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Abstract

To the best of our knowledge there exists no Artificial Intelligence (AI)
for Dominion which uses Monte Carlo methods, that is competitive on a
human level. This thesis presents such an AI, and tests it against some
of the top Dominion strategies available. Although in a limited testing
environment, the results show that our Al is capable of competing with
human players, while keeping processing time per move at an acceptable
level for human players. Although the approach for our Al is built on
previous knowledge about Upper Confidence Bounds (UCB) and UCB
applied to Trees (UCT), an approach for handling the stochastic element
of drawing cards is presented, as well as an approach for handling in-
teraction between players. Our best solutions win 87.5% games against
moderately experienced human players, and outperforms the successful,
rule-based, Dominion strategies SingleWitch and DoubleWitch both with
a win percentage of 68.5%.

Keywords: Dominion, UCT, UCB, AI, Multi-Armed Bandit Problem,
Monte-Carlo, Tree Search
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1 Introduction

The game of Dominion [22] takes place in a medieval era setting, where each
player assumes control of their own kingdom or dominion. The players start out
with a small amount of resources, and have to choose what is best for their own
kingdom, depending on the existing possibilities. Some players act like greedy
monarchs, choosing to amass as much gold and money as possible, by employing
woodcutters and hosting festivals, while other monarchs consult mystics and
witches to spread curse and despair among the other kingdoms. While there
are different ways to expand the kingdom and many potential strategies, in the
end, the player with the most land (represented by victory cards) wins.

Dominion is played as a card game for two to four players, where each
player’s kingdom is represented by their own deck of cards. Each player starts
with ten cards, and will throughout the game expand their kingdom by adding
more cards to their deck. For each game there are different possibilities and
resources available, thus on the table there are laid out ten different stacks of
kingdom cards, which can be swapped out for different cards between games.

In addition to the ten kingdom cards there are seven more stacks, which are
present in every game, and these 17 stacks of cards are referred to as the supply.
The game is over when three or more card stacks in the supply are empty, and
the winner is the one with the most land area, or victory cards, in the card deck
(see detailed game rules in Section 1.5.2).

Compared to many of the other games that employ Monte-Carlo methods to
create a game Artificial Intelligence (AI), Dominion is notably different. This
is because Dominion is both a non-deterministic game and a game of imperfect
information. An example of a stochastic game element is the drawing of cards,
where each card has a certain probability for being drawn.

Imperfect information denotes that there are elements regarding the game
state, which is not known to all players. For instance, the hidden cards each
player has in his or her hand is an element of imperfect information. Other
games, like Chess [35] and Go [36], which also use Monte-Carlo methods, do
not have such cases where it is not known whether a game piece is in a certain
position. This greatly increases the complexity of a Dominion Al, since the Al
will have to make decisions without knowing the outcome of each action with
full assurance.

From our point of view, there are five main challenges to create a Dominion
Al

1. How to decide which cards to play from hand, and in what order?
2. How to decide which cards to buy?

3. When to stop buying intermediate cards and start buying victory points
(VPs)?

4. How to handle interaction between players?

5. How to handle the stochastic element of drawing cards?



The approach is to apply Monte-Carlo methods to take care of the challenges
(1-4), and a sampling approach to handle (5).

1.1 Scope

The goal of this thesis was to create the best possible Dominion Al utilizing
Monte-Carlo methods. Though the AT may be applicable to the complete game
of Dominion, only a specific set of cards was chosen as test-bed. The cards are
listed in Appendix C. The performance of the solution is measured by running
a series of experiments, where the Al is playing against different opponents and
is tested in different scenarios. How well the Al handles these opponents and
situations is determining the performance.

1.2 Solution Summary

The solution Al that were created has four different variants, each behaving
similarily to each other, but also with some differences. Each variant was given
their own name, while their collective term was named MCDomAI. All variants
apply either flat Upper Confidence Bounds (UCB) or UCB applied to Trees
(UCT) together with either the UCBI1 formula or a modified version, as listed
below:

1. UCBgyig applies flat UCB, using the UCB1 formula during selection to
find the best move.

2. UCB0q uses a modified version of the UCB1 formula, but is otherwise
similar to (1).

3. UCTyig finds the best move by using UCT, thus creating a search tree,
which is different from (1) and (2). This variant also uses a slightly dif-
ferent propagation system than (3), in order to resemble a Minimax tree
search.

4. UCT04 is similar to (3), but uses UCT together with the modified UCB1
formula for selection, as well as a different propagation system.

In addition, some new enhancements are presented in order to deal with the
Dominion-specific challenges, such as the stochastic element of drawing cards,
where proportional sampling is applied to the UCT approaches.

For the UCT variants, interaction between players is taken care of in the
search tree by using a Minimax resembling propagation system. The flat UCB
variants however, do not need to take special care of the player interaction, since
no search tree is created.

Parallelization is also applied for all Al variants by utilizing root paralleliza-
tion. This is further supporting the UCT card sampling approach, as well as
increasing playing strength and reducing time spent per move.



1.3 Result Summary

For playing against the successful SingleWitch and DoubleWitch Dominion
strategies, the best solution was UCBgig, capable of winning 68.5% games
against both strategies, while UCT,,0q had the weakest results, winning in 35%
and 31% of the games.

Against moderately experienced human players, UCB,,,q won in 87.5%
games, while UCT,,q won in 25% games, which were the only two variants
tested in this experiment. Due to time limits, not enough games were played to
be conclusive on the performance against human players.

The main configurations for variant UCBgyie and UCT oy both use 1.2 sec-
onds on average per move, while UCB,,q and UCT,,,q respectively use 8.4
and 9.1 seconds per move, which can be reduced by increasing the number of
threads. For instance will two threads almost cut in half the time used per
move, while still achieving the same performance in playing strength.

Due to time limits, a sole variant could not be concluded best, however the
flat UCB variants seem to perform better than the UCT variants for this test-
bed of cards. However, UCT may perform better when tested with other sets
of Dominion cards, as the UCT variants seem to play more cards in sequence
than the flat UCB variants. Dominion in general may possibly also be favoring
greedy, or locally optimized choices, which flat UCB is good at, instead of
planning many turns ahead, which is one the UCT strengths.

MCDomALI is also capable of recognizing good cards in terms of both buying
cards and playing them. This is tested by increasing the value of cards beyond
reasonable game balance.

1.4 Background

This section aims to provide some background information that will enable the
reader to better understand the different elements of MCDomAI. The section
expands upon the topics mentioned in the introduction, and covers the basic
concepts this thesis builds upon.

The first subsection gives a brief explanation of what an Al is, focusing
mainly on Al for board games.

Secondly, multi-armed bandit problems are presented, which are a specific
category of problems, also applicable to Dominion, within the field of Al

Thirdly, we explain how to use trees as a data structure, since search trees
are essential to UCT.

The last subject is Monte-Carlo methods, which is a methodology for solving
problems. This method includes UCB and UCT, and can be applied to solving
multi-armed bandit problems.

1.4.1 Artificial Intelligence (AI)

AT is a branch in computer science that aims to create human-like intelligence
in computer programs. While the main focus here is on game Al, specifically
board games, there are other interesting fields for Al as well.



AT is becoming more and more widespread, finding uses in almost any field,
including physics, construction, mathematics, medical research and many more.
Great Als have been created, most commonly known is probably computer pro-
grams playing the game of Chess [35], surpassing the skill of human players. The
world-famous Chess-playing computer Deep Blue beat world champion Garry
Kasparov in 1997 [29].

When using the term Al, we distinguish between simple Als, referred to as
finite-state machine-based Als (FSM-based Als) and more advanced Als em-
ploying advanced algorithms such as neural networks, UCB and UCT. The
FSM-based Als usually consist of multiple conditional if-statements, such as
the rule-based Dominion strategies MCDomAlI plays against in this thesis, see
Appendix A and B for full descriptions.

1.4.2 Multi-Armed Bandit Problems

A problem in AI with certain characteristics can be classified as a multi-armed
bandit problem. When making a decision between several different options
of which the problem is to find the best one, we can consider them as arms
on a multi-armed bandit, or slot machines, where each machine has its own
probability for winning,.

Several techniques have been developed to attempt to find which machine
gives the highest reward, and when this abstraction can be applied to a problem,
it can be considered a multi-armed bandit problem.

Machine1 Machine 2 Machine 3

Win Probability; 0.2 Win Probability: 0.17 Win Probability: 0.23

Figure 1: Multi-armed bandits.

Figure 1 illustrates three machines with differing probabilities for winning.
Solving a multi-armed bandit problem is to find out which machine that gives
the highest reward, when the win probability is not known in advance. Opti-
mally, the problem should be solved in as few tries as possible, to minimize the
"money spent”, commonly named regret, on the sub-optimal, or even losing,
slot machines. One of the main problems in such algorithms is to balance the
exploration and exploitation. The question is that whenever a good machine
is found, should one continue to exploit/spend money on it, or should other
machines be explored in an attempt to find a better one?

Several Als for games have abstracted the game as a multi-armed bandit
problem. Notably, the game of Go employs UCT in the world class Al MoGo



[25]. Commonly, board games are abstracted to a multi-armed bandit problem
by considering each possible move in the current game state as an arm, and
attempt to find which one is most likely to give us a favorable outcome, thus
win the game.

1.4.3 Trees as a Data Structure

Trees are commonly used as a data structure in computer science. This thesis
puts trees in relation to some of the techniques presented later, so this section
aims to provide a more general overview. The most relevant use of trees for
MCDomATI is UCT, which utilizes trees to represent a Monte-Carlo approach
to solve multi-armed bandit problems.

(=) (=) =)

Figure 2: Simple tree example.

As shown in Figure 2, a tree is similar to the trees outdoors, but branches
downwards instead of upwards. A tree consists of an amount of nodes containing
some data. This can be any data, but in Figure 2 the data is a decimal number.
Nodes are related through edges, as indicated by the lines between nodes. The
nodes above are considered the parent nodes of the child nodes below. Nodes
without children are considered terminal nodes or leaf nodes.

Building a tree can be useful in the case of Dominion to plan sequences of
possible moves. The root node on top could contain the current game state, the
edges down to the children could represent the currently available moves and
the top child nodes could be new states that are changed from the outcome of
each move. These child nodes could also have children of their own, each with
an associated edge.

Another useful feature is the ability to assign information to the edges be-
tween nodes. The information can be used, for instance as probability for which
child node to select when traversing the tree, or as some weight value to be used
by the parent node.

Section 3.4.1 describes how UCT utilizes trees in detail, and Section 3.2
describes how we attempted to utilize edge information to handle the stochastic
element of drawing cards.



1.4.4 Monte-Carlo Methods

Monte-Carlo methods are a part of so called experimental mathematics, where
results are inferred based on observations [27]. When applied for computational
algorithms, Monte-Carlo methods utilize the speed of computers to run many
simulations, and make a conclusion based on the outcomes of each simulation.
The following list of steps summarizes the Monte-Carlo approach:

1. Define the problem with possible outcomes.

2. Generate (simulate) random outcomes for the problem.
3. Perform a deterministic computation on the results.

4. Aggregate and infer a solution.

By performing Monte-Carlo methods for bandit problems, we can create
probabilistic models, and then infer which arm that will maximize the reward.

When implementing this technique in a game AI, each possible move is
considered as an arm. Then, simulated games are run for each arm, and an
estimated score value is given for each option. The best move is the one with
the most visits or the best score, depending on the application.

We will illustrate this, by summarizing how each step can be applied to
determine good moves in Dominion with flat UCB.

1. Problem: Determine the currently best move for Dominion. Possible out-
comes: Move results in a game win or a game loss.

2. Simulate full games from each possible move, according to a rollout policy,
to see if games were won or lost.

3. Score each move as an average of each move’s simulated games.

4. Best move is the one with the highest average score (or highest number of
visits if a selection formula is used).

3 Simulations

Expected Score: 1 Expected score: O Expected Score: 1

1000 Simulations

Expected Score: 0.86 Expected score: 0.43 Expected Score: 0.56

Figure 3: Solving multi-armed bandits with UCB.



Figure 3 shows a summary of how Monte-Carlo methods are employed when
solving a multi-armed bandit problem. This example is a representation of how
Monte-Carlo methods are used for flat UCB. The UCT variant is similar, and
explained in Section 2.2. Each possible option is represented by a node, which
can be considered a slot machine. By simulating games from that node (pulling
the arm), we can use the values returned by these simulated games to estimate
how good that arm is.

UCB and UCT are Monte-Carlo methods used to solve multi-armed bandit
problems. Both methods use UCBI, in Equation 1, as a selection formula to
select the most appropriate option to simulate, while balancing exploration and
exploitation.

By simulating and scoring all options at least once, we can then perform
more simulations to receive a more accurate value for each option. By tweaking
the exploration constant in the UCB formula, exploration or exploitation can
be weighed more heavily, as discussed in Section 2.2.

Monte-Carlo methods have also been extensively employed in other fields,
such as operational research and nuclear physics as early as in the 1960s, with
the first known implementations in the 1940s [27, 30]. With the exponential
growth in computing power, Monte-Carlo methods are now applied more fre-
quently, such as for creating board game Als, where computers run hundreds of
thousands of simulated games before deciding upon each move.



1.5 The Game of Dominion

Dominion uses a set of kingdom cards that is used in addition to the basic
supply. One can mix and match these kingdom cards, as there are many cards
to choose from. For this thesis however, we have chosen a set of ten cards, which
is used as a test-bed for all experiments. There are mainly four reason why we
have chosen these ten cards:

1. Some of the cards synergize well with each other, and should test our Al
in utilizing them together.

2. The set of cards contains some interaction between players.
3. There are many potential strategies present.

4. The cards were fairly easy to implement.

A picture of the cards is displayed in Figure 4, with full descriptions available
in Appendix C. Section 1.5.1 explains the default mechanics for most of the
cards.

WOODCUTTER

Figure 4: The cards in Dominion, using the test-bed cards, see Appendix C for
a full description of each card. [3, 15]

1.5.1 Card Mechanics

Cards in dominion vary a lot, but there are 4 core mechanics which are usually
present in cards.



Figure 5: Village: +1 Card, +2 Actions; Woodcutter: +1 Buy, +2 Coins.

The cards in Figure 5, Village and Woodcutter, contain all of these 4 core
mechanics.

e +X Card(s) - The player who plays this card can draw X card(s) from his
or her deck.

e +X Action(s) - When played, grants the player X additional action(s),
which means that he or she can play X more action cards that turn.

e +X Buy(s) - Grants the player additional buys. The number of buys are
equal to the number of cards that can be bought during the buy phase.

e +Coins - As seen on the Woodcutter card in Figure 5 there is a plus (+)
sign and a coin with the number 2’ printed inside. This means that the
player has two extra coins to spend on cards during the buy phase.

There are other mechanics as well, because cards can have sepcific text
printed on them, explaining their unique mechanics. An example is the Witch
card, which makes all other players gain a Curse card, when played.

1.5.2 Game Rules

In this section follows a summary of the game rules. The complete and offical
game rules can be found in online [40].

Dominion is initially set up with the different cards from Figure Figure 4
spread out on a table. Each card comes with many copies to be placed as a stack
of card. For a two-player game, each stack of victory cards has initially eight
cards, while the action and Curse stacks have ten in each stack. The treasure



cards are usually abundant, with respectively 44, 30 and 20 cards for Copper,
Silver and Gold card stacks.

FEach player starts with a deck of seven Copper cards and three Estate cards,
and should expand the deck by acquiring more cards from the supply as the game
progresses.

Players also have their own discard pile, which contains all the previously
played and bought cards. Whenever the player needs to draw a card from deck,
and the deck is empty, the discard pile is shuffled and made into the player’s
deck, allowing cards to be reused over and over.

The goal of the game is to have more VPs than the opponent player at the
end of the game. VPs are achieved by buying victory cards, which are worth
the printed amount of VPs. There are four types of cards in the game:

1. Victory cards, representing land area by a number of VPs.
2. Treasure cards, played to give coins used to purchase other cards.

3. Action cards, doing a variety of things, such as giving more coins or
drawing more cards into hand.

4. Curse cards, which are worth -1 VP. Some action cards, such as Witch,
distribute Curse cards to other players, while the Remodel card can be
used to remove (trash) Curse cards.

The starting player is picked at random, and the game progresses by each
player taking their turn, continuing clockwise around the table. In successive
games the starting player can be the one positioned on the left side of the
previous winner, as the starting player has a small advantage, as shown in the
experiments in Section 4.3, 4.5 and 4.6, as well as in another paper [21].

A game turn consists of three phases:

1. Action phase, where the player starts out with one action, thus enabling
the play of one action card. Playing a card is done by putting it from
hand onto the table. This card may however give +X actions, allowing
play of X more action cards. After all actions or action cards have been
used, or the player does not want to play the remaining action cards in
hand, the player enters the next phase.

2. Buy phase, where the player can play any number of treasure cards
from hand. The player is granted one buy, allowing the player to buy
one card from all the coins gathered from both the played action cards
(if applicable) and treasure cards . If the player played an action card
giving +X buys (such as the Woodcutter card), then the player can split
the total money, and buy multiple cards. All bought cards are usually put
into the player’s discard pile, which is later reshuffled as the player’s deck.

3. Clean-up phase, which is simply to put all cards played, and the rest of
the cards from hand into the discard pile, no cards are saved on hand for

10



the next turn. Then the player draws five new cards from deck into hand,
shuffling the discard pile if necessary. Note that the treasure cards used
to buy cards are not leaving the player, but put into the discard pile to
be reused later.

The game ends when either all the Province cards have been bought, or three
other supply piles are empty. The winner is then the player with the most VPs
acquired throughout the game.

If the highest scoring players have equal amounts of VPs, then the player
with the least turns taken wins, but in cases where they have the same number
of turns, the game is tied between them.

1.5.3 Game Turn Example

For reasons of clarity, a game turn example is presented:

Anna is taking her turn against Frank, and has a Village card, a Woodcutter
card, two Copper cards and an Estate card in hand.

During her action phase she can either play the Woodcutter or the Village
card. She chooses to play the Village card, first giving +1 card, so she draws
the top card from deck into hand, and sees that it is a Silver card. The Village
card also gives +2 actions, so now she can also play the Woodcutter card. When
she does this she gains +1 buy and +2 coins for the buy phase. She still has
one more action, but since she has no more action cards, her action phase is
finished, and she enters the buy phase.

In the buy phase she already has 4+1 buy and +2 coins from the action phase,
in addition to the one buy she always receives during buy phase, for a total of
two buys and two coins. She can now play the treasure cards from her hand,
and she chooses to play them all (this happens in most cases when playing the
standard game of Dominion). She had two Copper cards and one Silver card to
play, giving four more coins in addition to the two coins from the Woodcutter
card.

Now she has a total of two buys and six coins, where she can choose to buy
a multitude of card combinations, by either picking one card costing up to six,
or two cards costing up to a total of six, or no cards at all. Even though she
can buy two Silver cards for instance, she chooses to buy one Gold card instead.
She then puts the Gold card into her discard pile and enters the clean-up phase.

In the clean-up phase she puts all the played cards into the discard pile,
as well as the Estate card from hand, and draws five new cards from deck.
However, she only has two cards left in the deck, so she draws those two, then
shuffles the discard pile, puts the discard pile where the deck was, and then
draws three more cards. Her turn is now complete, and the next player takes
his turn.

1.5.4 Important Characteristics and Game Concepts

According to the list of attributes for combinatorial games, Dominion can be
categorized as follows [6]:
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e Zero-sum: At least when there are only two players, because moves that
make one player win, will make the other player lose. Some cards not
in this test-bed may have positive side-effects for the other player as well
though.

e Imperfect information: Since the cards on a player’s hand are not visible
to the other player. What the other player has bought is not directly
visible, but can be memorized as all moves made are visible to the public.

e Non-deterministic: Due to the stochastic element of drawing cards, but
the stochastic element is usually more proportional than flipping a coin.
Although the drawn cards reflect what the player bought on earlier turns,
it is possible to lose a game with an inferior deck, due to unlucky card
draws. In order to flatten out the stochastic element, most of the experi-
ments test their settings over many games.

e Sequential: This is a turn-based card game, where each player takes its
turn before the other.

e Discrete: All moves are discrete, and can be considered separate.

The way we see it, mastering the game of Dominion as a human player is
difficult mainly because of the following two reasons:

1. The wide variety of different kingdom cards: Requires players to familiar-
ize themselves with new game setups, applying general knowledge to new
situations, in order to buy and play cards that synergize well.

2. The dynamic game duration: Requires players to time when to start buy-
ing victory cards over other cards.

Other than being worth VPs, the victory cards have no other function
throughout the game, thus it is wise to not buy these too early in the game,
since they take up a space in your hand. Since it is hard to determine when
the game is going to end, choosing when to buy victory cards over other cards
can be difficult. This and the fact that the kingdom cards in supply are often
replaced between games, make the game of Dominion more dynamic and diffi-
cult to master, requiring players to apply general Dominion knowledge to new
setups.

Strategies in Dominion often first buy cards that will enable the player to
buy VPs, and then at a later point start utilizing the built deck to buy VPs.

As a parallel to the exploration versus exploitation, there is first a phase
where one is required to explore or gather the necessary pieces, either informa-
tion or cards, before exploiting this to achieve the highest gain or score available.

Note that the wide variety of different kingdom cards is not extensively
tested further in this thesis, as the testing environment uses only a specific
set of kingdom cards. However, as shown by the experiment in Section 4.1,
MCDomALI should still perform well when implementing more cards.

12



2 State of the Art

This section presents the current state of the art in the areas this thesis contains.

First, we will look at the current Als Dominion, which are to the best of
our knowledge limited to a single scientific paper [21], and a few Als with no
corresponding papers [16, 20].

Secondly, Monte-Carlo and UCT are presented, and UCT is explained into
detail.

Finally we will look at different implementations and enhancements for the
UCT algorithm.

2.1 AI in Dominion

There has not been done a lot of academic work in the area of Dominion Als.
To the best of our knowledge, there is only one AI by Fynbo et al. [21], which
utilizes artificial neural networks. There are two other Dominion Als available
on two web pages [16, 20], but they are without any academic publications.
Having looked at them and achieved a fair grasp of how they work, they are
also presented.

2.1.1 Official Dominion Game Site

The FSM-based Als used at the official Dominion game site [16] have no corre-
sponding papers. The site contains several FSM-based Als, which all appear to
employ some heuristic and rule-based tactics. This means that they are likely
a series of conditional actions. These are relatively simple, but we were unable
to obtain the exact rules they use. For instance, the Banker FSM may behave
according to: ”Buy the most expensive treasure or victory card possible”. A
more specific example is given in Figure 6.

13
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—» End Tumn |e—— else

A

A

Figure 6: Example of a simple rule based FSM.

FSM-based Als are used later as test opponents for our AI. While we do not
have the exact rules used for the FSM-based Als on the official dominion site,
we have created similar ones for testing purposes.

2.1.2 Artificial Neural Networks based Dominion Al

The only academic paper we were able to find on Dominion AI is written by
Fynbo and Nelleman, which describes a Dominion Al that utilizes artificial
neural networks trained to play Dominion [21].

Their AT achieves approximately a 48% win percentage versus a rule based
FSM, and 60% win percentage against a human player. They do unfortunately
not describe the rule-based FSM in detail, so we were unable to test MCDomAI
against it.

One weakness of the Al they present is that according to themselves it is not
extendable to the full Dominion game, as the technique chosen is not applicable
as the complexity rises, at least not on current hardware [21].

Another weakness is the inability to achieve good win percentage against
FSM-based Als [21]. Using neural networks as an approach for a Dominion Al
seems to be an inefficient method overall, but as they mention, the AI might
win more games when more evolutionary runs are used [21]. However, with
the available hardware, the evolved tactics appear to be worse than that of
FSM-based Als.

For MCDomAI, we have chosen an approach which should be applicable
regardless of the cards in setup, being able to expand for all Dominion cards,
and not just the set of cards in the test-bed.
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2.1.3 Provincial Al

The Provincial Dominion Al is published on a web page at Matt’s Webcorner
[20]. The Provincial AT generates strategies to play by, using a genetic algorithm.
There are some prior strategies, which are known to be good, used to develop
new strategies. New strategies are played against the old ones, and the strongest
ones replace weaker ones.

Provincial provides no statistics on performance against other Als or hu-
mans, although it claims that: ”Overall Provincial is quite a powerful Al that
develops strategies fairly similar to those used by very experienced players.”
[20].

2.2 Monte-Carlo Tree Search (MCTS)

This section presents the state of the art of MCTS, and more specifically the
UCT implementation.

MCTS appeared in different versions in 2006 [9], where the UCT variant was
proposed by Kocsis and Szepesvri [32]. UCT is MCTS using any UCB selection
formula, such as UCB1 in Equation 1. When using the UCB1 formula, UCT is
often referred to as plain UCT, but since we use different selection formulas, we
always use the term UCT in this thesis [6].

1
v+ C x | —2

(1)

where v; is the value of the currently evaluated node, C' is the exploration
constant, n, is how many times the parent of node ¢ has been visited and n; is
the number of times node ¢ has been visited.

The UCBI1 formula used for UCT is slightly different than the original for-
mula proposed, as shown in Equation 2 [1]. The difference between the two
formulas is the inclusion of the exploration and exploitation term, C. The orig-
inal formula in Equation 2 is always using v/2 as value for C', while the formula
in Equation 1 is more flexible, allowing this value to be manually set depending
on the application.

%

v + 2Inn, @)
n;

where v; is the value of the currently evaluated node, n,is how many times
the parent of node ¢ has been visited and n; is the number of times node 7 has
been visited.

After the original was proposed, the UCB1 formula has been subject to
changes and improvements, such as UCB1-Tuned and UCB Improved [25, 2].
Although UCT is an extension of flat UCB, UCT was shown to sometimes be
overly optimistic compared to flat UCB [13].

The outline of the UCT algorithm is given in Figure 7 and explained in
Section 2.3 [32].
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Figure 7: The flow of the UCT algorithm [9].

UCT after being introduced by Kocsis and Szepesvri has been applied to
Als in many games, the most notable research done for the game Go, but some
work has been done on games more relevant to Dominion, most notably Magic:
The Gathering (M:TG) [12] and The Settlers of Catan (Settlers) [26].

M:TG is a card game quite similar to Dominion in nature, containing the
same stochastic elements relating to card draws [41]. They considered utilizing
UCT, but decided to utilize flat UCB due to the stochastic nature making tree
creation difficult. Although in a later paper, they apply MCTS with Ensemble
Determinization with some success [14].

Szita et al. apply MCTS to Settlers [38], however they are unable to achieve
high performance against human players. Still, their work shows that MCTS is
both applicable for Settlers, and they also claim that "MCTS is a suitable tool
for achieving a strong Settlers of Catan player” [38].

2.3 Upper Confidence Bounds applied to Trees (UCT)

This section explains UCT in detail, describing each of the four steps in its own
section. The steps are equal to those in Figure 7. This shows how UCT works
in detail, and should also give an indication for how MCTS works in general.
The algorithm is described according to some of the academic papers [32, 9].

Before these steps, for the sake of example, we assume that a root node is
created along with a child for each possible move. The root node is actually the
only node created during initialization, then the selection process expands the
initial child nodes as well.

2.3.1 Selection

Selection is what enables UCT to be such a successful method for MCTS. The
selection is done by the UCBI1 algorithm, as shown in equation 1, to determine
which child node to select for expansion.
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Root Mode
Visited: 25

Option 1 Option 2 Option 3
Score: 0.85 Score: 0.9 Score: 0.3
Visited: 7 Visited: 17 Visited: 1

Figure 8: Example excerpt of a UCT tree.

Consider the tree in Figure 8. When the values are inserted into the UCB1
equation an option is selected according to the following values. Here C' is set
to 0.3 as the exploration constant.

1. 0.85+0.3 x /1222 =1.05

2. 09403 x /1228 =103

3. 0.340.3x /1228 =0.84

The selected node would be option 1, as it maximizes the UCB1 equation.
An important term mentioned a lot throughout this thesis is exploration and
exploitation. By modifying C' in the Equation 1 different options will be selected.
The following example uses the same nodes, but with C' valued at 1.0, which
would mean more exploration and less exploitation.

1. 0.85+1.0 x /1222 =153

2. 0.941.0x /1225 =134

3. 0.3+ 1.0 x /1225 =209

As seen in the above results, the algorithm would now select option 3. By
setting the exploration constant higher, we will be able to explore currently
weaker options more, as opposed to attempting to exploit the ones which seem
strong right now. Balancing exploration and exploitation is extremely important
for node selection in UCT, as well as in all multi-armed bandit problems. If the
exploration constant is set too low we might exclude good options too early
based on unlucky simulations.

After selecting this node, UCT would then perform the selection process on
the children of the selected node. Option 1 would virtually be placed where the
root node is in Figure 8 with child nodes below.
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We continue this selection process until a leaf node or a node with unvisited
children is reached.

2.3.2 Expansion

After having selected the appropriate leaf node in the current tree comes the
expansion phase. This phase adds a single new node containing a unique option
below the selected node.

Selected Mode

Score: 0.66

Visited: 3
: , e
Option 1 Option 2 [ Option3 |
Score: 0.0 Score: 1.0 ! Score:- !
Visited: 1 Visited: 1 v Visited: O ,'

Figure 9: Expanding the tree to contain a new node. The ”Option 3” node from
Figure 8 is now the ”Selected Node”.

Figure 9 shows that the selected node had two visited and one unvisited
child options. The unvisited node is added to the tree, and is shown as option
3 in Figure 9.

2.3.3 Simulation

When a new node is added, UCT simulates a game below it. The game is
simulated according to a defined rollout policy, which can range from com-
pletely random to using more heuristics and rules. Using this policy, the game
is simulated until completion, which is then scored appropriately. Although the
simulation may stop before the game ends, it becomes more difficult to score
the state at which we stop in.
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Selected Node
Score: 0.66
Visited: 3

Option 1 Option 2 Option 3
Score: 0.0 Score: 1.0 Score: -
Visited: 1 Visited: 1 Visited: 0
]
L g
15
1 E
1 &
E:

Game score: 1.0
Figure 10: Simulating a game.

The strength of a UCT algorithm is directly connected to the amount of sim-
ulations run. If an infinite amount of simulations were used, a random rollout
should be converging towards the best move, however utilizing a more deter-
ministic rollout policy could increase performance drastically, by not needing
as many simulations to find the best move. A common policy used is greedy,
where the game is simulated by each play choosing what gives the most benefit
for the next turn only.

For a Dominion Al, the most greedy option can be hard determine, but
buying the most expensive card affordable, or play the most expensive action
card on hand could be a greedy

Games are simulated until they end, and then scored according to some score
system. Commonly used for games is a win/loss score system, which gives an
amount of points for winning the game, and a given amount for a losing, for
instance one and zero respectively. Figure 10 implies a won game for option 2
scored with a 1.0, as opposed to the lost game for option 1, which receives a
score of 0.0.

2.3.4 Backpropagation

Finally we backpropagate the result to parent nodes in the tree, which then
calculates the value into its own value, using for instance the average score of
all simulation for self and all children. Another approach is to use Max, which
only uses the value of the best node [9].
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Selected Node

Score: 0.75
Visited: 4 o
E
Option 1 Option 2 Option 3 0%
Score: 0.0 Score: 1.0 Score: 1.0
Visited: 1 Visited: 1 Visited: 1

Figure 11: Backpropagating the score from the simulation.

The score from the simulated game is set as the value for the node that was
visited for the first time. Then, the score is backpropagated to the parent, which
updates its value and visited number accordingly, as shown in Figure 11. The
parent node will then backpropagate it to its own parent, until the root node of
the tree is reached.

Now one loop of the UCT algorithm is complete.

The process, starting with selection, is then repeated, until a limit is reached,
such as a maximum number of simulations or time limit. The best move can
then be inferred from the results.

Root Mode
Visited: 10000

Option 1 Option 2 Option 3
Score: 0.12 Score: 0.91 Score: 0.56
Visited: 468 Visited: 5999 Visited: 3533
1 1 1
I I I
End Nodes I I
[ [
: End Nodes
[
End Nodes

Figure 12: A possible final result after UCT has run its course. The stippled
lines represent tree nodes below each option.

As shown in Figure 12, the size of the tree varies, which is due to the explo-
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ration and exploitation constant in the UCB1 equation. The tree below option
2 is larger, as it has had more visits. In this case it will have been in the expan-
sion phase 5998 times, thus having 5998 nodes below it, since the first visit was
the simulation when it was created. The others have less nodes, 467 and 3532
respectively, as seen by the visited count.

From this UCT can infer that option 2 is likely the better of the three, and
thus choose to play option 2 this turn.

2.4 Exploration versus Exploitation

One of the largest challenges with multi-armed bandits and UCT is to balance
exploration and exploitation. The UCBI1 formula for selecting which node to
expand in UCT is given in Equation 1, adding the parameter C that can be
tweaked to balance exploration and exploitation.

The UCB1 formula ensures that even though a node has a better score than
its siblings, the others will still be visited after a while. Selecting a good value
for C' is crucial to ensure that UCT works well, and this section talks about
some papers discussing different techniques to handle this.

The number of simulations used helps explore the tree in multiple branches,
depending on the exploration and exploitation balancing. One way of putting
it is that the number of simulations is the search credits available for both ex-
ploration and exploitation, and one has to balance this to receive the maximum
intelligence from the available simulations.

2.4.1 Dynamic C Value

A paper on methods of MCTS shows, among other things, how one can have a
C' which modifies itself while the algorithm is running [33]. The two following
approaches to having a dynamic C' are presented:

1. Time based Decay
2. Variance based Decay

Time based decay was tested with the formula in Equation 3.

¢ = maxz(0.01, min(0.25, %) (3)

where n is the number of visits, and k is a constant to fit your score system.

The minimum and maximum values 0.01 and 0.25 may also differ depending on
your score system.

This approach attempts to handle the problem with initial scores being less
accurate and improving as you get more runs to average from and as such less
exploration is needed as time passes.

Variance based was tested using the formula in Equation 4.

1 n .
¢ = maz(0.01,min(0.25,k(~ > X2) ~ X") (4)
n t=1
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where k is again a constant preset to fit your scores, n is number of visits,
7?2 is the average results of rollouts, and X; is the result of the it" rollout.

This is to some extent what UCB1-Tuned, in Equation 6, attempts to do.
This let the runs be more evenly distributed, if the score variance is large.
Options that might receive an initial score which is much worse than what it
would normally average to, is then run again, which might not happen if the C'
was set to a static value.

The results showed some success, however the conclusion is that the results
vary too much, and are not feasible to use in the long run.

2.5 UCT Enhancements

Some papers on UCT attempt to make their own enhancements to improve on
their specific domain implementation [6]. This section explores some of these
enhancements. The survey on MCTS techniques divides enhancements into two
groups [6]:

1. Domain Independent
2. Domain Dependent

The difference between the two is that domain independent enhancements
are general enhancements for any application of MCTS, while domain dependent
enhancements are created specifically for a certain domain or game. The follow-
ing enhancements are all domain independent, as they hold the most interest for
us when considering whether to apply them to our Dominion implementation
of UCT. We further divide the enhancements into the following categories.

1. Performance and General Enhancements. These enhancements generally
help achieve better performance in terms of speed. This will enable the
algorithm to run more simulations per move, and as such improve perfor-
mance in terms of play accuracy as well.

2. Bandit Enhancements: There are many different functions to select which
node to expand from. By replacing or modifying the UCB1 function you
get different levels of exploration and exploitation.

3. Selection Enhancements: Another common thing to do is to alter the
way the tree is explored through other means than modifying the bandit
function. Some of the most common ones are presented, two of which we
have utilized versions of for MCDomAI.

4. Simulation Enhancements: These are approaches to enhance the rollout
policy used during simulations. The initial method of simulating in MCTS
was to select a random option from the available ones, until end conditions
are met. This can be greatly improved to give a more accurate score with
less simulations. For flat UCB, random rollouts may also result in non-
optimal moves being chosen incertain situations [5]. It is thus normal for
implementations of UCT to enhance the rollout algorithm.
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5. Scoring Enhancements: Improves how each simulated game is scored, and
possibly propagated up through the search tree.

2.5.1 PaG enhancement A: State Hashing

When building large trees for games, such as Chess and Go, the same position
of pieces may occur more than once throughout a single game. Running all
simulations from the original game could become a black hole, as the game
would be stuck in a repeating loop. By hashing the current game state, and
comparing hashes, the algorithm can identify equal states, and when a state
is reached which already exists, it can point to the first of the equal nodes
and continue expanding from there. For the basic set of Dominion, this can
however not happen since all moves are happening in a forward direction, with
the exception of not taking an action at all, which would not cause the player
to win, unless other players are also making very poor choices.

2.5.2 PaG Enhancement B: Move Pruning

Removal of bad options in the UCT tree to prevent wasting simulations on them
is another commonly used technique. This can improve performance by enabling
more exploitation. Several approaches have been taken to move pruning, and
techniques have been developed for MCTS specifically. A survey divides these
into two categories; soft pruning of moves and hard pruning of moves [6]. Soft
pruning are approaches where the pruned moves can be revisited later if they
prove to be beneficial, while hard pruning means complete removal of the op-
tions. The main problem with pruning is to accurately evaluate the states to
not remove moves which may be good, and preferably not keep bad moves.
There are several approaches to move pruning:

1. Progressive Unpruning/Widening Pruning [10]
2. Absolute and Relative Pruning [28]
3. Pruning with Domain Knowledge [28]

The first approach, progressive unpruning/widening, is a heuristic technique
which soft prunes based on previous knowledge.

The second approach, Absolute and Relative pruning, are techniques where
one excludes options which no longer have the chance of becoming the most
visited option. Relative pruning has an estimated number of visits before the
other options are pruned, while absolute pruning waits until it is certain that
no other moves can overtake it.

The third approach, Pruning with domain knowledge, means to remove op-
tions which are known to be poor, using expert knowledge of the field.

2.5.3 Bandit Enhancement A: Thompson Sampling

Thompson sampling was proposed in the 1933, and has recently risen in popular-
ity for use in bandit algorithms and computer intelligence [39]. When performing

23



Thompson sampling, a beta distribution is created, based on the amount of tries
and successes for each choice.

Beta(pl + successes, p2 + tries — successes) (5)

where pl and p2 are some priors selected in advance.

A random variable is then selected from the beta distribution in Equation
5, which is further used as the value for the option. The option which has the
highest value returned is the one selected.

2.5 / 2.5 \

. / \ \
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/, 0.5 \
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Figure 13: Two sample beta distributions.

The graphs in Figure 13 are two examples of Beta distributions. The left
graph shows an option with five tries and four successes (wins), while the graph
to the right has five tries and one successful run. As can be seen, the graph to
the left with four successful runs has a far higher chance to pick a high number,
than the graph to the right with only one successful run.

2.5.4 Bandit Enhancement B: UCB1-Tuned

UCBI1-Tuned, in Equation 6 and 7 is a version of the original UCB1 algorithm
proposed [1, 25]. UCB1-Tuned is showed to be performing better than UCB1
in Go, by taking the variance of the empirical values into consideration before
selecting a node to expand. This UCBI1 variant replaces the upper confidence
bound with a variance variable.

Inn, (1
vl-—i-CX\/ p xmzn{4,Vi(ni)} (6)

where the first part is the same as in Equation 1, and V;(n;) part is variance
variable in Equation 7, which equals to

Uz

1 2lnn

t=1
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2
i,t,J

is the t*" payoff in node i for the player j. Which expresses the estimated upper
variance bound of machine i. In [9] this performs better than UCBLI in all their
tests.

where the variables are the same as in Equation 1 and the new variable R,

2.5.5 Selection Enhancement A: First Play Urgency

First Play Urgency (FPU) is a modification intended to enable exploitation
further down the search tree [25]. It is based on the principle of not changing
a winning tactic. When an arm on the multi-armed bandit is winning, there
is no reason to explore other options unless the arm starts losing. As the tree
grows proportionally as the algorithm gets deeper, there will be less simulations
available per option, this is intended to utilize the limited simulations better.

2.5.6 Selection Enhancement B: Expert Knowledge

Supplying expert knowledge for the UCT algorithm to use is commonly done
when UCT is used as a game Al [23, 41, 6]. This can be supplied as an opening
book, which is a collection of fixed moves early in the game which is known to
be optimal or close to optimal, or as heuristics and rules. MCDomAI utilizes
some expert knowledge in the form of heuristics and rules to improve rollout
accuracy, time per move and general play quality.

2.5.7 Selection Enhancement C: Search Seeding

Search seeding is to initialize the nodes in the UCT tree with values based on
some heuristics. This can reduce the need for exploration of nodes which are
already known to be poor choices. Gelly et al. generate prior data for their Go
AT, which improved play notably [24].

2.5.8 Selection Enhancement D: History Heuristics

Storing information from previous simulations can also be beneficial, as it en-
ables the UCT algorithm to more accurately judge where to explore or exploit
considering how these moves performed previously. History heuristics is based
on the same technique as used in af tree search [33].

Kozelek differentiates between utilizing history heuristics on a tree-playout
level and a tree-tree level [33]. Tree-playout level is to utilize history heuristics
to tune simulation policy, while tree-tree level is to utilize it to improve action
selection. Kozelek shows in experiments that utilizing tree-tree level history
heuristics significantly improves performance compared to no history heuris-
tics, it is however not measured up against tree-playout level history heuristics.
Finnsson also describes significant improvements when utilizing history heuris-
tics, while it is unclear exactly what heuristics he gathers, he states that history
heuristics are better with 99% statistical significance [17].
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2.5.9 Simulation Enhancement A: Rule Based Simulation

By providing expert knowledge as rules for the simulations run during rollout,
one can greatly improve the accuracy, with virtually no loss of performance in
time per move.

2.5.10 Simulation Enhancement B: Machine Learning Simulations

Some research has also been done on having the rollout algorithm learn by
experience which options to play, based on previous options. There are two
different related techniques which are applicable in general:

1. Move-Average Sampling Technique (MAST) creates a table for each option
containing updated reward values for each option. When in the rollout
phase these values are used to guide option selection towards the better
moves by using a Gibbs distribution [19].

2. Predicate-Average Sampling Technique (PAST), which is related to MAST,
the difference being that PAST store different predicates paired with ac-
tions [18].

2.5.11 Scoring Enhancements: Minimax and Expectimax

When scoring games based on their rollouts, it is important to score them in
such a way that UCT will make good choices. This is especially important when
dealing with more than one player, having to consider their score against your
own.

e Minimax - Attempting to maximize your own score, while minimizing your
opponents, and assuming they will do the same [6].

e Expectimax - For stochastic games, where the value for each node will
be a weighted value based on child nodes and the probability that it will
occur [6].

2.6 Parallelization

There has been done some of work on the subject of multi-threading UCT trees,
[4, 7, 8, 11, 34]. We have chosen to focus on the three following, as they seemed
to be the most used ones:

1. Root Parallelization or Single-Run Parallelization
2. Tree Parallelization or Multiple-Runs Parallelization

3. Leaf Parallelization or At-the-leaves Parallelization
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Figure 14: The three approaches to apply parallelization to UCT [11]. Note
that tree parallelization can be done with either local or global mutexes.

As shown in Figure 14, root parallelization creates multiple trees, and merges
the results for the initial options afterwards.

Tree parallelization uses one global tree and lets each thread modify the tree,
using locks to keep consistency.

Leaf parallelization runs multiple simulations or rollouts instead of just one
when expanding a leaf node, giving a larger sample size.

In tests leaf parallelization proved to be slower, and not yield much better
results [11]. Root parallelization is the one which has shown the most success,
although some research on tree parallelization claim that it might be able to
yield equal or better results [4, 11].
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3 Approach

This section introduces the four variants of MCDomAI, where two of them use
UCT and the other two use flat UCB. The variants are similar, the differences
are described below:

1. UCByig: Applies flat UCB, using the UCBI formula, in Equation 1, dur-
ing selection to find the best move.

2. UCBp0q: This variant uses a modified version of the UCB1 formula as
shown in Equation 8, but is otherwise similar to UCBgyig.

3. UCTyg: UCT is used to find the best move, thus creates a search tree
compared to (1) and (2). Is also using a slightly different propagation
system than UCT,0q, in order to resemble a Minimax tree search.

4. UCTyq: Similar to UCT e, but uses UCT together with the modified
version of the UCB1 formula for selection, as well as a modified propaga-
tion system, which does not pay as much regard to the opponent player.

For clarity, Table 1 shows the differences and similarities when it comes to
selection formulas for the different variants.

UCB1 Formula | Modified UCB1 Formula
UCT UCTorig UCTmod
Flat UCB UCBorig UCBmod

Table 1: A matrix overview of all variants and which selection formula they use.

Since the variants are very similar to each other, UCBgyiz and UCBeq is
presented together, showing the difference between them in appropriate sections.
The same is done for UCT i and UCT 04, although there is a more significant
difference between these variants, which is also presented where appropriate.

Figure 15 shows the main approach of MCDomAI in general, where the goal
is to find the best of all possible moves in the current state. This is done by
testing every move many times, as a multi-armed bandit problem, where the
best move is the one that in the end has received the most visits, due to the
UCBI1 formula.

Solution

Select a possible move using UCB1
Input formula. m Best
Simulate a full Dominion game from move
the selected move.

Repeat a number of times.
Best move is selected the most times.

Al
possible
moves

Figure 15: The general approach for all variants of MCDomAI.
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Throughout the rest of this section, as well as Section 4, there is a number of
configurations and results presented. These experiments are mostly adjusting
on a few parameters at a time, so a single configuration table is presented for
each experiment. An example table is presented in Table 2. To save space, the
settings are not explained in detail for each table, so a general explanation is
provided:

Sims.: Abbreviation for Simulations. This is the number of simulations
used for each game. See Section 3.4.5 for more information on the UCT
variants and Section 3.5.1 for the flat UCB variants.

Scoring: Scoring system refers to which scoring system from Section 3.4.2
is used during simulation.

C: Also refers to Section 3.4.2, where C is an adjustable constant to
balance exploration and exploitation.

Rollout: Which policy is used during the rollout phase. See Section 3.4.3.

Epsilon: Epsilon is the percentage of how much of the rollout is random-
ized. Only applicable to Epsilon Greedy rollout policy. See Section 3.4.3
for more information.

Min. Vis.: Abbreviation for Minimum Visits. The minimum amount of
times a top node should be visited. Used to combat cases where nodes are
only visited once. See Section 3.4.6.

MPPAF: Abbreviation for Must Play Plus Actions First. Column indi-
cates whether the enhancement that forces MCDomALI to play cards that
give +X Actions before other action cards is enabled. See Section 3.4.4.

Thrs.: Abbreviation for Threads. Refers to the amount of threads used
to run experiment. See Section 3.4.7.

Its.: Abbreviation for Iterations, and refers to the number of iterations
used to achieve better performance and sampling. Multiply with Threads
to find number of search trees created. See Section 3.5.3.

Starting Player: Denotes which player starts the game. Does not apply to
the "Total” rows, because ”Total” is the measured values added together,
so that both players start 50% of the games each.

Wins: Displays how many games that were won by the tested configura-
tion.

Losses: Displays how many games that were lost by the tested configura-
tion.

Ties: Displays how many games that were tied by the tested configuration.
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e Win Perc.: Abbreviation for Win Percentage. It is the number of wins
divided by the total number of games. Ties are counted negatively against
the win percentage.

Simulations 100 000
Scoring Win+Diff
C 0.5
Rollout Epsilon H. Greedy
Epsilon 10
Min. Vis. 1
MPPAF True
Thrs. 1
Its. 1

Table 2: An example configuration table.

As mentioned in Section 1.1, only a specific set of kingdom cards was chosen
as test-bed for MCDomAI. The reasoning behind this is mainly that since this
is a relatively new approach for Dominion, the goal is not to implement as
many cards as possible, but create and benchmark a Dominion AI, which can
be further improved and used for the complete game. The list of used cards is
located in Appendix C.

To save time, MCDomAI always plays all treasure cards during buy phase.
Based on domain knowledge, it is very close to always bad to buy a Curse card,
so those moves have been completely removed / pruned.

The number of games played in further experiments may seem a bit odd,
but this is because each experiment had to run for several days, and would
sometimes have to be stopped and started again, so some experiments have
sometimes been kept going after convergence. Instead of removing the extra
data, it is included, as more data is better.

Most of the parameter setups run MCDomAl against a simple and condi-
tional, finite-state machine-based Al, named Big Money Finite-State Machine
(BMFSM). Note that BMFSM is not an actual finite-state machine only similar
to one. The algorithm for BMFSM can be found in Appendix A.

Due to time limits, we could not test all four variants with each configuration,
80 UCT 0q is used as a representative variant to find the best scoring system,
value for C, rollout policy and whether to use the Must Play Plus Actions First
(MPPAF) enhancement.

3.1 Brute Force Search Tree

It is of interest to first research whether brute force can be applied to play
Dominion, because if it is, then an optimal solution may possibly be derived
from it, thus one could be capable of creating an optimal AI. The naive or
brute force approach to playing Dominion might be possible, but is arguably
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infeasible. To demonstrate this, a brute force tree was created, showing every
possible game state of a very simplified game of Dominion from start until a
limited number of turns. The simplification made use of only treasure and
victory cards, and also limiting the game to single-player mode. Each node in
the created tree represents a different game state, as either a ’draw node’ (red
squares), effectively constituting a player’s hand, or a ’buy node’ (blue circles),
showing only which card the player bought, if he something at all.

Figure 16: The first turn in the brute force tree containing 21 nodes. The
squares represent the different combinations of card draws, while the circles
represent different buy options.

Figure 16 shows the brute force tree for the first turn, where the top node is a
dummy root node, having four children, which represent the four possible ways
to draw a combination of five cards from a player’s starting deck. Each ’draw
node’ will give the player an amount of money to buy a card for, respectively
5, 4, 3 or 2 coins. Using this money, the player may then buy a card costing
up this amount, the different choices represented by the leaf nodes or "buy
nodes’. Note that the amount of money will limit the set of cards available for
purchase. Graphing the first turn in Figure 16 is relatively straightforward, but
this becomes exponentially more difficult as the number of turns increases. Due
to the nature of Dominion, the branching will increase more at times when the
deck has to be shuffled, and the player has to draw many cards from the newly
shuffled deck. In the case of turn two, there is only one possible combination
of cards left in the deck, as there will always be exactly five cards remaining.
Even though the node size is increasing from 21 to 99 nodes when graphing the
first two turns, this branching will become much larger whenever there is need
for a shuffle.
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Figure 17: The second turn in the brute force tree containing 99 nodes. The
squares represent the different combinations card draws, while the circles rep-
resent different buy options. The figure is purposely chaotic and unclear to
illustrate the infeasible amount of nodes the brute force tree has to work with.

Figure 17 shows the increasing amount of nodes needed to graph the first
two turns, however, at turn 2 there is the need to shuffle cards, and with be-
tween 10-12 cards in deck, with between 2-4 different card types, the number of
nodes quickly increases. The number of nodes used to create a brute force tree
including turn 3 requires 2077, which is more than 20 times as many as turn 2.

Table 3 contains the number of nodes needed for a tree of depth up to turn
six, together with the branching factor for each turn increase.

Turns Nodes Approximate Branching Factor
First turn 21 N/A
First 2 turns 99 4.7
First 3 turns 2077 21.0
First 4 turns 23 631 114
First 5 turns 681 365 28.8
First 6 turns | 15 366 943 22.6

Table 3: The number of nodes needed for a Dominion brute force search tree
for the first 1-6 turns.

The two main reasons for the big branching factor are:

1. Each player has roughly 10 choices each turn, depending on which cards
are on player’s hand. For each of these choices, there will be 10 new
choices, etc. as we explore the brute force tree. This is less than what is
expected in a game of e.g. Go, where in a 19x19 game each player has 361
- number of turns played moves available, (this amount further increases,
when groups of stones are captured).

2. The second reason, which is by far the most important, is the stochastic
element associated with drawing one or multiple cards from a deck. After
each turn the players draw five new cards to constitute their hand for the
next turn. With a deck consisting of 8 different cards, and 5 of each type,
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which is not an unlikely size for the end game of Dominion, there are 52
different card combinations.

Requiring 15 366 943 nodes for the six first turns of a game of about 30 turns
in a single-player game of Dominion without the ten kingdom cards, the brute
force approach is arguably infeasible.

3.2 Dealing with Stochastic Card Draws

In a game of Dominion each player has to draw cards from a shuffled deck at
the end of each turn, and when playing some cards, like the Village card. At the
end of each turn the player is required to draw a total of five new cards. Since
the deck of cards is turned face-down and the card order is unknown, there is a
certain stochastic element when drawing a card. This is a challenge for UCT,
because the UCBI1 formula in Equation 1 is normally based on complete infor-
mation, thus each node in the tree should ideally represent complete knowledge
about a game state, and the edges should have guarantees for transitioning be-
tween nodes. However, since this is not the case for Dominion we present two
new methods we tried for dealing with this for the UCT variants:

1. Create a search node for each possible combination of card draws and
associate a probability with each node.

2. Proportionally sample a single card draw, and use it for the rest of the
search.

The first approach, see Figure 18, requires MCDomAI to create a lot of
nodes, and is not very far from a brute force solution, since the number of card
draws is the biggest factor to increasing tree size. For example, in a deck of 20
cards, with 4 different types, and 5 cards of each type, there are a total of 56
card combinations. Towards the end of a game of Dominion it is not unusual to
have a deck of 40 cards, with possibly 17 different types, although not 5 of each
type. Note that the order of cards does not matter here, only how many cards
of each type, thus we only have to create a node for each combination of drawn
cards, not each permutation. This reduces the amount of nodes that needs to
be created, but not by enough.
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Draw 5 Copper |Draw 4 Copper, 1 Eslate Draw 3 Copper, 2 Estate Draw 2 Copper, 3 Estate

Buy Village & & Buy Village

Figure 18: Create a node for each possible card draw, and assign the edges of
each card draw an associated probability.

In order to create draw nodes, all possible card draws must first be found
along with their associated probability, so instead of expanding one node at a
time, when encountering a node that has card draws beneath, all card draws are
created at once, and then one of them is selected afterwards using the associated
probability together with score and the UCBI1 formula, to let likely nodes be
explored more. However, since each node should be visited at least once, this
approach soaks up a lot of simulations, exploring unlikely combinations of cards.
One solution is to set each draw node to set the visited counter to 1 upon
creation, so that all do not need to be explored. Still, the number of nodes
needed for this approach to be effective will likely be enormously high, in fact
it will exceed the number of atoms on Earth!

This makes the second solution more attractive, which also the one used for
the UCT variants Whenever there is need to draw cards in the search tree, the
probabilities for drawing card combinations are used, resulting in a single card
draw. This card draw will then be used for all further simulations, even though
the game may never progress to that specific card draw. This works because the
card draws are made using proportional sampling, and can be further increased
using parallelization to create more realistic card draws, see Section 3.4.7 for
experiments on sampling. Thus, instead of only having one set of card draws,
multiple search trees will view different possibilities of card draws, resulting in
better game estimation. Figure 19 shows how multiple search trees increases
card draw sampling.
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Figure 19: Hlustrating how different search trees sample multiple draws.

This is resembling the idea behind Thompson sampling in Section 2.5.3,
where one would create a probability distribution over the different card draws,
and then pick one using mentioned distribution, and then work with that specific
sample. Using Thompson sampling for dealing with card draws is however
different from the bandit enhancement itself, but the idea is the same.

Due to the lack of a search tree, card draws are not such a big challenge
for the UCB variants, because all card draws are taken care of during rollout
phase. Card draws during the rollout phase are simulated as if it was a real game,
where random cards are selected from the deck according to their proportional
probabilities, similar to the sampling approach for the UCT variants. However,
these samples are not kept across simulations due to the states beyond the
current one not being saved, as opposed to in UCT when a node is created with
a fixed state based on the previous card draws.

3.3 Interaction Between Players

For the UCT variants of MCDomAlI, the interaction between players is taken
care of at three places:

1. UCT tree nodes: The UCT search tree creates nodes for both players,
which is the way most UCT implementations work.

2. Propagation: Normally UCT would create nodes for the opponent’s moves,
and score them based on the UCT player’s score. The UCT,,,q variant
simply skips propagating whenever the opponent makes a move. UCT i
uses a slightly different approach by propagating the opponent’s score to
the opponent’s nodes, as well as increasing the number of visits in all nodes
on the path to the leaf, instead of skipping propagating entirely. UCT qyig
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resembles a Minimax behavior (normally Minimax is done during selec-
tion), since the algorithm will try to explore where both players perform
well.

3. Rollout: The rollout policy is the same for both players, but could have
been modified to resemble the opponent player. For MCDomAI however,
one assumes that the opponent will also use the epsilon heuristic greedy
policy.

For the flat UCB variants, interaction between players is much more subtle.
Because there is no search tree, there are no nodes representing the opponent’s
moves, nor is the propagation present. So the rollout is the only place where the
opponent’s behavior could be modeled, possibly by using different policies for
the opponent and MCDomAI. However like the UCT variants, the same epsilon,
heuristic, greedy rollout policy is used for both players.

Even without any specific handling of the opponent, the flat UCB variants
seem to handle interaction between players well.

For all variants we note that complete information about both players’ dis-
card piles is known to both players. While it is possible to hide some cards
during the clean-up phase by discarding the whole hand at once, leaving only
the top card visible, we considered the benefit of this neglectable. Hiding cards
can possibly be of some use for the complete game, but when using the cards in
test-bed it should not matter. Drawing cards from the deck is random, and the
order is not known. Information regarding which cards are in which pile thus
gives little advantage.

Also, since draws are done at the end of each turn, information about the
opponent’s next draw is available during rollout. This is a simplification that
may have a larger impact than knowledge about the discard piles. However,
for this setup of cards, it should generally not matter much since there are few
cards which interact with each other.

3.4 UCT Variants: UCT,i; and UCT,,04

This section presents the two UCT variants, UCTig and UCTeq. They are
similar in most aspects, however there are the following differences:

1. UCT 04 uses a modified UCBI selection formula. See Section 3.4.2.

2. UCT 04 needs to use a higher number of simulations, due to the modified
selection formula. See Section 3.4.5.

3. UCTie uses a Minimax-like propagation system. See Section 3.3.

When playing Dominion there are a number of times during a player’s turn
that the player is required to make a choice. At all such times this approach runs
the logic from Figure 20. By first examining all possible moves, then simulating
full games of Dominion from each of these moves, and building a search tree
as the process runs, this approach is capable of finding the a very good move,
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possibly the optimal one. Note that cards where a player is required to take
an action during another player’s turn are not implemented, due to the extra
work in rollout and expert knowledge required, but this should be feasible to
implement in the future.

Solution

Search tree

A% Best
. Simulate game
pncin.zs\.:glse using rollout policy LT move
<

0

Propagate score to
ancestor nodes

Figure 20: The approach to find the best move from the set of possible moves,
by using UCT.

3.4.1 Dominion in the Search Tree

In order to use UCT, one needs to build a search tree, which should be a subtree
of the brute force search tree. The game state is represented by nodes, in the
same way as the brute force approach in Section 3.1, but extended with nodes
for playing action cards. Since a turn can be longer or shorter, depending on the
player’s choices, there is no direct link between the tree depth and the number
of turns. However, the tree depth is equal to the number of moves that were
made to reach the specific node or game state. An example of a small search
tree is given in Figure 21.

Figure 21: A small search tree, showing how the Dominion game state is
changed.

Each of the top nodes represents a choice or a move, and finding the optimal
move can be viewed as a multi-armed bandit problem. The idea is try out the
four different top moves, while also expanding the search tree with one child

37



node after every try, selecting a node using the formula in Equation 1. Then,
this node runs a simulated game, receiving a score, which is then later used
during the next node selection. After a given number of loops, see Section 3.4.5,
the best move is the one with the highest amount of visits. The best node value
could also be chosen as the best move, however the difference seems to be small,
but there are cases where the best node may not have been visited the most
times, due to the selection formula also calculating some exploration into the
total score. In the future, one could do some experiments to see if this has an
effect on performance.

3.4.2 Propagation and Scoring

When selecting a leaf node to expand, the UCB1 formula in Equation 1 is used
for UCT,,4g, while the modified formula in Equation 8 is used for UCT 4.

vi—l—Cx,/ln& (8)
g

where the variables are the same as for Equation 1.

The difference between using Equation 1 and 8 as selection formula is mainly
that the when using the modified formula, good options are exploited more in
the beginning, while exploring is done more towards the end of a search. Similar
to first play urgency (FPU), as mentioned in Section 2.5.5.

The value set for C in Equation 1 and 8 is also dependent on the scoring
system, which gives each simulation a score. This score is then propagated
back through each ancestor until reaching root. The score is further used when
selecting a new child node to expand. Note that the propagation is actually
not passing through each ancestor, only each ancestor belonging to the same
player as the leaf node, see Section 3.3 for details. Normally when using UCT
the scoring system only uses Pure Win/Loss, listed as solution (1). However,
this solution alone seemed to have some problems in ”sure” win or lose cases. In
order to combat this, an improved scoring system, listed as (2), was also tested.

1. Pure Win/Loss: The following approach is the one often used in other
UCT applications. It only keeps track of the number of wins and how
many times a node has been visited. When a game is won, the value of 1
is propagated upwards, while also increasing the amount of visits in each
propagated node, including the leaf node. This scoring system uses the
formulas in Equations 9 and 10, depending on the simulation result in
Equation 11.

1, if Diff > 0 (9)

Score = Winpoint = i
0, otherwise (10)

where
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Diff = PUCT - POpponent (11)

and Pycr is the current player’s VPs in the simulated node and Popponent
is the opponent’s VPs in the simulated node.

2. Win/Loss + percentage of difference in score (Win+Diff): Works like the
scoring system 1, but adds a percentage of the difference in the players’
VPs to the total score. The formula is given in Equation 12.

Diff
Score = —— + Winpoint 12
To0 T Winp (12)
where Diff is equal to the formula in Equation 11, and Pycr is the current
player’s VPs in the simulated node and Popponent is the opponent’s VPs
in the simulated node. Winpoint is equal to the formulas in Equations 9
and 10, depending on the simulation result in Equation 11.

The second scoring system is an improvement to the first one. The reason for
the improvement came from some observations of random moves in situations
where MCDomAI already had either clearly lost or won. In these cases, MC-
DomAI would buy or play a bad card, instead of ensuring victory or trying to
catch up. This is probably because the first scoring system does not distinguish
what is a small or huge victory/loss, because the same score is given no matter
which option is taken, when all options lead to either loss or victory. Consider
the following example: MCDomAI has currently 60 VP, while the opponent has
20VP. There is only one Province card and one Smithy card left in the supply,
and all other victory cards have been bought. MCDomAI will win the game, no
matter what happens next, so on its turn, it may finish the game buy buying
the last Province card, but it might as well buy the Smithy card, because both
options will lead to victory for MCDomAI

This is something to be avoided, because even if MCDomAlI is going to
win/lose it could be mistaken, which is why it is important to distinguish be-
tween good and bad options in these cases too. In order to solve this, one could
make use not only of the win/loss outcome of a game, but also the difference
in VP at the game end. So in the example above, MCDomAI would think that
buying the Province card will give a 66 VP - 20VP = 46 VP difference, while
buying the Smithy card will lead to a 60VP - 20 VP = 40 VP difference. Since
46 VP ; 40 VP it will give the Province card a better score, and most likely buy
that one instead of the Smithy card. Note that the difference can be negative
too, in order to solve the situation for both winning and losing.

One could also modify the formula of the second scoring system, by dividing
Diff with something else than 100, in order to weigh more heavily upon the
difference in score. However, it is important to not add in a too high value to
the total score, as this will give a fluctuating score, thus making exploration and
exploitation more difficult to balance. If a dynamic value for C' was used, this
could be possibly be tested as a different scoring system in the future.

39



In order to find the best scoring system, the experiment in Table 4 plays
them against BMFSM, using the configurations in Table 5. The different scoring
systems were tested only on UCT,,q, however the best scoring system should
be applicable for all variants of MCDomAI, due to their similarities in selecting
nodes.

Scoring C | Win Perc. | Wins | Losses | Ties
Pure Win/Loss | 0.3 76.7% 810 240 6
Pure Win/Loss | 0.4 79.0% 779 202 5
Pure Win/Loss | 0.5 81.9% 870 186 6
Pure Win/Loss | 0.6 85.0% 899 146 13
Pure Win/Loss | 0.7 80.9% 743 166 9

Win+Diff 0.3 78.2% 541 147 4

Win+Diff 0.4 85.7% 715 117 2

Win+Diff 0.5 86.9% 722 101 8

Win+Diff 0.6 87.5% 835 111 8

Win+Diff 0.7 88.7% 892 105 9

Win+Diff 0.8 87.4% 836 112 8

Table 4: Finding the best scoring system together with a value for C, when
using UCT,0q- The configuration is found in Table 5. See Section 3 for table
explanations.

Simulations 100 000
Scoring Multiple
C Multiple
Rollout Heuristic Greedy
Epsilon N/A
Min. Vis. 1
MPPAF True
Thrs. 1
Its. 1

Table 5: Configuration for finding the best scoring system and value for C' in
Table 4, when using UCT},,,q. See Section 3 for table explanations.

The best scoring system in Table 4 is Win+Diff, with a C value of 0.7. At the
end of the work, it was discovered that if two or more nodes had the same value
during selection, then the last node added would always be picked, thus not
selecting at random. This could be of some importance to the Pure Win/Loss
system, as nodes would more often end up with a similar score. However for
Win+Diff, the chances are much lower that two nodes should share the same
score, due to the addition of difference in VPs.
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3.4.3 Rollout

The rollout policy, as described in Section 2.3.3, is used to simulate games has
a big impact on how well MCDomAI performs. For all variants of MCDomAI,
we have chosen to test three different rollout policies, which are fairly normal to
use when experimenting in a new field. In the future it would also be interesting
to test out more policies.

1. Random Rollout Policy
2. Heuristic Greedy Policy

3. Epsilon Heuristic Greedy Policy

The random rollout policy simulates a game where both players take their
turns by picking a random option each time they are required to make a choice.
This method is used in many other applications for UCT, but have been found
to not perform well in Dominion, as shown in Table 6.

The second rollout policy is based on heuristics, and works like a greedy
policy, hence heuristic greedy. In Dominion there are many ways to view how
a 'greedy’ policy should behave. Should it buy the cards that gives most VPs
or that have the highest cost? Thus, it is important to clarify what greedy
means in MCDomAI. There are two different situations when MCDomAT needs
to make a choice, both when buying a card and when playing a card, and in
both cases the most greedy choice is to pick the card with the highest cost.

When it comes to playing action cards, some more heuristics could have been
used, but that is a very complicated process as the number of cards interacting
with each other increase. Possibly could one put in a rule-based strategy as the
rollout policy, but such strategies would then have to be made for each different
set of cards, thus making MCDomAT less adaptive. However, a more general
heuristic rule, "Must Play Plus Actions First’ (see Section 3.4.4), was applied,
as this is easier to apply to other sets of cards as well. The pseudo-code in
Algorithm 1 explains the rollout policy:
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while game is not finished do

while player has more buys or actions do

if there are any action cards in player’s hand then

// The MPPAF enhancement

if there is a plus actions card then

‘ play that card;

else
find action cards in hand with highest cost;
play random card with the highest cost;

end

else

money := hand.money();

find cards with highest cost that is not higher than money and

that is not Curse;

if there are no cards then

| break;
else
‘ buy a random card that has the highest cost;
end
end
end

end
Algorithm 1: Heuristic Greedy rollout policy

The last rollout policy is a form of epsilon-greedy, where the greedy policy
part is the heuristic greedy explained as policy 2. As described in Section 2,
epsilon-greedy combines random rollouts with greedy rollouts, so that in 1 — ¢
percent of the cases, a single move made during rollouts is done using greedy
policy, while in € percent of the cases, a single move is chosen at random. Note
that it is not the whole simulation that is being decided by epsilon, only a
single move at a time. Like the constant C, the value for ¢ must be found
experimentally, but should generally have a low value.

The reasoning behind epsilon greedy is that sometimes in Dominion, the
best choice is not to simply buy or play the highest value card available, mostly
because of the wide variety of cards which can make other cards better when
used in conjunction. So during rollout, the best move may actually be a random
move, which is why epsilon greedy often performs better than pure greedy.

The following experiment tests different rollout policies used by UCT 04
against BMFSM over multiple games until convergence. The configurations
used are displayed in Table 7. Note that the random policy was stopped after
121 games, since one win and 120 losses is sufficient information to say that
this is not the best policy. Although the value for C in all experiments is 0.5,
(0.7 was showed to be slightly better in Table 4), we argue that the rollout
policy has an independent enough performance increase, to show that the best
one will be better no matter which C is used, as long as the same C is used.
The experiment only uses UCT 04 as a representative variant to find a rollout
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policy for all variants.

Rollout C | Epsilon | Win Perc. | Wins | Losses | Ties

Random 0.5 N/A 0.8% 1 120 0
Heuristic Greedy | 0.5 N/A 86.9% 722 101 8
Heuristic Greedy | 0.7 N/A 88.7% 892 105 9
Epsilon H. Greedy | 0.5 1 89.5% 1038 114 8
Epsilon H. Greedy | 0.5 5 91.8% 1009 80 10
Epsilon H. Greedy | 0.5 10 93.0% 930 65 5
Epsilon H. Greedy | 0.5 15 94.0% 942 56 4
Epsilon H. Greedy | 0.5 20 93.0% 940 64 7

Table 6: Finding which rollout policy is best used to let UCT,0q win most
games against BMFSM. The configuration used for the experiment is in Table
7. See Section 3 for table explanations.

As can be seen in Table 6, the epsilon heuristic greedy policy is the best one,
with € = 15. Note that the heuristic greedy policy also includes one configura-
tion running C' = 0.7. Still, this configuration is worse than the epsilon rollouts,
thus we can conclude that no matter which C' is used, the best heuristic greedy
policy is worse than the best epsilon heuristic greedy.

Simulations 100 000

Scoring Win+Diff

C 0.5 (0.7)

Rollout Multiple

Epsilon Multiple
Min. Vis. 1

MPPAF True

Thrs. 1
Its. 1

Table 7: Configuration for finding the best rollout policy using UCT,,oq in Table
6. See Section 3 for table explanations.

3.4.4 Must Play Plus Actions First (MPPAF)

When watching the play of the UCT\,q, observations was made that it has some
problems playing multiple actions cards in sequence, even if some of them give
+X actions, thus enabling the play of more cards afterwards. For instance, if the
AT has two actions cards in hand: A Smithy and a Village, the optimal play in
almost all circumstances is to first play the Village card, then the Smithy card,
since playing the Village will allow the Smithy to be played as well, in addition
to another potential action card. However, the UCT,,q seems to rather play
the Smithy card first, and thus cannot play the Village card. The reasoning
behind this may be that in the search tree, the Smithy node has better children
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below, whereas the Village node has worse, thus the Smithy node has a better
average than the Village node. This is despite the fact that the Village node
also has a Smithy node below.

To resolve this situation, we tried three different approaches:

1. Forcing playing of plus actions cards during rollout only.
2. Forcing playing of plus actions cards and also during rollout.
3. Changing propagation to best child, instead of averaging over all children.

The first solution enforces the two rollout policies described in Section 3.4.3,
except Random Rollout Policy, to play +Actions cards first, while still per-
forming UCT. Early tests showed that this solution alone was not enough for
UCT 04 to play multiple action cards in sequence. The rollout policy still kept
the enforcement as heuristics in the second solution, intuitively providing some
benefit to the performance in general.

The second solution integrates the first solution in addition to forcing UCT 04
to first play action cards that give +Actions, overriding UCT. Using the specific
set of cards in the supply, see Appendix C, there is only a neglectable amount
of scenarios when it would be wise not to play any of the cards that give +Ac-
tions, so it would generally always be the best choice. Note that the sequence
the +Actions cards are played in does not matter in this supply, so an order
was not specified. The two main strengths of this approach are:

1. The solution saves time, by not always having to create a search tree before
choosing an action.

2. The solution chooses the optimal move in almost all circumstances.

The weakness is however that it is not applicable in such a simple form to
all cards that give +Actions, i.e Cellar and Spy from the original game (not to
mention cards from expansions). However, should such cards also be added, one
could always add more complex rules for these.

This solution seems to solve the problem well from the experiment in Table
8 using the configurations in Table 9.

Scoring | MPPAF | Rollout | Win Perc. | Wins | Losses | Ties
Pure W/L False Heuristic 44.0% 449 565 7
Pure W/L True Heuristic 82.6% 828 172 2
Win+Diff False Eps. H. 86.7% 716 105 5
Win+Diff True Eps. H. 93.0% 930 65 5

Table 8: Testing the effect of the MPPAF enhancement against BMFSM for
UCT 4. The configuration is in Table 9. See Section 3 for table explanations.

In both test cases, the MPPAF enhancement increases the performance sig-
nificantly.
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Simulations 100 000
Scoring Pure Win/Loss, Win+Diff
C 0.5
Rollout Heuristic Greedy, Epsilon H. Greedy
Epsilon N/A, 10
Min. Vis. 1
MPPAF True, False
Thrs. 1
Its. 1

Table 9: Configuration for testing the effect of the MPPAF enhancement against
BMFSM for UCT,,oq in Table 8. See Section 3 for table explanations.

The third solution is more extensive, and is very similar to the Max strategy
used for Go [9], based on a negamax approach [31]. Instead of using heuristics,
the solution changes the propagation system to give each node the value of its
best children. Since the source of the problem most likely lies in, that when
MCDomALI has the choice between a card giving +Actions and a terminal one,
for instance Village and Smithy respectively, Village becomes an inferior card,
due to it having worse child nodes on average, than the Smithy node.

In order to fix this, the solution was to select the node that had the best
children nodes, in cases were one can guarantee that the child node can be
reached, thus not in cases involving the other player’s turn or the previously
used draw nodes from Section 3.2.

However, this solution was only tested through observations during using
some of the obsolete configurations. Although it is possible that the solution
may work if implemented in the future, for this thesis there was not enough
time to test extensively.

3.4.5 Simulations

The performance of the UCT variants is directly connected to the amount of
simulated games. A high simulation count lets the UCT variants create nodes
deeper in the search tree, as well as explore many potential nodes. Thus a high
simulation count allows the Al to see further ahead.

The experiment in Table 10 shows the difference in performance for UCT,0q
against BMFSM. The experiment configurations are found in Table 11.
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Sims. | Win Perc. | Wins | Losses | Ties
100 0.1% 1 758 0
1 000 15.8% 164 866 6
5 000 70.4% 914 370 15
10 000 85.1% 1088 182 9
25 000 91.9% 1347 109 9
50 000 92.7% 879 59 10
100 000 94.4% 915 49 5
200 000 95.7% 878 34 5

Table 10: Finding out how simulations affect performance in skill level for
UCT04- The configuration settings are found in Table 11.

for table explanations.

Simulations 100 - 200 000
Scoring Win+Diff
C 0.7
Rollout Epsilon H. Greedy
Epsilon 15
Min. Vis. 1
MPPAF True
Thrs. 1
Its. 1

See Section 3

Table 11: Configuration for finding out how simulations affect performance in
skill level for UCT,,0q in Table 10. See Section 3 for table explanations.

The performance seems to increase throughout the whole table in Table
10, which means that the number of simulations can possibly be increased for

further performance.

For variant UCTq,ig, the number of simulations needed is much lower, due
to the differences in the selection formula. The number of games run for this
experiment was only 100 for each setting, due to time limits. Experiments in the
future will increase this amount to achieve more confident values. The results
for UCT,,4g is found in Table 12, using the configuration in Table 13.
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Sims. | Win Perc. | Wins | Losses | Ties
100 0% 0 100 0
1 000 62% 62 36 0
5 000 88% 88 9 3
10 000 94% 94 6 0
100 000 99% 99 1 0

Table 12: Finding out how simulations affect performance in skill level for
UCTrig. Configurations are found in Table 13. See Section 3 for table ex-
planations.

Simulations 100 - 100 000
Scoring Win+Diff
C 0.7
Rollout Epsilon H. Greedy
Epsilon 15
Min. Vis. 100 sims: 1, The rest: 10
MPPAF True
Thrs. 1
Its. 1

Table 13: Configuration for finding out how simulations affect performance in
skill level for UCT g in Table 12. The experiment also used 999 as maximum
turns. See Section 3 for table explanations.

The results in Table 12 show that 10 000 simulations may be enough, as
increasing the amount to 100 000 only increases the games won by 2. As already
mentioned earlier, more games need to be run before the difference between
10 000 and 100 000 simulations can be concluded. Further experiments with
UCTrig use 10 000 simulations, as this seems sufficient.

3.4.6 Minimum Visits

When using UCT,,0q, there is a case where one or more of the top nodes are
only being visited exactly one time. The situation seems to occur mostly during
the beginning of a game, when using the second scoring system mentioned in
Section 3.4.2. This is probably because it receives a very low score during the
rollout, thus is never visited again. This is not desirable, because the we wish
to visit each of the top nodes at least a certain amount of times, to ensure that
the score is relatively representative, and not a coincidence. This is also related
to the scoring system and value for C' from Equation 1, and could be possible
to fix by adding a dynamic C, as described in Section 2.4.1. However, due to
time limits, the only approach tested was to set a minimum amount of times
each top node should be visited. The exact number needs to be experimented
with.
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Root Node

Buy Copper Buy Silver Buy Estate End Turn
Visited: 1 Visited: 1 Visited: 1 Visited: 1

Figure 22: Showing an example over the first four simulations, where ”Buy
Silver” receives a low score during its first rollout. ”Buy Silver” will not be
picked by the UCBI1 algorithm during selection.

In order to resolve the situation in Figure 22, we tried to force every top
node to be visited at least a certain amount of times, before starting to exploit
the results. In Table 14 this enforcement is applied to different setups, because
the problem is likely related to the scoring system. The configuration used in
the experiment is shown in Table 15.
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Scoring MPPAF | MV | Win Perc. | Wins | Losses | Ties
Pure Win/Loss False 500 38.1% 317 506 10
Pure Win/Loss False 100 38.2% 432 689 9
Pure Win/Loss False 1 44.0% 449 565 7

Win+Diff True 500 84.1% 739 136 4

Win+Diff True 100 85.9% 826 122 14

Win+Diff True 50 84.6% 862 141 16

Win+Diff True 20 86.4% 551 82 5

Win+Diff True 15 86.4% 554 78 9

Win+Diff True 10 89.2% 837 89 12

Win+Diff True 5 82.9% 518 102 5

Win+Diff True 1 86.9% 722 101 8

Table 14: Testing whether the minimum visits enhancement can increase per-
formance of UCT,,,q against BMFSM. To save space in the table, Minimum
Visits was abbreviated MV. The configuration is in Table 15. See Section 3 for
table explanations.

Simulations 100 000
Scoring Multiple
C 0.5
Rollout Heuristic Greedy
Epsilon N/A
Min. Vis. Multiple
MPPAF True, False
Thrs. 1
Its. 1

Table 15: Configuration for testing the minimum visits enhancement for
UCT 04 in Table 14. See Section 3 for table explanations.

As can be seen, when setting MinVis to 10, there is a slight increase in
performance. Since the Pure Win/Loss scoring system was showed to be inferior
to Win+Diff in Table 4, only a few values was tested for Pure Win/Loss.

To test this enhancement with more optimal settings, another experiment
was run using the configuration found in Table 17, where Epsilon H. Greedy is
used as rollout policy. The results are found in Table 16

Scoring | MPPAF | Min. Vis. | Win Perc. | Wins | Losses | Ties

Win+Diff True 1 94.4% 915 49 5

Win-+Diff True 10 94.6% 472 24 3

Table 16: Testing whether the minimum visits enhancement can increase win
rate of UCTy,0q against BMFSM, when using epsilon heuristic greedy. The
configuration is found in Table 17. See Section 3 for table explanations.
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Simulations 100 000
Scoring Win+Diff
C 0.7
Rollout Epsilon H. Greedy
Epsilon 15
Min. Vis. 1, 10
MPPAF True
Thrs. 1
Its. 1

Table 17: Configuration for the minimum visits enhancement for epsilon heuris-
tic greedy rollout policy in Table 16. See Section 3 for table explanations.

While the results show that there may be an increase in performance also
when using epsilon heuristic greedy rollout, the number of games run is not high
enough to ensure this increase.

However, since the minimum visits enhancement seemingly increases perfor-
mance, we chose to enhance both UCT variants with minimum visits, using 10
as parameter.

While minimum visits was not tested for UCTig, we chose to use it for
UCTorig too, because intuitively, worst-case scenarios should be rather harmless,
because enforcing each node to be visited 10 times should not affect the end
result. However, since this affects the order of how nodes are visited first, using
this enhancement may also create side effects.

3.4.7 Parallelization

Another way to possibly increase performance is by applying parallelization
and multi-threading. As mentioned in Section 2, there are different forms of
parallelization, but MCDomALI uses root parallelization because of two reasons:

1. There is no need to lock the tree, thus eliminating the possibility of in-
consistency.

2. It helps with the sampling process mentioned in Section 3.2, by adding
more trees, thus more card draw samples.

The way parallelization is done for the UCT variants is by creating a search
tree for each thread used during a run, and possibly creating more trees on
each thread after the first is completed, as seen in Figure 23. When all trees
are completed, the number of visits for the top child nodes are added together,
and the one with the highest total is picked. It is important to note that root
parallelization will not increase performance in terms of speed, unless a lower
amount of simulations are used, but could rather increase playing strength.

When doing parallelization in this particular way, there is no difference in
playing strength by either increasing the number of threads and or the number
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of iterations, as increasing either option will increase the number of search trees
made, which is equal to threads multiplied with iterations.

(Thread 1] [Thread 2] [Thread 3 |
O O O

T1 T2 T3

O O O
T4 5 T6

Figure 23: Illustrating how parallelization is done for the case of 3 threads and
2 iterations for each thread.

Table 18 shows the increase in playing strength only, when increasing the
number of threads and iterations. For the impact of in time per move when
using parallelization, see the experiment in Section 4.8.

Sims. | Thrs. | Its. | Win Percentage | Wins | Losses | Draws
100 000 1 1 93.6% 741 45 6
100 000 2 1 95.1% 993 44 7
100 000 3 1 93.8% 938 56 6
100 000 3 2 95.1% 548 26 2

Table 18: Employing root parallelization for UCT,,0q shows an increase in play-
ing strength when increasing the number of threads and iterations. The config-
uration is found in Table 19. See Section 3 for table explanations.
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Simulations 100 000
Scoring Win+Diff
C 0.7
Rollout Epsilon H. Greedy
Epsilon 15
Min. Vis. 10
MPPAF True
Thrs. 1
Its. 1

Table 19: Configuration for the parallelization experiment in Table 18. See
Section 3 for table explanations.

While the results are somewhat fluctuating, there seems to be a small in-
crease in playing strength when using more iterations.

A likely reason for the increase in playing strength is that when using the
second card drawing system, described in Section 3.2, creating more trees will
also make more card draw samples, which could even out unlikely card draws
in one tree, with more likely card draws in another.

Although the increase in strength seems to be minor, it is possible that
the playing strength could increase even more against other opponents than
BMFSM. Due to the time and capacity to run with extra threads and iterations,
which is something that would have to be done in the future.

Also, it would be interesting to test the impact of root parallelization for
UCTrig too in the future.

3.5 UCB Variants: UCB,,;; and UCB,0q4

The approach for the flat UCB variants of MCDomAT is similar to the approach
for the UCT variants described in Section 3.4, as well as the M: TG approach
[41].

Solution

Simulate game
possible Lsing rllout policy m Best
moves Q move

Score game

Figure 24: The approach to find the best move from the set of possible moves,
by using flat UCB.

Figure 24 shows that the main difference from the UCT variants is the
absence of a search tree to create and store child nodes. Instead, only the
available options (top nodes in UCT search tree) are stored and updated with
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values. The scoring system, rollout system used for UCT,0q and UCT,i,, as
well as MPPAF, are also used for UCB,0q and UCB,,ig, however there is no
propagation for the flat UCB variants, due to the lack of a search tree.

UCBgrig uses the same selection formula in Equation 1 as UCT, while
UCBy04 uses the same modified UCBI1 in Equation 8 as UCT,,q. In addition,
the choice of selection formula also affects the number of simulations, thus the
two main differences are:

1. UCByu04 uses the modified UCBI selection formula in Equation 8.

2. UCBgyig uses a higher number of simulations, due to the modified selection
formula. See Section 3.5.1.

3.5.1 Simulations

As with the UCT variants, the number of simulations is directly connected to the
playing strength of the flat UCB variants as well. Both UCB,,i; and UCBueq
have been tested against the BMFSM, in order to find how many simulations
is needed before the results converge. Table 20 shows the results for UCB,,04,
and Table 22 shows the results for UCBgyig.

Sims. | Win Perc. | Wins | Losses | Ties
100 0.9% 9 962 0
1 000 63.7% 893 499 10
5 000 95.2% 952 44 4
10 000 97.9% 979 20 1
25 000 98.6% 986 11 3
50 000 99.4% 1032 5 1
100 000 99.4% 994 6 0

Table 20: Experiment showing the performance of UCBy,,q against BMFSM,
with different numbers of simulations. The configuration is found in Table 21.
See Section 3 for table explanations.

Simulations Multiple
Scoring Pure Win/Loss
C 0.5
Rollout Epsilon H. Greedy
Epsilon 10
Min. Vis. 1
MPPAF True
Thrs. 1
Its. 1

Table 21: Configuration for testing number of simulations against BMFSM in
Table 20. See Section 3 for configuration explanation.
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The experiment in Table 20, shows that 50 000 simulations is enough before
the results start to converge. This could be because of the lack of a search
tree, which might save some simulations compared to UCT,,q, another reason
is that BMFSM is not able to provide a big enough challenge for UCB,0q to
the point where we can see a difference in the results anymore.

While 50 000 simulations are enough against BMFSM, it is still possible that
the number of simulations could be increased for further performance in other
experiments, which is why UCT},,q uses 100 000 simulations in the rest of the
experiments. The amount of simulations should however be further tested in
the future against other opponents as well. The configuration used can be seen
in Table 21.

The configurations shown in Table 21 are also not optimal, as this experiment
was run before the rest of the settings were tweaked. In the future, one should
also run the experiment for UCB,,,q again with optimal settings, to see if it has
any impact.

Sims. | Win Perc. | Wins | Losses | Ties
100 2% 2 98 0
1 000 8% 88 11 1
5 000 100% 100 0 0
10 000 99% 99 1 0
100 000 100% 100 0 0

Table 22: Experiment showing the performance of UCBg,, against BMFSM,
with different numbers of simulations. The configuration is found in Table 23.
See Section 3 for table explanations.

Simulations Multiple
Scoring Win + Diff
C 0.7
Rollout Epsilon H. Greedy
Epsilon 10
Min. Vis. 100 sims: 1, The rest: 10
MPPAF True
Thrs. 1
Its. 1

Table 23: Configuration for testing number of simulations against BMFSM in
Table 22. See Section 3 for configuration explanation.

For UCB,,ig the win percentage in Table 22 already starts converging at 5
000 simulations. Although only 100 games are used for each configuration, it is
probably sufficient to say that either is 5 000 simulations the peak for UCB,ig,
or BMFSM is not a good enough opponent for UCBg,4,. In future experiments
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the value of 10 000 simulations is mainly used, in the case that UCB,,i; would
perform better against better opponents.

In the future, more games should be run using different amounts of sim-
ulations against better opponents, in order to find how many simulations are
needed for peak performance.

As mentioned in the start of Section 3.5, the number of simulations required
to efficiently beat BMEFSM is much lower for UCB,,iz than for UCByeq.

3.5.2 Minimum Visits

Since no observations were made of the flat UCB variants sometimes visiting
the top child nodes only once, this enhancement could have been turned off.
However, since it is a desired feature to visit each child node at least 10 times,
the enhancement was left on for UCB,iz and UCByy04-

As mentioned in Section 3.4.6, there is a possibility that this may have
negative side effects for the flat UCB variants, which is something to test in the
future.

3.5.3 Parallelization

Parallelization for UCB,,ig and UCB,y0q is done the same way as for the UCT
variants. However, since there is no search tree with sampled card draws, it
is as effective to simply increase the number of simulations, thus the flat UCB
variants should intuitively be equally strong by running 10 000 simulations on
two threads, or by running 20 000 on one thread. However, by running on
multiple threads, one can spread out the number of simulations on different
processing cores, thus increase the playing speed.

One could also increase the number of iterations, which will make each thread
repeat the process of running the set amount of simulations, and then merge
everything together at the end. This should also increase playing strength in
the same way as with the number of threads. The actual playing strength could
be measured using the formula in Equation 13.

TotalSimulations = NumberofSimulations x Threads x Iterations (13)

where Number of Simulations is the number to be used by all threads and
iterations, Threads is the number of Threads used and Iterations is the number
of Tterations used for each thread.

Another important feature of root parallelization is that it prevents staying
too long in a local optima, which could further increase playing strength beyond
the total number of simulations [11].

However, since the parallelization for UCB,,i should be rather plain, exclud-
ing the feature about staying in local optima, no experiments were run on for
testing the playing strength. If time had allowed, it would have been interesting
to see how the playing strength actually increase when applying parallelization.
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The speed performance should be proportional to the total number of sim-
ulations in Equation 13, divided by the number of threads. Time per move is
measured for a few configurations of UCB,,ig in Section 4.8.

3.6 Framework and Implementation

In order to test MCDomAI against other strategies and humans, a simple console
framework was created using Python, but later, C++ was needed for memory
conservation and speed. The framework was used to test MCDomAI against
the other strategies.

The parameter setups were run using a maximum amount of turns, not
allowing games to last any longer than 40 turns. The rollouts were also using
this value, and would end unfinished games at turn 40. Usually games do not
last as long as 40 turns, but this could have a small, but neglectable impact
on the results, so the limit was set to 999 for the experiments in Section 4.
The setting should have more impact on games with bad players, who avoid
to buy VPs, thereby prolonging the game. However, since the parameter setup
experiments all have the same maximum turn limit, this should not have any
significant consequences, other than perhaps the time needed for each move.

In the future a different approach could have been to use a modifiable max-
imum turn limit for the rollout, while removing the maximum turn counter for
the actual Dominion games.
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4 Experiments

This section covers experiments on all variants of MCDomAI beyond parameter
setup, and compares them to other novel strategies. Due to time limits, some
of the experiments only test the performance of UCT,,,q and UCB,,,q. More
experiments will be done in the future, but due to similarities, it is reasonable
to assume that the performance of UCT iy and UCB,,ig are similar to the ones
tested.

First, we test MCDomATI’s ability to recognize good and enormously good
kingdom cards, which is important to know if one is to implement more cards
later.

Secondly, we test MCDomALI in a scenario-like single-player situation, where
both variants tested should be able to find an optimal single-player playstyle.

The third experiment plays some of the variants against each other, in order
to compare their performance in a more direct manner.

The fourth experiment tests MCDomAI against a random playing Al. While
a very weak opponent, it is important to have a very general strategy to compare
MCDomALI against.

Experiment 5 and 6 test all four variants of MCDomAT against two successful
Dominion strategies, by playing them against MCDomALI in two-player games.

The seventh experiment runs all four variants of MCDomAI against human
players at different skill levels.

The last experiment measures how long it takes for the different variants of
MCDomAI to make a move, when using different numbers of simulations and
threads.

4.1 Unbalanced Kingdom Card

This experiment looks at whether UCB,,,q and UCT,,,q recognize extremely
good cards or not. The reason we test this is to show that MCDomALl is capable
of finding cards outside the range of test-bed cards, as well as finding cards that
are far superior to the normal cards. We test this by modifying the Woodcutter
card, making it provide more coins when played, to see how this affects what
the variants will buy. Expected results is that as we increase the value of the
Woodcutter card, it will be bought more often. Treasure cards should be less,
when more Woodcutter cards are bought, since their purpose is the same (to
give the player more buying power). The configuration for both variants is
found in Table 24. The experiment is done over 10 games for each value of the
Woodcutter card, which should be sufficient, as we are interested in watching
play style, not competitive results.
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Figure 25: Cards bought as the coin value of the Woodcutter card increases for
UCBpod-
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Figure 26: Cards bought as the coin value of the Woodcutter card increases for
UCT n04-

Simulations 100 000
Scoring Win+Diff
C 0.7
Rollout Epsilon H. Greedy
Epsilon 15
Min. Vis. 1
MPPAF True
Thrs. 1
Its. 1

Table 24: Configuration for the Unbalanced Card Experiment in Figure 25 and
26. See Section 3 for table explanations.

The graphs in Figure 25 and 26 show the distribution of cards bought as the
coin yield of the Woodcutter card increases. For both variants the experiment
goes as expected. Woodcutter cards are being bought when they increase in
value, at least 4 coins, and is bought more often when the value further increases.
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At the extreme values of 10 and 20 treasure cards are made obsolete. One
could wonder as to why not treasures are being rendered obsolete at an earlier
point, but the reason is probably that even though Woodcutter cards increase
in value, only one Woodcutter card can be played each turn, but any number of
treasures can be played, so in order to buy any Province cards, costing 8, one
would need some additional coins.

Note that the number of Woodcutter cards actually decreases, when their
value is increased from 10 to 20. This is most likely caused by the decreasing
need for multiple Woodcutter cards as the value of every Woodcutter card is
increased, thus allowing to buy more VPs instead.

4.2 Optimal Playstyle for Single-player

In this experiment the kingdom cards were removed, leaving only treasure, vic-
tory and Curse cards. The game is played with only one player in order to
test whether an optimal solution can be found. The goal here is to achieve the
maximum amount of VPs possible, and there is a set of optimal solutions here,
all of them requiring not to buy empty any other supply pile than the three
victory card piles, buying empty the Province cards last and not buy any Curse
cards. If these requirements are met, one will end up with 83 VPs, which is the
maximum amount of VPs possible to gain in single-player mode.

Because there is no kingdom cards, the amount of simulations needed to
find an optimal solution is drastically reduced, as the branching factor is much
smaller. The lack of an opponent should also approximately half the amount of
simulations needed.

The experiment is done over 100 games on each configuration for both
UCT0q4 and UCBp,0q- While it would be interesting to see the performance
of the other two variants here as well, so those experiments will be run in the
future. However, due to similarities with the other two variants, we argue that
their performance should be about the same. The results are found in Table 25.

Sims. | Variant | Average VPs | Optimal Games
10 UCTmod 79.8 + 7.4 7%
20 UCTm04 82.7+ 1.6 96%
30 UCT o4 83.0 £ 0.0 100%
10 UCBmod 78.9 £ 10.5 83%
20 UCB0d 82.7 + 2.0 97%
30 UCBmod 82.9 £ 0.6 99%

Table 25: Finding optimal plays in single-player games for UCT,,q and
UCBpod- Configuration is found in Table 26. Further table explanations can
be found in Section 3.

The Average VPs column denotes how many points were achieved on average

for all 100 games. Optimal games are the percentage of games that achieved 83
VPs. Std. dev. is the standard deviation of the average VPs achieved.
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Simulations 10, 20, 30
Scoring VPs
C 0.7
Rollout Epsilon H. Greedy
Epsilon 15
Min. Vis. 1
MPPAF True
Thrs. 1
Its. 1

Table 26: Configuration for finding optimal plays single-player for UCT,;,,q and
UCBpy04 in Table 26. The scoring system, VPs, is only used for this experiment.
Each rollout is scored equal to the amount of VPs achieved. See Section 3 for
table explanations.

The results in Table 25 show that the number of simulations required to
find an optimal playstyle for this setup is very low, compared to the number
of simulations needed for a game using a full set and two players. UCTy,0q
achieves a slightly higher average VPs, while UCB,,q has more optimal games.
Due to the low number of games run, neither of the variants can be concluded
better on this particular task.

Both variants are able to achieve the highest score when using VPs as the
scoring system, and a C' that is not tuned, at a very small amount of simulations.
This a very good display of how powerful Monte-Carlo methods can be, also for
the game of Dominion.

4.3 Playing the Variants Against Each Other

A direct approach for testing which variant is better is to play them against
each other. The experiment in Table 27 plays the variants using a modified
UCBI1 formula against each other, Table 29 plays the other two variants against
each other, while Table 31 plays the best variants from Table 27 and 29 against
each other.

Starting Player | Win Perc. | Wins | Losses | Ties
UCT 04 26.8% 89 243 0
UCB0d 87.0% 289 43 0

Total UCT 04 19.9% 132 532 0
Total UCBmnod 80.1% 532 132 0

Table 27: 664 games between UCT,oq and UCBy,,q. Starting position is im-
portant, so an equal amount of games are played for both possibilities. The
configuration is found in Table 28. See Section 3 for table explanations.
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Simulations 100 000
Scoring Win+Diff
C 0.7
Rollout Epsilon H. Greedy
Epsilon 15
Min. Vis. 1
MPPAF True
Thrs. 1
Its. 1

Table 28: Configuration for the games between UCB,,q and UCT},,q in Table
27. See Section 3 for table explanations.

The results from Table 27 show that UCB,,0q is clearly better than UCT,,0q,
by maintaining 80.1% wins over 664 games.

One reason that UCBy,,q performs better than UCT,,,q can be the way
they are dealing with the stochastic card draws, from Section 3.2 and 3.2.
While UCT\,0q uses proportional sampling to create picture of the card draws,
UCBp04 simply avoids the problem by not creating a search tree at all.

Another possibility is that the game complexity of Dominion may not be
as huge as expected, at least for the test-bed cards, see Appendix C, thus is
a locally optimized (greedy) choice often the best choice. One strength of flat
UCB is the ability to find this greedy choice, while UCT may be better at
planning ahead.

Starting Player | Win Perc. | Wins | Losses | Ties
UCT orig 35% 35 63 2
UCBorig 86% 86 13 1

Total UCT i 24% 48 149 0
Total UCBoyig 74.5% 149 48 3

Table 29: 200 games between UCT,,i; and UCB,yie. Starting position seems to
be important, so an equal amount of games are played when each player starts.
The configuration is found in Table 30. See Section 3 for table explanations.
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Simulations 10 000
Scoring Win+Diff
C 0.7
Rollout Epsilon H. Greedy
Epsilon 15
Min. Vis. 10
MPPAF True
Thrs. 1
Its. 1

Table 30: Configuration for the showdown between UCT.; and UCBgig in
Table 29. See Section 3 for table explanations.

The results in Table 29 still favors UCT over flat UCB. In addition to the dif-
ferent opponent for UCT,ig, another reason that UCT 4, is performing slightly
better than UCT,,,q from Table 27, could possibly be the change in the prop-
agation system, described in Section 3.3.

Although the number of games played is a little low, the results from Table
27 and 29 show that flat UCB is likely better than UCT, when using the test-
bed cards in Appendix C setup of Dominion. Possibly could UCT outperform
flat UCB when they do not play directly against each other, so both approaches
are still tested the following experiments.

It was also observed that UCT,,4, is capable of playing advanced combina-
tions of cards, such as using the Remodel card to trash a Gold card to gain a
Province card, and playing several action cards in a row. Since no such observa-
tions were made for the flat UCB variants, it is possible that UCT may perform
better with a more complex card set. Expanding the card set is mentioned in
Section 5.1 as something we would like to do in the future, especially to see if
UCT will outperform flat UCB.

Also, since the UCT variants use proportional sampling, as described in
Section 3.2, the performance of UCT could increase when more parallel search
trees are created, by either increasing the number of threads or the number
of iterations. Unfortunately, time limits made it difficult to test with these
settings, so we would also like to test this in the future.

Starting Player | Win Perc. | Wins | Losses | Ties
UCBoyrig 63% 63 37 0
UCBm0d 1% 71 29 0

Total UCByig 46% 92 108 0
Total UCBy04 54% 108 92 0

Table 31: 200 games between UCBig and UCBeq, which both outperformed
their opponent variant in the previous experiments in Table 27 and 29. The
configurations differ only in the number of simulations, as the minimum visits
value is set to 10 for both variants. Full configuration is found in Table 32. See
Section 3 for table explanations.
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Simulations | UCBgig: 10 000, UCBy0q4: 100 000
Scoring Win+Diff
C 0.7
Rollout Epsilon H. Greedy
Epsilon 15
Min. Vis. 10
MPPAF True
Thrs. 1
Its. 1

Table 32: Configuration for the games between UCB,.jz and UCBy0q in Table
31. See Section 3 for table explanations.

UCBp0q wins in 54% of the games played, which is a little unexpected
compared to the later experiments against SingleWitch and DoubleWitch in
Section 4.5 and 4.6. Although the tests in Section 3.5.1 found 10 000 simulations
to be a peak for UCB,,i,’s performance, it is still possible that increasing the
number of simulations could affect the performance when playing against more
advanced opponents.

Another reason that UCBgy; may be performing differently is because the
minimum visits value is set to 10 for the experiment in Table 31. At the end of
the DoubleWitch experiments in Section 4.6, it is speculated that this number
may actually decrease the playing strength of UCB,i,. This is also something
that should be tested further in the future.

The number of games played is not enough to conclude that UCB,,,q is the
best variant, and possibly could the other variants be better in other experiments
and situations.

In the future we would like to test all variants against each other over a larger
number of games, in order to verify which is the best when playing against each
other.

Another interesting observation is that the starting player seems to have an
advantage, which is further supported by the results in the SingleWitch and
DoubleWitch experiments in Section 4.5 and 4.6.

4.4 MCDomAI versus Random Al

A simple benchmarking opponent is an Al that picks a random option whenever
prompted to make a choice. MCDomAI should be able to maintain 99-100%
win percentage against a random Al, as the nature of the game punishes bad
choices, and rewards good ones. This is due to that bought cards are drawn
later, thus bad buys early will leave poor choices later.

The experiment tests only the UCT,,q and UCB,,q variants in Table 33
and 34, because the experiment in Section 4.3 shows that the other two variants
should outperform these, and it would be intuitively to say that the results for
all variants should be approximately the same. However, we would also like to
test this experiment for all variants to verify this statement in the future.
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The configuration for both tested variants is found in Table 35. Note that
the simulation number is set to as little as 50 simulations, which is very small
compared to how many simulations normally run (100 000). This is because
the random player has an extremely low skill level, so 50 simulations should be
enough to beat it. Minimum visits for both variants is set to 1, due to the low

number of simulations.

Starting Player Win Perc. | Wins | Losses | Ties
UCTmod 100% 100 0 0
Random Player 0% 0 100 0
Total UCT 104 100% 200 0 0
Total Random Player 0% 0 200 0

Table 33: Experiment showing UCT,,,q versus a computer player choosing ran-
dom moves. UCT o4 wins in all 200 games. The configuration is found in Table

35. See Section 3 for table explanations.

Starting Player Win Perc. | Wins | Losses | Ties
UCBod 100% 100 0 0
Random Player 0% 0 100 0
Total UCBy04 100% 200 0 0
Total Random Player 0% 0 200 0

Table 34: Experiment showing UCB,,,q versus a computer player choosing ran-
dom moves. The configuration is found in Table 35. UCB,,0q wins in all 200
games. See Section 3 for table explanations.

Simulations 50
Scoring Win+Diff
C 0.7
Rollout Epsilon H. Greedy
Epsilon 15
Min. Vis. 1
MPPAF True
Thrs. 1
Its. 1

Table 35: Configuration for UCT,,q and UCBy,0q against random Al in Table
33 and 34. Note that the number of simulations is only set to 50, which is very
low compared to the other experiments. See Section 3 for table explanations.

As expected, both variants are capable of beating a random computer player
in all games played, even when using only 50 simulations per move. As men-
tioned in the start of the section, it would also be interesting to play the other
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two variants against the random AI, but they would most likely win about the
same amount of games as well.

This experiment also shows that Dominion is a complex game, which requires
players to choose wisely between good and bad choices, since choosing random
options will not lead to victory.

4.5 MCDomAI versus SingleWitch

There is a Dominion simulator available on a web page, where it is possible to
test strategies against each other [37]. The simulator supports mainly rule-based
strategies, so we could not directly add and test MCDomAI in the simulator.
However, one of the strategies that seemed to perform very well is called Single-
Witch, which is a tactic that buys one Witch card, plays a Witch card whenever
possible and buys additional treasure and victory cards. The full algorithm is
listed in Appendix B.

Running an experiment of 200 games using SingleWitch against BMFSM,
SingleWitch won in all 200 games, where both strategies started in 100 games
each.

All variants of MCDomAI were tested against SingleWitch over 200 games
each, where SingleWitch and MCDomAI started an equal amount of times for
each variant. The results are found in Table 36, 37, 39 and 40.

Starting Player | Win Perc. | Wins | Losses | Ties
UCT o4 44% 44 50 6
SingleWitch 74% 74 26 0
Total UCT 04 35% 70 124 6
Total SingleWitch 62% 124 70 6

Table 36: UCT,0q plays against SingleWitch, but does not perform very well,
only capable of winning 35% of the games. The configuration is found in Table
38. See Section 3 for table explanations.

Starting Player | Win Perc. | Wins | Losses | Ties
UCBod 86% 86 12 2
SingleWitch 48% 48 51 1
Total UCB04 68.5% 137 60 3
Total SingleWitch 30% 60 137 3

Table 37: UCBy,0q plays against SingleWitch, achieving a total of 68.5% win
percentage. The configuration is found in Table 38. See Section 3 for table
explanations.
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Simulations 100 000
Scoring Win+Diff
C 0.7
Rollout Epsilon H. Greedy
Epsilon 15
Min. Vis. | UCT 04 10, UCBpyoq: 1
MPPAF True
Thrs. 1
Its. 1

Table 38: Configuration for UCT,0q and UCBy,0q against SingleWitch in Table
36 and 37. Note that the minimum visits were set to 10 for UCT 4, and 1 for
UCBp0d- As mentioned in Section 3.5.2; this should only have minor differences
for UCBy04, compared to using 10 as value. See Section 3 for table explanations.

Starting Player | Win Perc. | Wins | Losses | Ties
UCT orig 62% 62 37 1
SingleWitch 54% 54 46 0
Total UCTorig 54% 108 91 1
Total SingleWitch 45.5% 91 108 1

Table 39: UCT,,ig plays against SingleWitch, winning 54% of the games. The
configuration is found in Table 41. See Section 3 for table explanations.

Starting Player | Win Perc. | Wins | Losses | Ties
UCBoyrig 75% 75 25 0
SingleWitch 38% 38 62 0
Total UCBgyig 68.5% 137 63 0
Total SingleWitch 31.5% 63 137 0

Table 40: UCB,ig plays against SingleWitch, winning 68.5% of the games. The
configuration is found in Table 41. See Section 3 for table explanations.
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Simulations 10 000
Scoring Win+Diff
C 0.7
Rollout Epsilon H. Greedy
Epsilon 15
Min. Vis. 10
MPPAF True
Thrs. 1
Its. 1

Table 41: Configuration for UCT,i; and UCB,,, against SingleWitch in Table
39 and 40. See Section 3 for table explanations.

An overview of all variants playing against SingleWitch in this experiment
is provided in Table 42.

Variant | Opponent | Win Percentage
UCT,0q | SingleWitch 35%
UCBuoq | SingleWitch 68.5%
UCTog | SingleWitch 54%
UCBgrig | SingleWitch 68.5%

Table 42: An overview of the four experiments in Table 36, 37, 39 and 40.
Opponent is the strategy used against the MCDomAI variant in the Variant
column.

As in the experiments in Section 4.3, the UCT variants perform worse than
the flat UCB variants. However, UCT,i, is performing better than UCT y04q
this time, which could further support that the difference in the propagation
system from Section 3.3 is an improvement.

UCBerig and UCByoq performs almost equally, the only difference being the
number of losses instead of ties. But when running only 200 games against
SingleWitch, it is difficult to tell which of the flat UCB variants that is the
better one, possibly they perform equally well.

As mentioned in Section 4.3, in the future one could also test with 10 000
simulations for UCB,,i; against SingleWitch, to see if the increased number of
simulations will help increase performance.

4.6 MCDomAI versus DoubleWitch

DoubleWitch is a Dominion strategy from the Dominion Simulator, which is
almost identical to SingleWitch [37], but buys two Witch cards instead of one.
DoubleWitch is performing even better than SingleWitch, as shown in Table
43, and achieves a win percentage of 63.5% over SingleWitch, which should be
sufficient to conclude that DoubleWitch is better than SingleWitch.
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Additionally, we have attempted to find tactics which consistently beat Dou-
bleWitch, but have been unable. This is indicates that DoubleWitch might be
one of the strongest strategies for our setup.

Starting Player | Win Perc. | Wins | Losses | Ties
SingleWitch 44% 44 55 1
DoubleWitch 75% 75 24 1

Total SingleWitch 34% 68 130 2

Total DoubleWitch 65% 130 68 2

Table 43: Experiment showing SingleWitch versus DoubleWitch. DoubleWitch
wins 656% games against SingleWitch. See Section 3 for table explanations.

All variants of MCDomAI were also tested against DoubleWitch over 200
games each, also equally dividing the starting position between the MCDomAI
variants and DoubleWitch. The results for UCT,,,q and UCB,,,q are shown
respectively in Table 44 and 45, using the configuration in Table 46, and the
results for UCT,i; and UCB,,4, are presented in Table 47 and 48, using the
configuration in Table 49.

Starting Player | Win Perc. | Wins | Losses | Ties
UCT 04 35% 35 62 3
DoubleWitch 2% 72 27 1
Total UCT 04 31% 62 134 4
Total DoubleWitch 67% 134 62 4

Table 44: Experiment showing UCT,,q versus DoubleWitch, winning only 31%
of the games. The configuration is found in Table 46. See Section 3 for table
explanations.

Starting Player | Win Perc. | Wins | Losses | Ties
UCB0d 71% 71 28 1
DoubleWitch 46% 46 54 0
Total UCBpod 62.5% 125 74 1
Total DoubleWitch 37% 74 125 1

Table 45: Experiment showing UCB,,q versus DoubleWitch, where UCBy,0q
achieves 62.5% win percentage against DoubleWitch, which is a good result,
considering that DoubleWitch may be one of the best possible strategies for our
test-bed setup. The configuration is found in Table 46. See Section 3 for table
explanations.
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Simulations 100 000
Scoring Win+Diff
C 0.7
Rollout Epsilon H. Greedy
Epsilon 15
Min. Vis. | UCT 04 10, UCBpyoq: 1
MPPAF True
Thrs. 1
Its. 1

Table 46: Configuration for UCT,,q and UCB,0q against DoubleWitch in
Table 44 and 45. See Section 3 for table explanations.

Starting Player | Win Perc. | Wins | Losses | Ties
UCT orig 49% 49 50 1
DoubleWitch 58% 58 42 0
Total UCTyig 45.5% 91 108 1
Total DoubleWitch 54% 108 91 1

Table 47: Experiment showing UCT s versus DoubleWitch, winning close to
half the amount of the games with a win percentage of 45.5%. The configuration
is found in Table 49. See Section 3 for table explanations.

Starting Player | Win Perc. | Wins | Losses | Ties
UCBoyrig 78% 78 22 0
DoubleWitch 41% 41 59 0
Total UCB,yig 68.5% 137 63 1
Total DoubleWitch 31.5% 63 137 1

Table 48: Experiment showing UCB,,is versus DoubleWitch, winning 68.5% of
the games. This is a significant amount, even more than UCB,,q in Table 45.
The configuration is found in Table 49. See Section 3 for table explanations.
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Simulations 10 000
Scoring Win+Diff
C 0.7
Rollout Epsilon H. Greedy
Epsilon 15
Min. Vis. | UCTqpig: 10, UCBgyig: 1
MPPAF True
Thrs. 1
Its. 1

Table 49: Configuration for UCT,,ig and UCB,,i against DoubleWitch in Table
47 and 48. The minimum visits for UCB,,g is set to 1, which may have been a
reason for the good performance. See Section 3 for table explanations.

For clarity, an overview of the SingleWitch and DoubleWitch experiments is
provided in Table 50.

Variant | Opponent | Win Percentage
UCTuoq | SingleWitch 35%
UCBpoq | SingleWitch 68.5%
UCTog | SingleWitch 54%
UCBrig SingleWitch 68.5%
UCTmoq | DoubleWitch 31%
UCBmog | DoubleWitch 62.5%
UCToig | DoubleWitch 45.5%
UCBgyig | DoubleWitch 68.5%

Table 50: An overview of the four experiments in Table 44, 45, 47 and 48.
Opponent is the strategy used against the MCDomAI variant in the Variant
column.

As expected, since DoubleWitch outperforms SingleWitch in Table 43, all
variants of MCDomALI perform slightly worse against DoubleWitch than against
SingleWitch. However, this is not the case for UCB,,ig, which achieves the same
number of wins against both strategies.

One reason for this could be that the number of games run is not enough
to show a difference between the experiments, however since all the other vari-
ants show decreased performance, there may be more important factors at work.
While not affecting UCB,,0q in as clearly, the configuration for UCB,,js in Table
41 and 49 shows that the minimum visits value is set to 10 against SingleWitch
and 1 against DoubleWitch. Possibly is the minimum visits enhancement af-
fecting the performance of UCBg,is in a negative manner. Although we argued
in Section 3.5.2 that the difference should probably not affect the performance,
no tests were run to verify the statement.

It is not possible to conclude how minimum visits affect the performance of
UCBorig and UCBpeq, so future work should test this enhancement for these
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variants too, as well as run more games against both SingleWitch and Double-
Witch in case more games would yield different results.

4.7 MCDomAI versus Human Players

To test how UCBy,0q and UCT,0q performs against human players, a group
of four fairly experienced players, including ourselves, were put together to
play against both variants. All games are played as two-player games, with
MCDomAI against one human opponent. The amount of games played were
however too small to say anything conclusive.

The results are showed in Table 51, using the configuration in Table 52.

Variant | Win Perc. | Wins | Losses | Ties
UCTmod 87.5% 7 1 0
UCBiod 25% 1 3 0

Table 51: UCT0q and UCBy,0q versus human players of different skill level.
While UCBy,0q achieves a very good win rate, wining 7 out of 8 games, the
number of games played is not high enough to say anything conclusive. The
Variant column denotes which variant is tested against the human players. The
configuration is found in Table 52.

Simulations 100 000
Scoring Win+Diff
C 0.7
Rollout Epsilon H. Greedy
Epsilon 15
Min. Vis. 10
MPPAF True
Thrs. 1
Its. 1

Table 52: Configuration for UCT,,,q and UCB,0q against human players in
Table 51. See Section 3 for table explanations.

Winning 7 out of 8 games, UCBy,,q shows very strong performance, even
though the number of games is not high enough to be conclusive to which
variant is better against human players. Since the earlier experiments are not
conclusive to which variant is best, further experiments may find that any of
the four variants is performing better against human players.

In the future, this is one the most interesting experiment to further test for
all variants.
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4.8 Speed: Time per Move

In this experiment we measure the time taken per each move, compared to the
number of simulations and the number of threads used. The turn counter also
impacts the time, because the closer a game is to ending, the fewer options are
available, thus each rollout does not need to search as long to reach game end.

The game implementation requires MCDomAI to make a move whenever
there is no more buys left, due to the possibility of choosing not to buy or play
any card. However, since most of the ’end turn moves’ are made much faster
than the regular moves, these moves are left out to maintain a more reliable
average.

This experiment tests each variant of MCDomAI over a number of different
configurations. The opponent is BMFSM in all games. The results for each
variant is shown in separate tables, where the most relevant configuration is
marked in bold. Tot. Avg. is the average for all turns in the 10 games, while
1-10 Avg. denotes the average time for the 10 first turns, and 11+ Avg. refers
to the turns coming after the 10th.

Sims. Thrs. | Its. | Tot. Avg. 1-10 Avg. 11+ Avg.
50 000 1 1 4.8 £33s 79+29s 26 £1.0s
100 000 1 1 9.1+6.6s | 154+5.7s | 4.8+ 2.0s
100 000 2 1 102 +£62s | 168+ 46s | 6.1 225
100 000 3 1 115+£63s | 175 +49s | 7.0£20s
100 000 3 2 21.6 £+ 11.8s | 336 £89s | 13.6 £4.3s

Table 53: Determining time per move for UCT,0q, using the configuration in

Table 57. See Section 3 for table explanations.

Sims. Thrs. | Its. | Tot. Avg. 1-10 Avg. 114+ Avg.
25 000 2 1 31+15s 45+ 15s 22+02s
50 000 1 1 46 £34s 75 +31s 22+09s
100 000 1 1 |84+64s|13.9+5.7s|3.9+2.0s
100 000 2 1 93+£69s | 149+66s | 4.7£1.7s

Table 54: Determining time per move for UCB,0q, using the configuration in

Table 57. See Section 3 for table explanations.
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Sims. | Thrs. | Its. | Tot. Avg. | 1-10 Avg. 114+ Avg.
1 000 1 1 1.0+ 0.0s 1.0 £ 0.0s 1.0 £ 0.0s
5 000 1 1 1.1 £0.0s 1.1+ 0.1s 1.0 £ 0.0s
10 000 1 1 1.2+ 04s|1.6 +05s| 1.0+ 0.0s
100 000 1 1 82+59s | 13.7+54s | 46 £23s

Table 55: Determining time per move for UCT,ie, using the configuration in
Table 57. Note that the low amount of simulations lower the average time per

move significantly. See Section 3 for table explanations.

Sims. | Thrs. | Its. | Tot. Avg. | 1-10 Avg. 114+ Avg.
1 000 1 1 1.0 £ 0.0s 1.0 £ 0.0s 1.0 £ 0.0s
5 000 1 1 1.0 £ 0.0s 1.0+ 0.1s 1.0 £ 0.0 s
10 000 1 1 1.2+ 04s|1.5+05s| 1.0+ 0.0s
100 000 1 1 86 £6.7s | 141 +£60s | 3.9£20s

Table 56: Determining time per move for UCB,,i,, using the configuration in
Table 57. Note that the low amount of simulations lower the average time per

move significantly. See Section 3 for table explanations.

Simulations Multiple
Scoring Win+Diff
C 0.7
Rollout Epsilon H. Greedy
Epsilon 15
Min. Vis. 10
MPPAF True
Thrs. Multiple
Its. Multiple

Table 57: Configuration for all variants when determining time per move in
Table 53, 54, 55 and 56. See Section 3 for table explanations.

Table 53 and 54 show that the time used on average per move is proportional
to the number of simulations multiplied with the number of iterations, with only
a small overhead due to the number of extra threads. This seems to be the case
until reaching about 10 000 simulations, there Table 55 and 56 show that the
minimum amount of time per move is approximately 1 second.

The results in Table 55 and 56 have a much lower simulation number, which
is why the measured time per move is significantly smaller than in Table 53 and
54. This is done because of those variants need a lower amount of simulations
to perform at an acceptable level, as shown in Section 3.4.5 and 3.5.1.

The performance in speed seems to be about the same for all variants when
using the same amount of simulations, but since UCT,,, and UCBig need
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fewer simulations, they are actually much faster.

As mentioned in Section 3.6, the maximum allowed number of turns can
also impact the speed, because a low number of maximum turns will let the
rollout end before the game is actually finished. The impact of the maximum
turns option is not tested, because all variants use a rollout policy which should
simulate every game to the end, thus all variants use a value of 999 for maximum
turns. In the future, one could implement this as a variable to be used with
the rollout policy only, in order to allow simulations to stop at an earlier point,
possibly adding in some extra points, based on the potential of each player’s
decks, to account for the early simulation finish.
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5 Conclusion

During this thesis we have introduced four novel Als for the game of Dominion
using Monte-Carlo methods. The variants employ UCT or flat UCB, together
with either the UCB1 selection formula or a slightly modified version. All vari-
ants were tested against two successful Dominion strategies for the chosen test-
bed, as well as human players to some extent.

The two flat UCB-based Als were capable of winning 68.5% games against
the SingleWitch strategy (a finite-state machine based solution), while they won
respectively 68.5% and 62.5% against the DoubleWitch strategy. The UCT-
based solutions did not perform so well, winning respectively 35% and 54%,
and 31% and 45.5% of the games played.

Testing two variants against human players, the best variant won 87.5%
games, and the other 25%, against a group of experienced Dominion players
(one player at a time), though the number of games played was too low to be
conclusive.

This thesis shows that by increasing the value of selected cards, two variants
were able to recognize the card by buying and playing it, this is likely applied
to all variants, but only two variants were tested. This shows their potential to
learn good cards, even with an incomplete overview of the complete game.

The speed of the main configuration for the variants using the UCB1 formula
is approximately 1.2 seconds per move, while for variants using the modified
version, the speed is about 8.4 and 9.1 seconds per move, without parallelization.
Using parallelization, the time per move can approximately be divided by the
number of threads used.

Finally, the variants were tested against each other, where the flat UCB
variants performed the best, winning 74.5% and 80.1% games against their most
similar UCT variants. The number of games played are however not enough to
conclude the best variant.

A reason that flat UCB-based Als outperform the UCT variants, could be
that the greedy, or locally optimized choice, works well for the test-bed of Do-
minion cards used. This would lessen the need to plan far ahead, which is one
of the strengths of UCT.

The UCT variants do however seem to be better at playing complex com-
binations of cards in sequence, and might perform differently when tested on
other card setups.

The novel approaches for dealing with the stochastic element of drawing
cards and interaction between players seem to work very well for the flat UCB
variants, and fairly well for the UCT variants. The modified UCB1 formula
seems to need more simulations before achieving the effect of UCBI1, but can
possibly outperform UCB1 when played directly against each other.

All in all, our solution is capable of competing with and outperform the top
level strategies, and should be applicable to card setups extending the one used
in this thesis. We believe that currently our solution is one of the best Dominion
Als.
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5.1 Future Work

For future work, we would like to run some of the experiments with more games,
in order to achieve more confident results. Playing more games with each variant
against human players and other strategies would also be interesting to further
benchmark performance. If possible, it would be interesting to test MCDomAI
against the already existing Dominion Als.

To test MCDomALI against the existing Als, the rest of the cards in Dominion
should also be added. This can possibly increase the need for more heuristics,
especially during the rollout. If the extension of MCDomALlI is successful, one
could also extend the Al to for using the expansion packs of Dominion as well.

To improve MCDomALI in general, we would like to test out more UCT and
UCB enhancements to possibly increase performance. For instance could such
enhancements improve the rate at which MCDomAI plays multiple action cards
are played in sequence.
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Appendices

A Big Money Finite-State Machine (BMFSM)
Algorithm

The test opponent used to play against MCDomAI during parameter setups is a
rule-based Al, consisting of a small number of conditional statements. BMFSM
is not meant to compete at human-level, as it does not buy nor play any action
cards. BMFSM is based upon the strategy called Big Money, which mostly
consists of buying Province, Gold or Silver cards, in that order, depending on
how much money is available. The general idea is to buy the best treasure cards
available until turn 15, and then buying the best victory cards available. Note
that the Gardens card is valued higher than the Duchy card, since BMFSM will
often have time to buy 20 cards or more. Pseudo-code is given in Algorithm 2.

if Turn > 15 then

if coins >= 8 then

‘ buy Province;

else if coins >= 4 then
| buy Gardens;

else if coins >= 5 then
‘ buy Duchy;

else if coins >= 2 then
‘ buy Estate;

else

‘ end turn;

end

else

if coins >= 6 then

‘ buy Gold;

else if coins >= & then
‘ buy Silver;

else

‘ end turn;

end

end
Algorithm 2: BMFSM choosing a card during buy phase.

BMFSM is set to play for games with length about 30-40 turns, which is
probably a little longer than what most games last. Being unable to deter-
mine game length itself, BMFSM is not capable of competing with humans and
stronger Als, but is a sufficient opponent for parameter setups.
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B SingleWitch and DoubleWitch Algorithm

The algorithm for the successful Single- and DoubleWitch buy strategies is
given in Algorithm 3. The algorithms do not buys Gardens cards, thus in some
situations they could score a few points more if they did. During the action
phase, they always play a Witch card if possible. Note that the only difference
is whether to buy one or two Witch cards.

if coins >= 8 and totalDeck.goldCards > 0 then
| buy Province;
else if coins >= 5 and totalDeck.witchCards < X then
‘ buy Witch;
else if coins >= 5 and supply.provinceCards < 4 then
‘ buy Duchy;
else if coins >= 2 and supply.provinceCards < 2 then
‘ buy Estate;
else if coins >= 6 then
‘ buy Gold;
else if coins >= 3 then
‘ buy Silver;
else
‘ end turn;
end
Algorithm 3: SingleWitch and DoubleWitch buy algorithm. X is respectively
1 and 2 for SingleWitch and DoubleWitch.
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C Cards Chosen for the Test-Bed

The different cards in the base game of Dominion belongs to one of the following
four groups:

1. Action cards
2. Treasure cards
3. Victory cards

4. Curse cards

C.1 Action Cards

Figure 27: Village: +1 Card, 42 Actions; Woodcutter: 4+1 Buy, +2 Coins.
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REMODEL

Figure 28: Moneylender: Trash a Copper card from your hand. If you do: 43
Coins; Remodel: Trash a card from your hand. Gain a card costing up to 2
Coins more than the trashed card; Smithy: +3 Cards.
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'LABORATORY

Figure 29: Festival: +2 Actions, +1 Buy, +2 Coins; Laboratory: +2 Cards,
+1 Action; Market: +1 Card, +1 Action, +1 Buy, +1 Coin; Witch: +2 Cards.
Each other player gains a Curse card.
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C.2 Treasure Cards

Figure 30: Copper, Silver and Gold. Worth respectively 1, 2 and 3 coins.
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C.3 Victory Cards

Figure 31: Estate, Duchy, Province and Gardens. Gardens is worth 1 VP for
every 10 cards in your deck (rounded down).
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C.4 Curse Cards

Figure 32: Curse is worth -1 VP.
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