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Abstract

This paper deals with the security and efficiency issues ofdipher algorithms which utilize the
principles of Chaotic Neural Networks (CNNs). The two aitfuns that we consider are: (1) The CNN-
Hash, which is a one-way hash function based on the PieceMfigar Chaotic Map (PWLCM) and the
One-way Coupled Map Lattice (OCML), and (2) The Delayed CB&sed Encryption (DCBE), which
is an encryption algorithm based on the Delayed CNN. Altlobgth these cipher algorithms have
their own salient characteristics, our analysis shows tiafortunately, the CNN-Hash is not secure
because it is neither Second-Preimage resistant norioallissistant. Indeed, one can find a collision
with relative ease, demonstrating that its potential assh fianction is flawed. Similarly, we show that
the DCBE is also not secure since it is not capable of regidtitown-plaintext, chosen-plaintext and
chosen-ciphertext attacks. Furthermore, unfortunaely) the schemes are not efficient either, because
of the large number of iteration steps involved in their extjwe implementations.

1 Introduction

Over the last few decades, the phenomenon of chaos has baely imvestigated and applied in a variety of
domains including social networks, control systems, aediption etc. A chaotic system is characterized by
salient phenomena such as its sensitivity to initial valitsgpseudo-randomness and ergodicity, rendering
it to be quite similar to a cryptographic system. The charéstics that render chaotic systems to be akin to
cryptographic algorithms are listed below:

1. Chaotic maps vs. Encryption/Decryption algorithms.

The form of a chaotic system is usually iterative, when tretesy is discrete, or it involves differential
equations when it is continuous. As opposed to this, an etiorydecryption algorithm is usually
a nonlinear mapping from the plaintext space to the cipkeggace, and this mapping is, often, not
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complex. The similarity between the two is that both of thean gield, as their outputs, results that
appear to be random — by virtue of the underlying algorithpeating certain steps.

2. lterations vs. Rounds.

For a chaotic system, each of the steps mentioned aboverthatepeated” constitute a so-called
“iteration”. As opposed to this, a cryptographic system involves aaecgl of founds’. Only long-
term chaotic iterations can yield sequences that appea tarfeiom [1].

3. Controlling parameters vs. Keys.

If a chaotic system starts from a given initial value, diffietr control parameters can yield different
output sequences at each iteration. This, in turn, is anakdp the role of keys in a cryptographic
system. The similarity between the two lies in the fact tha computationally infeasible to deduce
the initial input without knowing the controlling parameteor the keys respectively.

4. Sensitive to initial values vs. Diffusion and Confusion.

When it concerns a chaotic system, a slightly differeniahivalue may result in a significant dif-

ference in the output generated after a sufficiently largaber of iterations. Analogously, in a

cryptographic system, the change of even a single bit (vénethe in the key or the plaintext) should
affect most of the ciphertext bits. Furthermore, the diaigelating the plaintext and the key should
be “as complicated as possible”. Thus, if we regard the f@atror the key as the initial value, the
ciphertext should be highly sensitive to these.

5. Pseudo-random and ergodic.

The sequence of outputs generated by a chaotic system sheuddble to fill the entire range in
a random-like manner. Analogously, a good encryption &lgor requires that the ciphertexts are
randomly distributed in the cipher space.

1.1 Brief Survey of the Field

As aresult of the above observations, chaos has also beetywigplied in the field of information security
since Matthews proposed the first chaotic encryption algori[2] in 1984. Later, Baptista and Alvarez
reported two cryptographic algorithms based on the phenomef chaotic searching in [3], [4] and [5]
respectively. While Erdmanet al described a stream cipher based on the so-called Henon Blapgahso
and his co-authors illustrated a novel hash function [7] sinolwed how one could achieve digital image
encryption based on chaotic maps [8]. Kocarev and his coasiftresented a public-key encryption [9] and
random number generators [10] based on chaotic maps. Aatktast of articles that advocate the use of
chaotic principles in cryptographic systems can also badaon [11] and [12], and systematic reviews about
chaos-based ciphers are found in [13] and [14].

Now that chaoticmaps have been proven to be useful in encryption, researchers d&d@mpted to
use Chaotic Neural Networks (CNNs), which are charactérigemuch more complicated dynamics than
chaotic maps, to develop crypto-systems. The authors efl[iJproposed different one-way hash functions



based on different CNNs. Similarly, Cabal proposed an encryption algorithm based on delayed CNNs
[18]. Our present paper concerns some of these results.

1.2 Motivation of this paper

Although the latter above-mentioned authors have affirrhatl their schemes are secure and efficient, in
this paper, we shall demonstrate that the security levedsagiieed by them are weak, and that they are
inefficient. For example, most chaos-based ciphers reqniexcessive number of iterations, without which
the ciphertexts are not sensitive to plaintexts. As opptseldese, traditional ciphers, e.g., the AES, only
require a 10-round calculation if one utilizes a key of 128-b~urther, since chaotic equations are typically
specified on the set of real numbers, the associated accofamyplementing these schemes using digital
computations is also problematic. Indeed, when we implétienassociated computations numerically, we
observe that some of the significant digits will be autonadiictruncated, and the consequence of this is
that the original system which was chaotic within the don@difreal” numbers, is no longer chaotic [13]!
Also, the improvement brought about by increasing the aayuusing higher-precision software entails a
larger computational cost.

In this paper, we analyze two typical CNN-based cipher systehe first of which is a one-way hash
function, and the second is an encryption method. Howeverhe&lieve that our analysis is also valid for
other CNN-based schemes.

2 The CNN-based Hash Function

2.1 The Description of the CNN-based Hash Function

The authors of [15] proposed a novel one-way hash functisedban a special CNN. The structure of the
network is shown in Fig. 1.
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Figure 1: The structure of the network used for the CNN-Hash.

IMore details about PWLCM’s dynamics and analysis can beddnifil9] and omitted here to avoid repetition.



More specifically, they used two chaotic maps, namely, tleed2Wise Linear Chaotic Map (PWLCM,
see Eg. (1)) and the Logistic map:

%, 0<z<Q
z—Q
fay={ ppa 9sv<0 W
050 05 <zr<1—-@Q

where( is a control parameter, which is a real number between 0 &nd 0.

The network has a single input layer wimeurons, and a single output layer witmeurons. Each of
the input neurons can receideexternal input®; ;,« = 0,1,--- ,7; j = 0, 1,2, 3, where eaclp; ; consists
of 8 bits. If P, = [pLQ,pi,l,pLQ,pLg]T, we see that the CNN can receiv@#-bit external input sequence.
Each of the output neurons can now generate a 32-bit outpuesee, where the One-way Coupled Map
Lattice (OCML), specified by Eqg. (2) - (5) is used to contrad thutput neurons. The associated weights
{wi;;},i =0,1,---,7; j = 0,1,2,3 for each connection is a constafl,! = [1/28,1/2%6 1/224 1/232].
Further, the internal state of the input neuigrnis given bylW! P;. LetU = [uy,us,--- ,uz]” be the internal
state vector.

In all brevity, we remark that the CNN compressexé-bit sequence to yield 88-bit sequence.

zo(t+1) = (1 —e)g(xo(t)) + eglas(t +1)); (2)
ri(t+1) = (1—-¢)g(z1(t) +eg(zo(t +1)); (3)
za(t+1) = (1—e)g(z2(t) +eg(z1(t +1)); 4)
w3t +1) = (1-e)g(xs(t)) +eg(za(t+1)). (5)

whereg(x) is the Logistic map and is a coupling factor between 0 and 1.
We now present the process involved in the hash function:

1. Data Preparation: Divide the given plaintext into small blockB;, where each block ig¢ x 8 bits
long. All together, there are 8 such blocks. Thus, the ndtwsable to accept a 256-bit length input
sequence at a time.

2. Data Formatting: Format the input integer numbers to be real number betweet] iy means of
the PWLCM. To be specific, this is achieved by using= f™(W'P;, Q), wherer is the number of
iterations that is enforced so as to yield the required tdifin” and “confusion”, and) € (0,0.5) is
the control parameter. The authors of [15] have suggestsétto= 40 and@ = 1/3.

3. Key Preparation: For the given 128-bit keys, divide it into 4 32-bit sequence(y, K1, Ko, K3.
Using these, compute; = K;/232,i = 0,1,2,3. The four values of k;} are used as the initial
values of the OCML. The authors suggested to set the valaasf = 1/3.

4. Hash Computing: For every 30 iterations, record a vecfof = [29, 29, 29, 9], and repeat this until
we have gathered0 vectors. The vector&®, X' ... X7 are used as the connection weights
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between the input and output neuroi, = [XI, X7, - XF]17. © = [2§, 28,28, 28] is set as
the threshold, an@) = [z), =, z9, 23] is used as the PWLCM’s control parameter.

5. Output Preparation: The output of each neuron is given by:
ci = fT(mod(W7U + ©;,1),Qy), (6)

whereW? means the' row of 2.
6. Loop: Repeat the above steps until all message blocks have bessspedl.

7. Assembling: Transform the output of each neuron of the last CNN to be ai3&ljuence, and then
combine the four 32-bit sequences to be be the final 128-bh kalue, as shown in Fig. 2.
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Figure 2: The CBC mode hashing process.

Summary: The entire process of the CNN-Hash can be summarized by liberfiog equations:

u = fT(W'P,Q), (7)
¢ = fT(mod(W2U +6,,1),Q;), (8)
H = G(O). (9)

whereW?, 0, Q are computed according to the CNN;!, 7 are given constantsy; is transformed from
the plaintext.

2.2 The Analysis of the CNN-based Hash Function

Although the authors of [15] claimed that this CNN-Hash hasdyproperties such as its sensitivity to the
plaintext and the key, its one-way computation power, itslainthday attack etc., our analysis below proves
that it is not secure.

As is well known, a good one-way hash function (both keyedrikeyed) must satisfy the following
conditions [20]:

1. Efficiency: For a given ke} and message:, it must be easy to compute the Message Authentication
Code (MAC):H (m, k).

2. Preimage Resistance: For a given vallig it must be computationally infeasible to findsuch that
H(x,k)=H*



3. Second-Preimage Resistance: For a given messagmust be computationally infeasible to find a
different messagg such thatd (x, k) = H(y, k).

4. Collision Resistance: It must be computationally infielasto find two different messagesandy
such thatf (z, k) = H(y, k), where the two inputs andy can be freely chosen.

We now evaluate the properties of the CNN-Hash by using tbgeametrics.

1. Analysis on Efficiency.

As explained above, the computations needed for the CNNr-EHigesdone on the elements of the real
numbers in [0, 1], which is, unarguably, much slower thandbresponding computations executed
on the set of integers. Besides, according to Step 4), wetbade at leasB00 iterations to compute
the first outpuiCyy, which is thereafter used as the input for hashing the seblwuk. Therefore, for
hashing a message oMB, we need at least024 x 1024 x 8 x 300/256 = 9,830,400 iterations,
which is a computationally intensive task. The authors 6] Have stated that their algorithm is not
competitive against MD5 or SHA, and said that it requiresagimwice as much computation as both
of them. Our analysis and experiments, however, show tlegbéinfformance is even worse than they
claimed. To confirm this, we mention that we conducted a st on an Intel Celeron CPU E1500
(2.20GHz) with 4G main memory, and the time involved for thdNeEHash for alMB input of text
was almost 59.83s — which is much more expensive than thetbsth the MD5 and the SHA.

2. Analysis on Preimage Resistance

Because chaotic maps have ergodic and stochastic prapéttis, indeed, not possible to find the
inverse of a given value. This is especially true of the CNakk which uses two different chaotic
systems. From this perspective, we agree with that the ClMdBhHs preimage resistant even when
the keyK is known.

3. Analysis on Second-Preimage Resistance

Although the CNN-Hash is preimage resistant, ih@d Second-Preimage Resistant. The reason for
this is quite straightforward. Consider Eq. (7) — (9) fromiethwe see that the final hash value only
depends on the initial valug; and the keyK. Thus, if we are able to find another differefjt such
that f* (WP, Q) = f7(W'P;, Q), we can conclude that the subsequent intermediate/finaltses
are exactly the same if the system uses the same key. For kxarapsider Eq. (1) and the iteration
trajectories of the PWLCM as shown in Fig. 3. From examinimgse, we see that we can determine
four different values:

xr1 = 0.3, Tro = 0.475, T3 = 0.525, T4 = 0.7,

sharing the same iteration trajectories yielding the fieslt f™(z) = 0.39887. Thus, if we let
v=WI!P andf(v,Q) = F (whereF is some specified value), by examining Eq. (1), we see that
we can have at least four solutions for}:

1)1:FQ,UQ:F(0.5—Q)+Q,vg:(1—Q)—F(0.5—Q),2}4:1—FQ.



We can thus have four differeft?} each of which is the solution d¥1 P* = v;, whence we see
that the CNN-Hash isot Second-Preimage resistant.
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Figure 3. An example of the PWLCM’s iteration trajectoriékhe four red bold lines make up the image
of the PWLCM. The liney = x, vertical and horizonal lines indicate the iteration pgeln this figure,
an iteration begins at starting poiff..3,0.75) (marked with«) and ends af0.84,0.40) (marked with a
“square”). The reader should note that associated withirtlee;|= 0.75 (marked with dash-dot line), there
are at least four starting points that share the same tomyecihese are, namely, the poiri&3,0.75),
(0.475,0.75), (0.525,0.75) and(0.7,0.75), which, in turn, implies that there is a collision for at lesur
different initial inputs.

4. Analysis on Collision Resistance

The analysis on collision resistance is quite similar todhalysis on Second-Preimage resistance,
and is omitted here in the interest of brevity.

Besides the above four conclusions, we can also claim:

1. The OCML component has many ‘weak keys’.

According to Step 3), the initial values of the OCML come frtma initial key K. Based on the above,
one can see thahose keys which lead to the four equal parts are necessarily weg& Kurther, the
reader should observe that since the CNN is a fully-condewtéwork, ifkg = k1 = ko = k3, we can
conclude that no matter how many iterations have been doeeonditionz(t) = z1(t) = z2(t) =
x3(t) always holds, which implies that a message of leriibr-bits compresses to 32 bits long
instead of beind 28 bits long. Thus, in this case, we see that it is feasible todindllision since the
ciphertext space is contracted.

2. Hash values do not obey a uniform distribution

The OCML employs the Logistic chaotic map, whose values ateuniformly distributed in [0, 1].
To demonstrate this, we have computed the statistics ofiftiebaition, and these are shown below
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Figure 4: The distribution of the values of the OCMB):(Trajectories of 300 pointsh): The distributions
of the 300 points in ten intervals from 0 to 1. The four figureé) and @) are forxo(t), z1(t), x2(t), x3(t)
respectively.

in Fig. 4 @ and @). We can clearly see from the two figures that most of the wafak into the
intervals close to unity. This will cause the distributiohtlee hash values to also be non-uniform,
further implying that the probability of collision is high icertain parts of the interval [21].

3 The Delayed CNN-based Cryptography

3.1 The Description the Delayed CNN-based Cryptography

Delayed CNNs have been widely investigated in the past @scatihe authors of [18] proposed a crypto-
graphic system based on a special type of the delayed CNNmbklel used in [18] is also a Hopfield-like
NN which exhibits chaotic phenomenon and which obeys Eg). (10

dl’i (t)
dt

= —cimi(t) + Y ay f(x(0) + D bijf(wj(t — 73;(t))) + (1), where (10)
j=1 J=1

1. n denotes the number of units in the CNN,

2. xz(t) = {x1(t), z2(t),--- ,zn(t)} € R, Is the state vector associated with the neurons,

3. I={L,1I,---,I,} € R, isthe external input vector,

4. f(x(t)) = {fi(z1(t)), fa(z2(t)),-- - , fu(zn(t))} € R, are the neurons’ activation functions,
5. 7(t) = 1;(t)(i,5 =1,2,--- ,n) are the time delays,

6. C = diag(cy,ca,--- ,cy) is adiagonal matrix, and

7. A = (a;j)nxn andB = (b;j)nxn are the connection weight matrix and the delayed conneut@ght
matrix, respectively.
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Figure 5: The trajectories of Eq. (10). In this figure, theuesl ofx(¢) andy(t) are calculated by means of
the fourth-order Runge-Kutta method. The time span is fram 200 with a total of 30,000 steps.

The dynamics of Eq. (10) have been well studied and it is teddhat it can exhibit rich chaotic phe-
nomenons [22,23]. As demonstrated in [18, 23], if the patarseare:

e 20 -0.1 B— -15 —-0.1 o 10 ’
-5.0 3.0 —-0.5 —-2.5 0 1

and if

fili(t)) = tanh(z;(1)),

7(t) =1+ 0.1sin(t), and

I1=0,
the trajectories of Eq. (10) are shown in Fig.5

The encryption and decryption schemes proposed in [18] asedon the above Eq. (10) and can be
summarized as following:

e Initialization: Obtain the starting point, from the lastVy transient time iterations as = x1(Noh)
whereh is the discretized time step.

o Data Preparation: Divide the plaintextn into subsequences; of lengthi bytes, e.g.[ = 4. That
is, any message: can be digitized as:

m =Dpo,P1, " sPI-1PLPI+1," " yP2A-1 """

mo mi
wherep; is an 8dit binary string. Then combine foyr; to form a 32bit binary block, implying that

Pj =pj,pji1,0j4+2,Dj+3-



The following steps constitute the core process of enaypti

1. Dynamic Parameter Computing: Iterate the initial value;, 38 times and to yield, 1, zx19, -+ , Tgr3s-
Extractone bit from the38 numbers and to obtain38-bit random binary sequence,

Bi — B7{6+IB£€+2 . BZ(H-?)S’
where B = b;(z},), is computed as per:

2t—1

bi(we) = > (=1 'O (_ayrj2e)rala), (11)

r=1

and where: andd are the upper and lower boundsagf respectively.

0, x) < threshold

12)
1, x> threshold.

Othreshold(Tr) = {

Denote:
A; = B}!B?--- B,
Aj = B¥#B ... BT, and
A2 = B3,
Also, let D; denote the decimal value of;.

2. Permutation: Permute the message blogk with a left cyclic shiftD; bits and the message block
Aj with right cyclic shift D; bits, to obtainP; and A7. If A? = 0, thex(¢) is used for the successive
block iteration illustrated in Step 1). Otherwisg}) is used as the initial value of the next iteration.

3. Encryption by XOR: Encrypt the message blo@k by XOR operations (represented ®y to yield:

C;=P & A (13)

4. Loop: Reset the initial value by (0) = x(38 + D;) (or 2(0) = y(38 + D), this depends on the
value ofA?.) and repeat the above steps till all blocks are encrypted.

As for the decryption, the steps are very similar to the guiooyp process except in the case of Step 3)
where:
P =C; & A (14)

The plaintextP; can be recovered by performing inverse permutations watht gyclic shifts ofD; bits.
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3.2 The Analysis of the Delayed CNN-based Cryptography

We now proceed to analyze the security and performance afelaged CNN-based cryptography. Our goal
is to demonstrate that this cryptography has several weakse

1. Non-randomness

x andy are not uniformly distributed, which causes tharidom” bits generated in Step 1) to be
non-random. To illustrate this, we present the frequenagissics of the value of(¢) andy(¢). The
parameters used here are exactly the same as those used tn Alg categorize the combination of
x(t) andy(t) into 4 classes:

(@) z > 0 AND y > 0: 1801
(b) z > 0 AND y < 0: 15618
(c) z < 0 AND y > 0: 10781
(d) z < 0AND y < 0: 1800

We can clearly see from the statistics that more than a halb@%o) of thex(¢) andy(t) gather in
the first quadrant, while only 48.94% distribute in the othlieee quadrants. This phenomenon is
confirmed from Fig. 5. Furthermore, as demonstrated in Stepel.can normalize:(¢) andy(t) into
[0,1] by:
r—d

9(@) = —— = 0b1(@)ba(a) - by() -+ - bu(a) (15)
wheree andd are the upper and lower boundsaofespectively. We can thus generate the “random
binary bits according tg(x). Indeed, the new counts are:

”

(a) b(z) = 0 AND b(y) = 0: 2769
(b) b(z) = 0 AND b(y) = 1: 11573
(©) b(z) = 1 AND b(y) = 0: 14379
(d) b(z) = 1 AND b(y) = 1: 1279

Clearly, the bits generated by Eg. (12) are not “random”.

2. Trajectory behavior:

The authors of [18] did not use the trajectories as showngn Fidirectly. Instead, the random bits
were generated according to the 38 successively iteratamsgemonstrated in Step 1). We should
thus carefully check the randomness of the correspondiqpgesees. According to Step 2) in Section
3.1, if A? = 0, z(¢) is used for the successive iteration, otherwise, 4ti3. In this case, we swap the
value ofz(t) andy(t) every 38 iterations. As shown in Fig. 6 we can see that theevalu: (¢) and
y(t) are very close during the 38 iterations, which means thearankits B! B? - - - B3® are almost
identical.
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Figure 6: The controlled trajectories of Eq. (10). For adretiew, we have used a larger step 0.05 yielding
a lesser number of points. The points in contained in retdangarked as 1 and 3, 2 and 4 are symmetric
pairs along the axis given by the lipe= x.

In spite of the above, the authors of [18] attempted to usesiijuence to achieve the goals diffti-
sion” and “confusion”. It is well known that a sequence possessing poor randosipreperties cannot
be used in any cryptographic algorithm [21], because it daherwise lead to a more predictable
ciphertext. Consequently, we argue that this algorithnotssecure.

3. Resistance to attacks

This cryptographic system cannot resist known plainteiclis, chosen plaintext attacks and chosen
ciphertext attacks. To demonstrate this, assume that ackatthas some plaintext-ciphertext pairs
(M, Ch), (My,C) and(Ms, Cs), where{ M, } are the first 4 bytes of different plaintexts. If they are
all encrypted by the same key, according to the algoritheen tt:, D; and some other intermediate
iteration results should be the same. Thus:

ch, = (M1 <<Dj)@A;k-
Cy = (M <<Dj)@A;k-.

where< < denotes the cyclic left shift operation. Thus,

CieCy = (M << Dj)®(M; << D;j)
= (M2 EBMQ) << Dj.

Since(M;,Cy) and(Ma, Cy) are known, it is quite easy to find the valueof. After that, we can
solve the equation’; & C'3s = (M @ Ms) << D; and thereafter determings successfully. Observe
that during the whole process, we did not need any knowletigatahe delayed CNN. The reason
why we are able to proceed with such attacks is that the authidrmot introduce the concept of the
Initial Vector to the scheme.
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4. Efficiency:

Although the authors of [18] claimed that the algorithm foint, this is not really the case. Actually,
this conclusion is also true for many other crypto-systench &is those algorithms presented in [8,24],
which involve time delays in their equations. It is well knowhat the Runge-Kutta method is one
of the best ways to solve differential equations where tit@airvalues are provided. However, this
method is still far too expensive when compared to tradiidriock ciphers such the DES or AES.
Indeed, the computation of these traditional ciphers wvasla finite field and only makes use of
simple operations such as permutation. As opposed to thisng differential equations involves the
set of real numbers. For example, to encrypt a plaintext siidb 1M bytes, we have to divide the
message intd024 x 1024/4 = 262, 144 blocks, where each block is of lengthbytes. According
to the encryption phase, at leaS} + 38 iterations are involved to encrypt a single block. If we
assume thalvy = 62, we see that we have to thus do approximagsly, 144 x 100 = 26, 214, 400
iterations to encrypt the entire file, which is, really, ptotively large. More specifically, on an Intel
Celeron CPU E1500 (2.20GHz) with 4G main memory, this erntaygtime using Matlab was about
7 minutes, which is unacceptable when compared to the “nea’toperation of traditional block
ciphers.

5. Statistical Attacks?:

The reader should take note of the fact that the block sizengasased from 64 bits in DES to 128 bits
in AES in order to avoid statistical attacks. Thus, it is retammended that one uses blocks whose
sizes are less than 128 bits in modern block ciphers [25]. s€qurently, the fact that the Delayed
CNN-based Cryptography still relies on Exclusion OR operetinvolving strings of length 32-bits,
renders it more susceptible to statistical attacks.

4 Conclusion

Chaotic Neural Networks have been widely used in variousldisuch as pattern recognition, dynamic
associate memory and optimization. Recently, cryptogramised on chaos or CNNs has drawn great
attention. In this paper, we present a detailed analysisvoftypical cipher schemes: The CNN-Hash
and Delayed CNN-Based Encryption. The former compressésrdgxt onto a 128-bit sequence, which is
similar to MAC. The latter encrypts plaintext so that an ealvepper will not be able to decrypt the message
without the key, which is analogous to common cipher alpang. Although the authors have affirmed that
their schemes are secure and efficient, our investigatiomeprthat these claims are not valid. We have
proven that the CNN-Hash is not Second-Preimage resistahtallision resistant. The DCBE has also
been shown to not be secure since an attacker can partietiyeethe plaintext by using a known plaintext
attack, a chosen-plaintext attack or chosen-ciphert¢atlat We have also concluded that the two schemes
are not computationally efficient.

2\We sincerely thank an the anonymous Referee who providedrisight.
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