======================================== 
  # eliminating multiple minima and maxima in the end 
   
  # find the last min and max 
  i <- n 
  while(local.max[i]==FALSE) { 
    i <- i-1 
    last.max <- i 
  } 
  i <- n 
  while(local.min[i]==FALSE) { 
    i <- i-1 
    last.min <- i 
  } 
   
  # find all minima 
  minima <- vector() 
  ind.minima <- vector() 
  for(i in last.max:n) { 
    if(local.min[i]==TRUE) { 
      minima <- c(minima,index[i]) 
      ind.minima <- c(ind.minima, i) 
    } 
  } 
  # proceed with the counting the number of minima 
  nMin <- length(minima) 
  if(nMin >= 1) { 
    if(min(minima)>index[n]) { 
      # eliminate all of them 
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      for(i in last.max:n) local.min[i] <- FALSE 
    } else { 
      # keep only the minimum of them 
      ind.min <- which.min(minima) 
      for(i in 1:nMin) if(i != ind.min) local.min[ind.minima[i]] <- FALSE 
    } 
  }   
   
  # eliminate multiple maxima in the end 
  # find all maxima 
  maxima <- vector() 
  ind.maxima <- vector() 
  for(i in last.min:n) { 
    if(local.max[i]==TRUE) { 
      maxima <- c(maxima,index[i]) 
      ind.maxima <- c(ind.maxima, i) 
    } 
  } 
  # proceed with the counting the number of maxima 
  nMax <- length(maxima) 
  if(nMax >= 1) { 
    if(max(maxima)<index[n]) { 
      # eliminate all of them 
      for(i in last.min:n) local.max[i] <- FALSE 
    } else { 
      # keep only the largest of them 
      ind.max <- which.max(maxima) 
      for(i in 1:nMax) if(i != ind.max) local.max[ind.maxima[i]] <- FALSE 
    }   
  } 
   
   
  #======================================================== 
  # SECOND PART, Eliminate multipe max within two minima and  
  # multiple min within two maxima 
   
  # eleminate multiple minima within two maxima 
  first <- FALSE 
  ind.first <- 1 
  for(i in 1:n) { 
    if( (local.max[i]==TRUE) & (first==FALSE) ) { 
      # this is the very first maximum 
      first <- TRUE   
      ind.first <- i 
      next 
    } 
    if((local.max[i]==TRUE) & (first==TRUE)) { 
      # this is the subsequent max 
      # elimination of multiple minima within ind.first and i 
      # start with the search for minima 
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      minima <- vector() 
      ind.minima <- vector() 
      for(j in ind.first:i) { 
        if(local.min[j]==TRUE) { 
          minima <- c(minima,index[j]) 
          ind.minima <- c(ind.minima, j) 
        } 
      } 
      # proceed with the counting the number of minima 
      nMin <- length(minima) 
      # eliminate multiple minima 
      if(nMin > 1) { 
        ind.min <- which.min(minima) 
        for(s in 1:nMin) if(s != ind.min) local.min[ind.minima[s]] <- FALSE 
      } 
      # end of procedure 
      ind.first <- i 
    } 
  } 
   
  # eleminate multiple maxima within two minima 
  first <- FALSE 
  ind.first <- 1 
  for(i in 1:n) { 
    if( (local.min[i]==TRUE) & (first==FALSE) ) { 
      # this is the very first maximum 
      first <- TRUE   
      ind.first <- i 
      next 
    } 
    if((local.min[i]==TRUE) & (first==TRUE)) { 
      # this is the subsequent max 
      # elimination of multiple minima within ind.first and i 
      # start with the search for minima 
      maxima <- vector() 
      ind.maxima <- vector() 
      for(j in ind.first:i) { 
        if(local.max[j]==TRUE) { 
          maxima <- c(maxima,index[j]) 
          ind.maxima <- c(ind.maxima, j) 
        } 
      } 
      # proceed with the counting the number of minima 
      nMax <- length(maxima) 
      # eliminate multiple minima 
      if(nMax > 1) { 
        ind.max <- which.max(maxima) 
        for(s in 1:nMax) if(s != ind.max) local.max[ind.maxima[s]] <- FALSE 
      } 
      # end of procedure 
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      ind.first <- i 
    } 
  }   
  return(list(l.min=local.min, l.max=local.max)) 
} 
 
Partition.BBRules <- function(index) { 
 
  # MAIN function that find the Bull and Bear states 
  # uses the dating rules that are described in Pagan and Sousunov  
  # imputs: 
  # index - the vector of stock price index 
   
  k <- roll.window.size 
   
  p.length <- 2*k + 1 
  if(p.length > min.phase.length) 
    stop("Rolling window size is greater than the minimum phase length! \n") 
   
  n <- length(index) 
  local.min <- rep(FALSE,n) 
  local.max <- rep(FALSE,n) 
   
  # first run, identify min and max in a rolling window 
  for(i in (k+1):(n-k)) { 
    start <- max(1, i - k) 
    end   <- min(n, i + k) 
    # find local max 
    ind <- which.max(index[start:end]) 
     
    # if the center of the window is the maximum in the window 
    if(ind == (k+1)) local.max[i] <- TRUE 
     
    #local.max[ind + start - 1] <- TRUE  # old 
     
    # find local min 
    ind <- which.min(index[start:end]) 
     
    if(ind == (k+1)) local.min[i] <- TRUE 
     
    #local.min[ind + start - 1] <- TRUE # old 
  } 
   
  # second run, elimination of successive min and max 
  # need to find a sequence, chooce the only one point among all 
  multiple.max <- FALSE 
  multiple.min <- FALSE 
   
  first.max <- 1 
  first.min <- 1 
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  last.max <- n 
  last.min <- n 
   
  for(i in 2:n) { 
    # markt the start of a new max (probably series) 
    if( (local.max[i-1]==FALSE) & (local.max[i]==TRUE) ) first.max <- i 
    # markt the existence of multiple max 
    if( (local.max[i-1]==TRUE) & (local.max[i]==TRUE) ) multiple.max <- TRUE 
    # check whether the end of a sequence of maxima 
    if( (local.max[i]==FALSE) & (multiple.max==TRUE) ) { 
      # this is the end of the sequence 
      multiple.max <- FALSE 
      ind <- which.max(index[first.max:(i-1)]) 
      # eleminate all maxima 
      for(j in first.max:(i-1)) local.max[j] <- FALSE 
      local.max[first.max + ind - 1] <- TRUE 
    } 
     
    # markt the start of a new min (probably series) 
    if( (local.min[i-1]==FALSE) & (local.min[i]==TRUE) ) first.min <- i 
    # markt the existence of multiple min 
    if( (local.min[i-1]==TRUE) & (local.min[i]==TRUE) ) multiple.min <- TRUE 
    # check whether the end of a sequence of minima 
    if( (local.min[i]==FALSE) & (multiple.min==TRUE) ) { 
      # this is the end of the sequence 
      multiple.min <- FALSE 
      ind <- which.min(index[first.min:(i-1)]) 
      # eleminate all minima 
      for(j in first.min:(i-1)) local.min[j] <- FALSE 
      local.min[first.min + ind - 1] <- TRUE 
    } 
  } 
 
  # first sensoring, eliminating turns within 6 months of beginning and end 
  w <- margin.size 
  for(i in 1:w) { 
    local.min[i] <- FALSE 
    local.max[i] <- FALSE 
  } 
  for(i in (n-w+1):n) { 
    local.min[i] <- FALSE 
    local.max[i] <- FALSE 
  } 
   
  # second sensoring,  
  # eliminate multiple maxima in the beginnig, end, and within two minima 
  # eliminate multiple minima in the beginnig, end, and within two maxima 
  res <- eliminateMultipleMM(index, local.min, local.max) 
  local.max <- res$l.max 
  local.min <- res$l.min 
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  # eliminate phases whose duration is less than 4 months (except when change > 20%) 
  Elimination <- TRUE 
  while(Elimination) { 
    first.max <- FALSE 
    first.min <- FALSE 
    ind.max   <- 1 
    ind.min   <- 1 
    for(i in 1:n) { 
      # find the first point, identify it as max or min 
      if((first.max==FALSE) & (first.min==FALSE) & (local.min[i]==TRUE)) { 
        first.min <- TRUE 
        ind.min   <- i 
        next 
      }   
      if((first.max==FALSE) & (first.min==FALSE) & (local.max[i]== TRUE)) { 
        first.max <- TRUE 
        ind.max   <- i 
        next 
      } 
      if((first.max==TRUE) & (local.min[i]==TRUE)) { 
        # find out if we need to eleminate the local min 
        change <- abs( (index[ind.max]-index[i])/index[ind.max]) 
        phase.length <- i - ind.max 
        if( (phase.length<min.phase.length) & (change<Max.Change) ) { 
          # we need to eliminate 
          #local.max[ind.max] <- FALSE 
          local.min[i] <- FALSE 
          # sensor the rest of the points 
          res <- eliminateMultipleMM(index, local.min, local.max) 
          local.max <- res$l.max 
          local.min <- res$l.min 
          # go out of the for loop and begin again 
          break 
        } else { 
          first.max <- FALSE 
          first.min <- TRUE 
          ind.min   <- i 
        }  
      }   
      if((first.min==TRUE) & (local.max[i]==TRUE)) { 
        # find out if we need to eleminate the first minimum 
        change <- abs( (index[ind.min]-index[i])/index[ind.min]) 
        phase.length <- i - ind.min 
        if( (phase.length<min.phase.length) & (change<Max.Change) ) { 
          # we need to eliminate both 
          #local.min[ind.min] <- FALSE 
          local.max[i] <- FALSE 
          # sensor the rest of the points 
          res <- eliminateMultipleMM(index, local.min, local.max) 
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          local.max <- res$l.max 
          local.min <- res$l.min 
          # go out of the for loop and begin again 
          break 
        } else { 
          first.min <- FALSE 
          first.max <- TRUE 
          ind.max   <- i 
        }  
      } 
       
      # if we go to the very end then there were no eliminations 
      if(i==n) Elimination <- FALSE 
    } 
  }   
 
  # FINAL PART, ELIMINATE THE CYCLES WHOSE DURATION IS LESS THAN 16 
MONHTS 
  # EXCEP WHEN CHANGE > 20% 
   
  Elimination <- TRUE 
  while(Elimination) { 
     
    first.max <- FALSE 
    first.min <- FALSE 
    cycle.points <- vector() # point values  
    cycle.ind <- vector()    # indices of points 
     
    for(i in 1:n) { 
      # find the first point, identify it as max or min 
      if((first.max==FALSE) & (first.min==FALSE) & (local.min[i]==TRUE)) { 
        first.min <- TRUE 
        cycle.points   <- c(cycle.points, index[i]) 
        cycle.ind   <- c(cycle.ind, i) 
        next 
      }   
      if((first.max==FALSE) & (first.min==FALSE) & (local.max[i]== TRUE)) { 
        first.max <- TRUE 
        cycle.points   <- c(cycle.points, index[i]) 
        cycle.ind   <- c(cycle.ind, i) 
        next 
      } 
       
      if(first.max == TRUE) { 
        if(local.min[i] == TRUE) { 
          # add minimum point 
          cycle.points   <- c(cycle.points, index[i]) 
          cycle.ind   <- c(cycle.ind, i) 
          next 
        }   
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        if(local.max[i] == TRUE) { 
          cycle.points   <- c(cycle.points, index[i]) 
          cycle.ind   <- c(cycle.ind, i) 
          # we need to check if we need to eliminate the first point 
          cycle.length <- cycle.ind[3]-cycle.ind[1]+1 
          change.1 <- abs( (cycle.points[2]-cycle.points[1])/cycle.points[1]) 
          change.2 <- abs( (cycle.points[3]-cycle.points[2])/cycle.points[2]) 
          max.change <- max(change.1, change.2) 
          if( (cycle.length < min.cycle.length) & (max.change < Max.Change) ) { 
            # need to eliminate 
            local.max[cycle.ind[1]] <- FALSE 
            # sensor the rest of the points 
            res <- eliminateMultipleMM(index, local.min, local.max) 
            local.max <- res$l.max 
            local.min <- res$l.min 
            # go out of the for loop and begin again 
            break 
          } else { 
            # do not need to eliminate, proceed further 
            first.max <- FALSE 
            first.min <- TRUE 
            cycle.points <- cycle.points[-1] 
            cycle.ind <- cycle.ind[-1] 
            next 
          } 
        }   
      } 
       
      if(first.min == TRUE) { 
        if(local.max[i] == TRUE) { 
          # add maximum point 
          cycle.points   <- c(cycle.points, index[i]) 
          cycle.ind   <- c(cycle.ind, i) 
          next 
        }   
        if(local.min[i] == TRUE) { 
          cycle.points   <- c(cycle.points, index[i]) 
          cycle.ind   <- c(cycle.ind, i) 
          # we need to check if we need to eliminate the first point 
          cycle.length <- cycle.ind[3]-cycle.ind[1]+1 
          change.1 <- abs( (cycle.points[2]-cycle.points[1])/cycle.points[1]) 
          change.2 <- abs( (cycle.points[3]-cycle.points[2])/cycle.points[2]) 
          max.change <- max(change.1, change.2) 
          if( (cycle.length < min.cycle.length) & (max.change < Max.Change)) { 
            # need to eliminate 
            local.min[cycle.ind[1]] <- FALSE 
            # sensor the rest of the points 
            res <- eliminateMultipleMM(index, local.min, local.max) 
            local.max <- res$l.max 
            local.min <- res$l.min 
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            # go out of the for loop and begin again 
            break 
          } else { 
            # do not need to eliminate, proceed further 
            first.max <- TRUE 
            first.min <- FALSE 
            cycle.points <- cycle.points[-1] 
            cycle.ind <- cycle.ind[-1] 
            next 
          } 
        }   
      } 
       
      # if we go to the very end then there were no eliminations 
      if(i==n) Elimination <- FALSE 
    } # end for-loop 
  }   
   
  bull <- getBull(local.min, local.max) 
  return(bull) 
} 
 
11.1.3 Filename: Data 
rm(list=ls(all=TRUE)) 
library(zoo) 
library(ggplot2) 
source("Identifying-Algorithms.r") 
 
process.voldata <- function(vol, dates, method=c("BB", "LT")) { 
  # this function determines the bull and bear periods in vol 
  # and returns the starts and ends of Bear periods 
   
  # imputs 
  # - vol - vector containing the variable used to determine bull and bear states 
  # - dates - the vector of dates 
  # - method - defines the method of BB of bull and bear states 
   
  switch(method, 
         "BB" = { 
           # BB Algorithm of Bry and Boschan (1971) #WE ARE NOT USING SMOOTHED 
DATA  
           bull <- Partition.BBRules(vol)  
         },    
         "LT" = { 
           # LT Algorithm of Lunde and Timmermann (2004) 
           threshold.bull <- 30  
           threshold.bear <- 20 
           bull <- BBPartition.LTRules(vol, threshold.bull, threshold.bear) 
         },    
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         { 
           stop("Unknown method!") 
         }        
  ) 
   
  # create the rectangles for the BEAR shaded areas 
  xstart <- vector() 
  xend <- vector() 
  n <- length(bull) 
  isBear <- FALSE 
  for(i in 1:n) { 
    if((bull[i] == FALSE) & (isBear == FALSE)) { 
      xstart <- c(xstart, dates[i]) 
      isBear <- TRUE 
    }  
    if((bull[i] == TRUE) & (isBear == TRUE)) { 
      xend <- c(xend, dates[i]) 
      isBear <- FALSE 
    }  
    if((i == n) & (isBear == TRUE)) xend <- c(xend, dates[i]) 
  } 
   
  # creates rectangle areas 
  rects <- data.frame(xstart=as.Date(xstart), xend=as.Date(xend))  
  return(list(vol=vol, bull=bull, rects=rects)) 
} 
 
divide.ret <- function(ret, bull) { 
  # this function separates the returns into 
  # (1) - returns during Increasing vol and (2) returns during decreasing vol 
   
  # imputs  
  # ret - vector of returns 
  # bull - vector of TRUE (for bull state) and FALSE (for bear states) 
   
  volup <- vector() 
  voldn <- vector() 
  n <- length(bull) 
  for(i in 1:n) { 
    if(bull[i]==TRUE)  { 
      volup <- c(volup, ret[i])  
    } else { 
      voldn <- c(voldn, ret[i]) 
    }   
  } 
  return(list(volup=volup, voldn=voldn)) 
} 
 
# Read the data 
filename <- "sp500vix.txt"  
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data.zoo <- read.zoo(file=filename, header = TRUE) 
 
# Select the required historical period 
Period <- "Full" 
#Period <- "First" 
#Period <- "Second" 
 
switch(Period, 
       "Full" = { 
         start.date <- "1990-01-01" 
         end.date <- "2015-12-31" 
         data.zoo <- window(data.zoo, start=start.date, end=end.date) 
       }, 
       "First" = { 
         start.date <- "1990-01-01" 
         end.date <- "2002-12-31" 
         data.zoo <- window(data.zoo, start=start.date, end=end.date) 
       }, 
       "Second" = { 
         start.date <- "2003-01-01" 
         end.date <- "2015-12-31" 
         data.zoo <- window(data.zoo, start=start.date, end=end.date) 
       },    
       { 
         stop("Unknown period!") 
       }        
) 
 
dates <- index(data.zoo) # retrieve dates from zoo-object 
data <- coredata(data.zoo) # retrieve price data from zoo-object 
nobs <- nrow(data) 
 
# Compute returns 
prices <- data[,"SP500"] 
#ret <- diff(prices)/prices[1:(nobs-1)] # STANDARD RETURNS 
ret <- diff(log(prices)) # LOG RETURNS 
 
vix <- data[,"VIX"] 
rvix <- diff(vix)/vix[1:nobs-1] 
 
# skip the first observation 
vix <- data[2:nobs,"VIX"] 
dates <- dates[2:nobs] 
prices <- prices[2:nobs] 
 
# construct time-series objects and plot the data 
names = c("SP500","VIX") 
data <- cbind(log(prices),vix) 
data.zoo <- zoo(data, order.by=dates) 
colnames(data.zoo) <- names # assign names to columns of data  
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plot(data.zoo) 
 
# Find the periods of Increasing and Decreasing Vol 
res.vix <- process.voldata(vix, dates, method="BB") 
#res.vix <- process.voldata(vix, dates, method="LT") 
 
vix <- res.vix$vol 
bull <- res.vix$bull 
rects <- res.vix$rects 
 
# plot the index 
df <- data.frame(Date=as.Date(dates), Value=vix) 
 
ggplot() + 
  geom_rect(data = rects, aes(xmin = xstart, xmax = xend, ymin = -Inf, ymax = Inf), 
fill="gray") + 
  geom_line(data = df, aes(Date,Value)) + 
  theme_bw() + xlab("") + ylab("VIX")   
 
# test of equality of mean returns during Increasing and Decreasing Vol 
res.vix <- divide.ret(ret, bull) 
volup <- res.vix$volup 
voldn <- res.vix$voldn 
t.test(volup,voldn) 
wilcox.test(volup,voldn) 
 
11.1.4 Filename: Algorithm-BB 
rm(list=ls(all=TRUE)) 
library(zoo) 
library(tseries) 
library(ggplot2) 
library(reshape2) 
library(plyr) 
library(xts) 
library(data.table) 
source("Data.r") 
 
### SUMMARY STATISTICS of S&P 500 log-returns ### 
min(ret)*100 #minimum 
mean(ret)*100 #mean 
t.test(ret) #p-value H0:my=0 
sd(ret)*100 #std. deviation 
max(ret)*100 #maximum 
skewness(ret) #skewness 
kurtosis(ret) #kurtosis 
#shapiro.test(ret) #Shapiro-Wilk normality test, p-value 
acf(ret,plot=F,lag.max=1) #autocorrelation, one lag 
Box.test(ret,lag=1,type = "Ljung") #p-value H0:lag1=0 
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### FIRST STUDY ### 
#Regression 
fitsym2000 <- lm(ret ~ rvix) #symmetric 
summary(fitsym2000) 
 
fitsym2009 <- lm(rvix ~ ret) #symmetric 
summary(fitsym2009) 
 
rvixplus <- vector() 
for (i in 1:length(rvix)){ 
  if(rvix[i]>0){ 
    rvixplus[i] <- rvix[i] 
  }else{ 
    rvixplus[i] <- 0 
  } 
} 
 
retminus <- vector() 
for (i in 1:length(ret)){ 
  if(ret[i]<0){ 
    retminus[i] <- ret[i] 
  }else{ 
    retminus[i] <- 0 
  } 
} 
 
asymfit2000 <- lm(ret ~ rvix + rvixplus) 
summary(asymfit2000) #asymmetric 
 
asymfit2009 <- lm(rvix ~ ret + retminus) 
summary(asymfit2009) #asymmetric 
 
 
### SECOND STUDY ### 
#Finding peaks with VIX 
ipeak <- vector() 
for (i in 2:length(bull)){ 
  if ((bull[i]==FALSE) & (bull[i-1]==TRUE))  
    ipeak <- c(ipeak,i-1) 
} 
print(ipeak) 
 
# Finding valleys with VIX 
ivalley <- vector() 
for(i in 2:length(bull)){  
  if ((bull[i]==TRUE) & (bull[i-1]==FALSE))  
    ivalley <- c(ivalley,i-1) 
} 
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print(ivalley) 
 
 
### STATISTICS, RISING/FALLING for VIX ### 
# TRUE = 1 and FALSE = 0 
bull01 <- bull*1 
#bull01 
 
# DURATION # 
durdf <- data.frame(Date=(dates), Value1=bull01) 
 
setDT(durdf) 
durdf[, run := cumsum(c(1, diff(Value1) !=0))] 
 
unique(durdf$Value1) 
one <- subset(durdf, Value1=="1") 
zero <- subset(durdf, Value1=="0") 
nrow(one) #Total days of rising 
nrow(zero) #Total days of falling 
 
#Total period 
duration <- rep(0) 
for (i in 1:295){ 
  ind <- which(durdf$run==i) 
  a <- durdf$Date[ind] 
  duration[i] <- length(a) 
} 
 
c <- rep(c(1,0),295) 
c <- c[1:295] 
durdf2 <- data.frame(duration, type=c) 
 
# #First period 
# duration <- rep(0) 
# for (i in 1:143){ 
#   ind <- which(df$run==i) 
#   a <- df$Date[ind] 
#   duration[i] <- length(a) 
# } 
# c <- rep(c(1,0),143) 
# c <- c[1:143] 
# df2 <- data.frame(duration, type=c) 
 
#Second period 
# duration <- rep(0) 
# for (i in 1:151){ 
#   ind <- which(df$run==i) 
#   a <- df$Date[ind] 
#   duration[i] <- length(a) 
# } 
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# c <- rep(c(1,0),151) 
# c <- c[1:151] 
# df2 <- data.frame(duration, type=c) 
 
unique(durdf2$type) 
r <- subset(durdf2, c=="1") 
f <- subset(durdf2, c=="0") 
 
#rising period 
nrow(r) #phases  
min(r$duration) 
mean(r$duration) 
median(r$duration) 
max(r$duration) 
 
#falling period 
nrow(f) #phases  
min(f$duration) 
mean(f$duration) 
median(f$duration) 
max(f$duration) 
 
# AMPLITUDE # 
mean(vix) 
print(vix[1], digits=6) 
vixpeak <- vix[ipeak] 
vixvalley <- vix[ivalley] 
 
#Falling amplitude 
amplitudef <- vector(mode="numeric", length=length(vixvalley)) 
 
for(i in 1:length(vixpeak)){ 
  amplitudef[i] <- abs((vixvalley[i]-vixpeak[i])/vixpeak[i])  
} 
 
list(amplitudef, sort(amplitudef)) 
print(length(amplitudef)) 
min(amplitudef) 
mean(amplitudef) 
median(amplitudef) 
max(amplitudef) 
 
print(median(amplitudef)) 
 
#Raising amplitude  
amplituder <- vector(mode="numeric", length=length(vixvalley)-1) 
 
i <- 0 
while(i < length(vixvalley) && i < length(vixpeak)+1 ) 
{ 
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  amplituder[i] <- abs((vixpeak[i+1]-vixvalley[i])/vixvalley[i])  
  i <- i+1 
} 
 
print(length(amplituder)) 
min(amplituder) 
mean(amplituder) 
median(amplituder) 
max(amplituder) 
 
# RISING statistics # 
cumr <- cumsum(volup) #average cum. return 
last(cumr) 
mean(volup)*100#mean daily return 
t.test(volup) #p-value H0:my=0 
sd(volup)*100 #daily std. deviation 
skewness(volup) #skewness 
kurtosis(volup) #kurtosis 
shapiro.test(volup) #Shapiro-Wilk normality test, p-value 
acf(volup,plot=F,lag.max=1) #autocorrelation, one lag 
Box.test(volup,lag=1, type = "Ljung") #p-value H0:lag1=0 
 
# FALLING statistics # 
cumf <- cumsum(voldn)#average cum. return 
last(cumf) 
mean(voldn)*100 #mean daily return 
t.test(voldn) #p-value H0:my=0 
sd(voldn)*100 #daily std. deviation 
skewness(voldn) #skewness 
kurtosis(voldn) #kurtosis                 
shapiro.test(voldn) #Shapiro-Wilk test, p-value 
acf(voldn,plot=F,lag.max=1) #autocorrelation, one lag 
Box.test(voldn,lag=1, type = "Ljung") #p-value H0:lag1=0 
 
 
### THIRD STUDY ### 
#Abnormal returns 
mea <- vector() 
n <- length(bull) 
for(i in 1:n) { 
  if(bull[i]==TRUE)  { 
    mea <- c(mea, mean(ret))  
  } else { 
    mea <- c(mea, mean(ret)) 
  }   
} 
abret <- vector() 
n <- length(bull) 
for(i in 1:n) { 
  if(bull[i]==TRUE)  { 
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    abret[i] <- ret[i]-mea[i] 
  } else { 
    abret[i] <- ret[i]-mea[i] 
  }   
} 
 
u <- (abret+mea) 
 
v <- vector() 
for (i in 1:length(bull)){ 
  if(u[i]==ret[i]){ 
    v[i] <- 1 
  }else{ 
    v[i] <- 0 
  } 
} 
 
compare <- data.frame(abret,mea,u,ret,v,bull01) 
 
# FINDING RETURNS of n-days before and after a peak # 
n <- 5 #using 5, 10, 15, and 20 days 
before <- vector() 
after <- vector() 
for (i in 1:length(ipeak)){ 
  before <- c(before,abret[(ipeak[i]-n):(ipeak[i]-1)]) 
  after <- c(after,abret[(ipeak[i]+1):(ipeak[i]+n)]) 
} 
 
mean(before)*100  
mean(after,na.rm=TRUE)*100 
 
#tests 
t.test(before,after) 
wilcox.test(before,after) 
ks.test(before,after) 
 
#Event study using abnormal returns  
source("window.table.BB.R") 
 
# FIGURES # 
# ABNORMAL RETURN AND CUMULATIVE ABNORMAL RETURN # 
# #Abnormal returns over the event window - total period. 
# x  <- -10:10 #days relative to a volatility peak 
# AR <- read.table("AR.total.txt",sep="\t", col.names=c("AR"), fill=FALSE, 
strip.white=TRUE) 
# t.test(AR) 
#  
# df95 <- data.frame(x, AR) 
# df95$lb <- df95$AR-0.2675931 
# df95$ub <- df95$AR+0.1737227 
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#  
# ggplot(data = df95, aes(x = x, y = AR)) +  
#   ylab("Abnormal Return, %") + xlab("Days relative to a volatility peak") + 
#   geom_line(size = 0.5) + 
#   geom_hline(aes(yintercept = 0), linetype = "dashed") + 
#   geom_ribbon(aes(ymin=lb, ymax=ub), alpha=0.5) + 
#   scale_x_continuous(breaks = c(-10,-9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10)) + 
#   scale_y_continuous(breaks = c(-1,0,1))  
#  
# #Cumulative Abnormal Returns over the event window - total period. 
# x  <- -10:10 #days relative to a volatility peak 
# CAR <- read.table("CAR.total.txt",sep="\t", col.names=c("CAR"), fill=FALSE, 
strip.white=TRUE) 
# t.test(CAR) 
#  
# df95.CAR <- data.frame(x, CAR) 
# df95.CAR$lb <- df95.CAR$CAR-(-1.983744+1.520496) 
# df95.CAR$ub <- df95.CAR$CAR-(-1.057248+1.520496) 
#                              
# ggplot(data = df95.CAR, aes(x = x, y = CAR)) +  
#   ylab("Cumulative Abnormal Return, %") + xlab("Days relative to a volatility peak") + 
#   geom_line(size = 0.5) + 
#   geom_hline(aes(yintercept = 0), linetype = "dashed") + 
#   geom_ribbon(aes(ymin=lb, ymax=ub), alpha=0.5) + 
#   scale_x_continuous(breaks = c(-10,-9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10)) + 
#   scale_y_continuous(breaks = c(-1,0,1))  
#  
# #Abnormal Return over the event window. Total-, 1st- and 2nd period.  
# Total.period = read.table("AR.total.txt",sep="\t", col.names=c("Total period"), fill=FALSE, 
strip.white=TRUE) 
# First.period = read.table("AR.first.txt",sep="\t", col.names=c("First period"), fill=FALSE, 
strip.white=TRUE) 
# Second.period = read.table("AR.second.txt",sep="\t", col.names=c("Second period"), 
fill=FALSE, strip.white=TRUE) 
#  
# x  <- -10:10 #days relative to a volatility peak 
# y1 <- Total.period #total period 
# y2 <- First.period #1st subperiod 
# y3 <- Second.period #2nd subperiod 
# df <- data.frame(x,y1,y2,y3) 
#  
# df2 <- melt(data = df, variable.name = "Period", id.vars = "x") 
#  
# ggplot(data = df2, aes(x = x, y = value, group = Period, color = Period)) +  
#   ylab("Abnormal Return, %") + xlab("Days relative to a volatility peak") + 
#   geom_line(size = 0.5) + 
#   geom_point(size = 2, shape = 21, fill = "white") + 
#   geom_hline(aes(yintercept = 0), linetype = "dashed") + 
#   scale_x_continuous(breaks = c(-10,-9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10)) + 
#   scale_y_continuous(breaks = c(-1,0,1)) + 
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#   scale_color_discrete(labels = c("Total", "First", "Second")) + 
#   theme(legend.position="bottom") 
#    
# #Cumulative Abnormal Return over the event window. Total-, 1st- and 2nd period.  
# Total.period = read.table("CAR.total.txt",sep="\t", col.names=c("Total period"), 
fill=FALSE, strip.white=TRUE) 
# First.period = read.table("CAR.first.txt",sep="\t", col.names=c("First period"), fill=FALSE, 
strip.white=TRUE) 
# Second.period = read.table("CAR.second.txt",sep="\t", col.names=c("Second period"), 
fill=FALSE, strip.white=TRUE) 
#  
# x  <- -10:10 #days relative to a volatility peak 
# y4 <- Total.period #total period 
# y5 <- First.period #1st subperiod 
# y6 <- Second.period #2nd subperiod 
# df1 <- data.frame(x,y4,y5,y6) 
#  
# df3 <- melt(data = df1, variable.name = "Period", id.vars = "x") 
#  
# ggplot(data = df3, aes(x = x, y = value, group = Period, color = Period)) +  
#   ylab("Cumulative Abnormal Return, %") + xlab("Days relative to a volatility peak") + 
#   geom_line() + 
#   geom_point(size = 2, shape = 21, fill = "white") + 
#   geom_hline(aes(yintercept = 0), linetype = "dashed") + 
#   scale_x_continuous(breaks = c(-10,-9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10)) + 
#   scale_y_continuous(breaks = c(-4,-3,-2,-1,0)) + 
#   scale_color_discrete(labels = c("Total", "First", "Second")) + 
#   theme(legend.position="bottom") 
# 
# #AR - total period. Above and below median of amplitude 
# x  <- -10:10 #days relative to a volatility peak 
# AR <- read.table("AR.total.txt",sep="\t", col.names=c("AR"), fill=FALSE, 
strip.white=TRUE) 
# AR.above <- read.table("AR.above.txt",sep="\t", col.names=c("Above"), fill=FALSE, 
strip.white=TRUE) 
# AR.below <- read.table("AR.below.txt",sep="\t", col.names=c("Below"), fill=FALSE, 
strip.white=TRUE) 
#  
# df4 <- data.frame(x,AR,AR.above,AR.below) 
# df5 <- melt(data=df4, variable.name = "Amplitude", id.vars="x") 
#  
# ggplot(data = df5, aes(x = x, y = value, group = Amplitude, color = Amplitude)) +  
#   ylab("Abnormal Return, %") + xlab("Days relative to a volatility peak") + 
#   geom_line() + 
#   geom_point(size = 2, shape = 21, fill = "white") + 
#   geom_hline(aes(yintercept = 0), linetype = "dashed") + 
#   scale_x_continuous(breaks = c(-10,-9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10)) + 
#   scale_y_continuous(breaks = c(-6,-5,-4,-3,-2,-1,0,1,2)) + 
#   scale_color_discrete(labels = c("All amplitudes", "Above median", "Below median")) + 
#   theme(legend.position="bottom") 
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#Divide amplitude in above and below median of raising amplitude 
ipeak2 <- vector() 
for (i in 1:length(ipeak)){ 
  ipeak2[i] <- ipeak[i] 
} 
ipeak2 <- ipeak2[-1] 
DFpeakamp <- data.frame(ipeak2,amplituder) 
abind <- (rep(c(0,1),73)) 
abind <- c[1:146] 
abind <- sort(abind)  #order 0 and 1 as an indicator for below and above median amp.  
new <- data.frame(DFpeakamp[ order(DFpeakamp$amplituder), ], abind) 
 
ampbelow <- subset(new$ipeak2,abind=="0") 
ampabove <- subset(new$ipeak2,abind=="1") 
 
# FUGURES # 
# ABOVE MEDIAN AND BELOW MEDIAN # 
# #CAR - total period. Above and below median of amplitude 
# x  <- -10:10 #days relative to a volatility peak 
# CAR <- read.table("CAR.total.txt",sep="\t", col.names=c("CAR"), fill=FALSE, 
strip.white=TRUE) 
# CAR.above <- read.table("CAR.above.txt",sep="\t", col.names=c("Above"), fill=FALSE, 
strip.white=TRUE) 
# CAR.below <- read.table("CAR.below.txt",sep="\t", col.names=c("Below"), fill=FALSE, 
strip.white=TRUE) 
#  
# df6 <- data.frame(x,CAR,CAR.above,CAR.below) 
# df7 <- melt(data=df6, variable.name = "Amplitude", id.vars="x") 
#  
# ggplot(data = df7, aes(x = x, y = value, group = Amplitude, color = Amplitude)) +  
#   ylab("Cumulative Abnormal Return, %") + xlab("Days relative to a volatility peak") + 
#   geom_line() + 
#   geom_point(size = 2, shape = 21, fill = "white") + 
#   geom_hline(aes(yintercept = 0), linetype = "dashed") + 
#   scale_x_continuous(breaks = c(-10,-9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10)) + 
#   scale_y_continuous(breaks = c(-6,-5,-4,-3,-2,-1,0,1,2)) + 
#   scale_color_discrete(labels = c("All amplitudes", "Above median", "Below median")) + 
#   theme(legend.position="bottom") 
 
11.1.5 Filname: Window.Table.Dummy.BB 
### THIRD STUDY ### 
source("Algorithm-BB.R") 
# Algorithm by Bry and Boschan (BB) # 
#full,first and second period we use length=ipeak 
#above and below median we use length=ampabove and length=ampbelow 
 
window.tableR <- matrix(NA,nrow = length(ipeak),ncol = 11) 
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colnames(window.tableR) <- c("-10":"0") 
 
window.tableR[,1] <- (ret-mean(ret))[ipeak-10] 
window.tableR[,2] <- (ret-mean(ret))[ipeak-9] 
window.tableR[,3] <- (ret-mean(ret))[ipeak-8] 
window.tableR[,4] <- (ret-mean(ret))[ipeak-7] 
window.tableR[,5] <- (ret-mean(ret))[ipeak-6] 
window.tableR[,6] <- (ret-mean(ret))[ipeak-5] 
window.tableR[,7] <- (ret-mean(ret))[ipeak-4] 
window.tableR[,8] <- (ret-mean(ret))[ipeak-3] 
window.tableR[,9] <- (ret-mean(ret))[ipeak-2] 
window.tableR[,10] <- (ret-mean(ret))[ipeak-1] 
window.tableR[,11] <- (ret-mean(ret))[ipeak] 
 
window.tableF <- matrix(NA,nrow = length(ipeak),ncol = 10) 
colnames(window.tableF) <- c("1":"10") 
 
window.tableF[,1] <- (ret-mean(ret))[ipeak+1] 
window.tableF[,2] <- (ret-mean(ret))[ipeak+2] 
window.tableF[,3] <- (ret-mean(ret))[ipeak+3] 
window.tableF[,4] <- (ret-mean(ret))[ipeak+4] 
window.tableF[,5] <- (ret-mean(ret))[ipeak+5] 
window.tableF[,6] <- (ret-mean(ret))[ipeak+6] 
window.tableF[,7] <- (ret-mean(ret))[ipeak+7] 
window.tableF[,8] <- (ret-mean(ret))[ipeak+8] 
window.tableF[,9] <- (ret-mean(ret))[ipeak+9] 
window.tableF[,10] <- (ret-mean(ret))[ipeak+10] 
 
#window.bull <- c(bull[ipeak-10]) 
 
window.bull <- matrix(NA,nrow = length(ipeak),ncol = 11) 
colnames(window.bull)<-c("-10":"0") 
window.bull[,1] <- bull[ipeak-10] 
window.bull[,2] <- bull[ipeak-9] 
window.bull[,3] <- bull[ipeak-8] 
window.bull[,4] <- bull[ipeak-7] 
window.bull[,5] <- bull[ipeak-6] 
window.bull[,6] <- bull[ipeak-5] 
window.bull[,7] <- bull[ipeak-4] 
window.bull[,8] <- bull[ipeak-3] 
window.bull[,9] <- bull[ipeak-2] 
window.bull[,10] <- bull[ipeak-1] 
window.bull[,11] <- bull[ipeak] 
 
window.bear <- matrix(NA,nrow = length(ipeak),ncol = 10) 
colnames(window.bear)<-c("1":"10") 
 
window.bear[,1] <- bull[ipeak+1] 
window.bear[,2] <- bull[ipeak+2] 
window.bear[,3] <- bull[ipeak+3] 
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window.bear[,4] <- bull[ipeak+4] 
window.bear[,5] <- bull[ipeak+5] 
window.bear[,6] <- bull[ipeak+6] 
window.bear[,7] <- bull[ipeak+7] 
window.bear[,8] <- bull[ipeak+8] 
window.bear[,9] <- bull[ipeak+9] 
window.bear[,10] <- bull[ipeak+10] 
 
 
for (i in 1:length(ipeak)){ 
  for(j in 1:11){ 
  if(window.bull[i,j]==FALSE){ 
    window.tableR[i,j] <- NA 
    } 
  } 
} 
 
 
# #BB full period 
# window.tableR[70,1] <- NA #fix TURE values that are not close to the peak (FALSE 
inbetween the TRUE and peak) 
# window.tableR[70,2] <- NA 
# window.tableR[111,1] <- NA 
# window.tableR[111,2] <- NA 
# window.tableR[119,1] <- NA 
# window.tableR[119,2] <- NA 
# window.tableR[142,1] <- NA 
 
# #BB first period 
# window.tableR[70,1] <- NA 
# window.tableR[70,2] <- NA 
 
# #BB second period 
# window.tableR[39,1] <- NA 
# window.tableR[39,2] <- NA 
# window.tableR[47,1] <- NA 
# window.tableR[47,2] <- NA 
# window.tableR[70,1] <- NA 
 
# #BB full period above median 
#   window.tableR[11,1] <- NA 
#   window.tableR[11,2] <- NA 
#   window.tableR[54,1] <- NA 
#   window.tableR[54,2] <- NA 
 
# #BB full period below median 
#   window.tableR[60,1] <- NA 
#   window.tableR[61,1] <- NA 
#   window.tableR[61,2] <- NA 
 



 76 

for (i in 1:length(ipeak)){ 
  for(j in 1:10){ 
    if(window.bear[i,j]==TRUE){ 
      window.tableF[i,j] <- NA 
    } 
  } 
} 
 
# #BB full period 
# window.tableF[69,10] <- NA #Fix FALSE values that are not close to the  (TRUE 
inbetween the FALSE and peak) 
# window.tableF[110,10] <- NA 
# window.tableF[118,10] <- NA 
 
# #BB first period 
# window.tableF[69,10] <- NA 
 
# #BB second period 
# window.tableF[38,10] <- NA 
# window.tableF[46,10] <- NA 
 
# #BB full period above median 
#   window.tableF[68,10] <- NA 
#   window.tableF[69,10] <- NA 
#   window.tableF[71,10] <- NA 
 
window.table <- matrix(NA,nrow = length(ipeak),ncol = 21) 
colnames(window.table) <- c("-10":"10") 
 
window.table[,1:11] <- window.tableR  
window.table[,12:21] <- window.tableF 
 
 
AR.total <- apply(window.table,2,mean,na.rm=TRUE)*100 #abnormal return of all peaks for 
n-days before and after 
AR.total 
t.test(AR.total) 
CAR.total <- cumsum(AR.total) #cumulative abnormal return 
CAR.total 
t.test(CAR.total) 
 
#save to a file 
# write.zoo(AR.total, file="AR.total.txt") #total = full period 
# write.zoo(CAR.total, file="CAR.total.txt") 
# write.zoo(AR.first, file="AR.first.txt") #first = 1st half 
# write.zoo(CAR.first, file="CAR.first.txt") 
# write.zoo(AR.second, file="AR.second.txt") #second = 2nd half 
# write.zoo(CAR.second, file="CAR.second.txt") 
# write.zoo(AR.above, file="AR.above.txt") #above median 
# write.zoo(CAR.above, file="CAR.above.txt") 
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# write.zoo(AR.below, file="AR.below.txt") #below median 
# write.zoo(CAR.below, file="CAR.below.txt") 
 
11.1.6 Filename: Algorithm-LT 
rm(list=ls(all=TRUE)) 
library(zoo) 
library(tseries) 
library(ggplot2) 
library(reshape2) 
library(plyr) 
library(xts) 
library(data.table) 
source("Data.r") 
 
### SUMMARY STATISTICS ### 
min(ret)*100 #minimum 
mean(ret)*100 #mean 
t.test(ret) #p-value H0:my=0 
sd(ret)*100 #std. deviation 
max(ret)*100 #maximum 
skewness(ret) #skewness 
kurtosis(ret) #kurtosis 
#shapiro.test(ret) #Shapiro-Wilk normality test, p-value 
acf(ret,plot=F,lag.max=1) #autocorrelation, one lag 
Box.test(ret,lag=1, type="Ljung") #p-value H0:lag1=0 
 
 
### SECOND STUDY ### 
#Finding peaks with VIX 
ipeak <- vector() 
for (i in 2:length(bull)){ 
  if ((bull[i]==FALSE) & (bull[i-1]==TRUE))  
    ipeak <- c(ipeak,i-1) 
} 
print(ipeak) 
 
# Finding valleys with VIX 
ivalley <- vector() 
for(i in 2:length(bull)){  
  if ((bull[i]==TRUE) & (bull[i-1]==FALSE))  
    ivalley <- c(ivalley,i-1) 
} 
print(ivalley) 
 
### STATISTICS, RISING/FALLING ### 
# TRUE = 1 and FALSE = 0 
bull01 <- bull*1 
#bull01 
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# DURATION # 
durdf <- data.frame(Date=(dates), Value1=bull01) 
 
setDT(durdf) 
durdf[, run := cumsum(c(1, diff(Value1) !=0))] 
 
unique(durdf$Value1) 
one <- subset(durdf, Value1=="1") 
zero <- subset(durdf, Value1=="0") 
nrow(one) #Total days of rising 
nrow(zero) #Total days of falling 
 
#Total period 
duration <- rep(0) 
for (i in 1:253){ 
  ind <- which(durdf$run==i) 
  a <- durdf$Date[ind] 
  duration[i] <- length(a) 
} 
 
c <- rep(c(1,0),253) 
c <- c[1:253] 
durdf2 <- data.frame(duration, type=c) 
 
# #First period 
# duration <- rep(0) 
# for (i in 1:115){ 
#   ind <- which(df$run==i) 
#   a <- df$Date[ind] 
#   duration[i] <- length(a) 
# } 
# c <- rep(c(1,0),115) 
# c <- c[1:115] 
# df2 <- data.frame(duration, type=c) 
 
#Second period 
# duration <- rep(0) 
# for (i in 1:138){ 
#   ind <- which(df$run==i) 
#   a <- df$Date[ind] 
#   duration[i] <- length(a) 
# } 
# c <- rep(c(1,0),138) 
# c <- c[1:138] 
# df2 <- data.frame(duration, type=c) 
 
unique(durdf2$c) 
r <- subset(durdf2, c=="1") 
f <- subset(durdf2, c=="0") 
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#rising period 
nrow(r) #phases  
min(r$duration) 
mean(r$duration) 
median(r$duration) 
max(r$duration) 
 
#falling period 
nrow(f) #phases  
min(f$duration) 
mean(f$duration) 
median(f$duration) 
max(f$duration) 
 
# AMPLITUDE # 
mean(vix) 
print(vix[1], digits=6) 
vixpeak <- vix[ipeak] 
vixvalley <- vix[ivalley] 
 
#Falling amplitude 
amplitudef <- vector(mode="numeric", length=length(vixvalley)) 
 
for(i in 1:length(vixpeak)){ 
  amplitudef[i] <- abs((vixvalley[i]-vixpeak[i])/vixpeak[i])  
} 
 
list(amplitudef, sort(amplitudef)) 
print(length(amplitudef)) 
min(amplitudef) 
mean(amplitudef) 
median(amplitudef) 
max(amplitudef) 
 
print(median(amplitudef)) 
 
#Raising amplitude  
amplituder <- vector(mode="numeric", length=length(vixpeak)-1) 
 
i <- 0 
while(i < length(vixvalley)+1 && i < length(vixpeak) ) 
{ 
  amplituder[i] <- abs((vixpeak[i+1]-vixvalley[i])/vixvalley[i])  
  i <- i+1 
} 
 
print(length(amplituder)) 
min(amplituder) 
mean(amplituder) 
median(amplituder) 
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max(amplituder) 
 
# RISING statistics # 
cumr <- cumsum(volup) #average cum. return IKKE HELT RIKTIG 
last(cumr) 
mean(volup)*100#mean daily return 
t.test(volup) #p-value H0:my=0 
sd(volup)*100 #daily std. deviation 
skewness(volup) #skewness 
kurtosis(volup) #kurtosis 
shapiro.test(volup) #Shapiro-Wilk normality test, p-value 
acf(volup,plot=F,lag.max=1) #autocorrelation, one lag 
Box.test(volup,lag=1, type="Ljung") #p-value H0:lag1=0 
 
 
# FALLING statistics # 
cumf <- cumsum(voldn)#average cum. return IKKE HELT RIKTIG 
last(cumf) 
mean(voldn)*100 #mean daily return 
t.test(voldn) #p-value H0:my=0 
sd(voldn)*100 #daily std. deviation 
skewness(voldn) #skewness 
kurtosis(voldn) #kurtosis                 
shapiro.test(voldn) #Shapiro-Wilk test, p-value 
acf(voldn,plot=F,lag.max=1) #autocorrelation, one lag 
Box.test(voldn,lag=1, type="Ljung") #p-value H0:lag1=0 
 
 
### THIRD STUDY ### 
#Abnormal returns 
mea <- vector() 
n <- length(bull) 
for(i in 1:n) { 
  if(bull[i]==TRUE)  { 
    mea <- c(mea, mean(ret))  
  } else { 
    mea <- c(mea, mean(ret)) 
  }   
} 
 
abret <- vector() 
n <- length(bull) 
for(i in 1:n) { 
  if(bull[i]==TRUE)  { 
    abret[i] <- ret[i]-mea[i] 
  } else { 
    abret[i] <- ret[i]-mea[i] 
  }   
} 
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u <- (abret+mea) 
 
v <- vector() 
for (i in 1:length(bull)){ 
  if(u[i]==ret[i]){ 
    v[i] <- 1 
  }else{ 
    v[i] <- 0 
  } 
} 
 
compare <- data.frame(abret,mea,u,ret,v,bull01) 
 
# FINDING RETURNS of n-days before and after a peak 
abret <- ret-mean(ret) 
n <- 5 #using 5, 10, 15, 20 
before <- vector() 
after <- vector() 
for (i in 1:length(ipeak)){ 
  before <- c(before,abret[(ipeak[i]-n):(ipeak[i]-1)]) 
  after <- c(after,abret[(ipeak[i]+1):(ipeak[i]+n)]) 
} 
 
mean(before)*100  
mean(after,na.rm=TRUE)*100 
 
#tests 
t.test(before,after) 
wilcox.test(before,after) 
ks.test(before,after) 
 
#Event study using abnormal returns  
source("window.table.LT.R") 
 
# FIGURES # 
# ABNORMAL RETURN AND CUMULATIVE ABNORMAL RETURN # 
# #Abnormal returns over the event window - total period. 
# x  <- -10:10 #days relative to a volatility peak 
# AR <- read.table("AR.total.LT.txt",sep="\t", col.names=c("AR"), fill=FALSE, 
strip.white=TRUE) 
# t.test(AR) 
#  
# df95 <- data.frame(x, AR) 
# df95$lb <- df95$AR-0.2675931 
# df95$ub <- df95$AR+0.1737227 
#  
# ggplot(data = df95, aes(x = x, y = AR)) +  
#   ylab("Abnormal Return, %") + xlab("Days relative to a volatility peak") + 
#   geom_line(size = 0.5) + 
#   geom_hline(aes(yintercept = 0), linetype = "dashed") + 
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#   geom_ribbon(aes(ymin=lb, ymax=ub), alpha=0.5) + 
#   scale_x_continuous(breaks = c(-10,-9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10)) + 
#   scale_y_continuous(breaks = c(-1,0,1))  
#  
# #Cumulative Abnormal Returns over the event window - total period. 
# x  <- -10:10 #days relative to a volatility peak 
# CAR <- read.table("CAR.total.LT.txt",sep="\t", col.names=c("CAR"), fill=FALSE, 
strip.white=TRUE) 
# t.test(CAR) 
#  
# df95.CAR <- data.frame(x, CAR) 
# df95.CAR$lb <- df95.CAR$CAR-(-1.983744+1.520496) 
# df95.CAR$ub <- df95.CAR$CAR-(-1.057248+1.520496) 
#                              
# ggplot(data = df95.CAR, aes(x = x, y = CAR)) +  
#   ylab("Cumulative Abnormal Return, %") + xlab("Days relative to a volatility peak") + 
#   geom_line(size = 0.5) + 
#   geom_hline(aes(yintercept = 0), linetype = "dashed") + 
#   geom_ribbon(aes(ymin=lb, ymax=ub), alpha=0.5) + 
#   scale_x_continuous(breaks = c(-10,-9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10)) + 
#   scale_y_continuous(breaks = c(-1,0,1))  
#  
# #Abnormal Return over the event window. Total-, 1st- and 2nd period.  
# Total.period = read.table("AR.total.LT.txt",sep="\t", col.names=c("Total period"), 
fill=FALSE, strip.white=TRUE) 
# First.period = read.table("AR.first.LT.txt",sep="\t", col.names=c("First period"), 
fill=FALSE, strip.white=TRUE) 
# Second.period = read.table("AR.second.LT.txt",sep="\t", col.names=c("Second period"), 
fill=FALSE, strip.white=TRUE) 
#  
# x  <- -10:10 #days relative to a volatility peak 
# y1 <- Total.period #total period 
# y2 <- First.period #1st subperiod 
# y3 <- Second.period #2nd subperiod 
# df <- data.frame(x,y1,y2,y3) 
#  
# df2 <- melt(data = df, variable.name = "Period", id.vars = "x") 
#  
# ggplot(data = df2, aes(x = x, y = value, group = Period, color = Period)) +  
#   ylab("Abnormal Return, %") + xlab("Days relative to a volatility peak") + 
#   geom_line(size = 0.5) + 
#   geom_point(size = 2, shape = 21, fill = "white") + 
#   geom_hline(aes(yintercept = 0), linetype = "dashed") + 
#   scale_x_continuous(breaks = c(-10,-9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10)) + 
#   scale_y_continuous(breaks = c(-1,0,1)) + 
#   scale_color_discrete(labels = c("Total", "First", "Second")) + 
#   theme(legend.position="bottom") 
#    
# #Cumulative Abnormal Return over the event window. Total-, 1st- and 2nd period.  
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# Total.period = read.table("CAR.total.LT.txt",sep="\t", col.names=c("Total period"), 
fill=FALSE, strip.white=TRUE) 
# First.period = read.table("CAR.first.LT.txt",sep="\t", col.names=c("First period"), 
fill=FALSE, strip.white=TRUE) 
# Second.period = read.table("CAR.second.LT.txt",sep="\t", col.names=c("Second period"), 
fill=FALSE, strip.white=TRUE) 
#  
# x  <- -10:10 #days relative to a volatility peak 
# y4 <- Total.period #total period 
# y5 <- First.period #1st subperiod 
# y6 <- Second.period #2nd subperiod 
# df1 <- data.frame(x,y4,y5,y6) 
#  
# df3 <- melt(data = df1, variable.name = "Period", id.vars = "x") 
#  
# ggplot(data = df3, aes(x = x, y = value, group = Period, color = Period)) +  
#   ylab("Cumulative Abnormal Return, %") + xlab("Days relative to a volatility peak") + 
#   geom_line() + 
#   geom_point(size = 2, shape = 21, fill = "white") + 
#   geom_hline(aes(yintercept = 0), linetype = "dashed") + 
#   scale_x_continuous(breaks = c(-10,-9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10)) + 
#   scale_y_continuous(breaks = c(-4,-3,-2,-1,0)) + 
#   scale_color_discrete(labels = c("Total", "First", "Second")) + 
#   theme(legend.position="bottom") 
# 
# #AR - total period. Above and below median of amplitude 
# x  <- -10:10 #days relative to a volatility peak 
# AR <- read.table("AR.total.LT.txt",sep="\t", col.names=c("AR"), fill=FALSE, 
strip.white=TRUE) 
# AR.above <- read.table("AR.above.LT.txt",sep="\t", col.names=c("Above"), fill=FALSE, 
strip.white=TRUE) 
# AR.below <- read.table("AR.below.LT.txt",sep="\t", col.names=c("Below"), fill=FALSE, 
strip.white=TRUE) 
#  
# df4 <- data.frame(x,AR,AR.above,AR.below) 
# df5 <- melt(data=df4, variable.name = "Amplitude", id.vars="x") 
#  
# ggplot(data = df5, aes(x = x, y = value, group = Amplitude, color = Amplitude)) +  
#   ylab("Abnormal Return, %") + xlab("Days relative to a volatility peak") + 
#   geom_line() + 
#   geom_point(size = 2, shape = 21, fill = "white") + 
#   geom_hline(aes(yintercept = 0), linetype = "dashed") + 
#   scale_x_continuous(breaks = c(-10,-9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10)) + 
#   scale_y_continuous(breaks = c(-6,-5,-4,-3,-2,-1,0,1,2)) + 
#   scale_color_discrete(labels = c("All amplitudes", "Above median", "Below median")) + 
#   theme(legend.position="bottom") 
 
#Divide amplitude in above and below median of raising amplitude 
ipeak2 <- vector() 
for (i in 1:length(ipeak)){ 
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  ipeak2[i] <- ipeak[i] 
} 
ipeak2 <- ipeak2[-1] 
DFpeakamp <- data.frame(ipeak2,amplituder) 
abind <- (rep(c(0,1),63)) 
abind <- c[1:126] 
abind <- sort(abind)  #order 0 and 1 as an indicator for below and above median amp.  
new <- data.frame(DFpeakamp[ order(DFpeakamp$amplituder), ], abind) 
 
ampbelow <- subset(new$ipeak2,abind=="0") 
ampabove <- subset(new$ipeak2,abind=="1") 
 
# FUGURES # 
# ABOVE MEDIAN AND BELOW MEDIAN # 
# #CAR - total period. Above and below median of amplitude 
# x  <- -10:10 #days relative to a volatility peak 
# CAR <- read.table("CAR.total.LT.txt",sep="\t", col.names=c("CAR"), fill=FALSE, 
strip.white=TRUE) 
# CAR.above <- read.table("CAR.above.LT.txt",sep="\t", col.names=c("Above"), 
fill=FALSE, strip.white=TRUE) 
# CAR.below <- read.table("CAR.below.LT.txt",sep="\t", col.names=c("Below"), 
fill=FALSE, strip.white=TRUE) 
#  
# df6 <- data.frame(x,CAR,CAR.above,CAR.below) 
# df7 <- melt(data=df6, variable.name = "Amplitude", id.vars="x") 
#  
# ggplot(data = df7, aes(x = x, y = value, group = Amplitude, color = Amplitude)) +  
#   ylab("Cumulative Abnormal Return, %") + xlab("Days relative to a volatility peak") + 
#   geom_line() + 
#   geom_point(size = 2, shape = 21, fill = "white") + 
#   geom_hline(aes(yintercept = 0), linetype = "dashed") + 
#   scale_x_continuous(breaks = c(-10,-9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10)) + 
#   scale_y_continuous(breaks = c(-6,-5,-4,-3,-2,-1,0,1,2)) + 
#   scale_color_discrete(labels = c("All amplitudes", "Above median", "Below median")) + 
#   theme(legend.position="bottom") 
 
11.1.7 Filename: Window.Table.Dummy.LT 
### THIRD STUDY ### 
source("Algotithm-LT.R") 
# Algorithm by Lunde and Timmermann (LT) # 
#full,first and second period we use length=ipeak 
#above and below median we use length=ampabove and length=ampbelow 
 
window.tableR <- matrix(NA,nrow = length(ipeak),ncol = 11) 
colnames(window.tableR) <- c("-10":"0") 
 
window.tableR[,1] <- (ret-mean(ret))[ipeak-10] 
window.tableR[,2] <- (ret-mean(ret))[ipeak-9] 
window.tableR[,3] <- (ret-mean(ret))[ipeak-8] 
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window.tableR[,4] <- (ret-mean(ret))[ipeak-7] 
window.tableR[,5] <- (ret-mean(ret))[ipeak-6] 
window.tableR[,6] <- (ret-mean(ret))[ipeak-5] 
window.tableR[,7] <- (ret-mean(ret))[ipeak-4] 
window.tableR[,8] <- (ret-mean(ret))[ipeak-3] 
window.tableR[,9] <- (ret-mean(ret))[ipeak-2] 
window.tableR[,10] <- (ret-mean(ret))[ipeak-1] 
window.tableR[,11] <- (ret-mean(ret))[ipeak] 
 
window.tableF <- matrix(NA,nrow = length(ipeak),ncol = 10) 
colnames(window.tableF) <- c("1":"10") 
 
window.tableF[,1] <- (ret-mean(ret))[ipeak+1] 
window.tableF[,2] <- (ret-mean(ret))[ipeak+2] 
window.tableF[,3] <- (ret-mean(ret))[ipeak+3] 
window.tableF[,4] <- (ret-mean(ret))[ipeak+4] 
window.tableF[,5] <- (ret-mean(ret))[ipeak+5] 
window.tableF[,6] <- (ret-mean(ret))[ipeak+6] 
window.tableF[,7] <- (ret-mean(ret))[ipeak+7] 
window.tableF[,8] <- (ret-mean(ret))[ipeak+8] 
window.tableF[,9] <- (ret-mean(ret))[ipeak+9] 
window.tableF[,10] <- (ret-mean(ret))[ipeak+10] 
 
#window.bull <- c(bull[ipeak-10]) 
 
window.bull <- matrix(NA,nrow = length(ipeak),ncol = 11) 
colnames(window.bull)<-c("-10":"0") 
window.bull[,1] <- bull[ipeak-10] 
window.bull[,2] <- bull[ipeak-9] 
window.bull[,3] <- bull[ipeak-8] 
window.bull[,4] <- bull[ipeak-7] 
window.bull[,5] <- bull[ipeak-6] 
window.bull[,6] <- bull[ipeak-5] 
window.bull[,7] <- bull[ipeak-4] 
window.bull[,8] <- bull[ipeak-3] 
window.bull[,9] <- bull[ipeak-2] 
window.bull[,10] <- bull[ipeak-1] 
window.bull[,11] <- bull[ipeak] 
 
window.bear <- matrix(NA,nrow = length(ipeak),ncol = 10) 
colnames(window.bear)<-c("1":"10") 
 
window.bear[,1] <- bull[ipeak+1] 
window.bear[,2] <- bull[ipeak+2] 
window.bear[,3] <- bull[ipeak+3] 
window.bear[,4] <- bull[ipeak+4] 
window.bear[,5] <- bull[ipeak+5] 
window.bear[,6] <- bull[ipeak+6] 
window.bear[,7] <- bull[ipeak+7] 
window.bear[,8] <- bull[ipeak+8] 
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window.bear[,9] <- bull[ipeak+9] 
window.bear[,10] <- bull[ipeak+10] 
 
for (i in 1:length(ipeak)){ 
  for(j in 1:11){ 
    if(window.bull[i,j]==FALSE){ 
      window.tableR[i,j] <- NA 
    } 
  } 
} 
 
 
# #LT full period 
# window.tableR[56,1] <- NA #fix TURE values that are not close to the peak (FALSE 
inbetween the TRUE and peak) 
# window.tableR[56,2] <- NA 
# window.tableR[71,1] <- NA 
# window.tableR[71,2] <- NA 
# window.tableR[71,3] <- NA 
# window.tableR[71,4] <- NA 
# window.tableR[71,5] <- NA 
# window.tableR[71,6] <- NA 
# window.tableR[71,7] <- NA 
# window.tableR[72,1] <- NA 
# window.tableR[91,1] <- NA 
# window.tableR[91,2] <- NA 
# window.tableR[97,1] <- NA 
# window.tableR[97,2] <- NA 
# window.tableR[100,4] <- NA 
# window.tableR[100,5] <- NA 
# window.tableR[121,1] <- NA 
# #LT first period 
# window.tableR[56,1] <- NA 
# window.tableR[56,2] <- NA 
 
# #LT second period 
# window.tableR[13,1] <- NA 
# window.tableR[13,2] <- NA 
# window.tableR[13,3] <- NA 
# window.tableR[13,4] <- NA 
# window.tableR[13,5] <- NA 
# window.tableR[13,6] <- NA 
# window.tableR[13,7] <- NA 
# window.tableR[14,1] <- NA 
# window.tableR[33,1] <- NA 
# window.tableR[33,2] <- NA 
# window.tableR[39,1] <- NA 
# window.tableR[39,2] <- NA 
# window.tableR[42,4] <- NA 
# window.tableR[42,5] <- NA 
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# window.tableR[63,1] <- NA 
 
# #LT full period above median 
# window.tableR[34,1] <- NA 
# window.tableR[45,1] <- NA 
# window.tableR[45,2] <- NA 
 
# #LT full period below median 
# window.tableR[11,4] <- NA 
# window.tableR[11,5] <- NA 
# window.tableR[29,1] <- NA 
# window.tableR[30,1] <- NA 
# window.tableR[30,2] <- NA 
# window.tableR[59,1] <- NA 
# window.tableR[59,2] <- NA 
 
 
for (i in 1:length(ipeak)){ 
  for(j in 1:10){ 
    if(window.bear[i,j]==TRUE){ 
      window.tableF[i,j] <- NA 
    } 
  } 
} 
 
# #LT full period 
# window.tableF[55,10] <- NA #Fix FALSE values that are not close to the  (TRUE 
inbetween the FALSE and peak) 
# window.tableF[70,5] <- NA 
# window.tableF[70,6] <- NA 
# window.tableF[70,7] <- NA 
# window.tableF[90,10] <- NA 
# window.tableF[96,10] <- NA 
# window.tableF[99,7] <- NA 
# window.tableF[99,8] <- NA 
# window.tableF[99,9] <- NA 
# window.tableF[99,10] <- NA 
 
# #LT first period 
# window.tableF[55,10] <- NA 
 
# #LT second period 
# window.tableF[12,5] <- NA #Fix FALSE values that are not close to the  (TRUE inbetween 
the FALSE and peak) 
# window.tableF[12,6] <- NA 
# window.tableF[12,7] <- NA 
# window.tableF[32,10] <- NA 
# window.tableF[38,10] <- NA 
# window.tableF[41,7] <- NA 
# window.tableF[41,8] <- NA 
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# window.tableF[41,9] <- NA 
# window.tableF[41,10] <- NA 
 
# #LT full period above median 
# window.tableF[39,5] <- NA 
# window.tableF[39,6] <- NA 
# window.tableF[39,7] <- NA 
# window.tableF[58,10] <- NA 
# window.tableF[59,10] <- NA 
# window.tableF[61,10] <- NA 
 
# #LT full period below median 
# window.tableF[48,7] <- NA 
# window.tableF[48,8] <- NA 
# window.tableF[48,9] <- NA 
# window.tableF[48,10] <- NA 
 
window.table <- matrix(NA,nrow = length(ipeak),ncol = 21) 
colnames(window.table) <- c("-10":"10") 
 
window.table[,1:11] <- window.tableR  
window.table[,12:21] <- window.tableF 
 
AR.total.LT <- apply(window.table,2,mean,na.rm=TRUE)*100 #abnormal return of all peaks 
for n-days before and after 
AR.total.LT 
t.test(AR.total.LT) 
CAR.total.LT <- cumsum(AR.total.F) #cumulative abnormal return 
CAR.total.LT 
t.test(CAR.total.LT) 
 
#save to a file 
# write.zoo(AR.total.F, file="AR.total.LT.txt") #total = full period 
# write.zoo(CAR.total.F, file="CAR.total.LT.txt") 
# write.zoo(AR.first.F, file="AR.first.LT.txt") #first = 1st half 
# write.zoo(CAR.first.F, file="CAR.first.LT.txt") 
# write.zoo(AR.second.F, file="AR.second.LT.txt") #second = 2nd half 
# write.zoo(CAR.second.F, file="CAR.second.LT.txt") 
# write.zoo(AR.above.F, file="AR.above.LT.txt") #above median 
# write.zoo(CAR.above.F, file="CAR.above.LT.txt") 
# write.zoo(AR.below.F, file="AR.below.LT.txt") #below median 
# write.zoo(CAR.below.F, file="CAR.below.LT.txt") 
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11.2  Reflection Note 
In the thesis we look at stock return in relation to measured volatility. The measured indices are 

S&P 500 and VIX respectively. Both indices are benchmark for international finance 

influencing stock exchanges all over the world. Moreover, the thesis conducts three studies, 

one of the specific relationship between S&P 500 and VIX. One studying the VIX index in 

terms of rising and falling volatility-phases. And at least, one study of abnormal return around 

the spike peaks in the VIX index. In the literature investors sentiment are described as an 

amplifying force of determine volatility. The findings clearly state a negative relationship 

between VIX and S&P 500. When studying the phases in volatility, the findings show a longer 

duration for falling phases when rising phases increase more than falling phases decreases. 

Which can be interpret as the stock return increases for longer periods and drop faster, due to 

the negative relationship between S&P 500 and VIX. The abnormal return around the peaks are 

significantly negative before and including peak day, and significantly positive after peak day. 

Which mean that the peak of the VIX index can be an indicator to buy. To outline the studies 

in the thesis, knowledge from courses in the master program has been necessary. Especially the 

financial and econometrical courses as Finance Theory, Econometric for Finance and 

Computational Finance.  

 

The school of Business and Law at the University of Agder consider internationalization, 

innovation and responsibility as core areas within the the field of business. Throughout our 

master program the internationalization has been an embedded part of our learning. The fact 

that every course is taught in English make us ready for an international working life, where 

English is more and more acceptable as the day to day language, even in companies dealing 

with business in Norway. As of our thesis the view is highly international with an international 

theme including the biggest index in financial markets in the world. The findings are adaptable 

to all other benchmark indices around the world. Even a singular company listed on a stock 

exchange are in the relevance of the findings, though the risk is not diversified. New ways of 

buying stocks or investing in foreign markets are in constant development. This make the results 

from the US market more relevant to Norwegian investors than a few years ago. It seems like 

there is no limit to the globalization we see today, and the international relevance of the thesis 

is higher since we studied the US market instead of the Oslo Stock Exchange.  
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As of the innovation related to the theme we conduct two new studies. The studies relate to 

algorithms of finding bull and bear market, in the thesis the algorithm are used in a different 

context, determine phases of the volatility index, VIX. Further the study of abnormal return is 

not find in the literature when using phases of rising and falling volatility, still we do not 

consider the study to be innovative since the relationship is already observed. For innovation to 

be more relevant for the theme, future studies have to be in place. Where it is possible to write 

new algorithms for finding a turning point on the date of the turning point, but more research 

and new studies have to be outlined. Algorithms for investment fund exist today where robots 

buy and sell stock by themselves. To include our findings in an algorithm in a simulating market 

would be interesting, when take the results a step further the innovation is more relevant. All 

though, international financial markets are a driving force for internationalization through its 

innovating financial instruments and systems for buying stock in foreign countries online. From 

our data set we see at large increase in VIX and decrease in S&P 500 as a part of the financial 

crash during fall 2008. The crisis included a large amount of innovative and creative financial 

instrument at the time, derivatives such as CDO’s and CDS’s.  

 

As mention above the theme of the thesis uses two indices in the analysis. In example the S&P 

500 index are a combination of the 500 largest stocks in US. The market place responsible for 

the indices have a responsibility to be fair and transparent for all investors. In financial markets 

there are many advanced investment opportunities, such as derivatives, options, futures, 

forwards or a combination of these. When dealing with advanced financial products the 

advisors have a responsibility of act in the best interest for the client. Advisors can have other 

incentives to do a transaction on behalf of the client, for example own gain as commission. If 

we are in a position as advisors or employees of a market place in the future, the need for high 

integrity and moral have to be a part of our work. Throughout our master program we have 

learned about theory in financial markets and different strategies in business. The theory 

assumes perfect markets which are not the fact in reality. Responsibility and integrity in own 

work especially in finance is important, the financial markets can provide great return on 

investment, as well as significant losses. Responsibility is not to be too greedy and not take any 

shortcuts that may be illegal.  

 

As the analysis of the thesis look at the relation of two market indices, one for stocks and one 

for volatility, the potential ethical challenges that may arise are ethical challenges related to 

financial markets. Some of the challenges are mention as the reflection of responsibility, as well 
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as dealing with sensitive information about the stock market (as sensitive information about a 

stock listed at a stock exchange) or be in a position able to act on inside trading.  

 

 


