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This paper investigates the finite-time distributed 𝐿
2
–𝐿
∞

consensus control problem of multiagent systems with parameter
uncertainties. The relative states of neighboring agents are used to construct the control law and some agents know their own
states. By substituting the control input into multiagent systems, an augmented closed-loop system is obtained. Then, we analyze
its finite-time boundedness (FTB) and finite-time 𝐿

2
–𝐿
∞

performance. A sufficient condition for the existence of the designed
controller is given with the form of linear matrix inequalities (LMIs). Finally, simulation results are described.

1. Introduction

The coordination control problems of multiagent systems
have attracted increasing attentions from various fields,
such as formation flights [1, 2], multiple robots formation
control [3, 4], air traffic control [5], and multivehicle systems
cooperative control [6, 7]. For the reason that centralized
control is too expensive or even infeasible to accomplish, the
distributed control protocol has been studied extensively in
recent years.

The consensus problem for multiagent systems with
switching communication topologies is studied in [8, 9],
heterogeneous multiple agents are researched in [10], the dis-
tributed control problem for high-order multiagent systems
is investigated in [11], the nonlinear uncertain multiagent
systems are studied in [12], networked control problem for
multiple agents with a leader is described in [13], multiagent
systems with input time delays are investigated in [14], and,
for the case that state information cannot be measured, a
distributed output-feedback control for multiagent systems
with Markov jumping is studied in [15]. However, to the best
knowledge of the authors, there is no article investigating the
finite-time energy-to-peak consensus problem formultiagent
systems with parameter uncertainties.

For the reason that the forms of external disturbances
are not exactly known and the existence of parameter uncer-
tainties in systems, the robust control method is proposed.
There are mainly three robust control theories. The first one
is energy-to-energy control, which is the well-known 𝐻

∞

control [16–19], where the external disturbance can be any
form but energy bounded.The second theory is peak-to-peak
control, in which worse cases of performance variables are
required to be minimized under the peak bounded external
disturbances; it can be seen that the conservatism of peak-
to-peak control is much less than the 𝐻

∞
control. The last

method is the energy-to-peak one, which is also called 𝑙
2
–𝑙
∞

in discrete-time and 𝐿
2
–𝐿
∞

in continuous-time systems. In
energy-to-peak control, the external disturbances are energy
bounded and the peak values of performance variables are
required to be minimized, which is less conservative than
the𝐻

∞
control. The energy-to-peak problem for Markovian

jump systems is investigated in [20], the robust energy-
to-peak FIR equalization for time-varying communication
channels is described in [21], and energy-to-peak filtering is
designed in [22, 23].

In practical engineering, themain concern is the behavior
of the system in a fixed finite-time interval. In such case,
the finite-time stability (FTS) is introduced. A system is said
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to be finite-time stable if, in a given time interval, the state
values will not exceed a certain upper bound under the initial
conditions. The FTS method is applied to restrain the large
state values in the initial period of time caused by the large
initial conditions.

The FTS problem for switched systems is studied in [24],
input-output FTS method is proposed in [25], and a time-
varying system FTS problem is analyzed in [26]; the FTS is
investigated for the singular impulsive systems in [27]. See for
more details the references of the aforementioned literatures.

In this paper, we investigate the finite-time 𝐿
2
–𝐿
∞

control problem for multiagent systems with parameter
uncertainties. The rest of this paper is organized as follows.
Some preliminaries on graph theory and problem formu-
lation are given in Section 2. The finite-time distributed
𝐿
2
–𝐿
∞

consensus control problem for multiagent systems
with parameter uncertainties is investigated in Section 3.
Numerical simulations are shown in Section 4. Section 5
concludes the paper.

In this paper, the following notations will be used: 𝑅𝑛×𝑛
denotes the set of 𝑛 × 𝑛 real matrix. The superscripts −1
and 𝑇 mean the inverse and the transpose of a matrix,
respectively. The real matrix 𝑃 > 0 stands for the fact that
𝑃 is positive definite. 𝜆min(𝑃) and 𝜆max(𝑃), respectively, refer
to the minimum and maximum eigenvalues of the matrix
𝑃. diag{𝐴

1
, . . . , 𝐴

𝑁
} is a block-diagonal matrix. 𝐴 ⊗ 𝐵 is

the Kronecker product of matrices 𝐴 and 𝐵. Further, some
algorithms of Kronecker product applied are described as
follows:

(𝐴 ⊗ 𝐵) (𝐶 ⊗ 𝐷) = (𝐴𝐶) ⊗ (𝐵𝐷) ,

(𝐴 ⊗ 𝐼
𝑛
) (𝐼
𝑚
⊗ 𝐵) = (𝐼

𝑚
⊗ 𝐵) (𝐴 ⊗ 𝐼

𝑛
) ,

(𝐴 ⊗ 𝐵)
𝑇
= 𝐴
𝑇
⊗ 𝐵
𝑇
, (𝐴 ⊗ 𝐵)

−1
= 𝐴
−1
⊗ 𝐵
−1
.

(1)

2. Preliminaries

2.1. GraphTheory. An undirected graphG = (V,E) is a pair
(V,E), where V = {v

1
,v
2
, . . . ,v

𝑁
} is the set of nodes and

E ⊆ V × V is the set of pairs of nodes, called edges. Two
nodes v

𝑖
and v

𝑗
are called neighbouring agents, if (v

𝑖
,v
𝑗
) is

an edge of graphG. A path onG
𝑓
from node v

𝑖
to node v

𝑗
is

a sequence of edges (v
𝑖
,v
𝑘
1

), (v
𝑘
1

,v
𝑘
2

), . . . , (v
𝑘
𝑙

,v
𝑗
). A graph

is called connected graph if there exists a path from v
𝑖
to v
𝑗

for all pairs of (v
𝑖
,v
𝑗
).

The adjacency matrix A = [𝑎
𝑖𝑗
] ∈ 𝑅
𝑁×𝑁 associated with

undirected graph G is defined by 𝑎
𝑖𝑖
= 0 and 𝑎

𝑖𝑗
= 𝑎
𝑗𝑖
= 1 if

(v
𝑖
,v
𝑗
) ∈ E and 𝑎

𝑖𝑗
= 𝑎
𝑗𝑖
= 0 otherwise.TheLaplacianmatrix

L = [𝑙
𝑖𝑗
] ∈ 𝑅
𝑁×𝑁 is defined as 𝑙

𝑖𝑖
= ∑
𝑁

𝑗=1
𝑎
𝑖𝑗
and 𝑙
𝑖𝑗
= −𝑎
𝑖𝑗
for

𝑖 ̸= 𝑗.
Define a diagonal matrixD = diag{𝑑

1
, . . . , 𝑑

𝑁
} ∈ 𝑅
𝑁×𝑁:

𝑑
𝑖
= 1 if the ith agent knows its own state and 0 otherwise.

Define a new matrix called modified Laplacian matrix L̂ =

L +D.

Assumption 1. Theundirected topology graphG is connected
and at least one agent is able to achieve its own state.

Lemma 2 (see [28]). If the graph G satisfies Assumption 1,
then matrix L̂ =L +D is positive definite.

2.2. Problem Formulation. Consider the following 𝑁 linear
multiagent systems with parameter uncertainties:

�̇�
𝑖
= (𝐴 + Δ𝐴

𝑖
) 𝑥
𝑖
+ 𝐵𝑢
𝑖
+ 𝐷𝑤

𝑖
, 𝑧

𝑖
= 𝑥
𝑖
,

𝑖 = 1, . . . , 𝑁,

(2)

where the subscripts 𝑖 denote the ith agent. 𝑥
𝑖
∈ 𝑅
𝑛 stands for

the state variable, 𝑢
𝑖
∈ 𝑅
𝑝 is the control input,𝑤

𝑖
∈ 𝑅
𝑚means

the external disturbance, and 𝑧
𝑖
∈ 𝑅
𝑛 refers to the required

performance variable. 𝐴, 𝐵, and 𝐷 are constant matrices
with the compatible dimensions; matrix Δ𝐴

𝑖
denotes the

parameter uncertainty which is unknown and described as
Δ𝐴
𝑖
= 𝐸Σ

𝑖
(𝑡)𝐹, where Σ

𝑖
(𝑡) stands for the time-varying

uncertainty and satisfies the following condition:

Σ
𝑇

𝑖
(𝑡) Σ
𝑖
(𝑡) ≤ 𝛿

2
𝐼 𝑖 = 1, . . . , 𝑁 (3)

with the constant parameter 𝛿 > 0, where 𝐸 and 𝐹 are
constantmatriceswhich are used to characterize the structure
of the uncertainty.

Therefore, it is called that the multi-agent systems have
the same nominal dynamics which are the certain parts, but
the different uncertainties with each other.

Similar to [28, 29], in this paper, we aim to make multiple
agents achieve the consensus and their states converge to zero
thus, the controller is described as

𝑢
𝑖
= 𝑐𝐾[

[

𝑁

∑

𝑗=1

𝑎
𝑖𝑗
(𝑥
𝑖
− 𝑥
𝑗
) + 𝑑
𝑖
𝑥
𝑖
]

]

, 𝑖 = 1, . . . , 𝑁, (4)

where the scalar 𝑐 > 0 denotes the coupling strength, 𝐾
stands for the relative state-feedback control gain matrix
to be determined, 𝑎

𝑖𝑗
, 𝑖, 𝑗 ∈ {1, . . . , 𝑁}, is the element

of adjacency matrix A associated with the communication
topology graph, and G, 𝑑

𝑖
are constant scalars which satisfy

𝑑
𝑖
= 1, 𝑖 = 1, . . . , 𝑞, and 𝑑

𝑖
= 0, 𝑖 = 𝑞 + 1, . . . , 𝑁; that is to say,

agents 1, . . . , 𝑞 are able to achieve their own states, but agents
𝑞 + 1, . . . , 𝑁 cannot get their own states.

We define the following augmented variables:

𝑥 =
[
[

[

𝑥
1

...
𝑥
𝑁

]
]

]

, 𝑤 =
[
[

[

𝑤
1

...
𝑤
𝑁

]
]

]

, 𝑧 =
[
[

[

𝑧
1

...
𝑧
𝑁

]
]

]

. (5)

Then, the closed-loop system consisting of (2) and (4) can be
rewritten as

�̇� = [𝐼
𝑁
⊗ 𝐴 + 𝑐�̂� ⊗ 𝐵𝐾 + (𝐼

𝑁
⊗ 𝐸) Σ (𝐼

𝑁
⊗ 𝐹)] 𝑥

+ (𝐼
𝑁
⊗ 𝐷)𝑤,

𝑧 = 𝑥,

(6)

where L̂ = L + D and Σ = diag{Σ
1
, . . . , Σ

𝑁
}. It is obvious

that matrix L̂ is positive definite based on Assumption 1 and
Lemma 2.
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In order to analyze the finite-time 𝐿
2
–𝐿
∞

performance
of the closed-loop system (6) with uncertainties, some defi-
nitions and a lemma are described as follows.

Definition 3. The finite-time energy-to-peak gain of the
transfer function matrix is described by

Γep(𝑤𝑧) = √
sup
𝑡∈(0,𝑇]

[𝑧
𝑇
(𝑡) 𝑧 (𝑡)]

∫
𝑇

0
𝑤𝑇 (𝑡) 𝑤 (𝑡) 𝑑𝑡

. (7)

Definition 4 (finite-time boundedness (FTB) [30]). A system
is called FTB with respect to (𝑐

1
, 𝑐
2
, 𝜔, 𝑇), where 0 < 𝑐

1
< 𝑐
2
,

if the state variables satisfy

𝑥
𝑇
(𝑡) 𝑥 (𝑡) ≤ 𝑐

2
, ∀𝑡 ∈ (0, 𝑇] (8)

with the conditions

𝑥
𝑇
(0) 𝑥 (0) ≤ 𝑐

1
, ∫

𝑇

0

𝑤
𝑇
(𝑡) 𝑤 (𝑡) 𝑑𝑡 ≤ 𝜔. (9)

Definition 5. The closed-loop system (6) is said to be FTB
with a finite-time 𝐿

2
–𝐿
∞

performance 𝛾, if the following
conditions hold.

(1) System (6) is FTB with respect to (𝑐
1
, 𝑐
2
, 𝜔, 𝑇).

(2) Under zero initial conditions, the 𝐿
2
–𝐿
∞

perfor-
mance satisfies the following condition:

sup
𝑡∈(0,𝑇]

[𝑧
𝑇
(𝑡) 𝑧 (𝑡)] < 𝛾

2
∫

𝑇

0

𝑤
𝑇
(𝑡) 𝑤 (𝑡) 𝑑𝑡. (10)

That is, Γep(𝑤𝑧) < 𝛾.

In addition, based on Definition 3, it is derived from [31]
that

Γep(𝑤𝑧) =
1

2𝜋
𝜆max (∫

𝑇

0

𝑇
𝑤𝑧
(𝑗𝜔) 𝑇

𝑇

𝑤𝑧
(𝑗𝜔) 𝑑𝜔) , (11)

where 𝑇
𝑤𝑧

is the transfer function matrix of closed-loop
system (6); note that the right side of (11) is the finite-time
𝐻
2
norm of the transfer function matrix.

Lemma 6 (see [32]). LetΘ = Θ𝑇; let 𝐸 and 𝐹 be real matrices
with appropriate dimensions; Σ(𝑘) satisfies Σ𝑇(𝑘)Σ(𝑘) ≤ 𝐼.
Then the following condition:

Θ + 𝐸Σ (𝑘) 𝐹 + (𝐸Σ (𝑘) 𝐹)
𝑇

< 0, (12)

holds if there exists a positive scalar 𝜀 > 0 such that the
following inequality is satisfied:

[

[

Θ 𝜀𝐸 𝐹
𝑇

∗ −𝜀𝐼 0

∗ ∗ −𝜀𝐼

]

]

< 0. (13)

Theorem 7. For a given scalar 𝛾 > 0, system (6) is FTB
with the finite-time 𝐿

2
–𝐿
∞

performance 𝛾, if and only if the
following𝑁 systems are finite-time bounded and the finite-time
𝐿
2
–𝐿
∞

norm of their transfer function matrices Γep(𝑤
𝑖
�̂�
𝑖
)
< 𝛾:

̇̂𝑥
𝑖
= (𝐴 + Δ𝐴

𝑖
+ 𝑐𝜆
𝑖
𝐵𝐾) 𝑥

𝑖
+ 𝐷𝑤

𝑖
, �̂�

𝑖
= 𝑥
𝑖
,

𝑖 = 1, . . . , 𝑁,

(14)

where 𝜆
𝑖
is the 𝑖th eigenvalue of L̂.

Proof. Let 𝑈 ∈ 𝑅𝑁×𝑁 be a unitary matrix such that 𝑈𝑇L̂𝑈 =
Λ = diag{𝜆

1
, . . . , 𝜆

𝑁
}. Define new variables 𝑥 = (𝑈𝑇 ⊗ 𝐼

𝑛
)𝑥,

𝑤 = (𝑈
𝑇
⊗ 𝐼
𝑚
)𝑤, and �̂� = (𝑈𝑇 ⊗ 𝐼

𝑛
)𝑧, where

𝑥 =
[
[

[

𝑥
1

...
𝑥
𝑁

]
]

]

, 𝑤 =
[
[

[

𝑤
1

...
𝑤
𝑁

]
]

]

, �̂� =
[
[

[

�̂�
1

...
�̂�
𝑁

]
]

]

. (15)

Therefore, we have

̇̂𝑥 = (𝑈
𝑇
⊗ 𝐼
𝑛
) [𝐼
𝑁
⊗ 𝐴 + 𝑐L̂ ⊗ 𝐵𝐾 + (𝐼

𝑁
⊗ 𝐸) Σ (𝐼

𝑁
⊗ 𝐹)]

× (𝑈 ⊗ 𝐼
𝑛
) 𝑥 + (𝑈

𝑇
⊗ 𝐼
𝑛
) (𝐼
𝑁
⊗ 𝐷) (𝑈 ⊗ 𝐼

𝑚
) 𝑤

= [𝐼
𝑁
⊗ 𝐴 + 𝑐Λ ⊗ 𝐵𝐾 + (𝑈

𝑇
⊗ 𝐼
𝑛
) (𝐼
𝑁
⊗ 𝐸Σ
𝑖
𝐹)

× (𝑈 ⊗ 𝐼
𝑛
) ] 𝑥 + (𝐼

𝑁
⊗ 𝐷)𝑤

= [𝐼
𝑁
⊗ 𝐴 + 𝑐Λ ⊗ 𝐵𝐾 + (𝐼

𝑁
⊗ 𝐸Σ
𝑖
𝐹)] 𝑥 + (𝐼

𝑁
⊗ 𝐷)𝑤.

(16)

Hence, the closed-loop system (6) can be regarded as

̇̂𝑥 = [𝐼
𝑁
⊗ 𝐴 + 𝑐Λ ⊗ 𝐵𝐾 + (𝐼

𝑁
⊗ 𝐸Σ
𝑖
𝐹)] 𝑥 + (𝐼

𝑁
⊗ 𝐷)𝑤,

�̂� = 𝑥.

(17)

Note that the system in (17) is composed of the𝑁 systems in
(14).

It can be seen that the system (17) is obtained by applying
the elementary transformation to system (6). Thus the finite-
time stability (boundedness) of systems (6) and (17) is
equivalent.

It is concluded from (6), (14), and (17) that

𝑇
𝑤�̂�
= diag {𝑇

𝑤
1
�̂�
1

, . . . , 𝑇
𝑤
𝑁
�̂�
𝑁

} = (𝑈
𝑇
⊗ 𝐼
𝑚
) 𝑇
𝑤𝑧
(𝑈
𝑇
⊗ 𝐼
𝑛
) .

(18)

Via the finite-time 𝐿
2
–𝐿
∞

norm described in (11), it
implies that

Γep(𝑤𝑧) = Γep(𝑤 �̂�) = max
𝑖=1,...,𝑁

Γep(𝑤
𝑖
�̂�
𝑖
)
. (19)

Therefore, it is obvious that Γep(𝑤𝑧) < 𝛾 if and only if Γep(𝑤
𝑖
�̂�
𝑖
)
<

𝛾, 𝑖 ∈ {1, . . . , 𝑁}. This completes the proof.
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Remark 8. It is shown in Theorem 7 that the distributed
finite-time energy-to-peak control problem of system (6) is
equivalent to the finite-time energy-to-peak control problems
of a set of decoupled linear systems having the same dimen-
sions as a single agent with the assumption that the nominal
dynamics of agents are identical.

In the next section, we are going to derive the sufficient
condition for the existence of the control input and give the
expression of feedback gain matrix 𝐾. Select the coupling
strength 𝑐 ≥ 𝑐th, where

𝑐th =
𝜏

min
𝑖=1,...,𝑁

(𝜆
𝑖
)
. (20)

3. Finite-Time Energy-to-Peak Control

Theorem 9. The closed-loop network in (6) with a distributed
controller described in (4) is finite-time bounded with a finite-
time energy-to-peak performance 𝛾, if there exist positive
definite symmetric matrix Q, scalars 𝜏 > 0, 𝛼 > 0, and 𝜀 > 0
such that

[
[
[
[
[

[

−𝛼Q + 𝐴Q + Q𝐴𝑇 − 𝜏𝐵𝐵𝑇 𝐷 Q 𝜀𝐸 𝛿Q𝐹𝑇

𝐷
𝑇

−𝛾
2
𝐼 0 0 0

Q 0 −𝐼 0 0

𝜀𝐸
𝑇

0 0 −𝜀𝐼 0

𝛿Q𝐹 0 0 0 −𝜀𝐼

]
]
]
]
]

]

< 0,

(21)

[
−𝑒
−𝛼𝑇Q Q
Q −𝐼

] < 0. (22)

In addition, the feedback gain matrix is 𝐾 = −(1/2)𝐵𝑇Q−1.

Proof. Based on the Schur Complement Lemma, inequality
(21) can be regarded as

− 𝛼Q + 𝐴Q + Q𝐴
𝑇
− 𝜏𝐵𝐵

𝑇
+ 𝛾
−2
𝐷𝐷
𝑇
+ Q
2
+ 𝜀𝐸𝐸

𝑇

+ 𝜀
−1
𝛿
2
Q𝐹
𝑇
𝐹Q < 0.

(23)

Thus, by using (20), we have

− 𝛼Q + 𝐴Q + Q𝐴
𝑇
− 𝑐𝜆
𝑖
𝐵𝐵
𝑇
+ 𝛾
−2
𝐷𝐷
𝑇
+ Q
2
+ 𝜀𝐸𝐸

𝑇

+ 𝜀
−1
𝛿
2
Q𝐹
𝑇
𝐹Q < 0.

(24)

We choose the control gain matrix as 𝐾 = −(1/2)𝐵
𝑇Q−1;

then we can obtain

− 𝛼Q + 𝐴Q + Q𝐴
𝑇
+ 𝑐𝜆
𝑖
Q𝐾
𝑇
𝐵
𝑇
+ 𝑐𝜆
𝑖
𝐵𝐾Q + 𝛾

−2
𝐷𝐷
𝑇

+ Q
2
+ 𝜀𝐸𝐸

𝑇
+ 𝜀
−1
𝛿
2
Q𝐹
𝑇
𝐹Q < 0.

(25)

By using Schur Complement Lemma again, the above
inequality is equivalent to

[
[
[
[
[
[
[
[
[

[

Ω
11

𝐷 Q 𝜀𝐸 𝛿Q𝐹𝑇

𝐷
𝑇
−𝛾
2
𝐼 0 0 0

Q 0 −𝐼 0 0

𝜀𝐸
𝑇

0 0 −𝜀𝐼 0

𝛿Q𝐹 0 0 0 −𝜀𝐼

]
]
]
]
]
]
]
]
]

]

< 0, (26)

where

Ω
11
= −𝛼Q + Q(𝐴 + 𝑐𝜆

𝑖
𝐵𝐾)
𝑇

+ (𝐴 + 𝑐𝜆
𝑖
𝐵𝐾)Q. (27)

By applying Lemma 6, we can obtain the following inequality
if the inequality (26) holds:

[
[
[

[

Π
11

𝐷 Q

𝐷
𝑇
−𝛾
2
𝐼 0

Q 0 −𝐼

]
]
]

]

< 0, (28)

where

Π
11
= −𝛼Q + Q(𝐴 + 𝑐𝜆

𝑖
𝐵𝐾 + 𝐸Σ

𝑖
𝐹)
𝑇

+ (𝐴 + 𝑐𝜆
𝑖
𝐵𝐾𝐸Σ

𝑖
𝐹)Q.

(29)

By multiplying the left and right sides of inequality (28) by
diag{Q−1, 𝐼, 𝐼}, we have

[
[
[

[

Π̃
11

Q−1𝐷 𝐼

𝐷
𝑇Q−1 −𝛾

2
𝐼 0

𝐼 0 −𝐼

]
]
]

]

< 0, (30)

where

Π̃
11
= − 𝛼Q

−1
+ (𝐴 + 𝑐𝜆

𝑖
𝐵𝐾 + 𝐸Σ

𝑖
𝐹)
𝑇

Q
−1

+ Q
−1
(𝐴 + 𝑐𝜆

𝑖
𝐵𝐾𝐸Σ

𝑖
𝐹) .

(31)

Let 𝑃 = Q−1; we can get

[
[
[

[

Π
11

𝑃𝐷 𝐼

𝐷
𝑇
𝑃 −𝛾

2
𝐼 0

𝐼 0 −𝐼

]
]
]

]

< 0, (32)

where

Π
11
= − 𝛼𝑃 + (𝐴 + 𝑐𝜆

𝑖
𝐵𝐾 + 𝐸Σ

𝑖
𝐹)
𝑇

𝑃

+ 𝑃 (𝐴 + 𝑐𝜆
𝑖
𝐵𝐾𝐸Σ

𝑖
𝐹) .

(33)

It is obvious that 𝑃 is also a positive definite symmetric
matrix. By using Schur Complement Lemma, inequality (32)
is equivalent to

[

[

Ξ
11

𝑃𝐷

𝐷
𝑇
𝑃 −𝛾

2
𝐼
]

]

< 0, (34)
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where

Ξ
11
= − 𝛼𝑃 + 𝐼 + (𝐴 + 𝑐𝜆

𝑖
𝐵𝐾 + 𝐸Σ

𝑖
𝐹)
𝑇

𝑃

+ 𝑃 (𝐴 + 𝑐𝜆
𝑖
𝐵𝐾𝐸Σ

𝑖
𝐹) .

(35)

We choose the Lyapunov function for the 𝑁 systems in
(14) as follows:

𝑉
𝑖
(𝑡) = 𝑥

𝑇

𝑖
(𝑡) 𝑃𝑥

𝑖
(𝑡) , 𝑖 = 1, . . . , 𝑁. (36)

The derivate of the aforementioned Lyap
unov function is

�̇�
𝑖
= ̇̂𝑥
𝑇

𝑖
𝑃𝑥
𝑖
+ 𝑥
𝑇

𝑖
𝑃 ̇̂𝑥
𝑖

= 𝑥
𝑇

𝑖
[(𝐴 + 𝑐𝜆

𝑖
𝐵𝐾 + 𝐸Σ

𝑖
𝐹)
𝑇

𝑃 + 𝑃 (𝐴 + 𝑐𝜆
𝑖
𝐵𝐾 + 𝐸Σ

𝑖
𝐹)]

× 𝑥
𝑖
+ 𝑥
𝑇

𝑖
𝑃𝐷𝑤
𝑖
+ 𝑤
𝑇

𝑖
𝐷
𝑇
𝑃𝑥
𝑖
.

(37)

Therefore, it is derived from the inequality (34) that

�̇�
𝑖
+ 𝑥
𝑇

𝑖
𝑥
𝑖
− 𝛼𝑥
𝑇

𝑖
𝑃𝑥
𝑖
− 𝛾
2
𝑤
𝑇

𝑖
𝑤
𝑖
< 0. (38)

That is,

�̇�
𝑖
< 𝛼𝑉
𝑖
+ 𝛾
2
𝑤
𝑇

𝑖
𝑤
𝑖
− �̂�
𝑇

𝑖
�̂�
𝑖
. (39)

Then we have

�̇�
𝑖
< 𝛼𝑉
𝑖
+ 𝛾
2
𝑤
𝑇

𝑖
𝑤
𝑖
. (40)

Hence, the above inequality can be regarded as

𝑑

𝑑𝑡
[𝑒
−𝛼𝑡
𝑉
𝑖
(𝑡)] < 𝑒

−𝛼𝑡
𝛾
2
𝑤
𝑇

𝑖
(𝑡) 𝑤
𝑖
(𝑡) . (41)

By integrating the aforementioned inequality from 0 to 𝑡,
we can obtain

𝑒
−𝛼𝑡
𝑉
𝑖
(𝑡) < 𝑉

𝑖
(0) + 𝛾

2
∫

𝑡

0

𝑒
−𝛼𝑠
𝑤
𝑇

𝑖
(𝑠) 𝑤
𝑖
(𝑠) 𝑑𝑠

≤ 𝑉
𝑖
(0) + 𝛾

2
∫

𝑡

0

𝑤
𝑇

𝑖
(𝑠) 𝑤
𝑖
(𝑠) 𝑑𝑠

≤ 𝑥
𝑇

𝑖
(0) 𝑃𝑥

𝑖
(0) + 𝛾

2
∫

𝑇

0

𝑤
𝑇

𝑖
(𝑡) 𝑤
𝑖
(𝑡) 𝑑𝑡

= 𝜆max (𝑃) 𝑥
𝑇

𝑖
(0) 𝑥
𝑖
(0) + 𝛾

2
∫

𝑇

0

𝑤
𝑇

𝑖
(𝑡) 𝑤
𝑖
(𝑡) 𝑑𝑡.

(42)

For the initial conditions 𝑥𝑇
𝑖
(0)𝑥
𝑖
(0) ≤ 𝑐

1
and finite-time

energy-bounded disturbance conditions ∫𝑇
0
𝑤
𝑇

𝑖
(𝑡)𝑤
𝑖
(𝑡) 𝑑𝑡 ≤

𝜔 hold, the above inequality can be rewritten as

𝑉
𝑖
(𝑡) < 𝑒

𝛼𝑡
𝑐
1
𝜆max (𝑃) + 𝛾

2
𝜔 ≤ 𝑒
𝛼𝑇
𝑐
1
𝜆max (𝑃) + 𝛾

2
𝜔. (43)

For the reason that 𝑉
𝑖
(𝑡) ≥ 𝜆min(𝑃)𝑥

𝑇

𝑖
(𝑡)𝑥
𝑖
(𝑡), it concludes

that

𝑥
𝑇

𝑖
(𝑡) 𝑥
𝑖
(𝑡) <

𝑒
𝛼𝑇
𝑐
1
𝜆max (𝑃) + 𝛾

2
𝜔

𝜆min (𝑃)
= 𝑐
2
, 𝑡 ∈ (0, 𝑇] . (44)

Therefore, the𝑁 systems with parameter uncertainties in (14)
are all finite-time bounded with respect to (𝑐

1
, 𝑐
2
, 𝜔, 𝑇).

Next, we are going to prove the finite-time 𝐿
2
–𝐿
∞

performance of 𝑁 systems (14) which contain parameter
uncertainties.Multiplying the left and right sides of inequality
(22) by diag{Q−1, 𝐼} gives

[
−𝑒
−𝛼𝑇Q−1 𝐼

𝐼 −𝐼
] < 0, (45)

where Q−1 = 𝑃; then we have

[
−𝑒
−𝛼𝑇
𝑃 𝐼

𝐼 −𝐼
] < 0. (46)

By using Schur Complement Lemma, the inequality (46)
is equivalent to

𝐼 < 𝑒
−𝛼𝑇
𝑃. (47)

Therefore, we have

�̂�
𝑇

𝑖
(𝑡) �̂�
𝑖
(𝑡) = 𝑥

𝑇

𝑖
(𝑡) 𝑥
𝑖
(𝑡) < 𝑒

−𝛼𝑇
𝑥
𝑇

𝑖
(𝑡) 𝑃𝑥

𝑖
(𝑡) = 𝑒

−𝛼𝑇
𝑉
𝑖
(𝑡) .

(48)

By integrating the inequality (41) from 0 to 𝑡, we have

𝑒
−𝛼𝑡
𝑉
𝑖
(𝑡) < 𝑉

𝑖
(0) + 𝛾

2
∫

𝑡

0

𝑒
−𝛼𝑠
𝑤
𝑇

𝑖
(𝑠) 𝑤
𝑖
(𝑠) 𝑑𝑠. (49)

Under the zero initial condition, which means that𝑉
𝑖
(0) = 0,

we will have

𝑒
−𝛼𝑡
𝑉
𝑖
(𝑡) < 𝛾

2
∫

𝑡

0

𝑒
−𝛼𝑠
𝑤
𝑇

𝑖
(𝑠) 𝑤
𝑖
(𝑠) 𝑑𝑠

≤ 𝛾
2
∫

𝑇

0

𝑒
−𝛼𝑡
𝑤
𝑇

𝑖
(𝑡) 𝑤
𝑖
(𝑡) 𝑑𝑡

≤ 𝛾
2
∫

𝑇

0

𝑤
𝑇

𝑖
(𝑡) 𝑤
𝑖
(𝑡) 𝑑𝑡.

(50)

Therefore, by combing the inequalities (48) and (50), we
can obtain

�̂�
𝑇

𝑖
(𝑡) �̂�
𝑖
(𝑡) < 𝑒

−𝛼𝑇
𝑉
𝑖
(𝑡) ≤ 𝑒

−𝛼𝑡
𝑉
𝑖
(𝑡)

< 𝛾
2
∫

𝑇

0

𝑤
𝑇

𝑖
(𝑡) 𝑤
𝑖
(𝑡) 𝑑𝑡 ∀𝑡 ∈ (0, 𝑇] .

(51)

Hence, we have

sup
𝑡∈(0,𝑇]

[�̂�
𝑇

𝑖
(𝑡) �̂�
𝑖
(𝑡)] < 𝛾

2
∫

𝑇

0

𝑤
𝑇

𝑖
(𝑡) 𝑤
𝑖
(𝑡) 𝑑𝑡. (52)

Therefore, the𝑁 systems (14) are all finite-time bounded
with a finite-time 𝐿

2
–𝐿
∞

performance 𝛾. Further, based on
Theorem 7 the closed-loop network with parameter uncer-
tainties in (6) is FTB with a finite-time 𝐿

2
–𝐿
∞

performance
𝛾, if and only if the systems (14) are all FTB with a finite-time
𝐿
2
–𝐿
∞

performance 𝛾.
Hence, system (6) is FTB with a finite-time 𝐿

2
–𝐿
∞

performance 𝛾 under the control inputs (4), if the inequalities
(21) and (22) hold. This completes the proof.
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Corollary 10. By applying Theorems 7 and 9, it can be seen
that the minimum finite-time 𝐿

2
–𝐿
∞

performance index 𝛾min
can be obtained by the following optimization problem:

minimize 𝛾
subject to LMIs (21) and (22), withQ > 0, 𝜏 > 0, 𝛾 > 0,
𝛼 > 0, 𝜀 > 0.

Remark 11. The above designs a distributed energy-to-peak
controller which is decoupled from the communication
topologies. Here, we only need to select the coupling strength
𝑐 to be large enough to make the controller can be used to
multiple connected communication topology graphs.

4. Numerical Simulations

In this section, simulation examples are provided to illustrate
the effectiveness of the theoretical results. Consider that the
multiagent systems with parameter uncertainties consist of
six agents as follows:

�̇�
𝑖
= (𝐴 + Δ𝐴

𝑖
) 𝑥
𝑖
+ 𝐵𝑢
𝑖
+ 𝐷𝑤

𝑖
, 𝑧

𝑖
= 𝑥
𝑖
,

𝑖 = 1, . . . , 6,

(53)

where Δ𝐴
𝑖
= 𝐸Σ
𝑖
(𝑡)𝐹, Σ𝑇

𝑖
(𝑡)Σ
𝑖
(𝑡) ≤ 𝛿

2
𝐼, and

𝐴 = [
0 1

0 0
] , 𝐵 = [

0

1
] , 𝐷 = [

0.1 0

0 0.1
] ,

𝐸 = [
0

1
] , 𝐹 = [0 1] , 𝛿 = 0.2.

(54)

Hence, by applying Corollary 10 and choosing 𝛼 = 0.1

and 𝑇 = 2, optimal solutions of LMIs (21) and (22) are
calculated by

Q = [
0.3887 −0.2970

−0.2970 0.5903
] ,

𝜏 = 3.0003,

𝛾min = 0.6213.

(55)

Therefore, the corresponding matrix 𝑃 and the control
gain matrix𝐾 are, respectively, calculated by

𝑃 = Q
−1
= [
4.1803 2.0134

2.0134 2.7523
] ,

𝐾 = −
1

2
𝐵
𝑇
Q
−1
= [−1.0517 −1.3762] .

(56)

Figure 1 shows four different communication topology
graphs with six agents, a loop, that is, an edge start from one
agent and end to itself, means that the agent knows its own
state. An edge from agent 𝑖 to agent 𝑗means that agent 𝑗 can
receive information from agent 𝑖. Different cases of network
links are, respectively, shown in graphsG

1
,G
2
, andG

3
, which

are subgraphs ofG.

Hence, the corresponding weighted adjacency matrices
are described by

A
1
=

[
[
[
[
[
[
[

[

0 1 0 0 0 1

1 0 1 0 0 0

0 1 0 0 0 0

0 0 0 0 1 0

0 0 0 1 0 1

1 0 0 0 1 0

]
]
]
]
]
]
]

]

, A
2
=

[
[
[
[
[
[
[

[

0 1 0 0 0 1

1 0 0 0 0 0

0 0 0 1 0 1

0 0 1 0 1 0

0 0 0 1 0 0

1 0 1 0 0 0

]
]
]
]
]
]
]

]

,

A
3
=

[
[
[
[
[
[
[

[

0 1 0 1 1 1

1 0 1 0 0 0

0 1 0 1 0 0

1 0 1 0 1 0

1 0 0 1 0 0

1 0 0 0 0 0

]
]
]
]
]
]
]

]

, A =

[
[
[
[
[
[
[

[

0 1 1 1 1 1

1 0 1 1 1 1

1 1 0 1 1 1

1 1 1 0 1 1

1 1 1 1 0 1

1 1 1 1 1 0

]
]
]
]
]
]
]

]

.

(57)

Then the corresponding own-state matrices are

D
1
=

[
[
[
[
[
[
[

[

1 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

]
]
]
]
]
]
]

]

, D
2
=

[
[
[
[
[
[
[

[

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

]
]
]
]
]
]
]

]

,

D
3
=

[
[
[
[
[
[
[

[

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

]
]
]
]
]
]
]

]

, D =

[
[
[
[
[
[
[

[

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

]
]
]
]
]
]
]

]

.

(58)

Then the corresponding modified Laplacian matrices are
described by

L̂
1
=

[
[
[
[
[
[
[

[

3 −1 0 0 0 −1

−1 2 −1 0 0 0

0 −1 1 0 0 0

0 0 0 1 −1 0

0 0 0 −1 2 −1

−1 0 0 0 −1 2

]
]
]
]
]
]
]

]

,

L̂
2
=

[
[
[
[
[
[
[

[

3 −1 0 0 0 −1

−1 2 0 0 0 0

0 0 2 −1 0 −1

0 0 −1 2 −1 0

0 0 0 −1 1 0

−1 0 −1 0 0 2

]
]
]
]
]
]
]

]

,

L̂
3
=

[
[
[
[
[
[
[

[

5 −1 0 −1 −1 −1

−1 3 −1 0 0 0

0 −1 3 −1 0 0

−1 0 −1 3 −1 0

−1 0 0 −1 2 0

−1 0 0 0 0 1

]
]
]
]
]
]
]

]

,
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Figure 1: The communication topologiesG
1
,G
2
,G
3
, andG.

L̂ =

[
[
[
[
[
[
[

[

6 −1 −1 −1 −1 −1

−1 6 −1 −1 −1 −1

−1 −1 6 −1 −1 −1

−1 −1 −1 6 −1 −1

−1 −1 −1 −1 6 −1

−1 −1 −1 −1 −1 6

]
]
]
]
]
]
]

]

.

(59)

Hence, we can calculate the corresponding eigenvalues as
follows:

𝜆
11
= 0.1031, 𝜆

12
= 0.2903, 𝜆

13
= 1.2054,

G
1
:

𝜆
14
= 2.1673, 𝜆

15
= 3.0735, 𝜆

16
= 4.1604,

𝜆
21
= 0.0913, 𝜆

22
= 0.7302, 𝜆

23
= 1.4413,

G
2
:

𝜆
24
= 2.2571, 𝜆

25
= 3.3460, 𝜆

26
= 4.1341,

𝜆
31
= 0.3650, 𝜆

32
= 1.0423, 𝜆

33
= 2.0000,

G
3
:

𝜆
34
= 3.2526, 𝜆

35
= 4.2366, 𝜆

36
= 6.1034,

𝜆
1
= 1.0000, 𝜆

2
= 7.0000, 𝜆

3
= 7.0000,

G :

𝜆
4
= 7.0000, 𝜆

5
= 7.0000, 𝜆

6
= 7.0000.

(60)

The corresponding minimum eigenvalues are

𝜆min(L̂
1
)
= 0.1031, 𝜆min(L̂

2
)
= 0.0913,

𝜆min(L̂
3
)
= 0.3650, 𝜆min(L̂) = 1.0000.

(61)

Therefore, in order to make feedback control gain 𝑐𝐾 be
applied to the four different graphs, the scalar 𝑐 should be
chosen large enough as

𝑐 ≥ 𝑐th =
𝜏

min {𝜆min(L̂
1
)
, 𝜆min(L̂

2
)
, 𝜆min(L̂

3
)
, 𝜆min(L̂)}

=
3.0003

0.0913
= 32.8620.

(62)

Hence, one chooses the coupling strength as 𝑐 = 35.
Therefore, we can obtain the feedback control gain 𝑐𝐾 =

[−36.8102 −48.1660].
In the next, we are going to illustrate the astringency of

multiagent systems under the designed controller. Under four
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Figure 2: The state trajectories of six agents with topology G
1
.
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Figure 3: The state trajectories of six agents with topology G
2
.

different graphs, simulation results of six agents with parame-
ter uncertainties will be described. The external disturbances
are given by

𝑤
𝑖
(𝑡) = [

sin (𝑡)
cos (𝑡)] , 𝑖 = 1, . . . , 6. (63)

The initial conditions of agents are defined as follows:

𝑥
1
(0) = [

10

10
] , 𝑥

2
(0) = [

20

20
] , 𝑥

3
(0) = [

30

30
] ,

𝑥
4
(0) = [

40

40
] , 𝑥

5
(0) = [

50

50
] , 𝑥

6
(0) = [

60

60
] .

(64)

Figures 2, 3, 4, and 5 show the consensus of agentswith the
designed robust energy-to-peak control protocol and their
state trajectories under communication topologies G

1
–G,

respectively. It can be seen that the state trajectories under
four different graphs are almost the same which means that,
although topology graphs are altered, the designed controller
can still make the multiagent systems with norm bounded
uncertainties achieve the consensus. In other words, the
designed control protocol is an adaptive one for different
cases of communication links.
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Figure 4: The state trajectories of six agents with topology G
3
.

0 1 2 3 4 5 6 7 8 9 10

0

20

40

60

80

Time (s)

−60

−40

−20

St
at

e r
es

po
ns

es
x
i(
t)

Figure 5: The state trajectories of six agents with topology G.

5. Conclusions

In this paper, the problem of finite-time distributed 𝐿
2
–𝐿
∞

control of uncertain multiagent systems is studied. A cooper-
ative control protocol is described, in which the relative states
of agents are used. The finite-time boundedness (FTB) and
finite-time 𝐿

2
–𝐿
∞

performance of the multiagent systems
with parameter uncertainties are both analyzed. Sufficient
conditions for the existence of the finite-time 𝐿

2
–𝐿
∞

con-
troller are derived in the form of LMIs. Finally, the simulation
results show the effectiveness of the proposed approach.
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