Space and Depth-related Enhancements of the
History-ADS Strategy in Game Playing

Spencer Polk
School of Computer Science
Carleton University
Ottawa, Canada, K1S 5B6
Email: andrewpolk @cmail.carleton.ca

Abstract—In the field of game playing, it is a well-known
fact that powerful strategies, such as alpha-beta search, benefit
strongly from proper move ordering. A popular metric of achiev-
ing this is the so-called ‘“move history”, that is, prioritizing moves
that have performed well, earlier in the search. The literature
reports a number of techniques, such as the Killer Moves and
History heuristics, that employ such a philosophy. Inspired by
techniques from the field of Adaptive Data Structures (ADSs),
we! have previously introduced the History-ADS heuristic, which
uses an adaptive list to record moves, and to improve move
ordering based on move history. The History-ADS heuristic has
been proven to produce substantial gains in tree pruning in a
wide variety of cases. However, it made use of a relatively naive
application of an unbounded, single adaptive list. In this work,
we attempt to refine the History-ADS heuristic, by examining its
performance by constraining the length of its adaptive list, and
applying multiple ADSs for each level of the tree. Our results
show that the vast majority of the savings from the History-
ADS heuristic remain even with a very short list, which can be
applied to mitigate the drawbacks of an unbound data structure.
Although results for multiple ADSs did not outperform single
ADSs, we show that they provide some insight into how similar
techniques may be applied in the context of the History-ADS
heuristic.

Keywords—game playing; adaptive data structures; move order-
ing

I. INTRODUCTION

The problem of achieving intelligent game playing against
a human opponent is a particularly well-known and studied
area, spanning decades of research [1], [2]. The extensive
body of research dedicated towards this problem has led to
the development of powerful techniques, such as the alpha-
beta search, capable of achieving strong play in a wide variety
of games, and is still widely employed today [1], [3], [4].
However, it is known that alpha-beta search performs best
when moves are arranged from best to worst, achieving a much
more efficient search [5]. This has led to the development of
move ordering strategies, which attempt to approximate the
best orderings available, such as the Killer Moves or History
heuristics [5], [6], [7].

We previously introduced techniques to achieve move
ordering, by employing techniques from the formerly unrelated
field of Adaptive Data Structures (ADSs) [8], [9]. The field

IThe second author is also an Adjunct Professor with the University of
Agder in Grimstad, Norway.

B. John Oommen
School of Computer Science
Carleton University
Ottawa, Canada, K1S 5B6
Email: oommen@scs.carleton.ca

of ADSs attempts to address the problem of uneven query
frequencies within a data structure, by developing techniques
through which the ADSs’ internal structure can converge to
most efficiently handle queries over time [10], [11], [12]. By
necessity, these methods must be highly efficient and incur
very little cost, or losses due to overhead would cancel out
gains in query efficiency, and the field of ADSs has developed
a number of techniques to achieve this, such as the Move-to-
Front and Transposition rules for adaptive lists [10]. In the
research we embarked on, we considered if these efficient
ranking mechanisms could be employed within the context of
game trees.

Our previous investigations into the application of ADSs
to game playing have led to the development of two families
of heuristics. The older of these is the Threat-ADS, which
employs ADSs to rank opponents in a multi-player game
[8], and more recently, the History-ADS, which applies these
strategies to rank moves in terms of their prior behaviours in
the search [9]. However, the first demonstration of the History-
ADS heuristic employed a relatively naive structure, and it is
worthwhile to consider if this data structure can be refined or
improved in some way, to improve performance and further
investigate its qualities [9]. This paper concerns itself with
investigating these potential refinements.

The remainder of the paper is laid out as follows. Section
II discusses our previous work on applying the concepts of
ADSs into game playing, and briefly describes the Threat-ADS
and History-ADS heuristics. Section III describes the open
questions from [9] that inspire our experiments presented in
this work. Section IV describes our experiments, and Section
V presents our results. Section VI holds our discussion and
interpretation of these results. Section VII concludes the paper.

II. PREVIOUS WORK

Techniques from the field of ADSs were designed with
the intention of converging to a structure matching access
frequencies [10], [11]. However, in doing so, they also provide
a natural ranking of objects within the data structure, based
on their relative access frequencies. By placing meaningful
objects within an ADS, and querying them when an event
occurs, we can employ the properties of the ADS to provide an
efficient, dynamic ranking mechanism for those objects. Within
the context of game playing, this could include opponents,
possible moves, board positions, and/or many other possi-
bilities. Our previous contributions, briefly explained below,

were concerned with applying this ranking strategy to enhance
move ordering in a game-independent manner, and have led to
substantial gains in pruning efficiency.

A. The Threat-ADS Heuristic

Our first application of ADSs to game playing was the
Threat-ADS heuristic, which employs a very small ADS that
contains opponents, and is queried when one is found to be in
a threatening position [8]. Naturally, the Threat-ADS heuristic
is only applicable to multi-player games, and is based on the
recent multi-player game playing algorithm, the Best-Reply
Search (BRS) [7]. The BRS operates by simplifying an N-
player game to a 2-player game, by grouping adversaries
together into a single “super-opponent”. It then performs a
normal alpha-beta search, considering all moves of this “super-
opponent” at each MIN node of the game tree, grouping
opponent moves together. Naturally, this means that it will
consider illegal game states in any game where each player
takes a turn in order (the norm for /N-player games), however
its deeper search allows it to outperform competing algorithms
in spite of this [7].

The Threat-ADS heuristic augments the BRS with an
adaptive list holding each opponent, and, at each MIN node,
gathering opponent moves in the order of the adaptive list.
When an opponent is found to have the most threatening move
at any given MIN node of the tree, the adaptive list is queried
with the identity of that opponent. Thus, the most threatening
opponent will trend towards the head of the list, and his
moves will be investigated first. The Threat-ADS was found
to produce noticeable, statistically significant improvements in
tree pruning, accomplished for a very low cost, and in a manner
applicable to the complete range of multi-player games to
which the BRS applies [8]. This result has been found to hold
for a range of ADS-based techniques, and at game searches at
both initial board positions and at midgame states [13], [14].

B. The History-ADS Heuristic

Based on the success of the Threat-ADS heuristic, we
considered it worthwhile to investigate alternative applications
of ADSs to game playing. The well-known Killer Moves and
History heuristics make use of move history when making
decisions about how to rank moves [5]. These heuristics
operate on the hypothesis that if a move is found to be good
elsewhere in the tree (i.e. it produces a cut), it is likely to
be good if encountered at another place, and should thus be
examined first [5]. Based on this knowledge, the use of an
ADS to rank moves, rather than opponents, was considered in
[9], leading to the development of the History-ADS heuristic.

Observe that the History-ADS heuristic is a natural pro-
gression from the Threat-ADS heuristic. Again, it makes use
of an adaptive list, which contains possible moves, usually
indexed in terms of the game space where the move originates,
and where it ends, similar to the History heuristic. When a
move is found to produce a cut, the ADS is queried with its
identity, and its position is changed depending on the ADS
update mechanism being used, or it is added to the list if it is
not already present. When exploring a new node, moves are
examined in the order of the ADS. An example of how the
History-ADS heuristic operates is presented in Figure 1.

4,5t0(3,2to
ADS (Before): 54 | 51

1,2t02,2

Score: 11
65t054
Score: 9
7,8t0|4,5t0(3,2t0
ADS (After): 88 | 54 | 51

1,2t02,3
Score: 13

Fig. 1. An example of the History-ADS heuristic in operation. The move
(7,8) to (8,8) produces a cut, and so it is moved to the head of the list, and
informs the search later, in a different region of the game tree.

As which moves are likely to be good for the maximizing
and minimizing players are going to be different in many
cases, the History-ADS heuristic employs two adaptive lists,
one for each player in the case of a 2-player game, or one
for the perspective player and the “super-opponent” if the
BRS is being used. However, we observe that it somewhat
naively manages the list, as it can grow to any arbitrary size,
and is used equally in every MIN or MAX node of the tree.
The possible issues with this, and how they may impact the
performance, are described in the next section.

III. OPEN QUESTIONS

Given the large number of possible moves, which may
produce a cut over the course of the game, and at different
frequencies, there are a substantial number of possible re-
finements that could be made to the History-ADS heuristic’s
structure and application, compared to the naive approach
described in [9]. However, in the context of this work, we
will focus on two possible areas of refinement, that of limiting
the length of the ADS, to reduce its memory footprint and
traversal costs, and the possibility of employing a different
ADS at each level of the game tree.

A. Limiting the Maximum Length of the ADS

Considering the first avenue of inquiry, the History-ADS
heuristic updates its ADS whenever a move is found to produce
a cut, using the identity of that move. Its position is then either
changed according to the chosen ADS update mechanism if it
is already in the list, or it is appended to the end of the list, after
which its position is immediately updated. Thus, any element
that produces a cut remains in the list, and it is never pruned,
potentially leading to a very large data structure.

Retaining all the information pertaining to moves that have
produced a cut is logically beneficial. However, it is possible,
and in fact very reasonable to hypothesize, that the majority
of savings do not come from moves which are near the tail of
the list, but rather near the front. Therefore, if we provide a
maximum size on the list, and only retain elements in those
positions, it may be possible to noticeably curtail the size of the
list, providing some guarantees on its memory performance,
while maintaining the vast majority of savings provided by
the History-ADS. The way in which we will accomplish this
is by forgetting any element of the list that falls to position
N + 1, if the maximum is N. Otherwise, the History-ADS
heuristic’s operation is unchanged. An example of such an
ADS updating over several queries, operating with a bounded
list, is presented in Figure 2.

7,8t0|4,5t0|3,2t0]6,7 to
8,8 5,4 51 | 6,6

1,3to0|7,8to|4,5t0|3,2t0|6,7 to
1,6 8,8 54 51| 6,6

2,1t0|1,3to|7,8to|4,5t0|3,2t0|6,7 to
2,2 1,6 8,8 54 51 6,6

3,2to0|2,1t0 |1,3t0|7,8to|4,5t0
51| 22 1,6 8,8 5,4

1,1t0|3,2t0|2,1to|1,3t0|7,8to|4,510
1,2 51 2,2 1,6 8,8 54

Fig. 2. An example of a History-ADS’s list updating over several queries with
a maximum length of 5. The ADS starts at length four, and is queried with the
move (1,3) to (1,6), and it is moved to the front. It is then queried with (2,1)
to (2,2), and as (6,7) to (6,6) is pushed to the sixth position, it is forgotten
(highlighted in grey). The process continues as it is queried with (3,2) to (5,1),
causing only an internal change, and finally (1,1) to (1,2), pushing (4,5) to
(5,4) off the end of the list.

Beyond limiting the memory usage of the History-ADS
heuristic, if the developer is attempting to avoid sorting moves
by generating them in the order of the ADS, having to
traverse a very long list to do this could defeat the purpose of
omitting sorting. Thus, demonstrating that the History-ADS
can achieve good results with a smaller list can assist in
managing implementation concerns, as well.

B. Employing a Multi-Level ADS

Considering our second avenue of inquiry, as noted earlier,
the History-ADS heuristic records moves that have produced
a cut earlier in its adaptive list, which is used to order moves
when they are encountered elsewhere in the tree. It performs
this operation “blindly”, without giving consideration to the
location in the tree where the move produced a cut, relative to
its current location. Thus, if moves are found to produce cuts
at the lowest levels of the tree, they will be prioritized at the
upper levels of the tree — later in the search.

While this may lead to improved savings, as certain moves
may be very strong regardless of which level of the tree
they occur on, there is a potential weakness in such a blind
invocation. Consider the case where a move produces a cut
close to the root of the tree, at node N. It is thus added to
the adaptive list, and the search continues deeper into the tree,
exploring it in a depth-first manner. Deeper in the tree, many
moves are likely to produce cuts, and these will be added to the
adaptive list ahead of the first move. When the search returns
to the higher levels of the tree, and explores a neighbour of
N, these moves will be prioritized first, over the move that
produced a cut at its neighbour. However, intuitively the move
that produced a cut at N, which is a more similar game state
compared to those deeper in the tree, is likely to be stronger
at the current node.

Furthermore, by handling all moves equally, as there are
many more nodes towards the bottom of the tree compared
to the top, moves that are strong closer to the leaf nodes of
the tree will receive many more updates and thus a higher
ranking in the adaptive list. This will occur even though cuts
near the top of the tree are comparatively more valuable. Both
the Killer Moves and History heuristics employ mechanisms
to mitigate these effects [5], [6]. Inspired by this, we augment
the History-ADS heuristic with multiple ADSs, one for each
level, and use them only within the contexts of their sibling
nodes.

The use of multi-level ADSs may lead to a reduction in
performance, given that learning can no longer be applied at
different levels of the tree. But given the precedence set by the
existing techniques in the literature and the potential benefits,
we consider it a meaningful avenue of inquiry.

IV. EXPERIMENTAL MODEL

Given that we are interested in refining the History-ADS
heuristic and determining its performance under these potential
improvements, we have elected to perform a similar battery
of experiments to those employed in [9], as well as those
used to test the Threat-ADS heuristic in our earlier work. We
are concerned with comparing the savings, in terms of tree
pruning, of the History-ADS heuristic with a single, unlimited
list, to its performance with both limitations on the length of
the ADS, and a multi-level ADS. To do this, we will take the
aggregate of the Node Count (NC) measure over a number of
turns of the game, and average that over fifty trials in each case.
The NC measure is defined as the number of nodes at which
computation takes place in the game tree, and serves as an
effective, platform-independent, measure of the performance
of the underlying alpha-beta search [5].

In order to get a sense for how the History-ADS heuristic
performs in a variety of domains, we have performed our
experiments under a range of game models. Specifically, we
employ the two-player games Checkers and Othello, and the
multi-player games Focus and Chinese Checkers, all of which
were used in [14]. The rules of these games are omitted for
the sake of brevity, however the reader is referred to [§]
for a detailed description of the multi-player games Focus
and Chinese checkers. We consider the games Othello and
Checkers to be well-known enough that a detailed explanation
is not necessary.

In the case of Checkers, we found that the requirement
that forces jumps when possible, often leads to a game with a
very small branching factor, and an extremely high variability
within our results. Thus, for our experiments, we choose to
relax this rule, and do not require that a player must necessarily
make an available jump. We shall refer to this game as
“Relaxed Checkers”. While Checkers has been recently solved
[15], due to its prominence in popular culture and in the
literature, it remains an excellent testing environment for a
domain-independent technique.

In the work introducing the History-ADS heuristic in [9],
we tested its performance using both the Move-to-Front and
Transposition rules to update the ADS, which intuitively state
that a queried element is moved to the head of the list, or
transposed one element towards the head, respectively [10].
However, we found that the Move-to-Front rule outperformed
the Transposition rule in all cases, and thus we omit the
Transposition rule from our experiments in this work.

When considering limitations on the maximum length of
the ADS, we choose the values of 5 and 20 as maximum sizes
for the ADS. A maximum list length of 20 allows a good
amount of information to be recalled, and many games will
not encroach on substantially larger maximums over the course
of their execution. On the other hand, the lower value of 5 is
chosen because with a limit of 5, the History-ADS heuristic’s
adaptive list length is more in line with the very short list
employed by the Threat-ADS. We perform experiments related
to limiting the length of the ADS on all game models, with
a 6-ply search depth for Relaxed Checkers and Othello, and
a 4-ply search depth for Focus and Chinese Checkers, due to
their explosive branching factors.

In the case of the multi-level ADS, we present results for
both a multi-level ADS, and a multi-level ADS with a length
limit of 5, combining the two concepts. We choose the length
limit of 5 because we are already maintaining multiple ADSs,
and so we can thus hold more information than a single ADS
with a length that is limited to 5. Unlike the experiments
dealing primarily with the maximum length of the ADS, we
only perform experiments involving multi-level ADSs in cases
where the ply depth is at least 6. The reason for this is that as
it stands, the History-ADS heuristic maintains separate ADSs
for each player, and pruning cannot take place at the top level
(the root) or the bottom (the leaf nodes), implying that the
multi-level ADS approach is identical to a single ADS for 4-
ply trials. We therefore present results for both 6-ply and 8-ply
Othello and Relaxed Checkers in this context.

Rather than only take measurements from the starting
position of the game, we observe that midgame positions are

often more interesting, due to higher variability and the lack of
“opening book” moves. In order to also perform experiments
from a midgame state, we play the game for a number of turns
before taking measurements, in order to generate a reasonable
(i.e., not random) midgame state. The exact methodology by
which midgame states are generated is described in detail in
[14]. We take measurements over 5 turns for Othello, Relaxed
Checkers, and Chinese Checkers, and 3 turns for Focus. When
generating midgame states, we run the game for 5 turns for
Relaxed Checkers and Focus, and 10 turns for Othello and
Chinese Checkers, before we begin aggregating the NC.

Statistical analysis of our results for significance employs
the Mann-Whitney test, as we do not assume normalcy. All
experiments were performed on an Intel i5 3.4 GHz processor.
Our results are presented in the next section.

V. RESULTS

We present our results in the following sections, first for
ADSs with a limited length, and then for multi-level ADSs.

A. Results for ADSs with Limited Length

Table I presents our results for Othello. We observed that
in all cases, the use of the History-ADS heuristic, with or
without a limit on the length of the ADS, produced substantial
savings in terms of NC. This effect was statistically significant
in all cases. By applying a very strict limit of 5 to the length
of the ADS, savings were reduced from 26% to 22% when
measurements were taken from the initial board state, and 34%
to 26% in the midgame case. While applying a limit reduced
savings, the loss was not statistically significant in all cases.

TABLE 1. RESULTS FOR OTHELLO WITH A VARYING MAXIMUM ON
THE LENGTH OF THE ADS
ADS Size Limit Avg. NC (Initial) Avg. NC (Midgame)
No ADS 5061 20, 100
Unlimited 3727 13, 300
20 3779 13,900
5 3961 14, 800

Consider Table II, which holds our results for Relaxed
Checkers. As with Othello, large reductions in NC were ob-
served in all cases where the History-ADS was used. Savings
were reduced, comparing the unlimited length to a maximum
of 5 as before, from 48% to 44% in the initial case, and 46%
to 39% in the midgame case, although in the initial case this
change was statistically significant.

TABLE II. RESULTS FOR CHECKERS WITH A VARYING MAXIMUM ON
THE LENGTH OF THE ADS
ADS Size Limit Avg. NC (Initial) Avg. NC (Midgame)
No ADS 78,600 64,000
Unlimited 41,000 34,400
20 42,700 36, 700
5 44,700 39, 500

Our results for the multi-player game Focus are presented
in Table III, where we observed very large savings in terms
of NC in all cases. Again comparing an unlimited list to a
maximum length of 5, savings were reduced from 70% to 68%

TABLE III.

RESULTS FOR FOCUS WITH A VARYING MAXIMUM ON

THE LENGTH OF THE ADS

ADS Size Limit

Avg. NC (Initial)

Avg. NC (Midgame)

No ADS
Unlimited
20
5

6,970,000
2,150,000
2,210,000
2,230,000

14, 200, 000
3,120, 000
3,310, 000
3,370, 000

TABLE VI. RESULTS FOR 8-PLY OTHELLO WITH A MULTI-LEVEL
ADS
ADS Type Avg. NC (Initial) Avg. NC (Midgame)
No ADS 38, 800 182,000
Single-Level 23,600 92,900
Multi-Level 24,900 110, 000
Multi-Level (length 5) 25, 600 105, 000

from the initial board state, and 79% to 76% from a midgame
state, and the change was not statistically relevant in any case.

Lastly, Table IV shows our results for Chinese Checkers.
We observed a similar pattern as with the other game models,
with strong performance from the History-ADS heuristic.
Comparing an unlimited list to a maximum length of 5, as
before, savings reduce from 62% to 60% in the initial case,
and 61% to 60%. As one would expect, this very small change
was not statistically significant.

by 48% to 40% in the initial board state case, and 46% to 41%
in the midgame case. This reduction was significant in both

cases.

TABLE VIIL RESULTS FOR 6-PLY RELAXED CHECKERS WITH A
MULTI-LEVEL ADS
ADS Type Avg. NC (Initial) Avg. NC (Midgame)

No ADS 78, 600 64,000
Single-Level 41,000 34,400
Multi-Level 45,300 38,100

Multi-Level (length 5) 46,900 37,800

TABLE IV. RESULTS FOR CHINESE CHECKERS WITH A VARYING
MAXIMUM ON THE LENGTH OF THE ADS
ADS Size Limit Avg. NC (Initial) Avg. NC (Midgame)
No ADS 3,370,000 8,260, 000
Unlimited 1, 280, 000 3,200, 000
20 1, 330, 000 3,290, 000
5 1, 360, 000 3, 340, 000

B. Results for Multi-Level ADSs

Finally, Table VIII shows our results for 8-ply Relaxed
Checkers. In this case, savings were reduced from 61% to 54%
when measurements were taken from the initial board state,
and from 66% to 53% in the midgame case. This difference
was significant in the midgame case.

Table V demonstrates our results for 6-ply Othello, com-
paring single-level and multi-level ADS approaches. As with
our previous results, we observed savings in all cases when the
History-ADS was used, although in this case, the multi-level
ADS with a maximum length of 5 fell slightly outside 95%
certainty in the case of the initial board state. We furthermore
found that the multi-level ADS performed worse than the
single-level ADS, and worse still when its maximum length
was limited. Savings reduced from 26% to 15% in the initial
board state case, and 34% to 20% in the midgame case,
although these differences were not statistically significant.

TABLE VIII. RESULTS FOR 8-PLY RELAXED CHECKERS WITH A
MULTI-LEVEL ADS
ADS Type Avg. NC (Initial) Avg. NC (Midgame)

No ADS 910, 000 859, 000
Single-Level 358,000 293, 000
Multi-Level 394, 000 350, 000

Multi-Level (length 5) 416, 000 404, 000

TABLE V. RESULTS FOR 6-PLY OTHELLO WITH A MULTI-LEVEL ADS
ADS Type Avg. NC (Initial) Avg. NC (Midgame)
No ADS 5061 20, 100
Single-Level 3727 13,300
Multi-Level 4110 14,700
Multi-Level (length 5) 4305 16, 000

Our results for 8-ply Othello are presented in Table VI.
In this case, we see a slight deviation from the general
pattern, where, in the midgame case, the multi-level ADS
with a maximum length of 5 actually performed better than
the unlimited multi-level ADS, although the difference is
statistically insignificant. Savings were reduced from 39% to
34% in the initial case, and 49% to 40% in the midgame case.
The change was within 95% certainty in the case of the initial
board state.

Table VII presents our results for 6-ply Relaxed Checkers.
Again, in the midgame case we see a deviation where the
limited length multi-level ADS performed slightly better, al-
though again by an insignificant margin. Savings were reduced

VI. DISCUSSION

Our results presented in the previous section demonstrate
that in almost all cases, without considering the configuration
employed, the History-ADS heuristic is able to produce very
large, statistically significant gains in tree pruning, in some
cases over 75%. These results are consistent with our previous
observations, reported in [9]. As was observed in that work, we
found that, in general, larger savings were correlated to larger
search trees, both in terms of branching factor and ply-depth.
These observations reinforce our results from [9].

We found that when limiting the maximum size of the
ADS, while there was some reduction in performance, as was
expected, the loss was very slight in most cases. This confirms
our hypothesis that elements near the head of the list tend to
remain there, and provide the majority of the move ordering
benefits, with diminishing returns as the list gets longer. The
fact that the majority of savings are still maintained in all cases
even when the list is limited to have at most five elements,
successfully addresses one of the concerns we had with the
History-ADS heuristic as originally presented, namely that the
length of the adaptive list can potentially be quite large.

The trend was consistent across all cases, with the limit
of 20 performing marginally worse than an unbound list, and
the limit of 5 doing a little worse. The degree of reduction in
performance varied between game models, with a maximum

34% to 26% in the case of Othello, with a maximum list size of
5. This demonstrates that even in the worst case, the majority
of the savings from the History-ADS heuristic remain in a very
short list, compared to one of an unbound length. Furthermore,
while the reduction was consistent across all cases, it was
only statistically significant in one case, which was when
considering Relaxed Checkers from an initial board position.
In all other cases, including in the worst case mentioned above,
this reduction in savings falls outside 95% certainty.

The multi-level ADS approach was found to do worse than
the single ADS approach, suggesting that savings that may be
gained for prioritizing moves that produced a cut on the current
level of the tree, if they exist, are offset by the inability to apply
what the algorithm has learned to other levels of the tree. We
can thus conclude that the absolutist approach of having a
separate ADS at each level of the tree is likely not the optimal
way to address concerns of overvaluing moves that are strong
near the bottom of the tree. However, the multi-level ADS
approach may not be completely useless. If the History-ADS
heuristic is employed alongside other, perhaps domain-specific
move ordering heuristics, then prioritizing only the best moves
at each level may be as effective. This approach therefore begs
for more investigation in the future.

Despite the presence of multiple ADSs, limiting the size of
the list to 5 reduced improvements even more, in the majority
of cases. Observing the internal functioning of the search, the
reason for this appears to be that the limit is only a factor at
the lowest levels of the tree, where many more moves produce
cuts and the limit impacts the ADS heavily. As opposed to
this, levels closer to the root do not require as much space.
This is especially visible in the case of 6-ply Othello from
the midgame case, where a multi-level ADS with a maximum
size of 5 did not, in fact, produce a statistically significant
improvement in tree pruning, which is the only case in which
the History-ADS heuristic has failed to achieve this. Overall,
however, in most cases, the performance of the multi-level
ADS was close to the original version.

VII. CONCLUSIONS

The results presented in this paper reinforce our con-
clusions from our earlier work regarding the History-ADS
heuristic. In nearly every case, we found that the use of the
History-ADS heuristic, regardless of its configuration, was able
to achieve noticeable, statistically significant savings, at times
over a 75% reduction in tree size.

When the maximum length of the ADS is restricted,
while some reduction in performance was observed, as can
be expected, the vast majority of savings remain. This is
maintained even if the list is restricted to a very short length of
5. This is a particularly valuable observation, as, to summarize
earlier discussion, one of the main concerns with the History-
ADS heuristic was that its list size was unbound, potentially
leading to a negative impact on its real-world performance.
With a maximum size of 5, however, its size is on the order of
the very lightweight Threat-ADS heuristic, and these concerns
are successfully mitigated.

While the use of a multi-level ADS achieved a similar level
of savings compared to a single ADS, it was outperformed, in
all cases, by the single ADS. However, given the strong basis

in the literature of techniques that consider moves based on the
level of the tree where they are found, such as with the Killer
Moves and History heuristics, we believe that it is worthwhile
to investigate this area further. Work is currently ongoing on
methods to prioritize learning at the level of the tree where
it was acquired, while not completely excluding information
obtained elsewhere.

REFERENCES

[1]1 S.J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,
pp. 161-201. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 3rd ed.,
2009.

[2] C. E. Shannon, “Programming a computer for playing Chess,” Philo-
sophical Magazine, vol. 41, pp. 256-275, 1950.

[3] G. M. Baudet, “An analysis of the full alpha-beta pruning algorithm,”
in Proceedings of the tenth annual ACM symposium on Theory of
computing, pp. 296-313, 1978.

[4] D. E. Knuth and R. W. Moore, “An analysis of alpha-beta pruning,”
Artificial Intelligence, vol. 6, pp. 293-326, 1975.

[5] J. Schaeffer, “The history heuristic and alpha-beta search enhancements
in practice,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 11, pp. 1203-1212, 1989.

[6] S. Akl and M. Newborn, “The principal continuation and the killer
heuristic,” in Proceedings of ACM’77 the 1977 Annual Conference,
pp. 466473, 1977.

[71 M. P. D. Schadd and M. H. M. Winands, “Best Reply Search for
multiplayer games,” IEEE Transactions on Computational Intelligence
and Al in Games, vol. 3, pp. 57-66, 2011.

[8] S. Polk and B. J. Oommen, “On applying adaptive data structures to
multi-player game playing,” in In Proceedings of AI’2013, the Thirty-
Third SGAI Conference on Artificial Intelligence, pp. 125-138, 2013.

[9] S.Polk and B. J. Oommen, “Enhancing history-based move ordering in
game playing using adaptive data structures,” in To Appear in Proceed-
ings of ICCCI’2015, the 7th International Conference on Computational
Collective Intelligence Technologies and Applications, 2015.

[10] S. Albers and J. Westbrook, “Self-organizing data structures,” in Online
Algorithms, pp. 13-51, 1998.

[11] T. H. Corman, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, pp. 302-320. Upper Saddle River, NJ, USA: MIT Press,
3rd ed., 2009.

[12] G. H. Gonnet, J. I. Munro, and H. Suwanda, “Towards self-organizing
linear search,” in Proceedings of FOCS’79, the 1979 Annual Symposium
on Foundations of Computer Science, pp. 169-171, 1979.

[13] S. Polk and B. J. Oommen, “On enhancing recent multi-player game
playing strategies using a spectrum of adaptive data structures,” in In
Proceedings of TAAI’2013, the 2013 Conference on Technologies and
Applications of Artificial Intelligence, 2013.

[14] S. Polk and B. J. Oommen, “Novel Al strategies for multi-player games
at intermediate board states,” in Proceedings of IEA/AIE’2015, the
Twenty-Eighth International Conference on Industrial, Engineering, and
Other Applications of Applied Intelligent Systems, pp. 33—42, 2015.

[15] J. Schaeffer, N. Burch, Y. Bjornsson, A. Kishimoto, M. Muller, R. Lake,
P. Lu, and S. Sutphen, “Checkers is solved,” Science, vol. 14, pp. 1518—
1522, 2007.

