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Vehicle dynamics are directly dependent on tire-road contact forces and torqueswhich are themselves dependent on thewheels’ load
and tire-road friction characteristics. An acquisition of the road disturbance property is essential for the enhancement of vehicle
suspension control systems. This paper focuses on designing an adaptive real-time road profile estimation observer considering
load variation via vehicle vertical dynamics. Firstly, a road profile estimator based on a linear Kalman filter is proposed, which
has great advantages on vehicle online control. Secondly, to minimize the estimation errors, an online identification system based
on the Recursive Least-Squares Estimation is applied to estimate sprung mass, which is used to refresh the system matrix of the
adaptive observer to improve the road estimation efficiency. Last, for mining road category from the estimated various road profile
sequencse, a road categorizer considering road frequency and amplitude simultaneously is approached and its efficiency is validated
via numerical simulations, in which the road condition is categorized into six special ranges, and this road detection strategy can
provide the suspension control system with a better compromise for the vehicle ride comfort, handling, and safety performance.

1. Introduction

The road properties have significant impact on vehicle per-
formance because vehicle dynamics are directly dependent
on tire-road contact forces and torques. Road roughness is
a broad term that incorporates everything from potholes
and cracks to the random deviations that exist in a profile.
The analysis and estimation of a road surface are hot and
challenging topics, and the researches related to road dis-
turbances have been presented, which can be classified into
three categories: roadmeasurement, roadmodeling, and road
estimation. Each of these categories is reviewed briefly in the
sequel.

Road Measurement. It mainly focuses on measuring the
road profile accurately for road serviceability, survey, and

road maintenance. There are primarily three methods in use
internationally. The first category consists of profilometers
and profilographs [1–4]. These are manually directed and/or
trailer towed mechanisms that directly contact the pavement
under evaluation, such as the longitudinal profile analyser
(LPA). The second category is inertial profilers such as the
Mays Meter [5] and the GMP (general motor profilometer)
[6], in which a vehicle mounted accelerometer is applied
to collect data while traveling at normal speed conditions.
González et al. also developed a road roughness estimator
by the use of acceleration measurement [7]. Furthermore,
Ngwangwa et al. reconstructed road defects and road rough-
ness classification using vehicle responses with artificial
neural networks simulation [8].The third category, equipped
with a laser (ultrasonic) transceiver [9], is more accurate but
very expensive.
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Road Modeling. It mainly focuses on providing road input
source to the virtual vehicle simulation system or the Four-
Post Test Rig for vehicle ride analysis. In 1970s, the PSD
(power spectral density) function was used by Whitehouse
andArchard [10] and Shinozuka and Jan [11] to investigate the
road roughness. In 1993, Cebon proposed a method based on
the IFFT (inverse fast fourier transform) to discretize PSD,
which is a simple, fast, and convenient tool for generating
road surfaces [12, 13]. In 1995, the contemporary international
standard ISO 8608 [14] dealt with road roughness assumes,
due to classification of roads into different classes according
to their unevenness, equal intensity of road unevenness in
the whole range of wavelengths and a general form of the
fitted PSD were given. A method based on linear filtering
(autoregressive and moving average method or ARMAmod-
elling) was proposed by Yoshimura in 1998 [14], which has
a smaller calculation, and a faster simulation speed, but its
precision is not very well. Pazooki et al. [15], in 2007, sum-
marized different stochastic models of parallel road tracks
and evaluated their accuracy by comparing the difference of
the measured parallel tracks and the synthetic parallel tracks.
In 2012, Hassan and Evans [16] developed a comprehensive
off-road vehicle ride dynamics model considering a random
roughness model of the two parallel tracks.

Road Estimation. It mainly focuses on providing real-time
rough road estimation for vehicle online control system.
Since road input directly affects vehicle vertical suspension
dynamics, the availability of suspension sensors such as
accelerator and suspension deflection sensor provide an
excellent opportunity for road input estimation. Fialho and
Balas developed a road adaptive active suspension using
linear parameter varying gain-scheduling [17], in which the
road estimation results are applied to the suspension control
system to achieve a better balance between ride and handling
performance. A new simultaneous input and state estimation
algorithm were developed based on the idea of achieving
minimum mean square error and minimum error variance
[18]. Two stable SISE algorithms were developed based on
theminimumvariance unbiased estimation technique [19]. A
Takagi-Sugeno Fuzzy observer was built for estimating both
vehicle dynamics and road geometry [20]. Vehicle sideslip
and roll parameters are estimated in presence of the road
bank angle and the road curvature as unknown inputs. But
it is still not completely ready to be tested in experimental
studies since the vehicle speed, parameters variations, and
sensor noise are not considered. If the systems are subject
to parameter uncertainties, the approaches proposed in [21–
23] can be employed. Our previous study [24, 25] also
shows the great potential in the enhancement of suspension
performance by adopting road estimation in the suspension
control system, even though the road estimation algorithm
is very simple (just using the statistic value of the accelerator
or suspension deflection sensor measurement to classify the
road). Recently, a real-time estimation method based on
Kalman filter is proposed to estimate the road profile, and
experimental results show the accuracy and the potential of
the estimation process [26]. But in this research, the vehicle
sprung mass change due to vehicle load variation is not

considered, which may attenuate the robustness. Imine and
Delanne developed a sliding mode observer to estimate the
road profiles, which is hard for real-time implementation
since a 16 degrees of freedom (DOF) full car model is too
complex to be applied online [27, 28].

This paper focuses on developing a road estimation
system for an online vehicle control system, which is limited
by some important practical requirements. It should, for
instance, be:

simple enough to run in real time despite onboard
processing limitations;

reliable enough to operate successfully despite instru-
mentation failures;

robust to variations in vehicle dynamics;

fast enough to detect the road input changes when a
car is driven on road;

easy to incorporate into a control strategy.

With these requirements in mind, the objective of this
research has three steps: (1) to develop a road estimator for
satisfying the above 5 practical requirements; (2) to obtain
vehicle sprung mass online to minimize the road profile
estimation errors; (3) and to classify the estimated road
profile into several categories according to the main control
strategy. The proposed method uses measurements from
available sensors: accelerometers and suspension deflection
sensors. For simplicity reasons, a quarter-car vehicle model is
considered.The estimation process consisting of three blocks
is shown in Figure 1.

The first block serves to calculate vehicle sprung mass
online from sensor measurements, while the second block
contains aKalmanfilter that uses the result of the first block as
a system parameter adjustor in order to improve robustness
of the road estimation system. The third block serves to
categorize the estimated road profile elevation into specific
types.

The rest of the paper is organized as follows. Section 2
describes a road input state estimator based on a linear
Kalman filter. Section 3 presents an online sprung mass
estimator based on the Recursive Least-Squares Estimation.
In Section 4, a novel road categorizer is proposed, and it
is validated via numerical simulations. And, the paper is
concluded in Section 5.

2. Road Profile Estimator

2.1. 2-DOF Quarter-Car Model. To implement the Kalman
filter method, a suitable vehicle model must be developed.
In order to describe the vertical dynamics of a vehicle which
runs on an uneven road with a constant speed, a 2-DOF
quarter-car model is represented in Figure 2.The quarter-car
model does not consider the pitch and roll motions. Despite
its simplicity, it captures the most basic feature of the vertical
model of the vehicle [29]. We assume that wheels are rolling
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Figure 2: A quarter-car model.

without slip or contact loss. Equations (1) and (2) represent
the vehicle body and the wheel motion, respectively:
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where 𝑀 and 𝑚 are, respectively, the sprung mass and the
unsprung mass of a quarter car,𝐾

𝑠
represents the suspension

stiffness, 𝐾
𝑡
represents the tire vertical stiffness, 𝐶
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damper damping coefficient, 𝑥
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is the sprung mass position,
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is the unsprung mass position, and 𝑥

𝑟
is the road input.

2.2. Kalman Filter for Road Input Estimation. The road input
𝑥
𝑟
is an estimated signal and it should be a part of the system

states. Hence, in this paper, state variables for the quarter car
are presented as follows:
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And the road roughness profile applied in the estimation
observer satisfies the following equation [30]:
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where 𝑎
1
and 𝑎

2
are constant real numbers. The modified

quarter car has to be stable in order to provide useful result;
this implies that the real parts of the eigenvalues associated
with (4) have to be negative, and consequently 𝑥

𝑟
converges

to zero based on the selection of the constants 𝑎
1
and 𝑎

2
.

However, since 𝑥
𝑟
represents the road profile input, it should

contain as much road input information as possible. In other
words, 𝑥

𝑟
should be damped as slowly as possible, which

will affect the stability of (4). Therefore, there is a trade-
off between system stability and road input information
integrity. In this paper, 𝑎

1
and 𝑎
2
are set to 20, which are close

to two times of the quarter-car tire hop frequency, is sufficient
to keep (4) stable [30]. The quarter car state equations can be
written as follows:
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𝑇 is an observer vector, where
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is a suspension deflection measured by sensor; 𝑥
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is a vehicle body position calculated by a twice numerical
integration (trapezoidal method) of the filtered vertical accel-
eration signal; �̈�
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is a filtered vertical acceleration. 𝜐

𝑘
and 𝜔

𝑘

are the process and measurement noise vector, respectively,
assumed to be white, zero mean, and uncorrelated.

Evolution and observation constant matrices are given as
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Table 1: Quarter-car model parameter.

Δ𝑡 Sampling period 5ms
𝑀 Vehicle sprung mass 320 kg
𝐾
𝑠

Suspension stiffness 20.8 kN/m
𝑚 Unsprung mass 40 kg
𝐾
𝑡

Tire vertical stiffness 235 kN/m
𝐶
𝑠

Suspension damping 1.5 kN⋅s/m

where 𝐸 is the identity matrix and Δ𝑡 is the sampling period.
And it is easy to verify that the observability matrix 𝑂 is full
rank:
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A standard Kalman filter formulation is used for the
velocity estimation [31, 32]. The time update and measure-
ment update equations of the filter are constructed as follows:
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where 𝑄 is a process noise covariance matrix, 𝑅 is a mea-
surement noise covariance matrix, 𝑃 is an estimation of error
covariance matrix,𝐾 is a Kalman gain, and 𝑥 is an estimated
state vector. The process and measurement noise variables 𝜐

𝑘

and 𝜔
𝑘
determine how much should the process model and

the measurements should be trusted by the filter.

2.3. Simulation Setup. This paper presents simulations of the
quarter-car system as shown in Figure 2 with parameters
tabulated in Table 1.

Two types of road inputs were used during experimental
and simulation analysis. One input is a trigonal bump with
40mmheight and 400mm length shown in Figure 3; another
input is a random road input modeled based on the inverse
Fourier transform as Figure 4.

Figure 5 to Figure 8 show a comparison between the
actual and the estimated road profile height. In Figures 5 and
7, the vehicle passes the bump at a constant speed of 15 km/h
and 45 km/h, respectively. In Figures 6 and 8, the vehicle runs
on a random road, and the speed is 30 km/h and 60 km/h,
respectively. The simulation results show that, in the random
road input or the low speed bump input condition, the road
estimator is very efficient, while in the condition of passing
the bump with a relatively high speed, as shown in Figure 7,
the estimation result is not very well. This is induced by the
road model defined in (4). In fact, the road model applied in
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the proposed estimation observer shouldmake a compromise
between system stability and the integrity of road input
information. We want to keep the system stable sacrificing
the integrity of road input information in this research. And
this strategy decreases the road estimator performance in an
impulse input condition. The higher the vehicle speed is, the
sharper the road input in time domain will be and the worse
the road estimator will be. But its negative effect is acceptable
since most drivers will reduce the vehicle speed when they
run over a bump.

3. Sprung Mass Estimation

The road estimation method presented afore is based on a
hypothesis that the vehicle system parameters in Table 1 are
known and invariable. But in a real vehicle control system,
it is not easy to obtain the sprung mass of the equivalent
2-DOF model, because of the nonlinear properties of the
suspension system and the weight distribution variation on
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different driving conditions. What is more, the sprung mass
varies greatly between empty and full loaded, especially for a
commercial vehicle. All these factors will induce a significant
sprung mass change and, then, attenuate the efficiency of the
road estimation system. As shown in Figure 9, 20% sprung
mass error will induce an obvious road estimation error.
Consequently, it is necessary to estimate the sprung mass
online for improving the efficiency of road estimation.

3.1. Solution Formulation. With setting𝑦 = −𝐾
𝑠
(𝑥
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), 𝜃 =
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The vehicle sprung mass and suspension damping coef-
ficient are estimated simultaneously via the Recursive Least-
Squares Estimation. The Recursive Least-Squares Estimation
procedures are given as follows:
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where 𝑃 is a symmetric covariance matrix (2 × 2) and 𝜃
𝑁

is the Least-Squares estimation of 𝜃; the calculation order is
described as follows.

Calculate 𝐾
1
by 𝜃
0
and 𝑃

0
according to (11) first; then,

update the value of 𝑦
1
and 𝜓𝑇

1
; and then, calculate 𝜃

1
and

𝑃
1
according to (10) and (12), respectively; last, recursive the

mentioned steps in order until the error reaches the standard.
As for the initial values, 𝜃

0
and 𝑃

0
, they can be calculated by

the Least-Squares Estimation.

3.2. Simulation. Here, the vehicle system model parameters
are fromTable 1; the road profile defined in Figure 4 is selected
as a vertical road input and the vehicle runs with a constant
speed of 20 km/h.The estimation result is shown in Figure 10,
which demonstrates the estimation result converges at an
acceptable region (the error is less than 5%) after 2.5 s and
then shows great efficiency after 20 s. Generally, the vehicle
load is a constant during a vehicle start-stop period and
the convergence time for sprung mass estimation is usually
far less than a vehicle start-stop period. The sprung mass
estimation is a little bit time-consuming, but it is not a big
issue. For example, the original sprung mass is set in normal
load condition. The road estimation block will be triggered
once the vehicle has been started and the vehicle velocity is
greater than 10 km/h; it will obtain the sprungmass (the error
is less than 5%) in 2.5 s after the road estimation block is
triggered, and the sprung mass will be refreshed. And then
the sprungmass will be updated in every 2.5 s until it is stable
(the change is less than 1%) or the estimation time is more
than 40 s.

4. Road Categorizer

In the previous sections, the road estimator performs very
well in a quarter-car system. However, does this estimator
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Figure 10: Sprung mass estimation.

have the same performance applied to an actual car online
system? It cannot be denied that the estimated result, in an
actual car online system, will be worse than expectation due
to the effect of wheel radius, wheel contact area, and the noise
signals in the control system. What is more, the estimated
road profile cannot be applied to the control strategy directly
since these road sequences are estimated by postestimation,
which produces an unavoidable time delay.However, inmany
vehicle control systems, such as active/semiactive suspension
system, obtaining the primary road category information
is effective [33]. Hence, it is necessary to develop a road
categorizer to distinguish the road category for the main
control strategy. But the most common road classification
methods, estimating the road PSD (power spectral density)
or the road RMS (root mean square), are not enough effective
for an online control system, because these methods need to
compute plenty of road height values which will consume a
lot of estimation time, and this time lag usually cannot be
neglected in a real-time control system.

In fact, most onboard suspension control systems, only
require the mainly frequency or amplitude information of
road input. In [33, 34], a road-frequency adaptive suspension
is proposed, where the road surface is classified by the
frequency properties according to the fact that [0–4Hz] is the
car-body frequency region and [4–8Hz] is the human-body
frequency region. [8–12Hz] is the wheel frequency region
and [12–∞Hz] is the harshness frequency region. Bastow et
al. also categorize the road profile into four grades, which
defined a very good surface with amplitudes under 5mm,
medium-quality roads with amplitudes less than 13mm,
poor-quality roads with amplitudes less than 25mm, and
off-road with the amplitudes often exceeding 25mm [35].
However, it is a challenging issue to design a proper filter to
avoid some unimportant long waves without any phase delay,
as shown in Figure 4; the road waves are not fluctuating along
the horizontal plane due to the effect of some long waves
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Figure 11: Road amplitude estimation method.

which has small contribution on the vehicle vertical dynamic;
consequently, we should estimate the road input frequency
and amplitude avoiding the unimportant long waves. In the
other hand, the road categorizer only depending on the road
frequency or the road amplitude does not work very well
always. And the suspension control strategy should consider
the road frequency and amplitude simultaneously in some
case, such that a car runs on a road twice with different
speed or a car runs on different road (ISO Class A and
ISO Class C) with same speed. It will be much better if
the road categorizer considers road frequency and amplitude
simultaneously. Hence, a novel road categorizing method
considering road frequency and amplitude simultaneously is
proposed in the following paragraph.

For road frequency estimation, refer to the article [34],
a first-order zero-crossing algorithm is applied, with the
road velocity state �̇�

𝑟
being the input, to identify the fre-

quency components of road disturbances. The frequency
estimation result of Figure 11 is shown in Figure 12, and
the current estimation value is actually the last circle’s
frequency.

As for road amplitude analysis, road velocity state �̇�
𝑟

does not contain the amplitude information, but the road
amplitude estimation only via 𝑥

0
is very difficult, since some

of the significant road waves are not fluctuating along the
horizontal plane. As shown in Figure 11, the value of “𝐴” is
one of the main amplitudes values, which is the amplitude of
the wave with dominant frequency, should be estimated.

In the sequel, a novel road amplitude estimation method
is proposed as shown in Figure 11, where, 𝑇

1
, 𝑇
2
, and 𝑇

3
, used

to detect each complete cycle, are the three attached times
when first-order zero-crossing of the road velocity sequence
happens; 𝑦

1
, 𝑦
2
, and 𝑦

3
are the three road height values in

the times 𝑇
1
, 𝑇
2
, 𝑇
3
, respectively. Then the road amplitude

“𝐴” can be simply calculated as (13), where 𝑇
1
, 𝑇
3
are used

to detect the troughs of a circle and𝑇
2
used to detect the peak

of a circles are the distance between the point (𝑇
2
, 𝑦
2
) to the

4.5 4.6 4.7 4.8 4.9 5
0

5

10

15

20

Time (s)

Fr
eq

ue
nc

y 
(H

z)

Figure 12: Road frequency estimation.

4.5 4.6 4.7 4.8 4.9
0

0.01

0.02

0.03

0.04

0.05

Time (s)

A
m

pl
itu

de
 (m

)

Figure 13: Road amplitude estimation.

A
m

pl
itu

de
 (m

)

Frequency (Hz)

IV V VI

I II III

Flow Fhigh

Alow

Figure 14: Road detection strategy.



8 Mathematical Problems in Engineering

Table 2: Suspension mode selection based on road condition.

Range Driving condition Suspension control objective
I and II Good road surface with medium or low speed, mostly on an urban driving condition Improve the vehicle ride performance
III Expressway driving condition Improve the road holding
IV Bad road with low speed Limit the low frequency body motion
V and VI Poor-quality road surface with medium-high speed and the impulse road input Attenuate the impact feeling

line going through the points (𝑇
1
, 𝑦
1
), (𝑇
3
, 𝑦
3
); is two times

of the amplitude 𝐴; in this paper, an approximate algorithm
is used as follows:

𝐴 =

{{{{

{{{{

{

1

2


𝑦
2
− (𝑦
1
+

𝑇
2
− 𝑇
1

𝑇
3
− 𝑇
1

(𝑦
3
− 𝑦
1
))


if 𝑦
3
≥ 𝑦
1
,

1

2


𝑦
2
− (𝑦
3
+

𝑇
3
− 𝑇
2

𝑇
3
− 𝑇
1

(𝑦
1
− 𝑦
3
))


if 𝑦
3
< 𝑦
1
.

(13)

The amplitude estimation result is shown in Figure 13;
even though the algorithm is running in real time, the
estimation result still has a complete cycle time lag.

As road frequency and amplitude estimation can be
achieved, a road categorizer special for a semiactive suspen-
sion control system can be designed, as shown in Figure 14.
A certain type of road can be detected by judging the
amplitude and frequency of the estimated road profile into
the specific range (I–VI), where the suggestion values of𝐴 low,
𝐹low, and 𝐹high are 10mm, 4Hz, and 8Hz, respectively. The
suspension mode selection based on the road condition in
specific range (I–VI) is detailed in Table 2. Ranges I and
II are the medium-low frequency and low amplitude areas,
corresponding to good road surface withmedium-low speed,
mostly on an urban driving condition. In this case, the
suspension system should be turned to soft mode to improve
the vehicle ride performance. Range III is the high frequency
and low amplitude area, corresponding to the expressway
driving condition, in which more attention should be paid
to the tire deflection, and a relative hard mode suspension
system should be regulated to achieve better road holding
for driving safety. Range IV is the low frequency and high
amplitude area corresponding to a bad road with low speed,
which is very common for an off-road. In this condition,
limiting the low frequency body motion should be a key
objective. Ranges V and VI correspond to poor-quality road
surface withmedium-high speed and the impulse road input.
In these cases, the suspension system should be adjusted to
attenuate the impact feeling.

5. Conclusions

An acquisition of road disturbances property is essential for
the enhancement of suspensions control systems. This paper
presented a method to estimate the road profile elevation
based on Kalman filter. To minimize the estimation errors,
an online identification system based on Recursive Least-
Squares Estimation is adopted to estimate sprung mass in
real time, which is applied to refresh the systemmatrix of the
adaptive observer. And a novel road categorizer considering
road frequency and amplitude simultaneously is approached

to classify various road profile sequence for suspension
control system. The main conclusions are as follows.

(1) A road profile estimator based on linear Kalman filter
is proposed, which has great advantages on practical
online vehicle control.

(2) An online sprung mass estimator is proposed, which
demonstrates the estimation result converges at an
acceptable region (the error is less than 5%) after
2.5 s and then shows great efficiency after 20 s. With
this online sprung mass estimator, the accuracy road
estimation result can be improved greatly.

(3) A novel road amplitude estimation method is pro-
posed. And the road condition is categorized into six
special ranges according to the road frequency and
amplitude estimation result simultaneously, which
can provide the suspension control system with a
better trade-off for the ride comfort, handling, and
safety performance.
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