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This paper considers the sliding mode control problem for a kind of dynamic delay system. First by utilizing Lyapunov stability
theory and a linear matrix inequality technique, an observer based on delayed output feedback is constructed. Then, an integral
sliding surface is presented to realize the sliding mode control for the system with the more available stability condition. Finally,
some numerical simulations are implemented to demonstrate the validity of the proposed control method.

1. Introduction

For system control, state feedback control is a powerful tool
when the full information of the system states is assumed to
be accessible. However, in real engineering, not all of them
can be available. Hence, the research on observer-based con-
trol system is a meaningful topic. Up to now, many relevant
investigations [1–10] have been carried out. For instance, in
[1], by imposing some restrictions on an open-loop system,
two classes of the observer-based output feedback controllers,
one finite dimensional and the other one infinite dimen-
sional, are constructed; in [2], a static gain observer for linear
continuous plants with intrinsic pulse-modulated feedback is
designed to asymptotically drive the state estimation error to
zero; in [3], by using the orthogonality-preserving numerical
algorithm, a nonlinear discrete-time partial state observer is
designed to realize the attitude determination for a kind of
spacecraft system; in [4], with the two-step observation algo-
rithms, an observer is constructed to force an underactuated
aircraft to asymptotically track a given reference trajectory; in
[5], through employing an adaptive backstepping approach,
a modified high-gain observer is introduced to realize the
global asymptotic tracking for a class of nonlinear systems.

In real engineering, time delays exist objectively, which
makes the observer-based system control issue more com-
plicated. Many existing control methods that have been well
developed based on the conventional feedback observer, such
as ones in [1–5], are not directly applicable. In addition, the
LMI technique is known as a powerful tool for system control.
However, it is not easy to use any more when time delays
appear in the feedback output of system. Hence, the cor-
responding research is meaningful. Sliding mode control
(SMC) has been proven to be an effective robust control strat-
egy and has been successfully applied to a wide range of engi-
neering systems such as spacecrafts, robot manipulators, air-
craft, underwater vehicles, electrical motors, power systems,
and automotive engines [11–25]. In [11], a novel integral slid-
ing surface is introduced to achieve the control for a kind of
system based on the LMI technique, with the more available
stability condition compared to the conventional linear slid-
ing surface. However, the systemwith delay is not included in
its research yet. Hence, all of the above motivate our work.

In this paper, the problem on the SMC for a kind of delay
dynamic system will be discussed. By utilizing Lyapunov
stability theory and a linear matrix inequality technique,
a new observer-based on delayed output feedback will be
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constructed. An integral sliding surface will be presented to
realize the SMCof the systemwith themore available stability
condition. Finally, some numerical examples will be included
to demonstrate the validity of the proposed control method.

Notation used in this paper is fairly standard. Let 𝑅𝑛 be
the 𝑛-dimensional Euclidean space, 𝑅𝑛×𝑚 represents the set
of 𝑛 × 𝑚 real matrix, ∗ denotes the elements below the main
diagonal of a symmetric block matrix, diag{} represents the
diagonal matrix, the notation 𝐴 > 0 means that 𝐴 is the real
symmetric and positive definite, 𝐼 denotes the identitymatrix
with appropriate dimensions, and ‖ ⋅ ‖ refers to the Euclidean
vector norm.

2. Problem Statement and Preliminaries

In this paper, the following dynamic system is considered:

𝑥̇ (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑥 (𝑡 − 𝑙) + 𝐿𝑢 (𝑡) ,

𝑧 (𝑡) = 𝐶𝑥 (𝑡 − 𝑑) ,

(1)

where 𝑥(𝑡) ∈ 𝑅
𝑛 is the system state, 𝑢(𝑡) ∈ 𝑅

𝑚 is the system
input, 𝑦(𝑡) ∈ 𝑅

𝑙 is the system output, 𝑙 is discrete delay, 𝑧(𝑡) is
themeasurable feedback output, and𝐴,𝐵, 𝐿,𝐶 are the system
matrices with appropriate dimension.

Then, an observer of system (1) is built as follows:

̇̂𝑥 (𝑡) = 𝐴𝑥 (𝑡)+𝐵𝑥 (𝑡 − 𝑙)+𝐿𝑢 (𝑡)+𝑒
𝐴𝑑

𝐾 [𝑧 (𝑡) − 𝐶𝑥 (𝑡 − 𝑑)] ,

̇̂𝑥 (𝑡 − 𝑑) = 𝐴𝑥 (𝑡 − 𝑑) + 𝐵𝑥 (𝑡 − 𝑑 − 𝑙) + 𝐿𝑢 (𝑡 − 𝑑)

+ 𝐾 [𝑧 (𝑡) − 𝐶𝑥 (𝑡 − 𝑑)] ,

(2)

where 𝑥(𝑡) ∈ 𝑅
𝑛 is the state vector, 𝐾 is the feedback control

matrix, and 𝑑 is the measurable feedback delay.
Define the observation error:

𝑒 (𝑡) = 𝑥 (𝑡) − 𝑥 (𝑡) . (3)

The following theoretical result will be used throughout the
paper.

Lemma 1. For observer (2), the following equation holds:

𝑥 (𝑡) = 𝑒
𝐴𝑑

𝑥 (𝑡 − 𝑑) + ∫

𝑡

𝑡−𝑑

𝑒
𝐴(𝑡−𝜏)

(𝐿𝑢 (𝜏) + 𝐵𝑥 (𝜏 − 𝑙)) 𝑑𝜏.

(4)

Proof. The derivative of (4) is as follows:

̇̂𝑥 (𝑡) = 𝑒
𝐴𝑑 ̇̂𝑥 (𝑡 − 𝑑) + 𝐴∫

𝑡

𝑡−𝑑

𝑒
𝐴(𝑡−𝜏)

(𝐿𝑢 (𝜏) + 𝐵𝑥 (𝜏 − 𝑙)) 𝑑𝜏

+ 𝐿𝑢 (𝑡) − 𝑒
𝐴𝑑

𝐿𝑢 (𝑡 − 𝑑) + 𝐵𝑥 (𝑡 − 𝑙)

− 𝑒
𝐴𝑑

𝐵𝑥 (𝑡 − 𝑑 − 𝑙)

= 𝑒
𝐴𝑑 ̇̂𝑥 (𝑡 − 𝑑) + 𝐴 (𝑥 (𝑡) − 𝑒

𝐴𝑑

𝑥 (𝑡 − 𝑑))

+ 𝐿𝑢 (𝑡) − 𝑒
𝐴𝑑

𝐿𝑢 (𝑡 − 𝑑) + 𝐵𝑥 (𝑡 − 𝑙)

− 𝑒
𝐴𝑑

𝐵𝑥 (𝑡 − 𝑑 − 𝑙)

= 𝐴𝑥 (𝑡) + 𝐿𝑢 (𝑡) + 𝐵𝑥 (𝑡 − 𝑙)

+ 𝑒
𝐴𝑑

( ̇̂𝑥 (𝑡 − 𝑑) − 𝐴𝑥 (𝑡 − 𝑑) − 𝐿𝑢 (𝑡 − 𝑑)

−𝐵𝑥 (𝑡 − 𝑑 − 𝑙) ) .

(5)

Consider (2), we get

̇̂𝑥 (𝑡) = 𝐴𝑥 (𝑡)+𝐵𝑥 (𝑡 − 𝑙)+𝐿𝑢 (𝑡) + 𝑒
𝐴𝑑

𝐾 [𝑧 (𝑡) − 𝐶𝑥 (𝑡 − 𝑑)] .

(6)

The proof of Lemma 1 is thus completed.

3. Design of Observer

Theorem 2. If there exists a matrix 𝑀, and positive-definite
symmetric matrices 𝑃 and 𝑄 satisfy

[
𝑄 + 𝑃𝐴 −𝑀𝐶 + 𝐴

𝑇

𝑃 − 𝐶
𝑇

𝑀
𝑇

𝑃𝐵

∗ −𝑄
] < 0, (7)

𝐾 = 𝑃
−1

𝑀 (8)

then, observer (2) can realize the observation of system (1).

Proof. From system (1), we have

𝑥̇ (𝑡 − 𝑑) = 𝐴𝑥 (𝑡 − 𝑑) + 𝐵𝑥 (𝑡 − 𝑙 − 𝑑) + 𝐿𝑢 (𝑡 − 𝑑) . (9)

With (2), we can get

̇𝑒 (𝑡 − 𝑑) = (𝐴 − 𝐾𝐶) 𝑒 (𝑡 − 𝑑) + 𝐵𝑒 (𝑡 − 𝑙 − 𝑑) . (10)

Choose the Lyapunov functional candidate as

𝑉 (𝑡 − 𝑑) = 𝑒
𝑇

(𝑡 − 𝑑) 𝑃𝑒 (𝑡 − 𝑑) + ∫

𝑡−𝑑

𝑡−𝑑−𝑙

𝑒
𝑇

(𝑠) 𝑄𝑒 (𝑠) 𝑑𝑠.

(11)

The time derivative of 𝑉(𝑡 − 𝑑) is

𝑉̇ (𝑡 − 𝑑) = 2𝑒
𝑇

(𝑡 − 𝑑) 𝑃 ̇𝑒 (𝑡 − 𝑑)

+ 𝑒
𝑇

(𝑡 − 𝑑)𝑄𝑒 (𝑡 − 𝑑) − 𝑒
𝑇

(𝑡 − 𝑑 − 𝑙)

× 𝑄𝑒 (𝑡 − 𝑙 − 𝑑)

= 2𝑒
𝑇

(𝑡 − 𝑑) 𝑃 ((𝐴 − 𝐾𝐶) 𝑒 (𝑡 − 𝑑) + 𝐵𝑒 (𝑡 − 𝑙 − 𝑑))

+ 𝑒
𝑇

(𝑡 − 𝑑)𝑄𝑒 (𝑡 − 𝑑) − 𝑒
𝑇

(𝑡 − 𝑑 − 𝑙)

× 𝑄𝑒 (𝑡 − 𝑙 − 𝑑) .

(12)

Then, the following equation holds:

𝑉̇ (𝑡 − 𝑑) = 𝜉
𝑇

(𝑡 − 𝑑) Ξ𝜉 (𝑡 − 𝑑) , (13)

where

𝜉 (𝑡) = [𝑒
𝑇

(𝑡) , 𝑒 (𝑡 − 𝑙)]
𝑇

,

Ξ = [
𝑃 (𝐴 − 𝐾𝐶) + (𝐴 − 𝐾𝐶)

𝑇

𝑃 + 𝑄 𝑃𝐵

∗ −𝑄
] .

(14)
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Let𝑀 = 𝑃𝐾, and, with LMI (7), we can conclude

𝑉̇ (𝑡 − 𝑑) < 0. (15)

Hence,

lim
𝑡→∞

𝑒 (𝑡 − 𝑑) 󳨀→ 0. (16)

From system (1), the following equation can be derived:

𝑥 (𝑡) = 𝑒
𝐴𝑑

𝑥 (𝑡 − 𝑑) + ∫

𝑡

𝑡−𝑑

𝑒
𝐴(𝑡−𝜏)

(𝐿𝑢 (𝜏) + 𝐵𝑥 (𝜏 − 𝑙)) 𝑑𝜏.

(17)

Considering (4), we have

𝑒 (𝑡) = 𝑒
𝐴𝑑

𝑒 (𝑡 − 𝑑) + ∫

𝑡

𝑡−𝑑

𝑒
𝐴(𝑡−𝜏)

𝐵𝑒 (𝜏 − 𝑙) 𝑑𝜏. (18)

Finally, combined with (16), we can get lim
𝑡→∞

𝑒(𝑡) → 0,
which means the realization of the observation. The proof of
Theorem 2 is thus completed.

4. Design of Sliding Motion Control Law

First, we introduce the following integral sliding surface:

𝑠 (𝑡) = 𝐻𝑥 (𝑡) − ∫

𝑡

0

𝐻(𝐴 + 𝐿𝑁) 𝑥 (𝜉) 𝑑𝜉

− ∫

𝑡

0

𝐻𝐵𝑥 (𝜉 − 𝑙 (𝜉)) 𝑑𝜉.

(19)

For system (1), we have

𝑥 (𝑡) = 𝑥 (0) + ∫

𝑡

0

(𝐴𝑥 (𝜉) + 𝐵𝑥 (𝜉 − 𝑙) + 𝐿𝑢 (𝜉)) 𝑥 (𝜉) 𝑑𝜉.

(20)

Hence, the following equation holds:

𝑠 (𝑡) = 𝐻𝑥 (0) + 𝐻𝐿∫

𝑡

0

(𝑢 (𝜉) − 𝑁𝑥 (𝜉)) 𝑑𝜉. (21)

By ̇𝑠(𝑡) = 0, we get the equivalent control law as

𝑢
𝑒𝑞
(𝑡) = 𝑁𝑥 (𝑡) . (22)

When 𝑢(𝑡) = 𝑁𝑥(𝑡), we can obtain

𝑥̇ (𝑡) = (𝐴 + 𝐿𝑁) 𝑥 (𝑡) + 𝐵𝑥 (𝑡 − 𝑙) . (23)

Then, based on Lyapunov theory and LMI techniques, the fol-
lowing theoretical result is derived.

Theorem 3. If there exists a matrix 𝑇, and positive-definite
symmetric matrices 𝐹 and 𝑆 satisfying

[
𝐴𝐹 + 𝐿𝑇 + 𝐹

𝑇

𝐴
𝑇

+ 𝑇
𝑇

𝐿
𝑇

+ 𝑆 𝐵𝐹

∗ −𝑆
] < 0, (24)

𝑁 = 𝑇
−1

𝐹 (25)

then, dynamic system (23) is stable.

Proof. Choose the Lyapunov functional candidate as

𝑉
1
(𝑡) = 𝑥

𝑇

(𝑡) 𝑆
1
𝑥 (𝑡) + ∫

𝑡

𝑡−𝑙

𝑥
𝑇

(𝑠) 𝑆
2
𝑥 (𝑠) 𝑑𝑠. (26)

Then, the time derivative of 𝑉
1
(𝑡) is as

𝑉̇
1
(𝑡) = 2𝑥

𝑇

(𝑡) 𝑆
1
𝑥̇ (𝑡) + 𝑥

𝑇

(𝑡) 𝑆
2
𝑥 (𝑡) − 𝑥

𝑇

(𝑡 − 𝑙) 𝑆
2
𝑥 (𝑡 − 𝑙)

= 2𝑥
𝑇

(𝑡) 𝑆
1
((𝐴 + 𝐿𝑁) 𝑥 (𝑡 − 𝑑) + 𝐵𝑥 (𝑡 − 𝑙))

+ 𝑥
𝑇

(𝑡) 𝑆
2
𝑥 (𝑡) − 𝑥

𝑇

(𝑡 − 𝑙) 𝑆
2
𝑥 (𝑡 − 𝑙) .

(27)

Hence, we have

𝑉̇
1
(𝑡) = 𝜉

𝑇

(𝑡) Ξ𝜉 (𝑡) , (28)

where

𝜉 (𝑡) = [𝑥
𝑇

(𝑡) , 𝑥 (𝑡 − 𝑙)]
𝑇

,

Ξ = [
𝑆
1
(𝐴 + 𝐿𝑁) + (𝐴 + 𝐿𝑁)

𝑇

𝑆
1
+ 𝑆
2
𝑆
1
𝐵

∗ −𝑆
2

] .

(29)

Let 𝐹 = 𝑆
−1

1
; pre- and postmultiply Ξ by diag{𝐹, 𝐹}; we have

Ξ = [
(𝐴 + 𝐿𝑁)𝐹 + 𝐹(𝐴 + 𝐿𝑁)

𝑇

+ 𝐹𝑆
2
𝐹 𝐵𝐹

∗ −𝐹𝑆
2
𝐹
] . (30)

Let 𝑆 = 𝐹𝑆
2
𝐹, 𝑇 = 𝑁𝐹, and consider LMI (24); we can get

𝑉̇
1
(𝑡) < 0. (31)

Hence, dynamic system (23) is stable.The proof ofTheorem 3
is thus completed.

Next based on the above theoretical results, a sliding
mode controller will be constructed to realize the stabiliza-
tion of dynamic system (1).

Theorem4. For dynamic system (1), the state trajectory will be
driven onto the sliding surface 𝑠(𝑡) in a finite time by the follow-
ing SMC law:

𝑢 (𝑡) = 𝑁𝑥 (𝑡) − 𝜂 sign (𝐻𝑇𝐿𝑇𝑠 (𝑡)) , (32)

where 𝜂 and 𝜌 are positive scalars.

Proof. Choose the Lyapunov functional candidate as

𝑉
2
(𝑡) =

1

2
𝑠
𝑇

(𝑡) 𝑠 (𝑡) . (33)

With (21) and (32), we have

̇𝑠 (𝑡) = 𝐻𝐿 (𝑢 (𝑡) − 𝑁𝑥 (𝑡))

= −𝐻𝐿𝜂 sign (𝐻𝑇𝐿𝑇𝑠 (𝑡) + 𝑁𝑒 (𝑡)) .

(34)
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Figure 1: The time response of 𝑥(𝑡) of system (1) without SMC.
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Figure 2: The time response of 𝑥(𝑡) and 𝑥(𝑡) of system (1) with SMC.

When the observation of system (1) is achieved, the time
derivative of 𝑉

2
(𝑡) is as

𝑉̇
2
(𝑡) = 𝑠

𝑇

(𝑡) ̇𝑠 (𝑡)

= −𝑠
𝑇

(𝑡)𝐻𝐿 (𝜂 sign (𝐻𝑇𝐿𝑇𝑠 (𝑡)))

= −𝜂
󵄩󵄩󵄩󵄩󵄩
𝑁
𝑇

𝐻
𝑇

𝐿
𝑇

𝑠 (𝑡)
󵄩󵄩󵄩󵄩󵄩
≤ 0.

(35)

Hence, the system state trajectory can converge to the sliding
surface 𝑠(𝑡) and stay on the surface. This concludes the proof
of Theorem 4.

5. Numerical Example

In this section, we will verify the proposed theoretical theo-
rems by giving some illustrative examples.

First consider dynamic system (1) with the following
parameters:

𝐴=[
1 0.5

0.5 0.8
] , 𝐵=[

−0.5 0

0.3 −0.3
] , 𝐿=[

0.8 0

0 1.2
] ,

𝐻 = [0.2 0.2] , 𝐶 = [1 1] ,

𝑑 = 2𝑠, 𝑙 = 1𝑠, 𝜂 = 0.5,

𝑥
0
= [−0.6, 0.6]

𝑇

, 𝑥
0
= [0, 1.0]

𝑇

.

(36)

Corresponding simulation results are shown in Figure 1.

Then, the presented observer-based SMC method in this
paper is applied to system (1). Based onTheorem 3, we can get
the control parameters as follows:

𝑁 = [
−3.0937 −0.1861

−0.1837 −2.9113
] , 𝐾 = [

14.0436

14.1551
] . (37)

In addition, to avoid the chattering phenomenon of SMC,
sign(𝑠(𝑡)) is recommended to be replaced by 𝑠(𝑡)/(|𝑠(𝑡)| +

0.05), and the corresponding simulation results are shown in
Figures 2 and 3.

Remark 5. From Figure 1, it can be seen that the state varia-
bles of the systemdiverge to zero as timepasses by.Thismeans
that the considered system is not stable. Figure 2 shows the
time response of system state 𝑥(𝑡) and system state esti-
mate 𝑥(𝑡) based on the given observer-based SMC method.
Figure 3 shows the time response of sliding mode control
input 𝑢(𝑡). It can be seen that𝑥(𝑡) converges to 𝑥(𝑡) during 4.0
seconds, and the original unstable dynamic system becomes
stable for the utilization of our controller, which demonstrates
the effectiveness of the presented theoretical results.

6. Conclusion

In this paper, the problem on the stabilization for a kind
of dynamic system has been discussed. Through utiliz-
ing Lyapunov stability theory and linear matrix inequality
techniques, a delayed output feedback observer has been
designed, and a slidingmode controller has been constructed
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Figure 3: The time response of control input 𝑢(𝑡) of system (1).

to realize the stabilization of the system. Finally, some typical
numerical examples have been included to verify the validity
of the proposed SMC method.
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