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Abstract

The thesis is about Schauder basis in infinite-dimensional Banach spaces
and locally complemented subspaces. It starts with the notion of bases and
it proves that it is equivalent with that of Schauder basis. It follows with
some general theory about bases, and gives the notion of basic sequences
and equivalence of bases. It proves that every Banach space has a basic
sequence. Next it gives some general theory about unconditional basis.
To give an other version of the definition of complemented subspaces,
we present adjoint operators and projections. We prove that ¢y is not
complemented in [.. The Principle of Local Reflexivity (PLR) is proved
and it states that a Bnach space is locally 1-complemented in its didual
space. We present Hahn-Banach extension operators and prove that its
existence is equivalent with being locally 1-complemented. In the end,
the definition for a basic sequence to be (locally) complemented is given
and it proves that if a basic sequence is locally complemented, then its
biorthogonal functionals can be extended to a basic sequence in the dual

space.



Notation

The linear span of a subset A of a vector space X, denoted by span{A},
is the set of all finite linear combinations of elements of A. We will denote
the closed linear span of a set A by [A]. The dimension of a set A C X is
denoted by dim A, and its closure by A. We denote by By the closed unit
ball on a normed space X.

The dual space of X, denoted by X*, is the space of all continuous linear
functionals from X to a field F. Qx : X — X** will denote the canonical
embedding of X in its bidual X™**, and we will say that X is a subspace of
X

B(X,Y) will denote the space of all bounded (continuous) linear
operators from X to Y, where X, Y are Banach spaces. For an operator
T:X — Y, wedenote kerT'= {x € X : Tx = 0}, and the image of T, by
ImT. For a subset A of X, we denote AX = {z* € X*:2%(z) =0, Vx €
A}



Cornerstone theorems of

Functional Analysis

In this section we will state some fundamental theorems in Functional
Analysis that we will use later in the proofs of others theorems and

propositions.

The Open Mapping Theorem Every bounded linear operator from a
Banach space onto a Banach space is an open mapping.

In other words, if A is the bounded linear operator, A : X — Y, where
X, Y are Banach spaces, then if U is an open set in X, then A(U) is open
inY.

The proof of this theorem you can find it on |8, p. 43|.

The Closed Graph Theorem Let X, Y be Banach spaces and T :
M — 'Y a closed linear operator with domain M C X. If M is closed in
X, then T is bounded.

The Closed Graph Theorem is an application of the Open Mapping
Theorem. An other version of this theorem is:

fT : M — Y is a linear mapping from X into Y, where X, Y are
Banach spaces, with the property: whenever (z,) in X is such that both
r = limz, and y = limTx,, exist, it follows that y = Tx. Then T is

continuous.

The Uniform Boundedness Principle Let X be a Banach space and
let Y be a normed vector space. Let {1, : « € A} be a family of bounded
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linear operators from X to Y. Suppose that for every x € X, the set
{T,x : a € A} is a bounded subset of Y . Then the set {||T,|| : o € A} is

bounded.
The proof of this theorem you can find it on |7, p. 189].

The first isomorphism theorem for Banach spaces Let X, Y be
Banach spaces and 7" a bounded linear operator, T € B(X,Y’) such that
the range of T" is closed in Y. Then X/ker(T') is isomorphic to T'(X).

The Hahn-Banach Separation Theorem Let X be a normed linear
space, and A, B C X non-empty disjoint convex subsets. If A is open, then
there exist a non-zero continuous linear functional f and a real number «
such that

flz) <a< fly), forall z € A andy € B.

The Hahn-Banach Extension Theorem Let Y be a subspace of a

real linear space X, and p a positive functional on X such that
p(te) = tp(x) and p(z+y) < p(x)+ply) for every z,y € X, t > 0.

If f is a linear functional on Y such that f(x) < p(z), for every x € Y, then
there is a linear functional F on X such that F' = fon Y and F(z) < p(x),
for every z € X.

An other version of the Hahn-Banach Extension Theorem for normed
spaces is:

If Y is a subspace of a normed space X, then for every y* € Y* there
exist * € X* such that z*

y =y and [lz7][ = [jy"].



1 Bases in Banach spaces

1.1 Introduction

One of the central objects of study in functional analysis are Banach spaces.
A Banach space is defined as complete normed vector space.

First let us present what a norm is.

A norm is a function || - || : X — F, where X is a vector space and F
denotes the real or complex numbers, that has the following properties:

For every z,y € X, k € I,

(i) [|z]| > 0, and ||z|| = 0 < x = 0 (separating points)
(i) ||kz|| = |k|||z|| (absolute homogeneity)
(iti) ||z +yl| < ||z + [|y]| (triangle inequality).

For the definition of a complete normed space, we will first give the
definition of a Cauchy sequence.

A sequence (z,)7°, in a normed space X is called Cauchy if for every
€ > 0 there exist N € N such that for every m,n € N such that m,n > N
we have that ||z, — z,|| <e.

A normed space is called complete if every Cauchy sequence converges
in that space.

So a Banach space is a vector space X over the real or complex numbers
with a norm || - || such that every Cauchy sequence in X converges in X.

Independent from Stefan Banach, such spaces were introduced by
Norbert Wiener, however Wiener thought that the spaces would not be

of importance and gave up. A long time later Wiener wrote in his memoirs



1 Bases in Banach spaces

that the spaces quite justly should be named after Banach alone, as
sometimes they were called "Banach-Wiener spaces" [2].

We will work with Banach spaces which are infinite-dimensional. First
lets present the notion of basis in a Banach space. In linear algebra we
are used with the concept of basis, however the spaces under consideration
are finite-dimensional. Many generalisation of the basis concept in infinite-
dimensional Banach spaces are possible. The one presented in the following

definition is the most useful.

Definition. A sequence of elements (e,)?°; in a infinite-dimensional
Banach space X is said to be a basis of X if for each x € X there is a

unique sequence of scalars (a,)%; such that

)
xr = E Ap€n.
n=1

This means that we require that the sequence (3>~ a,e,)22, converges
to x in the norm topology of X.

From the uniqueness part of the definition it is clear that a basis consist
of linearly independent, and in particular non-zero, vectors.

The following proposition states a necessary condition for a Banach space
to have a basis. We will define first what a separable space is.

A space is called separable if it contains a countable dense set. In other
words, a space X is separable if there is a countable subset A C X such
that the closure of A, A = X.

Proposition 1.1. Fvery Banach space X with a basis (e,)22, is

separable.

Proof. 1f Q is the set of rational numbers, we will show that the countable
set

A::{Zanen:ane@, 1<n<m, meN}

n=1
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is dense in X. Since (e,)2, is a basis for X, then for every z € X,

T =7 apeyn, $O we can write that

N

[o.¢]
E ané, = lim g Qp -
N—oo

n=1 n=1

From this it follows that X = [e,]. Therefore, it suffices to show that A is
a dense subset of span({e, : n € N}).

Fix k € N, ey,....ex, € {e, : n € N} and ay,...,a; € R. Since Q is
dense in R, there is a sequence (a;;);en € Q™ that converges to a; for each
7 =1,..., k. From the continuity of the vector space operations it follows
that

k k
lim A;6: = ai€;.
HOOE:J,H E:JJ
j=1 j=1

This means that an arbitrary element of span({e, : n € N}) can be written

as the limit of a sequence in A, so A is dense in span({e, : n € N}) O

Another thing to point out is that the order of the basis is important; if
we permute the elements of the basis then the new sequence can easily fail

to be a basis. We will discuss this phenomenon later on.

Proposition 1.2. If (e,)%%, is a basis for a Banach space X and (k)

n=1

is a sequence of nonzero scalars, then (kne,)>, is also a basis for X.

Proof. 1f (e,)22; is a basis for X, then for every x € X there is an unique

sequence of scalars (a,)32; such that

9
r = E An€n =
n=1

where b, = = for every n € N. The sequence (b,)

o0

Z—:k,’nen - ; boknen,

n=1

°° | is unique because of

n=1
the uniqueness of (a,)22 ,, so (kne,)52, is also a basis for X. O
A basis (e,)2, is called normalized if for every n € N, |le,|| = 1. If
(€,)2, is a basis of X, take k, = ||e,|| !, then the sequence (k,e,)%2, =

(en/]len]])o, is a normalized basis in X.



1 Bases in Banach spaces

Note that if (e,)%, is a basis of a Banach space X, the maps = — a,
are linear functionals on X. Let us write e/ (z) = a,. However, it is
by no means immediate that the linear functionals (e#)°°, are actually
continuous [1, p. 2|.

Let introduce the partial sum projections (S,)22, associated to ()5,
defined by Sy = 0 and for n > 1,

n

Sp(x) = Zek#(a:)ek.
k=1
To be a projection, a linear operator P : X — X should be such that
P(Pz) = Pz for every x € X. For every n € N, S,, are indeed projections

because for every x € X,

3
3
3

Su(Sn(@)) = Su(D_ el (@)ex) = > el (O eff (x)ex)en
k=1 k=1 k=1
=SS @t eder = 3 et @er = Su(a),
k=1 i=1 k=1

since el (e;) = 1 for k =4, and € (¢;) = 0 for k # i, where 1 < k,i < n.
In the next proposition we will introduce a new norm for the Banach
space X, equivalent with the old one, but it is more convenient to work

with. The proof is from [1, p. 3.

Proposition 1.3. Let X be a Banach space with norm ||-|| and for every
x € X let |||z||| = supp>1||Snxl|. Then ||| - ||| is a norm in X equivalent
with || - || such that ||| - || = [} - ||
Proof. First let show that ||| - ||| is indeed a norm. Notice that for every

x € X, |||z||| < +o0 because we have that x € X andn € N, ||S,z|| < +oc.
The first two requirements of the definition of a norm follow immediately
from the fact that || - || is a norm. To show the triangle inequality, lets pick

z,y € X having the expansions z = Y - e (z)e, and y = > 07 e (y)en,

n=1"n n=1"n
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then
Iz +ylll = |||Z€ €n+26 yenll|
—oup |3t en+ze veal
meN T
< sup ||Z Z)eall + ||Z veal)
< sup HZe 2)en] + sup HZe y)enl
= HIZ en\||+|||z y)enlll
= ([l + [[ly]l
It follows from the continuity of the norm || - || that for each z € X, we
have
[l = |||Ze z)en|[| = sup ||Z€ )en||
> _
> lim HZe Peal = HZe r)ea].
So || -] = ]| | for all z € X.
We will now show that (X, ||| -|||) is complete.
Suppose that (x,)32, is a Cauchy sequence in (X, ||| - [|]). (z,)5; is
indeed convergent to some x € X for the original norm since || - || < ||| - ||/
Our goal is to prove that lim, |||z, — ||| = 0.

Notice that for each fixed k the sequence (Sgz,)5%, is convergent in the

original norm to some y; € X,. This is because

n,M—00

I1Skn = S|l < sup [[S(2n = 2m)l| = lll2n = 2ml[| =0,

which means that the sequence (Syx,)°2; is Cauchy in (X,| - ||) and

therefore convergent.
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Note also that (Sgz,)52; is contained in the finite-dimensional subspace

le1,...,ex]. Certainly, the functionals ef are continuous on any finite-
dimensional subspace; hence if 1 < j < k we have

#

lim e;

(x,) = lim e#(Skxn) = e#( lim Syx,) = e#(yk) = aj.
Next we argue that Z;; aje; = x for the original norm.

Since ()%, is a Cauchy sequence, for every € > 0, pick an integer n so
that if m > n then |||z, — z,||| < %6, and since limy_,o0 Sy, = T,, We can

take ko so that k > ko implies ||z, — Spz,|| < %e. Then for k > k¢ we have
lyr — 2|l < |lyx — Skxn + Skn — Ty + 0 — 2
< lyk = Skznll + [[Skzn — 2all + |20 — 2]

= lm ||Skxm — Skxnll + ||Skzn — xn|| + lim |2, — 2, <€
m—00 m—0o0

Thus limy_,o |yx — z|]| = 0 and, by uniqueness of the expansion of x with

respect to the basis, Spx = y.

Now,

1 — 2l = sup [[Sin — Sy < lim sup sup | Sy — Sy,
k>1 m—soo  k>1
so lim, o0 |||z — z||| = 0 and (X, ||| - |||) is complete.

The identity map ¢ : (X, |||-[||]) = (X, || -||) is a bijective, linear and due
to the inequality ||| - ||| > || - ||, a continuous operator. The Open Mapping
Theorem ensures that i1 : (X, ||-||) = (X,]|||-]||]) is continuous too, which
means that ¢ is an isomorphism, so the two norms || - || and ||| - ||| are
equivalent. O

We will follow with presenting the notion of Schauder basis in a Banach
space, and prove that it is equivalent with the notion of basis.

Let (e,)s, be a sequence in a Banach space X and X* the space of
continuous linear functionals on X. Functionals ()5, C X* are called
the biorthogonal functionals associated with (e,,)>°; provided that for every
k,7 €N,

L oif j=k,

e(ej) =
0 otherwise.

10



1 Bases in Banach spaces

Definition. A sequence (e,)32; in a infinite-dimensional Banach space
X is called a Schauder basis of X if for every x € X, x = > 7 e’ (x)en,

n=1"n
*)oo

where (e})>

are the biorthogonal functionals associated with (e,)> ;.

In 1927, Julius Schauder introduced the concept of Schauder basis for

Banach spaces and constructed a Schauder basis for C10, 1], [6].

Theorem 1.4. Let X be a (separable) Banach space. A sequence (e,)0,
in X is a Schauder basis for X if and only if (e,)5, is a basis for X.

Proof. If (e,)22, is a Schauder basis for X, then it follows from the

definitions that (e,)5°, is a basis for X.

Let now assume that (e,)r°, is a basis for X. From Proposition 1.3 we

know that the norm ||| - ||| in X defined for every x € X as
Iz[I] = supnza | Snz],

is equivalent to the original norm || - || of X. Thus there exists K so that
||z|]| < K||z|| for x € X. This implies that

[Snz|| < Kl]l, Vo € X,n € N.
In particular,
i (@)[llenll = [[Snz — Sporz]| < 2K |||,

hence ||e (z)|| < 2K]||e,|| ™!, which means that for every n € N, e is a
bounded (continuous) linear operator on X, i.e. e € X* for every n € N.

Next, we have to show that (e#)°°, are the biorthogonal functionals

o0

associated to the basis (e,)22,. Since for every m € N, e,, = > | ane,
implies that a,, = 1 and a,, = 0 for n # m, this means that
1 2f m=n,
Hem=1" "
0 otherwise.
[

11



1 Bases in Banach spaces

So, every time that we will talk about a basis (e,)22, of a Banach space,
it means that (e,)0°, is actually a Schauder basis.

We will present now some examples of Schauder basis.

Example. For n € N let

en =(0,...,0,1,0,...) € RY
N——
n times
Then e, is a basis of [,, 1 < p < oo and ¢y. Indeed, if we take x € ¢y (same

for z € 1,, 1 <p < o0), then

T = (T1,%2, . Tn,...)

=21(1,0,...,0,...) +22(0,1,...,0,...)+ ... +2,(0,0,...,1,...)+ ...

o
=261 +2960+ ...+ xpE, + ... = E Ty Cp-
n=1

To prove the uniqueness, let (a,)22 ; be scalars such that we have also that
T =" ame,. It follows immediately that a, = x,, for every n € N.

We call e,, the canonical basis of [, and ¢, respectively. Note that e, is
also normalized.

The space [, is not separable, therefore it does not have a Schauder

basis.

Example. [5, p. 3] In the space of convergent sequence of scalars ¢, an

example of basis can be given by

= (1,1,1,...) and, T, = e,_1, for n > 1,

o0

where (e,)22, are as in the example above. With respect to this basis, an

element x = (ay,aq,...) € c can be written as
r = (lima,)r; 4+ (a1 — lima,)xs + (ay — limay,)zs + - - - .
n n n

In the next example, taken from [8, p. 352|, we will show that C([0,1]),
the space of continuous function in [0,1], has a basis. This has some
interest, because it can be shown that every separable Banach space is

isometrically isomorphic to a subspace of C(]0,1]).

12



1 Bases in Banach spaces

Example. A Schauder basis (f,)>2, of C([0,1]) may be constructed

from "tent" functions. For n = 0, 1, we define

folz) =1, filz) =

For 2F=1 < n < 2% where k > 1, we define

Mo - (P -1) i B ,
fa(@) =91 -2k — (L -1) 2L -1<z<Z -1,
0 otherwise.

The graphs of these functions are form a sequence of "tents" of height one
and width 27*+1 that sweeps across the interval [0, 1]. Take f € C([0,1]).
We define a sequence (p,,)>2, in C([0,1]) such that

Po = f(O)fm
p1=po + (f(1) — po(1)) f1,

pr=p+ ()~ (G0
ps=p2t (F()) — PS5
b=+ (1)~ ms(]) s
b =pat (F5) ~ ) s
po = s+ () = ps() .
pr=npo+ (F2) ~ ()
b=+ (S5 — ()

and so forth. The pq is the constant function that agrees with f at 0, while
p1 agrees with f at 0 and 1 and interpolates linearly in between, and p,
agrees with f at 0, 1, and % and interpolates linearly in between, and so
forth.

13



1 Bases in Banach spaces

For each n € Ny, Ny = {0} UN, let a,, be the coefficient of f, in the
formula for p,. Then p, = Zz:o ay fn for each k. The uniform continuity
of f implies that limy ||px — f|| = 0 and therefore that f =>"" ja,f,.

To check the uniqueness, let (b,,)5°, be an other sequence of scalars such
that f = > " byfa. Then > ° (a, — by)fn = 0, which implies that

n=0

> o(an — by) fu(z) = 0 when 2 = 0,1,3, 4,3, £,..., which follows that
a, = by, for every n. So ()%, is a basis for C([0, 1]).
This basis is normalized because for each n € {0,1,2,...} and = € [0, 1],

0 < fu(w) < 1,50 [[full = 1.

Example. Lets check if the sequence 1, z, 22, ... is a Schauder basis for
Cla,b]. If the sequence is a Schauder basis for Cla,b], then for every
function f € Cla,b] there exist an unique sequence of scalars (a,) such
that f =) a,z". Since functions of this form are analytic and because

not all continuous functions are analytic, the sequence 1,x, 22, ... is not a

Schauder basis for Cla, b].

In common spaces there exists a Schauder basis. This fact led Banach
to pose the question in 1932: "Does every separable Banach space have a
basis?" This question it is known as the basis problem. The basis problem
is closely related to another important problem of functional analysis, the
approximation problem.

A Banach space X is said to have the approximation property if
corresponding to each compact set K C X and e¢ > 0 there exists a
bounded linear operator F' : X — X with finite dimensional range such
that ||z — F(x)|| < e for all z € K.

We say that a subset K C X is compact if every net (x,)ae; C K has a
convergent subnet on K.

A Banach space with a basis has the approximation property. In June
1972, Per Enflo, at an analysis conference at Hebrew University, Jerusalem,
Israel, announced the result: There exist a Banach space without the
approximation property and thus there exist a separable Banach space
without a basis [6].

14



1 Bases in Banach spaces

1.2 Schauder bases and basic sequences

This section introduces some general theory about Schauder basis. It states
the definition of basic sequences and it proves that every Banach space has
a basic sequence.

In the proof of theorem 1.4 it is shown that (e) are the biorthogonal

functionals associated with (e,)% ;. So, for every n € N, e = e,

Definition. Let X be a Banach space with basis (e,)%,. For each

n=1"

n € Nthe map S, : X — X : Y7 ef(x)ey — >, ex(x)ey is called the

n'" natural projection associated with (e,,)nen-

Sy, is a continuous linear operator since each e is continuous.

Proposition 1.5. Let (e,)5, be a Schauder basis for a Banach space

X and (S,)5, the natural projections associated with it. Then

sup || Sy || < oc.
n

Proof. For a Schauder basis the operators (.5,)32, are bounded a priori.
Since S, (z) — = for every x € X we have sup,, ||S,(z)|| < oo for each = €
X. The Uniform Boundedness Principle yields that sup,, ||S,]| < co. O

Definition. If (e,)>2 is a basis for a Banach space X then the number
K = sup,, ||S,]| is called the basis constant. In the optimal case that K = 1

the basis (e,,)>2, is said to be monotone.

Each natural projection for a basis has norm at least 1 because for each
m € N, there exist z € X such that x =3 7 ane, =Y " anen, = Sp(2)

(for example e, n < m), so the norm can’t be smaller than 1. This means

that the basis constant is always greater or equal to 1, K > 1.

Proposition 1.6. If (e,,)5°, is a basis for a Banach space X and K is

00
n=1~

m 0
1D " anenll < CID - anenll
n=1 n=1

the basis constant for (ey) then K 1is the smallest real number C' such

that

15



1 Bases in Banach spaces

whenever 220:1 ane, € X and m € N, which is in turn the smallest real

number C such that

mi m2
1D anenll < CIID . anenll
n=1 n=1

whenever mi,mqy € N, my < may, and ay, ..., an, € F.

Proof. From the definition of the basic constant we have that

12Xy anenll 5
K = e - nen € X\10},m € N},
sup{” Zzo:l anen| nz::la e \{0},m }

from which the first part of the proposition follows.

For every my,me € N, m; < my, and a4, ..., a,, € F we can write
m1 m2 m2
1D~ aneall = 15m (Y anea)ll < sup 1S, 1Y anenll
n=1 n=1 m n=1
and the proposition is proved since K = sup,,, ||Sm,||- O

Remark. We can always renorm a Banach space X with a basis in such

a way that the given basis is monotone. Just put
||| = sup [|Sh]].
n>1

From Proposition 1.3 we have that the new norm is equivalent to the old

one and ||z|| < |||z||| for every x € X. Since
|| = sup [|Spz]] < sup [[Sullll=]] = K|l=]],
n>1 n>1

we have that ||z|| < |||z||| < K]||z||, where K is the basis constant.
To prove that K = 1 we need to show that |||S,||| = 1 for n € N. This

follows from

ISl = sup [[|Snz[l| = sup sup |[SpSnz]]

[lfa]]|<1 [[e][|<1m=1

> sup  sup [[SpSnzl| = sup sup [[S,z]]

I[]z]|| <1 m>n>1 |[|z]]|<1 m>n>1
= sup [|la]|| = 1
[le]]|<1

16



1 Bases in Banach spaces

and since [|S,,,5,x| < |||z]|| for every m, we can write
sup [| S S| < llzll] < [[Suzll < [ll]]] for every =
mz
< 1Sl < 1.

If we have a family of projections enjoying the properties of the partial

sum operators, one can construct a basis for a Banach space X.

Proposition 1.7. Suppose S,, : X — X, n € N, is a sequence of bounded

linear projections on a Banach space X such that

(i) dim S, (X) = n for each n;

(ii) SnSm = SmSn = Smin(mn), for any integers m and n;
(iii) Sp(z) = x for every x € X.

Then any nonzero sequence of vectors (e,)e, in X chosen inductively so
that e; € S1(X), and ex € Sp(X) N S;1,(0) if k > 2 is a basis for X with
partial sum projections (S,)5°

n=1-"

Proof. Let 0 # e; € S1(X), 0 # ey € So(X) N S;0) and so on, by
induction, 0 # e, € S,,(X) N S, 2,(0). Then for z € X, by (i) we have

Spn_1(Sn(z) = Sp—1(x)) = Sp_1(z) — Sp_1(x) =0, and
Sp(x) = Sn-1(x) = Su(Sn(z) — Sp1()) € Sp(X),

and therefore S,(z) — S,_1(z) € S,(X) NS, (0). Thus we can write
Sp(x) — Syp_1(x) = apey, for n € N.
If we let Sp(z) = 0 for all z, it follows from (744) that

n—o0

r = lim S,(x) = nh_glo kZ(Sk(x) — Sk-1(x)) = JLII;Okzlakek = ; k€.
=1 = =

To show the uniqueness of the representation of x, lets assume that x =
> re; bgey. From the continuity of S,, — Si,—1, for m € N it follows that

mm = (S = Sm1)(@) = 1 (S = Sp1) (D brer) = bmem,
k=1

17



1 Bases in Banach spaces

and thus a,, = b, for every m € N.
Therefore, the sequence (e,)>, is a basis and (5,)5%, its partial sum

projections. L]

We will now present what a basic sequence is and later on we will prove

that every Banach space contains a basic sequence.

Definition. A sequence (ex)?2; in a Banach space X is called a basic

sequence if it is a basis for [e;], the closed linear span of (e,)%2 ;.

The following proposition is known as Grunblum’s criterion and it is
used as a test for recognising a sequence of elements in a Banach space as
a basic sequence |1, p. 6]. For the proof of this proposition we will need

the following theorem:

Theorem 1.8. Let (S,,) be a sequence of operators from a Banach space
X into a normed linear space Y such that sup,, ||S,.|| < oco. Then, if T :
X — Y is another operator, the subspace {x € X : ||S,x — Tx| — 0} is

norm-closed in X.

Proposition 1.9. A sequence (e;)32, of nonzero elements of a Banach

space X s basic if and only if there is a positive constant K such that

m n
1) arerll < K| agexl|
k=1 k=1

for any sequence of scalars (ay) and any integers m,n such that m < n.

Proof. Assume (e;)52, is basic, and let Sy : [ex] — [ex], N = 1,2, ..., be its

partial sum projections. Then, if m < n we have

m n n
1~ anerll = 115m (> aren)l| < sup 1Sl D axexl),
k=1 k=1 m k=1

so the inequality holds with K = sup,,, ||Si]|-

18



1 Bases in Banach spaces

For the converse, let E be the linear span of (e;)52; and s, : B — [ex]i,
be the finite-rank operator (the bounded linear operator between Banach

spaces whose range is finite-dimensional) defined by

n min(m,n)
Sm( E ager) = E aLer, m,n € N.
k=1 k=1

Since E = [ey], F is dense in [ey], each s,, extends to S,, : [ex] — [er]T;
with [|Sll = [lsmll < K.
Notice that for each x € E we have

SnSm(x) = SmSn(x) = Smin(m.n) (), m,n € N,

so, by density, this equality holds for all z € [e,,].

Spx — x for all © € [e,] since the set x € [e,] : Spu(x) — z is closed (it
follows from Theorem 1.8, when T is the identity operator) and contains
E. Proposition 1.7 yields that (eg) is a basis for [e,] with partial sum
projections (Sy,). O

Does every Banach space contain a basic sequence? A first answer to
this question was given by Banach who stated without proof that every
infinite dimensional Banach space X contains an infinite dimensional closed
subspace with a basis. Different proofs of this were given in 1958 by
Gelbaum and by Bessaga and Pelczynski, and in 1962 by Day [6].

Below is a simple proof of the statement taken from |3].

Lemma 1.10. Let X be an infinite-dimensional Banach space, let E be
a finite-dimensional subspace of X, and let € > 0. Then there exists x € X
such that ||z|| =1 and

Iyl < (1 +e)lly + ax],
for all y € E and all scalars a.

Proof. We may suppose that ¢ < 1. As the unit ball of E is compact, there
is a finite set {y1,...,y,} in E such that |lyx|| = 1 where 1 < k <n, and

. €
lggm—wﬂ<§ forevery y € E, [ly[| = 1.
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1 Bases in Banach spaces

Pick yf,...,y: € X*, the dual of X, ||yx|| = 1 for 1 < k < n, such that
yr(yr) = 1 for each k. Then there exist z € X with ||z|| = 1 and y;(z) =0
for each k. For any y € E, |ly|| = 1, pick y; such that ||y, —y|| < 5. For a

scalar a, we have that

ly + azl| = lly — ye + yx + ax||
> |lyk + azl] = lly — vl

€

> -+ aal - &
% €

> yi(ye + az)| — =

:1_52(1—’_6)717

as required. O
Theorem 1.11. Every Banach space X contains a basic sequence.

Proof. We use induction to pick a sequence of norm-one elements (x,,) C X
such that the inequality of Proposition 1.9 always holds, with K = 2 say
(the proof works for any K > 1).

For n =1, ||a1z1]] < (2 — €)||a1z1]|. The inequality is true.

Suppose we have chosen z1,...,x, and € > 0 such that

m n
1Y " araill < 2= )Y araxl),
k=1 k=1

for any m < n and any scalars (ag)p_;.
We now try to find z,,11. We need to ensure that ||z,;1]| = 1 and that

for some €y > 0, we have that

m n+1
1Y il < (2= €)Y araxl),
k=1 k=1
for any m < n and any scalars ().
Let E, be the linear span of z4,...,x,, a finite-dimensional subspace of

X. From Lemma 1.10 we can find z,1 € X, ||z 11| = 1 such that

[yl < (1 +0)lly + ansrzniall
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1 Bases in Banach spaces

for every y € FE, and every scalar a,;, where § > 0 is chosen so that
(2—€)(1+0) =2~ S,thatis 0 = 5 Lhen, for a sequence of scalars

(ap)ity, let y = > r_ aray, € E,, so that for m < n, we have that

1D anzall < 2=l ) arawll = (2= o)lly]
k=1 k=1

< 2=+ )y + ant1@nl]
n+1

€
==l > a],
k=1

as required. O

If a Banach space has a basis then it is natural the question about its

uniqueness. First lets introduce the notion of equivalence for basis.

Definition. Two basis (basic sequences), (z,)%2, C X, (y,)22, C Y,
where X, Y are Banach spaces, are called equivalent provided that for
every sequence of scalars (a,);>; the series Y > a,x, converges if and

only if >  a,y, converges.

Proposition 1.12. Two basis (or basic sequences) (x,)22, and (y,)>2,
in the Banach spaces X and Y respectively, are equivalent if and only if
there exists an isomorphism T : [x,] — [yn| such that Tx, =y, for every

n € N.

Proof. Let (z,)5, and (y,)32; be two equivalent basis. Define 7: X — Y
by T(3 207 an®n) =Y o0 | anyn. 1t is easily shown that 7' is a bijection.

To prove that T is continuous we use the Closed Graph Theorem. Let
(uj)52, be a sequence such that u; — u € X and Tu; — v € Y.
Furthermore, let u; = > >°, z%(u;j)z, and v = > °, xk(u)z,. We need
to show that T'u = v.

From the continuity of biorthofonal functionals associated with (z,)%°,
and (y,)52, respectively, we have that for every n € N, = (u;) — z(u)
and y; (Tu;) =z (u;) = y:(v). From the uniqueness of the limit, for every

n, x}(u) =y’ (v). Therefore Tu = v, which means that 7" is continuous.
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1 Bases in Banach spaces

Conversely, we have that T : [z,] — [yn] is an isomorphism such that
Tx, =y, for every n € N. Let X = [z,] and Y = [y,]. Then for every

series > 7 a,Y, in Y, we can write

i AnYn = i anTxn - T(i anmn)
n=1 n=1 n=1

which means that Y ° | a,y, converges if and only if >~ | a,z, converges.
L]

Theorem 1.13. [7] If X is an infinite-dimensional Banach space with

a basis, then there exists two non-equivalent normalized basis.
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1 Bases in Banach spaces

1.3 Unconditional basic sequences

As mentioned in the beginning, the order of elements of the basis is
important. However, there are bases, called unconditional bases, which
are bases no matter how you reorder them. The canonical basis for ¢y and
lp, 1 < p < oo, is an example of such basis.

First, let us present the notion of unconditional convergence.

Definition. Let (z,)%2; be a sequence in Banach space X. A series
Yool x, in X is said to be wunconditionally convergent if Y | rp)

converges for every permutation 7 of N.

Next are some propositions and theorems about unconditional conver-
gence that will be useful later on when we will present the notion of

unconditional basis.

Proposition 1.14. If the series Y | x,, is unconditional convergent in

a normed space, then Y " | Ty =y oo Ty for each permutation m of N.

Proof. Suppose the contrary, that there is a permutation m of N such
that the series ) x, and > 7,z both converge but to different
limits. We will show that there is another permutation 7’ of N such that
> oo | Tw(ny doesn’t converge, which means that » >~ | x,, is only conditional
convergent.

Let € = || Y00 Ta(n) — Y neq Tnll, and let p; € N be such that

oo p1 ¢
1D @y = Dol < 5
n=1 n=1
There is a positive integer ¢; such that
{rn):neN1<n<p}C{n:neN1<n<q}

and

[e¢) q1

€

3>l < 5
n=1 n=1
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Then there is a positive integer p, such that
{n:neN1<n<q}C{r(n):neN,1<n<p}

and
0 p2 c
1D @aimy = D Tl < 3
n=1 n=1

and a further positive integer ¢y such that
{r(n):neN1<n<p}C{n:neN1<n<g}

and .
o 2
€
I3 0= 3l < &
n=1 n=1
If we continue in this way, we will get two sequences (p,) and (g, )-

Now let " be the permutation of N by listing N in the following order.
First list 7(1),...,7(p1), than follow this by the members of 1,..., ¢ not
already listed. Follow this by members of 7(1), ..., 7(p2) not already listed,
and in turn follow that by the members of 1,... ¢, not already listed,
and so forth. Since the partial sums of ) | @, swing back and forth

between being within § of the series ), Zr(,) and being within § of

[o@) . [o@) ]
Y ey Tn, the series > " | 2.,y doesn’t converge. O

Theorem 1.15. For a sequence (x,) in Banach space X the following

statements are equivalent:
(1) >°o2, @y, is unconditionally convergent.

(ii) For any € > 0 there exist an n € N so that if M is any finite subset
of {n+1,n+2,.. .}, then || 3 cn il <e.

(ili) For any subsequence (n;) the series Y. Ty, converges.

(iv) For sequence (e;) C {£1} the series ) 77| ejx; converges.
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1 Bases in Banach spaces

Proof. "(i) = (ii)" Suppose that (i7) is false. Then there exist ¢ > 0 so
that for every n € N we can find a finite subset M,, of {n +1,n+2,...}

with
1) all > e

JEM,
We will build a permutation 7 of N so that " ° | 2, diverges.

Take ny = 1 and let A; = M,,. Next pick ny = max A; and let B; =
{n1 +1,...,n2} \ A;. Now repeat the process taking Ay = M,,, ng =
max Ay and By = {ny + 1,...,n3} \ As. Tterating we generate a sequence
(ng)52, and a partition {ng +1,...,ng11} = Ax U Bi. Define 7 so that 7
permutes the elements of {n;+1, ..., 11} in such a way that A, precedes
By, Then the series >~ | Zr(n) is divergent because the Cauchy condition
fails.

"(it) = (i17)" Let (n;) be a subsequence of N. For every € > 0, use
condition (ii) and choose n € N, so that || Y.\, z;[ < €, whenever M is
any finite subset of {n + 1,n+2,...}. This implies that for all iy <1 < 7,

with ip = min{s : n, > n}, it follows that || 3>7_. 2, || < e. Since ¢ > 0

was arbitrary this means that the sequence (37_, x, )jen is Cauchy and
thus convergent.

"(i1i) = ()" If (e,) is a sequence of £1’s, let NT ={n € N:¢, =1}
and N~ ={n e N:¢, =—1}. Since

n

Zejxj: Z Tj — Z xj, forn €N,

J=1 JENT,j<n JENT,j<n
and since )iy o, @y and Yooy o, x; converge as n — 0o by (i), it
follows that Z?:I €;T; CONverges as n — 0o.

"(iv) = (ii)" Assume that (i7) is false. Then there is an € > 0 and
for every n € N there is a finite set M of {n + 1,n + 2,...}, so that
|2 en @jll > €. As above choose finite subsets My, My, M3 etc. so that
min M, 1 > max M, and || 32, x| > € for n € N. Assign ¢, = 1if

n € Upen M}, and €, = —1, otherwise.
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Note that the series >~ (1 + €,)x, cannot converge because

k k
IPIEESI BT S D)
j=11ieM; j=1ieM; Jj=1ieM;
1 max My
=5 (1+€,)zn, for keN,

n=1

Thus at least one of the series Z _, Tp, and Zn | €nTp cannot converge.
"(i4) = (i)" Assume that 7 : N — N is a permutation for which ) z(;
is not convergent. Then we can find an ¢ > 0 and 0 = kg < k1 < kg < ...

so that
kn

I Y. wpl>e

j=kn_1+1
Then choose M; = {m(1),...,7m(k1)} and if M} < My < ... < M,
have been chosen with minM;;; > max M, and ”Zie]\/[j || > e if
= 1,2,...,n, choose m € N so that 7(j) > max M, for all j > k,
(we are using the fact that for any permutation 7, lim;_,. 7(j) = co) and
let
My = {7k + 1), 7(km +2), ..., 7(kmi1)},

then min M, 11 > max M,, and || >
We constructed the finite sets M,, by induction in such a way that (i)
is not satisfied. O

i€ Mypi1 sz 2 €.

Proposition 1.16. A series Y -, x, in a Banach space X is uncon-

ditionally convergent if and only if >~ | t,x, converges (unconditionally)

for all (t,) €l

Proof. Suppose that )", z, is unconditionally convergent. Take (t,)5°

n=1

a bounded sequence, (t,) € l. For 1 < r < s, pick * € X* such that
|z*|| =1 and

s N
Ztnx*(xn) = || Ztnan, for N > s.
n=r n=1
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1 Bases in Banach spaces

For every n € N, let

L if @ (@) 2 0
€ =
—1 otherwise.

We can write

s N s
I Ztnan < Ztnmnl‘ = Z [tl|2" ()]
- Z |t ‘En xn < SUP |tn| Z €nZB In)

n=r
= [[tn |l Z €nnl-
n=r

Since 7 | x, is unconditionally convergent, then from Theorem 1.15 (iv)
we have that )7 | €,z, converges, so we can make || > _ €,z,| as small
as we want, || > _ €,T,| < M= So we have that | Yo x| < e
From Theorem 1.15 (ii), Y 7,

Conversely, if >, t,x,, converges unconditionally, then by taking ¢, C

t,x, converges unconditionally.

{£1} we have that >~ x, converges unconditionally. O

Definition. A basis (e,)%, of a Banach space X is called unconditional

if for each x € X the series Y > | e*(x)e, converges unconditionally.

Obviously, (e,)s2, is unconditional basis of X if and only if (ex(n))52, is
a basis of X for all permutations 7 : N — N.

From Proposition 1.14 we have that if (e, )32, is an unconditional basis
of X, then for every z = 377 er(2)e, € X, w2 = 3777 e, (T)ex(n) for
every permutations 7w of N.

Also, from Proposition 1.12 it follows that a basis equivalent to an
unconditional basis is itself unconditional.

Bases that are not unconditional are called conditional. Below is an

example of a conditional basis.

Example. The summing basis of ¢y, (f,)32,, defined as

n=1>

fn:€1+"'+6n7 nENv
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is a conditional basis, where (e,)22 ; is the canonical basis.

To see that (f,,) is a basis for ¢y we prove that for each £ = (£(n))22; € ¢
we have & = > 7 | fx(&)fn, where fr = ef — e, are the biorthogonal
functionals of (f,,). Given N € N,

Zf

Mz

(en (&) — 6:+1(§))fn

i
I

] =

(E(n) = &(n+ 1))/

N N1
=Y &n)fu— Z§< ) fat

Mz

5( )(fn - fn—l) - §(N+ 1)fN

S
Il
—

e

§(n)en) —&(N +1) fn.

n=1

Therefore,

e - Zf anOO—HZs Jen + E(N +1) fx oo

N+1

= N—o0
<D &nenlloo + €N + D[l flloe =0,
N+1

and (f,)>2, is a basis.

Now we will identify the set, S, of coefficient (c,)22 ; such that the series
> oo o fn converges. In fact we have that («,,) € S if and only if there
exist £ = (£(n)) € ¢y so that a,, = &(n) — &(n + 1) for all n. Then,
clearly, unless the series >~ | a,, converges absolutely, the convergence of
> oo o fn in ¢ is not equivalent to the convergence of > 7 €, f, for

any choice of signs (€,)22 ;. Hence (f,) cannot be unconditional.

The following result about unconditional basis can be proved easily from

the corresponding one about basis.
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Proposition 1.17. If (e,)%; is an unconditional basis for a Banach
space X and (k) is a sequence of nonzero scalars, then (k,e,)2 is

also an unconditional basis for X.

It follows immediately that (||e,|"‘e,) is a normalized unconditional

basis for a Banach space X if (e,)22; is an unconditional basis for X.

Proposition 1.18. A basis (€,)22, of a Banach space X is uncon-
ditional if and only if there is a constant K > 1 such that for all
N € N, whenever ay,...,ay,by,...,by are scalars satisfying |a,| < |by|

forn=1,..., N, then the following inequality holds:

N N
Hzanenu < KHanen”- (1.1)
n=1 n=1

Proof. Assume (e,)>2; is unconditional. If Y >° a,e, is convergent then
> oo thane, converges for all (t,) € lo by Proposition 1.16. By the

Uniform Boundedness principle, the linear map

T,y : X — X, ianen — itnanen
n=1 n=1

is continuous because sup ||T(;,)||x < oo since > 7, t,ane, converges. Let

note K = sup [|T(,,)|lx. Now, if we take (¢,) such that b, = ;a, for
n=1,...,N and 0 for n > N, then

N 00 00
1
1 " anenll < 1D anenll = 1T O o el
n=1 n=1 n n

=1

0 N
1
< 1Tl D —anen|| < K[> buen-
n=1

n=1 "

[e.9]

1 Gnen in X. We are going to prove that

Conversely, let us take x = )
for any subsequence (ng);2,, the series > 7  a,, en, is convergent. Since
the series converges, for every € > 0 there is N = N(¢) € N such that if

mq > mq > N then

ma

€
> anenll < -

n=mi+1
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If N <np<---<ngy we have

k+l1 N4l

H Z anjenjH < KH Z ajejH <E¢,

j=k+1 j=np+1

and 80 Y/~ an,€n, is Cauchy, means for every subsequence (ng)2, the
series > o~ an, €, converges. By Theorem 1.15 we have that the basis

(€,)22, is unconditional. O

Definition. Let (e,) be an unconditional basis of a Banach space X.
The unconditional basis constant, K,, of (e,) is the least constant K so
that equation (1.1) holds.

We than say that (e,) is K-unconditional whenever K > K.

Remark. Suppose (e,)5% is an unconditional basis for a Banach space
X. For each sequence of scalars (o) with |a,| =1, let T(a,) : X — X be
the defined by Tia,)(D oy nen) = D g Onanen. Then

n=1
Ky = sup{||Tia,. || : (o) scalars, |a,| =1 for all n}.

If (e,)2 is an unconditional basis of X and A is any subset of integers
then there is a linear projection P, from X onto [ex : k € A] defined for
each x = > 7 ei(x)eg by

Py(z) = Z er(z)ey.

keA

By the Uniform Boundedness principle we have that P, is bounded.
{P4 : A C N} are the natural projections associated to the unconditional

basis (e,) and the number
Ky = sup || Pyl
A

(which is finite by the Uniform Boundedness principle) is called the

suppression constant of the basis.
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Proposition 1.19. A basis (e,)22, of a Banach space X is uncondi-
tional if and only if there is a constant K' such that for all N € N, all
AC{1,2,...,N} and all scalars (a,)_,, the following inequality holds:

N
”ZanenH < K/HZanenH' (1.2)
neA n=1

The suppression constant, K, is the smallest constant K’ which satisfies
(1.2).

Moreover, we have that K, < K, < 2K,. To prove this relation we use
Proposition 1.18 and 1.19.

For N € N, scalars (a,)"_;, A C {1,2,...,N} and ()", C {£1} we

n=1s
have
N N N
| Z&nanenn < Z anenll + || Z aney|
n=1 n=1,am=1 n=1,an——1

N N
< K| ZanenH + K| Zanenu
n=1 n=1

N
= QK,H Zanena H
n=1

so K, < 2K, and from

I el < 50wt S el

neA neA ne{l,2,.. }\A
HID) anen— Y anenl)
ncA ne{l,2,..}\A

1 N N
< LIS aneall + K1Y el
n=1 n=1

N
= K|| Zanen”

n=1

we have that K, < K,,.
These inequalities also prove that Proposition 1.18 and 1.19 are equiva-

lent.
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2 Complemented subspaces

and linear operators

2.1 Adjoint operators

We will introduce the notion of adjoint operators and some of its properties.
We will use adjoints to prove some theorems about bases and later on, on

defining the notion of complemented subspaces.

Theorem 2.1. Suppose that X and Y are two normed spaces. To each
T € B(X,Y) corresponds an unique T* € B(Y*, X*) such that

y (Tz) =Ty (z),
for all x € X and all y* € Y*. Moreover, ||T*| = ||T|.

Proof. If y* € Y*and T € B(X,Y), define T*y* = y*oT. Since T*y* is the
composition of two continuous linear mappings we have that T*y* € X™*.
Also for every x € X, T*y*(x) = y*(T'x). Since the equality holds for every
x € X, it means that T™y* uniquely determined.

To prove that 7" : Y* — X* is linear, take yj,y; € Y* and for every

z € X we have

(T™(yy +y))(x) = (Y1 +43)(Tx) = yi(Tx) + y5(T'x)
=Ty (z) + T"y5(z) = (T*yy + T7y3) (2).

So we have T*(yi + v3) = Ty + T"y3.
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For every scalar o« € F, y* € Y* and = € X, we have
T*(ay")(z) = (ay")(Tx) = aT"y* (),

so T*(ay*) = aT™y*.
Finally, if Bx and By are the closed unit balls of X and Y* respectively,
then

|T]| = sup ||Tz| = sup sup |y"(Tz)|
rEBx rEBx y*€By*

= sup sup [T*y"(z)| = sup [[T"y"| = |T7.
y*€Byx* r€Bx y*EBy

[]

Definition. If X and Y are two normed spaces and T' € B(X,Y), then
the adjoint of T is the bounded linear operator 7™ : Y* — X* such that
T(y") = yT.

The concept of adjoint is in a way a generalization of the notion of the
transpose of a matrix of scalars. So, some of the properties of transposes

of matrices generalize to adjoints of operators.

Proposition 2.2. If S and T are bounded linear operators from X into
Y, where X andY are normed spaces, and o € F, then (S+T)* = S*+T*,
and (aS)* = aS*.

Proof. For every a € F, x € X and y* € Y*, we can write

(S+T)y*(x) =y (S+ T)(x) = y"(S(x) + T(x) = y"(Sz) + y*(Tx)
=Sy (@) + Ty " (x) = (5" + T7)y"(2),

and

(@S)y"(x) = y*(aS)(z) = y"(aSr) = ay*(Sz) = a5y (2).

From Proposition 2.2 and Theorem 2.1 it follows the corollary:
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Corollary 2.3. If X and Y are normed spaces, than the map T — T
is an isometric isomorphism from B(X,Y) into B(Y™*, X*).

Proposition 2.4. If X, Y, and Z are normed spaces, and S € B(X,Y),
T € B(Y, Z), then (T'S)* = S*T*.

Proof. For every x € X and z* € Z* we have
(TS) z"(z) = 2" (IT'Sx) = 2" (T'(Sx)) =T"2"(Sx) = S*T* =" (x),
from which it follows that (7'S)* = S*T™. O

Theorem 2.5. If X and Y are normed spaces such that there is
an isomorphism T from X onto Y, then the adjoint of T, T* is an
isomorphism from Y™ onto X*. If T is an isometric isomorphism, then
s0 1s T,

Proof. We know that T* € B(Y*, X*) and || T"|| = ||7|| from Theorem 2.1.
If y* € Y* and T*y* = 0, then for every y € Y

vy =y (T(T_1y)) =Ty (T 'y) = 0,

so y* = 0. It follows that 7™ is one-to-one.
If x* € X*, then for every z € X

¥y = 2*T_(Tz) = T x*T (),

so T*(z*T~') = z*, thus the operator T* maps Y* onto X*.

Since the dual of a normed space is a Banach space, we have that
T* is a one-to-one bounded linear operator from one Banach space onto
another. Is a conclusion of the Open Mapping Theorem that every one-to-
one bounded linear operator from a Banach space onto a Banach space is
an isomorphism, which means that 7™ is an isomorphism.

Finally, suppose that T is an isometric isomorphism. Then for every
y* € Y* we have

[T*y*|| = sup |T"y"z| = sup |y*(T'z)| = sup |y"y| = [ly"[|.
r€Bx rE€EBx yEBy

So T* is also an isometric isomorphism. ]
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2 Complemented subspaces and linear operators

Proposition 2.6. Suppose that T is an isomorphism from a normed
space X onto a normed space Y. Then (T~1)* = (T*)~1.

Proof. From Theorem 2.5 we have that 7" is an isomorphism from Y™ onto
X*, 80 (T*)"! does exist. For every y € Y and z* € X*,

(T_l)*l'*y — I'*(T_ly) — T*(T*)_ll'*(T_ly)
= (1) (TT ) = (1) 'y,
so we have that (T1)* = (T*)~L. O
Let us present some examples of adjoint operators.

Example. Let I be the identity operator on a normed space X. For

every r € X and z* € X*,
I'e*(z) = 2*(Ix) = z*(x).
So, for each z* € X*, I*x* = «*, that is, I* is the identity operator on X*.

Example. In this example, members of [; will also be treated as
members of ¢y and [, so a subscript of 0, 1 or oo will show whether a
sequence is treated as a member of ¢y, [; or [, respectively. This is just to
avoid confusion.

Let T be the map from [y into ¢y given by the formula 7'((a,)1) = (an)o-

T is linear because for every scalar t € F and («v,)1, (Bn)1 € 4

T((an)1 + (B)1) = ((n)r+ (Bn)1)o = (an)o + (Bn)o = T((an)1) +T((Bn)1)

and
T(t(an)1) = T((tan)1) = (tan)o = tlan)o = tT((an)1).

T is bounded because for every (ay,)1 € l1, T((an)1) = (an)o € co-
IIT|| = 1 because

1T} = sup [T(en)i|l= sup |(an)o| =1.
@il <1 (@)l
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We know that the dual of [; and ¢y, (] and ¢, are I, and [; respectively.
Then, for each pair of elements («,); and (8,)1 of l1 ((an)1 € L1, (Bn)1 €

¢y =11), we have

T*(Ba)1(n)i = (Ba)1 (T (an)) = (Ba)1(@n)o = D Bucins

so the element T*(3,); of [] can be identified with the element (5,)s of
loo-

In short, the adjoint of the "identity" map from [; into ¢ is the "identity"
map from [; into /.

||T*||: sup |T*(04n)1|= sup sup |T*(Oén)1<5n)1|
ll(en)l1<1 () <1 I(Br)l1<1

- sup sup ‘(O‘n)l(ﬁn)d = 17
l(an)l1<1 [|(Bn)o<1

as in Theorem 2.1.
From the two first example, one might get the idea that the adjoints of
one-to-one bounded linear operators between normed spaces must itself be

one-to-one. The next example shows that this is not the case.

First, lets state what a reflexive space is.

Definition. A normed space X is reflerive if the linear isometric
embedding Qx : X — X** defined by

(Qx(x))(z") = 2" (2) Vo e X7, Vo € X,
is surjective (onto).

Also we should have in mind the following result:
A Banach space is reflexive if and only if its dual space is reflexive. You
can find the proof at [8, p. 104].

Example. Let X be any nonreflexive Banach space. Let (Qx be the
natural map from X into X**, an isometric isomorphism from X onto a
closed subspace of X**. Then Q)% maps X*** into X*.
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2 Complemented subspaces and linear operators

Let Qx+ be the natural map from X* into X***. Then for every x € X
and z* € X*,

QxQx-2"(2) = Qx-2"(Qx2) = ™ (Qxx) = 2" (),

which implies that Q)% Q) x~ is the identity map on X* and therefore that
Q% maps X*** onto X*.

If Q% were also one-to-one, then () x- would have to map X* onto X***,
contradicting the fact X* is not reflexive. The isomorphic isomorphism

() x therefore does not have a one-to-one adjoint.

The following Theorem is about the connection between two concepts,

adjoint and weak*-to-weak* continuity. We will need the theorem:

Theorem 2.7. A linear operator from a normed space X into a
normed space Y is norm-to-norm continuous if and only if is weak-to-weak

continuous.

Theorem 2.8. Suppose that X and Y are normed spaces. If T €
B(X,Y), then T* is weak*-to-weak™ continuous. Conversely, If S is a

weak*-to-weak™ continuous linear operator from Y* into X*, then there is
aT € B(X,Y) such that T* = S.

Proof. Suppose that T' € B(X,Y). Let (%) be a net in Y* that is weakly*

convergent to some y*. For every x € X,
T"ypr = yo(Tw) = y*(Tx) = Ty x,

so Ty’ 25 T*y*. We just proved that T* is weak*-to-weak® continuous.

Conversely, suppose that S is a weak™to-weak® continuous linear
operator. Let Qx and @)y be the natural maps form X and Y respectively
into their second duals. For every z € X, Qx(x) : X* — F is
weakly* continuous on X*. So the product operator Qx(x)S is a weakly™*
continuous linear functional on Y*, thus is a member of Qy (Y'), which in
turn implies that Q' (Qx(z)S) € Y.
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2 Complemented subspaces and linear operators

We define the operator T : X — Y by the formula Tz = Q3! (Qx(x)S).
That T is linear follows from the fact that S, Qx (), and Q3" are linear.
To see that T is bounded, take a net (x,) in X that converges weakly to

some xy. Then
Qx(ra) = Qx(x0),
S0
(Qx(2a)9)(y") = (@x(20)5)(y"), fory eYr,
which implies that
Qx(ra)S = Qx (20)S,

and therefore

Tzo = Qv (Qx(24)S) = Qv (Qx(20)S) = Txo.

The operator T is therefore weak-to-weak continuous and from Theorem
2.7 is norm-to-norm continuous, so ' € B(X,Y).

Finally, for every x € X and y* € Y* we have

T y*(x) = y*(Tz) = y*(Qy' (Qx(2)S5))
= (Qx(2)9)(y") = Qx(x)(Sy")
= Sy*(v),

soT*=45. O

We use the concept of adjoint to prove the following proposition about

bases:

Proposition 2.9. If (e,)5°, is a basis for a Banach space X, then

o0

the biorthogonal functionals associated to (e,)32, (€)%, form a basic

sequence 1n X,

Proof. Let S,, be the natural projection associated to (e,)>>,. We know

that for every x € X and n € N, S,(> 2, ef(x)e;) = Y., er(x)e;. For

=1 "1 i=1"1
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every n € N take the adjoint of S,,, S¥. Then, for every x € X, scalars

(ax)72, and every integers m,n such that n < m we have that
m m m n
SZ(Z agerp)r = (Z ager)Spr = akBZ(Z e (x)e;)
k=1 i=1 i=1 i=1

m n

- Z Z age; (x)er(e;) = Z axer(z).

i=1 =1

So

n

m
Sz(z ager) = Z agey.
k=1

=1

For every integers m,n such that n < m we can write

n m m
1S aneill = 15503 are) | < sup IS ane .
k=1 k=1 n k=1

From Proposition 1.9 we have that (e})72, is a basic sequence in X*. [

Note that the basis constant is identical to that of (e, )22, since for every
n €N, [[Sull = IIS:]-

A similar result about unconditional basis:

Proposition 2.10. If X is a Banach space with an unconditional basis
(€n)22,, then the biorthogonal functionals (ef)32, form an unconditional
basic sequence in X*, with the same unconditional constant and the same

suppression constant.

Proof. From Proposition 2.9 it follows that if (e,)3%; is an unconditional
basis in X, then the biorthogonal functionals (e)> ; form an unconditional
basic sequence in X*.

Now, let K, and K, be the unconditional basis constant and suppression
constant of X, and let K} and K be the unconditional basis constant and

suppression constant of X*.
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For every z* € X*, z* = )"

n=1

bper

n?

and scalars (a,,), |a,| = 1 we can

write

!IZanb all = sup |5 aabuct

[|z]|<1 —1

= sup | E apbper E A €m)|
llz]|<1 n=1 m=1

= sup | E Qb E
(2150 S—

= sup | E bper E pnen)|
(£35S Sp—

= sup || ané’ZHH Zananenn
[E3[55 S—t —
[e.e]
<KD baesll.
n=1

So we have that K < K,,.

Same way, for every x € X, 2= "  a,e,,

n=1

HZananenH— sup |z* Zananen

[l*]I<1

= sup |Zb e Zananen

lz<lI<1 =

= sup |Zanb e Zanen

lz*ll<1 S5

= sup ||Zanb en||HZanenH

z*||<1 n—=1

< K Zanenn-
n=1

This means that K, < K. So we have that K, = K.
In a similar way it is shown that K, = K. ]
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2 Complemented subspaces and linear operators

2.2 Complemented subspaces

To give the definition of complemented subspaces, let us first introduce the

notion of algebraic internal direct sum and internal direct sum.

Definition. A vector space X is said to be the algebraic internal direct
sum of its subspaces My, ..., M, if 31 | My = X and M;N>~, . M, = {0}
when j =1,...,n.

If the subspaces M, ..., M, are closed, then X is said to be the internal
direct sum of My, ..., M,.

Proposition 2.11. If M, ..., M, are subspaces of a vector space X,

then the following are equivalent.
(i) The space X is the algebraic internal direct sum of My, ..., M,.

(ii) For every x € X, there exist unique elements mq(x),...,m,(x) of
M, ..., M, respectively such that x = ,_, my(z).

Definition. Let X be a Banach space and let M and N be two closed
subspaces of X. We say that X is the complemented sum of M and N, and
we write X = M @& N, if for every x € X there are m € M and n € M, so
that x = m + n and so that this representation of x as sum of an element
of M and an element of N is unique.

We say that a closed subspace M of X is complemented in X if there is
a closed subspace N of X so that X = M & N.

Remark. 1f the Banach space X is the complemented sum of two closed
subspaces M and N, than this implies that M N N = {0}.

Indeed, if M NN # {0}, then there exist z, 0 # x € M N N such that
x =x+ 0 and x = 0 + x which is in contradiction with the uniqueness of

the representation of x.

In other words, from Proposition 2.11 we can say that a closed subspace
M of X is complemented in X if there is a closed subspace N of X such
that X is the internal direct sum of M and N.
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2 Complemented subspaces and linear operators

Another way to present the notion of complemented subspaces is through
the notion of projections. For this the following theorems and propositions

are needed. As mentioned in the first section:

Definition. Let X be a vector space. A linear operator P : X — X is
a projection in X if P(Pz) = Px for every x € X, that is, P? = P.

Note that if P: X — X is a projection then || P|| > 1. Indeed, for every
r e X,
|1Pz|| = [[PPz|| < [|P[[|Px]| = 1 < [|P].

Proposition 2.12. Let X be a vector space and P a linear operator

from X into X. Then P is a projection if and only if I — P is a projection.

Proof. If P is a projection, then for every = € X,

(I — P)*(z) = I’z — 21 Px + P*x
=x—2Px+ Px
=z — Px=(I-P)x),

so I — P is a projection.

Conversely, if I — P is a projection, then since we have that
P=I1-(I-P),
P is a projection. L]

Proposition 2.13. If P is a projection in a vector space X, then
ker(P) = (I — P)(X) and P(X) = ker(I — P).

Proof. If x € ker(P), then (I — P)(z) = x, so ker(P) C (I — P)(X). Now,
P((I — P)(x)) = P(Iz) — P(Px) = P(z) — P(x) =0

for every x € X, so P((I — P)(X)) = {0}, which means that for every
x € (I —P)X), x€ker(P),so (I —P)(X) C ker(P). From this and the
first inclusion we have that ker(P) = (I — P)(X).
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2 Complemented subspaces and linear operators

From Proposition 2.12, since P is a projection, so is I — P. By replacing

P with I — P in the equality just proved, we will get
ker(I — P)= (I — (I — P))(X) = P(X).
O

Corollary 2.14. If P is a projection in a vector space X, then P(X) =
{r € X : Px =ux}.

Theorem 2.15. Let X be a vector space. If P is a projection in X,
then X is the algebraic internal direct sum of the range and kernel of P.
Conversely, if X 1is the algebraic internal direct sum of its subspaces M
and N, then there is an unique projection in X having range M and kernel
N.

Proof. If P is a projection in X, then from Proposition 2.13 it follows that
X=PX)+(I—-P)X)=P(X)+ ker(P)

and
P(X)Nker(P) = ker(I — P)Nker(P)={0},

so X is the algebraic internal direct sum of P(X) and ker(P).

Conversely, suppose that X is the algebraic internal direct sum of it
subspaces M and N. By Proposition 2.11, every x € X can be represented
in an unique way as a sum m(x)+n(z) such that m(z) € M and n(z) € N.
The map x — m, P : X — X, is a projection in X with range M and
kernel N, because for every x € X, P(Pz) = P(m(z)) = m(z) € M and if
x €N, P(z)=0.

If Py is any projection in X with range M and kernel N, then Py(x) =
Po(m(z) + n(z)) = Py(m(x)) = m(x) = P(zx) for every x € X, which

proves the uniqueness. O

Theorem 2.16. If M and N are complementary subspaces of a Banach
space X, then the projection in X with range M and kernel N is bounded.
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Proof. Let P be the projection with range M and kernel N. Let (x,) be a
sequence in X that converges to some x and that (Pz,) converges to some
y. Then (I — P)(z,) — = —y. It follows that y € M and z —y € N,
so P(x —y) =0 = Px = Py =y. So P is a closed linear operator and
by the Closed Graph Theorem, since M is closed in X, the operator P is
bounded. O]

Corollary 2.17. A subspace M of a Banach space X s complemented

if and only if it 1s the range of a bounded projection in the space.

Proof. If M is complemented in X, then from Theorem 2.15 there exist an
unique projection with range M. Theorem 2.16 assures that the projection
is bounded.

Conversely, if M is the range of a bounded projection P, then from
Theorem 2.15 we have that X is the algebraic internal direct sum of M =
P(X) and ker P. Since P is bounded we have that P(X) and ker P are
closed. O

If the projection has norm A, then the subspace is called A-complemented.

Corollary 2.18. If M and N are complementary subspaces of a Banach
space X, then M is isomorphic with X/N, M = X/N.

Proof. From Theorem 2.16 we have that P € B(X,X) and since M is
closed in X, then from the First Isomorphism Theorem for Banach spaces
we have that X /ker(P) = X/N is isomorphic to P(X) = M. O

The next theorem will show that ¢y is not complemented in .. The
proof is taken form [8].First we will present a notion that will help to prove
the theorem.

We will say that a Banach space have property P if X* has a countable
subset A that is a separating family for X. This means that for every

x € X we can find y* € A, where A C X* is a countable subset, such that

y*(z) #0.
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If a Banach space X has property P, then every closed subspace of X
has property P.

Indeed, if M C X is a closed subspace, then M* N A is a countable
subset of M* such that for every x € M, there is a y* € M* N A such that
y*(z) # 0.

If a Banach space X has property P, then every Banach space isomorphic
to X has property P.

Indeed, if Y is a Banach space isomorphic to X, then there exist an
isomorphism 7' : X — Y. For every y € Y there exist x € X such that
Tx =y. For that x, there exists 2* € A such that 2*(z) # 0.

From Theorem 2.5, the adjoint of 7', T : Y* — X* is an isomorphism,
so for that z* there exist y* € Y™ such that T#y* = x*. This means that
T*y*(x) # 0, which implies that y*(Tz) = y*(y) # 0. So, the countable
subset of Y* which is a separating family for Y is (T*)"'(A).

l« has property P because one countable family for [, in [ is the

*

collection {e} : n € N}, such that for every = € I, €} (z) = z,. €} is the

n-th coordinate functional on /.
Theorem 2.19. ¢y is not complemented in l.

Proof. Suppose the contrary, that ¢y is complemented in /.. Let N C I
be the closed subspace that is complementary to the closed subspace cg.
N has property P because [, have it. From Corollary 2.18, [, /co = N,
S0 lso/co has property P. The theorem will be proved when we will show
that [, /co cannot have property P, which it will be a contradiction with
what we first stated.

First, let show that there is an uncountable family {S, : « € I} where
for every a € I, S, are infinite subsets subsets of N such that for every
a, B €1, a# B, we have that S, N Sp is finite.

Indeed, if we write the rational numbers Q as a sequence (¢; : i € N),
and for each r € R (uncountable set) we chose a sequence (ng(r) : k € N)
such that (g, : k € N) converges to r, then for every r € R let S, =
{ng(r) : k € N}.
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Next, for every a € I, let z, € [, be such that

1 ifkesS,

To = (5,(;‘) .k € N) where 5,(:‘) =
0 ifk¢S,.

Notice that x, + ¢y # 25 + co when a # f.

Suppose that y* € (l/co)*, that p € N, and oy,...,q, are distinct
members of I such that |y*(zq, +co)| > }D when j =1,...,¢. Let v1,...,7,
be scalars of absolute value 1 such that v;y* (2o, + co) = |y* (24, + co)| for
every j.

Because S, are infinite sets and S, N Sp is finite whenever a # 3, it
assures that infinitely terms of the form E?Zl VjTa, Of lo have absolute
value 1 and that only finitely many have absolute value more than 1. From

this it follows that
q q
1O " viwa,) + coll = > v, o) = 1.
j=1 j=1

Therefore

q

ly* (1 = (D va,) + o)l = D 1y (wa,) + o) =

4
7j=1 j=1 p

and so ¢ < plly*||. This means that there are only finitely many index
elements « such that |y*(z, + co)| > %. Since p € N was arbitrary, it
follows that there are only countably many index elements « such that
Y (2o + o) # 0.

Now suppose that C' is a countable subset of (I/co)*. It follows that
for z* € C, there are only countably many elements o of I such that
2*(xq + ¢o) # 0. Since I is uncountable, there must exist aj,ay € I,
a1 # g such that 2*(z,, + ¢g) = 2" (T4, + o) = 0 for every z* € C', which
shows that C' is not a separating family for [, /co. This means that the

space ls/co does not have property P. O

Corollary 2.20. There is no bounded linear operator from |, to co which

maps each element of ¢y to itself.
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The next theorem shows that if a linear bounded operator in a normed
space is a projection then so is the adjoint of that operator, and conversely.
Our purpose is to define A-complemented subspaces through adjoint

operators.

Theorem 2.21. If X is a normed space and T is a bounded linear

operator, then T is a projection if and only if T is a projection.

Proof. First, suppose that T™ is a projection. For every x € X and z* €
X*

e (T(Tx)) =T"2"(Tx) =T (T"2x")(z) = T"2*x = 2™ (Tx)

which implies that T'(T'z) = Tz since the collection of all bounded linear
functionals on a normed space is always a separating family for that normed
space.

Conversely, if T is a projection, then for every x € X and z* € X*,
T (T"x")(x) =T 2" (Tx) = (T (Tx)) = 2" (Tx) =T z"x
which implies that T*(T*z*) = T*z*, and so T is a projection. O

From Theorem 2.21, if P : X — X is such a projection with ||P| = A,
then the adjoint of P, P* is also a projection, and we know that ||P*| =
P[] = A.

Note P(X) = M C X. Let us see what ker P* is. Take

z€ker P& P =0 X" & Pa*(z) =0, Ve e X
& 2% (Pr) =0, Vo € X.
This means that ker P* = {z* € X*: 2* =0 on TX}. Thus
ker P* = M+ = {z* € X*: z*|,, = 0}.

To add all, if M is A complemented in X, then there exist Q) : X* — X*
such that
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(i) @ is a projection,
(i) 11l = A
(iii) ker Q = M+,
(iv) @ is the adjoint of a projection.

Often such an operator exists, but () is not weak*-to-weak™ continuous,
which means that (iv) is not fulfilled. ¢y as a subspace of [, is an example
of a non-complemented subspace such that its annihilator is the kernel of

a norm-one projection in the dual space.
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2.3 The Principle of Local Reflexivity

Our purpose in this section is to present and to prove the Principle of Local
Reflexivity (PLR). This principle asserts that in a local sense every Banach
space is reflexive.

In this section X and Y will denote Banach spaces, and by an operator
we will mean a continuous linear operator.

The proof of the PLR is taken from [9]. For that we need the following

lemmas.

Lemma 2.22. Let T : X — Y be an operator with closed range. If
e X*™ and y € Y are such that T™* 2™ = Qyy and ||| < 1 then,
there exist an x € X with ||z|| < 1 such that Tx = y.

Proof. Denote by Ux the unit ball of X. To prove the lemma we have to
show that y € T'(Ux).

Suppose first that y ¢ T(X). Then, there exist y* € Y™ such that
T*y* = 0 but y*(y) = 1. In this case we have that

and
Ta™(y") = Qy) = y'(y) = 1
which is a contradiction.

Next we suppose that y € T(X)\T(Ux). By the Open Mapping
Theorem, since Ux is open in X, we have that T'(Ux) is open in T(X).
Since the conditions of the Hahn-Banach Separation Theorem are fulfilled
for the subsets T'(Ux) and T'(X)\T'(Ux) of T(X), we can find y* € Y*
such that y*(Tx) < 1 for all x € Uy, and y*(y) > 1.

Since y*(Tx) = T*y*(z) < 1, we have that ||[T*y*|| < 1 and so
|z**(T*y*)| < 1 (because ||z**|| < 1), which means that |y*(y)| < 1, which
is in contradiction with y*(y) > 1.

So, we must have y € T'(Ux). O
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Note that in Lemma 2.22 we can pick = € X such that
|z < (14 0)||z*|| for every ¢ > 0.

If T: X — Y is a bounded operator with closed range, T'(X) is closed,
[1, p. 272], this is equivalent to the requirement that T factors through an
isomorphism embedding on X/ker(7T), which in turn is equivalent to the

statement that for some constant C', we have
d(z, ker(T)) < C||Tz||, =€ X.

Lemma 2.23. Let T : X — Y be an operator with closed range, and
K : X =Y be a finite-rank operator. Than T + K has closed range.

Proof. Suppose the contrary, that 7'+ K does not have closed range. This
means that there is a bounded sequence (x,,)°2 ; with lim,, (T4 K)(z,) =
0 but d(z,, ker(T + K)) > 1, for every n € N.

We can pass to a subsequence and assume that (Kz,)%°, converges to
some y € Y and hence lim,,_,,, Tz, = —y. Since T has closed range, this
implies that there exist x € X such that Tax = —y and so lim,, . |[|Tx, —
Tz|| = 0. From this we can write that lim, o d(x, — x,ker(T)) = 0. It
follows that lim,, . K(z, —z) € K(ker(T)), and so y — Kz € K(ker(T)).

Let y — Kx = Ku, where u € ker(T'). Then we have that

lim d(z, —z —u, ker(T)) =0,

n—o0
and

lim |Kz, — Kz —ul| = 0.

n—o0
Since K|ker(T) has closed range, it means that
lim d(z,, — z — u, ker(T") N ker(K)) = 0.
n—oo

But T(z4+u)=Te+Tu=—-y=—-Kzr— Ku=—K(xz+u), so

T+ K)(z+u)=T@+uw)+Kx+u) =-y+y=0,
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which means that = + u € ker(T' + K) and therefore

lim d(z,, ker(T + K)) =0,

n—oo

which contradicts the assumption that d(z,, ker(T + K)) > 1. O

Lemma 2.24. Let T : E — X be an operator where E is a finite

dimensional normed space such that
(1+0)7" < |Ta| < (1+9),

1 <i < N, where (x;), is an d-net for the unit sphere of E. Then T is
invertible and

4o, 1 d0+d)
11— 1+ 1-0

Proof. Lets take e € E, ||e]| = 1. We pick i so that ||e — z;|| < . Then

TN < ( = 1(9).

|Tel| = |Te — Tw; + Ta;l| < ||Te— T + || T
<|ITe — Tx;|| + (1 4 6),

SO
1T < ITlle — @il + (1 +6) = ITl|6 + (1 + )

which is equivalent to

1
(1= a)T| <146 7)< 12

On the other hand,

IT|| = [ITell = Te = Ta; + Til| = [[Twil| — [[Te — T
> |Tai|l = lle = 2l T} > (1 + )" — 8| T|
1 d(1+9)
149 1—0
We know that T-'T = I where Iy is the identity operator on E, and
I/g|| = 1. So we have that

>

1

L=l < |ITNTH = 177 = =
I

o1



2 Complemented subspaces and linear operators

from which it follows that

1 5(1+96)
140 1—-6

17741 < ( )~

]

Theorem 2.25. Let ¥ and F be finite dimensional subspaces of X** and
X, respectively, and let ¢ > 0. Then there exists an operator T : E — X
such that

O NTIT <1+
(i) «*(Tx**) = a™*(az*) for every o™ € E and every x* € F,
(i) T2* =2 if 2 € Qx X N E.

Proof. Choose § > 0 so that ¥(J) < 1 + € where 9 is as in Lemma 2.24.
Choose a3, a3, ..., a;, € X*, ||aj|| = 1 for 1 < j < m, containing a basis of
F and such that

[l || < (1+6) sup [27(aj)]

1<j<m
for every z** € F.
Choose by*,b5",...,0" a d-net for the unit sphere of E such that
7%, ..., bf" is a basis for Qx X N E and b7*,...,0, r > k, is a basis for E.

Then, for 1 < p < g =n —r, we have unique scalars (t,;);_,, such that

by = D thabi".
1<ilr
Define for 1 <p <gq
tp,i ? S r,
Spi =9 —1 i=1r+p,

0 r<i<nandi#r+p.

Define Ay : X™ — X*+9 by

Ao(xy, .o yxn) = (21, ks ( Z Spili))

1<i<n
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for 1 < p < ¢ where X™ and X**9 are the usual product spaces with the

sup norm. Since the matrix (s,;) has rank ¢, the operator Ay is onto.
Define A : X" — Z = XF4 x C"™ by

Az, .. zn) = (Ao(ze, .. x0); (a;(%)))

for 1 <j<mand1<1i¢<n. By Lemma 2.23, A has closed range.

We observe that A™(b7*,...,b:) = (A5 (b, ...,077); (a5 (b7%))) =
(b7, .. 05%,0,...,0,(b;(a}))), which means that A™(b7*,...,b;") is in
QzZ. Therefore, by Lemma 2.22, there exists (by,...,b,) € X",

sup [|b;]| < (14 0) sup [[b;"| =1+3,
1<i<n

1<i<n

such that QzA(by, ..., b,) = A™(b*, ... b}").

QzA(by,...,b,) = Qz(Ao(by, ..., by); (aj(bz)))
=Qz(b1,. .., bi; ( Z Sp,ibi), (aj(bl)))

1<i<n

AT b5 = (BF s B () spabi ™), (07 (a))).
1<i<n

This means that for 1 < i <k, Qxb; = Qzb; = b7* and a;f(QZbi) = b;*(a})
for1<i<n,1<j5<m.

Define the operator 7' : E — X such that T0;* = b, for 1 < i <r. For
1 < p < g, we have that Y, sp:bi* = > o, 1pibi* — b5, = 0 and
S cier Spib; = 0 which gives that Th* = b; also for r < i < n.

Condition (iii) is fulfilled because for every =™ € QxX N E, =™ =

> icicp @ib* where (a;)¥_, are scalars,

Tz =1T( Z a;bi*) = Z a; T = Z ab; = x.

1<i<k 1<i<k 1<i<k

Also, from a}(Qzb;) = b;*(a}) for 1 <i <n, 1 < j < m and the fact that

*

ai,as,...,a’ is a basis in F' we have that for every z** € E and every

' m

¥ € F, o*(Tx*) = ™ (2*) . So, condition (ii) is fulfilled too.
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2 Complemented subspaces and linear operators

At last we observe also that for 1 <7 <n,

1767\ = sup |a;(TO7)] = sup [b7"(az) = [I67[(1+ )t =(1+0)"
Sjsm

1<j<m

Now, we apply Lemma 2.24 and we have that ||T||||77 < 1 +e. O
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2 Complemented subspaces and linear operators

2.4 Locally Complemented Subspaces

Definition. Let M be a closed subspace of a Banach space X. Then
M is called locally \-complemented in X, if for every finite-dimensional
subspace F of X, A € [1,00), and € > 0, there exist an operator T : F' — X
such that

i) ze FNM = Tz =z,
(i) || < A+e.
If A\=1, then M is called called locally 1-complemented.

Note that in terms of locally complemented subspaces, the PLR states
that a Banach space X is locally 1-complemented in X**.
The following theorem is from [4]. For the proof we will need the

Tychonoft’s Theorem:

Theorem 2.26. If (X, )acr is an arbitrary family of compact spaces,

then their product X :=[],.; Xao is compact.

ael

Theorem 2.27. If M is a closed subspace of a Banach space X, then

the following statement are equivalent:
(i) M* is the kernel of a projection with norm X\ on X*.
(i) M+t is the image of a projection with norm X\ on X**.
(i) M is locally \-complemented in X .

Proof. (i) = (i1) We have that M+ = ker P, where P : X* — X* is
a norm-one projection. We know from Theorem 2.21 that the adjoint of
P, P* : X* — X™ is a projection and ||P*|| = ||P|| = A\. Moreover
ImP* = (ker P)* = (M*)+ = M+

(11) = (i) Let @ be a projection with norm A on X** such that
Q(X**) = M*+. Let Qp be the restriction of @ to the finite-dimensional
subspace F. Using the PLR we get an operator Ty such that the operator
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2 Complemented subspaces and linear operators

T = Qp o Ty satisfies the requirements in the definition of locally -
complemented.
(7i1) = (i) For each finite-dimensional subspace F of X, choose an

operator Tr : F' — X which satisfies (i) and (ii) in the definition of locally

A-complemented with € = di:nF. Let

zeX

where B+ (0, 2||z]|) is the closed ball in X** with center 0 and radius 2||z||.
We equip S with the product weak* topology. Then from Tychonoff’s
Theorem we can say that S is compact Hausdorff.

For every subspace F' as above, and every x € X we define

Tp(z) if x€F,
0 ifr ¢ F.

Tp =

(xF)eex is a net in S ordered by (xp) > (z¢g) if G C F.

Since S is compact, we can find a subnet (xg).cx that converges to a
point (y,)zex in S. For every x € X and every z* € X* we have that
x*(rg) = y.(2*). The map x — y, from X to X** is linear.

For x € X and z* € X* we define (Pz*)(x) = y,(2*). Then the operator
P :z* — Px* is a projection with norm )\ in X* and ker P = M*.

P is a projection because for every x € X and z* € X* we have that
(P(Px*))(x) = y.(Pz*). This means that there exist a subnet (x¢) such
that Pz*(r¢) — y.(Pz*). Since for every z € X and every z* € X*
we have that z*(zg) — y.(z*), this means that Px*(x¢) — y.(z*). So,
(P(Pr))(x) = gala") = (Po*)(x).

That ||P|| = X it follows from:

IP]l = sup sup [(Pz")(x)] = sup sup [y.(z7)]

Jall <1 flz= (<1 Jall<1 Jlz= <1
= sup [ly.|| = sup [zal]
Jall<1 Jall<1
1

= sup |Tg(z)| < A+ ——
H:v||£1| alo)l < dim G
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2 Complemented subspaces and linear operators

To show that ker P = M*, take z* € ker P, so Pz* = 0. This implies
that for every z € X, (Pz*)(z) = y,(2*) = 0, which in turn means that
for every x € X, 2*(z¢) — y.(x*) = 0. This implies that z*(T¢(z)) — 0.
So, for every z € GNM C M, x*(x) = 0. This means that z* € M+. O

Remark. From the proof Theorem 2.27 we have that M is locally A-
complemented if there exists @) : X* — X* such that

(i) @ is a projection,

(ii) QI = A,
(iii) ker @ = M.

Note that if M is A-complemented, then M is locally A\-complemented.

We will now present the concept of a Hahn-Banach extension operator.
The purpose is to show that the concept of locally 1-complemented
subspaces is equivalent to the existence of a bounded linear Hahn-Banach
extension operator.

Let M be a closed subspace of a Banach space X. The Hahn-Banach
Extension Theorem assures that for every y* € M™ there exist 2* € X*
such that x*

v =y and [[z*|| = [[y*]|. We denote by

HB(y") = {z" € X" :a™|, =, lly'll = [l2"]1}

the set of Hahn-Banach extensions of y* to X.
An operator T : M* — X* which for every y* € M* satisfies Ty* €
HB(y*), is said to a Hahn-Banach extension operator from M* to X*.

Proposition 2.28. Let T' : M* — X* be a Hahn-Banach extension

operator and y* € M*, and Ry : X* — M* the natural restriction operator

A e Then P =TRy : X* — X* is a norm one projection on X*
with range T(M*) and ker P = M~.
Conversely, if P : X* — X* is a norm one projection with ker P = M,

then there exist a Hahn-Banach extension operator.
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2 Complemented subspaces and linear operators

Proof. P is a projection because for every x* € X*,

P(Px*) = P(T(Ryx")) = P(Tz"

V) = Pt

Since ||T]| = 1 and ||Ry|| = 1 because ||y*|| = ||z*||, for every z* € X*
1 We have that 1 < [|P|| < ||T|[|Rull = 1, s0 || P|| = 1.
From the construction of P it is clear that it has range T'(M™).

To see that ker P = M*, take 2* € ker P.

where y* = x*

" €kerP & Px* =0< T(Ryz*) =0
& Tr*(x) =0, Ve e M
& x*(z) =0, Vo e M.

Conversely, let P : X* — X* be a norm one projection such that ker P =
M*. For y* € M*, let * € HB(y*). Then for every z € X,

Pu*(x) = 2" (Pz) = 2*(z) = y"(2),
because P*x =x € M.
[Pz < [[P[lllz"]l = ll="] = lly"[I
This means that Px* € HB(y*). O

From Proposition 2.28 it follows that the existence of a Hahn-Banach
extension operator T' : M* — X* is equivalent with M being locally 1-

complemented.

Definition. A basic sequence (z,)7°, in a Banach space X is called

)
n=1>

(locally) complemented if the closed linear span [z,,] of ()22, is a (locally)

complemented subspace of X.

Proposition 2.29. If (2,)5°, is a locally complemented basic sequence

equivalent with (y,)°2,, then (y,)22, is locally complemented.
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2 Complemented subspaces and linear operators

Proof. Since (z,)5, is a locally complemented, then [z,] is locally
complemented and, from the definition we have that for every finite-
dimensional subspaces F' of X, there exist an operator 77 : F — X such
that Thx = x for every x € F'N [x,].

Now, since (z,)%, is equivalent with (y,)%,, from Proposition 1.12
there exists an isomorphism 7" : [x,,] — [y,] such that Tz, = y,, for every n.
Then for every finite-dimensional subspaces E of Y, Tp, =TT/ T ' : E =Y
is an operator such that Toy = y for every y € E N [y,]. Indeed, for every
y € ENy,), we have

Ty = (TTWT ") (y) = TTh(T 'y) = TThx = Tx = y.
So, (yn)5e, is locally complemented. O

Theorem 2.30. If a basic sequence (r,)5°, in a Banach space X is
locally complemented, then the sequence of biorthogonal functionals can be

extended to a basic sequence in X*.

Proof. We have that (x,,)2°, is a basic sequence in X. By definition, this

o

° | is a basis for the closed linear span [z,] = M. From

means that (z,)
Proposition 2.9 we have that (x)2° , is a basic sequence in M*.

Since M is locally complemented, then there exist a Hahn-Banach
extension operator T : M* — X*. For every z7, pick vy} = Tx* € HB(z}).
Then (y7)2, is a basic sequence in X*.

Indeed, for every sequence of scalars (a,) and any integers m,n such

that m < n, we have

1D angill = 1) anTa|| = IT(Y ana”)]
n=1 n=1

n=1
< ITIICY. awz?) ) < KITIICY ane)]
n=1 n=1
= K[> any;ll;
n=1
where K is the basis constant for the basic sequence (7). O
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2 Complemented subspaces and linear operators

Theorem 2.31. Let (x,)52, be a basic sequence in X. The following

are equivalent:
(1) (zn)02, is complemented.

(ii) There exists a sequence (u})e, in X* such that u’ (x,) = dpn and

o uk(z)x, < oo, for every x € X.

Proof. (i) = (ii) We have that (z,,)%°, is a complemented basic sequence in
a Banach space X. This means that M = [x,] is a complemented subspace
of X. So, there exist a projection P : X — X such that PX = M. Let
(xf)>2, C M* be the biorthogonal functionals associated with (x,,)> .

Denote u;, = x; o P, for every n € N. Then u) extends each z to whole
X, (ukh)xe, C X*.

1 m=n,
Up (T0) = 27, (Pn) = a7, () =
0 m#n.

So, u} () = Omyn. For every x € X we have

ZUZ(JU)In = Zx;(Px)xn = P(x) < 0.

(1) = (i) We have that there exists a sequence (u})%; C X* such that
uk (x,) = Omn and for every z € X, > wh(z)z, < co. We need to prove
that M = [x,] is complemented in X.

Take P(z) =Y " u!(x)x,. For every x € X we have

[e.e] [e.e]

P(Px) = P(Y uj(2)za) = ) u(x)P(xn)
= Zu;(x) Zu}i(mn)xn = Zui(m)xn = Px
n=1 k=1 n=1

So P is a projection.
It is clear that for every x € X, Pz € M since (x,,);, is a basic sequence
in X, which means that it is a basis for M = [z,,]. O
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Summary

The concept of basis is fundamental in linear algebra, however the
spaces under consideration are finite-dimensional. In the case of infinite-
dimensional Banach spaces, we introduced the notion of basis and we
proved that it is equivalent with that introduced by Schauder in 1927.
We showed that a necessary condition for a Banach space to have a basis
is separability and we gave some examples about such basis. We also gave
a way to construct a basis if we have a family of projections enjoin the
properties of partial sum projections. However, not every Banach space
have a basis.

We introduced the notion of basic sequences, and we proved Grunblum’s
criterion, which is a test for recognising a sequence in a Banach space as a
basic sequence. A very important result is that every Banach space have
a basic sequence.

We defined the equivalence between two bases (basic sequences), and
showed that if a Banach space has a basis, then there exists normalized
bases non-equivalent.

Since whenever we permute the element of a basis, it doesn’t mean that
the new sequence is a basis, we defined unconditional bases. For this we
had to define unconditionally convergent series and prove some theorems
about unconditional convergence. We also proved a necessary and sufficient
condition for a basis to be unconditional. We gave the definitions of
unconditional basis constant and suppression constant, and proved the
relations between them.

We introduced adjoint operators and we gave some of its properties. An

important result, is that for a bounded linear operator to be an adjoins it
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2 Complemented subspaces and linear operators

is equivalent with that operator being weak*-to-weak™® continuous. Also,
by using the notion of adjoints, we proved some theorems about basis.

We gave the definition of complemented subspaces, and by using the
notion of projections and some of its properties, we presented an equivalent
definition. Next, it is shown that c¢q is not equivalent with /... Later on,
this is used as an example to show that there exists subspaces, which are
not complemented, but have some of complemented subspaces properties,
when we redefined it by using adjoint operators. In the last section, we
defined those subspaces as locally complemented.

Before that, we presented and proved the Principle of Local Reflexivity
(PLR). This is an important result that helps to prove equivalent definitions
about locally complemented subspaces.

In the last section we defined locally complemented subspaces and
showed that if a subspace is A-complemented then it is locally A-
complemented. Next, we presented Hahn-Banach extension operators and
proved that its existence is equivalent with being locally 1-complemented.

At last, we gave the definition for a basic sequence to be (locally)
complemented. We proved that if a basic sequence is locally complemented,
then its biorthogonal functionals can be extended to a basic sequence in
the dual space.

Also, we proved the equivalence of a basis sequence being complemented,
with the existence of a sequence in the dual space which extends the
biorthogonal functionals to the whole space. Since every complemented
space is locally complemented, we have that this extension implies for the

basic sequence to be locally complemented.
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