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Oppsummering

Denne doktorgradsavhandlingen undersøker to nødvendige virkemidler som
trengs for å bygge personvernforbedrede overvåkningssystemer for datanettverk:
en teknologi for håndheving av personvern- eller konfidensialitetspolicyer;
samt metrikker som måler lekkasje av privat eller konfidensiell informasjon
for å verifisere og forbedre disse policyene. Håndhevingsmekanismen er
basert på finmasket tilgangskontroll og reverserbar anonymisering av XML
data for å begrense eller kontrollere tilgangen til sensitiv informasjon fra
overvåkningssystemene.

Metrikkene kan brukes til å støtte en kontinuerlig forbedringsprosess,
både for å kvantifisere lekkasjer av privat eller konfidensiell informasjon, og
for å lokalisere hvor disse er samt foreslå forbedringstiltak. De planlagte
tiltakene kan deretter bli gjennomført, enten ved å benytte en reverserbar
anonymiseringspolicy eller ved å fjerne årsaken til informasjonslekkasjene.
Personvernmetrikkene kan deretter verifisere at tiltakene virker som planlagt.
Vesentlige avvik fra forventet lekkasje kan deretter brukes til å sette i gang
nye forbedringstiltak. De viktigste resultatene i avhandlingen er:

• en personvernlekkasjemetrikk basert på standardavviket av entropien
til gitte data (for eksempel IDS alarmer), som måler hvor mye sensitiv
informasjon som lekker ut og hvor disse lekkasjene er;

• en tjenesteformidler (proxy) som tilbyr policybasert reverserbar anonymis-
ering av informasjon i XML-baserte webtjenester. Denne løsningen
støtter også flernivå sikkerhet, slik at bare autoriserte interessehavere
kan få tilgang til den sensitive informasjonen;

• En metodikk som kombinerer personvernlekkasjemetrikkene med re-
verserbar anonymisering for å støtte en kontinuerlig forbedringsprosess
med redusert lekkasje av privat eller konfidensiell informasjon over tid.

Dette kan brukes til å forbedre håndteringen av personsensitiv eller konfi-
densiell informasjon i tilfeller der administrerte sikkerhetstjenester har blitt
tjenesteutsatt til partnere man kun har delvis tillit til, for eksempel for tjen-
esteutsatt sikkerhetsovervåking av helseinstitusjoner eller kritiske infrastruk-
turer. Løsningen er basert på relevante standarder som sørger for kompati-
bilitet med eksisterende innbruddsdeteksjonssystemer og alarmdatabaser.
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Summary

This PhD dissertation investigates two necessary means that are required for
building privacy-enhanced network monitoring systems: a policy-based pri-
vacy or confidentiality enforcement technology; and metrics measuring leak-
age of private or confidential information to verify and improve these poli-
cies. The privacy enforcement mechanism is based on fine-grained access
control and reversible anonymisation of XML data to limit or control access
to sensitive information from the monitoring systems.

The metrics can be used to support a continuous improvement process, by
quantifying leakages of private or confidential information, locating where
they are, and proposing how these leakages can be mitigated. The planned
actions can be enforced by applying a reversible anonymisation policy, or
by removing the source of the information leakages. The metrics can sub-
sequently verify that the planned privacy enforcement scheme works as in-
tended. Any significant deviations from the expected information leakage can
be used to trigger further improvement actions. The most significant results
from the dissertation are:

• a privacy leakage metric based on the entropy standard deviation of
given data (for example IDS alarms), which measures how much sensi-
tive information that is leaking and where these leakages occur;

• a proxy offering policy-based reversible anonymisation of information
in XML-based web services. The solution supports multi-level security,
so that only authorised stakeholders can get access to sensitive informa-
tion;

• a methodology which combines privacy metrics with the reversible anonymi-
sation scheme to support a continuous improvement process with re-
duced leakage of private or confidential information over time.

This can be used to improve management of private or confidential informa-
tion where managed security services have been outsourced to semi-trusted
parties, for example for outsourced managed security services monitoring
health institutions or critical infrastructures. The solution is based on relevant
standards to ensure backwards compatibility with existing intrusion detection
systems and alarm databases.
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Part I

Introduction and Background

1





Part I is the introduction to the dissertation which amongst others con-
tains the problem description and an overview over the dissertation. The next
chapter contains an analysis of ethical, economic and technical issues and as-
pects of managed security services and proposes a set of requirements based
on a set of use cases for privacy-enhanced network monitoring systems.
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Chapter 1

Introduction

1.1 Background and motivation

This dissertation aims at investigating how privacy-enhanced network moni-
toring can be implemented, with a particular focus on privacy enhanced intru-
sion detection systems. The main research challenge is handling the delicate
tradeoff between efficient monitoring of computer networks for signs of mali-
cious activities, and at the same time maintain socially and legally acceptable
solutions for handling data privacy and confidentiality. The objective is to
avoid an unnecessary amount of sensitive information flows towards semi-
trusted third party organisations or company internal employees performing
network monitoring. The dissertation suggests several approaches to reduce
the impact managed security services have on privacy. One important factor
is being able to measure the privacy leakage of IDS rules. If it is possible
to measure which IDS rules that are good or bad from a privacy perspective,
then the Managed Security Service (MSS) provider will be able to tune the
IDS rule set in order to reduce investigation of sensitive information accord-
ing to the need-to-know principle.

Current Intrusion Detection Systems (IDS) do in general not support en-
forcement of privacy policies, which means that there is a significant chance
of human error or that individuals are going beyond their call of duty when it
comes to monitoring sensitive material. Another risk that needs to be taken
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seriously, is the risk of radicalisation of trusted personnel. This means that
it is not sufficient to use trust and risk of legal liabilities, like confidential-
ity agreements, as the only means to ensure proper handling of private or
confidential information. Sensitive information may then be revealed either
for own profit or for political reasons. A confidentiality agreement is there-
fore a necessary but not sufficient requirement to avoid leakage of private or
confidential information. This is the main motivation for doing research on
technological measures which can improve enforcement of privacy policies
in IDS alarms.

1.2 Problem Statement

The dissertation focuses on reducing privacy leakage in IDS alarms, primarily
from network-based and signature-based IDS, although some of the methods
and and techniques also may work to detect leakage of sensitive information
in alarms from host-based IDS, firewall or Anti-Virus detection software. The
dissertation investigates two main topics in this respect:

• Privacy leakage metrics that can detect where leakage of private or con-
fidential information in IDS alarms may occur;

• Enforcement of privacy policies that in combination with the privacy
metrics can reduce the possible privacy leakages in IDS alarms.

It is furthermore assumed that the network monitoring using IDS is out-
sourced to a Managed Security Service (MSS) provider. Details on privacy
related problems for data forensic interfaces, like time machines and similar
techniques [88], is considered outside the scope of the dissertation1.

1.3 Adversary Model

By privacy leakage we here mean leakage of information that according to a
privacy impact assessment has been found to be problematic, either because it

1The privacy enforcement method and privacy leakage metrics proposed in the dissertation are
however general and can also be applied for data forensic interfaces and other monitoring techniques.
The details of how this can be implemented is however left as future work.
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reveals Personally Identifiable Information or because it reveals information
that is confidential.

The dissertation aims at detecting and mitigating both accidental and de-
liberate privacy attacks assuming an outsourced service. There are two pri-
vacy adversaries that are considered:

1. Insider attacks from the service provider or other trusted parties: The
privacy metrics and privacy preserving methods should be made incen-
tive compatible2, so that an insider adversary cannot shirk or cheat from
a privacy perspective by doing technical adaptations to improve the
privacy rating. The privacy enforcement methods should furthermore
only provide access to private or confidential information according to
a strict interpretation of need, and access to such information should be
transparent, accountable and non-reputable according to the Privacy by
Design criteria [25].

2. External attackers are assumed to have Dolev-Yao intruder capabili-
ties [39]. This means that they can overhear, intercept and generate any
message, and are only limited by the cryptographic methods used. The
objective for external attackers may be to abuse the service, for example
by triggering anonymisation for a security attack to go undetected.

1.4 Objectives and Scope

1.4.1 Scope of Dissertation

This dissertation is written as a book (monograph), and contains mostly ma-
terial that either is published or that has been submitted to journals. I am the
main contributor of all papers included in the dissertation. The tables below
show a detailed survey of which material that has been published, modified
or is unpublished during the PhD study.

2Incentive compatibility – a characteristic of mechanisms whereby each agent knows that his
best strategy is to follow the rules, no matter what the other agents will do [79].
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Part I Introduction and Background

Chapter Reason

Chapter 1 Introduction (unpublished) Dissertation internal
Chapter 2 A Roadmap Towards
Improving Managed Security Services
from a Privacy Perspective is based on
Ulltveit-Moe N. A Roadmap Towards
Improving Managed Security Services
from a Privacy Perspective (submitted).

Contains the foundations
and requirements for
privacy metrics presented
in chapter 6. The main
change from the submitted
version, is that section 2.12
is changed from focusing
on technical solutions to
system use cases and
requirements. This is to
maintain causality between
the chapters of the
dissertation, since the
original paper described
some of the solutions that
will be developed in later
chapters.

Part II Privacy Enforcement for Intrusion Detection Systems

Paper Reason

Chapter 3 Two Tiered Privacy Enhanced
IDS Architecture is based on
Ulltveit-Moe, N. and Oleshchuk, V., "Two
tiered privacy enhanced intrusion
detection system architecture", in
Intelligent Data Acquisition and
Advanced Computing Systems:
Technology and Applications, 2009.
IDAACS 2009. IEEE (2009), pp. 8-14.

Introduces an architecture
for privacy-enhanced IDS.
No significant changes
from published version.
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Chapter 4 Decision-cache Based
XACML Authorisation and
Anonymisation for XML Documents is
based on Nils Ulltveit-Moe N., Vladimir
A. Oleshchuk V.: Decision-cache based
XACML authorisation and
anonymisation for XML documents.
Computer Standards & Interfaces 34(6):
527-534 (2012)

This chapter lays the
foundations for the
anonymisation scheme
used in the dissertation.
The introduction is cut
down to avoid redundancy.
The notation is modified to
be consistent between
Chapter 4 and Chapter 5.
The default block marker
used when anonymising is
changed to ’X’, since the
space character will not
work for the reversible
scheme. Added linear
regression of performance
data to improve figure. No
other significant changes
from published version.

Chapter 5 is based on Ulltveit-Moe N.
and Oleshchuk V. “A Novel Policy-driven
Reversible Anonymisation Scheme for
XML-based Services” (submitted).

Extends the solution in the
previous chapter to support
reversible anonymisation.
The chapter is an extended
version of the journal paper
which shows XACML
implementation details.

Part III Privacy Leakage Detection and Avoidance

Chapter Reason/changes

Chapter 6 Measuring Privacy Leakage for
IDS Rules is based on Ulltveit-Moe, N.
and Oleshchuk, V. “Measuring Privacy
Leakage for IDS Rules” (submitted).

This contains the privacy
metric definition.
No significant changes
from submitted version.
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Chapter 7 Metrics-supported Privacy
Enforcement is based on Ulltveit-Moe N.
and Oleshchuk V. “Metrics-supported
Privacy Enforcement” (submitted).

This paper connects the
privacy metrics with
privacy enforcement
solutions.
The chapter is a cut-down
version of the journal paper
to avoid overlap with
chapter 6 and the adversary
model and also to focus
less on big data analytics.
It does in addition contain a
figure illustrating the Plan
Do Check Act process that
did not fit into the paper.

Part IV The Way Ahead

Paper Reason

Chapter 8 contains conclusion and future
research directions. Some of the
information in this Chapter is based on
Ulltveit-Moe N., Gjøsæter T., Assev S.,
Køien G. M. and Oleshchuk V. Privacy
Handling for Critical Information
Infrastructures, in the proceedings of the
Industrial Informatics (INDIN) 2013
11th IEEE conference, (IEEE 2013), pp
688-694.

Concludes the dissertation
and outlines future work.
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Appendix A describes the technical
XACML solution for supporting
metrics-based privacy enforcement.

Not published, since it
heavily relies on the
information in Chapter 7.
The appendix probably has
limited research value, but
may be useful for future
development or
standardisation.

Not Included in the Dissertation

Paper Reason

Ulltveit-Moe, N. and Oleshchuk, V.,
"PRIvacy LEakage Methodology
(PRILE) for IDS Rules", in Bezzi, M. and
Duquenoy, P. and Fischer-Hübner, S. and
Hansen, M. and Zhang, G., ed., Privacy
and Identity Management for Life vol.
320, (Springer Boston, 2010), pp.
213-225.

This was the first attempt at
defining a privacy metric.
This metric was useful
during initial data analysis
to understand the problem
domain, and it may be
useful for analysing
individual IDS rules in
some cases. The metric is
however flawed by
normalising data relative to
the information passing
through each IDS rule,
which causes the metric to
not be incentive compatible
also not aggregatable. The
metric is also not practical,
since it relies on manual
data classification. This
metric is superseded by the
metric in Chapter 6.
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Ulltveit-Moe, N. and Oleshchuk, V., "A
Composite Privacy Leakage Indicator",
Wireless Personal Communications 61
(2011), pp. 511–526.

This paper is based on the
flawed metric in the
previous paper, and is
therefore not included. It is
superseded by the metric in
Chapter 6.

Nils Ulltveit-Moe and Vladimir
Oleshchuk, "Privacy Violation
Classification of Snort Ruleset", in 2010
18th Euromicro Conference on Parallel,
Distributed and Network-based
Processing (Pisa, Italy , 2010), pp.
654–658.

This paper is not included,
since it does not contain
any substantial new
knowledge needed for the
development of privacy
metrics.

Ulltveit-Moe, Nils and Oleshchuk,
Vladimir A. and Køien, Geir M.,
"Location-Aware Mobile Intrusion
Detection with Enhanced Privacy in a 5G
Context", Wireless Personal
Communications 57, 3 (2010), pp.
317–338.

Not included, since
location-based IDS is
considered outside the core
objectives of the
dissertation.

Ulltveit-Moe, Nils and Oleshchuk,
Vladimir, "Mobile Security with
Location-Aware Role-Based Access
Control", in Prasad, Ramjee et al.,
Security and Privacy in Mobile
Information and Communication Systems
vol. 94, (Springer Berlin Heidelberg,
2012), pp. 172–183.

Not included, since
location-based IDS is
considered outside the core
objectives of the
dissertation.
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Ulltveit-Moe, Nils and Oleshchuk,
Vladimir Mobile Internet Security
Enforcing Mobile Security with
Location-aware RBAC, Wiley Security
and Communication Networks (In press).

Not included, since
location-based IDS is
considered outside the core
objectives of the
dissertation. Extended
journal version of paper
above.

1.4.2 Privacy Objectives

A privacy-enhanced intrusion detection system should as far as possible ful-
fill a set of basic privacy objectives, like for example the seven foundational
Privacy by Design (PbD) principles [25]:

1. Proactive not reactive - the system should aim at preventing privacy-
invasive events or risks before they happen.

2. Privacy as the default - ensure that personal data automatically is pro-
tected.

3. Privacy embedded into the design - not bolted on as an add-on.

4. Positive sum - integrate privacy enhancing technologies that both sup-
port the privacy and security objectives creating a win-win situation.

5. Life cycle protection - ensure that sensitive data is protected from the
data is created and until it can be securely destroyed.

6. Visibility/transparency - ensure that operations on privacy sensitive in-
formation is traceable.

7. Respect for users - keep the interests of the individual uppermost - offer
appropriate notice and empowering user-friendly options.

The dissertation will aim at fulfilling as many as possible of these objectives.
It must however be noted that an intrusion detection system normally is not
aware of who a given user is. It is not a system that is used by the user, and
where the user decides to store potentially sensitive user preferences. This
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means that storing user profiles, and allowing users to selectively retrieve
information about them, by default will not be supported, since the IDS typ-
ically has no idea about the connection between users and data. This means
that it for example does not make sense to require informed consent before
intrusion detection can be applied for a given user. However, data networks
that are being monitored for signs of intrusions should state this clearly, so
that users using services on these networks are aware of this. Given these un-
derlying restrictions of intrusion detection systems, the objective is to fulfill
the privacy by design objectives, or at least outline how this can be done.

1.4.3 Technological Objectives

The technological objective of the dissertation is to design privacy-friendly
technologies that can be useful for reducing the privacy invasiveness of net-
work monitoring technologies like intrusion detection systems. Ian Gold-
berg has proposed four basic requirements that privacy enhancing techniques
should adhere to, in order to be useful in practice [3]:

Usability the proposed methods/technologies must be easy to use for the
Managed Security Service providers.

Deployability the proposed methods/technologies must be easy to deploy,
also in existing networks/infrastructures, and must be possible to inte-
grate into existing network monitoring technologies.

Effectiveness the proposed methods/technologies must have a potential to
provide a significant and quantifiable reduction in privacy leakage for
the intrusion detection systems involved.

Robustness the proposed methods must be robust, for example against mis-
use, in order to avoid that the organisations can improve the privacy
leakage measurements only by performing technical adaptations (for
example by changing the IDS rule set without any significant change in
what is being monitored).

These requirements come in addition to the Privacy by Design criteria, in
order to ensure that methods and techniques for enhancing privacy are easy
to operationalise. The proposed scheme should for example be adaptable,
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      Introduction
      Privacy      
 enforcement

     Leakage       
     detection and

avoidance

The way 
ahead

Figure 1.5.1: Structure of the dissertation.

so that anonymisation can be implemented based on a risk assessment and
operative needs.

There are also use cases where security requirements demand that certain
stakeholders, for example security analysts, have access to necessary sensi-
tive information to do attack analysis. Privacy can however be protected and
controlled also in these cases, by limiting who can access this sensitive in-
formation according to what is needed from an operational perspective, as
well as by ensuring transparency on who can and who have accessed private
or confidential information. In the end, it will be an operative decision by
the MSS provider together with a data controller or a quality certification
organisation to agree on defining an enforceable policy for this.

1.5 How the Dissertation is Organised

The dissertation is organised into four main parts, as illustrated in Figure
1.5.1: Part I introduction and background, Part II Privacy Enforcement for
Intrusion Detection Systems, Part III Privacy Leakage Detection and Avoid-
ance and Part IV The Way Ahead. The dissertation aims at keeping the nota-
tion consistent within each part and chapter, and also aims to keep shared no-
tation consistent between parts and chapters. The dissertation does however
in general operate with a part-local and chapter-local scope for most notation.
This strategy is used to avoid running out of symbols, since parts II and III
of the dissertation rely on an extensive notation related to cryptography and
information theory respectively.

Part I Introduction and Background

Part I gives a gentle introduction to the problem and discusses privacy re-
quirements. Chapter 1 Introduction describes the problem to be solved and
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lists objectives and scope of the dissertation, as well as defining the adversary
model. Chapter 2 A Roadmap Towards Improving Managed Security Services
from a Privacy Perspective does an analysis of ethical, economic and techni-
cal aspects of managed security services and proposes a set of requirements
based on some use cases for privacy-enhanced network monitoring systems.

Part II Privacy Enforcement for Intrusion Detection Systems

Part II discusses technical controls that can be used to enforce privacy-enhanced
IDS. Chapter 3 Two Tiered Privacy Enhanced IDS Architecture presents an
architecture for privacy enhanced IDS, where the operation is split into an
outsourced first-line service which operates in privacy preserving mode, and
a second-line service that does attack analysis and has authorisation and secu-
rity clearance to violate privacy and confidentiality if needed. It furthermore
suggests how coarse grained anonymisation of sensitive information in IDS
alerts can be performed by using an eXtensible Access Control Markup Lan-
guage (XACML) policy.

Chapter 4 Decision-cache Based XACML Authorisation and Anonymi-
sation for XML Documents extends the coarse-grained anonymisation solu-
tion in the previous chapter to a fine-grained solution for authorisation and
anonymisation of sensitive information in XML messages. This is used for
anonymisation of IDS alarms based on the Intrusion Detection Message Ex-
change Format (IDMEF) format. It furthermore uses an XACML decision
cache to improve performance.

Chapter 5 Reversible Anonymisation for Intrusion Detection Systems ex-
tends the Decision-Cache based anonymiser to support reversible anonymisa-
tion of sensitive information in IDS alarms with support for multi-level secu-
rity. The privacy policy scheme is furthermore extended to support anonymity
by default, key sharing and secure data destruction.

Part III Privacy Leakage Detection and Avoidance

Part III analyses privacy metrics, and proposes how these can be integrated
with the privacy enforcement scheme discussed in Part II.

Chapter 6 Measuring Privacy Leakage for IDS Rules proposes a theoret-
ical model of privacy leakage in IDS rules based on quantitative information
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flow analysis. The proposed metric is based on the standard deviation of en-
tropy, with a length correction to avoid being incentive incompatible. The
metric is verified both in simulations as well as using real IDS alarms. The
chapter also outlines how the metric can be generalised to other IDS tech-
niques than signature-based IDS.

Chapter 7 Metrics-based Privacy Enforcement for IDS Alarms combines
the privacy enforcement mechanism in Part II with the privacy leakage metric
in Chapter 6. It describes a methodology for privacy leakage detection and
avoidance which allows a continuous improvement process from a privacy
and confidentiality perspective. It shows how the privacy metrics in com-
bination with the privacy enforcement techniques can be used to implement
metrics-supported privacy enforcement policies, and also discusses possible
vulnerabilities of such a scheme. The chapter furthermore proposes a detailed
entropy map indicating where (in which octets) of the elements or attributes
of an IDS alarm privacy leakages occur.

Part IV The Way Ahead

Chapter 8 Discussion, Conclusion and Future Work concludes the disserta-
tion. First, it discusses to what degree the proposed solution supports the Pri-
vacy by Design objectives in Section 1.4.2. Then the possible impact that the
proposed solution may have is discussed, including to what degree it fulfills
the the technological objectives in Section 1.4.3. This leads up to the general
conclusion, which amongst others concludes on how well the proposed solu-
tions supports the problem statement. The last section outlines future work
and discusses possible starting points for further research.
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Chapter 2

A Roadmap Towards Improving
Managed Security Services from a
Privacy Perspective

Increased ethical awareness and improved guidelines, methodologies and
tools are needed for handling private or confidential information for out-
sourced managed security services. The current situation is that some tech-
niques, for example intrusion detection systems, may be too privacy invasive.
At the same time, investigation of transnational on-line crime is impeded by
a proliferation of attacks, lack of electronic evidence and legal hindrances
across national borders. This means that new strategies are needed that facil-
itate increased cooperation between organisations on attack detection, at the
same time as private and confidential information must be respected. This
chapter proposes a roadmap, requirements and use cases for how these pri-
vacy issues can be controlled using a continuous improvement process. Or-
ganisations performing monitoring of computer networks for signs of attacks
can for example be expected to benefit from using quantifiable privacy and se-
curity metrics as part of a service level agreement. It is furthermore analysed
whether automatic blocking of malicious traffic is better than surveillance of
such activities. Last, the chapter discusses how incentive compatible contrac-
tual means can be used to reduce the moral hazard both from a privacy and
security perspective for outsourced managed security services.
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2.1 Introduction

Globalised organised cyber-crime is a serious and rapidly increasing problem
in today’s society. It can ultimately threaten the IT-infrastructure of coun-
tries [9]. In addition, Advanced Persistent Threats (APTs), like the Stuxnet
and Duku worms targeting critical infrastructures are being developed by
governmental agencies as part of a cyber warfare strategy [34]. The con-
viction rates are low for cyber crime, because it is hard to get evidence that
can be traced back to the offender. Another reason is that it is difficult and
expensive to investigate crime involving several countries with different leg-
islation [75].

Various attack detection techniques, like Intrusion Detection Systems (IDS),
spamfilters or anti-virus are being used to detect, investigate and prevent
cyber-crime both in the private and public sector. It is legal to perform mon-
itoring of computer networks and hosts using such potentially invasive tech-
nologies in most European countries, as long as the purpose with the moni-
toring is to detect cyber-attacks. There are for example explicit exceptions for
measures related to detecting cyber-attacks in the EC communications direc-
tive [46]. This may nevertheless be problematic from a privacy or confiden-
tiality perspective, because the effect of such monitoring is largely unknown.
This means that better methods are needed to protect private or confidential
information, at the same time as better techniques are required for ensuring
transparency on use of such information. This can for example be in the form
of secure logging of access to private or confidential information.

This chapter discusses ethical problems related to Managed Security Ser-
vices (MSS) - network security services that are outsourced to a service
provider [70]. The main focus in this chapter is on attack detection tech-
niques like Intrusion Prevention Systems (IPS) and Intrusion Detection Sys-
tems (IDS), with a particular focus on privacy. Based on this ethical dis-
course, a roadmap is proposed on how to improve handling of private and
confidential information for such systems.

This chapter is organised as follows: The next section gives an introduc-
tion to what intrusion detection and prevention systems are. The effect of
outsourcing security monitoring is discussed in section 2.3. Section 2.4 gives
a definition of privacy, and section 2.5 discusses how privacy can be improved
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for IDS from a high-level perspective. Section 2.6 discusses sources of infor-
mation leakages in intrusion detection and prevention systems. Section 2.7
discusses network monitoring from an ethical and human rights perspective,
and section 2.8 discusses how the arms race between adversaries and secu-
rity interests impact these monitoring technologies. Section 2.9 discusses
the effects of privacy and security interests normally competing for the same
funding, and section 2.10 discusses privacy valuation. Section 2.11 discusses
advantages and disadvantages with automatic attack prevention (IPS) com-
pared to attack detection (IDS) from an ethical perspective. Section 2.12
proposes a roadmap towards improved privacy for managed security services
based on ethical principles, technical privacy enforcement mechanisms, pri-
vacy metrics and best practices within information security management. Fi-
nally, section 2.13 concludes the chapter and outlines future work.

2.2 What Are Intrusion Detection and Prevention Sys-

tems?

Network based Intrusion Detection System (IDS) is the Internet equivalent of
a burglar alarm which monitors all packets passing through a router, switch
or firewall. This monitoring is typically performed using deep packet inspec-
tion (DPI), which means that the following data can be investigated: packet
header information, e.g. IP addresses and ports; payload in each data packet;
reassembled streams of data spanning several data packets; and entire com-
munication sessions between a client machine and a server.

This means that all communication performed between a client applica-
tion, for example an email reader and the corresponding email server, in prin-
ciple can be intercepted and investigated in detail by an IDS, as long as the
communication sessions are not encrypted. However encrypted data can also
in special cases be monitored, for example if the monitoring is performed
after the decryption function or if the IDS is trusted with the secret key nec-
essary to decrypt encrypted data sessions.

The two main types of IDS are signature-based IDS, which relies on
matching known attack patterns in the data traffic, and anomaly-based IDS,
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which interprets statistical anomalies in the data traffic as possible attack ac-
tivities. Intrusion Prevention Systems (IPS) extend IDS with functionality to
automatically block traffic from senders that triggers an IDS rule or traffic
anomaly.

The market leaders/challengers for IDS/IPS devices: Cisco, HP, IBM, Ju-
niper, McAfee and Sourcefire [56], all rely on using DPI, based on a combina-
tion of signature-based and anomaly-based detection techniques. This avoids
any security blindspots that may occur using either technology [28, 84, 18,
149, 89]. IDS focuses on identifying possible incidents, and supports inci-
dent response efforts to identify successful compromise of a system due to an
adversary exploiting a system vulnerability [114]. Typical use of IPS technol-
ogy involves acting as a shield protecting vulnerable machines from known
attacks [56]. This is in particular important for Critical Infrastructures, which
may have long patch latencies due to strict safety requirements on testing
of patches before deployment. Other uses of IDS include identifying secu-
rity policy problems, documenting the existing threat to an organisation and
deterring individuals from violating security policies [114].

The privacy concern related to IDS or IPS comes both from policy-based
IDS/IPS rules and from false alarms or anomaly patterns in attack detect-
ing rules which may leak Personally Identifiable Information (PII) or other
confidential information. Privacy leakages may also occur due to activities
caused by malicious actors, for example computers compromised with mali-
cious software or web bugs that reveal sensitive information about compro-
mised users. The latter may cause privacy leakages both towards the mali-
cious actors, which should be detected and deterred by IDS/IPS, as well as
to MSS providers monitoring the IDS alarms. Privacy leakages can be con-
trolled using a combination of privacy leakage metrics and privacy enforce-
ment mechanisms. Access to such information should furthermore be logged,
to reduce access to those that strictly need to know it, as well as maintaining
transparency and traceability on the MSS operation.
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2.3 The Effect of Outsourcing Security Monitoring

Outsourcing security monitoring to MSS providers has gained popularity for
two main reasons. First, the cost of providing 24x7 monitoring is only a
fraction of what such monitoring would cost in-house [38]. Second, MSS
providers have in general got more experience in handling security incidents
and more updated monitoring technology, by specialising in this area, than
the average customer. A large client base also contributes to service quality
improvements because an MSS provider, monitoring a large set of networks,
easier can correlate attacks and identify new attack patterns. They can also
share information about attacks and attack mitigation strategies between its
customers, which is one of the factors that have been shown to reduce the risk
of attacks from adversaries [115]. One concern firms have when considering
to outsource security services, is that the MSS provider may shirk (avoid
doing its duties) secretly to increase profits. In economics this behaviour
is commonly referred to as the Moral Hazard problem. The optimal way
to avoid such behavior on a contractual basis is to use a performance-based
contract, however the degree of performance dependence may decrease if the
reputation effect becomes significant [38].

It should be noted that the Moral Hazard problem not only is applicable to
the security of the monitored data. It is also applicable to the privacy and con-
fidentiality of the monitored data. Both in the sense of handling more private
and confidential information than strictly necessary and in the sense of po-
tentially leaking or abusing private or confidential information. This does in
the end mean that a principal (here the customer of security services) should
require that both the security and privacy performance for outsourced MSS
should be part of a performance-based contract with the MSS provider. This
means that the MSS provider should be accountable for both the privacy and
security part of the operation which means that suitable performance metrics
and activity logging procedures are needed for both privacy and security, so
that the performance in these areas can be reported and audited if necessary.
This is in line with the 6. foundational Privacy by Design principle, that the
privacy-enhanced design must ensure transparency [25].
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2.4 What Is Privacy?

Privacy is a broad concept that can have different meaning in different con-
texts. Warren and Brandeis early on defined privacy from a legal perspective
as the right to be let alone [144]. Other definitions focus more on privacy
as an intellectual property from a utility perspective, where the data owner
should be ensured self determinism about private data [112]. This amongst
others means that the data owner must be able to give and revoke consent to
access private data [25]. This has for example lead to actuarial models that
aim at estimating the perceived cost of privacy leakage for insurance con-
tracts [60].

Information theorists provide a more technical definition of privacy and
often define privacy as equivocation (level of ambiguity). This definition is
based on the observation that some level of privacy and anonymity can be
ensured by requiring that private information is hidden in a sufficiently large
crowd of other information, so that the data owner cannot easily be identified.
Equivocational privacy metrics are for example based on entropy [113, 29],
or they directly specify a level of equivocation like k-anonymity [111, 27,
126] or l-diversity, which in addition to level of equivocation considers the
diversity of the data [86].

From an information theoretic viewpoint, privacy leakage can be mod-
elled based on the assumption that the utility of the data is inversely propor-
tional to the level of perturbation of the data and the level of privacy can be
quantified as the level of equivocation [113].

The dissertation considers privacy or confidentiality as an intellectual prop-
erty that has a subjective value by the information owner, and therefore should
be protected from unnecessary disclosure. This furthermore means that ac-
cess to such information should be transparent and auditable.

2.5 How Can Privacy be Improved?

One way to illustrate how technology can improve privacy from a high level
perspective is airport security. Many are willing to trade some convenience
and privacy for added security. It is therefore accepted in our society that all
passengers undergo privacy-invasive security control checks when traveling

24



Chapter 2. A Roadmap Towards Improving MSS

by airplanes to increase the perceived safety. The privacy-invasive security
controls aim at reducing the possibility that adversaries, like terrorists or psy-
chologically unstable persons, bring weapons, explosives or other dangerous
items on board the airplane.

There has been quite extensive research on more efficient ways to de-
tect hidden weapons on people. One efficient technology, that recently has
been deployed, is backscatter X-ray scanners [24]. These scanners expose
the person to be checked with small amounts of X-ray radiation, and use
the backscatter X-rays to produce photo-quality images that can see through
clothes. This technology is used as an alternative to personal searches, since
it easily can reveal hidden weapons. If a suspicious item is detected, then the
security officer will perform a manual search to verify what the suspicious
item is.

This technology causes a privacy concern, since it essentially shows a
naked picture of the person being scanned. Privacy enhancing technologies
have therefore been implemented to deal with this problem. The techniques
include using blurred pictures or stylistic images, emphasising items that are
not considered normal body features. Such techniques mean that the privacy
of all people who are not being suspected of carrying illegal items need not
be violated, which limits the amount and degree of privacy violations.

The Internet analogy of this is surveillance techniques like IDS using deep
packet inspection. This means that the MSS provider effectively can see any
cleartext traffic that triggers IDS alarms between a customer performing a
service on the Internet and the service provider. There may therefore be a
conflict between the privacy and security objectives1 for managed security
services. However, a larger problem may be the lack of transparency on
what is being monitored, and why. My experience is that IDS rule sets being
implemented are typically considered company secrets by MSS providers -
partly because of the risk that an attacker may abuse this information to at-
tack customers of the MSS, and partly because some rules may implement
possibly privacy invasive IT monitoring policies, for example monitoring use
of peer-to-peer traffic, if the IT policy disallows this. The network owner may

1There will also be synergies between privacy enhancing technologies and security, as will be
discussed later. Aiming for such synergies is recommended by the 4. Privacy by Default principle,
which states that one should aim for a win-win situation between privacy and security [25].
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not want to reveal such monitoring practices, since such information may be
considered sensitive from a business or reputation perspective. An important
principle should be that the monitoring invades privacy and confidentiality as
little as possible for normal, unsuspicious traffic. However, just like in the
airport example, a more thorough investigation will be required if suspicious
Internet traffic is detected, to verify whether the data traffic is hostile or not.

The decisions and actions security analysts perform should be logged,
regardless of whether the analyst decides to investigate an event in detail or
not, since this will provide transparency on what is being investigated and
why, both from a security and privacy perspective. Such transparency can
be expected to be instrumental in improving the MSS operation both from
a work efficiency, attack detection efficiency and privacy impact perspective,
since it would allow identifying and putting effort into mitigating bottlenecks,
blindspots or overly privacy invasive sides of the operation.

2.6 Information Leakages from Intrusion Detection

and Prevention Systems

The first question one perhaps should ask, is whether there really is any sig-
nificant leakage of private or confidential information in IDS alarms? The
market leaders claim that false alarms is not a problem for a properly man-
aged IDS/IPS in their technical documentation. However, a recent compara-
tive analysis of commercial IDS and IPS shows that more than 92.85% of all
IDS alarms on a campus network from a testbed of seven different commer-
cial IPS/IDS products, tested over a period of two years, are false alarms [63].
Other studies have also indicated that network monitoring technologies cre-
ate a significant amount of false alarms [5]. Some of the reason for this,
is applications that do not follow the protocol specifications [63]. Further-
more, around 91% of the false alarms were not related to security issues, but
management policies, for example that IDS rules were set up to identify peer-
to-peer (P2P) traffic, that was not allowed according to the IT policy [63].

Our own investigations show that some IDS rules may be overly broad,
in an attempt to generalise the rule to match different attack vector vari-
ants [134]. A side-effect of this, is a significant amount of false alarms which
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may contain private or confidential information. Another problem is that
Internet applications do not follow the standards, and therefore may trigger
false alarms, for example on web-based IDS rules that check for standards
conformity [63].

Another similar area is IDS rules for identifying web bugs. These web
bugs may in themselves be a risk for privacy and data confidentiality. How-
ever, in this case, the good intention of security monitoring may be its own
worst enemy, because detecting privacy leaking web bugs causes a significant
privacy leakage in itself. For IDS rules detecting web bugs, it is only inter-
esting from a security perspective to detect the presence of such potentially
malicious browser plugins. It should not in general be necessary to view
the privacy-leaking payload, addresses or advertisements that these plugins
cause, perhaps apart from a limited analysis of attack behaviour for the web
bugs.

I have had discussions with practitioners in this area, and one of the ethical
dilemmas they sometimes have, is when attack detection technologies trigger
alarms on more than just real attacks. This is problematic from a privacy
and confidentiality perspective, because this effectively is a leakage of pri-
vate or confidential information that goes beyond the initial purpose the data
were collected for - to detect cyber-attacks. An example scenario is when
side-information from such monitoring activities by chance detects illegal or
criminal activities that are not related to the core purpose of the monitoring
technologies. This may put the Managed Security Service (MSS) providers
in ethical dilemmas on how to handle this side-information, and from a law-
enforcement perspective, this may not even be considered legal evidence,
because the monitoring technologies have detected activities beyond the in-
tended purpose of detecting cyber-attacks.

In these cases, the information being collected may reveal sensitive side-
information about user behaviour, which should be restricted only to person-
nel performing investigations of illegal activities. Furthermore, transparency
and nonrepudiation on such activities is important, which means that secure
logging schemes are required to be able to prove who have accessed the given
information when. Anonymisation, pseudonymisation or encryption are gen-
eral techniques that can be used to reduce the privacy impact in cases like
this, given that suitable metrics exist for identifying where, what and how
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much sensitive information that leaks. Sensitive parts of the data should then
be anonymised, possibly using a reversible anonymisation scheme based on a
combination of anonymisation and encryption, so that only authorised stake-
holders can access this information.

2.7 Network Monitoring from a Utilitarian and Hu-

man Rights Perspective

Host and network-based attack detection techniques may cause an invasion of
privacy that has the potential for harm. Companies therefore need to be able
to justify the practice from an ethical perspective. The situation description
in the previous sections show that security interests in some cases may come
in conflict with other important human rights like privacy, freedom of expres-
sion and the right to be presumed innocent until proven guilty. There is fur-
thermore a large uncertainty on what is being monitored by a MSS provider,
which is problematic both from a privacy and security perspective.

However, there will also in many cases be synergies and common interests
between privacy and security objectives, especially related to handling con-
fidentiality, which is considered one of the core security objectives. Keeping
corporate private and personally identifiable information confidential is ben-
eficial both from a privacy and security perspective. This means that privacy
or confidentiality enforcement techniques like anonymisation, pseudonymi-
sation or encryption of sensitive data, as well as transparency on who have
accessed these data, is beneficial both from a privacy and security perspec-
tive.

Teleological principles have an account of the good which is fully inde-
pendent from the right, and a fully dependent theory of the right, as that
which maximises the good [108]. The best known example of a Teleological
principle is perhaps Utilitarianism introduced by Jeremy Bentham and John
Stuart Mill [90, 15], which deems the moral action as the one that aims at
maximising a given good.

It is for example possible to define the best moral choice of monitoring
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techniques as the choice that provides the highest employee utility in form of
minimising losses due to non-work related Internet usage, security incidents
and liabilities for example from downloading pirated software or music [26].
However, such a narrow definition of the best moral choice is problematic.
The objective for the moral choices should rather be to reduce the harm for
the society at large based on accepted standards like the Human Rights [139],
than to focus on narrow definitions of the moral choice.

The general concern with monitoring without regard to privacy or other
human rights, is that the on-line community would end up being like an elec-
tronic Panopticon where the inspector could see anything and the inspected
would be aware of being monitored, potentially at any time, but not when they
were being monitored [14]. This could in the worst case lead to a legalistic
society where everything was dictated by law, and the inner freedom of ethi-
cal choice was reduced to little or nothing. Another way to describe it is as an
Orwellian society that observed and controlled all on-line information [96].
Even though security may be improved, the overall utility would be lower,
since other human rights like privacy and free speech would be reduced.

This is not only of theoretical interest. Mandatory surveillance and cen-
sorship of on-line behaviour is frequently performed in totalitarian regimes.
One example is China, where Internet Service Providers are required to per-
form the monitoring of the citizens [143]. There is also a pressure towards
widening the scope of on-line surveillance also in democratic regimes both
in Europe and elsewhere in the world, for example to detect terrorism and
certain types of crime [21].

Awareness of such monitoring causes self-censorship, which means that
people may be afraid of telling the truth because of the risks of punishment
or retaliation from parties responsible for the monitoring. Another risk is that
the monitoring organisation may not act morally right and abuse acquired
knowledge from private or confidential information. Corrupt insiders in the
monitoring organisation may for example sell private or confidential infor-
mation, extort the information owner or use the information for their own
advantage [106]. A more recent concern is the risk of radicalisation by in-
siders that have access to private or confidential information, especially for
critical infrastructures. One important principle here, is that the monitoring
organisations need to be accountable and auditable for the operations they
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do on private or confidential information. This requires that techniques for
ensuring transparency and non-repudiation are built into the monitoring tech-
nologies, so that the monitoring organisation cannot deny having processed
given private or confidential information.

2.8 How Does the Arms Race between Adversaries

and the Computer Security Industry Affect Pri-

vacy?

Intrusion detection systems are not without their problems. The monitoring
is challenging because of the proliferation of new attack vectors and the use
of obfuscation techniques, which make detection difficult [102]. The reason
behind the proliferation of malicious software (malware) is partially due to
malware creation kits [94]. These kits can create Trojans or entire phishing
web sites that are intended to lure users to install malware on their computers.
To avoid detection, malware uses techniques like cryptographic obfuscation
and self-mutating code [85]. It is therefore easy for adversaries to create new
attacks that typically will go undetected by anti-virus and IDS systems, so
called zero-day exploits, which open up a window of opportunity for the ad-
versary to attack the system. Zero-day vulnerabilities and exploits are consid-
ered valuable by cyber criminals, and are frequently traded on underground
black markets [106]. A problematic aspect with these markets from an ethi-
cal perspective, is that not only cyber criminals, but also grey market security
companies and governmental backed agencies participate in the trade of zero
day exploits [59]. This means that cyber criminals, governmental services
and grey market actors have an economic incentive to keep information about
such vulnerabilities secret, instead of disclosing them which in general would
provide better overall utility to the society.

In addition, backdoors and control channels to large bot-nets of compro-
mised computers are increasingly using encrypted communication. Recent
research for example indicates that the majority of the traffic from the Tor
anonymiser network is bot-net related traffic, and hidden services provided
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by or via these compromised hosts [19]. It is not feasible to intercept the
malicious communication in these cases, since the attacker is the only per-
son who knows the decryption keys. Furthermore, attacks may be hard or
impossible to trace due to no or limited retention of traffic data on a world-
wide basis. This means that more comprehensive strategies are required for
efficient monitoring of malicious activities in the future.

There is in other words an arms race between adversaries (malware pro-
ducers, organised crime, governmental agencies and malicious hackers2) and
the computer security industry. Traditionally, malicious hackers running bot-
nets are opportunistic and will pick the targets that are easy to attack using
any attack vectors that give a reasonable success rate [106]. The attackers
can target software vulnerabilities using exploits, social vulnerabilities using
Trojans, or both. The aim of malicious hackers is to a large extent monetary
gain [52]. They are harvesting information from the hacked computers that
can be used for financial fraud, identity theft, password logging or extortion.

The advent of Advanced Persistent Threats (APTs) changes this picture,
since governmental agencies may use a large amount of resources for at-
tacking a target critical infrastructure as part of a war or cyber intelligence
strategy. It is much harder to protect oneself against such threats, since the at-
tackers may have political reasons and sufficient funding for choosing a given
target almost at any cost, and will therefore not necessarily go for an easier or
less protected target, as cyber criminals frequently do. This means that better
and more resilient methods are needed for protection of private or confiden-
tial information, as well as improved methods for protecting the availability
and integrity of information infrastructures against cyber-attacks, than what
currently is available. This can for example be done using a defence-in-depth
strategy which assumes that more than one barrier need to break to access
private or confidential information.

A recent trend that is expected to be the next major advance in attack
detection, is to merge Big Data analytics with IDS/IPS, so that all commu-
nication to or from a company can be stored and investigated over a time
span of months. An early example of this is the time machine [88], which

2The chapter uses the term malicious hacker to describe a cracker or black-hat hacker that mali-
ciously attempts to break into systems.
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works in a similar way as a “Personal Video Recorder” for network traffic,
being able to store the initial part of all network sessions. Now more power-
ful cluster-based technologies like Apache Hadoop have been combined with
IDS technologies to log all network traffic in real time, and at the same time
perform near real-time attack analysis on this traffic. An example of this is
PacketPIG, which is capable of storing traffic from a 100Mbit/s link in real-
time for months on a 3Tb disk [13].

An advantage with such technologies, is that they allow detecting for-
merly unknown attacks (so-called zero-day attacks) after the attack has hap-
pened, by performing a retrospective IDS analysis on stored data, using new
attack signatures identified after the data was logged. This improves the ca-
pabilities for performing data forensics significantly. However, these tech-
niques also cause a concern both from a privacy and transparency perspec-
tive, since the operation on such big data is concealed in legal and commercial
secrecy [72]. Another problem is that these techniques normally detect and
not deter attacks, since they are based on data mining of past traffic. There
is furthermore a lack of mechanisms for protecting the privacy and confiden-
tiality when accessing these big data, as well as lack of logging mechanisms
for ensuring transparency and non-reputability. Much of the reason for this,
is that big data based security analysis still is in its infancy.

2.9 Privacy and Security Interests Compete on Fund-

ing

Privacy-enhancing technologies and privacy metrics should be used to allow
security monitoring being performed as precisely as possible, in order to min-
imise the privacy and confidentiality impact of MSS operations. A challenge
is that security monitoring needs to be implemented within a commercial or-
ganisation that mainly aims to maximise the profit for its owners. This means
that a customer of a MSS provider will have a limited budget available for
security investments. It has for example been suggested that only a fraction
of the expected loss due to security breaches (max 37%) should be spent on
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security investments for a risk neutral firm [57]. This also means that privacy
and security interests need to compete on the funding to implement the best
possible security and privacy handling.

There are in other words practical limits for how much money and effort
that a monitoring company should put into both security and privacy to im-
prove the service. This means that solutions for enhancing the privacy should
be readily available, affordable and easy to configure, preferably over existing
services, to reduce the implementation costs for adding privacy and confiden-
tiality protection. There is otherwise a risk that security interests may trump
the privacy interests given a limited budget. This is at the moment a major
hurdle, since technologies for privacy-enhanced security monitoring are not
yet readily available. Parts II and III of the dissertation aim at describing how
this deficiency can be mitigated.

The monitoring organisation may also see benefits in better privacy han-
dling from an economic perspective, for example if improved handling of pri-
vate or confidential information has side effects like reduced operating costs
from handling fewer false alarms, or better protection of corporate secrets or
personally identifiable information. In addition, improved privacy handling
reduces the risk of liabilities from privacy leakages, and it will improve the
trustworthiness for customers where privacy and confidentiality is paramount.
One example of such customers is health institutions who, due to very strict
privacy requirements, will not allow sensitive data to leave the corporate net-
work.

Better privacy handling of services related to IDS data forensics and re-
lated protocols used for exchanging privacy or security-sensitive information
is also in-line with the 4. foundational Privacy by Default principle [25], since
integrating privacy enhancing technologies can create a win-win situation by
supporting both the privacy and security objectives.

2.10 The Value of Privacy

A Utilitarian way to describe the optimal utility level has recently been pro-
posed based on information theory [113]:

“For a data source with private and public data and desired utility
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level, maximum privacy for the private data is achieved by min-
imising the information disclosure rate sufficiently to satisfy the
desired utility for the public data.”

This implies that private or confidential information is disseminated strictly
on a need to know basis. An advantage with this approach, is that it may
be possible to quantitatively analyse the optimal solution and compare how
close a real solution is to the optimal one, given that some objective criteria
or metrics for the information disclosure rate are identified. Privacy metrics
like differential privacy have been proposed as a method to quantify the max-
imum privacy for a given level of utility for cases where sensitive data in
databases need to be sanitised, for example by adding noise to blur the preci-
sion of given data, while still maintaining important statistical qualities, like
the mean and standard deviation over a sufficiently large sample [40].

A disadvantage with this model is that it does not consider the semantics
and therefore not the value of revealed private data. Some data are typi-
cally considered more sensitive and therefore also more valuable than other.
Econometric or actuarial models have been suggested for modeling the cost
of revealing data [60, 150]. The practical challenge with these economic
models, is that it may be difficult to get representative cost distributions, since
they are based on peoples’ subjective value of private data.

2.10.1 Estimating the Value of Privacy

I did some preliminary experiments as part of my research where security
analysts attempted to classify the privacy leakage of IDS alarms. They found
it very difficult to do this. In many cases they found it hard to understand,
or even purely hypothetical, that the sampled IDS alarms even would contain
any significant information that was sensitive from a privacy or confidential-
ity perspective. The information they sampled, was after all open (i.e. not
encrypted/protected) in their opinion. This could mean that security analysts
are less privacy conscious than others, for example that they are blinded by
operating routinely on sensitive information. It could also mean that there
actually is less really private or confidential information in the IDS alarms
than one should think.
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The perceived value of private information is after all highly subjective [60],
so it is not given that the valuation by security analysts, which are the only
people that have security clearance to access the IDS alarms, would give a
representative picture of the privacy leakage. In practice, the only stakehold-
ers that can give the correct valuation of the privacy impact from IDS alarms,
are the users themselves. And it is in most cases not trivial and also not de-
sirable to connect the users to the underlying data from a privacy perspective.

One possible way to get around this problem, to get realistic measure-
ments of the privacy impact may be the following: Assume that the data
controller compiles a top ten list of the most privacy concerning information
leakages, for example from a given web service. The data controller then
needs to ask a representative random sample of users in an anonymous poll,
presented during use of the service, what they think their privacy is worth
in monetary value, given that a security company may see how they used a
given set of web pages. The results from this poll could then be used to esti-
mate a privacy impact factor as a random variable for each given information
leakage.

It may however in practice not be feasible to do this, because it would
be difficult to get permission to do such an experiment in an outsourced sce-
nario where you would have to consider the business concerns of both the
MSS provider and the service provider being monitored. It is hard enough
to get consent from the MSS provider to do research on IDS data, and may
be even harder to get consent from customers of MSS services, due to con-
cerns that such a detailed poll would affect the reputation of the service being
monitored. This means that it will be challenging at best, maybe not even
possible, to get a representative cost distribution for the privacy impact of the
data that seem to leak most information, not to mention getting a representa-
tive cost distribution for an entire IDS rule set consisting of several thousand
rules. Furthermore, privacy valuation is very sensitive to how the question is
framed [2].

Another challenge, is that the value of private data changes over time, and
may either increase or decrease [16]. Privacy valuation has for example been
investigated based on option pricing theory, where the self-information of a
private data item is simulated over time using a stochastic random walk [16].
It is however hard to predict whether the value of private information will in-
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crease or decrease in value over time, except in trivial cases. One such exam-
ple is linkability between targeted advertisements (e.g. from doubleclick.net).
Such targeted advertisements may be problematic from a privacy perspective,
since they may reveal personal preferences, however these advertisements
also typically time out after a relatively short period, meaning that the infor-
mation after this becomes worthless.

2.10.2 How to Measure Privacy Leakage

The discussion in the previous section indicates that is is better to focus
on measuring information leakage in IDS alarms based on objective criteria
which correlate with the disclosure rate of sensitive information, for example
based on Shannon entropy [118], rather than doing detailed privacy valuation
analysis. This means that optimising the security monitoring from a privacy
perspective effectively will reduce the information disclosure rate.

A privacy leakage metric for IDS, founded on the theory of quantitative
information flow analysis [122, 121] and Shannon entropy is described in
part III of the dissertation.This metric allows a data controller to set an im-
pact value on given data, based on the perceived sensitivity of the data. This
is not an exact valuation of the private data, however it can be useful to weigh
up data that clearly is more sensitive from a privacy or confidentiality per-
spective, and it can also be used to reduce the impact of data that has no or
little impact. This is a simplistic approach similar to what is common in risk
analysis.

2.11 Attack Prevention or Surveillance, Which Is Bet-

ter?

Intrusion Prevention Systems (IPS) is a network monitoring technology that
extends IDS with the possibility to automatically enforce a computer secu-
rity policy. A question is then: when is it acceptable from an ethical/moral
perspective to automatically enforce a computer security policy, and are there
any cases where it can be considered better to automatically enforce the pol-
icy than to use traditional monitoring techniques like IDS? A related question
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is whether blocking of undesirable content is more acceptable than surveil-
lance covering use of undesirable content?

In general, IPS, firewalls and IDS may all leave electronic evidence in
the form of system logs or alerts sent to a central security operations centre.
It is possible to define rules that enforce a security policy without leaving
electronic traces, however this is not common to do. The reason is that system
logs are useful to detect and improve rules that perform poorly or incorrectly.
It can also be useful to verify correct system operation.

Logging of what is being monitored may also be important for account-
ability, to audit what is being monitored either by the network owner or by
third party quality certification organisations. It should however be noted that
such logs also may contain private or confidential information. They should
therefore be cryptographically protected both against unauthorised modifica-
tions by the MSS provider as well as against external attacks, and should use
privacy enhancing technologies, for example anonymisation or pseudonymi-
sation, to avoid showing private or confidential information in cleartext to
unauthorised personnel. Since IPS rules typically perform automated actions,
then there should normally not be a need to view detailed information from
such events in cleartext. IPS alerts should therefore be suitable candidates for
anonymisation/pseudonymisation.

A problem with automatic enforcement using IPS, is however that moni-
toring rules typically are neither perfect, meaning that false alarms may oc-
cur, nor complete, meaning that the rule is able to catch all attacks [51]. This
means that using an IPS causes a risk that some legitimate traffic also will be
denied. On the other hand, one should not be complacent because of having
an IPS implemented, since the rule definitions typically are not complete, and
may not detect all attack scenarios. A common way for IPSs to enforce pre-
ventive actions, is to block traffic from the attacker either permanently or for
a given time interval. This can be problematic both from an ethical and busi-
ness perspective since it may cause benign traffic to be blocked out. There
is also a risk of targeted Denial of Service attacks against the IPS or firewall
if the adversary uses forged attack traffic to disrepudiate a given user or to
block the entire service. This shows that automatic filtering of attack traffic
based on blocking traffic that matches given rules can be problematic from
both an ethical, business and security perspective, although it clearly is more
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cost effective than manual 24x7 monitoring of IDS alerts. It is also more
efficient since it actually may prevent an ongoing attack, given that the IPS
is sufficiently fast and precise, to detect and deter the attack vector without
harming innocent third parties.

A somewhat related area, is permanent blacklisting of traffic from certain
hosts assumed under control by adversaries, or even censorship of web sites
providing content that in a given legislation is deemed illegal. Is automatic
enforcement of security policies, for example via rules that deny access to
certain on-line resources in this case more acceptable than security monitor-
ing? Is it for example worse to block inappropriate web sites or web sites that
may be risky from a security perspective, than if humans investigate such
events? This is a discussion on censorship versus surveillance - which one is
better or worse. Content filtering is cheaper and may be a better choice from
a purely economical perspective, however one may risk liabilities from le-
gitimate users and customers whose service has been interrupted. The other
extreme, is whitelisting where only traffic between approved entities is al-
lowed. Such approaches may be useful in certain scenarios, for example for
controlling access to critical infrastructures.

Content filtering can be considered better from a privacy perspective pro-
vided that IPS alarms are properly anonymised. However it is not necessarily
better from an anti-censorship/free speech perspective. Knowing that systems
in general log what is being filtered, then it can be discussed whether content
filtering is a good argument from a privacy perspective, although it certainly
is possible to create IPS rules that either anonymise or encrypt sensitive in-
formation or do not log any information at all. Also, a censored environment
may give a deceptive perception of reality, something that is morally ques-
tionable.

Content filtering using IPS or firewall technologies is in other words use-
ful and can be morally acceptable if used against attack scenarios, provided
that the MSS provider aims at minimising the harm from both a privacy and
freedom of speech perspective, as well as avoiding harm for innocent third
parties. However a potential risk is that the IPS may be vulnerable to denial
of service attacks.
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Figure 2.12.1: High-level architecture illustrating some use-cases for the proposed re-
versible anonymisation scheme supported by metrics-based privacy enforcement.

2.12 A Roadmap Towards Improved Privacy for Man-

aged Security Services

This section proposes a roadmap for how technologies, tools, techniques and
methodologies can be combined with ethical principles in order to improve
privacy and security. Such a roadmap depends on existing privacy legislation,
and may benefit from public procurement policies favouring security opera-
tions with certified processes for operating in a privacy friendly manner. It
will depend on existing standards and best practices, like the ISO27000 set of
security management standards, in addition to new methods, tools and tech-
niques for measuring privacy leakages and performing privacy enforcement.

The privacy enhancing technology used to improve MSS requires a re-
versible anonymisation scheme, which can anonymise arbitrary information
in security monitoring services and subsequently let authorised stakehold-
ers, for example security analysts, access this information by reversing the
anonymisation. The privacy policies are being managed by the data con-
troller and security manager who must agree to deploy new privacy policies
via the Policy Administration Point (PAP). This means that a mechanism for
enforcing separation of duties constraints will be needed to enforce controlled
privacy policy deployment. It is also envisaged that a trusted service may be
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allowed to operate on certain private or confidential information, in a similar
way to the airport example mentioned earlier. Alarm correlation systems is
an example of such a trusted service. Such systems are used to improve the
precision of intrusion detection systems, by correlating information between
different IDS sensors and attack detection technologies and also correlate
information in time, to detect suspicious patterns for combinations of IDS
alarms.

Different users or roles will typically have different privileges for access-
ing sensitive information. First-line security analysts may be trusted to see
certain private or confidential information, for example to a given confiden-
tiality level. A Computer Emergency Response Team (CERT) or law enforce-
ment may be authorised to additional information on a needs basis, in order
to investigate suspected attacks.

Another use case, is exchanging information related to attacks and threats
with other stakeholders, for example other MSS providers, CERT or similar,
however access to private or confidential information may be restricted on
a needs basis, possibly allowing certain trusted services to give notification
about attacks or best practices in order to improve attack coordination be-
tween different organisations. Access to private or confidential information
should be logged to ensure transparency in all these cases.

2.12.1 Requirements and Use-cases for Privacy-enhanced Net-
work Monitoring

Figure 2.12.1 outlines some use cases for the privacy-enhanced network mon-
itoring service. Privacy policies will typically be defined after a privacy and
security impact assessment, which identifies the data elements and services
that need to be protected. The privacy impact assessment may also iden-
tify under which conditions data are sensitive, for example if an identifiable
subset of IDS alarms should be anonymised. The privacy impact analysis in-
volves an analysis of where private or confidential information may be leak-
ing, what this information is and how much or how frequently information
is leaking. Both the data controller and security manager then need to par-
ticipate in taking an informed decision on what is necessary and sufficient
information from a security perspective, in order to define a privacy policy.
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The privacy policy also includes defining who will have access to what in-
formation under which conditions. The privacy policy should also support
giving different stakeholders access to different parts of the private or con-
fidential information according to their needs. This means that the solution
should support a multi-level privacy or security based solution.

It is assumed that the anonymiser will be designed to anonymise informa-
tion in XML-based protocols, and that the IDS alarms can be conveyed in an
XML-based format, for example the Intrusion Detection Message Exchange
Format (IDMEF) [62]. This assumption simplifies the implementation and
makes it possible to design a solution that will work well in a service ori-
ented architecture based on web services.

Figure 2.12.1 also illustrates that the anonymiser and deanonymiser can
be used to build trusted alarm correlation systems, where the trusted service
is authorised to correlate necessary parameters in order to do efficient attack
detection. Private or confidential information in correlation alarms can sub-
sequently be anonymised, to avoid leaking more sensitive information than
necessary. This use case can be considered similar in some ways to the whole
body scanner example mentioned earlier, since technology is allowed to look
for suspicious patterns, however private or confidential data is being protected
by encryption from non-authorised parties, and only nonsensitive parts will
not be anonymised.

In addition, it is assumed that privacy leakage metrics can be used to verify
the efficacy of a privacy enforcement scheme by measuring how much infor-
mation that leaks. This also means that the privacy leakage metrics should be
aggregatable, so that a correctly functioning privacy policy will show reduced
privacy leakage after improving the policy, if the policy is working correctly.
The privacy leakage metrics can also be used to identify where information
is leaking, as well as supporting an analysis of what this information is by al-
lowing investigation of the underlying data. The anonymiser should allow for
defining both default PERMIT privacy policies, where any information that is
explicitly being authorised may be anonymised, and default DENY policies,
which by default anonymise all information, and where selected information
deemed safe from a privacy or confidentiality perspective subsequently can
be declassified. This means that privacy leakage metrics will be able to sup-
port a continuous improvement process based on the well-known Plan, Do,
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Check, Act method of improvement which is used by the ISO27000 set of
security management standards.

The anonymiser may also be useful for anonymising exchange of threat
information with collaborating Security Operations Centres (SOCs), for ex-
ample using the Structured Threat Information Expression (STIX) and Trusted
Automated eXchange of Indicator Information (TAXII) protocols defined by
Mitre [130, 30]. This allows sensitive information in the exchanged threat
information to be anonymised, however a trusted service may be allowed to
deanonymise and operate on certain parts of this information.

The privacy policies should furthermore support defining both policies
that explicitly describe which information that is being anonymised (default
PERMIT policies) and policies that explicitly describe which information that
is being allowed in the output (i.e. default DENY policies). The latter is
needed to support the privacy by default criterion of the Privacy by Design
guidelines [25].

The privacy enforcement method should also support enforcing different
levels of information opacity. A process control network enclave may for
example want to enforce a transparent network policy where all informa-
tion is in cleartext, to be able to verify the programming of vulnerable Pro-
grammable Logic Controllers (PLCs). This would reduce the risk of some
man-in-the-middle attacks (e.g. Stuxnet). A similar approach can be used
to trigger alarms if the entropy for a Virtual Private Network (VPN) gateway
is anomalistic by enforcing an opaque information policy where all informa-
tion is required to be encrypted, in order to detect cleartext attacks on these
gateways [151].

Another use case is monitoring a health network, where the anonymi-
sation policy would be set up to anonymise potentially personally identifi-
able information in IDS alarms, for example by anonymising the payload
of the alarms, and ensuring transparency by logging when security analysts
accessed this sensitive information.
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2.13 Conclusion

This chapter has identified several requirements for a privacy-enhanced net-
working monitoring service based on the ethical discourse and analysis of
possible use cases.

A risk to consider for outsourced Managed Security Service (MSS) providers,
is Moral Hazard or shirking. The network owner cannot assume that security
monitoring outsourced to a MSS provider will be performed in a way that
aims at reducing privacy invasiveness as much as possible, and at the same
time with as good security as possible. Contracts to perform outsourced man-
aged security services, as well as related metrics and indicators, should there-
fore be incentive compatible, which means that payment should be related to
auditable performance metrics both related to security and privacy to give the
MSS provider an incentive to improve both privacy and security. This also
means that transparency, auditability and nonreputability is required on how
the MSS operation is being performed. This information must be protected
against unauthorised access.

It is recommended to use a defence-in-depth strategy to ensure that more
than one barrier needs to break to access private or confidential information.
Another requirement is being able to enforce separation of duties constraints,
so that several stakeholders must collaborate in order to reveal a secret. An-
other example is using both perimeter defences (access control/firewalls) and
encryption to access sensitive information in the organisation, instead on re-
lying purely on perimeter defences.

Content filtering using IPS or firewall technologies can be considered use-
ful and also morally acceptable against on-line attack scenarios, provided that
the rules aim at minimising the impact both from a privacy and freedom of
speech perspective. However a potential risk with automatic content filter-
ing based on known attacks is being vulnerable to denial of service attacks,
something that may harm benign use of the system.

Security analysis done by IDS/IPS should aim at operating strictly accord-
ing to the need-to-know principle. One way to achieve this, is using privacy
leakage metrics to identify leakage of private or confidential information. It is
then possible to define a privacy enforcement scheme that minimises the mea-
sured leakages. This allows security analysts access to private or confidential

43



Privacy-enhanced Network Monitoring

information on a needs basis. However access to such information must be
securely logged, to ensure transparency and nonreputability. Another tech-
nique that can be used is trusted applications that are allowed to decrypt and
monitor sensitive information for signs of attack. This can be used to limit
the number of people that need to access private or confidential information.

Privacy-enhanced IDS may give increased productivity through fewer false
alarms, for example from identifying and tuning the most problematic IDS
rules to be less privacy invasive.This may furthermore give the monitoring
company a better reputation for handling of private and confidential infor-
mation, something that is required in certain business cases, for example for
health institutions or for critical information infrastructures. The chapter also
outlines how privacy leakage metrics can be used with privacy enforcement,
in order to support a continuous improvement process.

Certification and auditing improves adherence to the ethical guidelines.
Businesses that provably perform unethical security monitoring would risk
losing their quality certification, which would be detrimental for the reputa-
tion of a company in the security business. This can either be enforced via
governmental regulation or voluntary regulation, as part of a quality accredi-
tation.

The dissertation will use these ethical guidelines as requirements for de-
signing the privacy enforcement mechanisms in part II and privacy metrics
and methodology in part III.
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Part II

Privacy Enforcement for Intrusion
Detection Systems
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Part II does an investigation of privacy enforcement mechanisms for in-
trusion detection systems. It starts out with a relatively simple solution based
on a two-tiered privacy enhanced IDS architecture in Chapter 3 which uses
irreversible coarse-grained anonymisation based on the eXtensible Access
Control Markup Language (XACML). Chapter 3 also does a more thorough
analysis of where intrusion detection systems may leak information. Chapter
4 elaborates on this solution, and proposes how to do fine-grained authorisa-
tion and anonymisation of information in XML documents using XACML-
based privacy policies. The solution uses decision caching for increased per-
formance, and supports default PERMIT policies. The last chapter of part
II extends the solution to cover reversible anonymisation of information in
XML documents down to octet-ranges of individual elements or attributes
of the document. This solution supports multi-level security, separation of
duties constraints based on threshold cryptography as well as data retention
based on a secure logging scheme. The solution furthermore supports both
default PERMIT and DENY anonymisation schemes in order to support pri-
vacy by default.
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Chapter 3

Two-tiered Privacy Enhanced IDS
Architecture

This chapter describes an architecture for privacy-enhanced intrusion detec-
tion systems, that separates privacy-invasive and privacy-preserving opera-
tions. This can be useful in cases where less sensitive network monitoring
(e.g. first-line monitoring) is outsourced to a third party and more sensitive
network monitoring operations and data forensics (second-line operations)
are performed in-house or by law enforcement agencies. This is the first
attempt at defining a privacy-enhanced IDS architecture, and is the starting
point for the more elaborate privacy enforcement solutions that are described
in the next two chapters.

3.1 Introduction

This chapter proposes an architecture for privacy enhanced Intrusion Detec-
tion Systems (IDS). It ensures that sensitive information, as defined by a secu-
rity policy in the network being monitored, is not being exposed to third-party
organisations performing the network monitoring. The objective is to achieve
intrusion detection systems with good usability and detection efficiency for
third-party organisations performing the network monitoring, while at the
same time providing trustworthy confidentiality and privacy for the network
owner and its customers.

The main contribution in this chapter, as indicated in Fig.3.1.1, is to pro-
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vide better privacy preservation of monitored subjects in intrusion detection
systems by using a two-tiered approach with:

• a first line privacy-preserving subsystem, which is operated by security
analysts running a 24x7 service;

• a privacy-invasive second line that allows for further analysis by ex-
perts, but where all privacy violations are logged;

• built-in privacy policy enforcement points (PEP) using eXtensible Ac-
cess Control Markup Language (XACML) based policies [127].

Making the monitoring organisation accountable for the privacy violations
performed during normal operation should be a strong incentive to minimise
the number of privacy violations.

The INCH working group in IETF has defined several standards that are
relevant for exchange of data between IDS sensors. The Intrusion Detec-
tion Message Exchange Format (IDMEF) is a standardised format for IDS
alarms [62]. It can be used in conjunction with the Intrusion Detection Ex-
change Protocol (IDXP) [11], for transporting alarms from IDS sensors and
to a datawarehouse connected to a monitoring console. The Incident Object
Description Exchange Format (IODEF) is a format for representing computer
security information commonly exchanged between Computer Security Inci-
dent Response Teams (CSIRTs) [105]. It can be used together with the draft
Real-time Internetwork Defence (RID) protocol over SOAP [69], to provide
end-to-end security and support for requesting traffic traces. IODEF over
SOAP/RID may be useful as interface towards a data forensic interface, like
a Time Machine (TM) [66], or for communication between Security Opera-
tions Centres (SOCs). The architecture presented in this chapter is based on
these standards.

This chapter is organised as follows: The next section covers potential
privacy violation areas for intrusion detection systems. Section 3.3 shows an
overview of the proposed privacy-enhanced architecture and how it covers the
privacy violation areas. Section 3.4 shows an example of an XACML policy
for IDS alarm handling. Section 3.5 discusses the efficiency of the proposed
solution. Section 3.6 compares the proposed solution to other existing solu-
tions, which leads to some concluding remarks and outlook on future research
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Figure 3.1.1: Overview over two-tiered approach.

directions in section 3.7.

3.2 Privacy violation areas

The three main areas where privacy or confidentiality may be compromised
in intrusion detection systems are:

• alarm handling;

• forensic interface via a Time Machine or similar interface [66];

• and rule handling.

IDS alarms usually consist of an event classification, packet header data and
relevant payload from the packet that triggered the alarm. The security an-
alysts look at the payload sent with the IDS alarm to check whether it is a
likely false positive or a real attack. Manual investigation of the alarms is
usually needed, since current intrusion detection systems suffer from a high
false positive rate. If it is difficult to categorise the alarms based on packet
header and payload, then it is assumed that further analysis can be done by
investigating the entire data session using a forensic interface.
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One of the main research challenges is to improve privacy protection with-
out significantly deteriorating detection efficiency and usability for the secu-
rity analysts. Payload data and IP addresses will for example leak some pri-
vacy related information about the customer who is accessing the monitored
network service. It is therefore a conflict between:

• the security analyst’s requirement for a usable and efficient data mining
interface to investigate intrusion alarms;

• and the customers and network owner’s requirement for privacy and
confidentiality.

One conceivable solution would be that the IDS did not leak any privacy
related information, and that security analysts could perform assertions to-
wards the real data, but not reveal the real data itself. From the security ana-
lyst’s point of view, this would be like troubleshooting a black box where the
functionality inside is unknown, which can be a frustrating experience. This
means that the real reason behind the attack would not be perceivable for the
security analyst, which would reduce usability of the IDS significantly. Such
a solution would only work if the IDS had perfect rules. This means that the
security analyst could have reasonable confidence that an alarm from the IDS
indicated a real attack, and also that the IDS was able to verify whether an
attack was successful or not. Until IDSs have improved to this level, it seems
inevitable that some level of manual analysis will be required, which means
that privacy in some cases will be violated.

It is however important that potential privacy and confidentiality viola-
tions are accounted for, so that the customer and if required, law enforce-
ment agencies can verify which privacy and confidentiality violations that
have been performed to do an efficient network monitoring service. With ac-
countability on privacy violations, network monitoring companies and ven-
dors could compete on providing the monitoring product with the lowest aver-
age level of privacy violations. Public authorities could then set requirements
for what level of privacy violations that are acceptable under given circum-
stances.

One possible way to organise security monitoring in order to lower the
overall number of privacy violations, is to employ the principle of dissem-
inating information on a need-to-know basis. Our solution implements this
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by dividing security analysis into two tiers, where the first line consists of a
group of people performing a 24x7 monitoring of the networks using privacy-
preserving techniques. The second line consists of security experts that have
security clearance and authorisation to perform necessary privacy violations
to investigate whether attacks were successful or not. Second line analysts
would when necessary provide forensics data to Computer Emergency Re-
sponse Teams (CERTs) and law enforcement agencies that would investigate
successful attacks.

In this way, it may be possible to outsource first line monitoring services,
whereas second line services either can be kept within the same organisation,
or outsourced to a trusted third party but kept within the same legislative area
(for example within the same country) to ensure that it would be possible
to prosecute illegal dissemination of private or confidential information by
insiders in the monitoring organisation.

The Security Operations Centre (SOC) may furthermore be able to per-
form logging of all traffic over a specified period of time for forensic analysis
or for retrospective IDS analysis. This can either be done using Time Ma-
chine based network recorders [66], or using simpler approaches with tcp-
dump logging of network traffic. Having the possibility to perform data min-
ing of past network traffic will significantly increase the potential confiden-
tiality and privacy threat unless access to such data is properly controlled.

For signature based IDS, IDS rule updating may also be a possible source
of privacy violations, since the IDS rules can be designed to return sensitive
information by a corrupt security analyst. The IDS rules continually need
updating to make signature based IDS work, since new attack vectors will
require new IDS rules to be added. Most of the IDS rules used are based on
publicly available rule sets that security companies trust. It may therefore be
possible for an adversary to attack the IDS by modifying the trusted IDS rule
set. It is therefore important that IDS rule set updates are being peer-reviewed
and integrity checked before being deployed. A configuration management
system should be used to track changes of the IDS rule set. All IDS rule
updates performed by the rule manager should therefore be logged to the
activity log.
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Figure 3.2.1: Privacy-enhanced IDS architecture.

3.3 Architecture

First line monitoring is assumed outsourced to a third-party organisation to
reduce the operating cost of running a 24x7 monitoring service. The second
line operation consists of a small set of trusted experts with sufficient security
clearance, that have got access to confidential information which may violate
privacy.

The proposed architecture in Fig.3.2.1 provides Policy Enforcement Points
(PEPs) that act as intermediaries between IDS monitoring consoles and sen-
sor(s) with intrusion detection, rule handling and data forensic (Time Ma-
chine) functionality. This authorisation and anonymisation function avoids
privacy violations for first-line operations. Second line IDS operations can
request the real data sessions and set up alarm correlation assertions for first-
line operation, but all such requests are accounted for in the activity log.

A privacy-enhanced IDS should obey the principles of data avoidance and
data reduction [104]. Data avoidance means that the user should be forced to
only disclose the minimum amount of information necessary to the IDS. This
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implies that an IDS does not need to know the identity of a monitored user,
until it provably detects an abuse. Data avoidance is supported by having a
two-tiered architecture, where the most labour intensive part, first line mon-
itoring of all incoming events, works in privacy preserving mode (see Fig.
3.2.1).

Data reduction is supported using XACML obligations. These obliga-
tions remove data that is regarded as sensitive in the IDS alarms according
to the privacy policy. XACML was chosen as authorisation policy language,
because it is a mature standard that can use the Security Assertion Markup
Language (SAML) for authentication in a federated environment. It fits well
into a Service Oriented Architecture (SOA) and has quite broad vendor sup-
port compared to other alternatives like the Enterprise Privacy Authorisation
Language (EPAL) [23]. We considered XACML to be more general than the
Platform for Privacy Preferences (P3P) [83], which focuses mainly on web
based authorisation.

The IDS authorisation framework has a Policy Administration Point (PAP)
that controls access to first- and second line data. The company’s data con-
troller together with customer and company management is responsible for
managing roles (first line or second line) and privacy policies in the PAP. The
Human Resources (HR) department defines which role employees belong to.

Law enforcement agencies and CERT teams can be granted access to sec-
ond line monitoring in order to investigate ongoing attacks. The IDS Policy
Enforcement Point (IDS-PEP) communicates with the Policy Decision Point
(PDP) on authentication1 and access control (authorisation) of the alarm data
stream.

The entire monitoring organisation should in addition be audited by an
external quality certification authority at regular intervals, and these audits
should include an analysis of how privacy-invasive the operation is compared
to other companies in the same sector.

After authentication and authorisation, the IDS-PEP accepts IDMEF mes-
sages carrying alarms from a set of IDS sensors. The IDS-PEP then forwards
streams of IDMEF messages anonymised according to the security policy

1It is envisaged that the Security Assertion Markup Language (SAML) will be used for au-
thentication. SAML also fits well into the authorisation architecture, since it supports transport of
XACML request and response messages.
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of the receiving manager application. Data streams authorised for first line
operation will be anonymised according to the obligations presented in the
XACML security policy for the role firstLine. It is sufficient to anonymise
data in Policy Enforcement Points (PEPs), since the outsourced organisation
does not have access to manage the sensors.

If the first-line Security Operations Centre (SOC) identifies a suspicious
message, then it will alert the second line SOC using an IODEF message. The
alert identifier can be used by the second line operations centre to identify the
full non-anonymised alarm.

The security policy for the role secondLine will in general not have any
restrictions on access to data, however second line operations will have the
XACML obligation for access to data that all operations will be logged. Ac-
cess to the TM is governed by a separate privacy policy enforced by TM-PEP.
The TM server policy will only grant access to security analysts with role sec-
ondLine with the XACML obligation that all operations are logged.

The data controller will have read access to summary data from logged
second line operations. This implies that the system also needs a policy for
role dataController. A separate security policy role ruleManager is required
for updating the IDS rule set, because the Security Operations Centre typi-
cally delegates this responsibility only to a subset of the second line security
analysts.

A general problem with IDS, is that they are vulnerable to Denial of Ser-
vice (DoS) attacks. This means that an excessive amount of bandwidth will
be required to transport alarms during an attack. Some IDSs are able to mit-
igate DoS attacks. One example is PreludeIDS, which supports setting rate
limitations on IDS alarms to avoid excessive bandwidth usage during DoS
attacks. This functionality can be managed centrally by implementing an
XACML policy that gives obligations for the amount of alarms per second
the IDS can send out.

3.4 XACML policy example

This section provides an example of how the envisaged IDS XACML profile
can be used. It does not focus on the authentication part, which is expected
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1 <?xml version ="1.0" encoding ="UTF -8"?>

2 <Request xmlns ="urn:oasis:names:tc:xacml :1.0: context:schema:os"

3 xmlns:xsi="http ://www.w3.org /2001/ XMLSchema -instance"

4 xsi:schemaLocation ="urn:oasis:names:tc:xacml :1.0: context:schema:os

5 http :// docs.oasis -open.org/xacml/access_control -xacml -1.0\

6 -context -schema -os.xsd">

7 <Subject >

8 <Attribute AttributeId ="urn:oasis:names:tc:xacml :1.0: subject:subject -id"

9 DataType ="urn:oasis:names:tc:xacml :1.0: data -type:rfc822Name">

10 <AttributeValue >soc1@outsourced.example.com </ AttributeValue >

11 </Attribute >

12 </Subject >

13 <Resource >

14 <Attribute AttributeId ="urn:oasis:names:tc:xacml :1.0: resource:resource -id"

15 DataType ="http ://www.w3.org /2001/ XMLSchema#string">

16 <AttributeValue >IDS -PEP </ AttributeValue >

17 </Attribute >

18 </Resource >

19 <Action >

20 <Attribute AttributeId ="urn:oasis:names:tc:xacml :1.0: action:action -id"

21 DataType ="http ://www.w3.org /2001/ XMLSchema#string">

22 <AttributeValue >read </ AttributeValue >

23 </Attribute >

24 </Action >

25 </Request >

Figure 3.4.1: XACML request for first line operation

to be very similar to existing federated access control solutions using SAML
to convey XACML requests [101].

Fig.3.4.1 shows the XACML request sent from the IDS-PEP to the PDP
when the first line manager application (SOC1) attempts to connect to the
IDMEF data stream via the IDS-PEP. The XACML request takes three pa-
rameters:

• the subject to be authorised is the manager application referenced by
soc1@outsourced.example.com;

• the resource we want to connect to is the IDS-PEP;

• and we want to perform a read operation as described in the Action
element.

The full XACML authorisation policy is not included in this chapter, but
can be found in [93]. Fig.3.4.2 shows the XACML response message from
the PDP when SOC1 requests to read the IDMEF data stream from IDS-PEP.
The IDS-PEP has an Obligation to anonymise the payload. The Attribute-
Assignment element uses the format idmef:element:attribute for identifying
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1 <Response >

2 <Result ResourceID ="IDS -PEP">

3 <Decision >Permit </Decision >

4 <Status >

5 <StatusCode Value="urn:oasis:names:tc:xacml :1.0: status:ok"/>

6 </Status >

7 <Obligations >

8 <Obligation ObligationId ="urn:ietf:idmef:anonymize" FulfillOn =" Permit">

9 <AttributeAssignment AttributeId ="idmef:AdditionalData:meaning"

10 DataType ="http ://www.w3.org /2001/ XMLSchema#string">payload

11 </AttributeAssignment >

12 </Obligation >

13 </Obligations >

14 </Result >

15 </Response >

Figure 3.4.2: XACML reply for first line operation

1 <Response >

2 <Result ResourceID ="IDS -PEP">

3 <Decision >Permit </Decision >

4 <Status >

5 <StatusCode Value="urn:oasis:names:tc:xacml :1.0: status:ok"/>

6 </Status >

7 <Obligations >

8 <Obligation ObligationId =" LogPrivacyViolations" FulfillOn =" Permit">

9 </Obligation >

10 </Obligations >

11 </Result >

12 </Response >

Figure 3.4.3: XACML reply for second line operation

the correct IDMEF element and attribute. In Fig.3.4.2 the IDMEF element
AdditionalData and the attribute meaning are being referenced and the value
of the AttributeAssignment element is the identifier to anonymise (payload).

Fig. 3.4.3 shows the XACML response message from the PDP when
SOC2 requests to read the IDMEF data stream from the IDS-PEP. The IDS-
PEP has an Obligation to log privacy violating activities for second line op-
erations.

3.5 Efficiency of proposed solution

Performing XACML authentication and authorisation in the PEP is a one
time initialisation cost. The anonymising policy in the IDS-PEP therefore
only implies a linear search through all elements of IDMEF XML data and
checking the content of relevant IDMEF attributes for each of the IDMEF
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elements. This can be done in O(n× o) time, where n is the number of
IDMEF elements and o is the number of XACML Obligations. Similarly,
authenticating towards the TM is also a one time cost, that is negligible. It
can further be expected that the bandwidth required for manual analysis of
TM data will be negligible, because the TM in general is not able to store
full data sessions. For example, the TM developed for the BRO IDS [78]
only stores the first 20 kb of each session by default [66]. Retrospective
IDS analysis using the TM is assumed integrated with the IDS, so that the
bandwidth requirements here are 0.

To test the bandwidth efficiency, an anonymiser plug-in was implemented
for the PreludeIDS hybrid IDS [128]. This plug-in implements a simple pri-
vacy policy that removes the payload from IDMEF AdditionalData elements
containing payload, to get an indication of the bandwidth saving of a simple
anonymisation policy.

One Snort IDS sensor [84] was connected to PreludeIDS with all rules
enabled, and PreludeIDS was set to log alarms both to a database and to
an IDMEF XML log file. A security scan was then performed using Nes-
sus [129] towards a Linux server, which triggered 1056 alarms. The results
show that anonymising the payload of IDMEF IDS alarms (first line opera-
tion) cuts the amount of IDMEF XML data by 8.5%. The average alarm size
was reduced from 4.47 kb to 4.09 kb. The mean payload size is only 380
bytes, and the median is 424 bytes. This indicates that the size distribution
is somewhat skewed towards smaller payload sizes. Removing the payload
will in other words reduce bandwidth demand somewhat for IDMEF alarms,
however perhaps less than one would have thought. The reason for this may
be that a Nessus scan mostly triggers attack rules, like for example malicious
HTTP requests, which normally do not contain a vast amount of payload. An-
other reason is that payload from port-scanning preprocessors is small, since
Snort stores summary data from port-scanning preprocessors in the IDMEF
AdditionalData records containing payload.
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3.6 Related work

The content of this chapter was initially published in the proceedings from
the IDAACS 2009 conference in Rende, Italy [133]. The BRO IDS [78]
supports a way to anonymise the payload of a packet instead of removing the
entire payload [98, 78]. Our solution is different, since it anonymises IDS
alarms instead of anonymising the captured packet traces. This is sufficient
in a scenario where first-line security analysis has been outsourced.

There exists some earlier work on privacy-enhanced host-based IDSs that
pseudonymise audit data and performs analysis on the pseudonymised au-
dit records [64, 123, 50, 124, 104]. A similar approach is further elabo-
rated in [51], which builds the privacy policy into the IDS rules by defin-
ing a privacy-preserving rule language that pseudonymises payload and other
information that is defined as sensitive. Kerberos [91] is used for authen-
tication. This approach focuses on reversible protection mechanisms using
cryptographic techniques for pseudonymisation.

Our approach separates the information into two security domains, where
the lower domain is anonymised and the higher domain is non-anonymised.
Since the same alarm identities are used in both domains, then it is trivial to
correlate alarms between first line and second line operations in case an event
gets escalated from first to second line for further investigation. This avoids
the computational overhead of a pseudonymised solution, however one loses
the possibility for fine-grained enforcement of access to data. We argue that
in order to do efficient incident handling, then it will be necessary for the
data controller to give the second line operation/CERT team authorisation to
operate autonomously on unrestricted data, when attacks are being investi-
gated. This team is expected to be small and have a high security clearance
and authorisation compared to the 24x7 first line team.

Another group of monitoring systems focus more on filtering and anonymis-
ing network traffic. The anonymised and filtered network traffic is called a
traffic flow and IDS analyser agents can subscribe to these anonymised traf-
fic flows. One example is LOBSTER [81], which has developed a common
Monitoring API (MAPI) for acquiring traffic monitoring data from a set of
distributed network monitoring sensors. It includes a comprehensive API for
anonymisation (AAPI) of sensor data based on Virtual Organisation groups.
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Another example is the conceptual system described by the PRISM IST
project. This approach uses a privacy-enhanced architecture based on ana-
lysis of pseudonymised IP Flow Information Export (IPFIX) traffic flows [55,
10]. Using IPFIX for IDS analysis purposes has some disadvantages. It is
limited to analysis of traffic on the network layer and higher protocols [10],
since link layer information is not conveyed in IPFIX. This means that link
layer attacks and attacks on other protocols than IP will go undetected. Also,
IPFIX is only able to record traffic streams in one direction. This may im-
pair some types of IDS analyses where bidirectional data stream reassembly
is used for detecting attacks, like some web attacks. In addition, IPFIX is
oriented towards flows of IP packets, which means that it is not trivial to con-
vey information from host-based IDSs in this protocol. Another argument
against a traffic flow based approach, is that it can be bandwidth demanding
if the flow includes a large part of the transferred packets and matches a broad
category of packets.

These deficiencies indicate that a traffic flow based IDS probably will be a
supplement to existing IDSs rather than replace them. Our proposed solution
will regardless be able to integrate alarms from traffic flow based IDS as well
as other types of IDSs. Despite these deficiencies, such systems will have an
advantage when it comes to detecting certain types of distributed attacks, like
worms or distributed denial of service (DDoS) attacks.

Many existing privacy-enhanced solutions propose that the data controller
should have a cryptographically enforced2 veto right against disclosure of
traffic data in case of attack investigation. This approach is similar to the one
proposed in [51]. The relatively simple XACML-based privacy-enhanced
IDS proposed here does not support this, however a solution that enforces
vetoing based on secret key sharing will subsequently be described in Chapter
5.

3.7 Conclusion

This chapter proposes a two-tiered architecture for privacy-enhanced intru-
sion detection systems that separates out anonymous data processing in the

2Cryptographic enforcement can for example be based on threshold cryptography, where n out
of k participants must agree to decrypt the ciphertext.
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first line service and runs privacy-invasive operations in the second line ser-
vice. A natural extension of this scheme, is to extend the scheme to n different
security levels. This is investigated in chapter 5.

The architecture is based on existing standards for IDS alarm handling
from IETF and security policy handling from OASIS. The XACML-based
privacy policy enforces logging of all privacy violating operations, which
can be audited by both a company-internal data controller and by external
certification organisations.

Our approach limits the number of people that have got access to privacy
sensitive data, which should lower the risk of misuse by insiders. In effect,
this makes it more viable to outsource first-line 24x12 monitoring services to
third parties. Creating an XACML policy for rate-limitation in the IDS-PEP
allows federated management of alarm rate limitation policies to avoid using
an excessive amount of bandwidth during attacks.

Most existing privacy enhanced IDS approaches enforce data protection
mechanisms early after data has been captured. This requires a custom made
IDS framework, whereas our approach focuses on integrating and anonymis-
ing alarm data from existing commercial IDSs for use in an outsourced sce-
nario. We argue that data can be sufficiently well protected between the IDS
and the anonymiser using encrypted data links.

A limitation with the proposed approach, is that the efficiency of the first
line operation will be affected by not having potentially sensitive information
like payload available. This can to some extent be compensated by using
workflow based alarm correlation engines that emit anonymised alarms.

The next chapter elaborates on the solution proposed here and proposes
a general XACML-based framework for fine grained anonymisation of XML
documents, including anonymisation of IDMEF-based IDS alarms.
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Decision-cache Based XACML
Anonymiser

This chapter describes a decision cache for the eXtensible Access Control
Markup Language (XACML) that supports fine-grained authorisation and
anonymisation of XML based messages and documents down to XML at-
tribute and element level. This is an elaboration of the coarse-grained anonymi-
sation protocol proposed in the previous chapter, and is based on [135]. The
decision cache is implemented as an XACML obligations service, where a
specification of the XML elements to be authorised and anonymised is sent to
the Policy Enforcement Point (PEP) during initial authorisation. Further au-
thorisation of individual XML elements according to the authorisation spec-
ification is then performed on all matching XML resources, and decisions
are stored in the decision cache. This makes it possible to cache fine-grained
XACML authorisation and anonymisation decisions, which reduces the au-
thorisation load on the Policy Decision Point (PDP). The theoretical solution
is related to a practical case study consisting of a privacy-enhanced intru-
sion detection system that needs to perform anonymisation of IDMEF based
IDS alarms before they are sent to a security operations centre operating in
privacy-preserving mode. The solution increases the scalability of XACML
based authorisation significantly, and may be instrumental in implementing
federated authorisation and anonymisation based on XACML in several ar-
eas, including intrusion detection systems, web services, content manage-
ment systems and GRID based authentication and authorisation.
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4.1 Introduction

The objective of this Chapter, is to use XACML for fine-grained authorisation
and anonymisation of IDMEF XML messages from Intrusion Detection Sys-
tems (IDS), to control what information that can be disseminated to whom
from an IDS service. A challenge with XACML is that the current imple-
mentations do not scale well [80]. It is a therefore a risk that the central rule
processing engine in the Policy Decision Point (PDP) may be a bottleneck
for a potentially large amount of authorisation requests from individual XML
elements. Another challenge, that has not been solved as far as we are aware
of, is how to do fine-grained anonymisation or pseudonymisation of XML
documents or messages by using XACML. We propose how this can be mit-
igated by adding a decision cache as an XACML obligations service that can
store decisions based on unique key values.

Our solution is not limited to the domain of IDS services. Fine-grained
access control and anonymisation of XML documents backed up by a client-
side decision cache may also be useful for GRID services to provide a more
scalable authorisation that effectively can delegate simple decisions to a dis-
tributed set of decision caches. It can also be useful for authorisation and
anonymisation of web services, middleware like for example JBoss or even
content management systems, in order to ensure that some information deemed
sensitive is not distributed via the service. In that respect, the solution can
also be regarded as a simple XACML controlled application level firewall for
content in XML documents and messages.

This chapter is organised as follows: The next section gives an introduc-
tion to XACML and an overview of the proposed solution. Section 4.3 de-
scribes the architecture and Section 4.4 covers the technical solution in more
detail. Section 4.5 shows an example authorisation of XML resources based
on the proposed solution including initial authorisation, individual element
authorisation request and response and decision cache handling. Section 4.6
describes the efficiency of the proposed solution. Related work is subse-
quently discussed in Section 4.7 and Section 4.8 concludes the chapter and
gives some suggestions for further research.
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Figure 4.2.1: XACML architecture with decision cache.

4.2 Overview of the Proposed Solution

XACML is an access control policy language based on policies written in
XML. It uses a model for access control that clearly separates policy deci-
sions in the Policy Decision Point (PDP) from policy enforcement the Policy
Enforcement Point (PEP) as shown in Figure 4.2.1. The Context Handler
and Policy Information Point (PIP) ensure that subjects, resources and other
environment attributes can be made available to the PDP when policies are
being evaluated. Subjects, resources and environmental attributes can also
be passed in via the XACML Request message. We use the latter approach,
since the anonymisation and authorisation service basically is an extension of
the PEP.

Our solution implements an XML authorisation service that is integrated
with both the PEP and the obligations service. The obligations service fur-
thermore manages the decision cache.

From an architectural and system management perspective, it is preferable
to be able to reuse XACML as far as possible for fine-grained authorisation
and anonymisation of XML documents and messages. This is viable under
the assumption that access control decisions for authorisation or anonymisa-
tions can be regarded as final and do not change within a defined time span.
This means that an access control decision to publish sensitive material will
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Symbol Description
ap,q The XACML authorisation decision number q by resource

policy number p.
bp,q The block marker or pattern used to anonymise the data

(optional).
q Decision number.
Dp,q Decision cache tuple representing decision number q

performed by the XACML resource policy number p.
Kp,q Unique dictionary key for decision q and policy p.
policyp,q Anonymisation policy to perform on the content of rp for

decision q.
p XACML resource policy number.
rp Resource number p that needs authorisation.
s Scope parameter number for XACML identifiers.
tp,q The absolute time (UTC) when the cached authorisation

decision times out.
τp,q Last time this decision cache entry was used.
vp,q,s Parameter values identified by scopep,s that are required by

the XACML policy p in order to perform decision number q.
scopep,s XPath scope expression that extracts required parameter

values for the the XACML policy p.

Table 4.2.1: List of notations for decision-cache.

Parameter Decision cache XACML AttributeId
bp,q bp,q is stored in the content of an AttributeAssignment with

ID urn:prile:org:resource:p:policy: f unction
policyp,q urn:prile:org:resource:p:policy: f unction where

f unction =[replace-with|pad-with|...] for decision q.
rp urn:prile:org:resource:p:id

∆tp,q urn:prile:org:resource:p:cache-timeout (PEP calculates tp,q
from the current time plus ∆tp,q for decision q).

scopep,s urn:prile:org:resource:p:assertion:s:scope
vp,q,s urn:prile:org:resource:p:assertion:s:value for decision q.

Table 4.2.2: Mapping of XACML response parameters for decision cache.
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not be undone or reconsidered under normal circumstances.

Rules for access control policies will in many cases be static, meaning
that they are based on some stable conditions. For example rules using fixed
strings or rule patterns identifying IP addresses, e-mail addresses or URLs
accessed. For static rules, it will be possible to have decision cache entries
with infinite expiry time, that only will be ejected from the cache if the cache
is invalidated, for example due to an updated authorisation policy. In other
cases it may be useful to only grant access for a limited time period before
authorisation needs to be renegotiated.

Utilising a decision caching authorisation system also means that cache
entries and rules can be made much simpler than the original XACML ex-
pressions, however at the expense of using more memory. It can be expected
that the cache has a minimum working set of active authorisations, which
means that the decision cache will need at least a certain amount of memory
for cache entries in order to operate efficiently. However, if the working set of
cached decisions fit into memory, then the load on the XACML rule engine is
expected to be tolerable. These assumptions make it viable to use a caching
strategy for access control decisions.

4.3 Architecture

Figure 4.4.1 illustrates how the XACML-based anonymiser/proxy for ID-
MEF XML reports is implemented. Initially, the Managed Security Service
(MSS) providers will be authorised towards the PEP. In this example, two
MSS providers are shown: an outsourced first line service that only is al-
lowed to see anonymised IDS alarms and a second line service, possibly run
in-house, which can see non-anonymised IDMEF alarms. This initial autho-
risation opens a secure connection from the anonymiser thread and to the
alarm database of the MSS provider.

Then the IDS sensors are authorised towards the PEP in order to open a
connection from the IDS to a dedicated Producer thread in the PEP for each
IDS. The Producer thread is responsible for copying IDMEF messages to
all input queues of authorised anonymisers/proxies. Each Anonymiser/proxy
thread will then read IDMEF messages and anonymise them according to the
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XACML policy.

Policy decisions are cached in the decision cache to improve the overall
efficiency, so that cached decisions which have not timed out will be reused
to save the overhead on XACML requests. Different authorised sessions can
then have different anonymisation policies based on security level. For ex-
ample so that a first line outsourced IDS service, which handles the bulk of
the alarms, operates with anonymised data; and a second line service oper-
ating in-house, can have access to the full alarms. This limits the amount of
sensitive information that is visible to the outsourced first-line service.

4.4 Technical Solution

This section performs a more formal analysis of the technical solution. Figure
4.5.1 shows an example IDMEF report that matches the XPath expressions
used in the case study and Tables 4.2.1 and 4.2.2 show the formal notations
used.

The proposed solution uses the initial XACML authorisation request from
the data consumer to return an obligation with a list of N ≥ 0 XPath ex-
pressions identifying XML resources {r1,r2, ...,rN} that require further au-
thorisation. This is illustrated in Figure 3.4.2, which shows a successful
XACML Response that permits access to the PEP. However the response
contains an XACML obligation with a requirement to authorise any XML
elements (resources) referenced by the XPath expression /Alert/Additional-
Data[@meaning=’payload’]
and also a requirement to send the document element matching the scope
XPath expression /Alert/Classification/@ident as a resource attribute in sub-
sequent XACML resource authorisation requests. The PDP can based on this
information perform a decision on whether the payload for a given type of
IDS alarm is considered privacy violating or not.

The other resource in the initial requests requires authorisation of all XML
elements below the XPath expression /Alert/Source/Node/*. The cache speci-
fication furthermore requires that the scope XPath expression /Alert/Source/N-
ode/Address/address is retrieved from the XML document and passed to the
XACML policy for evaluation to authorise the resource. Later, the scope
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Figure 4.4.1: XACML-based IDMEF anonymiser/proxy with decision cache.

value is also used as part of the cache key for storing cached authorisation
decisions.

The XACML obligations service in the Anonymiser/proxy will subse-
quently perform an XACML authorisation requests the first time a new (un-
cached) decision for a resource element is identified. The XACML response
contains an access control decision from the PDP that will be cached for a
retention time period as defined in the obligations of the access control deci-
sion.

Caching access control decisions require some knowledge about the au-
thorisation policy being used, since checking for a cache hit requires that all
relevant parameter values that the access control decision is based upon are
known. These parameter values are, together with the resource id, used as
keys when checking whether a cache entry matches the relevant set of pa-
rameters in the XML document being checked.

The decision process for XACML authorisation and anonymisation can
be considered as a mapping from a resource and a set of parameter values
that are required by a given XACML resource policy and to a decision. If this
decision is positive, then the decision may have additional obligations, like
an obligation to anonymise data or an obligation that expresses authorisation
timeout. The parameters required by the system in order to make a decision
are defined more formally below:

• rp identifies the set of one or more XML resource(s) to be authorised
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by the XACML resource policy p, expressed as an XPath expression on
the current XML document, for example:
r1 =/Alert/AdditionalData[@meaning=’payload’]
r2=/Alert/Source/Node/* (applies to any elements below node);

• scopep,s are the XPath scope expressions used to extract required pa-
rameters for the the XACML policy p and parameter number s.

• vp,q,s are the parameter values extracted from the XML document by
applying the XPath scope expression scopep,s. These parameter val-
ues are required by the XACML policy p in order to evaluate decision
number q.

The decision related parameters are explained below:

• ap,q is the XACML authorisation, which can be either Permit or Deny.

• bp,q is the block marker or pattern used to anonymise the data. This
parameter is optional, and the default block marker is ’X’.

• policyp,q specifies the anonymisation policy to perform on the content
matching resource rp for decision q, which can be one of a set of prede-
fined anonymisation policies, for example to anonymise by removing or
replacing content, anonymise by padding content using a block marker
instead of the content (leaves the length of content intact), modify con-
tent using regular expression or perform a pseudonymisation policy, for
example prefix-preserving pseudonymisation of IP addresses [97], or
use an encryption policy.

• tp,q is the absolute time (UTC) when the authorisation decision times
out. Different timeout values may be applicable for different authorisa-
tions. It is for example natural that authorisations which are based on
dynamic variables may need a relatively short timeout period. On the
other hand, decisions based on static parameters, like IP address ranges,
may not need any timeout value, so the timeout value can be set very
large or even infinite. It is then sufficient to have a notification service
that can invalidate the policy cache in case the PDP reloads a new pol-
icy from the PAP. After tp,q times out, then the cached decision will
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1 <IDMEF -Message >

2 <Alert messageid ="0 c18ec3c -1b2e -11e0 -99b2">

3 <Source spoofed =" unknown"

4 interface ="wlan0">

5 <Node category =" unknown">

6 <Address category ="ipv4 -addr">

7 <address >10.0.2.2 </ address >

8 </Address >

9 </Node >

10 </Source >

11 <Classification ident ="1:5976"

12 text="SNMP AgentX/tcp request">

13 </Classification >

14 <AdditionalData type="byte -string"

15 meaning =" payload">

16 REhDUEM=

17 </AdditionalData >

18 </Alert >

19 </IDMEF -Message >

Figure 4.5.1: Simplified excerpt of IDMEF message used in the case study.

be discarded the next time the cache entry is used, and a new XACML
authorisation will be performed;

• τp,q shows the last time this decision cache entry was used. (This is
useful for debugging and optimising the Least Recently Used (LRU)
cache.)

With these definitions a decision, denoted by Dp,q, is represented as a tu-
ple Dp,q = (ap,q, tp,q,τp,q, policyp,q,bp,q) which reflects the qth decision per-
formed by the XACML resource policy number p. The decision cache is
implemented as a dictionary where the key Kp,q consists of the resource pol-
icy number and all n values concatenated i.e.
p||vp,q,1||vp,q,2||...||vp,q,n, so that the dictionary indexed on the key returns
the cached access decision. The resource policy number p needs to be part of
the key to avoid ambiguities between the values, for example that source IP
address and destination IP address are being confused for different resource
policies.

4.5 XACML Policy Example

This section provides an example of how the IDS XACML profile can be
used. It does not focus on the authentication part, which is expected to be
very similar to existing federated access control solutions using SAML to
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convey XACML requests [101]. We assume in the following sections that the
XML schema namespace: http://www.w3.org/2001/XMLSchema# is denoted
by &xs; and our own namespace urn:prile:org: is denoted by &prile;.

In this example, a company considers information about hosts residing on
the network 10.0.2.0/24 as sensitive. The company does not want to reveal IP
addresses in the IDS alarms. Furthermore, the payload is considered sensi-
tive for certain classes of IDS alarms, as indicated by the ident attribute of the
Classification element in the IDMEF report. IDMEF alarms from IDS sen-
sors on this network can for example look like the simplified IDMEF excerpt
in Figure 4.5.1.

4.5.1 Initial Authorisation

The initial XACML request is an ordinary XACML authorisation request to
get read access to the Anonymiser/proxy in the PEP, similar to the one de-
scribed in [133], and is not shown here. However, the XACML response
is shown, to illustrate how the PEP is being made aware of the cache pa-
rameter specification necessary to manage the decision cache in the form of
XACML obligations. The mapping between the notation used in this article
and XACML identifiers is shown in Table 4.2.2.

The initial authorisation shown in Figure 3.4.2 returns a set of XML re-
source identifiers rp which consists of XPath expressions that cover authorisa-
tion of one or more XML elements in the document. Each XACML response
also contains s XPath expressions scopep,s, which uniquely define the param-
eters required by the XACML policy to authorise the resources defined by rp

and that will be sent in subsequent XACML resource authorisation requests
as resource attributes.

Since an XPath expression may return more than one element, it is then
up to the XACML policy to define the attributes so that the cache is kept
consistent. The simplest way to do this, is to require that scopep,s is defined
to return only a single element from the XML document instance being au-
thorised. If an assertion XPath expression returns more than one element,
and their result is different, then the evaluation of the policy would also po-
tentially be inconsistent. One element may claim access and the other may
not. If it is necessary to do conflict resolution, then all individual assertion
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1 <Response >

2 <Result ResourceID ="PEP">

3 <Decision >Permit </Decision >

4 <Status >

5 <StatusCode Value="urn:oasis:names:tc:xacml :1.0: status:ok"/>

6 </Status >

7 <Obligations >

8 <Obligation ObligationId ="& prile;authorize -elements" FulfillOn =" Permit">

9 <AttributeAssignment AttributeId ="& prile;resource :1:id"

10 DataType ="&xs;string">/Alert/AdditionalData[@meaning='payload ']

11 </AttributeAssignment >

12 <AttributeAssignment AttributeId ="& prile;resource :1: assertion :1: scope"

13 DataType ="&xs;string">/Alert/Classification/@ident

14 </AttributeAssignment >

15 <AttributeAssignment AttributeId ="& prile;resource :2:id"

16 DataType ="&xs;string">/Alert/Source/Node/*

17 </AttributeAssignment >

18 <AttributeAssignment AttributeId ="& prile;resource :2: assertion :1: scope"

19 DataType ="&xs;string">/Alert/Source/Node/Address/address

20 </AttributeAssignment >

21 </Obligation >

22 </Obligations >

23 </Result >

24 </Response >

Figure 4.5.2: XACML reply to initial authorisation of the IDS-PEP.

elements must be passed in to the XACML policy, which defines how the
conflict resolution should be done. All XPath expressions from the initial au-
thorisation are precompiled and stored in a two dimensional list indexed by
resource number p and scope expression s.

4.5.2 XML Element Authorisation Request

After the initial authorisation, the XML parser of the Anonymiser/proxy in
the PEP will get XML messages (IDMEF alarms) from the queue and start
parsing them. The PEP then iterates through all XPath matches for all re-
sources in R. If there is no authorisation cached for the XML resource ele-
ments rp refers to, then the PEP will perform XACML authorisation requests
for all non-authorised resources, asking for read access to the resource ele-
ments. An example authorisation request for an XML element is shown in
Figure 4.5.3. The request authorises the subject soc1@outsourced.example.com
for access to the resource:
r1 =/Alert/AdditionalData[@meaning=’payload’].

In addition, the XACML request contains additional resource context pa-
rameters representing the set of necessary parameters scopep,s that are re-
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quired to evaluate the given security policy by the PDP. Here, the first element
of the tuple scopep,1 =/Alert/Classification/@ident refers to the IDMEF Alert
classification of the XML message being authorised and vp,1,1 = 1 : 5976
refers to the unique identification of the alarm class in the XML document
being inspected (See Figure 4.5.1). The next section describes how the deci-
sion cache works for a cache miss. A cache hit, is subsequently described in
Section 4.5.4.

4.5.3 XML Element Authorisation Response

An accepted XACML response is illustrated in Figure 4.5.4. The obligations
in XACML responses are mapped as shown in Table 4.2.2.The decision pa-
rameters Dp,q = (ap,q, tp,q,τp,q, policyp,q,bp,q) are then being collected by the
PEP. All of these except τp,q and tp,q are fetched from the obligations in the
XACML response. Then τp,q is set to the current time and tp,q is set to the
timeout value ∆tp,q in the XACML response plus the current time.

Subsequently, the anonymisation policy policyp,q from the obligations in
the XACML response will be applied to the content of all resources matching
rp. This can for example be to anonymise the content by padding it with the
block marker “X” if policyp,q = pad−with and bp,q =”X”. The anonymisa-
tion policy will then be cached in the dictionary using the resource number
and parameter values concatenated as key, i.e. Kp,q = p||vp,q,1||vp,q,2||...||vp,q,n.

If an authorisation request is denied, then the XML message will be dis-
carded, since it is not authorised to be sent to the resource consumer.

A Deny authorisation decision can be cached in the same way as a Permit
decision, however this requires that the XACML response includes an obli-
gation with the necessary parameters for the cache entry, as shown in Table
1. The anonymisation policy policyp,q can be omitted in this case, since a
Deny decision implies that the XML message is dropped. This sequence is
not illustrated, since it will be very similar to Figure 4.5.4, except that the
decision is changed from Permit to Deny, and there will typically only be a
cache timeout value as parameter.
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4.5.4 XML Element Authorisation for Cache Hits

Checking for cache hits is performed for all resources matching the pattern
rp after the necessary scope values vp,q,s have been extracted from the XML
document. A cache hit means that there exists a cached decision qp,q for a
key Kp,q in the decision cache. If the cache has timed out, then entry qp,q is
deleted, and a full XACML resource authentication is performed.

Finally, the anonymisation policy policyp,q is enforced and the anonymised
XML document is sent to the authorised data consumer.

4.6 Efficiency of the Proposed Solution

The XACML decision cache is implemented in Jython running on Sun Java
6. The Jython interpreter gives a performance overhead, so a native Java im-
plementation can be expected to be somewhat faster, however testing this is
left to future work. The implementation uses XimpleWare’s Java based Vir-
tual Token Descriptor XML parser (VTD-XML)1 which has a small memory
footprint compared to traditional DOM implementations (1.3-1.5 times the
size of the XML document) and also has a very fast XPath 1.0 implementa-
tion.

The experiments are performed using Jython 2.2.1 on a 64 bit machine
running Ubuntu with 8 Gb ram and 2.53 GHz Intel Core 2 Duo CPU. The de-
cision cache was limited to 3000 entries, using a Least Recently Used (LRU)
policy for pruning the cache when it runs full. The cache was tested with be-
tween one and thirty relatively simple anonymisation policies that performed
simple regular expression match for ’.*’, i.e. any text content.

The LRU class was implemented in Jython based on the LinkedHashMap
Java class by overriding the removeEldestEntry() method. LRU functionality
was then achieved by first retrieving and removing the referenced cached
entry and then reinserting it at the tail of the linked hash structure. The oldest
entry was then automatically removed from the head of the data structure by
LinkedHashMap when the cache capacity was exceeded.

The experiment consisted of first identifying a set of resources with cor-
responding scope values that needs to be cached. 30 resources in the IDMEF

1VTD-XML can be found at http://vtd-xml.sourceforge.net
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1 <?xml version ="1.0" encoding ="UTF -8"?>

2 <Request xmlns ="urn:oasis:names:tc:xacml :1.0: context:schema:os"

3 xmlns:xsi="http ://www.w3.org /2001/ XMLSchema -instance"

4 xsi:schemaLocation ="urn:oasis:names:tc:xacml :1.0: context:schema:os

5 http :// docs.oasis -open.org/xacml /\

6 access_control -xacml -1.0-context -schema -os.xsd">

7 <Subject >

8 <Attribute AttributeId ="urn:oasis:names:tc:xacml :1.0: subject:subject -id"

9 DataType ="urn:oasis:names:tc:xacml :1.0: data -type:rfc822Name">

10 <AttributeValue >soc1@outsourced.example.com </ AttributeValue >

11 </Attribute >

12 </Subject >

13 <Resource >

14 <Attribute AttributeId ="urn:oasis:names:tc:xacml :1.0: resource:resource -id"

15 DataType ="&xs;string">

16 <AttributeValue >&prile;resource :1:id </ AttributeValue >

17 </Attribute >

18 <Attribute AttributeId ="& prile;resource :1: assertion :1: scope"

19 DataType ="&xs;string">

20 <AttributeValue >/alert/classification </ AttributeValue >

21 </Attribute >

22 <Attribute AttributeId ="& prile;resource :1: assertion :1: value"

23 DataType ="&xs;string">

24 <AttributeValue >1:5976 </ AttributeValue >

25 </Attribute >

26 </Resource >

27 <Action >

28 <Attribute AttributeId ="urn:oasis:names:tc:xacml :1.0: action:action -id"

29 DataType ="&xs;string">

30 <AttributeValue >read </ AttributeValue >

31 </Attribute >

32 </Action >

33 </Request >

Figure 4.5.3: XACML request for XML element authorisation.

1 <Response >

2 <Result ResourceID ="& prile;resource :1:id">

3 <Decision >Permit </Decision >

4 <Status >

5 <StatusCode Value="urn:oasis:names:tc:xacml :1.0: status:ok"/>

6 </Status >

7 <Obligations >

8 <Obligation ObligationId ="& prile;element -restrictions"

9 FulfillOn =" Permit">

10 <AttributeAssignment AttributeId ="& prile;resource :1:cache -timeout"

11 DataType ="http ://www.w3.org/TR /2002/WD -xquery -operators -20020816#\

12 dayTimeDuration">P1D

13 </AttributeAssignment >

14 <AttributeAssignment AttributeId ="& prile;resource :10: policy:pad -with"

15 DataType ="&xs;string">X</ AttributeAssignment >

16 </Obligation >

17 </Obligations >

18 </Result >

19 </Response >

Figure 4.5.4: XACML reply to successful XML element authorisation.
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reports were selected that it would be reasonable to consider anonymising or
that it would be reasonable to consider using as a scope variable for that re-
source. With the exception of payload, which uses the IDS rule classification
as scope (as discussed in this chapter), the rest of the simple rules tested the
same parameter they anonymised, amongst others: source IP address, desti-
nation IP address, source port, destination port etc. We attempted to stress
the cache by including scope variables that referred to the TCP sequence and
acknowledgement numbers.

We used relatively simple XACML policies in order to see the worst case
performance of the decision cache compared to not caching decisions.

A simple XACML policy generator was then used to perform a random
selection of n out of these 30 resources, and then test the decision cache on
5000 alarms generated by Snort 2.8 using the standard VRT rule set. Traffic
was generated by replaying the 1999 KDD Cup data set2. A problem with
this data set, is that it does not give a representative picture of the diversity
of attack vectors today and also not the diversity of data seen by a large MSS
provider. The cache hit rate (97% for 30 enabled rules with 3000 cache entries
in the LRU cache) is therefore probably unrealistically high compared to what
can be expected with real data. The experiments still give a representative
picture of the cache performance, given that the cache hit rate is high.

Each result presented in Figure 4.6.1 is the average of 20 experiments,
each anonymising 5000 alarms for a given number of resources n. The ex-
periment was then repeated for n = (1,2, ...,30). Using an ensemble of 20
experiments limits the effect of random selection of rules with varying cache
hit rates. This makes it possible to better see the underlying trends. Only
IDMEF Alert messages was sent to the cache. Heartbeat messages was not
processed, since they are not relevant for the anonymisation policy.

Figure 4.6.1 shows the average response time of the decision cache as a
function of number of anonymisation policies (i.e. number of XML elements
being anonymised). There seems to be a linear relationship between the num-
ber of anonymisation policies and the time used, as can be expected. Also,
the relative cache efficiency (fraction of uncached to cached time used) in-
creases with increasing number of anonymisation policies, from a speedup

2KDD Cup 1999 data (DARPA IDS test set) http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
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Figure 4.6.1: Average response time of decision cache as a function of number of anonymi-
sation policies. Lines show linear regression of the measurement data.

factor of 2.6-3.0 for less than 5 policies to around 3.5 for 25-30 policies. This
shows that the cached solution both performs better in terms of efficiency and
scales somewhat better than the uncached solution with increasing number of
anonymisation policies. The speedup factor can be expected to be even larger
for more complex XACML policies, as long as the cache hit rate is kept suf-
ficiently high.

30 anonymisation policies is probably sufficient for the IDMEF use case.
Most of the remaining IDMEF elements and attributes were either constant
or varied between a few values, which means they would fit into the cache
without causing any significant additional load on the cache. For these 30
anonymisation rules, the decision cache will be able to process up to 185
IDS alarms/s (vs max 52 IDS alarms/s for the uncached solution). If this is
not sufficient, then the architecture can easily be parallelised, for example by
adding individual anonymising PEPs for each IDS sensor or even splitting
traffic from single IDS sensors.

Memory usage is not a problem for the given experiment since the cache
had a hit rate of 97% with only 3000 cache entries. The JVM heap size went
down to 130 Mb between each garbage collection, and memory increased
slowly after garbage collection, which is another indication that memory us-
age was not problematic when using the VTD-XML parser3. However, more

3This picture was however different for Javas standard DOM implementation, which showed
heavy memory allocation/free patterns.
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realistic data (for example from a MSS provider) are needed to verify that
memory usage is not a problem.

The decision cache is in other words useful for increasing both the perfor-
mance and scalability of XACML authorisations. This means that it should
be viable to perform fine-grained access control of XML elements and at-
tributes in IDMEF alarms from IDS by using an anonymising decision cache.

4.7 Related Work

The content of this chapter was initially published in [135]. This chapter
extends and elaborates on the simple XACML policy for anonymisation pro-
posed in the previous chapter. The previous chapter presented the idea of
anonymisation based on an XACML obligations service for coarse-grained
access control of IDMEF messages. This chapter extends the solution to pro-
vide fine-grained access control of XML messages in general with decision
caching support and support for several different anonymisation policies.

There is as far as we are aware of no other similar solutions. However,
some other systems cover part of the same functionality. A solution for con-
trolling access to XML documents is proposed in [35]. However, this solution
is not based on XACML and it does not support anonymisation policies. An
XACML-based privacy-centred access control system is proposed in [8, 7].
This system focuses on credential management to provide users control over
their data. Our solution is different, since it proposes an XACML caching
solution with fine-grained access control and anonymisation of data.

An extension of XACML to improve the performance of decision making
processes when dealing with stable conditions is explained in [76]. This so-
lution aims at reducing the time that the Policy Information Point (PIP) uses
for accessing remote services like SNMP agents and also the decision making
time. Our solution is different, since it aims at performing access control of
individual elements and attributes in XML documents using a decision cache
based solution.

The BRO IDS [78] supports a way to anonymise the payload of a packet
instead of removing the entire payload [98, 78]. There also exists some earlier
work on privacy-enhanced host-based IDS systems that pseudonymises audit
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data and performs analysis on the pseudonymised audit records [64, 123,
50, 124, 104]. However neither of these solutions are based on XACML or
provide native authorisation and anonymisation of XML document instances.

4.8 Conclusion and Future Work

The chapter proposes a viable solution for fine-grained XACML authorisa-
tion and anonymisation of elements and attributes in XML documents or mes-
sages. This allows for central management of authorisation and anonymisa-
tion policies for XML documents and IDMEF IDS alarms instead of using a
hybrid solution with several different access control solutions or languages.

The decision caching protocol can easily be adapted to other authorisation
schemes by choosing a different cache key generation scheme that reflects the
authorisation scenario. Caching can then be enabled by adding the timeout
parameter as an obligation in order to manage the cached decisions. This
opens up a possibility to significantly improve the efficiency and scalability
of other XACML based authorisation schemes.

A potential critique of the proposed solution, is that fine-grained access
control decisions are delegated from the PDP to the PEP via XACML obli-
gations. This violates the clear interface between policy authorisation and
policy enforcement.

Future work involves adding more functionality and if necessary moving
time critical parts to Java. It would also be interesting to support the Multiple
Resources Profile of XACML in order to process several resources simultane-
ously by XACML. Last but not least, the anonymising decision cache should
be tested under realistic conditions at a MSS provider.
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Reversible Anonymisation for
XML-based Services

This chapter proposes a reversible anonymisation scheme for XML mes-
sages that supports fine-grained enforcement of XACML-based privacy poli-
cies. Reversible anonymisation means that information in XML messages is
anonymised, however the information required to reverse the anonymisation
is cryptographically protected in the messages. The policy can control access
down to octet ranges of individual elements or attributes in XML messages.
The reversible anonymisation protocol effectively implements a multi-level
privacy and security based approach, so that only authorised stakeholders
can disclose confidential information up to the privacy or security level they
are authorised for. The approach furthermore supports a shared secret based
scheme, where stakeholders need to agree to disclose confidential informa-
tion. Last, it supports time limited access to private or confidential informa-
tion. This opens up for improved control of access to private or confidential
information in XML messages used by a service oriented architecture. The
solution provides horizontally scalable confidentiality protection for certain
types of big data applications, like XML databases, secure logging and data
retention repositories.
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5.1 Introduction

This chapter proposes an innovative approach for reversible anonymisation of
private or confidential information in XML messages. It extends the XACML
based decision cache and anonymiser for XML documentsin the previous
chapter with support for reversible anonymisation of private or confidential
information based on broadcast encryption. An advantage compared to the
original approach, is that it supports multi-level privacy for confidential con-
tent in the XML messages, so that only authorised parties can access this
information. This simplifies handling of data with multiple security levels,
since these can be stored together, protected by encryption. It is assumed that
all connections have basic security (e.g. encrypted using TLS/SSL), to avoid
cleartext attacks on underlying communication channels.

The approach allows for both confidentiality and integrity protection of
the XML data based on XML encryption. Such a solution can for example
be useful for secure logging, data retention, protecting private or confidential
information in SmartGrid-based systems (e.g. Demand-Response systems)
or for Security Incident and Event Management (SIEM) systems. The ap-
proach furthermore supports location-aware authorisation and anonymisation
of data, by using the GeoXACML framework [6].

The reversible anonymisation enforcement scheme has been successfully
demonstrated for a Security Incident and Event Management (SIEM) system
anonymising XML-based Intrusion Detection System (IDS) alarms in the In-
trusion Detection Message Exchange Format (IDMEF) [62]. This means that
the proposed approach can be used to implement privacy-enhanced IDS ser-
vices. The proposed scheme is general, and it is envisaged that it in the future
will be integrated in an Enterprise Service Bus (ESB), to provide on-demand
policy controlled reversible anonymisation of information in any XML-based
web service.

The original use case for the reversible anonymisation scheme is privacy-
enhanced intrusion detection system based services. It can be noted that the
IDMEF-based IDS alarm format is a semi-structured XML format, that sup-
ports arbitrary extensions via the IDMEF AdditionalData construct. Perform-
ing data mining of such semi-structured data can be a challenge with existing
relational databases, meaning that a non-relational data representation may be
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required for efficient data processing. Horizontal scalability is typically re-
quired for efficient processing of IDS alarms. Horizontal scalability for IDS
is often implemented by having local data repositories for IDS alarms, and
using an event correlation system to reduce the number of IDS alarms sent
for central processing by a Security Operations Centre. The proposed re-
versible anonymisation scheme supports such a use case by being inherently
parallelisable, so that IDS alarms from different sensors can be processed by
individual anonymisers.

The proposed solution can be considered as security control extensions
for XML databases that include shared secret based authorisation (which can
be used as a building block for multifactor authentication), data encryption
and anonymisation. This can be used to address some of the privacy concerns
on big data repositories based on XML databases. It can also be used to in-
crease the transparency of anonymised services by supporting secure logging
schemes. This means that the approach can be a first step towards solving the
transparency paradox - that big data operators pervasively collect all manner
of private information, however with the operations of big data itself being
almost entirely shrouded in legal and commercial secrecy [72].

The chapter is organised as follows: The next section discusses the re-
versible anonymisation scheme, including notation used, background and
motivation for implementing reversible anonymisation and a high-level de-
scription of the reversible anonymisation process. Section 5.3 explains the
reversible anonymisation process in detail, focusing on XACML authori-
sations, detailed algorithm for anonymisation and deanonymisation and in-
tegrity checks. Section 5.4 describes how the reversible anonymisation pro-
tocol is extended to support a default DENY anonymisation scheme. Section
5.5 describes the adaptations required to support key sharing, and section
5.6 describes how time-based data expiry can be implemented, in order to
support time-limited data retention. Section 5.8 describes the results from
performance tests of the anonymiser and the deanonymiser, and section 5.9
discusses advantages and disadvantages with the proposed approach. Section
5.10 discusses related work, section 5.11 concludes the chapter and section
5.12 outlines future work.
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5.2 Reversible Anonymisation Scheme

This section first describes the background and motivation for the reversible
anonymisation scheme proposed in this chapter , and then outlines how the
anonymisation process works from a high level perspective. The reversible
anonymisation scheme is implemented as an extension of the anonymising
decision cache described in the previous chapter.

5.2.1 Background and Motivation

The reversible anonymisation scheme is useful for dynamically configuring
confidentiality protection of XML-based web services in a service oriented
architecture. This provides a possibility to enforce the security and privacy of
existing services by running these services through the anonymiser. Autho-
rised users or services can subsequently deanonymise and use information in
security levels they have clearance for. This provides a flexible, policy driven
protection scheme for private or confidential information, where protection
mechanisms can be added on demand.

General functionality that the reversible anonymisation protocol provides,
is irreversible and reversible anonymisation of information in XML messages
controlled by XACML policies. In addition, it supports key sharing, which
can be used to enforce separation of duties constraints - for example so that
different stakeholders need to agree to disclose confidential information to
reduce the risk of insider attacks. The scheme can also be used to implement
trustworthy deployment of system configurations. The approach furthermore
supports time-limited access to sensitive data, which can be used to support
data retention and secure logging mechanisms for XML databases.

It is expected that such a general policy-driven reversible anonymisation
scheme will be useful in a range of different use cases, including outsourc-
ing - for example to cloud-based services, e-health, e-commerce, critical in-
frastructures and managed security services, which is the practical use case
considered in this chapter .

Reversible anonymisation here means that sensitive information in the
XML messages is anonymised, however necessary information required to
reverse the anonymisation process is stored encrypted in the XML message.
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Reversible anonymisation is different from traditional pseudonymisation since
no pseudonym is used to replace the anonymised XML element. Instead the
encrypted information required to reverse the anonymisation is added to the
XML message. There are several advantages by using such a strategy com-
pared to a traditional pseudonymisation strategy. First, this means that there is
no need to consider the cryptographic strength of a pseudonymisation scheme
to avoid linkability between pseudonyms, since pseudonyms are not used.
Second, the anonymised data can be any data, for example an informative
text, replacing the anonymised data. This informative text may even contain
nonsensitive parts of the original data (for example the most significant part
of an IP range)1. Third, having larger chunks of encrypted data reduces the
risk of leaking information via traffic analysis.

The reversible anonymisation scheme builds key distribution into the XACML
policies, so that the Policy Enforcement Point (PEP) queries the Policy Deci-
sion Point (PDP) about which public keys that are authorised to access infor-
mation in the XML messages.

It is assumed that the Security Assertion Markup Language (SAML) or
similar is used both to authorise the data consumer to receive anonymised
messages, and also to authorise individual users for access to sensitive infor-
mation in the messages. SAML supports automatic logout of users by using
the single logout protocol of SAML 2.0 [110]. All authorisation decisions
should in addition be logged, to know which user that had access to the mes-
sages when.

5.2.2 Outline of the Reversible Anonymisation Process

The cryptographic problem that must be solved, is how to cryptographically
protect confidential information, so that only authorised personnel can ac-
cess the information on a needs basis. It is assumed that information may
be split into d > 1 different security levels (for example Restricted, Confi-
dential, Secret). There may furthermore be one or more consumers of XML
messages, where each consumer is authorised to a given subset of security
levels. The solution proposed here does not assume any semantics or rela-

1Note however that such a strategy should be used with care for private or confidential data to
avoid reducing the anonymity set unduly for the underlying data.
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Index Meaning
d Number of security levels.
i Security level
j Share index of encryption key Ki, j.
N Number of resources.
n Number of key shares.
m Number of users.
p XPath expression number.

q Match number for XPath
expression p.

u User number.
z Number of matches of rp.
Type Meaning
C Set of classified XML elements.

ep
ep = (ep,1,ep,2, ...,ep,z) identified
by XPath resource rp on message.

ep,q

XML element q identified by
evaluating XPath resource rp on
message.

Ki Encryption key for security level i.

KM
Set of keymap tuples consisting of
encryption key Ki and security
level i.

li Information on security level i.

L Vector of all confidential
information li.

Λu Keymaps user u is authorised for.

AM

Authorisation map from public
keys PKu to the set of keymaps
Λu ⊆ KM the user u is authorised
for.

PKu Public key of user u.

rp
XPath expression for p identifying
resources that need authorisation.

R Set of all rp.
S Set of encrypted keys.
SKu Secret key of user u.
texp Key expiry time.
tretention Data retention time.

Q Matrix of authorised elements ep,q
for resource p and security level i.

Table 5.2.1: List of notations for reversible anonymisation scheme.
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Mapping of XACML Parameters
Parameter Decision cache XACML AttributeId

Declassify urn:prile:org:resource:p:policy:declassify
Obligation to declassify information for policy p.

li level:i: authorisation level.

li related level:i:share: j: share index j of split encryption key
Ki.

Ki related
urn:prile:org:encryption-key:level:i:algorithm
encryption key algorithm e.g:
http://www.w3.org/2001/04/xmlenc#aes128-cbc

Ki related urn:prile:org:encryption-key:level:i:timeout
timeout value before encryption key regeneration.

XML namespace urn:prile:org:xmlns:nsx declares the XML
namespace nsx.

PKu
urn:prile:org:public-key:u:pem-key
base64-encoded public key of user u.

PKu related

urn:prile:org:public-key:u:algorithm
public key algorithm used, e.g:
http://www.w3.org/2001/04/xmlenc#rsa-oaep-
mgf1p

PKu related urn:prile:org:public-key:u:user
Owner of u of key pair (PKu,SKu)

PKu related urn:prile:org:public-key:u:ephemeral-reference
Reference to ephemeral key EKu, e.g. ephemeral:1;

PKu related
urn:prile:org:public-key:u:levels
comma separated list of security levels PKu is
authorised for.

PKu related urn:prile:org:public-key:u:timeout
optional authorisation timeout value for PKu.

Policy type urn:prile:org:default-policy:policytype
policytype={PERMIT|DENY}

rp
urn:prile:org:resource:p:id
resource identifying XPath expression.

tretention
urn:prile:org:encryption-key:level:i:retention-time
data retention time.

Table 5.2.2: Mapping of XACML parameters for reversible anonymisation scheme.
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K1 l1

K2 l2

K i li ...
Kd ld

(K2 ,2) ,(K i , i) ,(K d , d )

EK 1

(K1 ,1), (K2 ,2)
EK u

...

Confidential information li  on security level i

Encrypted information li
'  using key K i

Authorisation
mapping 
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level:1 level:2
level:2 level:i level:d

SK 1 SK u

User 1 User u...

AM '

PK 1

EK 1

... PK 2

EK 2

Ephemeral key

Figure 5.2.1: Overview over encryption scheme used to implement reversible anonymisa-
tion.

tionships between the security levels, apart from controlling who have access
to which security levels. It is assumed that additional semantics, e.g. that ac-
cess to level Secret also includes access to level Confidential and Restricted,
can be enforced by the XACML policies controlling the anonymisation pol-
icy. Some stakeholders, for example law enforcement or CERT, may have a
need to access information with a higher level of sensitivity than a first-line
service. It is also desirable to enforce a shared secret scheme to ensure that
two or more parties must agree by providing their key shares before sensitive
information is disclosed (for example that a data controller and law enforce-
ment must agree to disclose a given set of sensitive data).

The following notation is used in the chapter . A pseudo-random num-
ber generator is denoted by rnd(), an encryption function is denoted by
Enc(key,value) and decryption function by Dec(key,value). Furthermore,
value′ denotes the encrypted or anonymised value, i.e. value′=Enc(key,value)
and value = Dec(key,value′). The list of notation used in the chapter can be
found in Table 5.2.1.
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Fig. 5.2.1 gives overview over how the encryption scheme used to imple-
ment reversible anonymisation and multi-level security is implemented. The
confidential information li in each security level i∈ {1, ...,d} consists of both
a specification on how to reverse the anonymisation using XPath expressions
and the confidential information identified using these XPath expressions.
The information in each security level li is encrypted using the corresponding
encryption key Ki for the security level referenced by the security level index
(or label) i. In this chapter it is assumed for simplicity that the security level
index is a natural number2.

Furthermore, users can be authorised to a subset of all security levels. In
Fig. 5.2.1, User 1 has access to security levels 1 and 2, and User u has access
to security levels 2, i and d. The authorisation mapping (AM) for each user
is encrypted using a two-stage process, where a symmetric key EKu is used
to encrypt the AM, and the public key PKu of the authorised user u is used
to encrypt the EKu. EKu is regenerated each time a user is authorised for
access to the data, and has a configurable key renegotiation timeout. The
authorisation mapping, encryption keys and the number of security levels
are controlled by XACML policies. An advantage by using a separate key
for encrypting the key mapping, is to avoid having to use relatively slow
public key cryptography for encrypting the AM. Another advantage is that
standardised XML Encryption methods can be used for key wrapping.

A given user u, can then decrypt the EKu using her private key SKu, which
in turn can be used to decrypt the tuples (Ki, i) that the user is authorised for.
The index i can subsequently be used to retrieve the corresponding encrypted
information l

′
i which then can be decrypted using the corresponding key Ki.

The confidential information in li both contains the confidential data that is
anonymised in the original XML data and a specification (XPath expressions)
that describes how the anonymisation for the given security level can be re-
versed. The approach used for encrypting information in security levels is
similar to broadcast encryption [48].

This approach gives flexibility for authorising access to information on a
given security level according to operative needs. It may for example be de-
sirable to enforce separation of duties between information considered secret

2However it may also be implemented using textual labels (e.g. “secret”) if the underlying data
structure is implemented as an associative array.
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Anonymiser/
Proxy (PEP) XACML PDP Consumer

KM={(K i , i)}, i∈1, ... , d

Authorise consumer 

Authorise consumer

Permit, R, Keyspec, AM,
policytype=PERMIT

L=( l1←∅ , ..., ld ←∅)

R={r 1,r2, ... ,rN }

AM={(PK u , EK u ,Λu ,u)}, u∈1,... ,m

C=∅ , D=∅
Λu⊆KM

K i← rnd ( ), i∈1,... , d

EK u← rnd (), u∈1, ... ,m

Figure 5.2.2: Initial authorisation sequence.

by customer A and information considered secret by another customer B, by
authorising different trusted CERT teams to access this information in each
organisation.

5.2.3 Reversible Anonymisation Protocol

This subsection describes the reversible anonymisation protocol. The de-
tailed description of the algorithm is given in Fig. 5.3.8.

Initially, the consumer sends a SAML assertion with proof of authentic-
ity to log in to the Anonymiser/Proxy PEP, as shown in Fig. 5.2.2. The
PEP will then ask the XACML PDP for authorisation of the consumer. If
the response is Permit, then the XACML response will contain a set of obli-
gations that amongst others contain the set of N ≥ 0 resource identifying
expressions (XPath expressions) R = {r1,r2, ...,rN} which identify informa-
tion that needs authorisation. The reply furthermore contains the Keyspec,
which specify keys such as the public keys PKu, and information on how to
generate ephemeral keys EKu, u ∈ {1, ...,m}. It also specifies the number of
security levels d as well as how to generate the unique encryption keys Ki, i∈
{1, ...,d} that are used. Then the vector of confidential information L is ini-
tialised to the empty vector for all security levels, i.e: L= (l1← /0, ..., ld← /0),
and the encryption keys are initialised to a random number using the specified
key generation algorithm, i.e: Ki← rnd(), i ∈ {1, ...,d}.

The encryption keys are used to generate a set of keymaps KM = {KMi|i∈
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Anonymiser/
Proxy (PEP) XACML PDP Consumer

Authorise user u

Authorise u

Permit, use PK
u
 for level i,...

M=M∪{(PK u , EK u ,Λu , u)}

Λu={(K i , i) , ...}

EK u← rnd ()

Figure 5.2.3: Authorise user.

1, ...,d}, where each keymap KMi = (Ki, i) is a tuple consisting of the encryp-
tion key Ki and an index i referring to the confidential information li on secu-
rity level i. The ephemeral keys EKu for each u ∈ {1, ...,m} are subsequently
generated.

The initial XACML response also contains a key authorisation mapping
AM = {(PKu,EKu,Λu,u)|u ∈ 1, ...,m}, which describes who (i.e. which user
u’s public keys PKu) that are authorised to access data at which security lev-
els (via the ephemeral keys EKu). Here Λu ⊆ KM is the subset of keymaps
indicating which security levels i the user is authorised for.

It is assumed that deployment of XACML policies describing the key
mapping is being controlled by the information owner, so that the key own-
ers themselves will not be allowed to modify this mapping. Finally, the set
of classified elements, denoted as C, and elements explicitly declassified, de-
noted as D, are initialised to the empty set. The relative complement C\D
describes the set of XML elements or attributes that needs to be anonymised.

The process of subsequent authorisation of a user u is shown in Fig. 5.2.3.
The user asks the Anonymiser to be authorised for access to a set of one (or
more) security level(s) Lu ⊆ {1, ...,d}. If the analyst has access according
to the security policy, then the XACML responds with Permit. The response
contains an obligation with the public key of the analyst PKu and an authori-
sation mapping showing that this analyst is authorised for the set of security
levels Lu. The PEP first generates the ephemeral key EKu and then adds this
decision to the key authorisation mapping: AM = AM∪{(PKu,EKu,Λu,u)},
where Λu = {KMi| i ∈ Lu} so that the user is authorised for accessing confi-
dential information in li.
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Authorise XML element e
p,q

Anonymiser/
Proxy (PEP) XACML PDP

li← li∪{(r p ,Qi)}

Permit, anonymise, 
authorised for levels

e p← XPATH (r p ,message)
for p ←1, ... ,N do

for q ←1,... , z do
Q=d× z matrix initialised to∅

if decision=Permit and

for i∈levels do
Qi , q← valueof (e p ,q)

C ←C∪e p, q

for i∈1, ... , d do

XACML Request, Authorise e p ,q

z matching elements

anonymise=True then

Figure 5.2.4: XML Element Authorisation

After that, the authorisation of elements and attributes in the XML mes-
sage starts, as shown in Fig. 5.2.4. First each resource identifying XPath
expression rp, p ∈ {1, ...,N} is evaluated on the XML message to get a vec-
tor of z matching XML elements:

ep = (ep,1,ep,2, ...,ep,z)← XPAT H(rp,message). (5.2.1)

The PEP then needs to authorise each of the elements in ep by querying the
PDP for which security level(s) each element is authorised for. If access to
the element ep,q is granted, then the XACML Response contains a Permit
decision with an obligation to anonymise the given element which also con-
tains which security level(s), denoted levels, that are authorised to reverse the
anonymisation.

The anonymiser then iterates through all levels i ∈ levels and stores the
value of each element ep,q in a matrix Qi,q, so that each row vector Qi contains
the confidential elements of ep that security level i is authorised for, and /0
otherwise. After that, the current element ep,q is added to the list of classified
elements C, i.e: C←C∪ ep,q, that later will be anonymised.

The last part of element authorisation is to iterate through all security
levels i ∈ {1, ...,d} and add a tuple (rp,Qi), consisting of resource identifier
rp and confidential information for the given resource identifier Qi to the set
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Anonymiser/
Proxy (PEP) Consumer

Anonymised XML:
message ' , EK u

' , AM ' , L'

Encrypt AM:

Encrypt each security level:

li
'
← Enc (K i , li)

AM ' ←∅

for (PK u , EK u ,Λu , u)∈AM do

AM '
← AM '

∪(EK u
' ,Λu

' ,u)

for i∈1, ... , d do
L'

=(l1
'
=∅ , ... ,l d

'
=∅)

Anonymisation 
reversal

for element∈C ∖D do
Anonymise element

Anonymise:

EK u
'
← Enc (PKu , EK u)

Λu
'
← Enc(EKu ,Λu)

Figure 5.2.5: Anonymisation enforcement and reversal for default PERMIT policies.

of confidential information li for security level i, i.e: li← li∪{(rp,Qi)}. This
essentially means that a specification on how to undo the anonymisation has
been stored in li.

When all elements matching the set of resources R have been authorised,
the algorithm proceeds to the enforcement part, as shown in Fig. 5.2.5. En-
forcement starts with anonymising all classified elements in C that have not
been explicitly declassified (that are not part of D) i.e. C\D. The anonymiser
then loops through the authorisation mapping tuples in AM, and encrypts Λu

with EKu, and then encrypts EKu using the user u’s public key PKu. After
that, the anonymiser adds a tuple consisting of the encrypted ephemeral key
EK

′
u← enc(PKu,EKu), the encrypted encryption keys and security level ref-

erences Λ
′
u← enc(EKu,Λu) and a reference to the user u that can decrypt the

authorisation mapping to the set of encrypted authorisation maps AM
′
, i.e:

AM
′← AM

′ ∪{(EK
′
u,Λ

′
u,u)}.

Finally, the confidential information li in each security level i is encrypted
using the respective symmetric encryption key Ki, to protect the sensitive
information from disclosure by unauthorised parties. The encrypted authori-
sation mapping AM

′
, the ephemeral key(s) EK

′
u and the vector of encrypted

security levels L
′
= {l ′1, ..., l

′
d} are finally enveloped in an IDMEF Additional-

Data element of message
′
. The anonymised anonymised IDMEF XML mes-

sage (message
′
) is then sent to the receiver. It must be noted that the proposed

solution is not restricted to IDMEF based IDS alarms. It works for any XML
schema that supports an extension mechanism where the encrypted data and
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XML signatures can be inserted.
On the receiving side, the deanonymiser goes through the (Λ

′
u,u) tuples

in AM
′
to search for a user u that matches the current user as shown in Fig.

5.3.10. If this is found and decryption of the encrypted ephemeral key EK
′
u

using the secret key SKuser succeeds, then the deanonymiser will decrypt Λu

using EKu, and goes through all key maps (Ki, i) ∈ Λu and decrypt the confi-
dential information at the given security level: li← Dec(Ki, l

′
i).

The deanonymiser can then loop through all tuples (rp,Qi)∈ li, use XPath
searches with the expression rp on message

′
to retrieve the elements that need

to be deanonymised, i.e. ep←XPAT H(rp,message
′
) and finally loop through

all elements q of ep to replace the original content using ep,q←Qi,q if Qi,q 6=
/0, which reverses the anonymisation.

The XACML policy allows the encryption keys to be regenerated at regu-
lar time intervals, to reduce the risk of key recovery attacks and also to reduce
the amount of confidential information that can be accessed with a given en-
cryption key.

The confidential information is stored in random order, using random
identifiers to avoid revealing explicitly which security level (or grading) the
confidential information has. Each security level in addition contains a nonce
(not shown in the figures), to make it harder to correlate sensitive informa-
tion between IDS alarms. This nonce can also be used by the deanonymiser
to detect and avoid data replay attacks.

5.2.4 XML Signature Based Integrity Checks

XML Signatures are added to ensure the integrity of the XML messages both
before and after anonymisation, to ensure that the message has not been tam-
pered with and also that the anonymisation reversal works correctly. Before
anonymisation, an enveloped XML Signature3 (the inner signature) is calcu-
lated over the original XML message [45]. This signature is added to verify
the integrity of the XML message after successful anonymisation reversal of
all anonymised elements. This acts as a regression test to verify correct op-
eration of reversible anonymisation, and also verifies that the data used to

3Enveloped means that the signature is embedded as part of the message itself, instead of being
added outside the definition of the message.
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1 <IDMEF -Message >

2 <Alert messageid ="0 c18ec3c -1b2e -11e0 -99b2">

3 <Source spoofed =" unknown"

4 interface ="wlan0">

5 <Node category =" unknown">

6 <Address category ="ipv4 -addr">

7 <address >10.0.2.2 </ address >

8 </Address >

9 </Node >

10 </Source >

11 <Classification ident ="1:5976"

12 text="SNMP AgentX/tcp request">

13 </Classification >

14 <AdditionalData type="byte -string"

15 meaning =" payload">

16 Payload data ...

17 </AdditionalData >

18 </Alert >

19 </IDMEF -Message >

Figure 5.3.1: Simplified excerpt of IDMEF message used in the case study.

reverse the anonymisation have not been tampered with.
In addition, an enveloped XML Signature, the outer signature, is calcu-

lated over the anonymised message, including the encrypted section, to verify
the integrity of the XML message before decryption operation starts.

5.3 Detailed Specification of Reversible Anonymisa-

tion Protocol

This Section contains a detailed specification of the reversible anonymisation
protocol. It focuses on XACML policy interaction and formats required by
the protocol, and also on how XML Signatures and Encryption are being
used.

In the following, the XACML namespace is denoted as &xacml;, the
XML Schema namespace is denoted as &xs;, the XML encryption schema
is denoted by &xenc; and our own extensions are defined in the namespace
http://www.prile.org:, denoted by &prile;. It is assumed that the reader has a
basic understanding of XACML.

5.3.1 Initial Authorisation

The initial authorisation example assumes the IDMEF message shown in Fig.
5.3.1. The detailed steps of the anonymisation algorithm is shown in Fig.
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5.3.8, and reversal of the anonymisation in Fig. 5.3.10.
The initial XACML authorisation is a standard XACML authorisation re-

quest with Subject attribute value soc1@outsourced.example.com, Resource
attribute value PEP and Action value authorise. The response to this initial
request is illustrated in Fig. 5.3.2. The response will for successful authori-
sation contain decision Permit with an obligation containing a cache specifi-
cation with the elements that need to be authorised/anonymised. The cache
specification for individual elements use the same scheme as [135].

The cache specification contains obligations defining a vector of d encryp-
tion keys K = {K1,K2, ...,Kd}, one encryption key for each security level
i. It also contains obligations defining a set of m ephemeral keys EKu,u ∈
{1, ...,m}, one for each authorised user. The obligation defines the encryption
key algorithm and a timeout parameter which defines when the encryption
key times out and a new encryption key must be generated. Generating a new
encryption key is done automatically on timeout. The encryption key timeout
can be changed by reinitialising the anonymiser, which means that the autho-
risation mapping AM also will be updated. The XACML AttributeIDs for the
encryption key are as follows:

• &prile;encryption-key:level:i:algorithm encryption algorithm for Ki or
EKu in XML Encryption URL format;

• &prile;encryption-key:level:i:timeout timeout value of encryption key
in W3C XQuery dayTimeDuration format.

Last, the XACML response will contain obligations defining a set of zero
or more public keys that define which stakeholders (e.g. CERTs or law en-
forcement) that by default are authorised for access to sensitive information
in the IDS alarms. Furthermore the response contains an XACML attribute
specifying which security level(s) each key is authorised for, to create the
authentication map AM from keys to levels, as shown in line 3 of Algorithm
5.3.8. Each of these obligations contain the following XACML Attributes:

• &prile;public-key:u:pem-key - base64-encoded public key PKu in SSL
PEM format4;

4The protocol can easily be extended to also support X509 certificates to support chains of trust.
It has not been considered important do demonstrate this for the proof-of-concept prototype, so
implementing this is left as future work.
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• &prile;public-key:u:algorithm showing the public key algorithm used
in XML Encryption URL format;

• &prile;public-key:u:user indicating the owner of the key;

• &prile;public-key:u:ephemeral-reference refers to the ID of the ephemeral
key, e.g. ephemeral:1;

• &prile;public-key:u:levels specifying a comma separated list of which
security levels, or key shares below a given level this public key is
valid for. Levels are addressed as a comma separated list of statements:
level:1, level:2 etc. Key shares within a given level is addressed as
level:1:share:1, level:1:share:2 etc.;

• and last &prile;public-key:u:timeout specifying the timeout value of the
public key, after which the public key needs reauthorisation. The time-
out value is specified in W3C XQuery dayTimeDuration format.

5.3.2 Subsequent Authorisations

It is possible to authorise additional parties on a needs basis after the initial
authorisation, as shown in Fig. 5.3.3. This is done using an XACML request
with Subject attribute being the name of the user to be authorised (here ana-
lyst1@outsourced.example.com), the Resource attribute specifies the desired
access level (level:1), and the action is read.

The subsequent XACML Response is shown in Fig. 5.3.4. If the user
is authorised for access to the given security level (here level 1), then the
XACML response will contain a Permit decision with an obligation convey-
ing the public key of the user, ephemeral key definition and the security levels
this key is authorised for. The format of this obligation is the same as the for-
mat of the public-key obligation in the initial XACML Response, except that
this obligation also may contain the encryption-key timeout attribute in or-
der to force reauthentication and regeneration of the encryption key. If the
timeout attribute is present, then the authorisation will have the effect that the
newly authorised user for example cannot access sensitive information anal-
ysed by other users during their work shifts. If attack analysis of data outside
the authorisation window of the user is required, then this can be done by
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1 <Response >

2 <Result ResourceID ="PEP">

3 <Decision >Permit </Decision >

4 <Status ><StatusCode Value ="urn:oasis:names:tc:xacml :1.0: status:ok"/></Status >

5 <Obligations >

6 <Obligation ObligationId ="& prile;default -policy" FulfillOn =" Permit">

7 <AttributeAssignment AttributeId ="& prile;policytype:PERMIT"

8 DataType ="&xs;string">

9 </AttributeAssignment >

10 </Obligation >

11 <Obligation ObligationId ="& prile;authorize -elements" FulfillOn =" Permit">

12 <AttributeAssignment AttributeId ="& prile;resource :1:id"

13 DataType ="&xs;string">/Alert/AdditionalData[@meaning='payload ']

14 </AttributeAssignment >

15 <AttributeAssignment AttributeId ="& prile;resource :1: assertion :1: scope"

16 DataType ="&xs;string">/Alert/Classification/@ident

17 </AttributeAssignment >

18 <AttributeAssignment AttributeId ="& prile;resource :2:id"

19 DataType ="&xs;string">/Alert/Source/Node/*

20 </AttributeAssignment >

21 <AttributeAssignment AttributeId ="& prile;resource :2: assertion :1: scope"

22 DataType ="&xs;string">/Alert/Source/Node/Address/address

23 </AttributeAssignment >

24 </Obligation >

25 <Obligation ObligationId ="& prile;encryption -key:level :1" FulfillOn =" Permit">

26 <AttributeAssignment AttributeId ="& prile;encryption -key:level :1: algorithm"

27 DataType ="&xs;string">http :// www.w3.org /2001/04/ xmlenc#aes128 -cbc

28 </AttributeAssignment >

29 <AttributeAssignment AttributeId ="& prile;encryption -key:level :1: timeout"

30 DataType ="http ://www.w3.org/TR /2002/WD -xquery -operators -20020816#\

31 dayTimeDuration">P1D

32 </AttributeAssignment >

33 </Obligation >

34 <Obligation ObligationId ="& prile;encryption -key:ephemeral :1" FulfillOn =" Permit">

35 <AttributeAssignment AttributeId ="& prile;encryption -key:ephemeral :1: algorithm"

36 DataType ="&xs;string">http :// www.w3.org /2001/04/ xmlenc#aes128 -cbc

37 </AttributeAssignment >

38 <AttributeAssignment AttributeId ="& prile;encryption -key:ephemeral :1: timeout"

39 DataType ="http ://www.w3.org/TR /2002/WD -xquery -operators -20020816#\

40 dayTimeDuration">P1h

41 </AttributeAssignment >

42 </Obligation >

43 <Obligation ObligationId ="& prile;public -key:1"

44 FulfillOn =" Permit">

45 <AttributeAssignment AttributeId ="& prile;public -key:1:pem -key"

46 DataType ="&xs;string">-----BEGIN PUBLIC KEY - - - -..........

47 </AttributeAssignment >

48 <AttributeAssignment AttributeId ="& prile;public -key:1: ephemeral -reference"

49 DataType ="http ://www.w3.org /2001/ XMLSchema#string">ephemeral :1

50 </AttributeAssignment >

51 <AttributeAssignment AttributeId ="& prile;public -key:1: algorithm"

52 DataType ="&xs;anyURI">http :// www.w3.org /2001/04/ xmlenc#rsa -oaep -mgf1p

53 </AttributeAssignment >

54 <AttributeAssignment AttributeId ="& prile;public -key:1: user"

55 DataType ="&xs;string">CERT

56 </AttributeAssignment >

57 <AttributeAssignment AttributeId ="& prile;public -key:1: levels"

58 DataType ="&xs;string">level:1,level:2</ AttributeAssignment >

59 <AttributeAssignment AttributeId ="& prile;public -key:1: timeout"

60 DataType ="http ://www.w3.org/TR /2002/WD -xquery -operators -20020816#\

61 dayTimeDuration">P365D

62 </AttributeAssignment >

63 </Obligation >

64 </Obligations >

65 </Result >

66 </Response >

Figure 5.3.2: Initial XACML response to support default keys.
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1 <?xml version ="1.0" encoding ="UTF -8"?>

2 <Request xmlns ="urn:oasis:names:tc:xacml :1.0: context:schema:os"

3 xmlns:xsi="http ://www.w3.org /2001/ XMLSchema -instance"

4 xsi:schemaLocation ="urn:oasis:names:tc:xacml :1.0: context:schema:os

5 http :// docs.oasis -open.org/xacml /\

6 access_control -xacml -1.0-context -schema -os.xsd">

7 <Subject >

8 <Attribute AttributeId ="urn:oasis:names:tc:xacml :1.0: subject:subject -id"

9 DataType ="&xs;string">

10 <AttributeValue >Analyst1 </ AttributeValue >

11 </Attribute >

12 </Subject >

13 <Resource >

14 <Attribute AttributeId ="urn:oasis:names:tc:xacml :1.0: resource:resource -id"

15 DataType ="&xs;string">

16 <AttributeValue >level:1</ AttributeValue >

17 </Attribute >

18 </Resource >

19 <Action >

20 <Attribute AttributeId ="urn:oasis:names:tc:xacml :1.0: action:action -id"

21 DataType ="&xs;string">

22 <AttributeValue >read </ AttributeValue >

23 </Attribute >

24 </Action >

25 </Request >

Figure 5.3.3: XACML Request to authorise user.

escalating the event, so that for instance the CERT team or law enforcement
investigates the event. An alternative solution is to use key shares, so that the
user may have one share, but needs to ask for permission, for example from
the data controller, to get the necessary additional shares to disclose events
that are outside her own shift. This reduces the privacy impact of day to day
security analysis to be more according to a needs basis than the current prac-
tice, which typically means no restrictions on access to potentially sensitive
data in the alarm database. It also opens up for more transparency in the form
of logging how, when and by whom access to sensitive information is being
done.

5.3.3 XML Element Authorisations

Authorisation requests for individual XML elements proceeds in a similar
way as proposed for the Decision-cache [135]. The XACML Response to
XML element authorisation is however slightly different, since it in addition
contains an <AttributeAssignment> in the element-restrictions Obligation
that allows access to one or more security levels, as shown in Fig. 5.3.5. In
Fig. 5.3.5, only stakeholders authorised to security levels level:1 and level:2
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1 <Response >

2 <Result ResourceID =" level:1">

3 <Decision >Permit </Decision >

4 <Status >

5 <StatusCode Value="urn:oasis:names:tc:xacml :1.0: status:ok"/>

6 </Status >

7 <Obligations >

8 <!-- One or more public key and ephemeral key definitions -->

9 <Obligation ObligationId ="& prile;encryption -key:ephemeral :2"

10 FulfillOn =" Permit">

11 <AttributeAssignment AttributeId ="& prile;encryption -key:ephemeral :2: algorithm"

12 DataType ="&xs;string">http :// www.w3.org /2001/04/ xmlenc#aes128 -cbc

13 </AttributeAssignment >

14 <AttributeAssignment AttributeId ="& prile;encryption -key:ephemeral :2: timeout"

15 DataType ="http ://www.w3.org/TR /2002/WD -xquery -operators -20020816#\

16 dayTimeDuration">P1h

17 </AttributeAssignment >

18 </Obligation >

19 <Obligation ObligationId ="& prile;public -key:2: authorise" FulfillOn =" Permit">

20 <AttributeAssignment AttributeId ="& prile;public -key:2:pem -key"

21 DataType ="&xs;base64Binary">-----BEGIN PUBLIC KEY -----

22 .......

23 </AttributeAssignment >

24 <AttributeAssignment AttributeId ="& prile;public -key:2: ephemeral -reference"

25 DataType ="http ://www.w3.org /2001/ XMLSchema#string">ephemeral :2

26 </AttributeAssignment >

27 <AttributeAssignment AttributeId ="& prile;public -key:2: algorithm"

28 DataType ="&xs;anyURI">http :// www.w3.org /2001/04/ xmlenc#rsa -oaep -mgf1p

29 </AttributeAssignment >

30 <AttributeAssignment AttributeId ="& prile;public -key:2: user"

31 DataType ="&xs;String">Analyst1

32 </AttributeAssignment >

33 <AttributeAssignment AttributeId ="& prile;public -key:2: levels"

34 DataType ="&xs;String">level:1</ AttributeAssignment >

35 <AttributeAssignment AttributeId ="& prile;public -key:2: timeout"

36 DataType ="http ://www.w3.org/TR /2002/WD -xquery -operators -20020816#\

37 dayTimeDuration">P1D

38 </AttributeAssignment >

39
40 </Obligation >

41 </Obligations >

42 </Result >

43 </Response >

Figure 5.3.4: XACML Response to user authorisation request.
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1 <Response >

2 <Result ResourceID ="& prile;resource :1:id">

3 <Decision >Permit </Decision >

4 <Status >

5 <StatusCode Value="urn:oasis:names:tc:xacml :1.0: status:ok"/>

6 </Status >

7 <Obligations >

8 <Obligation ObligationId ="& prile;element -restrictions"

9 FulfillOn =" Permit">

10
11 <AttributeAssignment AttributeId ="& prile;resource :10: policy:anonymise"

12 DataType ="&xs;string"></AttributeAssignment >

13 <AttributeAssignment AttributeId ="& prile;resource :10: authorisation:levels"

14 DataType ="&xs;String">level:1,level :2</ AttributeAssignment >

15 <AttributeAssignment AttributeId ="& prile;resource :1:cache -timeout"

16 DataType ="http ://www.w3.org/TR /2002/WD -xquery -operators -20020816#\

17 dayTimeDuration">P1D

18 </AttributeAssignment >

19 </Obligation >

20 </Obligations >

21 </Result >

22 </Response >

Figure 5.3.5: XACML Response to XML Element Authorisation.

can reverse the anonymisation of this element.

5.3.4 Reversible Anonymisation Protocol

The plaintext XML representation of the authorisation map AM and confiden-
tial information L is shown in Fig. 5.3.6. XML Signatures and all confidential
information to be encrypted are stored in an IDMEF <AdditionalData> ele-
ment with meaning “EncryptedData” and type “xml”. This element contains
a set of one or more <AuthorisationMap> elements, where each element cor-
responds to AMu for user u. Each <AuthorisationMap> element contains one
or more <KeyInfo> elements that describe the key mapping KMi for security
level i. <KeyInfo> furthermore contains <KeyName>, which is a nonce re-
ferring to the sensitive information li, and <KeyValue> that stores the encryp-
tion key Ki for security level i. PKu is not stored in the XML representation
of AM, since the public key only is used by the anonymiser.

The confidential information in L is subsequently stored in <SecurityLevel>
elements, where each <SecurityLevel> element corresponding to li has an ID
attribute referring to Ki. The confidential information is stored in random
order, using random identifiers to avoid revealing explicitly which security
level (or grading) the confidential information has. Each security level in ad-
dition contains a nonce carried in a <KA-Nonce> element, to make it harder
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to correlate sensitive information between IDS alarms.
Then follows the <DeAnonymisers> element, which encloses the confi-

dential information for the given security level. The <DeAnonymisers> el-
ement has a level attribute that refers to the given security level in cleartext,
and contains a a set of one or more <DeAnonymise> elements that specify
how to reverse the anonymisation. The <Deanonymise> element has a re-
source attribute that refers to the given XPath expression rp, and furthermore
contains a set of zero or more <AnonymisedData> elements referring to the
confidential information ep,q.

The data structure used to store the <DeAnonymisers> is shown in line
27 of Fig. 5.3.8. It consists of a set of tuples (rp,Qi), one for each security
level i. The row vector Qi contains a replacement list of authorised element
values that rp matches for the given security level i. This ensures that the
same number of elements that originally was anonymised, will be replaced in
the same position when the anonymisation is reversed.

For example, assume that the resource expression r2 matches three ele-
ments {e2,1,e2,2,e2,3}. The first and third XPath matches e2,1 and e2,3 are
authorised for level 1 whereas e2,2 is authorised for level 2. In this case Q1 =

(e2,1, /0,e2,3) and Q2 =( /0,e2,2, /0). This ensures that three XPath matches exist
for both security level 1 and 2. The function reversing the anonymisation will
ignore elements marked as empty, so that only the anonymisation of e2,1and
e2,3 will be reversed for level 1 and e2,2 for level 2.

Then, the data is encrypted using XML Encryption [44], as illustrated in
Fig. 5.3.7. All encrypted data is stored in the IDMEF <AdditionalData>
element with meaning “EncryptedData”, and type “xml” to comply with the
IDMEF extension scheme. All ciphertexts are Base64 encoded, as required
by the XML Encryption and Signature standards [44, 45]. The encryption
scheme uses EKu to encrypt the <AuthorisationMap> per user u, and en-
crypts EKu with the user’s public key PKu. The encrypted key EK

′
u is then

wrapped into the <xenc:EncryptedData> inside the <ds:KeyInfo> element.
This approach uses standard key wrapping in XML Encryption, and avoids
encrypting the larger <AuthorisationMap> data sequences using RSA en-
cryption, which would be slower than using a block cipher like AES.

All confidential information li inside each <SecurityLevel> element is en-
crypted using XML Encryption with Ki as key. The ID attribute of the <Se-
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1 <AdditionalData xmlns="http :// www.prile.org/anonymiser"

2 meaning =" EncryptedData" type="xml">

3 <xml >

4 <AuthorisationMap user="User1">

5 <KeyInfo xmlns ="http ://www.w3.org /2000/09/ xmldsig#">

6 <KeyName >qgy3r1hS </KeyName > <!-- Ref. to level:1 -->

7 <KeyValue >eiZ5/W/9K/1TW/1P///9</ KeyValue >

8 </KeyInfo >

9 ... <!-- Possibly references to more security levels. -->

10 </AuthorisationMap >

11 ... <!-- Possibly references to more users. -->

12 <SecurityLevel ID=" qgy3r1hS">

13 <KA -Nonce >W3YjB/W2 </KA-Nonce >

14 <DeAnonymisers level ="level :1" xmlns="http ://www.prile.org/anonymiser">

15 <DeAnonymise resource ="/ Alert/AdditionalData[@meaning='payload ']">

16 <AnonymisedData >Payload data ...</ AnonymisedData >

17 </DeAnonymise >

18 <DeAnonymise resource ="/ Alert/Source/Node/*">

19 <AnonymisedData >10.0.2.2 </ AnonymisedData >

20 ... <!-- Possibly more elements matching XPath expression. -->

21 </DeAnonymise >

22 ... <!-- Possibly more DeAnonymise clauses. -->

23 </DeAnonymisers >

24 </SecurityLevel >

25 ... <!-- Possibly more security levels. -->

26 </xml >

27 </AdditionalData >

Figure 5.3.6: Plaintext XML representation of the authorisation map AM and confidential
information L.

curityLevel> is used to identify the matching key Ki during decryption.
The anonymised XML message with the <AdditionalData> Encrypted-

Data element is then sent to the receiving application.

5.3.5 Reversing the Anonymisation

To reverse the anonymisation, the anonymiser first checks the outer XML
Signature of the encrypted message, to verify that it has not been tampered
with. Then, the IDMEF message containing the IDS alarm will be parsed by
an XML parser. The process of reversing the anonymisation starts by scan-
ning the wrapped keys in the <ds:KeyInfo> elements of <xenc:EncryptedData>
for a <ds:KeyName> element that matches the current user u. Any matching
elements will be attempted decrypted using the user’s secret key SKu, and if
successful, then EKu can be used to decrypt the corresponding <xenc:CipherValue>
to reveal the authorisation map AMu.

The deanonymiser will then iterate through the <KeyInfo> elements of
the decrypted <AuthorisationMap>, and attempt to locate a <SecurityLevel>
element with an ID attribute that matches the content of the <KeyName> ele-
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1 <AdditionalData meaning =" EncryptedData" type="xml">

2 <xml >

3 <xenc:EncryptedData xmlns:xenc="http ://www.w3.org /2001/04/ xmlenc #"

4 Type ="& xenc;Element">

5 <xenc:EncryptionMethod Algorithm ="& xenc;aes128 -cbc"/>

6 <ds:KeyInfo xmlns:ds="http ://www.w3.org /2000/09/ xmldsig#">

7 <xenc:EncryptedKey xmlns:xenc="http ://www.w3.org /2001/04/ xmlenc#">

8 <xenc:EncryptionMethod Algorithm ="& xenc;rsa -oaep -mgf1p"/>

9 <xenc:CipherData >

10 <!-- Session key (AES) encrypted using public key (RSA). -->

11 <xenc:CipherValue >gao0DeZu4Pdat3 ....</ xenc:CipherValue >

12 </xenc:CipherData >

13 </xenc:EncryptedKey >

14 <ds:KeyName >User1 </ds:KeyName >

15 </ds:KeyInfo >

16 <xenc:CipherData >

17 <!-- Encrypted AuthorisatiomMap for User1. -->

18 <xenc:CipherValue >FtSxJHy+oLMACpmJJhGSl6DlN3 ...</ xenc:CipherValue >

19 </xenc:CipherData >

20 </xenc:EncryptedData >

21 ... <!-- Possibly reference to more users. -->

22 <SecurityLevel ID=" qgy3r1hS">

23 <xenc:EncryptedData xmlns:xenc="http ://www.w3.org /2001/04/ xmlenc #"

24 Type ="& xenc;Content">

25 <xenc:EncryptionMethod Algorithm ="& xenc;aes128 -cbc"/>

26 <xenc:CipherData >

27 <xenc:CipherValue >iSpiz64e31Oz3Oe/p0u2 ...</ xenc:CipherValue >

28 </xenc:CipherData >

29 </xenc:EncryptedData >

30 </SecurityLevel >

31 ... <!-- Possibly more security levels. -->

32 </xml >

33 </AdditionalData >

Figure 5.3.7: XML Encrypted representation of the authorisation map AM and confidential
information L stored in IDMEF AdditionalData element.
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ment. If a match is found, then the content of the SecurityLevel is decrypted
using the key Ki stored in the corresponding <keyValue> element.

After that, the deanonymiser goes through each <DeAnonymisers> ele-
ment, and performs an XPath search according to the resource attribute of
the <DeAnonymise> element, then loops through all matching elements of
the XPath expression, and replaces the anonymised text with the correspond-
ing text in the list of <AnonymisedData> elements.

If all security levels have been deanonymised, then the inner XML sig-
nature can be checked, to verify that anonymisation reversal was successful.
We use this as a regression test to verify correct operation of the anonymiser
and deanonymiser.

The anonymisation of an IDMEF alarm with reversible anonymisation
can in other words only be reversed by stakeholders who have one of the
secret keys or necessary key shares used to decrypt AM

′
u. It is furthermore

only possible to decrypt sensitive information to the level the secret key is
authorised for.

5.4 Supporting Default DENY Protocol

The reversible anonymisation protocol described so far is a default PERMIT
protocol. This means that any information in the IDS alarms, which is not
explicitly being authorised by the cache specification, by default is being per-
mitted. This strategy has the deficiency that parameters which are unknown
by the policy will not be anonymised. This can be problematic from a pri-
vacy perspective. For example for IDMEF <AdditionalData> elements and
attributes that are not standardised by RFC 4765 [62]. Different IDS vendors
may for example decide to name the payload or other < AdditionalData >

elements or attributes slightly differently or may include new, possibly pri-
vacy violating fields in the <AdditionalData> extension field, which may
cause significant privacy leakages.

A better strategy is then to support privacy by default [25], by introduc-
ing a default DENY protocol. This is also similar to common practices in
computer security for firewall design, which typically use a default DENY
scheme. The remainder of this section outlines how the building blocks for
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Initial XACML authorisation:
1: R = {r1,r2, ...,rN}
2: KM = {(Ki, i)|Ki← rnd(), i ∈ 1, ...,d}
3: AM = {(PKu,EKu,Λu,u)|Λu ⊆ KM,EKu← rnd(),u ∈ 1, ...,m}

4: function ANONYMISE(message,de f ault policy,de f aultlevel)
5: L = (l1 = /0, ..., ld = /0) . Confidential information per security level.
6: L

′
= (l

′
1 = /0, ..., l

′
d = /0) . Encrypted confidential information.

7: C = /0 . Set of classified elements to be anonymised.
8: D = /0 . Set of elements to declassify.
9: for p← 1, ...,N do

10: ep← XPath(rp,message) . ep = {ep,1, ...,ep,z} XPath matches
11: Evaluate XPATH expressions to select scope parameters for ep
12: Create d× z matrix Q, initialised to /0 for authorised elements.
13: for q← 1, ...,z do
14: Authorise element ep,q (XACML request)
15: (decision,anonymise,declassi f y, levels) ←

XACMLReq(scope(ep,q))
16: if decision = ”Permit” then
17: if anonymise = True then
18: for i ∈ levels do . iterate through security levels.
19: Qi,q← valueo f (ep,q) . Copy value of element.

20: C←C∪ ep,q . Anonymise element
21: else if declassi f y = True then
22: D← D∪ ep,q . Declassify element
23: else
24: C←C∪ ep,q . Anonymise element
25: else
26: C←C∪ ep,q . Anonymise element
27: for i ∈ 1, ...,d do
28: li← li∪{(rp,Qi)}
29: if defaultpolicy=PERMIT then
30: for element ∈C\D do
31: Anonymise element

Figure 5.3.8: Reversible anonymisation(part 1 of 2).
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32: else if defaultpolicy=DENY then
33: Fetch all elements containing text and all attributes.
34: Rde f aultlevel = {
35: ”//∗ [name()]/∗ [normalize-space(text())]”,
36: ”//@∗ ”}
37: for rde f aultlevel ∈ Rde f aultlevel do
38: allElements← XPath(rde f aultlevel,message)
39: Qde f aultlevel = []
40: for element ∈ allElements do
41: Qde f aultlevel.append(valueo f (element))
42: if element /∈ D or element ∈C then
43: Anonymise element
44: lde f aultlevel ← lde f aultlevel ∪{(rde f aultlevel,Qde f aultlevel)}
45: AM

′← /0
46: for (PKu,Λu) ∈ AM do
47: AM

′← AM
′ ∪{(Enc(PKu,EKu),Enc(EKu,Λu),u)} . Encrypt

AM
48: for i ∈ 1, ...,d do
49: l

′
i ← Enc(Ki, li) . Encrypt each security level

50: return (AM
′
,L
′
)

51: end function

Figure 5.3.9: Reversible anonymisation (part 2 of 2).

1: function DEANON(user,SKuser, msg
′
,AM

′
,L
′
)

2: for (EK
′
u,Λ

′
u,u) ∈ AM

′ do
3: if u = user and EKu← Dec(SKuser,EK

′
u)

4: then
5: if Λu← Dec(EKu,Λ

′
u) then

6: for (Ki, i) ∈ Λu do
7: li← Dec(Ki, l

′
i)

8: for (rp,Qi) ∈ li do
9: ep← XPath(rp,msg

′
)

10: for q← 1, ...,z do
11: if Qi,q 6= /0 then
12: Restore content:
13: ep,q← Qi,q

14: return msg
′

15: end function

Figure 5.3.10: Anonymisation reversal.
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Anonymiser/
Proxy (PEP) XACML PDP consumer

Authorise consumer (with SAML proof of authenticity)

Authorise consumer

Permit, R, Keyspec, AM,
policytype=DENY

Figure 5.4.1: Initial authorisation for default DENY with assignment of default security
level.

multi-level privacy/security can be used to implement a default DENY re-
versible anonymisation protocol for the anonymiser.

A default DENY scheme can be implemented by minor modifications
of the proposed scheme. First, the defaultpolicy Obligation in the initial
XACML authorisation contains an <AttributeAssignment> element with ID
&prile;policytype:DENY instead of PERMIT, to specify that this is a default
DENY protocol, as shown in Fig. 5.4.1. The value of this <AttributeAssign-
ment> is the optional security level i (e.g. level:1) where the anonymised
information for the default DENY policy is stored. If no security level is
specified, then information for the default DENY scheme will be stored in a
security level named default. Subsequent authorisation of other parties after
the initial authorisation is done in the same way as for the default PERMIT
scheme shown earlier.

Authorisation of individual elements can then be performed in two ways,
depending on the outcome of the XACML element authorisation:

1. If the outcome of the XACML Response is PERMIT with an Obligation
to anonymise information, then the levels specify that the information
for this document element should remain anonymised, and moved from
the default security level and to the security levels specified in levels.
This is the same operation as shown in Fig. 5.2.4.

2. If the outcome is PERMIT with an Obligation to declassify informa-
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Authorise XML element e
p,q

Anonymiser/
Proxy (PEP) XACML PDP

Permit, declassify

e p← XPATH (r p ,message)
for p ←1, ... ,N do

for q ←1,... , z do

if decision=Permit and

D← D∪ep ,q

XACML Request, Authorise e p ,q

with z matching elements

declassify=True then

Figure 5.4.2: Element declassify operation for default DENY scheme.

tion, then this means that the given element should be declassified, i.e.
it should not be anonymised in the original IDMEF message. This op-
eration is shown in Fig. 5.4.2.

3. If the outcome is DENY, or PERMIT with unknown or undefined pa-
rameters and the default policy is DENY, then nothing should be done,
since the default DENY policy protects the information of the XML
message.

This approach allows the default DENY scheme to implement policies sup-
porting anonymisation of information by moving certain information to a dif-
ferent security level. The scheme also supports declassification of informa-
tion that should remain visible in the XML message. Elements that are not
explicitly authorised remain in the default security level for the DENY policy.

Declassification of information is controlled by the XACML policy. This
means that resource elements are authorised as normal, however the authori-
sation decision for XACML elements that are declassified contains an obli-
gation to declassify the given information instead of anonymising it. This is
implemented as an XACML <AttributeAssignment> with AttributeID
&prile;resource:p:policy:declassify, where p is the anonymisation policy of
the element being referenced.

The anonymisation enforcement part of the default DENY scheme is de-
scribed in Fig. 5.4.3. All information which needs to be anonymised by
default, denoted by Rde f aultlevel , can be identified using two XPath resource
expressions. The first expression // ∗ [name()]/ ∗ [normalize-space(text())]
selects the text attribute of all XML elements trimmed for whitespace, and
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Anonymiser/
Proxy (PEP) Consumer

for element∈allElements do

Anonymise element

Anonymise:

if element∉D  or element∈C then

Rdefaultlevel={

allElements ← XPath(r defaultlevel ,message )

Qdefaultlevel . append (valueof (element))

Qdefaultlevel=[ ]

λdefaultlevel ← λdefaultlevel∪(rdefaultlevel ,Qdefaultlevel)

"//@*"}
for rdefaultlevel∈Rdefaultlevel do

Anonymised XML:
message ' , EK u

' , AM ' , L'
Encrypt authorisation mapping
(same as for default PERMIT) Anonymisation

reversal (same as 
default PERMIT)

"//*[name()]/*[normalize-space(text())]" ,

Figure 5.4.3: Default DENY scheme.

the second expression //@∗ selects the value of all XML attributes in the
XML document being anonymised5.

The algorithm then iterates through these resources and selects the match-
ing elements using XPath. Then the enforcement part loops through all
matching elements for each resource in Rde f aultlevel and adds the value of
the elements to the list of elements in the default security level Qde f aultlevel .
In addition, elements that either are explicitly classified or elements that are
not declassified are anonymised. Subsequently the data required to reverse
the default security level is stored in lde f aultlevel , by executing
lde f aultlevel ← lde f aultlevel ∪ (rde f aultlevel,Qde f aultlevel).

The remainder of the default DENY anonymisation scheme, including
anonymisation reversal, is equivalent to the default PERMIT scheme. The
complete anonymisation algorithm that combines the default PERMIT and
default DENY schemes is shown in Fig. 5.3.8.

Anonymisation policies, especially default DENY policies, need to con-
sider type casting issues if information is passed via SOAP calls. It is recom-
mended to use ’0’ as block marker character for anonymising information,
since this works both for text and numeric data. Enumerated XML data types
need customised anonymisation functions to select one of the enumerated
values. This can be done using the replace-with anonymisation function de-
scribed in [135].

5These two expressions have not been combined to one using the XPath or (“|”) operator, to
ensure that the sequence of matches is well defined.
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Anonymiser/
Proxy (PEP) XACML PDP Consumer

K i← rnd ( )

Authorise consumer 

Authorise consumer

Permit, R, Keyspec, AM,
policytype=PERMIT
encryption-key:level:i:split-key shares

L=(l1 ←∅ , ... ,l d←∅)

AM={(PK 1 ,Λ1 ←{KM i ,1 },1) , ... ,

{KM i ,1 , ... ,KM i , n}=splitKeyMap (KM i ,∣shares∣)

(PK n ,Λn←{KM i ,n }, n)}
...

KM i=(K i ,i , shares)
where KM i , j=(K i , j , i , j)

Figure 5.5.1: Key sharing scheme.

5.5 Adaptations Required to Support Key Sharing

Key sharing is implemented based on a threshold encryption scheme. The
easiest key sharing scheme to adapt, is the scheme of Karnin, Greene and
Hellman [43], assuming that all n shares must be known to reveal the secret
(i.e. t = n), and assuming that the PEP acts as a trusted dealer.

Assume that the secret key space is all numbers from 0 to 2keysize where
keysize is the size of the encryption key in bits. Key sharing can then be
implemented by letting the anonymiser choose n− 1 random shares of the
same size as the original encryption key, and calculate the last share as the
chosen encryption key minus the sum of the chosen random shares modulo
2keysize. The encryption key can then be reconstructed by adding up all the
shares modulo 2keysize.

To support secret key sharing, the encryption key definition in the XACML
policy needs a split-key operator and the implementation must be extended to
support addressing of key shares. This can be implemented by adding another
<AttributeAssignment> with AttributeID &prile;encryption-key:level:p:split-
key to the key definition Obligations of the initial XACML Response, where
the content is a list denoted shares containing share identities.

In addition, a naming scheme for shares is introduced, to be able to refer
to the key shares. The proposed approach is to extend the existing naming
scheme for security levels with a key share part, i.e. level:i:part:j for ex-
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ample level:1:part:1 for the first share of the level 1 encryption key. A key
sharing scheme can then be set up by authorising stakeholders to encryption
key shares instead of encryption keys, as illustrated in Fig. 5.5.1.

On receiving the initial XACML authorisation response, encryption keys
Ki are generated as normal, and these are used to encrypt the sensitive infor-
mation in (l1, ..., ld). The XACML Response also contains an Obligation to
split the encryption key Ki into n = |shares| subkeymaps {KMi,1, ...,KMi,n}.
Each subkeymap KMi, j consists of a tuple KMi, j = (Ki, j, i, j), where Ki, j is
share number j of the encryption key for security level i and n is the number
of key shares. The key map KMi is also extended to contain a reference to all
shares, i.e: KMi = (Ki, i,shares). The authorisation mapping AM will then
contain one key mapping share for each public key, i.e:

AM = {(PK1,Λ1←{KMi,1},1), ..., (5.5.1)

(PKn,Λn←{KMi,n},n)}

so that the owners of SK1, ...,SKn need to collaborate to reveal the confidential
information. Note that if the parent encryption key times out and is regener-
ated, then the shares must also be updated. In addition, the <Authorisation-
Map> data structure needs to add a <Shares> element containing a comma
separated list of the shares that are needed to reconstruct the encryption key.
The deanonymiser only needs minor adaptations to request all required key
shares and calculate Ki before decryption can commence.

5.6 Adaptations Required for Time-based Data Ex-

piry

The fifth Privacy by Design principle requires end-to-end security with full
lifecycle management of private or confidential data from inception and until
destruction [25]. This can be implemented by introducing time-based data
expiry, assuming that the messages can be protected using encryption until
they reach the anonymiser. Time-based data expiry means that the encryption
key expires after a given retention time, so that confidential information in
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Anonymiser/
Proxy (PEP) XACML PDP Consumer

Authorise consumer 

Authorise consumer

Permit, R, Keyspec, AM,
  policytype=PERMIT
       t

retention
=P30D

AM={(PK card , Λcard , card )}

K i← SHA512 ( padding |K i
master | t exp)

K i
master

← rnd ()

t exp←now ()+t retention

L=(l1←∅ , ... ,l d←∅)

KM i ← KM i∪{(K i , i)}

for i∈1, ... , d do

Λcard ← Λcard∪{(K i
master ,t exp , i)}

Λcard ←∅

Figure 5.6.1: Time-based data expiry initialisation.

the XML messages can not be accessed beyond this time. This ensures safe
destruction of confidential data in the messages. Time-based data expiry can
also be used to limit how long users will have access to the data they have
analysed, for example to set up policies to avoid access to confidential data
beyond the current work shift.

5.6.1 Implementing Time-based Data Expiry

The reversible anonymiser can with small adaptations support a time-based
data expiry scheme similar to [74]. This scheme uses Smartcards to enforce
the key expiration scheme (one card per user). Only the necessary adaptations
will be discussed here.

The encryption key management of the reversible anonymiser needs to
be adapted as shown in Fig. 5.6.1 to support the key derivation scheme in
[74]. The scheme uses a key derivation function, with SHA-512 as hash
function [1]. To support time-based data expiry, the XACML policy must
return an obligation with the retention time tretention for element authorisa-
tion requests, so that the data retention time can be configured per encryption
key. The retention time is then sent to the PEP in the initial XACML Re-
sponse as part of the XACML Obligation. It will be defined in an <Attribute-
Assignment> with AttributeID &prile;encryption-key:level:i:retention-time,
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Anonymiser/
Proxy (PEP) Consumer

Anonymised IDMEF:
message ' , AM ' , L'

Anonymisation reversal:
for (Λu

' ,u)∈AM ' do

Smart
card

if u=card then Decrypt Λu
'

if Λu ←Dec(EK u ,Λu
'
) then

if now ()<t exp then
K i← SHA512 ( padding ||K i

master || t exp)
Λu

gen
Λu

gen
← Λu

gen
∪{(K i ,i)}

Λu
gen

←∅

for (K i
master , t exp ,i)∈Λu

for(r p ,Q i)∈lido
e p← XPATH (r p ,message

'
)

forq←1,... , z do
if Qi , q≠∅ then

Replace content
e p , q←Qi , q

li←Dec (K i ,li
'
)

for(K i , i)∈Λu
gendo

if u=card∧EK u ←Dec(SKcard ,EK u
'
) then

Figure 5.6.2: Decryption for time-based data expiry.

and value tretention.The key expiry time texp is then calculated as the current
time plus tretention.

To achieve time-based data expiry, the key expiry time texp must be cryp-
tographically bound to the encryption key Ki. Assume that padding is a 64
bit number, that is initialised to zero. The time expiring encryption key Ki,
that encrypts the classified information li, is derived from a master key Kmaster

i

by using the key derivation function: Ki = SHA512(padding||Kmaster
i ||texp).

This encryption key is then used to encrypt the confidential information in li.
The authentication map is the same as the basic scheme uses, i.e: AM =

{(PKcard,EKcard,Λcard,card)}. Λcard is however modified to contain the
master key Kmaster

i , the expiry time texp and the security level i. i.e: Λcard =

{(Kmaster
i , texp, i)|i ∈ 1, ...,d}. The parameters Kmaster

i and texp are stored in
a <KeyValue> element in the XML representation of AM, using the conven-
tion that Kmaster

i is stored in a <MasterKey> element, and texp is stored in a
<TimeOut> element. No further changes are needed to the remaining parts
of the anonymiser.

The decryption algorithm must be modified to ask the Smartcard to de-
crypt Λ

′
u as shown in Fig. 5.6.2. The figure only shows Smartcard based
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key retrieval. Smartcard initialisation and authorisation will be similar to
[74]. The Smartcard will first initialise the generated key mapping Λ

gen
u ←

/0. Subsequently, it verifies that the key belongs to the card and decrypts
the encryption key using EKu = Dec(SKcard,EK

′
u). If this succeeds, then

the Smartcard will decrypt Λu using Λu ← Dec(EKu,Λ
′
u), and then iterate

through all tuples ((Kmaster
i , texp), i) in Λu and verify that the current time is

less than texp. If this test succeeds, then the Smartcard will generate the de-
cryption key for security level i by using the key derivation function Ki ←
SHA512(padding||Kmaster

i ||texp) and generate a new keymap Λ
gen
u = Λ

gen
u ∪

{(ki, i)}. The Smartcard then returns Λ
gen
u to the Anonymisation reversal

function, which reverses the anonymisation for the given security level i in
the same way as shown previously.

Note that this scheme assumes trusted time sources, which can be imple-
mented in a similar way as proposed in [74].

5.7 Other Declarations

This section describes how self-references and XML namespaces can be de-
clared. Self references makes it possible to refer to the current XML element
or attribute being authorised. XML namespace support is for example useful
for SOAP Web Service Definition Language (WSDL) interfaces that provide
IDMEF-based IDS services.

5.7.1 Declaring Self References

The Anonymiser supports declaring self-references, by declaring an XACML
Attribute with AttributeID urn:prile:org:resource:i:assertion:self:scope and
empty value. This approach also works for scope variables of other types, for
example urn:prile:org:resource:i:assertion:self:lcorr-shannon-entropy to send
the length-corrected Shannon entropy of the current element being authorised
in the XACML Request. This is more flexible than extracting the current ele-
ment using a scope XPath expression, which only works as long as the XPath
expression matches a single element.

Self-references to the current element or attribute being authorised are
sent as a Resource attribute in the XACML Request with AttributeID
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urn:prile:org:resource:i:assertion:self:value.

5.7.2 Namespace Declarations

The Anonymiser supports XML namespace declarations for a namespace de-
noted as nsx by declaring an XACML Attribute in the default-policy obliga-
tion with AttributeID urn:prile:org:xmlns:nsx and value being the namespace
URL, for example http://iana.org/idmef.

5.8 Experiments

The anonymiser and deanonymiser was tested on a server with 8 Gb RAM
and a 3.3 GHz Intel Core i5 CPU. The anonymiser was connected to the
deanonymiser using a SOAP web service with persistent HTTP connections,
to verify the entire production pipeline. The performance can be expected to
be somewhat higher if the anonymiser and deanonymiser are run separately.
The experiments used the IDMEF alarm log from previous IDS experiments
using PreludeIDS. These experiments are based on alarms from the 1999
KDD-Cup data set (DARPA IDS test set)6. This is an old synthetic data set,
and will therefore have less diversity that one can expect from real traffic
today. The cache hit rate and performance is therefore higher than what one
can expect from a production system. The KDD-Cup data set was chosen
despite these deficiencies, since this still is considered the gold standard for
IDS measurements, and it is difficult to get access to real IDS data.

The software is implemented in Jython and based on the XACML Decision-
cache based anonymiser in [135], which uses SunXACML with a Java HashMap
based Least Recently Used cache and virtual token descriptor based XML
parser VTD-XML for increased XPath performance. The solution in this
chapter has been extended with the GeoXACML patches [6], to support more
advanced XACML data types like pointlists which are used by the implemen-
tation. This also allows for supporting location-aware anonymisation and au-
thorisation policies. Apache Santuario is used for XML encryption, Apache
CXF as SOAP server for the deanonymiser and SUDS as SOAP client for

6KDD-Cup 1999 data (DARPA IDS test set) http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
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Figure 5.8.1: Anonymiser run-time as a function of number of anonymised resources, de-
fault protocol type, number of security levels and number of key shares. The subfigures
show the median and the 95% confidence band (in grey) of the measurements.
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the anonymiser. The anonymiser uses three threads - one for reading and
buffering IDS alarms, one for anonymising the alarms and an output thread
for buffering and sending data to the deanonymiser. This strategy decouples
the anonymiser from the deanonymiser to avoid any of the threads blocking
the production pipeline.

Each statistical value is calculated as the average of an ensemble of 100
IDS alarms. Each experiment furthermore selects a random uniform sample
of 1000 IDS alarms from a corpus of 130.000 IDS alarms from the KDD-
Cup’99 test set. A maximum limit of 30 anonymisation rules, 10 security
levels and 10 key shares was chosen, since this is expected to be around
the maximum numbers needed for IDMEF anonymisation policies. A new
XACML policy with a random selection of the current number of anonymi-
sation rules was generated for each experiment in the ensemble. It uses an
XACML policy generator to generate random anonymisation policies with
between 0 and 30 anonymised resources, each resource consisting of two
different policies matching the relevant Target section and containing a Con-
dition section that matches one of two different policies per anonymised re-
source. The policy generator furthermore supports a configurable number of
users, security levels and key shares.

5.8.1 Anonymiser Performance

Anonymiser run time as a function of anonymised resources, default proto-
col type, number of security levels and number of key shares is shown in
Fig. 5.8.1. Each subfigure shows the median and the 95% confidence band
(0.025-0.975 percentile) for reversible anonymisation, as well as the median
for irreversible anonymisation indicated using stapled lines.

The Figures show that the distribution functions are significantly skewed
towards lower run-times both for non-cached and cached results, which means
that the median gives a more representative picture of the mode of the distri-
bution than the standard deviation.

Figures 5.8.1a and 5.8.1b show that the anonymiser run-time for the de-
fault PERMIT scheme is nearly the same as the default DENY scheme as a
function of number of resources in the interval between 0 and 30 resources.
These experiments use one security level and no key shares. There is perhaps
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a trend that the default DENY scheme starts with somewhat higher run-time
and scales slightly better than the default PERMIT scheme. The figures fur-
thermore show that the decision cache reduces the average run-time from 33
ms to 18.5 ms (median from 27 to 14ms) for 30 anonymised or declassified
resources when reversible anonymisation is used. This means that the re-
versible anonymiser performance is increased from approximately 30 to 54
IDS alarms/s for 30 anonymised resources by using decision caching.

The cache hit rate for the experiments is 98%, which is higher than one
can expect in a production system due to lack of entropy in the KDD-Cup data
set. The figures furthermore show that reversible anonymisation based on
XML Encryption and XML Signatures adds an average cryptographic over-
head of 11 ms (median 8ms) compared to using irreversible anonymisation
for the given experiments. Irreversible anonymisation with decision caching
would give a performance of around 130 anonymised IDS alarms/s on the
given hardware.

Fig. 5.8.1c shows the anonymiser run-time as a function of number of se-
curity levels for 15 resources, one user per security level and no key shares7.
It shows that there is a linear dependency between run-time and number of se-
curity levels, where the run-time increases with 0.7ms per additional security
level.

Fig. 5.8.1d shows the anonymiser run-time as a function of number of
key shares or users for 15 resources and one security level. The logic for
mapping access from a set users to a set of security levels or key shares is
essentially the same for the anonymiser, hence using only one figure to show
the performance as a function of of either users or shares. The Anonymiser
run-time increases linearly and has little influence from number of shares,
increasing only with 0.3ms per additional user or key share.

5.8.2 Deanonymiser Performance

Fig. 5.8.2a shows that the run time of the deanonymiser for the default PER-
MIT scheme increases linearly (0.27 ms/resource) after an initial transient
part for the first 0-2 deanonymised resources, and is approximately 3 ms

7Note that this experiment cannot be performed for default DENY, since it by default uses one
security level.
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default protocol type, number of security levels and number of key shares. The subfigures
show the median and the 95% confidence band of the measurements.
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faster than the anonymiser for anonymisation of 1-30 elements. The average
value is 14 ms/alarm (median 13 ms/alarm) for 30 resources, which means
that the deanonymiser manages to deanonymise 71 IDS alarms/s for 30 re-
sources with the default PERMIT scheme in the experiments.

Fig. 5.8.2b shows that the deanonymiser run time of the default DENY
scheme scales much better with number of deanonymised resources than
the default PERMIT scheme. It has an average run-time of 8.8 ms (me-
dian 7.5 ms) and decreases slightly (by -0.02 ms/resource) with number of
deanonymised resources. The reason for this is that all the work on deanonymis-
ing resources for the default DENY scheme is done in the anonymiser. Only
one XPATH search is required to replace the content in the default security
level, and less effort is required with more declassified resources, since these
resources are not copied back from the default level. The default DENY
scheme is in other words very efficient for the deanonymiser. The deanonymiser
manages to deanonymise up to 113 alarms/s for the default DENY scheme,
which can be an advantage, for example if the deanonymiser is used as part
of an alarm correlation system.

Fig. 5.8.2c shows the deanonymiser run-time as function of number of
security levels, assuming that only one of the security levels need to be
deanonymised. The run-time only increases slightly (0.1 ms/security level)
with increasing number of security levels.

Fig. 5.8.2d shows the deanonymiser run-time as a function of key shares.
Adding key shares is relatively expensive, and adds 1.8 ms run-time per added
share. The reason for this, is the relatively expensive RSA and ephemeral key
decryptions that must be performed for each share.

The experiments indicate that both the anonymiser and deanonymiser
should have sufficient performance to be usable at least for small to medium-
scale deployments of privacy-enhanced IDS. The performance should also be
sufficient for several other applications where the anonymiser and deanonymiser
is used as part of a service oriented architecture, and where security or pri-
vacy is prioritised above performance. It can furthermore be noted that the
XACML PDP, anonymiser and deanonymiser are parallelisable on an XML
message level, meaning that the capacity can be scaled up by adding more
hardware, if required.
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5.8.3 Bandwidth efficiency of the proposed solution.

The original IDMEF message size is on average 3.8 kB. Each XML-signature
user or key share adds approximately 1 kB of data to the message. There is
furthermore a linear dependency where each additional anonymisation rule
adds approximately 0.15 kB for the given test data. The anonymised message
is 3.1 kB larger than the original message for 0 anonymised elements and 5.7
kB larger for 15 anonymised XML resources in the experiments with two
signatures, one user, one security level and no key shares. For 15 resources
and 10 users, each accessing an individual security level, the bandwidth us-
age increases by a factor of 11 to 41.6 kB per IDS alarm. This means that
bandwidth usage will probably limit how complex anonymisation policies it
is practical to implement with the proposed scheme. It is in particular limited
how many security levels, users and key shares it is possible to implement
without having too large bandwidth and performance overhead.

This means that it may not be desirable to operate with one key mapping
per authorised user, since this solution scales poorly with number of autho-
rised users. One way to mitigate this problem, at the expense of relying more
on trust in the XACML authorisation, is to use a role-based authorisation
scheme where roles are authorised using public keys for certain use scenarios
instead of individual users. Such a scheme could for example be based on the
Smartcard based encryption scheme proposed in Section 5.6, to securely de-
ploy the secret role keys. It would in this case be natural to use the XACML
Role-Based Access Control (RBAC) profile8 for deploying role keys. Such
a solution can be integrated with the proposed solution in a similar way as
discussed in [136]. The details of this is however left as future work.

5.9 Discussion

Our approach has the advantage compared to existing schemes that pseudonymi-
sation is not used, which eliminates the risk of traffic analysis attacks and
known plaintext attacks on the pseudonyms. It is also an advantage that it
is implemented as a proxy which allows for anonymising any XML protocol
that can be sent via the proxy service. It is able to deal with IDS technolo-

8XACML RBAC profile: docs.oasis-open.org/xacml/3.0/xacml-3.0-rbac-v1-spec-cd-03-en.html
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Figure 5.9.1: IDS alarm correlation analysis based on trusted application.

Figure 5.9.2: Anonymised data in PreludeIDS.
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gies that use IDMEF, which is a standardised XML-based alarm format. Fig.
5.9.2 shows that the Anonymiser is able to store anonymised IDS alarms in
PreludeIDS, which uses a binary IDMEF-like data format internally9. The
anonymiser here uses a default DENY protocol, and declassifies some ele-
ments amongst others alert text and rule identity10. This allows anonymised
IDS alarms to be compatible with existing Security Information and Event
Management systems that support IDMEF [2]. It must however be noted
that anonymisation reversal may not be possible without altering the SIEM
database, since this requires preserving the structure of the XML.

This problem can however be avoided by storing the anonymised IDS
alarms directly into an XML database. This allows for easy access and
deanonymisation of anonymised IDS alarms based on XQuery, without hav-
ing to deanonymise all information. This works under the assumption that
necessary information for accessing the IDS alarm, like a unique alarm iden-
tity, is available in cleartext. This approach should be sufficient for on-
demand access to private or confidential information in the IDS alarms from
the SOC. Another advantage is that this approach allows for implementing
transparency on who have accessed sensitive information, by logging who is
performing deanonymisation requests. The XML repository can be consid-
ered an example of a secure logging service that is implemented on top of the
anonymisation framework.

It can also support hierarchical intrusion detection systems, for example
in the form of trusted applications that are allowed to do alarm correlation
based on sensitive information, as illustrated in Fig. 5.9.1. Alarms from
higher-order IDSs can subsequently be reanonymised, if necessary, by adding
another Anonymiser after the higher order IDS. Furthermore, such solutions
can be placed within the organisational boundaries of an organisation which
has outsourced managed security services, for example a health institution, so
that sensitive information never leaves the organisational boundaries without
either being anonymised or encrypted.

Transparency and accountability can be implemented by adding XACML
obligations and necessary functionality in the IDS alarm database, to ensure

9Prelude-IDS: https://www.prelude-ids.org/
10Note that the anonymisation policy is set up to demonstrate the default DENY anonymisation

scheme. Some more information may need to be revealed in a production environment, however this
is a policy issue that needs to be agreed between the security manager and data controller.

124



Chapter 5. Reversible Anonymisation for XML-based Services

that all access to anonymised information is logged. Events that in addition
may be logged for increased transparency and accountability, are access to
sensitive information in IDS alarms, manual classification of IDS alarms, in-
vestigations via a data forensic interface etc. This can be implemented using
existing secure logging schemes, for example based on [74]. The details of
this is however considered beyond the scope of the dissertation.

An advantage with the chosen approach for handling default DENY poli-
cies, is that no changes are needed for the declassifier, since the default se-
curity level is defined the same way as other security levels. The default se-
curity level should however be considered defined as the most restrictive (or
highest) security level, unless classified information can be reliably identified
using other means (e.g. if the XML document structure explicitly supports
indicating classification level). Individual elements can if needed be moved
to lower (or less restrictive) security levels by explicitly authorising these
elements to a lower security level.

A potential weakness with the proposed scheme, is that it by default does
not encrypt the digital signatures. It is however possible to encrypt the inner
signature which verifies the original IDS alarm, by adding the resource of this
signature to the caching/anonymisation policy, and marking it as sensitive.
There is a circular dependency that does not permit the outer signature to
be included in the encrypted text, since this signature is calculated over the
encrypted text.

A disadvantage compared to the schemes proposed in [145, 51], is that
our solution does not support any calculations (e.g. equality testing) on
pseudonymised values. However, our objective is not to build in crypto-
graphic capabilities into the anonymiser. IDS rules change frequently and
may have very complex patterns for attack detection, so it is not clear how
such schemes can be extended to support state of the art IDS-es today. It is for
example not clear that such a scheme is possible to implement for commer-
cial IDS rule sets where the rule definition is kept secret. It is therefore in our
opinion better to support trusted applications that are authorised to do the nec-
essary data mining instead of trying to keep track of when and under which
conditions IDS alarms should be disclosed or not. Sensitive information in
correlation alarms resulting from these trusted applications can subsequently
be anonymised using our proposed approach.
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It is important to mention that successful reversal of the anonymisation
requires that the anonymisation function does not semantically change the
structure of the XML document, since this causes the XPath expression for
reversing the anonymisation to fail. One example of this, is if one or more
text nodes are removed, since this alters the DOM tree. Furthermore, if XML
data is used to represent the anonymised data, then these data must be quoted.

A more subtle limitation is that the default DENY protocol does not sup-
port replacing anonymised data by whitespace, since this causes the function
normalize-space() to ignore the anonymised nodes. The latter problem can
be worked around by defining an XPath extension function that recursively
iterates through the DOM tree and identifies all text nodes enclosed by an
element node. This has been implemented for the VTD-XML based parser.
Note however that the problem persists if normalize-space() is used in other
resource identifying expressions in the XACML policies. All in all, these are
relatively minor limitations that can be detected and mitigated during regres-
sion tests of the XACML policies, since the inner XML signature calculated
over the original message will fail if the anonymisation reversal is not done
correctly.

Another limitation that was identified is that the sequence of matches for
XPath resources containing several sub-expressions separated by the or op-
erator “|” is undefined. This means that the resource XPath expressions must
define two different resource expressions instead of using “|”, to ensure that
anonymisation can be reversed11.

The XML encryption and signature part can probably be optimised by
porting them to the VTD-XML parser. The code is also expected to be some-
what faster if ported to Java. This is however left as future work. The ex-
periments illustrate that privacy-enhanced intrusion detection services based
on reversible anonymisation is viable, at least for small to medium size IDS
deployments.

11Note that this restriction only applies to Anonymise obligation functions, since the order of
reversing anonymisation information must be defined. The Declassify function does not have this
restriction.
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5.10 Related Works

There are some examples of prior work that describes reversible anonymisa-
tion schemes that are not based on pseudonymisation. A reversible anonymi-
sation scheme for anonymisation of DICOM images using automatically gen-
erated policies was proposed in [95]. The policy definition consists of a
list of attribute rules that describe how the document shall be anonymised.
Anonymised information is stored in a separate difference file, in order to
later reverse the anonymisation by merging in this information. Our solution
is more general and can anonymise any XML-based format using XACML-
based policies, which is a standardised policy language. Our solution is
furthermore different by embedding the information required to reverse the
anonymisation in the messages, as well as supporting a multi-level security
based scheme where different stakeholders can be granted access to informa-
tion based on need. Our scheme furthermore supports both a default PER-
MIT, default DENY policy and key sharing, whereas this scheme only sup-
ports default PERMIT.

Another paper that suggests a reversible anonymisation scheme for pro-
tecting organisational data confidentiality in cloud-based services is [141].
Reversible anonymisation is however not yet implemented in this paper, so
the performance measurements only show traditional irreversible anonymi-
sation.

The chapter is also related to the field of privacy enhanced intrusion de-
tection systems. Most previously proposed privacy-enhanced IDS schemes
use some kind of pseudonymisation scheme, where sensitive information in
the IDS alarms is replaced by pseudonyms, to later be able to reverse the
pseudonymisation process on a needs basis.

Use of pseudonyms in audit logs was first suggested by Fischer-Hübner [119,
50]. Another early example of a privacy-enhanced IDS that uses pseudonymi-
sation is the Adaptive Intrusion Detection system (AID) [124]. Both schemes
use symmetric key encryption as pseudonym mapping, and focus mainly on
encrypting subject identifying data. AID in addition contains a higher order
IDS (expert system) that correlates the alarms, and discloses the pseudonymised
data if suspicious sequences of events are detected. The pseudonyms of these
early schemes are susceptible to traffic analysis attacks during the lifetime of
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the session key used for encrypting the pseudonym mapping.
An example of a privacy enhanced IDS that uses anomaly detection on

pseudonymised data is [82]. The pseudonymisation strategy consists of a very
simple static mapping between sensitive data and pseudonyms, however this
paper also reflects over the need to pseudonymise other fields than directly
user/subject identifying fields.

A Kerberos based pseudonymisation scheme is proposed in [104]. The
scheme implements a hierarchical IDS solution where pseudonyms only are
revealed if the higher-order anomaly-based IDS detects suspicious traffic.
This scheme operates with group reference pseudonyms which correspond
to UNIX user groups instead of pseudonymising users directly. The scheme
uses public key encryption and relies on a trusted third party for initial pseudonym
creation. An extended version of the protocol uses Mixes to avoid linkabil-
ity towards the original data sessions. A similarity with our solution is that
both are based on authorisation schemes (Kerberos and XACML), however
our scheme is more flexible when it comes to policy-based fine-grained au-
thorisation and anonymisation of XML data. A pseudonymisation scheme
based on homomorphic encryption is proposed in [99]. This allows for per-
forming certain equality or inequality tests on encrypted information without
revealing the underlying information.

A privacy enhanced intrusion detection scheme for UNIX audit records
is proposed in [51, 67]. This scheme is based on Shamir’s threshold cryp-
tography, and the general idea is that pseudonymised information shall only
be disclosed when an attack scenario has been identified. An attack sce-
nario here means that a sufficient amount of shares have been recovered from
IDS alarms to recover the secret key used by the pseudonymiser. This ap-
proach proposes to use transaction pseudonyms to avoid linkability between
pseudonyms, however the proposed implementation has some weaknesses
that cause the authors to reintroduce linkability between transactions. This
scenario has the same weakness as the other pseudonymisers, since it may
be vulnerable to traffic analysis attacks in the intervals between rekeying of
the pseudonymiser. Some of the ideas in this scheme have been extended to
support multilaterally secure ubiquitous auditing in [146, 145]. It combines
transaction pseudonyms based on threshold cryptography with secure multi-
party computations to support secure and privacy enhanced tracking of mo-
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bile rescue units. The solution also supports verifiability via log attestation.
This solution implements transaction pseudonyms in a semantically secure
way, to mitigate the risk of traffic analysis attacks against the pseudonyms.

A secure logging scheme for retained data of an anonymity service (AN.ON)
is described in [74]. This solution is based on smart cards in order to provide
time restricted access to system logs from the anonymity service according
to the requirements in the Data Retention Directive [47]. This scheme uses
a similar hybrid encryption scheme to ours in that symmetric encryption is
used for the log entries and asymmetric encryption is used for access to the
keys. However our scheme is different by supporting reversible anonymi-
sation with several security levels and not only encryption. This scheme is
therefore complementary to the scheme proposed here.

Our solution is also somewhat related to anonymisation of network logs.
A NetFlow anonymiser which supports multiple anonymisation strategies
is proposed in [120]. The intrusion detection system BRO has support for
anonymisation of packet traces [98]. However neither of these solutions sup-
port reversible anonymisation of XML messages.

5.11 Conclusion

This chapter proposes a reversible anonymisation scheme for protecting sen-
sitive information in XML messages. The scheme has been applied to IDMEF-
based intrusion detection system alarms, and we expect the reversible anonymi-
sation protocol to be useful for policy based confidentiality and integrity pro-
tection of sensitive information for a range of services in a service oriented
architecture.

The solution is based on existing standards like XML, IDMEF, XACML,
XML-Encryption and XML-Signature, and uses a proxy-based reversible
anonymiser based on an earlier proposed XACML decision cache for autho-
risation and anonymisation of XML documents [135]. The solution further-
more supports location-based anonymisation policies via the GeoXACML
framework [6].

Using XACML gives flexibility when it comes to defining privacy or se-
curity policies for controlling access to sensitive information. It also solves
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deployment of encryption keys in an efficient way as part of the privacy pol-
icy. The scheme allows for defining parties that by default are authorised
for access to sensitive information, but it can also support on-demand time-
restricted access to sensitive data for authorised users.

A secret sharing scheme is supported, to enforce separation of duties con-
straints where more than one stakeholder need to agree to reveal the sensitive
data. The scheme allows for policy-based control of rekeying intervals, data
authorisation and anonymisation schemes. Furthermore, time-based data ex-
piry is outlined, based on the scheme in [74], to support secure deletion of
sensitive data after a configurable retention time.

This approach also provides a method to improve the privacy of certain
types of big data implementations for problems that scale horizontally, as-
suming that a large number of smaller individual data sources can be anonymised
before they are aggregated and stored in a big XML database.

The proposed approach has been integrated into the existing Security In-
formation and Event Management systems (SIEM) PreludeIDS12, which sup-
ports IDMEF. Anonymised IDS alarms can be stored in the SIEM database
using the proposed approach without any modifications, since the alarms fol-
low the standard IDMEF extension schema. However implementing sup-
port for anonymisation reversal may require some modifications of the SIEM
tools, since the structure of the IDMEF XML needs to be maintained un-
modified for successful anonymisation reversal. One way to mitigate this
limitation, is to store the anonymised data in an XML database.

The performance of the proposed approach has been tested and should
be sufficient for small to medium scale IDS deployments. However, larger
data rates can be managed by running several anonymisers or deanonymis-
ers in parallel. A useful feature for alarm correlation systems is that the
deanonymiser is fast for default DENY policies, which allows for correlat-
ing alarms between several privacy-enhanced IDS sensors in business cases
where this is acceptable from a privacy and confidentiality perspective.

12PreludeIDS: http://www.prelude-ids.org

130



Chapter 5. Reversible Anonymisation for XML-based Services

5.12 Future Work

Implementing and testing time-based data expiry using the Smartcard-based
solution is left for future work. More research is also needed on how to pro-
tect the XACML policies themselves, for example using XML encryption as
proposed in [65]. Implementing support for role-based instead of user-based
authorisation is also left as future work. An interesting idea is to extend
the multi-level security based scheme proposed here to also cover XACML
policies and policy handling. Details of logging procedures to ensure trans-
parency of the operation is also left as future work. This can for example
be implemented in a similar way as the AN.ON secure logging service [74].
It is also envisaged that the proposed scheme in the future can be extended
to support operations on encrypted data, for example by using homomorphic
encryption of the sensitive data elements as pseudonyms for the anonymised
data. This could make the reversible anonymisation scheme more useful for
XML databases, since it would allow defining certain standardised query op-
erators (e.g. equality tests) on encrypted data, in a similar way as CryptDB
does for relational databases [103]. Both anonymisation and deanonymisa-
tion are horizontally scalable, which make them suitable for performing data
analysis and deanonymisation using tools like Apache Hadoop based clusters.

The next part of the dissertation investigates how privacy leakage in IDS
alarms can be measured and subsequently enforced by defining suitable pri-
vacy policies for the privacy enforcement scheme described here.
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Part III

Privacy Leakage Detection and
Avoidance
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Part III focuses on privacy leakage metrics and methods for privacy leak-
age detection and avoidance. Chapter 6 proposes a privacy leakage metric for
detecting privacy leakages in IDS alarms based on quantitative information
flow analysis founded in information theory. The metric is based on the stan-
dard deviation of Shannon entropy. Chapter 7 elaborates on how the privacy
leakage metric can be used to support the privacy enforcement mechanism
in Part II and proposes amongst others how the privacy metric fits into the
well-known Plan Do Check Act method for improvement. This chapter also
proposes how the privacy leakage metric can be used for more fine-grained
detection of where information leakages are.
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Chapter 6

Measuring Privacy Leakage for IDS
Rules

This chapter proposes a measurement approach for estimating the privacy
leakage from Intrusion Detection System (IDS) alarms. Quantitative infor-
mation flow analysis is used to build a theoretical model of privacy leakage
from IDS rules, based on information entropy. This theoretical model is sub-
sequently verified empirically both based on simulations and in an experi-
mental study. The analysis shows that the metric is able to distinguish be-
tween IDS rules that have no or low expected privacy leakage and IDS rules
with a significant risk of leaking sensitive information, for example on user
behaviour. The analysis is based on measurements of number of IDS alarms,
data length and data entropy for relevant parts of IDS rules (for example pay-
load). This is a promising approach that opens up for privacy benchmarking
of Managed Security Service providers.

6.1 Introduction

The objective of this chapter is to develop an entropy-based metric that
can be used for privacy leakage detection in intrusion detection system (IDS)
alarms. The approach should be able to identify IDS rules that according
to stakeholders’ perception have a significant potential for leaking private or
confidential information. It should also identify the worst IDS rules from a
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privacy or confidentiality perspective based on indicators that can be calcu-
lated automatically. For example IDS rules that:

• have a significant risk to leak information that is sensitive (privacy sen-
sitive, security sensitive, business sensitive etc.);

• have an unclear or too simple definition of the attack detecting pattern,
and therefore may trigger unnecessarily, in the worst case on person
sensitive or confidential information.

Privacy policies can be used to define what information that is sensitive.
Examples of sensitive information may be certain IP ranges of classified sys-
tems or sampled payload that may reveal private or confidential information.
Information can also be defined as person sensitive by law, for example the
sampled payload from a health institution which may contain person sensi-
tive information. Another example is critical infrastructures that may con-
tain security sensitive or confidential information in the data traffic about the
processes being controlled. Last, but not least, payment databases handling
financial transactions may reveal sensitive information like credit card num-
bers.

In these cases, the information is per definition sensitive, which means
that any leakage of information that can be identified may be problematic.
For such use cases, an objective information leakage metric will be sufficient
to identify problematic leakage of private or confidential information.

In other cases, the privacy sensitivity will be subjective, and can only be
evaluated in a representative way by the owners of the data being sampled -
the users themselves. It may even in this case be possible for the data con-
troller to get realistic estimates of the perceived privacy sensitivity by asking
a representative random set of users, for example using a random poll on the
service being used, about how they would value privacy leakages. However
this approach will be expensive and does not scale well. It is therefore only
viable for smaller evaluations of privacy impact.

It is therefore assumed possible for an authority like the data controller,
that is overseeing the privacy interests, to estimate the privacy impact, de-
noted by I ≥ 0, that an identified information leakage L≥ 0 causes. The pri-
vacy impact could for example be the subjective value or expected liability
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from privacy or confidentiality breaches, as proposed by [60]. The privacy
leakage, denoted by πR for a given IDS rule R can then be defined as the
product of the information leakage metric L and the privacy impact I, i.e:
πR = I · L. However, if investigation shows that the information leakage is
caused by activities from attack vectors that do not cause any risk of reveal-
ing private, business sensitive or confidential information, then the privacy
impact for a given IDS rule may be set low or even to zero. The combined
metric πR can be regarded as a privacy leakage risk metric, that can be used
to measure and perform incremental improvements of the Managed Security
Service (MSS) operation from a privacy perspective.

Current IDSs typically provide an all or nothing solution for handling pri-
vate or confidential information in the alarms. The payload of the alarms is
either being sent in cleartext or may be pseudonymised, for example by only
sending references to where more information can be found in a data foren-
sics system. There does not exist a more fine-grained management nor any
measurements of sensitive information flows in such systems. It is in partic-
ular common that Open Source based IDS’s like Snort, OSSEC or Prelude
send payload in cleartext in the IDS alarms. Having a metric for how pri-
vacy invasive an MSS operation is will therefore be useful to benchmark the
performance of different MSS providers from a privacy perspective. It will
also be useful for tuning the IDS rulesets and for implementing anonymisa-
tion policies to reduce the privacy impact of the monitoring. Intuitively, such
a privacy leakage model relates to the perceived preciseness of the IDS rule,
i.e. how good it is at detecting only attack traffic without revealing non-attack
traffic.

A promising candidate for a privacy leakage metric for IDS rules, is data
entropy. This is a privacy leakage metric that is based on the variability of
the underlying data. Examples of such metrics are Shannon-, Rényi or Min-
entropy, which previously have been proposed as anonymity metrics [118,
29]. Entropy can also be used to measure coding efficiency, for example
whether sampled payload excerpts most likely are encrypted or compressed [118].
This chapter investigates a model of privacy leakage from IDS rules that is
based on the variation in entropy between IDS alarms. This is to the best of
our knowledge the first comprehensive privacy leakage model for IDS rules
based on quantitative measurements of information flow founded in informa-
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tion theory.

The proposed privacy leakage metric has several practical applications.
First, it can be used to identify imprecise IDS rules, since such rules typically
will have more variation in the underlying data, and therefore also a larger
variance in entropy than more precise IDS rules. Furthermore, an advantage
with the proposed metric is that it can detect two common ways of preserving
privacy or data confidentiality: anonymisation and pseudonymisation. Both
encrypted and anonymised information can be expected to have zero entropy
variance, given sufficiently long input. On the other hand, the entropy vari-
ance of plaintext data will be significantly larger than for encrypted data, as
will be discussed in Section 6.5.3.

This means that the entropy variance can be used as a metric to detect leak-
age of private or confidential information in message oriented data streams in
general and IDS alarms in particular. It can also be used to verify whether an
anonymisation/pseudonymisation or encryption scheme works as intended.

This chapter is organised as follows: Section 6.2 discusses the motiva-
tion behind introducing an entropy variance based information leakage met-
ric, based on existing knowledge of how common attack vectors work. Sec-
tion 6.3 describes the threat model and scenario that is assumed when using
the privacy leakage metric. Section 6.4 develops the entropy-based privacy
leakage model based on quantitative information flow analysis after introduc-
ing the necessary theoretical background information. The last part discusses
how clustering based on the Expectation Maximisation algorithm can be used
to identify the underlying attack vectors for IDS rules that detect more than
one attack vector. Section 6.5 does a detailed analysis of the convergence
speed as a function of amount of input data for the entropy algorithms and
symbol definitions considered. This includes analysing the metrics’ abilities
to distinguish between plaintext and encrypted data. Section 6.6 analyses ex-
perimental results based on realistic measurements of IDS alarms. Section
6.8 discusses related works; Section 6.9 concludes the chapter and Section
6.10 suggests future work and research opportunities.
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6.2 Motivation

A precise IDS rule will in many cases report only one or a few different at-
tack patterns corresponding to real attack vectors, as will be discussed below.
One common type of attack vector that follows this behaviour, is stack or
heap buffer overflow attacks [140]. These attack vectors frequently use large
sequences of characters corresponding to the NOP operation or similar to
increase the probability of successfully exploiting buffer overflow vulnera-
bilities. The attacker does then not need to know the exact memory location
of injected shellcode, since returning to any address within the NOP sled will
cause the shellcode to be executed. This makes it simpler for the adversary to
exploit such vulnerabilities. The entropy of this NOP sled will be zero, and
variance zero, as long as only NOP operations are being used in the sled and
the attack vector does not mutate (e.g. by changing the length of the NOP
sled). This is clearly distinguishable from ordinary traffic, and also easy to
distinguish for rule-based IDSs.

Such naive attacks are however not so common nowadays, because the
IDS and anti-virus technologies easily can detect such anomalies in the in-
put. It is therefore increasingly common that the adversaries obfuscate the
attack vector. Obfuscation of the NOP sled can for example be done using
metamorphic coding, which means that instructions in the sled are substituted
with other instructions that effectively perform the same function [68]. Fur-
thermore, it is now common practice that also the shellcode of the attack is
being obfuscated by using encryption techniques. This means that the attack
after the NOP sled contains a small decryption program, with a decryption
key that decrypts the obfuscated shellcode before it is being run [125]. Even
the decryption program can be hidden by using metamorphic coding tech-
niques [125], although this is still not very common [102].

This means that obfuscated attack vectors can be expected to have quite
high entropy, in some cases indistinguishable from encrypted traffic [125,
58]. This means that the variation in entropy can be expected to go towards
zero for a sufficiently large data sample from a polymorphic attack vector,
given that it is indistinguishable from a perfect encryption scheme. Such an
attack vector will behave like random uniform data. This means that the en-
tropy variance of sufficiently large attack vector samples from both traditional

141



Privacy-enhanced Network Monitoring

NOP sled based attacks and modern obfuscated attacks also can be expected
to have low entropy variance.

It can furthermore be observed that samples of encrypted user traffic, as-
suming that strong encryption is used, in itself does not leak any private or
confidential information, hence can be expected to have low entropy variance.
Ordinary non-encrypted user traffic, can however be expected to show a sig-
nificant variance in entropy between different samples, as illustrated in Figure
6.5.2. This indicates that entropy variance may be an interesting metric for
measuring whether IDS alarms leak information, in particular for buffer over-
flow type of attacks. However this metric does obviously not understand the
semantics of the data traffic, and can therefore not be used to evaluate whether
the leaked information is private or confidential.

There also exist attack vectors that are indistinguishable from plaintext
data. Examples of such attacks are nonobfuscated Javascript Trojans or SQL
injection attacks. This means that the entropy standard deviation not neces-
sarily can be assumed to be close to the extreme points: encrypted data (en-
tropy close to 1) or NOP sleds (octet-entropy close to 0). However, there are
still some other useful characteristics of such plaintext attacks in particular,
and malware in general, that can be exploited by such a metric:

• Attacks are to a great extent automated and performed by large botnets
of compromised hosts.

• Attack vectors do typically not yet mutate or change dynamically1. This
means that multiple attacks by a given host being controlled by an ad-
versary typically has the same payload. Different hosts running the
same version of a given malware can also be expected to typically have
the same payload [102].

• Attack vectors are modular programs that are improved incrementally,
which means that not all parts of a malware will change at the same
time, and some parts of malware code are even shared between different
malware families [102].

• Botherders, that manage large botnets of compromised hosts, will also
have a self interest in a “well managed” botnet. This means that the

1Although proof-of-concept polymorphic self-mutating worms has been demonstrated [73].
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malware of a botnet at regular intervals will be upgraded to include
patches and new functionalities, amongst others to avoid being detected
by Anti-Virus and IDS [54]. It is therefore reasonable to believe that a
large amount of the machines in a given botnet will run the same version
of the malware and therefore also will use the same arsenal of attack
vectors for attacking other hosts.

This means that if an IDS rule is able to detect a given attack, or attack
variants, then there are several reasons to believe that the entropy variance
between instances of the same attack vector may be small, even for nonob-
fuscated Javascript or SQL injection attacks. This furthermore means that if
the underlying attack vectors detected by an IDS rule can be identified, then
the entropy variance (or entropy standard deviation) around each attack vec-
tor can be considered a measure of the precision of that rule hence also an
indicator of possible privacy leakages.

6.3 Threat Model

The chapter assumes that intrusion detection services have been out-
sourced to a third party Managed Security Service (MSS) provider. Security
monitoring is furthermore subdivided into two different security levels. An
outsourced first-line service that is doing 24x7 monitoring of the computer
networks, and a trusted second-line service that will have full knowledge of
the IDS service, including capabilities to perform data forensic analysis. It
is assumed that the MSS provider operates using a privacy-enhanced IDS, so
that changes to the IDS ruleset must be agreed upon by both the data con-
troller and the second line security analyst responsible for updating the IDS
ruleset, to avoid that excessively privacy violating IDS rules are being de-
ployed.

It is therefore assumed that the IDS services run in a controlled environ-
ment, where enforcement of a privacy policy supported by privacy leakage
metrics makes sense. An example of such an environment is critical infras-
tructures or hospitals where security services have been outsourced to a third
party, and privacy metrics are required to ensure compliance both to privacy
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and security policies. These policies must ensure that the first-line security
analysts, that are not trusted to see sensitive information, do not get access
to information considered private or confidential by the owner of the critical
infrastructure. The objective is a stricter enforcement of the need-to-know
principle than what IDSs typically have today. However, in order to enforce
such privacy and security policies, suitable privacy metrics are needed, which
will be developed here.

This chapter mainly focuses on two adversaries: an external adversary
that may want to manipulate the privacy metrics for example to reduce the
chance of attacks being detected. The IDS ruleset is assumed public, so that
an external adversary can investigate how the IDS rules work in order to
perform targeted attacks on either privacy or security. However the external
adversary will not know which IDS rules that are enabled.

Insiders are divided into two main groups. First-line security analysts
are considered untrusted insiders, that only have limited authorisation to see
information and no authorisation to modify information related to the IDS
configuration. They do not have access to the data forensic tool to investigate
attacks in detail. Second-line analysts are considered a trusted CERT team,
that has authorisation to perform security investigations and reconfigure the
IDS. A third actor is the data controller, who shares the responsibility for
managing the IDS ruleset with the security officer, to ensure that both the pri-
vacy and security objectives are being considered. The chapter furthermore
assumes that suitable enforcement mechanisms exist, for example anonymi-
sation or pseudonymisation schemes for sensitive information in IDS alarms,
so that the privacy leakage metrics can be used for verification of the security
or privacy policies.

6.4 A Privacy Leakage Model of IDS Rules

This section will first provide an information theoretic analysis of privacy
leakage from IDS alarms, assuming a simple model of a perfect IDS rule RP

that does not have any false alarms. This model is subsequently generalised
to handle IDS rules that may leak potentially sensitive information, and we
then show how this model corresponds to measuring the standard deviation

144



Chapter 6. Measuring Privacy Leakage for IDS Rules

of entropy from the IDS rule. It is finally shown how to measure the privacy
leakage from IDS rules that detect more than one attack vector.

6.4.1 Basic Definitions

The definitions and notation in this section give a short introduction to quan-
titative information flow analysis, and is based on [122]. It is throughout
this chapter assumed that the logarithm is taken to the base 2, i.e. log(x)
means log2(x). Shannon and Min-entropy can be considered instances of the
more general Rényi entropy [107], and we therefore use the Rényi notation
to describe the entropies. Any Rényi entropy metric is denoted as Hα(X),
where α is the entropy degree; α = 1 represents Shannon entropy and α = ∞

represents Min-entropy. Given an IDS rule R, which may leak sensitive infor-
mation from a set of input data X and to a set of IDS alarms Y , the objective
is then to measure how much information R leaks.

Let X and Y be random variables whose set of possible values are X and
Y respectively. The Shannon entropy is then defined by [118]:

H1(X) = ∑
x∈X

P[X = x]log
1

P[X = x]
(6.4.1)

Shannon entropy indicates the number of bits that are required to transfer
X in an optimal way. The conditional entropy denoted as H1(X |Y ) indicates
the expected resulting entropy from input data X given a set of IDS alarms Y
that pass through the IDS rule R [122]:

H1(X |Y ) = ∑
y∈Y

P[Y = y]H1(X |Y = y) (6.4.2)

where

H1(X |Y = y) = ∑
x∈X

P[X = x|Y = y]log
1

P[X = x|Y = y]
(6.4.3)

Min-entropy is another entropy metric that is calculated based on the
worst case (maximum) symbol occurrence probability, defined as the vul-
nerability V (X) that an adversary can guess the value of X correctly in one
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try [122]:

V (X) = max
x∈X

P[X = x] (6.4.4)

Min-entropy indicates the number of bits required to store V (X), and is
defined as [122]:

H∞(X) = log
1

V (X)
(6.4.5)

The conditional min-entropy can be defined as [122]:

H∞(X |Y ) = log
1

V (X |Y )
(6.4.6)

where

V (X |Y ) = ∑
y∈Y

P[Y = y]max
x∈X

P[X = x|Y = y] (6.4.7)

It is then possible to define the information leakage LXY from X to Y using
either Shannon or Min-entropy as proposed by [122]:

LXY = Hα(X)−Hα(X |Y ). (6.4.8)

6.4.2 Perfect model IDS Rule

Assume a perfect model IDS rule RP, that always detects the attack vector
and does not have any false alarms or other entropy sources. Furthermore
assume that the given attack vector does not change between different attack
instances. The payload sample in the IDS alarm from RP is also assumed to
not contain any other entropy sources. The IDS will in this case always sam-
ple the same payload excerpt in every alarm according to the attack pattern
definition.

This IDS rule is termed a perfect model IDS rule, since it is considered
perfect according to the theoretical model of privacy leakage. RP is in other
words a perfect model of IDS rule behaviour from a privacy perspective. This
is not a purely theoretical IDS rule behaviour. We observed three IDS rules
that behaved like RP in our experiments, for example the Snort IDS rule with
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Figure 6.4.1: IDS rule 1:2003 SQL Worm Propagation attempt, behaving like RP.

SID 1:2003 SQL Worm Propagation attempt, as shown in Figure 6.4.1. This
is obviously a simplistic model of an IDS rule, since it does not handle the
fact that many IDS rules and also non-rule based technologies like anomaly-
based IDS will be able to detect more than one attack vector, and also variants
of attack vectors. The model is furthermore oblivious to whether the source
of entropies is adversarial or ordinary user activities. An entropy-based met-
ric can only measure whether information is leaking or not. Therefore the
privacy impact I will need to be evaluated, as discussed earlier.

The perfect model IDS rule will under these assumptions provide a con-
stant leakage denoted as c of information in each alarm, corresponding to the
pattern matched by RP.

The privacy impact I of this constant information leakage as a privacy
leakage is however not known. The privacy impact of the information leak-
age from each IDS rule must therefore be evaluated by a data controller, to
determine whether the expected information leakage from the IDS rule can
be considered necessary and acceptable from a security perspective, and also
that the effective privacy impact from the rule can be considered negligible if
the rule is effective over time.

This manual quality assurance procedure makes it possible to detect and
avoid IDS rules where I · c in itself is judged to cause a significant privacy
leakage, for example if the rule itself triggers on person sensitive information.
The privacy leakage I · c from each installed IDS rule is therefore in the rest
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Figure 6.4.2: Channel model of a perfect model IDS rule RP that detects a single, nonchang-
ing underlying attack.

of this chapter considered as either necessary or negligible. If this constant
privacy leakage is not considered tolerable, then it is assumed that this can be
mitigated using anonymisation or pseudonymisation policies.

RP will under these assumptions always triggers on the same attack pattern
Y = {y}, as illustrated in Figure 6.4.2. The inter-alarm entropy, assuming a
set of input data X , denoted as H int

α (X |Y ), is defined as the entropy between
different IDS alarms, calculated over the entire payload excerpt (i.e. each
IDS alarm is considered as one “symbol”). The inter-alarm entropy will in
this case be H int

α (X |Y ) = 0, since P[Y = y] = 1. This means that a perfect
model IDS rule according to this definition from an information theoretical
perspective does not reveal any additional information apart from what can
be inferred from the limited and constant information leakage c in each alarm.

This does not mean that additional leakage of sensitive information cannot
occur, since the resulting privacy leakage also will depend on the timing and
context of the alarms. Additional information may for example be revealed
by correlating the interdependencies between the IDS rules.

However, under the given assumptions, this means that when RP triggers,
then a known data pattern will have been sent in the input data stream. This
information leakage is considered a tolerable privacy leakage under the as-
sumptions in the previous subsection.

6.4.3 A Non-perfect IDS rule R

Then consider a non-perfect IDS rule R, which in addition to the assumed
necessary and limited information leakage by the attack pattern, also may
have false alarms or other entropy sources, as illustrated in Figure 6.4.3.
However, it still only detects one attack vector, that does not change between
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Figure 6.4.3: IDS rule 1:2925 1x1 GIF attempt (web bug), illustrating a privacy leaking IDS
rule.

attacks. This means that the entropy distribution function will be unimodal,
perhaps with some outliers as illustrated in Figure 6.4.3. This is a simplistic
model of how an IDS rule behaves. It does not assume any particular IDS
rule implementation (e.g. whether string matching or regular expressions are
being used) and does not take any position on the type of IDS technology be-
ing used. Experimental results have however shown that a significant amount
of all IDS rules (35-53% in the experiments we have performed2) actually
behave in this way. However, this also means that many IDS rules actually
do not behave this way. We will therefore later discuss how this restriction
can be removed.

The model of a unimodal non-perfect IDS rule is illustrated in Figure 6.4.4.
Assume that this IDS rule generates the ordered set of N IDS alarms denoted
as Y = {y1,y2, ...,yN}, where P[Y = yi]< P[Y = y j] for i < j, i, j ∈ 1,2, ...,N.
The inter-alarm entropy will in this case be greater than zero for both Shan-

non and Min-entropy, because
n

∑
i=1

P[X |Y = yi] = 1 and P[X |Y = y1]< 1.

253% of the IDS rules in the experiments performed here were unimodal, indicating one attack
vector. A former pre-experiment at a commercial MSS provider indicated that 35% of the IDS rules
were unimodal.
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Figure 6.4.4: Channel model of a non-perfect IDS rule R that detects a single nonmutating
underlying attack vector. R may have false alarms or other entropy sources, which means
that H int

α (X |Y )> 0.
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Figure 6.4.5: Channel model of privacy leakage from a non-perfect IDS rule R, measured
relative to a perfect model IDS rule.

6.4.4 Privacy Leakage Model

The next question is how to model the privacy leakage from the non-perfect
IDS rule R. One way to do this, is to measure the information leakage of the
non-perfect IDS rule R relative to a perfect model IDS rule RP, as illustrated
in Figure 6.4.5. The communication channel then consists of a cascade of
two IDS rules (or two IDS rules connected in series), where the output of the
first IDS rule serves as input to the second IDS rule. Both IDS rules have the
objective to trigger on the same attack vector, however the first IDS rule R is
non-perfect, and may have false alarms or other entropy sources, whereas the
second IDS rule RP is considered a perfect model IDS rule. The advantage
of using a cascading model, is that this allows for comparing known values,
and it is not dependent on the unknown Internet traffic X . The set of alarms
Y from R are known by the MSS provider and the set of expected alarms Z
from RP are also known given Y .

Focusing on the inter-alarm entropies is not a fruitful approach here, since
the difference in inter-alarm entropies is H int

α (X |Y )−H int
α (Y |Z) = H int

α (X |Y ),
because H int

α (Y |Z) = 0. What is needed, is therefore a measure of the limited
information leakage that the perfect model IDS rule causes.

This initial information loss, denoted as the intra-alarm information loss
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Hα(X), can be expressed by measuring the entropy of the IDS alarm in bits,
instead of measuring the inter-alarm entropy H int

α (the entropy between IDS
alarms, considering the entire IDS alarm as one symbol). The intra-alarm
entropy for a perfect model IDS rule RP can be calculated by assuming that
the IDS alarm consists of a large sequence of bits. This can be expressed
formally by considering a given IDS alarm as y ∈ {0,1} where P[y = 1] =
1−P[y = 0].

Considering the perfect model IDS rule first, then this IDS rule will al-
ways return the same IDS alarm Z = {y}where y∈ {0,1}with bit-probability
{P[y = 0],P[y = 1]}. The information leakage is defined according to (6.4.8)
as:

LY Z = Hα(X |Y = y)−Hα(Y = y|Z = y) = Hα(X |Y = y) (6.4.9)

Since RP is deterministic, then Z will be determined by Y , which means
that Hα(Y |Z) = 0. Furthermore, for Shannon entropy:

H1(X |Y = y) = ∑
x∈{0,1}

P[X = x|Y = y]log
1

P[X = x|Y = y]
(6.4.10)

P[X = x|Y = y] = 0 for x 6= y, which means that this can be expressed as:

H1(X = y) = ∑
y∈{0,1}

P[X = y]log
1

P[X = y]
(6.4.11)

which gives:

H1(X = y) = P[y = 0]log
1

P[y = 0]
+ (6.4.12)

(1−P[y = 0])log
1

(1−P[y = 0])
= c1 (6.4.13)

This shows that RP has a constant privacy leakage LY Z = c1 for Shannon
entropy. This can also be shown for Min-entropy by substituting into Equa-
tion (6.4.6):
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Figure 6.4.6: Shannon vs. Min-entropy.

H∞(X |Y = y) = log
1

V (X |Y = y)
(6.4.14)

where the vulnerability V (X |Y = y) can be expressed as:

V (X |Y = y) = ∑
y∈{0,1}

P[Y = y] max
x∈{0,1}

P[X = x|Y = y] (6.4.15)

P[X = x|Y = y] = 0 for x 6= y, which means that this can be expressed as:

V (X |Y = y) = P[y = 0]2 +P[y = 1]2 (6.4.16)

which can be expressed as

V (X |Y = y) = 1−2P[y = 0](1−P[y = 0]) (6.4.17)

This shows that the vulnerability is V (X |Y = y) = 1 for P[y = 0] ∈ {0,1}.
The lowest vulnerability is V (X |Y = y) = 1

2 for P[y = 0] = 1
2 , as expected.

This means that the Min-entropy for RP can be expressed as:

H∞(X |Y = y) = log
1

1−2P[y = 0](1−P[y = 0])
= c∞ (6.4.18)

152



Chapter 6. Measuring Privacy Leakage for IDS Rules

This means that RP has a constant information leakage for both Shannon-
entropy LY Z = c1 and Min-entropy LY Z = c∞. However these constants are
different, except in the special cases where P[y = 0] ∈ {0, 1

2 ,1}, as can be
expected (see Figure 6.4.6).

Let the constant information leakage for either Shannon or Min-entropy
be denoted as cα . The relative information leakage from the IDS rule R can
then be formally defined as follows:

Let R be a non-perfect IDS rule, that in addition to the assumed necessary
and limited information leakage by the attack pattern, also may have false
alarms or other entropy sources. Let RP be a perfect model IDS rule with
a limited privacy leakage cα , α ∈ {1,∞}3. The relative information leakage
LY Z for an IDS rule R with input X , that generates a set of IDS alarms Y =

{y1,y2, ...,yN}, each with probability P[Y = yi], i = 1, ...,N is then defined as
the difference in intra-alarm entropy between R and a perfect model IDS rule
RP that both trigger on the same attack vector:

LY Z = Hα(X |Y )− cα (6.4.19)

If the probability distribution function (PDF) of the IDS alarm entropies
for a given attack vector is symmetric, then the average entropy denoted as
Hα(X |Y ) for input X and a sufficiently large set of IDS alarms Y can be
considered as a good estimator of cα . For skewed distributions, the median
may give a better estimate, given that the sample is sufficiently large. It can
furthermore be observed that the precision of this estimator will improve with
the precision of the IDS rule R. This means that the information leakage of R
for a given IDS alarm yi can be expressed as:

LY Z = Hα(X |Y = yi)−Hα(X |Y ) (6.4.20)

where the average entropy can be expressed as

Hα(X |Y ) =
N

∑
i=1

P[Y = yi]Hα(yi) (6.4.21)

3It is possible to show that this definition generalises to any Rényi entropy, however that is
beyond the scope of this chapter , since Min-entropy and Shannon-entropy are considered the best
candidates for the privacy leakage metric [122].
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for a set of input data X .

6.4.5 Information Leakage for a Sample of IDS Alarms

The average entropy per byte for a sample y1,y2, ...,yN of N IDS alarms gen-
erated by an IDS rule R that detects a single attack vector, can be expressed
as

Hα =
1
N

N

∑
i=1

Hα(yi). (6.4.22)

The information leakage for any IDS alarm y j, denoted as LR(y j) can then
be expressed as:

LR(y j) = Hα(y j)−
1
N

N

∑
i=1

Hα(yi) (6.4.23)

Further processing of the information leakage LR(yi) for the IDS alarms
y1,y2, ...,yn can now be calculated using traditional statistical analysis. The
privacy leakage of the IDS rule can be expressed as the standard deviation
σα , error margin 2σα or the 95% confidence interval ±2σα of the IDS rule.
This gives an indication of the expected precision of the IDS rule. Another
useful metric, is to consider the worst-case information leakage denoted as
Lmax

R where Lmax
R =

n
max
i=1

LR, or the minimum information leakage denoted as

Lmin
R where Lmin

R =
n

min
i=1

LR. Both of these can be useful in statistical analyses,
in addition to the standard deviation. Furthermore, the privacy leakage can
be calculated as πL

R = LR · IR, where IR is the privacy impact estimated by the
data controller.

6.4.6 Sample Standard Deviation of Entropy σα

Normal Distribution

Assuming that the probability distribution of alarms can be approximated
using a Normal distribution, then the standard deviation can be calculated
using the second norm.

Assume that the IDS generates a sample of n IDS alarms (y1,y2, ...,yN).
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Each alarm yi contains payload or other potentially privacy leaking elements
or attributes from the IDS alarms generated by an IDS rule R. The sample
standard deviation of the entropy of the elements can then be expressed as:

σα =

√
1

N−1

N

∑
i=1

(LR)2 =

√
1

N−1

N

∑
i=1

(Hα(yi)−Hα)2 (6.4.24)

The general properties of the variance of entropy measurements σ2
α will

fulfill the same requirements as the standard deviation of entropy measure-
ments. However, the standard deviation is considered more appropriate, since
it operates with the same unit of measure as the entropy.

Laplacian Distribution

An alternative distribution that during the experiment was shown to fit the
data well, is the Laplacian (or double exponential) distribution. The Lapla-
cian standard deviation, denoted as σL

α is based the L1 norm (or Manhattan
distance), and can be expressed as the sum of absolute deviations:

σ
L
α =

√
2

N

N

∑
i=1

∣∣Hα(yi)−Hα

∣∣ (6.4.25)

A well known advantage with σL
α , is that it will be less influenced by

outliers in the tail of the PDFs than the standard deviation of the Normal
distribution.

The standard deviation of normalised entropy is a measure of the relative
information leakage from an IDS rule, under the assumption that it detects
only one nonmutating attack vector. If an IDS rule detects the attack vector
perfectly without any false alarms, then the entropy of the IDS alarms will
always be the same, and σα = 0. If the IDS alarm is precise at detecting the
attack, then only a few bits of information will vary between IDS alarms. This
means that all alarms will have similar entropy with low standard deviation
and therefore also low information leakage. However if the IDS rule also has
a significant amount of false alarms, or gets entropy from other sources then
the entropy variance, and therefore also the information leakage from the IDS
rule, will increase.
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6.4.7 Aggregating σα

This subsection shows how the standard deviation of entropy metric can be
aggregated for a set of IDS rules. Assume that an IDS uses a rule set denoted
as Rall with m IDS rules Rall = {R1,R2, ...,Rm}. Each IDS rule Ri matches
independently a set of Ni IDS alarms:
Yi = {yi,1,yi,2, ...,yi,Ni}, i = 1,2, ...,m where the number of IDS alarms Ni

typically will vary between IDS rules. Furthermore, assume that the IDS
alarms are independent and non-overlapping, i.e. Yi∩Yj = /0 for i 6= j. This

means that all IDS alarms, denoted Yall , can be expressed as Yall =
m⋃

i=1

Yi.

Assume that an IDS rule Ri has entropy standard deviation denoted as
σi and resulting standard deviation denoted as σall . The aggregated metric
should furthermore fulfill the following criteria in order to provide meaning-
ful aggregation:

C1 If all IDS rules have the same standard deviation, say σi, then
σall should also be the same, i.e. σall = σi.

C2 The resulting entropy standard deviation should be weighted ac-
cording to how many alarms that trigger on a given IDS rule Ri.

Each IDS rule should be assessed individually, in the same way as each un-
derlying vulnerability should be assessed individually. This means that a
weighted average, weighted by number of alarms from each IDS rule, can be
used as aggregation function for σall , i.e:

σall =

m

∑
i=1

Niσi

m

∑
i=1

Ni

(6.4.26)

This function fulfills criterion C1, since the resulting average weighted
sum is the same if σi is the same for all IDS rules Ri and it fulfills C2 by
weighting the standard deviation against number of IDS alarms.
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Figure 6.4.7: Payload length corrected Shannon octet-entropy distribution of IDS rule
(Snort SID 1:11969) matching three attack vectors.

6.4.8 IDS Rules Detecting Several Attack Vectors

A significant part of the IDS rules will detect more than one attack vector,
as illustrated in Figure 6.6.1. The data set used in this chapter has 47% of
the IDS rules with more than one attack vector. An earlier preliminary exper-
iment at a commercial MSS provider shows even higher percentage (65%).
An indication of an IDS rule that detects several attack vectors, is that the
entropy probability distribution is multi-modal. Figure 6.4.7 shows an ex-
ample IDS rule that matches three privacy leaking attack vectors. The Fig-
ure shows the payload entropy distribution of the Snort IDS rule with SID
1:11969 VOIP-SIP inbound 401 Unauthorized. A payload length correction
causes the metric to be larger than one, and is required to make the metric
incentive compatible4. The details of this can be ignored for now, since this
will be discussed in Section 6.5.4.

A clustering algorithm is needed to identify each underlying attack vector
for multi-modal distributions. Each individual cluster will in this case repre-
sent an attack vector, which behaves in a similar way as a non-perfect IDS
rule described in Section 6.4.3. This means that the privacy leakage of each
attack vector cluster can be calculated as the entropy standard deviation over
all samples belonging to the cluster, and the resulting privacy leakage for the
IDS rule can be calculated by aggregating the data over all IDS rules in the

4Incentive compatibility – a characteristic of mechanisms whereby each agent knows that his
best strategy is to follow the rules, no matter what the other agents will do [79].
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cluster using Equation 6.4.26.

6.4.9 How to Perform the Clustering

There are two main types of clustering algorithms: hard clustering and soft
clustering. Hard clustering algorithms assign each sample to a given clus-
ter. Examples of a hard clustering algorithm is the popular k-means and k-
medians algorithms [87, 20]. Hard clustering is however not appropriate for
clustering the IDS rules, since it cuts off the samples at the tail of the distri-
bution where two distributions overlap. This will give a bias towards lower
entropy standard deviation than can be expected.

Soft clustering is then a better approach, since it assigns the probability
that each sample belongs to a given cluster, instead of assigning each sample
to a given cluster. A commonly used soft clustering technique is the Ex-
pectation Maximisation (EM) algorithm [36]. This soft-clustering method
provides a Maximum Likelihood estimate of the underlying data distribu-
tion as a mixture of assumed probability distributions. The EM-algorithm
is basically a two-step hill-climbing technique where the first step (E-step)
calculates the expectation of the log-likelihood using the current estimate of
the parameters of the underlying probability distributions. The second step
(M-step) computes the parameters that maximise the expected log-likelihood
identified during the E-step.

There are however some drawbacks with the EM-algorithm. It is prone to
get stuck in local minima, which means that it is sensitive to the initial cluster
parameters. We use the cluster centres identified by k-means, since this is a
generally recommended method of initialising the cluster centres5. Another
issue is the selection of number of clusters. Too many clusters may cause EM
to overfit the data, whereas too few clusters may give a poor representation
of the distribution of the samples.

It is commonly assumed that the underlying probability distribution either
is a mixture of Gaussian or Laplacian probability density functions. Both out-
liers and skewedness have been found to be significant during the experimen-
tal analysis in Section 6.6. We have therefore decided to model the probabil-
ity distribution as a mixture of Laplacian probability density functions using

5We used k-means from the Python module scikit-learn to initialise the EM algorithm [100].
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the method proposed in [31]. This method is based on order statistics (uses
a weighted median instead of the mean), and is therefore more robust against
outliers and skewedness than using a Gaussian mixture [31]. The remainder
of this section highlights the necessary theory and notation to understand how
we have implemented the Laplacian mixture model based clustering.

6.4.10 Laplacian Mixture Model

This section defines the general notation, which is based on the well-known
theory of learning finite mixture models [12, 49]. Furthermore, the Laplacian
Mixture Model used here, is based on [31]. Our implementation is simplified
compared to the original solution, since only univariate clustering is needed.
Let HR be a random variable representing the IDS alarm entropies of an IDS
rule R, with Hα representing one particular outcome of HR. This random
variable is expressed as:

P[HR = Hα |Θ] =
K

∑
k=1

βkP[HR = Hα |Θ = θk] (6.4.27)

where β1, ...,βK are the mixing probabilities, each θk is the set of parame-
ters defining the k-th component of the mixture and Θ= {θ1, ...,θK,β1, ...,βK}
is the complete set of parameters that define the mixture. Being probabilities,

βk must satisfy βk ≥ 0 and
K

∑
k=1

βk = 1. It is assumed that all the components

of the mixture are Laplacian distributions P[HR = Hα |θk] = L (Hα |θk =

(µ̃,λ )). The Laplacian distribution is defined as:

L (Hα |µ̃k,λk) =
1

2λk
exp
(
−|Hα − µ̃k|

λk

)
(6.4.28)

where Hα(yi) is the entropy of the IDS alarm yi, λk > 0 is the scale pa-
rameter and µ̃k is the median for mixture component θk. In the remainder,
assume the shorthand notation that Lα,i,k = L (Hα(yi)|θk).

6.4.11 EM-Algorithm for Laplacian Mixture Model

The implementation of the EM-algorithm is based on [31, 49]. Assume that
the EM-algorithm is performing cluster analysis on a sample of N ordered
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entropy values Hα = (Hα,(y1),Hα(y2), ...,Hα(yN)), where Hα(yi) < Hα(y j)

for i < j, i, j ∈ 1,2, ...,N. These entropy values are calculated over the IDS
alarms y1,y2, ...,yN generated by an IDS rule R. The Expectation Maximi-
sation algorithm for the Laplacian Mixture Model then consists of two steps
that are iterated until convergence is detected:

E-step: calculate the conditional expectation of the complete log-likelihood
wi,k = log(P[HR = Hα(yi)|Θ = θk]) that Hα(yi) comes from the k-th compo-
nent of the mixture:

wi,k =
βkLα,i,k

∑
K
k=1 βkLα,i,k

(6.4.29)

M-step: estimate new model parameters θk = (µ̃k,λk) and weights βk that
maximise the log-likelihood log(Lα,i,k) of the model:

µ̃k = wmedian(Hα ,k) (6.4.30)

λk =
1

∑
N
i=1 wi,k

N

∑
i=1

wi,k |Hα(yi)− µ̃k| (6.4.31)

βk =

N

∑
i=1

wi,k

N

∑
i=1

K

∑
k=1

wi,k

(6.4.32)

where the algorithm to calculate the weighted median for a given cluster
k, according to [31], is described in Algorithm 6.1.

The algorithm uses the Minimum Message Length (MML) as stop crite-
rion [142], assuming one-dimensional data. We do not go into details on the
MML criterion and just present the implemented solution here. The detailed
derivation of the MML criterion used can be found in [49].

MML =
K

∑
k=0

log(
Nβk

12
)+

K
2

log
N
12

+
3K
2
−

maxk

{
N

∑
i=1

log(wi,k)

}
(6.4.33)
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Algorithm 6.1 Weighted median.
1: function WMEDIAN(Hα ,k)
2: Q = (q0 = 0,q1 = 0, ...,qN = 0)
3: sum=0
4: for i← 1, ...,N do
5: sum← sum+wi,k
6: qi = sum
7: for i← 1, ...,N do
8: if qi >

1
2qN > qi−1 then

9: return (Hα(yi)+Hα(yi−1))/2
10: else if qi =

1
2qN then

11: return Hα(yi)

12: end function

The last term of Equation 6.4.33 is derived from the fact that the minimum
of the MML criterion over Θ can be obtained by using the negative maximum
of the log-likelihood (the last term), since

maxΘ{log(P[HR|Θ])}= maxk

{
N

∑
i=1

log(wi,k)

}
. (6.4.34)

The algorithm stops when the difference in MML length between two iter-
ations is less than εMML = 1× 10−4. In addition to the MML criterion, the
implementation of the EM algorithm requires at least 40 iterations to con-
verge initially, and at least 20 iterations to converge after modifications of the
cluster definitions. This is to avoid accidentally hitting a local MML mini-
mum before convergence has occurred.

6.4.12 Determining the Optimal Number of Clusters k

We initially tested the method for estimating the number of components in
[49]. This method worked for nice continuous distributions, however it did
not work equally well for for noisy or a mixture containing binomial distri-
butions, since the EM-algorithm then easily got stuck in local modes. Over-
fitting was also a significant problem for binomial distributions.

Furthermore, to judge whether a cluster should be interpreted as an attack
vector or not typically requires that the data controller does some investiga-
tion of the IDS alarms. This means that some degree of manual intervention
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typically will be required during the clustering to assert obvious clusters that
the clustering algorithm has missed or delete clusters where overfitting oc-
curs. A typical example of overfitting is where several components with the
same median are used to represent a given cluster. Another example is for
skewed distributions, where the EM attempts to fit the skewed curve by over-
fitting the data.

We implemented a simple user interface for managing the clusters. It sup-
ports configuration of the initial number of clusters k as well as managing
the model definition Θ after the initial configuration. The program also sup-
ports selecting type of entropy data and IDS rule to analyse from the datasets.
The user interface for managing the clustering consists of the following func-
tions:

setcl(k,µ̃k) Assert that the cluster number k has a mode at µ̃k.

delcl(clusterlist) Delete clusters at index clusterlist. Deleted clusters are
marked with θk = (µk = 0,ρk = 0,β = 0).

pickcl() Pick the cluster to be asserted by clicking the mouse at the posi-
tion to be asserted in the histogram showing the frequency distri-
bution of the IDS alarm entropies. If there are no clusters that are
marked as deleted, then the least significant cluster (with lowest
βk) will be chosen.

After having modified the clusters, the EM-algorithm continues by typing
the cont command in the debugger. When the data controller is satisfied
with the cluster definition, typing cont without modifying the cluster causes
the algorithm to finish and print out the calculated privacy leakage for each
cluster and also the aggregated privacy leakage for the IDS rule R.

6.4.13 Calculating the Privacy Leakage for Clusters

The privacy leakage for the identified clusters is calculated after the data con-
troller has asserted that the relevant clusters have been identified and that the
EM-algorithm subsequently has converged. All probability mass is then as-
signed to the clusters, which means that the privacy leakage can be calculated
for the given IDS rule R.
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First, the model Θ will in itself give an indication of the privacy leak-
age in the form of the entropy standard deviation of the Laplacian function
L (Hα(yi)|θk) for a given cluster k. It is a well known fact that this can
be calculated from the scale parameter λk for a Laplacian distribution as
σL

k =
√

2λk. However to be able to aggregate the entropy standard devia-
tion over all clusters, the relative proportion of the samples for a given cluster
θk must be estimated, which is exactly what βk indicates. This means that the
resulting entropy standard deviation for the IDS rule R can be calculated as
the weighted average using Equation 6.4.26, substituting Ni with βk:

σ
L
R =

K

∑
k=1

βkσ
L
k . (6.4.35)

A disadvantage by using σL
k , is that this only will be correct if the model

fits the data reasonably well. This may be true in some cases, however the
sample distributions in the experiments do in several cases deviate signifi-
cantly from the model due to outliers, heavy tails or noise. In these cases, it
will be more correct to have a measure of σα that is based on the underlying
samples Hα(yi) weighted according to the conditional expectation wi,k of the
model distributions defined by Θ, so that the weighted entropy is described
by wi,kHα(yi). This means that the model distributions is used to specify how
the samples are divided between the clusters, instead of defining the clusters
directly. The mean value of the cluster entropies for cluster k can then be
expressed as:

µk =

N

∑
i=1

wi,kHα(yi)

N

∑
i=1

wi,k

(6.4.36)

and the Normal standard deviation can be expressed in a similar way as:

σk =

√√√√√√√√√
N

∑
i=1

wi,k (Hα(yi)−µk)
2

N

∑
i=1

wi,k

. (6.4.37)

Furthermore, the Laplacian standard deviation, based on the L1 norm, can
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be expressed in terms of the conditional expectation wi,k and the median of
the mixture component µ̃k as:

σ
L
k =
√

2

N

∑
i=1

wi,k |Hα(yi)− µ̃k|

N

∑
i=1

wi,k

. (6.4.38)

The resulting aggregated entropy standard deviation for the IDS rule R
can in both these cases be calculated from Equation 6.4.35 by substituting
the relevant standard deviation into the equation. The clustering analysis tool
prints out both the individual standard deviations per cluster as well as the
resulting standard deviation for the IDS rule based on both the standard devi-
ation of the model σL

R , Normal standard deviation σk and Laplacian standard
deviation σL

k . It is useful to compare these, since a large deviation between
σL

R and the other standard deviations indicate a poor model fit, which may
or may not be relevant depending on examination of the underlying data.

One can for example expect good model fit for IDS rules with some Gaus-
sian or Laplacian noise, since this is close to the expected model of privacy
leakage. However very noisy rules that match random traffic will get a poor
model fit. An example of this is the IDS rule 1:1394000 in our experiments
that detects random traffic. It has a standard deviation over all data of 6.7
for both Normal and Laplacian standard deviation, but only a model stan-
dard deviation of σL

1:1394000=1,44 . In such cases the standard deviation of the
model σL

R will not be usable. Another example is if σk is significantly larger
than σL

k , then σk may be unduly influenced by outliers, which means that σL
k

would be the more robust estimate. In general, the Laplacian standard devi-
ation can be expected to give the most conservative estimate, which is least
influenced by skewedness and outliers.

6.4.14 Summary of EM-based Clustering

The Laplacian Mixture Model is implemented using the EM-algorithm. A
semi-automatic process is used to identify the underlying clusters in the IDS
alarms. The standard deviation of entropy metric is then calculated for each
cluster and also the aggregated metric for the entire IDS rule. A possible at-
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tack on the clustering method, is an overfitting attack where a MSS provider
decides to shirk by deliberately overfitting the attack vectors, by asserting too
many clusters during the clustering process. It is therefore important that the
role as data controller is separate from the role as security manager, and also
that external quality assurance entities like certification organisations over-
see the operation, to ensure that it is not overly privacy invasive. It must be
emphasised that the objective not necessarily is to match the underlying prob-
ability distribution as closely as possible. The objective is rather to identify
any likely attack vectors, and distribute the samples between these. The EM
algorithm does this reasonably well.

The EM-based clustering generalises the privacy leakage metric to work
for IDS rules that detect more than one attack vector. This generalisation is
necessary, since our experiments have shown that a significant amount of all
IDS rules trigger on more than one underlying attack vector. An advantage
with this generalisation, is that it avoids the incentive incompatibility of the
single cluster metric, which would encourage a shirking MSS provider to
cheat by splitting up IDS rules into smaller IDS rules detecting a single attack
vector.

6.5 Detailed Analysis of σα

This section does a more thorough investigation of the standard deviation
of entropy metric σα . The objective of this discussion is to do an analysis
of the convergence speed required to reliably detect random uniform input
data as a function of the data length. It is expected that random uniform in-
put data converges towards zero entropy standard deviation for a sufficiently
long data series. This convergence speed is an important decision factor for
the selection of entropy algorithm and symbol definition, since the IDS alarm
entropies are calculated over a limited number of IDS alarms. Furthermore,
it is discussed which metric and symbol definition that works best for distin-
guishing between plaintext and encrypted data. This analysis shows which
entropy type (Min- or Shannon entropy) and symbol size (bit or octet) that is
best for calculating privacy leakage in IDS rules.
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6.5.1 Entropy Calculation

There are at least three obvious ways of selecting the symbol space that is
used to calculate the entropies:

1. Define the payload of the IDS alarm as the symbol, i.e. calculate the
inter-alarm entropy;

2. Use binary entropy, i.e. the intra-alarm entropy as described in Section
6.5.1;

3. Use octets, i.e. 8-bit words, which commonly are used to define the
character set in computer systems.

Other word sizes are possible, however these are considered the most com-
mon and interesting ones for our purpose. Each of these symbol definitions
have their advantages and disadvantages, and it is important to note that the
entropy values calculated from each of these definitions typically will be dif-
ferent. It has already been shown that the intra-alarm entropy calculated from
bit-entropy is different from the inter-alarm entropy by a constant value. Fur-
thermore, the inter-alarm entropy is not possible to use, since it can not be
used to calculate the standard deviation of entropy.

Bit-entropy was used to develop the Equation 6.4.20, since it is the easiest
way to develop the theory for the privacy leakage metric. The entropy stan-
dard deviation formula is however not dependent on any particular symbol
definition, as long as the symbol definition ensures that the entropy standard
deviation in the worst case, i.e. for random, uniform data, can be measured
to be sufficiently close to zero for encrypted traffic. It is assumed that σα

converges towards zero for random, uniform data as a function of input data
length, however the convergence speed is unknown and must be investigated.
It can furthermore be observed that for a perfect encryption scheme that is ap-
proximated by random uniform data, the symbol definition does not matter,
since random uniform data does not leak any information. This means that
if the objective is to purely detect whether the information conveyed is en-
crypted or not, then the entropy scheme with fastest convergence speed may
make sense to use.

This means that the minimum length of data required to reliably detect
that random uniform data has zero variance (i.e. speed of convergence) is
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an important design factor that this metric relies on. It can be expected that
different entropy metrics will have different convergence speed. In particular,
can Min-entropy be expected to converge more slowly, since it only considers
the maximum symbol occurrence probability, and not a weighted sum of all
symbol occurrence probabilities, as Shannon entropy does.

6.5.2 Entropy Bias of Finite Length Encrypted Data

A question that needs to be investigated, is therefore how different entropy
standard deviation metrics σα (Shannon- or Min-entropy) respond to random
uniform data strings of varying length, and also how it is influenced by the
symbol width, i.e. whether bit-entropy or octet-based entropy is used. The
reason for this, as discussed in Subsection 6.4.6, is that the metric shall be
able to measure privacy leakage sufficiently close to zero in the following
three cases:

1. For a perfect model IDS rule RP which detects and displays one or more
non-changing attack vectors perfectly;

2. for anonymised IDS alarms from the IDS rule;

3. as a limit case for encrypted (e.g. pseudonymised) IDS alarms from the
IDS rule, as the number of bits n in the IDS alarm goes towards infinity.

The entropy standard deviation bias for finite length encrypted data, de-
noted as σbias

α , can be analysed by simulating the response function of σbias
α

as a function of number of bits of data. The simulation is based on a set of
Monte-Carlo experiments, one for each octet of data. Each standard deviation
is the average of an ensemble of 10000 experiments. Bit-length is calculated
for each octet as eight times the octet length, in order to have comparable
x-axis values for bit- and octet-based data. The experiments are based on
simulations using random uniform data selection, which means that a Nor-
mal distribution can be assumed.

Figure 6.5.1 shows a log-log plot of the entropy standard deviations. The
bit-entropies both appear to be log-linear, which means that the bias for de-
tecting a perfectly encrypted IDS alarm with length n bits can be expressed
as log2(σ

bias
α ) = log2(γα +ψαn), where γα is the offset and ψα is the slope
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Figure 6.5.1: Log-log plot of entropy standard deviation as a function of number of bits
input data for Min and Shannon entropy and bit and octet symbol definition.

of the log-log scale. This gives σbias
α = 2γα nψα , where 2γα is constant. The

slope can be calculated from the experimental data, which shows that that
ψ1 = −1.005 ≈ −1 for Shannon bit-entropy and ψ∞ = −0.479 ≈ −1

2 for
Min-entropy. This means that σbias

1 ≈ 2γ1
n , whereas σbias

∞ ≈ 2γ∞√
n , which means

that Shannon bit-entropy converges by an order of O(n−
1
2 ) faster towards zero

than Min-entropy6. Shannon bit-entropy has initially 2.7 times less bias than
Min-entropy for perfectly encrypted (i.e. random uniform) data.

The octet-based entropies perform very poorly during the initial transient
phase, but are then stabilised on a slope similar to the respective bit-entropy
slopes, as shown in Figure 6.5.1. This means that there is a significant, but
approximately constant, difference between the bit- and octet-based metrics
after the initial transient phase. Shannon bit-entropy entropy ends up with
a precision 143 times better than Shannon octet-entropy after 80 kbit. The
difference in precision between bit- and octet-based Min-entropy is smaller,
only 25 times.

A nice property is that the bias is systematic, which means that the en-
tropy standard deviation calculations may be able to compensate for it by
subtracting the expected bias from the entropy standard deviation, given that
the number of samples (IDS alarms) is sufficiently large. However, this only

6This means that each factor in the bit-entropy calculations (one for Min-entropy and two for
Shannon entropy) contributes with a convergence speed of O(n−

1
2 ).
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makes sense if it is known that the data are encrypted. Since this in general
is not known for the payload from IDS rules, and it will be wrong to correct
for this bias for nonencrypted data, this means that the metric with fastest
convergence speed is preferable.

It must also be noted that bit-based entropies (both Shannon and Min-
entropy) are computationally less complex than octet-based Shannon entropy,
which needs to calculate the weighted logarithm expression for each symbol
in an octet. Counting the number of bits set to one in an octet or word (list
of octets) can be done by calculating the Hamming weight, which is im-
plemented in hardware on most modern Intel or AMD processors using the
popcnt (population count) operator. This opens up for efficient implementa-
tions of bit-entropy calculations for up to 64 bits word chunks [32], which is
more efficient than iterating to calculate the octet frequencies, as required by
octet-based entropies.

6.5.3 Entropy Standard Deviation Difference between Encrypted
and Plaintext data

Another foundational scenario that must be investigated, is how well the
proposed entropy algorithms and symbol definitions distinguish between en-
crypted and plaintext information. The entire theory behind σα hinges on the
assumption that there is a difference in entropy standard deviation between
plaintext and as a limit case encrypted information. To determine whether
this assumption is true or not, and which entropy configuration that works
best, we set up another Monte-Carlo simulation, this time comparing the en-
tropy standard deviation of plaintext data with the entropy standard deviation
of random uniform data for both Min- and Shannon-entropy, using both bit
and octet-based symbol definition.

The experiment configuration calculates the average and the 95% confi-
dence band (±2σ) from an ensemble of 10000 experiments. Each experi-
ment calculates the standard deviation over 50 samples for varying input data
length in bits, assuming that this is the smallest number of samples that in
practice will be used to reliably distinguish between encrypted and plaintext
data. If less samples are used per experiment, then the confidence band will
widen out, meaning that longer payload will be needed to reliably distinguish
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Figure 6.5.2: Difference and 95% confidence band between σα for plaintext and random
data using bit-entropy for varying input data length in bits.

between encrypted and plaintext data. There is in other words a tradeoff
between the payload length and the number of samples required to reliably
detect encrypted content.

Random uniform data was measured in a similar way as the previous ex-
periment. The plaintext data was extracted using randomly selected contigu-
ous quotes from the Brown corpus [53], with varying data length in bits along
the x-axis.

Figure 6.5.2 shows the difference between σα for plaintext and random
data using bit- and octet-entropy respectively for varying input data lengths
in bits. Shannon bit-entropy is the metric that distinguishes best between
cleartext and encrypted data for data lengths greater than 400 bits (50 bytes).

Figure 6.5.4 shows that Shannon octet entropy is able to distinguish re-
liably between cleartext and encrypted data over a sample of 50 IDS alarms
within a 95% confidence interval from 5 octets (40 bits) and onwards, despite
the poor convergence properties for random traffic in the range [5,131] octets.

However, due to the slightly hour-glassed shape of the entropy difference,
it is not possible to achieve any larger precision between 40 and 3000 bits
(375 bytes), unless the sample size is increased to narrow the confidence
band sufficiently. Plaintext data is 11 times larger than encrypted data at 5
octets (40 bits), whereas at around 128 octets (1024 bits), it is down to 1.8
times larger than the encrypted data, before the random data reaches its knee
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Figure 6.5.3: Difference and 95% confidence band between σ∞ for plaintext and random
data using Min-entropy for varying input data length in bits.
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Figure 6.5.4: Difference and 95% confidence band between σα for plaintext and random
data using normalised Shannon entropy for varying input data length in bits.

171



Privacy-enhanced Network Monitoring

101 102 103 104 105

Number of bits

10-4

10-3

10-2

10-1

100

St
an

da
rd

 d
ev

ia
tio

n 
of

 e
nt

ro
py

Bit entropy

σ1  plaintext
σ1  random

Figure 6.5.5: Payload length corrected Shannon bit-entropy with 95% confidence band as a
function of input data length in bits for plaintext and random data.

point where the octet-based metric again improves.

Shannon bit-entropy is more well-behaved than Shannon octet entropy,
in that the difference in entropy seems to be a strictly convex function, as
opposed to the octet-based entropies. Min-bit-entropy also seems to be well
behaved, and has the advantage that the 95% confidence band for Min-bit-
entropy is narrower than for Shannon bit-entropy. However it is still overall a
much poorer measure of entropy difference than Shannon bit-entropy, since
it requires at least 6000 bits (750 octets) to reliably distinguish between plain-
text and encrypted data. Octet-based Min-entropy, as shown in Figure 6.5.3,
behaves extremely poorly, and is not usable for distinguishing between plain-
text and encrypted text.

Overall, this strengthens the conclusion that Shannon entropy is the best
metric, regardless of symbol definition since it converges faster than the other
alternatives and it distinguishes better between cleartext and encrypted data
as long as the payload is longer than the minimum threshold of 5 octets for
octet-based entropy or 50 octets for bit-entropy for minimum 50 samples.

6.5.4 Payload Length Correction for Bit-entropy

A deficiency with the entropy standard deviation metrics, is that they decrease
as the data length increases. This is the desired behaviour for random uni-
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Figure 6.5.6: Payload length corrected Shannon octet-entropy with 95% confidence band as
a function of input data length in bits for plaintext and random data.

form data, however it is not necessarily desirable for plaintext data, since this
means that the metric can not be considered incentive compatible: it will then
pay off for an adversary to match as large plaintext data packets as possible,
since this in effect reduces the measured information leakage. An obvious
way to mitigate this problem might be to multiply the entropy values with the
length ni = |yi| of the IDS alarm, i.e. niHα(yi), and then take the standard de-
viation of the length corrected entropy values. This correction will however
be too strong, since the expected bias for random uniform data of length ni

then would be constant: σbias
1 ≈ γ1ni

ni
= γ1. This means that the metric would

not converge to zero for encrypted traffic.
This problem can be mitigated by multiplying the entropy values with the

square root of the payload length ni. This means that the length corrected
entropy values for bit-entropy can be described as H

′
α(yi) =

√
niHα(yi).

The length-corrected privacy leakage metric πL
R , can be expressed as:

π
L
R = I ·σL

k = I ·
√

2

N

∑
i=1

wi,k

∣∣∣H ′1(yi)− µ̃
′
k

∣∣∣
N

∑
i=1

wi,k

. (6.5.1)

where µ̃
′
k is the median from the LMM.

The payload length corrected Shannon bit-entropy standard deviation func-
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tion is shown in Figure 6.5.5. It can be observed that the term
√

niHα(yi) es-
sentially reduces the convergence speed to detect random uniform traffic for
Shannon entropy by a factor of O(n−

1
2 ) to σbias

1 ≈ γ1√
n , similar to Min-entropy

originally. However random uniform traffic will still converge towards 0, as
required, although somewhat more slowly. Furthermore, the measured pri-
vacy leakage for plaintext data will now increase exponentially as a function
of payload length, instead of decreasing, as long as the payload length is
larger than the required 100 bytes (800 bits). This modification avoids the
incentive incompatibility for Shannon bit-entropy, since the metric now in-
creases with increasing payload length.

6.5.5 Payload Length Correction for Shannon Octet-based En-
tropy

Shannon octet-based entropy has the same convergence speed as Min-entropy
after an initial transient phase, as shown in Figure 6.5.1. This means that

√
ni

can be used as a length correction factor also for Shannon octet-entropy to
ensure that the measured privacy leakage increases with the payload length
for plaintext data, and decreases with the payload length for random data.

This length correction does however not work well below 200 octets, since
Shannon octet entropy initially rises quickly until a knee point at 50 bits for
plaintext data and 150 bits for random data, and then starts falling, as shown
in Figure 6.5.4. It is desirable to reduce the effect of this knee point, in order
to have an easier functional relationship between plaintext and random data,
so that a fixed threshold can be used to distinguish between cleartext and
random traffic. Introducing an additional length correction factor of 1

log2(ni)

where ni is the length of the payload yi can be used to reduce the effect of
this knee point, as shown in Figure 6.5.6. This means that the payload length
correction function for Shannon octet-based entropy is H

′
α(yi) =

√
ni

log2(ni)
.

Payload length corrected Shannon octet-entropy standard deviation as a
function of payload length is shown in Figure 6.5.6. The initial slightly hour-
glassed shape of the standard deviation functions means that the octet-based
function despite the payload correction still is reduced slightly for plaintext
data between 48 and 800 bits (5 and 100 bytes) payload length. This means
that the metric is not entirely incentive compatible in this range, since it is
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Figure 6.5.7: Payload length corrected Shannon octet-entropy with 95% confidence band as
a function of input data length in bits for plaintext and Base64-encoded random data.

slightly decreasing for plaintext instead of increasing, however the deviation
is not very large. The octet-based metric is however incentive compatible
beyond 100 bytes, since the metric then increases with increasing payload
length for plaintext data. An advantage with Shannon octet-entropy, is that
it is able to detect whether short strings of data is encrypted or cleartext, for
example from pseudonymisation schemes, assuming that the data is at least 5
octets and encrypted using a perfect encryption scheme.

Another advantage with the payload length corrected entropy metrics, is
that a fixed threshold can be used to distinguish between plaintext and random
data, regardless of payload length for a sufficiently large sample (minimum
50 samples). For Shannon bit-entropy this threshold is 0.028, whereas Shan-
non octet-entropy has a threshold of 0.14 (five times larger).

It must be noted that it is possible to construct data that falls between the
two example entropies used here. The first example that comes to mind, is
partially encrypted IDS alarms, where for example a header part is nonen-
crypted and a payload part is encrypted or coded (e.g. compressed). In these
cases, some IDS alarms would be interpreted as encrypted, whereas others
may be interpreted as nonencrypted. However, an advantage with the octet-
based metric, is that relatively few octets are required to calculate it, which
means that the header and remaining payload in such cases can be calculated
separately.
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6.5.6 Standard Deviation of Entropy for Base64-encoded Data

Another interesting case is how σα copes with quoting techniques used to
transfer binary data on transport protocols that are not 8-bit clean. A common
encoding technique is Base64-encoding, which can be used to transfer binary
information in SMTP and XML-based formats like HTML or SOAP. Figure
6.5.7 shows the standard deviation of Shannon octet-entropy for plaintext and
Base64 encoded random data. The Base64-encoding adds redundancy, which
means that the encoded data is closer to plaintext data. This can be seen from
the Figure, since the confidence bands now overlap for less than 800 bit (100
bytes). However, for longer input data, the Base64-encoded random data
behaves in a similar way like plain random data, since the standard deviation
goes towards 0.

This means that at least 100 bytes are required to reliably distinguish be-
tween Base64-encoded random data and plaintext data. If it is known that the
information is Base64-encoded, then it will be possible to decode the infor-
mation before the entropy is calculated. This may be useful if the information
leakage of shorter Base64-encoded strings are being measured. However this
decoding will add additional parsing overhead, which may not be desirable
from a performance perspective. This is however avoidable, as long as the
payload is larger than 100 bytes as shown above.

6.5.7 Semantic Information of Symbols

The symbol definition for the entropy algorithms will also need to take into
account the semantic information that symbols convey. The definition of
bytes (or more precisely octets) is in particular important for computer sys-
tems, since this is used to define the basic character set used for commu-
nicating both text and binary codes. Octet-based symbol definition is also
important for many of the attack vectors discussed in the introduction. Buffer
overflow attacks for example frequently use the single octet NOP instruction
(0x90 on Intel machines) for the NOP sled. There also exist multi-octet NOP
variants and other techniques for generating an obfuscated sled [4]. However
for now consider single byte based NOP sleds, which are common, not the
least because they are easier to exploit. Using this strategy means that the
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shellcode does not need to be placed on an exact 32- or 64 bits word bound-
ary, as compilers typically enforce for normal programs [4].

The single-byte NOP sled (0x90) is a unique symbol for octet-based en-
tropy, however for bit entropy, this represents the binary string 10010000,
which has two out of eight bit set. The problem is that this value is not
unique. There will in general be 8!/((8−2)! ·2!) = 28 different octets, where
any combination of these can produce the same two-bit based entropy value
as this NOP opcode. In fact, bit-entropy means that 256 different octet values
are mapped down to only 9 different bit-entropies. Furthermore, whereas the
octet entropy of a list of NOP opcodes will be zero, the bit-entropy will be
greater than zero, except if all bits are ’1’ or ’0’. The Shannon bit-entropy
of the NOP sled is 0.81, which is very different from the octet-entropy (0).
Furthermore, if one octet of information is changed, this means that some-
where between one and eight bits will change. There is in other words a less
clear correlation between the change in information and change in entropy
for bit-entropy than for octet-based entropy.

This means that octet-based entropy is closer to representing the meaning
of the information being exchanged, and therefore should be the preferred
symbol definition for the privacy metrics. The discussion above has also
identified that the standard deviation of Shannon octet-entropy is the met-
ric that overall has the best properties for distinguishing between cleartext
and encrypted data, despite its poor convergence properties over part of the
usable range. Octet-based entropy is furthermore able to uniquely identify
that a sequence of the same octet has zero entropy, something bit-entropy
does not identify. This means that Shannon octet-entropy will provide the
largest possible difference in entropy between plaintext and strings consist-
ing of sequences of the same character. Shannon octet-entropy is in other
words a better privacy leakage metric than Shannon bit-entropy with better
distinguishing capability according to our requirements and needs within the
operating range. Min-entropy is not usable for our purpose.
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6.6 Experimental Results

The experimental results are based on IDS alarms from my own home net-
work between 2009 and 2011. Some of the IDS alarms are also from the
KDD-Cup’99 data set. We included the 32 most noisy IDS rules with at
least 50 IDS alarms per cluster in the measurements. The threshold of 50
IDS alarms per cluster is chosen to stay within the 95% confidence bands
discussed in the simulations in Section 6.5.3. This is a limited data set that
will not reflect the privacy leakage measured at a professional MSS provider
doing large-scale measurements. The main difference that can be expected
from a larger MSS provider, is that there would be a greater selection of IDS
alarms with more than 50 alarms per cluster, and that the number of attack
clusters would be greater. Furthermore, a larger set of IDS alarms may be
enabled by commercial MSS providers to counter for emerging threats that
are not yet in the Snort VRT ruleset, which we used. Furthermore, traffic
from a commercial MSS provider would not be influenced by the synthetic
KDD-Cup’99 data set.

However, despite these deficiencies, there are also some advantages by
using our own data. One of the main advantages, is that this allows for dis-
cussing the IDS rules that may be leaking private or confidential information
in detail, something that it according to our experience would be difficult
or impossible to do for a commercial MSS provider due to business confi-
dentiality and repudiation concerns. We have attempted to get agreement for
such measurements for commercial MSS providers, however this is only pos-
sible if the IDS ruleset is not revealed, which makes it difficult to discuss in a
convincing way that the proposed privacy leakage metrics work as intended.
More elaborate tests at a commercial MSS provider is therefore left as fu-
ture work. We decided to use a privacy impact factor I = 1 to only show the
information leakage part of the privacy leakage metrics.

The experiment includes an IDS rule that we created (sid:1:1394000)
which tests the worst-case scenario from a privacy perspective. This is a
threshold-based IDS rule that essentially samples every 10th packet from the
network. This is intended to show the maximum value that the privacy metric
typically is able to detect, which is useful to see how far away the IDS rules
in the measurements are from a worst-case scenario.
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Figure 6.6.1: Number of attack vectors estimated per IDS rule for Shannon octet-entropy.

6.6.1 Number of Attack Vectors

The number of attack vectors per IDS rule for the given experiment is sum-
marised in Figure 6.6.1. For this experiment, 53% (17 rules) have one attack
vector, 31% (10 rules) have two clusters identifying attack vectors, 13% (4
rules) have three clusters and 3% (1 rule) have 4 clusters identifying attack
vectors. Please note that these numbers are specific to the given experiment.
A preliminary experiment at a commercial MSS provider indicates that large-
scale operations can expect the distribution to be shifted somewhat towards
more attack vectors. It is in other words common that IDS rules may trigger
on more than one attack vector, which means that clustering must be used to
calculate the entropy of each underlying attack vector.

6.7 Influence by Outliers

Figure 6.7.1 shows the Normal standard deviation σ1 and Laplacian standard
deviation σL

1 based on the L1 norm for length corrected normalised Shannon
octet-entropy. The Figure shows that the Normal standard deviation σ1 for
some IDS rules indicate a significantly larger privacy leakage than the Lapla-
cian standard deviation σL

1 . The most extreme cases are SID 119:14 which
detects non-standard characters in web requests and SID 1:399 ICMP Host
unreachable. The reason for the deviation is in both these cases outliers far
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out from the main cluster. The Normal standard deviation will give too high
weight to the outliers in these cases, since it measures the root of the squared
distances. Other IDS rules where the Normal standard deviation of entropy is
somewhat influenced by outliers are amongst others SIDs 119:4, 119:15 and
1:1201.

In all these cases, the Laplacian standard deviation will give a more re-
alistic estimate of the privacy leakage than the Normal standard deviation.
The Laplacian standard deviation is only significantly larger than the Normal
standard deviation for SID 1:402 ICMP Destination Port unreachable. This
IDS rule has a left skewed noisy distribution, with several peaks reflecting
the servers that were attempted contacted, but did not respond. We inter-
preted this as one cluster, since the failed services strictly speaking cannot
be considered attack vectors. The median for this IDS rule (at 7.5) deviates
somewhat from the mean (at 7.2), which gives more weight to the leftmost
peaks for the Laplacian standard deviation than the Normal standard devia-
tion does in this case, causing the Laplacian standard deviation to be larger
than the Normal standard deviation. This is a pathological case where the
normal standard deviation may give a better estimate than the Laplacian stan-
dard deviation. However, overall the Laplacian standard deviation σL

1 should
be used to calculate the privacy leakage metric, since this in most cases is the
more robust statistic.

6.7.1 Measured Information Leakage

Figure 6.7.1 shows the measured privacy leakage for the experiment using
length corrected standard deviation (Normal σ1 and Laplacian σL

1 ) of nor-
malised Shannon octet-entropy as a function of Snort IDS rule. Further de-
tails can be found in Table 6.7.1. This discussion is based on the Laplacian
standard deviation, since the previous section shows that the Normal standard
deviation has problems with outliers in the dataset. First, it can be observed
that the metric works as expected for the extreme cases. The IDS rule that per-
forms random sampling of payload (SID 1:1394000) has the highest privacy
leakage. On the other hand, there also exist 5 IDS rules that are very precise
at matching the attack vector, and behaves like the perfect model IDS rule RP

with zero privacy leakage. IDS rules that fall into this category are attack vec-

180



Chapter 6. Measuring Privacy Leakage for IDS Rules

Snort SID Alarms K σ1 σL
1 Description

1:1394000 95096 1 6,71 6,70 Samples random traffic
119:14 3104 1 4,10 3,49 http_inspect non-standard

characters in web request
1:402 36224 1 2,34 2,73 ICMP Dest. Port unreachable
1:1201 680 1 1,96 1,77 HTTP 403 Forbidden
119:15 720 1 1,40 1,02 http_inspect over-long URL
1:1394 1384 2 0,90 0,97 Shellcode x86 NOP AAAAAA
119:4 576 1 1,24 0,91 http_inspect preprocessor (IIS

decoding attacks)
1:1852 10392 1 0,96 0,75 robots.txt access
1:1463 288 1 0,80 0,72 IRC Chat
119:2 21744 2 0,58 0,61 http_inspect double encoded

characters
1:399 631840 1 1,02 0,58 ICMP Host unreachable
119:7 1520 2 0,48 0,43 http_inspect unicode encoded

web request
1:12592 312 1 0,33 0,40 SMTP command injection

attempt
1:2925 12960 2 0,42 0,35 1x1 GIF attempt (web bug)
1:1560 360 2 0,27 0,30 WEB-MISC /doc access
1:486 368 1 0,37 0,27 ICMP Destination Unreachable
128:4 306616 3 0,25 0,27 spp_ssh
119:18 22760 2 0,32 0,18 http_inspect directory traversal

outside web server root.
122:1 576 2 0,08 0,10 sfPortscan preprocessor
122:3 2088 1 0,09 0,09 sfPortscan preprocessor
1:384 566016 4 0,04 0,08 ICMP Ping (general)
1:1437 1056 2 0,08 0,08 MULTIMEDIA Windows

Media download
1:408 205904 3 0,04 0,04 ICMP Echo Reply
1:366 202552 1 0,04 0,04 ICMP Ping *NIX
1:368 202552 1 0,04 0,04 ICMP Ping BSD
1:11969 2896 3 0,03 0,03 VOIP-SIP inbound 401 Unauth.
1:385 4392 2 0,04 0,03 ICMP traceroute
1:382 2192 1 0,00 0,00 ICMP Ping Windows (alphabet)
1:2050 32024 1 0,00 0,00 SQL Version Overflow attempt.
1:2003 1777264 1 0,00 0,00 SQL Worm Prop. attempt.
105:2 192 2 0,00 0,00 BO traffic (spp_bo)
106:4 464 3 0,00 0,00 spp_rpc_decode preprocessor

Table 6.7.1: Privacy leakage and number of clusters K measured using length corrected
standard deviation based on Shannon octet-entropy for the IDS rules in the experiment.
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Figure 6.7.1: Privacy leakage measured using length corrected standard deviation (Normal
σ1 and Laplacian σL

1 ) of normalised Shannon octet-entropy as a function of Snort IDS rule.

tors like SID 1:2050 SQL Version Overflow attempt, SID 1:2003 SQL Worm
Propagation attempt, SID 105:2 BO traffic and SID 106:4 spp_rpc_decode
preprocessor which detect amongst others incomplete RPC segments. All
these IDS rules indicate possibly malicious activities, and are precise at de-
tecting the attack. SID 1:382 which detects ICMP Echo requests (Ping) for
Windows also behaves like a perfect IDS rule. It typically sends the alphabet
in the payload.

There are furthermore 9 additional IDS rules with privacy leakage lower
than the threshold of 0.14 for distinguishing between plaintext and encrypted
traffic that was identified in Section 6.5.4. Rules in this category can be con-
sidered to have insignificant privacy leakage, since it is not distinguishable
from encrypted traffic. These include ICMP rules matching ICMP Echo Re-
quest and Reply for various platforms (SIDs 1:384, 1:408 and 1:368) and
ICMP traceroute (SID 1:385). These ICMP protocols are part of the TCP/IP
protocol suite and are benign in themselves, however the Ping protocol is
also frequently used for malicious activities like Denial of Service attacks or
Ping scans. Furthermore pre-attack activities like portscanning (SIDs 122:1
and 122:3), and unauthorised inbound SIP calls (SID 1:11969) are poten-
tially malicious activities that fall into this category. Last, SID 1:1437 detects
download of Windows media files. This would normally be considered a be-
nign activity, and it may also be concerning from a privacy perspective if this
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IDS rule is activated, since it could be used to monitor user activities. This
rule detects download of Windows media files as two narrow clusters, where
the upper cluster at an entropy close to 1 probably indicates download of the
compressed media file. This is an example of a pathological case where the
entropy standard deviation in itself, as an indirect measure of privacy leak-
age, does not match the perceived privacy leakage. The data controller may
in this case consider whether the privacy impact I of this IDS rule should be
increased.

The privacy leaking IDS rules can broadly be subdivided into two groups:
IDS rules with large privacy leakage (σL

1 > 1) and IDS rules with medium
privacy leakage (σL

1 ∈< 0.14,1]). There are 13 IDS rules with medium pri-
vacy leakage. The most privacy leaking of these IDS rules, is SID 1:1394
“SHELLCODE x86 inc ecx NOP” which triggers on any packet that con-
tains a sequence of 31 ’A’ characters (σL

1 = 0.97). The problem is that this
sometimes occurs in hex-encoded URLs or hex-encoded data in web pages.
It may also occur in non-compressed images, as well as for other protocols.
This means that the rule most likely will trigger on a lot of random traffic,
which is problematic from a privacy perspective.

Many of the rules with medium privacy leakage may be triggered by nor-
mal user behaviour, for example SID 1:486 ICMP Destination Unreachable,
SID 1:402 ICMP Destination Port Unreachable and SID 1:399 ICMP Host
unreachable. These can be problematic from a privacy perspective, since the
ICMP error message often contains the payload of the original request, and
these error messages can for example be triggered by high traffic volume (or
DoS attacks) towards a server. This means that these ICMP messages es-
sentially sample random user traffic. There are also other IDS rules in this
category that will sample random traffic from users, which for example may
be used in user profiling. Examples of such rules are SID 1:2925 1x1 GIF
attempt that detects web bugs, SID 1:1560 that triggers on access to /doc on
the web server root and SIDs 119:2, 119:4, and 119:7 that aim at detecting
anomalies in HTTP requests like double encoded requests, IIS decoding at-
tacks and unicode encoded requests. These may indicate attacks, but will in
most cases probably be false alarms that essentially sample random user traf-
fic, something that may be problematic from a privacy perspective. 1:1852
robots.txt access, which normally indicates indexing of a web server by a web
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crawler, also falls into this category.

There are also some other attack rules with medium privacy leakage that
do not target ICMP or web traffic. SID 128:4 detects non-SSH traffic on an
SSH port, or a protocol mismatch (e.g. SSH1 traffic on an SSH2 port). This
rule triggers on the initial key negotiation phase, where some information in
the SSH protocol goes in cleartext. This can probably not be considered a
significant primary source of privacy leakage, since no sensitive information
is transferred in the packets. The data controller may consider reducing the
privacy impact for this IDS rule. SID 1:12592 detects SMTP command injec-
tion attempts, that aims at exploiting a bug in the ClamAV anti-virus system.
The rule definition is a very simple regular expression which is likely to have
false alarms. This rule may therefore be concerning from a privacy perspec-
tive, although it mostly triggered on spam. Rule 1:1463 triggers on IRC chat
traffic, which also may be concerning from a privacy perspective. The reason
for implementing this rule, is that IRC bots also often have been used to con-
trol botnets of compromised hosts. However, the rule does not check whether
the traffic is benign or not.

There are four IDS rules with high privacy leakage, not including the test
rule that samples random traffic. Three of these trigger on web traffic: SIDs
119:14, 119:15 and 1:1201. The most privacy leaking ordinary IDS rule (SID
119:14, σL

1 = 3.49) triggers on non-standard character encodings in HTTP
requests, which are getting increasingly common, especially after IANA al-
lowed non-ASCII domain names. The second most privacy leaking IDS rule
is SID 1:402 ICMP Destination Port Unreachable with σL

1 = 2.73. This pro-
tocol typically copies the failed request in the ICMP message, and therefore
samples random traffic requests. On third place is SID 1:1201 HTTP 403 For-
bidden (σL

1 = 1.77), which also is quite common also for benign traffic, for
example on web sites referring to internal material that require subscription.
On fourth place is SID 119:15 that tests for over-long URL’s (σL

1 = 1.02),
something that frequently happens for blogs or search engines that use URL
referencing. All of these rules may be problematic from a privacy perspec-
tive, since they in many cases will trigger on normal user behaviour. It is
especially problematic if the IDS rules monitoring web services are set up in
an uncritical way, so that these rules trigger for any web server accesses and
not only for relevant web servers (e.g. the company’s own web servers).
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This discussion shows that the privacy leakage metric is able to distinguish
between IDS rules that most likely may trigger on ordinary user activities, and
therefore may be problematic from a privacy perspective, from the IDS rules
that are precise at detecting the underlying attack vector, or that perform a
very specific task without leaking any significant amount of data about user
behaviour. However there were also two pathological cases where it may
make sense to adjust the privacy impact, since using entropy as an indirect
measure of privacy leakage not always will gives a true picture of whether the
underlying information is sensitive from a privacy/confidentiality perspective
or not. Overall, this demonstrates that the privacy leakage metric works as
intended. However larger studies involving commercial MSS providers will
be needed in the future to confirm these results.

6.7.2 The Effect of Anonymisation

The resulting privacy leakage over all IDS alarms in the experiment, weighted
according to number of alarms, is 0.31. However, if the test IDS rule with SID
1:1394000 that samples random data is removed, then the resulting privacy
leakage is reduced to 0.16. If all the IDS rules with high privacy leakage are
removed, then the resulting leakage is reduced by 0.02 to 0.14.

Surprisingly, it is then more efficient to anonymise all ICMP Destination
Host unreachable alarms, since there are many of them (631840) in the data
set, and each of them has a significant measured privacy leakage (σL

1 = 0.58).
Anonymising ICMP Destination Host unreachable alarms would reduce the
overall privacy leakage by 0.07 to 0.07. This can probably be done without
reducing the usability for the security analyst significantly, since it still would
be known which host that was attempted contacted from the IP-address ele-
ment of the IDS alarm. SID 1:402 ICMP Destination Port unreachable also
triggers quite often (32360 times) and has the second highest measured pri-
vacy leakage (σL

1 = 2.73). Anonymising this rule reduces the privacy leak-
age by 0.02 to 0.05, and can probably also be done without reducing the
possibility to do root cause analysis significantly, since the number of ser-
vices running on a server normally is limited. Classification based on the
EM-clustering can if necessary be used to indicate which server that failed
without revealing the original user request. These examples show that the
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total privacy leakage, calculated as the product of number of IDS alarms NR

for the given rule R and the entropy standard deviation σL
1,R, must be used

as the optimisation criterion to reduce the overall privacy leakage. The total
privacy leakage is calculated as Ltot = NRσL

1,R.

Another IDS rule, that either benefits from anonymisation, alternatively
by setting the privacy impact to zero, is SID 128:4 which detects ssh anoma-
lies. This rule triggers quite often (306616 times) with σL

1 = 0.27, which
means that the overall privacy leakage can be reduced by 0.02 to 0.03 if this
rule is anonymised. If the IDS rules with low privacy leakage, that are not
relevant from a privacy perspective (all with privacy leakage less than 0.14,
except SID 1:1437), are either anonymised or removed by setting the privacy
impact to zero, then the resulting privacy leakage index is reduced from 0.03
to 0.011.

If the two IDS rules from the http_inspect preprocessor with largest to-
tal leakage (SID 119:14 and 119:2) also are anonymised, then the measured
privacy leakage is reduced to 0.005.

This illustrates how a structured method can be used to reduce the privacy
leakage of the IDS ruleset based on measured privacy leakage and number
of IDS alarms. It is furthermore also clear that many of the IDS rules can
be anonymised without significantly reducing the usability for the security
analysts. Especially since the clustering model used to identify attack vectors
in many cases can be used to help the security analysts in identifying the
necessary properties of the underlying data without having to reveal the user
payload.

6.8 Related Works

The research area of quantitative information flow based on information
theory adds a comprehensive theoretical framework for analysing privacy
leakage based on entropies [122, 121]. Our research is based on this, and
extends the theory to cover privacy leakage in IDS alarms. There is as far
as we are aware of no other research that proposes a comprehensive model
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of privacy leakage in IDS alarms based on quantitative information flow ana-
lysis.

Quantitative information flow analysis that in a similar way uses informa-
tion entropy has however been proposed used to derive an intrusion detection
capability metric in [61]. This metric aims at modelling the uncertainty about
the input given the IDS output. The uncertainty as it is termed in this paper
is the same as the information leakage defined here based on [122], which
in turn is based on the notion of mutual information from [118]. The IDS
capability metric is defined as the mutual information between the IDS input
and output to the entropy of the input:

CID =
H(X)−H(X |Y )

H(X)
(6.8.1)

The numerator is the same as the information leakage defined in [122],
however these data are normalised with respect to the entropy of the input
data, something our model does not do. This model assumes that the input
data H(X) is the labels (attack or not) from a labelled IDS test set, and the
output data H(X |Y ) is the classification by the IDS, which also is different
from our conceptual model of an IDS rule. It is from this clear that the pro-
posed metric is different from the privacy leakage metric proposed here, since
it assumes different input data, a different information model and normalises
the indicator to the input data. However an interesting similarity is that the
effect of false positives in Figure 3b) in this paper follows a similar falling
exponential curve as Figure 6.7.1, as can be expected, since the false alarms
here will increase the entropy up to the point where the classifier is not better
than random decisions. However this paper does not make the connection to
privacy leakage metrics for IDS rules.

There are also some similarities between the proposed approach and the
concept of Differential Privacy in statistical databases [40, 41, 42]. Both
methods use a Maximum Likelihood (ML) estimate, however the estimate
is interpreted differently. Differential Privacy uses the ML estimate to indi-
cate the aggregate value of underlying perturbed data, whereas we use the
ML estimate as a measure of underlying attack vectors. Both methods use
robust statistics (first norm) for calculating aggregated values. However, Dif-
ferential Privacy typically adds Laplacian noise to hide individual elements
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of privacy sensitive information, whereas our privacy leakage metric works
in the opposite way - assumed Laplacian noise from an IDS rule is used as
an indication of IDS privacy leakage. So although there are similarities, our
proposed metric is clearly different to Differential Privacy.

Entropy has previously been proposed as a measure of privacy [29, 17].
Claude Shannon’s seminal paper on information theory was the first publica-
tion where entropy was proposed to measure the level of ambiguity or equiv-
ocation in transferred information [118]. Min-entropy has been proposed as
a metric of anonymity that in particular considers local aspects, i.e. the worst
case scenario for the user [131]. The more general Rényi entropy has been
proposed as a metric of anonymity in [117, 17]. Neither of these have used
entropy to measure privacy leakage in IDS alarms.

The chapter is also related to field of privacy-preserving intrusion detec-
tion systems [123, 50, 124, 104, 98, 51], however neither of these solutions
focus on privacy metrics.

6.9 Conclusion

In this chapter we propose an entropy-based privacy leakage metric founded
on quantitative information flow analysis. An advantage is that this metric
can be calculated based on already existing information in the IDS alarm
database. From a privacy perspective, it provides a structured approach to
identify which IDS rules that may be leaking sensitive information and also
for handling such privacy leakages.

An advantage with the metric, is that it also is a measure of IDS rule
precision. This is clearly desirable, since the objective is to tune the IDS
ruleset to reduce the leakage of private or confidential information over time,
for example through improving the precision of the IDS rule or by applying
anonymisation techniques. This is also an advantage from a security per-
spective, since more precise IDS rules mean less effort spent on false alarm
handling.

We have demonstrated that the proposed approach is feasible based on a
set of real IDS alarms. It is furthermore shown that different entropy algo-
rithms and ways to calculate the standard deviation have different strengths
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and weaknesses. Not surprisingly, the Laplacian standard deviation based on
the L1 norm provides the most robust statistic to avoid problems with outliers,
a problem that has been shown to occur in the experimental data. The experi-
ments have shown that Shannon octet-entropy is the best entropy metric with
fastest convergence speed for reliably detecting encrypted traffic, and it is
also the entropy metric that is is best at distinguishing between plaintext and
encrypted traffic. It is also shown how the metric can avoid being incentive
incompatible by taking into account the length of the input data.

The Laplacian Mixture Model of the underlying data will in itself be use-
ful for classification purposes. If a given model of the data has been identified,
then this can be used for subsequent classification of the underlying samples,
for example to anonymise IDS alarms from data clusters that may contain
sensitive information about user transactions, or to further classify the attack
vectors of the IDS alarms, for example to detect Denial of Service attacks.
The clustering can therefore be used as a post-processing step to modify the
IDS alarms according to cluster, which means acting as a higher order IDS
solution.

A possible attack on the clustering method, is an overfitting attack where
a MSS provider decides to shirk by deliberately overfitting the attack vec-
tors. The proposed method to avoid this, is to ensure separation of duties
between privacy and security interests and also that third party certification
organisations oversee the operation.

The proposed privacy leakage metric only measures the primary privacy
leakage sources in IDS alarms. It does not consider secondary sources of
information leakage, like correlation of different information sources. How-
ever, being able to measure the primary sources of privacy leakage in IDS
alarms is at least an initial approach that can and should be considered before
more elaborate analyses of the anonymity set are performed. Furthermore,
the ability to verify that the anonymisation policies reduce measured infor-
mation leakages means that policy verification, in the form of a privacy leak-
age gap analysis, will be possible in order to provide incremental reductions
of privacy leakage in IDS alarms over time.
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6.10 Future Work

Future work includes doing comparative studies of the performance of differ-
ent MSS providers from a privacy perspective. Adapting the privacy leakage
metric to support anomaly-based IDS is also left as future work. This will
amongst others require subdivision of the alarms, for example based on ser-
vice etc., to avoid that the entropy space becomes too crowded by attack
vectors.

Investigating possible secondary privacy leakages that may occur due to
inference or cross correlation between different information sources both
within the IDS alarm and outside is also left as future research. This would
require taking the privacy leakage metrics and evaluation even further in or-
der to evaluate the anonymity set that can be expected for private or sensitive
information, using metrics like differential privacy [40, 41, 42], k-anonymity
[37], or l-diversity [86].
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Metrics-supported Privacy
Enforcement

The dissertation has so far pursued two main goals: Part II covers how to
enforce a privacy policy for IDS alarms, and the previous Chapter investi-
gates how to identify and measure leakage of potentially private or confi-
dential information. What is missing, is to show how these two objectives
can be combined into a comprehensive solution that allows for implementing
privacy-enhanced intrusion detection systems in practice.

This chapter therefore proposes a methodology and tools for metrics-
supported privacy enforcement, to measure, identify and reduce the leakage
of private or confidential information for a data service. This includes de-
scribing a structured approach for identifying how much, where and what
information that leaks through a service. One technique developed here, is
a Shannon entropy based privacy leakage map that can be used to identify
where information leakages occur for different attack vector clusters. The
chapter also proposes how a metrics-supported privacy enforcement scheme
based on Expectation-Maximisation based clustering of data entropies can be
performed under conditions that are verifiable. This can be used as part of a
privacy gap analysis to plan, enforce, validate and improve the privacy policy
over time.
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7.1 Introduction

A privacy policy can be enforced by applying techniques like anonymisation,
pseudonymisation or encryption, where private or confidential information in
the two latter cases only should be made available to authorised sources, for
example doctors at a health institution, plant engineers in a critical infrastruc-
ture, security analysts at a managed security service, Computer Emergency
Response Team (CERT) or law enforcement during attack investigation.

However a general challenge is knowing what to anonymise, and how
much information that is required to efficiently do a given task. This is an area
where privacy leakage metrics are useful to support the privacy enforcement
policy. Such metrics can for example be used as part of a privacy impact
assessment to verify that a privacy policy is working as expected, and trigger
revalidation of the privacy policy if a statistical model of the underlying traffic
is no longer supported.

Privacy leakage metrics can be used to quantify how much private or con-
fidential information that is leaking, as well as detecting where such informa-
tion leakages occur. This can subsequently be used to improve the privacy
policy in a structured way, to reduce the overall privacy impact of the service
being protected by the anonymiser. The metrics are assumed used together
with a privacy enforcement mechanism that allows for ensuring transparency
on who have accessed what, in addition to non-repudiation, so that an oper-
ator cannot deny having processed certain information. This, together with
techniques like key sharing, makes it possible to implement a controlled envi-
ronment where it will be harder for trusted insiders to abuse the information
being processed, or maliciously modify the policies being enforced.

The main contributions of this chapter are:

1. developing the concept of a privacy leakage map, which indicates where
information leakages occur, and investigating how this can be used to
support enforcement of a privacy policy;

2. an analysis and recommendations on how privacy leakage metrics should
be used as part of a privacy policy enforcement and validation scheme;

3. describing how the metrics can be used as part of an improvement pro-
cess to maintain and improve the privacy protection over time;
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4. illustrating how the privacy leakage metric and enforcement mechanism
can be used for other application areas than privacy-enhanced intrusion
detection systems.

The chapter illustrates that there are both privacy and security benefits from
the proposed scheme, as well as quite broad application areas. The objective
of this chapter is not to describe the method for enforcing privacy by rewrit-
ing data but how to combine privacy enforcement techniques (e.g anonymi-
sation, pseudonymisation or encryption) with privacy metrics as part of an
information security management process. This can be used to reduce the
gap between actual and desired privacy over time.

The remainder of this chapter is organised as follows: Section 7.2 de-
scribes the problem that the chapter aims at solving, and gives some motivat-
ing examples on how the privacy leakage metrics can be used to support a pri-
vacy and security improvement process. This includes giving an introduction
to the privacy enforcement scheme that the metrics will be used with. Sec-
tion 7.3 gives an introduction to the theory behind the privacy leakage metric,
which is used as part of the improvement process. Section 7.4 describes
how the privacy leakage metric can be extended to a privacy leakage map
showing where information leaks in data elements. Section 7.5 analyses how
privacy leakage can be detected and mitigated based on case studies. Section
7.6 discusses different anonymisation strategies, and how the privacy leakage
metrics can support these. Section 7.7 discusses related works, Section 7.8
concludes the chapter and Section 7.9 outlines future work. Technical details
on how metrics-based privacy enforcement scheme has been implemented in
the XACML-based reversible anonymiser is described in appendix A.

7.2 Problem Description and Motivation

The problem that this chapter aims at solving, is how to use and extend
the Shannon entropy-based privacy leakage metric, described in the previous
chapter, to support an improvement process consisting of planning, develop-
ment, enforcement and verification of privacy policies, where these privacy
policies control a reversible anonymisation scheme for XML data. Reversible
anonymisation here means that XACML policies can control anonymisation
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Figure 7.2.1: SID 119:14 Non-standard characters in web requests.

of information down to octet ranges of selected XML elements or attributes,
at the same time as the anonymised information can be stored encrypted in a
format that specifies how to undo the anonymisation.

The chapter also describes how the privacy leakage metrics and privacy
enforcement mechanism can be used in an information security management
process to identify gaps between the stated and actual privacy level, as well
detecting privacy erosion over time, as the underlying data changes. The
chapter furthermore proposes how a detailed privacy leakage map can be
calculated based on the standard deviation of Shannon entropy, in order to
visualise where (in which octets of a data element) information leakages oc-
cur. This information can then be used to set up more detailed anonymisation
policies that are able to anonymise significant privacy leakages.

7.2.1 Motivation

Figure 7.2.1 shows a motivating example describing some of what we aim at
achieving. This figure illustrates how the Shannon entropy standard devia-
tion varies as a function of payload octet number for the Snort IDS rule with
SID 119:14, which triggers an IDS alarm on non-standard characters in web
requests (3104 alarms). Figure 7.2.1 illustrates where in the IDS alarm infor-
mation leakages occur. How much privacy leakage the IDS rule has can be
quantified using Shannon-entropy based privacy leakage metric πL described
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in the previous chapter. The privacy leakage map has a stapled line indicating
that traffic below this line is considered having insignificant privacy leakage
for example being anonymised or encrypted. The figure therefore indicates
a significant information leakage (πL > 0.14) for payload octets in the range
[0,1400] with a large information leakage peak measuring privacy leakage
πL > 3 in the octet range [170,330].

The rule triggers mostly on traffic from Facebook games in the network
being monitored, since the games use non-standard characters in the web
request when updating game status etc. It also triggers on web requests veri-
fying the status of digital certificates using the Online Certificate Status Pro-
tocol (OCSP), which also is related to these games.

This IDS rule has a significant privacy impact since it triggers on benign
use of a popular web application like Facebook. It may furthermore reveal
privacy sensitive information about user behaviour, user preferences, interests
etc., which means that payload samples in alarms from this IDS rule should
be anonymised. One technique that may be used, is to anonymise traffic using
privacy blacklisting based on IP address, so that traffic from Facebook.com
and affiliated gaming companies will be anonymised. Privacy blacklisting
here means that certain information of private or confidential sources need to
be protected against unauthorised disclosure by insiders.

Anonymisation of private or confidential information, for example in IDS
alarms or XML messages in web services, is needed to protect such sensitive
information from eavesdropping or abuse, both from curious insiders, but
also from outsourced services. This is especially the case where services,
for example managed security services, are outsourced to third-parties that
may not be entrusted to see all information in the messages. Privacy leakage
metrics are then required to verify that privacy policy enforcement works
as intended, in order to be able to detect and restrict unintended flows of
sensitive data. Which information that needs to be restricted will typically
come from privacy requirements derived from a privacy impact assessment
done by the data controller.
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Plan information protection scheme:
- Privacy impact assessment;
- Measure information leakage sources:
  identify how much, where and what leaks;
- Plan and define anonymisation policy,
  and access control.

Enforce (or do) privacy policy:
- Anonymise using XACML privacy policy;
- Metrics-supported conditional anonymisation;
  based on clustering:
- Alternatively reduce privacy leakage 
  using other means, e.g. using improved 
  IDS rules.

Check (or verify) privacy policy:
- Trigger corrective actions if:
    - Data does not fit clustering model 
      (using hypothesis test);
    - Information protection scheme is faulty;
    - Information opacity level does not fit policy.

Act - perform corrective actions:
- Request corrective actions on significant
  differences between actual and planned
  results.
- Decide whether a new PDCA cycle is
  required.

Figure 7.2.2: Privacy Improvement Process using well-known Plan Do Check Act method.

IDS Alarm

<IDMEF-Message>
  <Alert messageid="0c18ec...">
    <Source spoofed="unknown" 
          interface="wlan0">
      <Node category="unknown">
        <Address category="ipv4-addr">
          <address>10.0.2.2</address>
        </Address>
      </Node>
    </Source> 
    <Classification ident="1:5976" 
        text="SNMP AgentX/tcp request">
    </Classification>
    <AdditionalData type="byte-string" 
                 meaning="payload">
      Payload data...
    </AdditionalData>
  </Alert>
</IDMEF-Message> 

Anonymise

XACML
privacy
policy

Anonymised IDS Alarm

Spec: How to undo anonymisation.
Role1

Role2

Role n

...

Security level 1
Security level 2
Security level 3

<IDMEF-Message>
  <Alert messageid="000000000">
    <Source spoofed="unknown" 
          interface="00000">
      <Node category="unknown">
        <Address category="000000000">
          <address>00000000</address>
        </Address>
      </Node>
    </Source> 
    <Classification ident="1:5976" 
        text="SNMP AgentX/tcp request">
    </Classification>
    <AdditionalData type="byte-string" 
                 meaning="payload">
      000000000000...
    </AdditionalData>
    <AdditionalData type="xml" 
     meaning="EncryptedData">
      <xml>    

      </xml>
    </AdditionalData>
  </Alert>
</IDMEF-Message> 

...

Figure 7.2.3: Outline of how the reversible anonymisation scheme modifies the data of
IDMEF messages.
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7.2.2 Introduction to the Privacy Enforcement Scheme

This section gives an overview over how the privacy policy enforcement
scheme assumed in this chapter works. Anonymisation enforcement is done
using a reversible anonymisation scheme, which is based on and extends
the eXtensible Access Control Markup Language (XACML) based decision
cache and anonymiser in [135]. Reversible anonymisation means that the
anonymised IDS alarm contains an encrypted specification on how to undo
the anonymisation, as illustrated in figure 7.2.3. This also means that the
enforcement mechanism considers anonymisation as a specialisation of au-
thorisation to information. The scheme supports both traditional irreversible
anonymisation and reversible anonymisation. The enforcement mechanism
can therefore be used for authorisation, anonymisation or encryption of in-
formation in a service oriented architecture.

The figure illustrates anonymisation of an XML-based IDS alarm in the
Intrusion Detection Message Exchange Format (IDMEF) [62]. An XACML
based privacy policy defines XPath expressions [127], which are used to
identify XML resources and attributes that need to be anonymised or permit-
ted. Anonymisation can be performed using either a default PERMIT policy,
where private or confidential information explicitly must be anonymised, or
using a default DENY policy, where all information by default is anonymised,
and selected information that according to a privacy impact assessment has
been shown to not be privacy leaking subsequently is permitted. The latter
method is in general preferred from a privacy perspective, since it ensures
privacy by default, according to the Privacy by Design criteria [25]. The
anonymisation protocol uses the IDMEF data extension scheme, which en-
sures that the anonymiser is compatible with existing Security Information
and Event Management systems based on IDMEF, for example PreludeIDS1.
Furthermore, only authorised stakeholders, possessing the correct private en-
cryption keys, are able to deanonymise information in security levels they are
authorised for.

The reversible anonymisation scheme allows several roles or users access
to different security levels according to the XACML privacy policy. This
essentially means that the scheme supports multilevel security for private or

1PreludeIDS: https://www.prelude-ids.org
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confidential information in XML messages. It also allows separation of duty
constraints to be specified, for example to support key sharing, where several
stakeholders need to collaborate to reveal given information (for example the
data controller and law enforcement).

The scheme furthermore opens up for transparency on who have seen
what information, by logging who have been authorised to see which IDS
alarms. Note that the reversible anonymisation scheme is not limited to ID-
MEF messages, but can with small modifications be adapted to work for
other XML-based formats. The only adaptations needed, is to declare where
the encrypted specification of anonymisation reversal resides. This makes it
possible to perform fine-grained anonymisation of information in any XML
message down to octet ranges of individual elements or attributes of a mes-
sage. This means that the privacy enforcement scheme will be useful for
service oriented architectures in general, and in particular for sharing of best
practices and attack information when sensitive information needs to be con-
fidential.

XACML was chosen because it is an authorisation language with wide
adoption in industry, that works well with other XML-based authentication
standards like the Security Assertion Markup Language (SAML) [110] in
a service oriented architecture. The solution uses the GeoXACML exten-
sion [6], which supports location-aware authorisation where geographical lo-
cations can be embedded within the policies, as well as providing rich data
types that we use in the reversible anonymisation protocol, amongst others for
defining octet ranges and clustering models. An advantage with this approach
is that anonymisation and protection of sensitive information is policy-based,
configurable and adaptable, instead of being hard-coded.

The Anonymiser and Deanonymiser components will be added as com-
ponents of an Enterprise Service Bus (ESB) based architecture for protecting
critical infrastructures against cyber-attacks. This is being developed as part
of the European PRECYSE project2.

2PRECYSE stands for Prevention and Reaction to Cyber Attacks to Critical Infrastructures,
http://www.precyse.eu.
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Figure 7.3.1: Overview over how the privacy leakage metric is calculated.

7.3 Background for Entropy-based Privacy Leakage

Metric

This section gives a brief overview over the privacy leakage metric defined in
chapter 6. The metric is based on Shannon entropy and the concept of mutual
entropy [118], and has been developed based on the theory quantitative in-
formation flow analysis in [122, 121]. Figure 7.3.1 gives an overview picture
over how the privacy leakage metric is calculated.

Figure 7.3.1 shows that the privacy leakage metric starts with calculat-
ing the length-corrected Shannon entropy for a set of data samples. An
Expectation-Maximisation based clustering algorithm is then used to derive a
set of attack vector clusters from the data sample, for example the underlying
attack vectors that an IDS rule triggers on. The clustering is a semi-automatic
process, where a data controller can oversee the process, and assert missing
clusters or delete clusters where the algorithm overfits the data. The data
controller can also investigate the data of the clusters, to determine if a data
cluster warrants being defined as a separate attack vector or not. The ob-
jective is to define a clustering model that is as simple as possible, but still
captures important features of the dataset, to avoid overfitting the model.

The privacy leakage metric, based on the Laplacian standard deviation
of Shannon entropy, is subsequently calculated for each cluster. The data
controller can in this phase investigate each data cluster, and define a privacy
impact factor in order to define the privacy relevance of the given data cluster.
The privacy leakage measurements are then aggregated over all clusters for a
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Figure 7.3.2: Laplacian standard deviation of length-corrected Shannon entropy with 95%
confidence bands as a function of payload length for plaintext and random data, based on
Monte-Carlo simulations.

given IDS rule or event, and can finally be aggregated over all IDS rules or
events in the dataset, to provide an overall privacy leakage indicator for the
given service.

This makes it possible to calculate a privacy leakage index for a set of
IDS rules. The overall privacy leakage risk can be estimated by multiplying
the privacy leakage metric with the estimated or measured annual occurrence
frequency f of the given IDS alarm or message, i.e: risk = f ·πL.

It can be observed that the privacy leakage metric will have zero or close
to zero entropy in the following three cases:

1. anonymised data;

2. encrypted data, as the length of the data increases;

3. an attack vector cluster that does not change.

It can be observed that an anonymised IDS alarm using the reversible anonymi-
sation scheme normally will have zero or close to zero entropy with zero stan-
dard deviation for anonymised document elements in IDS alarms. Further-
more, sensitive data is stored encrypted in the privacy enforcement scheme.
Such encrypted data will go asymptotically towards zero measured privacy
leakage as a function of payload length as illustrated in figure 7.3.2. This
means that πL

R is a useful metric to verify correct enforcement of a privacy
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policy, since one can expect lower measured privacy leakage from an im-
proved privacy enforcement scheme.

The privacy leakage metric will in theory work for any type of Intrusion
Detection System. The metric work best for signature-based IDS, since the
IDS rule signature ID then can be used to subdivide the entropy space, to
avoid that one IDS rule matches too many attack vectors, which would make
the mixtures of entropies too crowded to be able to distinguish them.

We expect that this limitation can be overcome in order to support anomaly-
based IDS. One approach may be to combine clustering of different data el-
ements of the IDS alarm with a decision tree based approach for selecting a
subset of the samples. This would limit the number of clusters for elements
where the distribution function is too crowded by underlying mixture com-
ponents, however this is left as future work.

It must be noted that the privacy leakage metric and approach is not lim-
ited to measuring privacy leakage in IDS alarms. The metric may also be
useful in other cases, for example as part of planning and verifying an in-
formation protection or anonymisation scheme for any service, not only IDS
based services. The privacy leakage metric is useful for verifying correct
implementation and operation of an anonymisation scheme according to a
privacy policy. Another example of abnormal data that the approach may be
able to successfully identify and classify, is clusters representing buffer over-
flow attacks. If the attack vector does not contain self-mutating code, then
such attacks would stand out as peaks or narrow clusters with little or no vari-
ance. This approach also works well for identifying Denial of Service attacks,
which often will appear as a peak with no or little variation3. The metric is
in particular useful if only part of some data is being anonymised, since the
entropy standard deviation then can be expected to decrease if the anonymi-
sation scheme is operating correctly, whereas a metric using absolute entropy
in principle may take any value, due to the influence of non-anonymised parts
of the data.

3This is an example of a win-win situation where security also benefits from privacy enhancing
technologies, as emphasised by the Privacy by Design principles [25].
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Figure 7.4.1: Block diagram showing how the privacy leakage map is being calculated.

7.4 Privacy Leakage Map

This section describes how to extend the privacy leakage metric from mea-
suring one entropy metric per element or attribute of the IDS alarm to a more
fine-gained entropy map that indicates privacy leakage almost down to in-
dividual octet level. This can then be used to identify hotspots - octets or
protocol parameters where the information leakage is large.

7.4.1 How the Privacy Leakage Map is Calculated

Figure 7.4.1 shows a block diagram of how the privacy leakage map is cal-
culated. The privacy leakage map takes advantage of the classification into
attack vectors done by the EM-based clustering of the privacy leakage metric
πL

R , so that the entropy map is calculated for each cluster in the LMM, as
shown in figure 7.4.1. This means that the initial two steps: calculating the
length-corrected Shannon entropy and EM-clustering, is the same as when
calculating πL

R .
The well known technique of probability proportional to size (PPS) sam-

pling is used to divide the samples between the clusters when calculating the
privacy leakage map, in order to get a representative sample of the distribu-
tion in each cluster. Probability proportional to size sampling means that a
random number r← rnd() will be drawn for each sample yi. This random
number is then used to decide proportionally which cluster k the sample be-
longs to according to the weights wi,k in the Laplacian Mixture Model, as
shown below:

k = min
k∈{1,...,K}

(
k

∣∣∣∣∣r ≤ k

∑
j=1

wi, j

)
. (7.4.1)
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A more detailed entropy map can then be created by calculating the pri-
vacy leakage metric over an octet range which essentially cuts out a slice of
each sample yi from a set of data samples Y . This is expressed using the no-
tation yi[x : x+W ]. This means that the privacy leakage is calculated over all
octets from octet yi,x and to octet yi,x+W where x is the starting point of the
octet range, and W is the window size the privacy leakage is calculated over.
A list slicing operator , which is common in several programming languages,
can then be defined as:

yi[x : x+W ] =
{

oi, j| j ∈ {x,x+1, ...,x+W}, j ≤ Ni
}

(7.4.2)

This means that the privacy leakage for an octet range, denoted by πL
k [x1 :

x2], can be calculated using Laplacian standard deviation as:

π
L
k [x1 : x2] = I ·

√
2

m

∑
i=1

∣∣∣H ′1(yi[x1 : x2])−H ′1(Y [x1 : x2])
∣∣∣ . (7.4.3)

The length-corrected Shannon entropy H
′
1(yi) should be used when calcu-

lating the detailed privacy leakage map. The reason for this is that the length
corrected Shannon entropy is nearly constant (difference 0.015) for plaintext
data in the interval [5,100] octets as shown in Figure 7.3.2. This means that
the scale of privacy leakage measurements for practical purposes can be con-
sidered independent of window size W in this range.

The privacy leakage map can then be visualised by plotting πL
k [x : x+W ]

for x ∈ {0,1, ...,Nmax−W} for all clusters k, as illustrated in figure 7.2.1.
The minimum window size W is 5 octets for a sample of minimum 50 mes-
sages, to ensure a reasonably tight confidence interval, based on the Monte-
Carlo simulations in the previous chapter. A small W gives larger precision,
but also more noise. A too large window smooths the privacy leakage func-
tion too much, and causes slow reaction to changes. We used W = 50 octets
by default as a compromise when plotting the privacy leakage map from the
payload excerpt in IDS alarms. However IDS rules trigging on very short pay-
load may need smaller window sizes. The plots also illustrate the threshold
for what is considered a significant information leakage (πL = 0.14) which
was identified during the Monte-Carlo simulations. Significant here means
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that the information leakage is distinguishable from random traffic within a
95% confidence interval.

7.5 Case Studies

The objective in this section is to investigate the behaviour of the privacy
leakage map, including discussing how privacy leakage metrics can be used
to support a continuous improvement process, as well as enforcement and
validation of a privacy policy. The experimental results are based on 557871
IDS alarms from my own home network between 2009 and 2011, detected
using Snort with the publicly available VRT ruleset. 23% of the IDS alarms
are from the KDD-Cup’99 data set.

This is a limited data set that will not reflect the privacy leakage measured
at a professional MSS provider doing large-scale measurements. This is the
same dataset that was used in the previous chapter, and the same limitations
as described in section 6.6 therefore apply.

The data set should be sufficient to illustrate that the privacy leakage map
works as intended, since the examples clearly illustrate that the metric can
be used to identify where entropy sources causing privacy leakages are in the
analysed IDS alarms. The next subsections discuss some cases that illustrate
how privacy leakage metrics can be used as part of a privacy enforcement
scheme. The privacy policy defined in the following examples depends on
the IDS alarms triggered by the traffic in a given network, which will differ
between networks. This means that a separate privacy impact analysis will
be needed for other datasets, and also over time to handle privacy erosion
due to changes in the underlying data, introduction of new attack vectors etc.
The outcome of this analysis is a set of metrics-supported techniques that
can be used to implement a privacy enforcement mechanism that mitigates
significant privacy leakages.

7.5.1 Clustering and Octet-Range Based Anonymisation

This case study illustrates a privacy impact analysis of the Snort IDS rule
with rule identity (SID) 1:1437, which indicates download of Windows mul-
timedia files. Figure 7.5.1a shows that two clusters are identified for this IDS
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(b) Privacy leakage map for decompressed data.

Figure 7.5.1: SID 1:1437 Windows Multimedia download before and after decompressing
the HTTP header.

rule - cluster 1 in has 560 samples and cluster 2 has 496 samples. Cluster 1
(568 alarms) is in cleartext/XML, and matches the HTTP response and the
XML container part of Microsoft’s Advanced Streaming Format (x-ms-asf).
The payload does not change much between instances for this cluster, which
gives a low privacy leakage measurement due to low variance in entropy be-
tween samples.

Cluster 2 (488 alarms) contains the start of a gzip compressed data stream.
The gzip compressed stream can easily be decompressed since the com-
pression header for these IDS alarms is known. Decompressing it reveals
that it mostly contains references to download of advertisements from dou-
bleclick.net. The traffic it triggers on in this experiment is mostly secondary
traffic (advertisements etc) caused by web surfing. The payload does not re-
veal the primary information sources, i.e. which web pages that are being
visited. This IDS rule may however still leak a significant amount of privacy
sensitive information, for example information about a given user’s personal
preferences which may be revealed from targeted marketing in the advertise-
ments [26].

This illustrates a pathological example where the privacy leakage metric
may give a wrong measure of privacy leakage, since compressed informa-
tion has similar properties as encrypted traffic, i.e. both have high absolute
entropy and low entropy standard deviation. However it is relatively easy to
decompress this information. This means that that the algorithm calculating
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the privacy leakage metric should attempt to decompress information before
calculating the entropy values where possible - i.e. if the compression algo-
rithm is known, and the payload excerpt in the IDS alarms contain the start
of the compression stream which includes the compression dictionary [137].

Recalculating the privacy leakage measurements with decompression of
gzip data switched on, shows that the measured privacy leakage is some-
what larger for decompressed data (πL = 0.37), however the detailed entropy
map in figure 7.5.1b shows that there is a peak of large information leakage
(πL

2 [260 : 283] = 0.67), which are the URLs to Doubleclick advertisements.

The EM-based mixture model described in the previous chapter can in
this case be used to classify new IDS alarms based on entropy, for example
to anonymise targeted marketing in the IDS alarms in cluster 2.

A possible anonymisation scheme for this IDS rule might be to use a
threshold-based scheme, which anonymises any octets with entropy standard
deviation larger than 0.01. This would block out all varying parts of the
IDS alarms with significant variance. However, a problem with such a naive
threshold-based strategy, is that if an external attacker adds entropy to the data
(e.g. by modulating parameters that can be changed in the payload while still
being able to match the given IDS rule), then the attack would also risk being
anonymised which is not desirable from a security perspective.

It is therefore safer and better to anonymise given data ranges for a given
attack vector than to base the anonymisation strategy on thresholds in mea-
sured privacy leakage. A possible strategy for this IDS rule is to anonymise
octet 260 and 283 of the payload in IDS alarms matching cluster 2 for decom-
pressed data, to anonymise the Doubleclick advertisements and avoid leaking
information about personal preferences. Such an anonymisation strategy can
be expected to be reasonably robust due to the small overlap between the
clusters, as long as the clustering model is being monitored to detect that the
model is being supported by the data over time. This strategy means that the
enforcement mechanism must be able to decompress compressed data before
calculating the length-corrected Shannon entropy.
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Figure 7.5.2: SID 119:15 http_inspect over-long URL

7.5.2 Unconditional Reversible Anonymisation

Figure 7.5.2 shows the detailed privacy leakage map for SID 119:15 (616
samples), which triggers on over-long URLs. The historic reason for this
IDS rule is a buffer overflow exploit that could occur in very old versions
of Microsoft’s IIS browser. Nowadays long URLs are quite common, for
example if a web site refers and URL to another site. The privacy leakage
for this rule is πL = 1.02, and it can be observed that the first 1000 octets,
which contain the referrer part of the URL, has relatively low privacy leak-
age, whereas the URL or parameters being referred to (>1000 octets) has
larger information leakage. If this rule is enabled, then the entire payload
should be anonymised, to avoid unnecessarily revealing information about
user behaviour. Authorised stakeholders can however still be given access
with the reversible anonymisation enforcement scheme, however access to
such information should be logged.

7.5.3 Pattern Matching/Data Mining Based Anonymisation

The privacy leakage map for the IDS rule with SID 1:402 (36224 alarms),
which triggers on ICMP Destination Port unreachable, is shown in figure
7.5.3. The measured privacy leakage is relatively large (π = 2.73). This IDS
rule has significant information leakage in the privacy leakage map between
0 and 350 octets, where it drops to nearly zero.
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Figure 7.5.3: SID 1:402 ICMP Destination Port unreachable.

The ICMP Destination Port unreachable protocol copies the request that
failed as part of the payload. This means that the rule essentially samples
random attempted user sessions, which may be considered a significant pri-
vacy problem. The entropy distribution is quite noisy, and there are no clear
clusters that can be identified. Part of the information seems to be Netbios
TCP/IP protocol statistics requests from nbtstat. This could be the result of
malware probing activities against our network. The rule triggers on a mix
of benign and suspicious traffic. Some domains are according to the Web
Of Trust 4 benign (e.g. update.microsoft.com), others are suspicious (e.g.
spreading spam, viruses, Trojans etc.). The rule seems to trigger on a sig-
nificant amount of traffic with malicious origin, so it is clearly useful from
a security perspective. It can be used to identify suspicious malware activi-
ties, and to identify problems with own services. The privacy impact of IDS
alarms from this rule is for our data set limited to revealing information in
failing SIP messages, which identifies users. The utility from a security per-
spective is probably high, so the payload from this rule should be available to
security analysts.

A privacy policy may want to test for, and anonymise specific messages
(e.g. the SIP messages) from this IDS rule, for example by testing for given
patterns in the payload of the IDS alarms using regular expressions and anonymise
these.

4http://www.mywot.com
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7.6 Anonymisation Strategies

The previous examples show that the privacy leakage metric πL is useful to
indicate how much private or confidential information an IDS rule is leaking.
The EM-based clustering algorithm can furthermore be used to identify what
the underlying attack vectors of an IDS rule represents. It can also be used to
detect changes caused by introduction of new attack vector variants detected
by the IDS rule, which would show up as new emerging clusters.

The privacy leakage map gives an overview over where the underlying
entropy sources are in each cluster. It may also be useful as a unique signature
of a given attack vector, for example as part of alarm correlation analysis to
identify different attack vectors recognised by the IDS rule. Based on the
case studies, there are several different anonymisation strategies that may be
considered. Some of the possible strategies are directly related to the privacy
leakage metrics:

• Cluster-based anonymisation;

• Privacy leakage threshold based anonymisation based on πL metric;

• Privacy leakage map threshold based anonymisation.

Other anonymisation strategies may indirectly benefit from the privacy leak-
age metrics:

• Anonymisation of octet ranges within IDS alarms of given clusters/at-
tack vectors;

• Anonymisation of information identified using pattern matching or data
mining techniques;

• Anonymisation of information based on privacy blacklisting or whitelist-
ing;

We will discuss each of these strategies more in detail below.
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7.6.1 Anonymisation Strategies Directly Related to Privacy Leak-
age Metrics

Cluster-based Anonymisation

Cluster-based anonymisation enforcement means that the IDS alarms are clas-
sified according to the cluster number of the LMM the length-corrected Shan-
non entropy H

′
1(yi) of an IDS alarm belongs to, assuming a hard clustering

strategy. This means that the IDS alarm is assigned to the cluster of the LMM
that H

′
1(yi) has the largest probability of belonging to. The mixture model

can in this way be used for authorisation/anonymisation of each incoming
IDS alarm depending on attack vector, for example to leave information in
clusters corresponding to attack vectors with no or little privacy leakage as
they are, and anonymise the information in other clusters that by investigation
have been shown to leak private or confidential information.

Overall, a cluster-based anonymisation scheme can be considered robust
and predictable for a given LMM model, given that the clusters do not overlap
significantly, and also that the underlying distribution of IDS alarms does not
change significantly. This means that it will require a supporting management
process to monitor the relevance of the mixture model, and update the model
if the data changes sufficiently to warrant a model update (for example due
to introduction of new attack vectors).

The LMM can can for example be validated using statistical hypothesis
testing to verify if the components of the mixture model are still supported
by the data for a sufficiently large sample of IDS alarms [31]. The amount
of overlap between the distributions in the LMM can be calculated using the
overlapping coefficient denoted by O [147, 116]:

O( f ,g) =
∫

∞

−∞

min{ f (x),g(x)}dx (7.6.1)

The overlapping coefficient between samples belonging to a given attack
vector θk in the LMM and the sum of the samples belonging to the other
K − 1 components in the mixture model can be expressed in terms of the
length-corrected Shannon entropy as:
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O(θk,Θ\θk) =
N

∑
i=1

min{wi,kH
′
1(yi), ∑

j∈1,...,K, j 6=k
wi, jH

′
1(yi)} (7.6.2)

Where Θ\θk denotes the relative complement between all components
in the mixture Θ and the mixture component (or attack vector) θk. A re-
quirement can for example be that the overlapping coefficient must be less
than a given percentage of the effective number of samples in the cluster, if
the model is to be used for authorisation or anonymisation purposes. The
overlapping coefficient can also be calculated at regular intervals, to trigger
a revalidation of the privacy policy if the overlapping between the mixture
components exceeds the required threshold.

Attacks and Attack Mitigation for Cluster-based Anonymisation

The standard deviation of entropy metric may open up for shirking attacks
from a privacy perspective, meaning that an internal adversary can avoid do-
ing his duties by doing technical adaptations that affects the privacy metrics.
This can be done by deliberately overfitting the clustering model, or operat-
ing with unrealistic privacy impact factors, since this would reduce the overall
privacy leakage measurements. Another risk that must be considered, is the
risk of malicious insider attacks, where for example the data controller sets
a too restrictive privacy policy, essentially rendering attack detection ineffec-
tive. One way to handle this, is to use separation of duty constraints where
the security manager and data controller need to collaborate on deploying
new privacy policies. This can be implemented using the key sharing func-
tionality of the reversible anonymisation scheme.

It is therefore important to have external quality assurance of the privacy
policy by both the data controller and also by external quality certification
agencies to reduce the risk of such privacy attacks.

Privacy Leakage Threshold Based Anonymisation

Another possibility may be to use a threshold value on the privacy leakage
metric πL over the sample of IDS alarms Y as basis for authorisation deci-
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sions. A possible attack on such a threshold-based authorisation scheme, is
an entropy sliding attack. This is an attack where the external attacker over
time changes the average entropy slowly by forging a given entropy, however
being careful not to exceed the threshold for anonymisation. In this way, the
external attacker may be able to change a plaintext attribute to an encrypted
attribute over time (or vice versa) by shifting the average entropy. This means
that the underlying attack vector definition, which is defined by the average
entropy Hα , can change significantly, without the data controller being noti-
fied by the change.

It is possible to mitigate this attack by adding hypothesis tests that ver-
ify whether the LMM is supported by the data [31]. If the hypothesis tests
indicate that the distribution has changed significantly, then the tool should
trigger a revalidation of the policy by the data controller.

Another, and more serious problem with such an approach is that the au-
thorisation decisions over time may change depending on the sample of IDS
alarms. This means that threshold-based authorisation decisions only could
be cached for a relatively short time interval, depending on the size of the
IDS alarm sample window and the flow of incoming IDS alarms. This may
also cause unintended privacy leakages during phases when the measured in-
formation leakage changes in magnitude.

Such behaviour is not acceptable in use cases where zero information
leakage is tolerated (e.g. for monitoring of health institutions). It is also
problematic from a security perspective, since an external attacker can ex-
ploit such a dynamic access control scheme to force anonymisation of the
payload the IDS rule triggers on, by deliberately increasing the entropy of
the traffic matched by the IDS rule, to hide attacks.

It is important for a managed security service provider that the IDS be-
haves consistently, which means that such a dynamic authorisation policy is
not a good idea. It would confuse the security analysts if an IDS rule that used
to be in cleartext suddenly became anonymised. Other strategies than using a
privacy leakage threshold for anonymisation of information should therefore
be used to ensure that the IDS shows consistent behaviour over time.

The overall conclusion is therefore that a privacy leakage threshold based
authorisation/anonymisation scheme is not recommended, since it easily can
be exploited by a determined adversary, it may also be confusing for the
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security analysts and it may cause privacy leakages which in most use cases
will be considered not acceptable. It must however be noted that a threshold
based approach still may be useful as part of a model validation strategy, to
trigger model revalidation if the privacy leakage exceeds a given threshold.
This means that the data controller could get a warning that the anonymisation
scheme may not be effective, for example due to introduction of new attack
vectors, however this would not impact the operation of the service.

Privacy Leakage Map Threshold Based Anonymisation

The detailed privacy leakage map basically has the same deficiencies as us-
ing the privacy leakage threshold based approach, and is therefore not recom-
mended for dynamically enforcing authorisation/anonymisation of informa-
tion.

The privacy leakage map is in other words useful for identifying which
octets that should be anonymised, however an entropy threshold based anonymi-
sation approach is not recommended. It is then better and safer to use anonymi-
sation of octet ranges, which by investigation of the privacy leakage map have
been found to be problematic from a privacy or confidentiality perspective.

It must however be noted that also a threshold based approach may be
useful as part of a model validation strategy, to trigger model revalidation if
entropies in the privacy leakage map exceed a given threshold. This means
that the data controller could get a warning that the anonymisation scheme
may not be effective, however this would not directly impact the operation of
the service, as a dynamic access control scheme would.

7.6.2 Other Anonymisation Strategies

These are anonymisation strategies that indirectly may benefit from using
information from the privacy leakage metrics.

Anonymisation of Octet-ranges

The case studies show that it may be desirable to anonymise entropy sources
within each cluster representing attack vectors. This means that a fixed range
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of octets, or a set of such octet ranges, representing entropy sources in the
element being considered, should be anonymised.

This can be considered a robust and predictable anonymisation scheme, as
long as the underlying assumptions hold (i.e. the probability distribution does
not change significantly and the clusters being considered do not start over-
lapping significantly). This means that monitoring of other entropy sources,
that are not covered by the anonymisation scheme, will still need to be per-
formed to ensure that these entropy sources do not start leaking a significant
amount of private or confidential information.

This can be monitored by checking the privacy leakage of the anonymised
IDS alarms, and trigger a model revalidation procedure if the entropy distri-
bution of the privacy leakage map changes significantly, for example using
hypothesis testing, or by visual inspection by rerunning the clustering algo-
rithm. The privacy leakage map can be used to identify where entropy sources
are in the data samples.

Using a default DENY authorisation and anonymisation policy, and de-
classifying only octet-ranges that are assumed unproblematic, is considered
the safest approach from a privacy perspective to reduce the risk of privacy
leakages, and at the same time ensure that necessary information for attack
investigation is visible. This allows for revealing only the information known
not to not leak private or confidential information. However, such an ap-
proach also means that relevant stakeholders, for example security analysts,
must be given conditional access to information in the IDS alarms in order to
do attack analysis where this is needed. This is however still better than most
existing approaches, since access to sensitive information can be accounted
for, so that there is transparency on who have had access to what information.

Anonymisation of information based on privacy blacklisting or whitelist-
ing

Anonymisation based on privacy blacklisting or whitelisting can be imple-
mented in XACML-based privacy policies using the proposed reversible anonymi-
sation scheme. XACML-based authorisation based on blacklisting and whitelist-
ing was first demonstrated in [77], and the lists can be implemented in a simi-
lar way by extending the XACML Policy Information Point to reflect blacklist
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or whitelist data from a data repository.
The clustering tool used for privacy leakage calculations can also be used

to investigate the underlying data in the matching clusters. This makes it
easier to identify information within IDS alarm clusters that are candidates
for privacy blacklisting or whitelisting.

A synergy from a security perspective, is that this functionality also can
be used to implement traditional blacklisting or whitelisting from a security
perspective, by annotating or filtering IDS alarms that either are known sus-
picious (blacklist) or are known false alarms from trusted sources (whitelist).
This makes it possible to improve efficiency and reduce the alarm processing
load for the Security Operations Centre.

Anonymisation of information identified using pattern matching or data
mining techniques

Anonymisation can also be based on pattern matching, for example by testing
for given patterns in the payload of the IDS alarms using regular expressions
and anonymise these as we previously identified in one of the case studies.
XACML already supports such functionality. In more complex scenarios,
data mining techniques may be useful to detect and anonymise information
that is private or confidential, however investigating such approaches is left
as future research.

7.7 Related Works

This chapter elaborates on how privacy leakage metrics can be integrated as
part of an information security management process. An objective of this
chapter is to describe how the privacy metrics can be combined with a pri-
vacy enforcement mechanism based on the proposed reversible anonymiser
to support planning and development of privacy policies, validation of the
privacy enforcement scheme and also demonstrate metrics-supported autho-
risation and anonymisation policies.

This chapter is based on and extends the privacy leakage metrics for IDS
alarms described in [138], which in turn is based on and extends the the-
ory of quantitative information flow [122, 121], as well as building on the

215



Privacy-enhanced Network Monitoring

EM-based clustering method for finite mixture models in [31, 49]. Privacy
metrics based on entropy have also been investigated by several other au-
thors. Rényi-entropy was investigated as a generalised privacy metric that
generalises Shannon, Min and Max-entropy in [29]. This chapter builds on
the comparative analysis of entropy-based metrics in [138], which concluded
that Shannon octet-based entropy [118] was best suited for measuring infor-
mation leakage from IDS alarms based on theoretical considerations, Monte-
Carlo simulations and analysis of IDS alarms. It does therefore not consider
a generalised entropy, like Rényi entropy [107].

There are some similarities with the theory of differential privacy [40, 41,
42, 113], which is used to evaluate the privacy leakage of databases where
sensitive information has been perturbed. These methods are founded in in-
formation theory, however these techniques use perturbation (adds Laplacian
noise) to hide sensitive parameters, whereas we model Laplacian informa-
tion around a mean value as attack vectors detected by IDS rules. Another
difference is that the metric proposed here has a length correction that opti-
mises the metric for distinguishing between text-based and encrypted/coded
data sources. The length correction also ensures that the measured informa-
tion leakage increases with length for longer payloads (>100 octets). Our
theoretical model and interpretation of privacy leakage is therefore clearly
different from differential privacy, and is perhaps more closely related to the
concept of mutual information in information theory [118], than obfuscation
of information in databases.

There also exist some examples of other methodologies that incorporate
privacy requirements into the design process. One example is the PRIS
method, which addresses privacy requirements during system design [71].
Another example is the eTVRA methodology, which is a threat, vulnera-
bility and risk assessment method developed by ETSI [109]. Both of these
are high-level methodologies that are useful in an early phase of a privacy
enhanced system, but they are less well suited for managing and reducing
privacy leakage gaps during operation. These high-level methodologies do
however not describe in detail how quantitative privacy leakage metrics and
privacy enforcement mechanisms can be combined, to support manage and
reduce privacy gaps during operation. These methodologies can therefore
be considered complementary rather than competing to the method proposed
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here.

The proposed scheme is also related to privacy-enhanced IDS solutions,
e.g. [51, 22, 50, 123, 82]. Most existing privacy-enhanced IDS solutions
are based on a pseudonymisation scheme, whereas our scheme is based on a
reversible anonymisation scheme for XML documents. All of these are solu-
tions based on cryptography and are not being supported by privacy leakage
metrics to verify correct operation of the privacy policy as the solution pro-
posed here does.

7.8 Conclusion

This chapter shows how privacy leakage metrics supported privacy enforce-
ment can be used as a structured methodology to reduce leakage of private
or confidential information. The proposed method may both have privacy
and security benefits, for example by protecting private or confidential infor-
mation against disclosure and also classifying attack vector clusters that by
inspection have been shown to consist of false alarms. Avoiding these would
improve the efficiency of security operations.

The privacy leakage map allows identifying where information is leaking
in the data representing a given attack vector cluster. This information can
be used to plan a privacy enforcement scheme using a range of enforcement
mechanisms that have been discussed here. The efficacy of anonymisation
policies can be verified by using entropy-based privacy metrics to compare
the entropy before and after anonymisation.

The proposed method supports the Plan Do Check Act (PDCA) model
for improvement [92], that amongst others is adopted by the ISO27k set of
security management standards, as illustrated in figure 7.2.2. The privacy
metric and privacy leakage map can be used in the Planning phase to iden-
tify privacy leakages and propose methods for reducing the privacy leakage.
The planned actions can then be enforced in the Do phase by defining a pri-
vacy policy for the privacy enforcement scheme. When the updated privacy
policies and privacy enforcement scheme have been deployed, the privacy
metric can Check that the planned privacy enhancements and anonymisation
scheme work as intended based on techniques derived from the privacy leak-

217



Privacy-enhanced Network Monitoring

age metrics. Significant deviations can then be identified and used to trigger
an Action to reassess the privacy policy and perform a new PDCA cycle.

This approach adds value to traditional privacy impact assessments based
on qualitative indicators and questionnaires, by supporting a structured method-
ology for identifying what, how much and where information is leaking in
services based on quantitative privacy leakage metrics.

7.9 Future Work

The privacy metrics discussed here will need to be verified in a larger study
involving commercial MSS providers. Hopefully, this research based on a
limited dataset will encourage security organisations and managed security
service providers to collaborate on performing larger studies to confirm that
these metrics work as intended. It would also be useful to extend the privacy
leakage map to show changes over time, for example by plotting it as a 3D
map. A larger sample, monitored over time, is however needed to do this.

Investigating how the privacy leakage metrics can be extended to effi-
ciently support anomaly-based IDS is left as future work. We believe that
this can be achieved by combining clustering of different features of the IDS
alarm or message with a decision tree based approach to limit the number of
matching clusters for elements where the distribution function is too crowded
by underlying mixture components.

This study only scratches the surface of privacy related problems services
like MSS by investigating primary sources of information leakage. Future
work is to perform a more comprehensive analysis of such privacy leakages,
for example using metrics and techniques like k-anonymity, l-diversity or
similar [126, 86, 27], which consider the risk of privacy leakages from cross
correlating data. It may also be possible to use more complex AI-based tech-
niques for privacy preservation, for example using relevance metrics like term
frequency/inverse document frequency to aid the data controller in detecting
information that may violate privacy or confidentiality [148].
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Part IV

The Way Ahead
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Part IV contains the general discussion and conclusion of the dissertation,
including discussing to what extent the problem has been solved, as well as
the expected impact of the proposed solution. It furthermore outlines starting
points for future research and development.
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Chapter 8

Discussion, Conclusion and Future
Work

This chapter concludes the dissertation and discusses future research and de-
velopment. The objective is discussing to what degree the proposed privacy-
enhanced network monitoring solution solves the problem statement and other
privacy objectives stated in the introduction. The chapter is structured as fol-
lows: The next section discusses whether the seven foundational principles
of Privacy by Design are covered. Section 8.2 subsequently discusses the ex-
pected impact of the solution, and in particular whether it can be considered
usable, easy to deploy, effective and robust according to the technological
objectives in Section 1.4.3. Section 8.3 concludes the dissertation with a
discussion on whether the solution supports the initial problem statement. Fi-
nally, Section 8.4 discusses further development of the solution and Section
8.5 outlines possible starting points for subsequent research.

8.1 Is Privacy by Design Supported?

The proposed approach for privacy-enhanced network monitoring is based
on a reversible anonymisation scheme and metrics-supported enforcement of
privacy and confidentiality. This approach can be used to design network
monitoring systems that are characterised by proactive rather than reactive
measures for enhancing privacy. The proposed approach is clearly better than
existing IDS schemes, since it proactively can provide protection of private
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PbD principle Supported? Comments
1. Proactive Yes
2. By default Yes
3. Embedded Yes Easy to integrate into existing

IDS technologies.
4. Positive sum Yes Win-win between security

and privacy.
5. Full life cycle protection Yes
6. Transparency Outlined Detailed implementation left

as future work.
7. Respect for users Yes Ensured by data controller.

Table 8.1.1: How the scheme supports the Privacy by Design Principles.

or confidential information by supporting a continuous improvement process.
The privacy metrics can furthermore verify whether protective privacy en-
hancing techniques work as expected, and trigger actions if privacy leakage
changes significantly compared to expected values. This means that the Pri-
vacy by Design (PbD) principle 1 in Table 8.1.1 is supported.

For some use cases, for example for health institutions, it may not be
acceptable that person sensitive information leaves the hospital perimeter.
The proposed privacy-enhanced IDS scheme can support such a use case us-
ing a default DENY policy in accordance with the Privacy by Default prin-
ciple (PbD principle 2), so that the privacy policies ensure that any sensi-
tive information in the IDS alarms sent to an outsourced MSS by default is
anonymised. Information that is required to notify security analysts about the
attack, for example the IDS alarm identity and type of attack it triggered on,
can subsequently be permitted by using the declassify operation, introduced
in Section 5.4. The IDS alarms may additionally be copied to an internal
alarm database, where all potentially sensitive information in the IDS alarms
is stored in an encrypted security level, so that only authorised entities can ac-
cess this data on a needs basis, for example to investigate suspected attacks.
This means that an outsourced MSS operator will be able to do basic attack
surveillance. More detailed attack analysis is possible by accessing further
information from the alarm database inside the hospital perimeter.

It is assumed that the existing IDS infrastructure shall be used as far as
possible to capitalise on existing security investments and knowledge. This
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is a more realistic assumption than assuming that a completely new and per-
fect privacy enhanced IDS scheme shall be built from scratch. The scheme
uses the extension facilities of IDMEF to provide seamless integration with
existing IDS alarm databases. Backwards compatibility with existing appli-
cations, both intrusion detection systems, alert databases and more compre-
hensive Security Information and Event Management Systems (SIEMs), is a
prerequisite for market uptake of privacy-enhanced IDS services. The con-
clusion from this discussion is that the proposed approach is well embedded
into existing systems, and therefore supports PbD design principle 3.

The proposed privacy metrics allow measurement of IDS rule precision,
which can be used to improve the IDS rules to reduce the amount of unnec-
essary, possibly privacy leaking IDS alarms. This also means that IDS rules
with large information leakage, which may have a significant risk of leak-
ing private or confidential information, can be identified and proper actions
(e.g. tune the IDS rule or anonymise sensitive data) can be enforced by the
data controller. However, the privacy metrics can also be used to prove the
effectiveness of preventive actions taken to improve the privacy, for exam-
ple to verify whether an improvement causes a network monitoring service
to leak less sensitive information, or whether an anonymisation scheme re-
mains effective. This allows for detecting faulty privacy configurations and
unauthorised security leakages - for example non-encrypted traffic going on
links that only are allowed to convey encrypted traffic. This can also be used
to detect anomalous traffic, for example from malware. There is furthermore
synergy between the proposed security metrics and Denial of Service attack
detection, since such attacks typically will skew the distribution of entropies
significantly, which can be detected as an anomaly. The proposed multi-
level security based reversible anonymisation scheme means that access to
private or confidential information in the IDS alarms can be controlled. This
means that there is a win-win situation by implementing the proposed pri-
vacy metrics and enforcement mechanism both from a security and privacy
perspective, as required by the 4. Privacy by Design principle.

Sensitive information can for all practical purposes be protected from in-
ception by integrating the anonymiser in an appliance that enforces controlled
access and encrypts the link to the anonymiser. Furthermore, the reversible
anonymisation scheme in Chapter 5 enforces protection of sensitive data dur-
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ing its lifetime, and the time-based data expiry scheme in Section 5.6 can be
used to ensure safe destruction of sensitive data after a given retention time.
This means that the proposed scheme can support full protection of data from
inception and until destruction, as required by the PbD principle 5.

The reversible anonymisation scheme intrinsically supports some degree
of transparency and accountability for access to sensitive information, since it
indicates who have access to this information. However, the details on how to
enforce transparency is considered beyond the core scope of the dissertation,
since this typically will be implemented as part of a larger system architecture
supporting the security operations, and not only as part of the anonymiser.
The dissertation has therefore not discussed in detail on how transparency
can be enforced. It has only outlined that access to sensitive data should
be logged, in order to support transparency (PbD principle 6), and that this
can be enforced based on XACML obligations when authorising access to
sensitive data. Full support the PbD design principle 6 is therefore left as
future research and development.

The proposed scheme can be said to respect the users (PbD design princi-
ple 7), by allowing design of privacy enhanced network monitoring systems
that prioritise the interests of the individual by supporting strong privacy de-
faults (the default DENY scheme), and also by supporting separation of du-
ties where privacy interests can be enforced by a separate entity, the data
controller. Network monitoring systems should not need to be aware of who
the underlying users are, so there is no need to provide user-controlled access
to own data. Appropriate notice that network monitoring is being performed
should be given, however this is considered outside the scope of the techni-
cal solution proposed here. This will need to be enforced by an overarching
methodology that amongst others checks that companies using managed se-
curity services provide an appropriate warning to their customers.

Table 8.1.1 sums up how the proposed scheme supports the Privacy by
Design principles. The only main principle that is not explained in detail
in the dissertation, is logging to ensure that operations on sensitive data are
transparent and accountable. The section on future work gives a brief outline
of the research needed to support this.

226



Chapter 8. Discussion, Conclusion and Future Work

8.2 Impact

The dissertation provides new insight on how to measure privacy leakage
for IDS rules and it also describes and implements a privacy enforcement
scheme that supports reversible anonymisation of XML messages according
to a given privacy policy.

Considering the technological objectives in Section 1.4.3, the solution
proposed in the dissertation can be considered usable for MSS providers,
even if IDS alarms to a greater extent than today are being anonymised. The
reason is that the metrics can be used to optimise the IDS rule set, so that rules
with a significant risk of privacy leakage can be identified and subsequently
either be improved from a privacy perspective or anonymised. Furthermore,
the anonymisation scheme can be set up to provide multi-level security with
reversible anonymisation, so that authorised parties or services will be able
to see the same data as they do today if needed. The usability may in some
areas even be increased compared to current IDS solutions, since the EM-
based clustering and privacy leakage metrics facilitates easier visualisation
and data mining of suspicious events than current IDS alarm databases and
SIEM solutions do.

Controlling access to this sensitive information also opens up for support-
ing transparency/accountability on who accesses sensitive information and
why. This supports far stricter enforcement of the need-to-know principle
than IDSs typically support today with more detailed control over access to
sensitive information. Handling more than one security level can in addi-
tion be useful for graded systems used for critical infrastructures or military
systems.

It is furthermore possible to improve the attack detection precision of
IDS rules to reduce the measured privacy impact, also in those cases where
anonymisation is not considered an option. This means that the MSS provider
will get a rich toolbox that can be used to optimise the security operation
and also to implement privacy policies that anonymise private or confidential
information. The overall usability is therefore not necessarily significantly
reduced for the MSS provider if the privacy-enhancing metrics and technolo-
gies are applied, at the same time as the accountability and transparency re-
garding investigation of private or confidential data is significantly improved.
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The proposed methods are easy to deploy on top of existing IDS infras-
tructures, since the anonymiser acts as a proxy between the IDS and the alarm
database using the standardised IDMEF protocol. Furthermore, only small
modifications are needed to support other XML-based protocols. One such
example may be to monitor privacy leakage in SOAP-based web services,
where the anonymiser and deanonymiser can be integrated as components in
an Enterprise Service Bus.

The proposed metrics have been shown to be effective, by being able to
detect IDS rules with a significant risk of leaking private or confidential infor-
mation. Furthermore the metrics can be used to verify that an anonymisation
scheme is properly enforced. The experiments show that the solution should
have sufficient performance to be used in small to medium scale IDS deploy-
ments.

The technical means for privacy enforcement in the anonymiser/proxy can
be considered robust for authorisation or anonymisation decisions, based on
the discussion in chapter 7.

To sum it up, this means that the proposed solution should have significant
impact towards making privacy-enhanced IDS services a reality. This is an
area of research that so far mostly has seen theoretical solutions founded on
cryptography, e.g [123, 22, 51]. This can in particular be useful to provide
controlled access to private or confidential information for outsourced Man-
aged Security Service providers, where the provider is not being fully trusted
to see certain information in the network being monitored. The solution may
also be useful for exchanging anonymised alarm data or data forensic infor-
mation between semi-trusted managed security service providers or CERT
teams to provide more efficient exchange of anonymised attack related infor-
mation during cyber-attacks.

The privacy enforcement methods and privacy metrics make privacy-enhanced
IDS a viable alternative for managed security service providers, since it al-
lows a continuous improvement process of both the privacy and security ob-
jectives of a network monitoring service. Furthermore, the proposed solution
is based on standards, integrates well with existing IDS technologies and can
be implemented on top of an existing IDS infrastructure. Other proposed
approaches for privacy-enhanced IDS, for example [51], may require a non-
standard protocol for conveying the IDS alerts, and it may require a totally
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different IDS rule set, something that significantly reduces the practical ap-
plicability of such methods.

8.3 Conclusion

The dissertation shows how entropy-based metrics can be combined with a
reversible anonymisation scheme to provide a structured methodology for re-
ducing the privacy leakage from IDS alarms and other services. EM-based
clustering is used to identify the individual attack vectors that an IDS rule
triggers on, and entropy-based privacy leakage metrics can be used to iden-
tify which attack vectors that leak a significant amount of private or confiden-
tial information and also where these privacy leakages occur within the IDS
rule. The XACML-based reversible anonymiser can subsequently be used to
enforce a privacy policy which reduces the privacy leakages.

The proposed method supports the Plan Do Check Act (PDCA) model for
improvement, where entropy metrics are used in the planning phase to iden-
tify privacy leakages and to propose methods for reducing these leakages.
Planned actions can subsequently be enforced using the XACML-based re-
versible anonymiser or by tuning the IDS rule set to be less privacy leaking.
Privacy metrics can then be used to check that the planned privacy enhance-
ments work as expected, and significant deviations from the expected privacy
leakage can be used to trigger new actions to reassess the privacy policy and
perform a new PDCA cycle.

This is a flexible solution that has been integrated into existing signature-
based intrusion detection systems, and that furthermore can support the Pri-
vacy by Design principles [25]. The only principle that is not specified in
detail, is secure logging, which can be added based on existing schemes,
e.g. [74]. The solution furthermore fulfills the technological objectives in
Section 1.4.3, by being usable, easy to deploy and effective. Overall, this
means that the proposed approach solves the research problem in section 1.2,
since it:

• proposes suitable privacy leakage metrics which can be used to detect
leakage of private or confidential information in IDS alarms;

• implements a fine-grained reversible authorisation and anonymisation
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of information in IDS alarms using the eXtensible Access Control Markup
Language (XACML), which is supported by the proposed privacy leak-
age metrics;

• and proposes a methodology that shows how the privacy leakage met-
rics can be connected to the technical solution for privacy enforcement,
to support a continuous improvement process.

The solution can be seamlessly integrated into existing IDS and SIEM tools
that support IDMEF, and can with small modifications be extended to support
other protocols than IDMEF. The solution has been implemented and tested,
and the performance should be sufficient for small to medium scale IDS de-
ployments. Finally, it is expected that the privacy enforcement mechanism,
privacy metrics and methodology for combining these will be useful for con-
trolling leakage of private or confidential information also in other use cases
than privacy enhanced network monitoring.

8.4 Future Development

The reversible anonymiser, privacy leakage metrics and methodology will
be further developed in the PRECYSE EU-project1. The general idea is to
integrate the anonymiser and deanonymiser into an Enterprise Service Bus
(ESB), as illustrated in Figure 8.4.1, so that services which need multi-level
security or anonymisation policies can use these components [132]. The ini-
tial part of an ESB integration, an IDMEF publishAlert interface, has already
been implemented and works. We are able to store anonymised IDS alarms
in PreludeIDS. A planned extension of the solution is to implement a secure
logging scheme as a separate ESB component.

The PRECYSE architecture consists of an Information Security Manage-
ment (ISM) module that performs risk and vulnerability analysis, a Control
module that runs a Security Operations Centre which amongst others per-
forms IDS alarm handling using a SIEM tool, IDS alarm correlation and also
system and policy configuration management. The Control module manages
a set of one or more Domains, which contain a set of existing and PRECYSE

1PRECYSE http://www.precyse.eu
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specific security tools, like Snort, OpenNMS, OpenSCAP etc. for perform-
ing threat and vulnerability detection on target Enclaves [132]. An Enclave is
here considered a part of the network or critical infrastructure that is managed
using a common set of security policies. Privacy enhancing techniques will
be implemented in several parts of the architecture, as illustrated in Figure
8.4.1. These are discussed more in detail below.

The privacy leakage metrics and methodology will be integrated into the
PRECYSE information security management and risk assessment methodol-
ogy which is based on the open risk assessment standard Magerit [33]. This
allows for supporting quantitative risk analysis to detect and mitigate privacy
and confidentiality gaps in the security configuration.

An advantage by using the reversible anonymiser, is that the information
protection scheme is separated from the underlying functionality of the pro-
tocols or services being protected. This allows for implementing XACML-
based information protection schemes for any XML-based protocol, and adds
flexibility in adapting the information protection scheme according to busi-
ness requirements compared to using a hard-coded XML-Encryption based
solution.

The reversible anonymisation scheme may for example be used for cryp-
tographic protection of the XACML policies, to ensure trustworthy deploy-
ment of privacy and security policies. It can also be used to protect vul-
nerability information from vulnerability assessments in Open Vulnerability
and Assessment Language (OVAL) format2, since information about system
vulnerabilities for a given critical infrastructure should be considered confi-
dential information [132].

Reversible anonymisation may also be used to support sharing of attack
related information between organisations, for example by adding a security
layer to information conveyed in the Structured Threat Information Expres-
sion (STIX) format. This is an XML format for exchanging cyber-threat in-
formation or information about countermeasures between organisations [130].
Using the reversible anonymisation scheme means that only authorised stake-
holders can access information considered sensitive by the originating organ-
isation.

2OVAL https://oval.mitre.org/
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The reversible anonymiser may in addition be useful for protecting the
confidentiality and integrity of system configurations. It can for example be
combined with the scheme proposed in [136], to support location-aware role-
based deployment of IDS rules. The reversible anonymiser can furthermore
be used to cryptographically enforce that a given workflow of operations and
authorisations must be followed when updating these. It supports key sharing,
which can be used to reduce the risk that corrupt or malicious insiders are
able to destabilise a critical infrastructure by faulty or malicious configuration
deployments. The methods and tools developed in this dissertation can in
other words be useful in a range of different use scenarios beyond building
privacy-enhanced intrusion detection systems.

8.5 Future Research Directions

This dissertation only scratches the surface of privacy and confidentiality re-
lated problems for network monitoring systems. It does for example not cover
how information leakage through inference or cross-correlation between dif-
ferent elements of an IDS alarm can be detected and avoided. This would
require taking the privacy leakage metrics and evaluation even further to eval-
uate the anonymity set that can be expected for private or sensitive informa-
tion, using metrics like k-anonymity [37], l-diversity [86] or differential pri-
vacy [40, 41, 42]. This is a large research area that is left as future work.
The proposed privacy leakage metrics only measure the primary sources that
may leak private or sensitive information. However, being able to do this is
an initial approach that can and should be considered before more elaborate
analyses of the anonymity set are performed. It would furthermore be inter-
esting in the future to do comparative analyses on how well different MSS
providers perform using the proposed privacy leakage metrics.

A limitation with the current implementation of the reversible anonymi-
sation scheme is that there is no efficient way to perform on-demand data
mining that searches the encrypted information (e.g. for attack investiga-
tion), apart from letting an authorised/trusted party or application decrypt the
sensitive information. It would be useful to do further research on efficient
privacy-enhanced database schemes to support certain queries over the en-
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crypted information. This can for example be implemented by extending the
anonymisation scheme to store a cryptographic pseudonym that would allow
certain calculations or tests to be done on the encrypted value, in a similar
way as CryptDB does [103]. Examples of such cryptographic schemes is or-
der preserving or homomorphic encryption [103]. The solution could then be
taken one step further to implement privacy-enhanced operations and queries
for XML databases.

Future work furthermore involves investigating the details of how trans-
parency of the proposed solution can be enforced, for example based on a
combination of a secure logging scheme and using XACML obligations to
do logging of authorisation decisions to sensitive data in the policies, in a
similar way as [74]. The reversible anonymisation scheme may be used as a
building block for implementing secure logging schemes.
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Appendix A describes how the fine-grained XACML-based authorisation and
anonymisation scheme for XML documents in Part II has been extended to
implement the metrics supported privacy enforcement scheme described in
chapter 7. This material has been split out from chapter 7, since it focuses
on the technical details needed to implement the metrics supported privacy
enforcement scheme. This information did not fit into the more high-level
discussion in chapter 7, however it has been included as an appendix in the
dissertation for completeness.

A.1 Integrating Entropy Metrics into the Anonymiser

Knowing exactly where sensitive information leakages are makes it possi-
ble to propose mitigation strategies to avoid such leakages as discussed in
chapter 7. This section describes how the XACML-based anonymisation
policies can be modified to detect and anonymise parameters, attributes or
octets in XML messages which appear to leak a significant amount of private
or confidential information. This can be implemented using the reversible
anonymiser in Chapter 5. The data controller then needs to go through the
octets of elements or attributes in IDS alarms with significant entropy varia-
tion and evaluate whether they cause significant privacy concern. If so, then
XACML anonymisation policies can be instantiated to anonymise the data.
Alternatively, privacy by default can be used by applying a default DENY
policy where the security manager needs to argue for why certain fields need
to be declassified.
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1 <AttributeValue DataType ="urn:ogc:def:dataType:geoxacml :1.0: geometry">

2 <gml:MultiPoint srsName ="& prile;ByteRanges">

3 <gml:pointMember >

4 <gml:Point >

5 <gml:coordinates >20, 100</gml:coordinates >

6 </gml:Point >

7 </gml:pointMember >

8 <gml:pointMember >

9 <gml:Point >

10 <gml:coordinates >200, -1</gml:coordinates >

11 </gml:Point >

12 </gml:pointMember >

13 </gml:MultiPoint >

14 </AttributeValue >

Figure 8.5.1: Example GML MultiPoint format used for entropy data ranges.

A.1.1 Anonymisation Functions

In Section 7.6 we identified two primary privacy enforcement mechanisms
that are considered useful:

1. Use the Laplacian Mixture Model from the EM-algorithm as classifier
for IDS rules in order to support cluster based anonymisation policies.

2. Anonymise octet ranges that are considered problematic from analysis
of the detailed vertical entropy map.

This section discusses more in detail how these anonymisation functions can
be implemented in XACML. In the following, the XACML namespace is de-
noted as &xacml; and the XML Schema namespace is denoted as &xs;. The
W3C namespace http://www.w3.org/ is denoted &w3c; and our own exten-
sions are defined in the namespace http://www.prile.org/, denoted by &prile;.
It is assumed that the reader has a basic understanding of XACML. The next
section elaborates on how such an XACML policy can be implemented. It
is also assumed that the IDS alarms use the IDMEF XML format for IDS
alarms [62].

Anonymise or Declassify XML Element based on Octet Range

This section gives a high-level functional description of how to anonymise
or declassify XML elements or attributes based on a set of one or more octet
ranges. The following anonymisation functions are executed by the Policy
Enforcement Point (PEP) as XACML response obligations:
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1. anonymise(e,octetlist): obligation to anonymise the element or attribute
referenced by e. This is an obligation policy function in the PEP that
is used for default PERMIT policies. It is included in the XACML
Response as an Obligation containing an <AttributeAssignment> with
the AttributeID of the element being referenced. The optional octetlist
can be used to specify octet ranges to anonymise, as shown in Figure
8.5.1. If it is not present, then the entire element being authorised is
anonymised.

2. declassify(e,octetlist): obligation to declassify the element or attribute
referenced by e. This is an obligation policy function in the PEP that
is used for default DENY policies. It is included in the XACML Re-
sponse as an Obligation containing an <AttributeAssignment> with the
AttributeID of the element being referenced. The optional octetlist can
be used to specify octet ranges to declassify, as shown in Figure 8.5.1.
If octetlist is not specified, then the default behaviour is to declassify
the entire element.

The octetlist is an optional list of (start,end) points defining a data range.
It is implemented as a GeoXACML MultiPoint data type [6], although the
interpretation here will be data ranges and not 2D coordinates. Figure 8.5.1
illustrates how the MultiPoint data type can be used. Octet 0 is the start of
the string, and the number -1 is used to denote the end of the string. An octet
range of <gml:coordinates>0, -1</gml:coordinates> therefore matches the
entire element. <gml:coordinates>2, 2</gml:coordinates> matches octet
number 2 and <gml:coordinates>10, 100</gml:coordinates> matches the
octet range [10,100].

Anonymisation of an IDS Alarm Element based on Laplacian Mixture
Model

The Laplacian Mixture Model, identified by the EM-algorithm [31, 138], can
be used as a classifier to identify which cluster the entropy of a given element
or attribute of an IDS rule belongs to. This can be used to perform conditional
anonymisation of IDS alarms depending on which attack vector cluster the
IDS alarm element belongs to. The function for identifying the given cluster,
based on the entropy of the given element, is shown below:
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int cluster(Hα(e),ΘR): Returns the cluster index the entropy Hα(e) belongs
to, according to the Laplacian Mixture Model ΘR for the given IDS rule
R and IDS alarm element/attribute e [138].

This function can be used in an XACML Condition to anonymise the IDS
rule, depending on which cluster it belongs to. It will typically be used as part
of an XACML policy that returns an Obligation to anonymise() or declassify()
information in the element or attribute e being authorised, based on the cluster
it belongs to, as illustrated in Figure 8.5.5. This function takes the entropy
Hα(e) as argument instead of the element e, to avoid leaking more sensitive
information about e than necessary to the Policy Decision Point (PDP).

The cluster classifier uses a Laplacian Mixture Model, consisting of sev-
eral Laplacian distributions. The Laplacian Mixture Model denoted by ΘR is
defined using the GeoXACML MultiPoint data type as a list of triplets con-
sisting of the cluster model parameters: median µ̃k, scale parameter λk and
mixing probabilities βk, for a model k so that ΘR = [(µ̃1,λ1,β1), ...,(µ̃K,λK,βK)]

for a Laplacian Mixture Model consisting of K elements, as illustrated in
Equation 8.5.2. The model is initially created by clustering IDS alarm en-
tropies in the alarm database using the Expectation Maximisation algorithm,
as described in chapter 6. Furthermore, the data controller and Security Ana-
lysts must monitor the goodness of fit of the given model and overlap between
mixture models, as described in section 7.6.1. The model will then need to
be updated by redoing the clustering, if necessary, as pointed out in Sec-
tion 7.6.1. We have earlier shown that the Laplacian distribution, denoted as
L (Hα |µ̃k,λk), is defined as [31]:

L (Hα |µ̃k,λk) =
1

2λk
exp
(
−|Hα − µ̃k|

λk

)
. (8.5.1)

The cluster that the entropy of the element belongs to can then be calcu-
lated as:

cluster(Hα ,ΘR) = argmax
k∈1,...,K

L (Hα |µ̃k,λk) ·βk. (8.5.2)

This classification function is implemented as an XACML extension func-
tion denoted &prile;function:cluster in the XACML PDP. It takes the hori-
zontal entropy of the element being authorised and the Laplacian mixture
model ΘR as arguments, and returns the cluster the entropy belongs to. It is
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assumed that the mixture model ΘR is made available to the XACML Pol-
icy via the XACML Policy Information Point (PIP), alternatively it may be
directly embedded into the policy, if the model is not expected to change
frequently.

A.1.2 Trustworthy Authorisation Policy Updates

It is assumed that the data controller and security manager need to autho-
rise the LMM model and privacy policy updates before they can be deployed
to the production systems. Trustworthy authorisation policy updates can be
implemented by adapting the multi-level security solution in Chapter 5 to en-
crypt XACML policies, using threshold cryptography to split the encryption
key into shares ensuring that both the security manager, data controller and
the trusted Policy Administration Point (PAP) application need to agree to
decrypt and deploy the updated XACML policy during deployment. The de-
tails on how to do this is however left as future work. The PAP is assumed to
not accept deployment of unsigned and unencrypted policies.

A.2 Use Case Example

Consider a use case based on SID 1:1437 Windows Multimedia download,
which was analysed in section 7.5.1. Assume that it is desirable to anonymise
cluster 2 of the decompressed data which contains targeted advertisements
from Doubleclick, as shown in figure 7.5.1b. It is furthermore assumed that
a default DENY protocol is in effect to avoid the risk of unknown private
or confidential information being revealed. Information from octets 0-230 is
considered unproblematic from a privacy perspective and is also useful from
a security perspective, so this octet range will not be anonymised. Cluster
1 is not considered in this example, to keep the XACML example brief. It
is trivial to extend the example to also cover the second cluster by adding
another similar policy to it.

This can be implemented using the policy pseudocode in Figure 8.5.2.
The declassification policy takes as arguments the IDS rule identity R, the
length-corrected Shannon entropy H

′
1(e) and a reference to the element e
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1: function DECLASSIFICATIONPOLICY(R,e,entropy)
2: if R =′ 1 : 1437′ then
3: ΘR← [(11.7,2.9,0.46),(13.7,2.5,0.54)]
4: if cluster(entropy,ΘR) = 2 then
5: return Permit,Obligation(declassi f y(e, [0,230]))
6: end function

Figure 8.5.2: Declassification Policy Pseudocode for SID 1:1437.

1 <Response >

2 <Result ResourceID ="PEP">

3 <Decision >Permit </Decision >

4 <Status >

5 <StatusCode Value ="& xacml;status:ok"/>

6 </Status >

7 <Obligations >

8 <Obligation ObligationId ="& prile;authorize -elements" FulfillOn =" Permit">

9 <AttributeAssignment AttributeId ="& prile;default -policy:DENY"

10 DataType ="&xs;string">

11 </AttributeAssignment >

12 <AttributeAssignment AttributeId ="& prile;resource :1:id"

13 DataType ="&xs;string">/Alert/AdditionalData[@meaning='payload ']

14 </AttributeAssignment >

15 <AttributeAssignment AttributeId ="& prile;resource :1: assertion :1: scope"

16 DataType ="&xs;string">/Alert/Classification/@ident

17 </AttributeAssignment >

18 <AttributeAssignment

19 AttributeId ="& prile;resource :1: assertion :2:lcorr -shannon -entropy"

20 DataType ="&xs;string">/Alert/AdditionalData[@meaning='payload ']

21 </AttributeAssignment >

22 </Obligation >

23 </Obligations >

24 </Result >

25 </Response >

Figure 8.5.3: XACML response to initial authorisation of the IDS-PEP.

being declassified. The declassification policy first checks if the IDS rule
identity matches the intended IDS rule with SID 1 : 1437, and if it does, then
the alarm cluster is calculated from the entropy and the Laplacian mixture
model ΘR. If the entropy matches alarm cluster 2, then the policy adds the
obligation to declassify the octet range [0,230] of the element e, and returns
a Permit XACML Response with these Obligations. The XACML policy
that implements this pseudocode is shown in Figures 8.5.5 and 8.5.6. The
detailed solution of how the XACML authorisation scheme is implemented
is described in the following subsections.
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A.2.1 Initial XACML Authorisation

The response to the initial XACML Request is shown in Figure 8.5.3. The re-
sponse contains an XACML Obligation that defines the initial configuration
of the XACML Decision Cache based anonymiser, similar to what is pro-
posed in [135]. The first XACML attribute of the obligation is &prile;default-
policy:DENY, which specifies that this is a default DENY protocol.

The XACML attribute &prile;resource:1:id contains an XPath expression
/Alert/AdditionalData[@meaning=’payload’] which refers to the IDMEF el-
ement being authorised. This element refers to the payload sample of the
IDS rule. The next XACML attribute &prile;resource:1:assertion:1:scope
defines the XPath scope expression /Alert/Classification/@ident, which con-
tains the unique identifier of the IDS rule R.

Finally, &prile;resource:1:assertion:2:lcorr-shannon-entropy is an instruc-
tion to the PEP to calculate the length corrected Shannon entropy H

′
1(e) of

the given payload element e before the element is sent as parameter in an
XACML Request. This strategy avoids revealing the element being autho-
rised to the PDP.

A.2.2 XML Element Authorisation Request

The PEP will first parse the IDS alarm using an XML parser. It will then
perform XPath searches to retrieve the XML elements and attributes from
the IDS alarm that are required to perform the authorisation decisions. The
XPath expression for &prile;resource:1:id refers to the payload element that
is asked to be declassified, &prile;resource:1:assertion:1:value refers to the
rule ID of the IDS rule R that is being considered (here SID 1:5976), and
&prile;resource:1:assertion:2:value refers to the length corrected Shannon
entropy of the payload element of the IDS alarm.

The PEP will in this case retrieve the payload using the XPath expression
/Alert/AdditionalData[@meaning=’payload’] and will subsequently calcu-
late the length-corrected Shannon octet-entropy on the result of this XPath
expression. Since this is a default DENY policy, then all elements and at-
tributes of the IDS alarm will subsequently be anonymised, using the re-
versible anonymiser in Chapter 5.
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1 <?xml version ="1.0" encoding ="UTF -8"?>

2 <Request xmlns ="& xacml;context:schema:os"

3 xmlns:xsi="http ://www.w3.org /2001/ XMLSchema -instance"

4 xsi:schemaLocation ="& xacml;context:schema:os

5 http :// docs.oasis -open.org/xacml /\

6 access_control -xacml -1.0-context -schema -os.xsd">

7 <Subject >

8 <Attribute AttributeId ="& xacml;subject:subject -id"

9 DataType ="&xs;string">

10 <AttributeValue >soc1@outsourced.example.com </ AttributeValue >

11 </Attribute >

12 </Subject >

13 <Resource >

14 <Attribute AttributeId ="& xacml;resource:resource -id"

15 DataType ="&xs;string">

16 <AttributeValue >&prile;resource :1:id </ AttributeValue >

17 </Attribute >

18 <Attribute AttributeId ="& prile;resource :1: assertion :1: value"

19 DataType ="&xs;string">

20 <AttributeValue >1:5976 </ AttributeValue >

21 </Attribute >

22 <Attribute AttributeId ="& prile;resource :1: assertion :2: value"

23 DataType ="&xs;string">

24 <AttributeValue >11.26 </ AttributeValue >

25 </Attribute >

26 </Resource >

27 <Action >

28 <Attribute AttributeId ="& xacml;action:action -id"

29 DataType ="&xs;string">

30 <AttributeValue >read </ AttributeValue >

31 </Attribute >

32 </Action >

33 </Request >

Figure 8.5.4: XACML request to declassify XML element.
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The PEP will then go through all the resources defined in the initial XACML
policy, and perform XACML Requests asking for permission to read ele-
ments that need authorisation as shown in Figure 8.5.4. For the given exam-
ple, this means that one XACML Request will be sent that asks for permission
to read resource &prile;resource:1:id for the Snort IDS rule with SID 1:5976
having payload entropy H

′
1(payload) = 11.26.

On receipt of the XACML Request, the PDP will evaluate the XACML
policy described in Figures 8.5.5 and 8.5.6. The policy verifies that this is
resource 1, that the IDS rule R is SID 1:1437 and that the desired action is
read. If all the resources match the policy Target section and the clustering
function evaluates to cluster(entropy,ΘR) = 2, then the policy will return an
XACML Permit response, with an Obligation to declassify the identity of
the IDS rule and the octet range [0,230] of resource 1, which refers to the
payload. In addition, the decision has a cache timeout of one day.

On receipt of the XACML Response, the PEP will fulfill the Obligation as
illustrated in Figure 8.5.6, and declassify the octet range [0,230] of the pay-
load (/Alert/AdditionalData[@meaning=’payload’]), which means remov-
ing the default anonymisation for this octet range. The anonymised IDS
alarm with this element declassified will then be sent to the central IDS alarm
database. This is a simplified example for illustration purposes. There would
normally be more elements that need declassification, for example the IDS
alarm ID, time when the IDS alarm occurred, possibly IP addresses and port
numbers etc. However, these can easily be added using the proposed scheme.
If only one authorisation decision is desired per IDS alarm, then additional
elements which are authorised in the same decision can be added to the Obli-
gation in a similar way as for the IDS rule identity.

An advantage with this scheme, is that only one XACML authorisation
decision normally would be required per IDS alarm, assuming that clustering
was done on the payload of the IDS alarm. This means that the proposed
scheme will be quite efficient, especially for alarm clusters with a narrow or
discrete probability distribution.
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1 <Policy PolicyId="idmef:anonymisation:policy"

2 RuleCombiningAlgId="&xacml;rule -combining -algorithm:deny -overrides">

3 <Target >

4 <Resources >

5 <Resource >

6 <ResourceMatch MatchId="&xacml;function:string -equal">

7 <AttributeValue DataType="&xs;string">urn:prile:org:resource:1:id

8 </AttributeValue >

9 <ResourceAttributeDesignator AttributeId="&xacml;resource:resource -id"

10 DataType="&xs;string"/>

11 </ResourceMatch >

12 </Resource >

13 <Resource >

14 <ResourceMatch MatchId="&xacml;function:string -equal">

15 <AttributeValue DataType="&xs;string">1:1437</AttributeValue >

16 <ResourceAttributeDesignator DataType="&xs;string"

17 AttributeId="&prile;resource:1:assertion:1:value"/>

18 </ResourceMatch >

19 </Resource >

20 </Resources >

21 <Actions >

22 <Action >

23 <ActionMatch MatchId="&xacml;function:string -equal">

24 <AttributeValue DataType="&xs;string">read</AttributeValue >

25 <ActionAttributeDesignator AttributeId="&xacml;action:action -id"

26 DataType="&xs;string"/>

27 </ActionMatch >

28 </Action >

29 </Actions >

30 </Target >

31 <Rule Effect="Permit" RuleId="lmm:cluster:access">

32 <Target/>

33 <Condition >

34 <Apply FunctionId="&xacml;function:integer -equal">

35 <Apply FunctionId="&prile;function:cluster">

36 <Apply FunctionId="&xacml;function:double -one -and -only">

37 <ResourceAttributeDesignator

38 AttributeId="&prile;resource:1:assertion:1:value"

39 DataType="&xs;double"/>

40 </Apply>

41 <AttributeValue DataType="urn:ogc:def:dataType:geoxacml:1 .0 :geometry">

42 <gml:MultiPoint srsName="&prile;LaplacianMixtureModel">

43 <gml:pointMember >

44 <gml:Point >

45 <gml:coordinates >11.7 ,2.9 ,0.46</gml:coordinates >

46 </gml:Point >

47 </gml:pointMember >

48 <gml:pointMember >

49 <gml:Point >

50 <gml:coordinates >13.7 ,2.5 ,0.54</gml:coordinates >

51 </gml:Point >

52 </gml:pointMember >

53 </gml:MultiPoint >

54 </AttributeValue >

55 </Apply>

56 <AttributeValue DataType="&xs;integer">2</AttributeValue >

57 </Apply>

58 </Condition >

59 </Rule>

Figure 8.5.5: Example XACML Policy for IDS rule with SID 1:1437 (part 1 of 2).
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1 <Obligations >

2 <Obligation FulfillOn="Permit"

3 ObligationId="&prile;resource:1:restrictions">

4 <AttributeAssignment AttributeId="&prile;resource:1:policy:declassify"

5 DataType="urn:ogc:def:dataType:geoxacml:1 .0 :geometry">

6 <gml:MultiPoint srsName="http: //www.prile.org/ByteRanges">

7 <gml:pointMember >

8 <gml:Point >

9 <gml:coordinates >0,230</gml:coordinates >

10 </gml:Point >

11 </gml:pointMember >

12 </gml:MultiPoint >

13 </AttributeAssignment >

14 <AttributeAssignment AttributeId="&prile;resource:1:cache -timeout"

15 DataType="&w3c;TR /2002/WD-xquery -operators -20020816# dayTimeDuration">

16 P1D</AttributeAssignment >

17 </Obligation >

18 </Obligations >

19 </Policy >

Figure 8.5.6: Example XACML Policy for IDS rule with SID 1:1437 (part 2 of 2).
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