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This paper studies the problem of H
∞

finite-impulse response (FIR) filtering design of time-delay system. The time-delay
considered here is time-varying meanwhile with a certain stochastic characteristic, and the probability of delay distribution is
assumed to be known. Furthermore, the requirement of pulse-shape is also considered in filter design. Employing the information
about the size and probability distribution of delay, a delay-probability-distribution-dependent criterion is proposed for the filtering
error system. Based on a Lyapunov-Krasovskii functional, a set of linear matrix inequalities (LMIs) are formulated to solve the
problem. At last, a numerical example is used to demonstrate the effectiveness of the filter design approach proposed in the paper.

1. Introduction

In the studies about filtering problem, one most significant
approach frequently applied in the past decades is Kalman
filtering, themain idea ofwhich is tominimize the variance of
the estimation error assuming considered system dynamics
to be exactly known and the external disturbances to be
stationary Gaussian noises with known statistical properties
[1, 2]. However, in many practical engineering applications,
the statistical details about external noise are not available [3–
8]. In these cases,many approaches are introduced to improve
systems’ robustness, such as H

∞
, H
2
, and mixed H

∞
/H
2

filtering [2, 9–13]. In this paper, theH
∞
filtering approach is

utilized.
On the other hand, time-delays are frequently encoun-

tered in practical engineering systems, such asmanufacturing
systems, power systems, and networked control systems [14–
17]. Existence of delay makes the analysis and synthesis of
systems a much more difficult task; meanwhile it is also
the source of instability and poor performance in many
cases [13, 18–20]. The main approaches to solve delay prob-
lems can be classified into delay-dependent approach and
delay-independent approach. It has been shown in [21, 22]

that the results obtained using delay-dependent approaches
are generally less conservative than the delay-independent
approaches ones [23]. Acknowledging this fact, the delay-
dependent approach is applied in this paper.

In fact, the variation of delay may often stick to some
probability distribution in spite of its varying and underivable
property [24, 25]. Furthermore, in many real systems such
as networked control systems, the time-varying delay may
have some abrupt burst, leading to very large delay with a
very small probability [26]. In this sense, the discussion about
time-delay should not only depend on its size but also on
its probability distribution. In this paper, a new filter design
approach and new stability criteria for the filtering error
system taking the stochastic characteristic of time-varying
delay into account is proposed.

While an H
∞

optimal filter can catch the frequency-
domain property, the time-domain constraints such as enve-
lope constraints or bounds on signals cannot be handled by
this frequency-domain approach [27]. Among various time-
domain specifications, envelope constraints, which make
requirement on the pulse-shape, have significant applications
in many practical engineering systems, such as communi-
cation systems, radar, sonar systems, and signal processing
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systems [28–31]. For instance, in deconvolution filtering
and data channel equalization problems, it is extremely
important to achieve a desired pulse-shape throughdesigning
an appropriate filter [27].

Therefore, aiming at incorporating both frequency-
domain and time-domain constraints into the problem, we
intend to design a filter satisfying the H

∞
performance and

subject to envelope constraints in outputs. Meanwhile, time-
varying delays with certain stochastic characteristics in the
transmission channel are also taken into account. With the
proposed filter design approach, a more general condition
of time-varying delay problem can be solved. As in most
situations, although detailed and exact information about
delay cannot be achieved, the delay’s probability distribution
characteristics can be predicted or observed relatively easily.
Once the probability information is gotten, the filter design
approach can be developed.

In this paper, based on a Lyapunov-Krasovskii functional,
we first present an H

∞
optimal solution to the design

of a finite-impulse response (FIR) filter using information
about the range of time-varying delay and its probability
distribution. Then, the envelope constraints are taken into
consideration. The resultant filter is called an H

∞
optimal

Envelope-Constrained FIR (ECFIR) filter. We obtain the
solution via solving an LMI optimization problem. At last, a
numerical example is presented to illustrate the effectiveness
of the proposed filtering design approach.

2. Problem Formulation and Preliminaries

Consider a filtering system shown in Figure 1, where Σ
𝑙
rep-

resents a linear dynamic system with state-space realization
given by

Σ
𝑙
:

{

{

{

𝑥
𝑙
(𝑘 + 1) = 𝐴

𝑙
𝑥
𝑙
(𝑘) + 𝐵

𝑙
𝑤 (𝑘)

𝑠 (𝑘) = 𝐶
𝑙
𝑥
𝑙
(𝑘) ,

(1)

where 𝑥
𝑙
(𝑘) ∈ R𝑛𝑙 is the model state vector, 𝑤(𝑘) ∈ R𝑛𝑤 is

the input signal, 𝑠(𝑘) ∈ R𝑛𝑠 is the source signal generated by
the model, and 𝐴

𝑙
, 𝐵
𝑙
, 𝐶
𝑙
are known constant matrices with

appropriate dimensions. Then the output 𝑠(𝑘) is transmitted
through a channel with time-varying delay modeled by

Σ
𝑐
:

{

{

{

𝑥
𝑐
(𝑘 + 1) = 𝐴

𝑐
𝑥
𝑐
(𝑘) + 𝐴

𝑑
𝑠 (𝑘 − 𝑑 (𝑘)) + 𝐵

𝑐
V (𝑘)

𝑦 (𝑘) = 𝐶
𝑐
𝑥
𝑐
(𝑘) + 𝐶

𝑑
𝑠 (𝑘 − 𝑑 (𝑘)) + 𝐷

𝑐
V (𝑘) ,

(2)

where 𝑥
𝑐
(𝑘) ∈ R𝑛𝑐 is the channel state vector, 𝑑(𝑘) ∈ [0, 𝑑

2
]

is the time-varying delay with an upper bound of 𝑑
2
, 𝑦(𝑘) is

the output of the channel, and V(𝑘) is the disturbance input;
𝐴
𝑐
,𝐴
𝑑
, 𝐵
𝑐
,𝐶
𝑐
,𝐶
𝑑
,𝐷
𝑐
are all known constant systemmatrices

with appropriate dimensions. As is shown in (2), the source
signal 𝑠(𝑘) suffers from influence of time-varying delay 𝑑(𝑘)
and disturbance from the environment represented by V(𝑘).
The output of transmission channel is 𝑦(𝑘), which is also the
input signal of the filter. We are going to use the corrupted
signal 𝑦(𝑘) to reconstruct original source signal.

Signal model Transmission channel FIR filter
+

−

w(k) s(k) y(k)

e(k)

ŝ(k)

Noise
�(k)

∑l ∑c ∑f

Figure 1: Filtering system.

Assumption 1. 𝑑(𝑘) changes randomly and for a constant 𝑑
1
∈

[0, 𝑑
2
], and the probability of 𝑑(𝑘) ∈ [0, 𝑑

1
) and 𝑑(𝑘) ∈

[𝑑
1
, 𝑑
2
] can be known. The following sets and functions are

defined:

Ω
1
= {𝑘 : 𝑑 (𝑘) ∈ [0, 𝑑

1
)} ,

Ω
2
= {𝑘 : 𝑑 (𝑘) ∈ [𝑑

1
, 𝑑
2
]} ,

𝑑
1
(𝑘) = {

𝑑 (𝑘) , for 𝑘 ∈ Ω
1

0 for 𝑘 ∉ Ω
1
,

𝑑
2
(𝑘) = {

𝑑 (𝑘) , for 𝑘 ∈ Ω
2

𝑑
1
, for 𝑘 ∉ Ω

2
.

(3)

Obviously, it can be seen from the definition that 𝑘 ∈ Ω
1
is

equal to the occurrence of event 𝑑(𝑘) ∈ [0, 𝑑
1
) and 𝑘 ∈ Ω

2

means that the event 𝑑(𝑘) ∈ [𝑑
1
, 𝑑
2
] occurs. Therefore, a

stochastic variable 𝛽(𝑘) can be defined as

𝛽 (𝑘) = {

1, 𝑘 ∈ Ω
1

0, 𝑘 ∈ Ω
2
.

(4)

Assumption 2. 𝛽(𝑘) is a Bernoulli distributed sequence with

Prob {𝛽 (𝑘) = 1} = E {𝛽 (𝑘)} = 𝛽
0
,

Prob {𝛽 (𝑘) = 0} = 1 − E {𝛽 (𝑘)} = 1 − 𝛽
0
,

(5)

where 0 ≤ 𝛽
0
≤ 1 is a constant.

Remark 3. From Assumption 2, it is easy to see that E{𝛽(𝑘) −
𝛽
0
} = 0 and E{(𝛽(𝑘) − 𝛽

0
)
2

} = 𝛽
0
(1 − 𝛽

0
). As Prob {𝑑(𝑘) ∈

[0, 𝑑
1
)} = Prob {𝛽(𝑘) = 1} = 𝛽

0
and Prob {𝑑(𝑘) ∈

[𝑑
1
, 𝑑
2
]} = Prob {𝛽(𝑘) = 0} = 1 − 𝛽

0
, 𝛽
0
and 1 − 𝛽

0
also

denote the probability of 𝑑(𝑘) taking values in [0, 𝑑
1
) and

[𝑑
1
, 𝑑
2
], respectively.

According to Assumptions 1 and 2, the system model
described by (2) can be rewritten as

𝑥
𝑐
(𝑘 + 1) = 𝐴

𝑐
𝑥
𝑐
(𝑘) + 𝛽 (𝑘) 𝐴

𝑑
𝑠 (𝑘 − 𝑑

1
(𝑘))

+ (1 − 𝛽 (𝑘)) 𝐴
𝑑
𝑠 (𝑘 − 𝑑

2
(𝑘)) + 𝐵

𝑐
V (𝑘) ,

𝑦 (𝑘) = 𝐶
𝑐
𝑥
𝑐
(𝑘) + 𝛽 (𝑘) 𝐶

𝑑
𝑠 (𝑘 − 𝑑

1
(𝑘))

+ (1 − 𝛽 (𝑘)) 𝐶
𝑑
𝑠 (𝑘 − 𝑑

2
(𝑘)) + 𝐷

𝑐
V (𝑘) .

(6)



Mathematical Problems in Engineering 3

At the receiving end, we are interested in designing a linear
filter with state-realization as follows:

Σ
𝑓
:

{

{

{

𝑥
𝑓
(𝑘 + 1) = 𝐴

𝑓
𝑥
𝑓
(𝑘) + 𝐵

𝑓
𝑦 (𝑘)

𝑠 (𝑘) = 𝐶
𝑓
𝑥
𝑓
(𝑘) + 𝐷

𝑓
𝑦 (𝑘) ,

(7)

where 𝑥
𝑓
(𝑘) ∈ R𝑛𝑓 is the filter state vector, 𝑠(𝑘), is the

estimated signal of source signal 𝑠(𝑘) and𝐴
𝑓
,𝐵
𝑓
,𝐶
𝑓
,𝐷
𝑓
have

the following form:

𝐴
𝑓
=

[

[

[

[

[

[

[

[

0 1 0 ⋅ ⋅ ⋅ 0

0 0 1 ⋅ ⋅ ⋅ 0

...
...

... d
...

0 0 0 ⋅ ⋅ ⋅ 1

0 0 0 ⋅ ⋅ ⋅ 0

]

]

]

]

]

]

]

]
𝑛𝑓×𝑛𝑓

, 𝐵
𝑓
=

[

[

[

[

[

[

[

0

0

...
0

1

]

]

]

]

]

]

]
𝑛𝑓×1

,

𝐶
𝑓
= [𝑓 (𝑛

𝑓
) 𝑓 (𝑛

𝑓
− 1) . . . 𝑓 (1)]𝐷

𝑓
= 𝑓 (0) .

(8)

The transfer function of the filter is given by

Φ
𝑓
(𝑧) = 𝐶

𝑓
(𝑧𝐼 − 𝐴

𝑓
)

−1

𝐵
𝑓
+ 𝐷
𝑓

= 𝑓 (0) + 𝑓 (1) 𝑧
−1

+ 𝑓 (2) 𝑧
−2

+ ⋅ ⋅ ⋅ + 𝑓 (𝑛
𝑓
) 𝑧
−𝑛𝑓
,

(9)

where 𝑓(0), 𝑓(1), . . ., and 𝑓(𝑛
𝑓
) are parameters to be deter-

mined.Define the filtering error as 𝑒(𝑘) = 𝑠(𝑘)−𝑠(𝑘).Then, via
augmenting the models Σ

𝑙
and Σ

𝑐
, the filtering error system

is given as follows:

Σ
𝑒
:

{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{

{

𝑥
𝑒
(𝑘 + 1) = 𝐴

𝑒
𝑥
𝑒
(𝑘)

+𝛽 (𝑘)𝐴
𝑒𝑑
𝑥
𝑒
(𝑘 − 𝑑

1
(𝑘))

+ (1 − 𝛽 (𝑘)) 𝐴
𝑒𝑑
𝑥
𝑒
(𝑘 − 𝑑

2
(𝑘)) + 𝐵

𝑒
𝑤
𝑒
(𝑘)

𝑒 (𝑘)

= 𝐶
𝑒
𝑥
𝑒
+ 𝛽 (𝑘) 𝐶

𝑒𝑑
𝑥
𝑒
(𝑘 − 𝑑

1
(𝑘))

+ (1 − 𝛽 (𝑘)) 𝐶
𝑒𝑑
𝑥
𝑒
(𝑘 − 𝑑

2
(𝑘)) + 𝐷

𝑒
𝑤
𝑒
(𝑘) ,

(10)

where

𝑥
𝑇

𝑒
(𝑘) = [𝑥

𝑇

𝑙
(𝑘) 𝑥

𝑇

𝑐
(𝑘) 𝑥

𝑇

𝑓
(𝑘)]

𝑇

,

𝑤
𝑒
(𝑘) = [𝑤

𝑇

(𝑘) V𝑇 (𝑘)]
𝑇

,

𝐴
𝑒
=
[

[

𝐴
𝑙

0 0

0 𝐴
𝑐

0

0 𝐵
𝑓
𝐶
𝑐
𝐴
𝑓

]

]

, 𝐵
𝑒
=
[

[

𝐵
𝑙

0

0 𝐵
𝑐

0 𝐵
𝑓
𝐷
𝑐

]

]

,

𝐶
𝑒
= [𝐶
𝑙
−𝐷
𝑓
𝐶
𝑐
−𝐶
𝑓
] ,

𝐷
𝑒
= [0 −𝐷

𝑓
𝐷
𝑐
] ,

𝐴
𝑒𝑑
=
[

[

0 0 0

𝐴
𝑑
𝐶
𝑙
0 0

𝐵
𝑓
𝐶
𝑑
𝐶
𝑙
0 0

]

]

, 𝐶
𝑒𝑑
= [−𝐷

𝑓
𝐶
𝑑
𝐶
𝑙
0 0] .

(11)

Before giving the main results, we need following definitions
at first.

Definition 4. For a given function 𝑉(𝑥(𝑘)), its stochastic
difference operator is defined as

Δ𝑉 (𝑥 (𝑘)) = E {𝑉 (𝑥 (𝑘 + 1)) | 𝑥 (𝑘)} − 𝑉 (𝑥 (𝑘)) . (12)

Definition 5 (see [32]). The filtering error system in (10) is
said to be stochastically stable if for any initial condition
𝑥
𝑒
(0) and zero exogenous noise 𝑤

𝑒
(𝑘), there exists a positive

definite 𝑊 independent of 𝑥
𝑒
(0), such that the following

condition is satisfied:

E{
∞

∑

𝑘=0

󵄨
󵄨
󵄨
󵄨
𝑥
𝑒
(𝑘)
󵄨
󵄨
󵄨
󵄨

2

| 𝑥
𝑒
(0)} < 𝑥

𝑇

𝑒
(0)𝑊𝑥

𝑒
(0) . (13)

Definition 6. System (10) is said to be stochastically stable
with anH

∞
norm bound 𝛾, if the following conditions hold.

(1) The filtering error system with 𝑤
𝑒
(𝑘) = 0 is stochasti-

cally stable.
(2) For all nonzero 𝑤

𝑒
(𝑘) ∈ 𝑙

2
[0,∞) and under zero

initial conditions, the following inequality holds:

‖𝑒 (𝑘)‖
2
≤ 𝛾
󵄩
󵄩
󵄩
󵄩
𝑤
𝑒
(𝑘)
󵄩
󵄩
󵄩
󵄩2
. (14)

Now, with the definitions above, we present the objective
of this paper.

Given the filtering system shown in Figure 1, we are
interested in designing a filter in the form of (7)-(8) such that

(a) the filtering error system (10) is asymptotically stable
in the stochastic sense;

(b) the filtering error system (10) possesses a minimized
H
∞

performance level 𝛾;
(c) a time-domain envelope constraint is imposed on the

output signal 𝑠(𝑘) as follows:

𝑙 (𝑘) ≤ 𝑠 (𝑘) ≤ 𝑢 (𝑘) , (15)

where 𝑙(𝑘) and 𝑢(𝑘) are the lower and upper bounds of the
time-domain mask, respectively.

3. Main Results

In this section, based on the Lyapunov-Krasovskii sta-
bility theorem, a delay-probability-distribution-dependent
approach is proposed to solve theH

∞
FIR filter design prob-

lem subject to envelope constraints described in (15). First, a
stability criterion for the filtering error system described in
(10) is proposed.Then the envelope constraints are taken into
consideration. AnH

∞
optimal ECFIR filter design approach

is given at last.

Theorem 7. Given the system in Figure 1, for some given
constants 0 ≤ 𝑑

1
≤ 𝑑
2
, 𝛽
0
, and 𝛾, the filtering error system (10)
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is stochastically stable with H
∞

performance 𝛾 if there exist
matrices 𝑃 > 0, 𝑄

1
> 0, 𝑄

2
> 0, 𝑅

1
> 0, 𝑅

2
> 0 of appropriate

dimensions such that the following optimization problem has
solutions,

min
𝑃>0,𝑄1>0,𝑄2>0, 𝑅1>0, 𝑅2>0, 𝑓

𝛾, (16)

subject to the following LMI constraint:

Ξ =
[

[

Ξ
11
Ξ
12
Ξ
13

∗ Ξ
22
Ξ
23

∗ ∗ Ξ
33

]

]

< 0, (17)

where

Ξ
11
=

[

[

[

[

[

[

−𝑃 𝑃𝐴
𝑒

𝛽
0
𝑃𝐴
𝑒𝑑

∗ 𝑄 − 𝑃 −

1

𝑑
1

𝑅
1

1

𝑑
1

𝑅
1

∗ ∗ −𝑄
1
−

1

𝑑
1

𝑅
1
−

1

𝑑
2
− 𝑑
1

𝑅
2

]

]

]

]

]

]

,

Ξ
12
=

[

[

[

[

(1 − 𝛽
0
) 𝑃𝐵
𝑒
𝑃𝐵
𝑒

0

0 0 √𝑑
1
(𝐴
𝑇

𝑒
− 𝐼) 𝑅

1

1

𝑑
2
− 𝑑
1

𝑅
2

0 √𝑑
1
𝛽
0
𝐴
𝑇

𝑒𝑑
𝑅
1

]

]

]

]

,

Ξ
13
=
[

[

[

0 0

√𝑑
2
− 𝑑
1
(𝐴
𝑇

𝑒
− 𝐼) 𝑅

2
𝐶
𝑇

𝑒

𝛽
0
√𝑑
2
− 𝑑
1
𝐴
𝑇

𝑒𝑑
𝑅
2

𝛽
0
𝐶
𝑇

𝑒𝑑

]

]

]

,

Ξ
22
=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

−𝑄
2
−

1

𝑑
2
− 𝑑
1

𝑅
2

0 √𝑑
1
(1 − 𝛽

0
) 𝐴
𝑇

𝑒𝑑
𝑅
1

∗ −𝛾
2

𝐼 √𝑑
1
𝐵
𝑇

𝑒
𝑅
1

∗ ∗ −𝑅
1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

,

Ξ
23
=
[

[

[

√𝑑
2
− 𝑑
1
(1 − 𝛽

0
) 𝐴
𝑇

𝑒𝑑
𝑅
2
(1 − 𝛽

0
) 𝐶
𝑇

𝑒𝑑

√𝑑
2
− 𝑑
1
𝐵
𝑇

𝑒
𝑅
2

𝐷
𝑇

𝑒

0 0

]

]

]

,

Ξ
33
= [

−𝑅
2
0

∗ −𝐼
] ,

𝑄 = (1 + 𝑑
1
) 𝑄
1
+ (𝑑
2
− 𝑑
1
+ 1)𝑄

2
,

(18)

and 𝐴
𝑒
, 𝐴
𝑒𝑑
, 𝐵
𝑒
, 𝐶
𝑒
, 𝐶
𝑒𝑑
, and𝐷

𝑒
are defined in (11).

Proof. First, define a Lyapunov-Krasovskii functional as fol-
lows:

𝑉 (𝑘) ≜ 𝑉
1
(𝑘) + 𝑉

2
(𝑘) + 𝑉

3
(𝑘) + 𝑉

4
(𝑘) , (19)

where
𝑉
1
(𝑘) ≜ 𝑥

𝑇

𝑒
(𝑘) 𝑃𝑥

𝑒
(𝑘) ,

𝑉
2
(𝑘) ≜

𝑘−1

∑

𝑖=𝑘−𝑑1(𝑘)

𝑥
𝑇

𝑒
(𝑖) 𝑄
1
𝑥
𝑒
(𝑖)

+

𝑘−1

∑

𝑖=𝑘−𝑑2(𝑘)

𝑥
𝑇

𝑒
(𝑖) 𝑄
2
𝑥
𝑒
(𝑖) ,

𝑉
3
(𝑘) ≜

−1

∑

𝑖=−𝑑1+2

𝑘−1

∑

𝑗=𝑘+𝑖−1

𝑥
𝑇

𝑒
(𝑗)𝑄
1
𝑥
𝑒
(𝑗)

+

−𝑑1+1

∑

𝑖=−𝑑2+2

𝑘−1

∑

𝑗=𝑘+𝑖−1

𝑥
𝑇

𝑒
(𝑗)𝑄
2
𝑥
𝑒
(𝑗) ,

𝑉
4
(𝑘) ≜

𝑘−1

∑

𝑖=𝑘−𝑑1

𝑘−1

∑

𝑗=𝑖

𝛿
𝑇

(𝑗) 𝑅
1
𝛿 (𝑗)

+

𝑘−𝑑1−1

∑

𝑖=𝑘−𝑑2

𝑘−1

∑

𝑗=𝑖

𝛿
𝑇

(𝑗) 𝑅
2
𝛿 (𝑗) ,

𝛿 (𝑗) ≜ 𝑥
𝑒
(𝑗 + 1) − 𝑥

𝑒
(𝑗) ,

(20)

and 𝑃 = 𝑃𝑇 > 0, 𝑄
1
= 𝑄
𝑇

1
> 0, 𝑄

2
= 𝑄
𝑇

2
> 0, 𝑅

1
= 𝑅
𝑇

1
> 0,

and 𝑅
2
= 𝑅
𝑇

2
> 0 are Lyapunov matrices to be determined.

Then using the stochastic difference operator defined in
(12), we obtain

Δ𝑉
1
(𝑘) = [𝑥

𝑇

𝑒
(𝑘) 𝐴
𝑇

𝑒
+ 𝛽
0
𝑥
𝑇

𝑒
(𝑘 − 𝑑

1
(𝑘)) 𝐴

𝑇

𝑒𝑑

+ (1 − 𝛽
0
) 𝑥
𝑇

𝑒
(𝑘 − 𝑑

2
(𝑘)) 𝐴

𝑇

𝑒𝑑
+ 𝑤
𝑇

𝑒
(𝑘) 𝐵
𝑇

𝑒
]

× 𝑃 [𝐴
𝑒
𝑥
𝑒
(𝑘) + 𝛽

0
𝐴
𝑒𝑑
𝑥
𝑒
(𝑘 − 𝑑

1
(𝑘))

+ (1 − 𝛽
0
) 𝐴
𝑒𝑑
𝑥
𝑒
(𝑘 − 𝑑

2
(𝑘)) + 𝐵

𝑒
𝑤
𝑒
(𝑘)]

− 𝑥
𝑇

𝑒
(𝑘) 𝑃𝑥

𝑒
(𝑘) ,

Δ𝑉
2
(𝑘) = 𝑥

𝑇

𝑒
(𝑘) (𝑄

1
+ 𝑄
2
) 𝑥
𝑒
(𝑘) − 𝑥

𝑇

𝑒
(𝑘 − 𝑑

1
(𝑘))

× 𝑄
1
𝑥
𝑒
(𝑘 − 𝑑

1
(𝑘))

− 𝑥
𝑇

e (𝑘 − 𝑑2 (𝑘)) 𝑄2𝑥𝑒 (𝑘 − 𝑑2 (𝑘))

+

𝑘−1

∑

𝑖=𝑘+1−𝑑1(𝑘+1)

𝑥
𝑇

𝑒
(𝑖) 𝑄
1
𝑥
𝑒
(𝑖)

−

𝑘−1

∑

𝑖=𝑘−𝑑1(𝑘)+1

𝑥
𝑇

𝑒
(𝑖) 𝑄
1
𝑥
𝑒
(𝑖)

+

𝑘−1

∑

𝑖=𝑘+1−𝑑2(𝑘+1)

𝑥
𝑇

𝑒
(𝑖) 𝑄
2
𝑥
𝑒
(𝑖)

−

𝑘−1

∑

𝑖=𝑘−𝑑2(𝑘)+1

𝑥
𝑇

𝑒
(𝑖) 𝑄
2
𝑥
𝑒
(𝑖)
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≤ 𝑥
𝑇

𝑒
(𝑘) (𝑄

1
+ 𝑄
2
) 𝑥
𝑒
(𝑘) − 𝑥

𝑇

𝑒
(𝑘 − 𝑑

1
(𝑘))

× 𝑄
1
𝑥
𝑒
(𝑘 − 𝑑

1
(𝑘))

− 𝑥
𝑇

𝑒
(𝑘 − 𝑑

2
(𝑘)) 𝑄

2
𝑥
𝑒
(𝑘 − 𝑑

2
(𝑘))

+

𝑘

∑

𝑖=𝑘−𝑑1+1

𝑥
𝑇

𝑒
(𝑖) 𝑄
1
𝑥
𝑒
(𝑖) +

𝑘−𝑑1

∑

𝑘−𝑑2+1

𝑥
𝑇

𝑒
(𝑖) 𝑄
2
𝑥
𝑒
(𝑖) ,

Δ𝑉
3
(𝑘) = 𝑑

1
𝑥
𝑇

𝑒
(𝑘) 𝑄
1
𝑥
𝑒
(𝑘) + (𝑑

2
− 𝑑
1
) 𝑥
𝑇

𝑒
(𝑘) 𝑄
2
𝑥
𝑒
(𝑘)

−

𝑘

∑

𝑖=𝑘−𝑑1+1

𝑥
𝑇

𝑒
(𝑖) 𝑄
1
𝑥
𝑒
(𝑖) −

𝑘−𝑑1

∑

𝑖=𝑘−𝑑2+1

𝑥
𝑇

𝑒
(𝑖) 𝑄
2
𝑥
𝑒
(𝑖) ,

Δ𝑉
4
(𝑘) = 𝑑

1
𝛿
𝑇

(𝑘) 𝑅
1
𝛿 (𝑘) + (𝑑

2
− 𝑑
1
) 𝛿
𝑇

(𝑘) 𝑅
2
𝛿 (𝑘)

−

𝑘−1

∑

𝑖=𝑘−𝑑1

𝛿
𝑇

(𝑖) 𝑅
1
𝛿 (𝑖) −

𝑘−𝑑1−1

∑

𝑖=𝑘−𝑑2

𝛿
𝑇

(𝑖) 𝑅
2
𝛿 (𝑖)

≤ 𝑑
1
𝛿
𝑇

(𝑘) 𝑅
1
𝛿 (𝑘) + (𝑑

2
− 𝑑
1
) 𝛿
𝑇

(𝑘) 𝑅
2
𝛿 (𝑘)

−

𝑘−1

∑

𝑖=𝑘−𝑑1(𝑘)

𝛿
𝑇

(𝑖) 𝑅
1
𝛿 (𝑖) −

𝑘−𝑑1−1

∑

𝑖=𝑘−𝑑2(𝑘)

𝛿
𝑇

(𝑖) 𝑅
2
𝛿 (𝑖) .

(21)

Using the Jensen inequality [33], the following expressions are
obtained:

−

𝑘−1

∑

𝑖=𝑘−𝑑1(𝑘)

𝛿
𝑇

(𝑖) 𝑅
1
𝛿 (𝑖)

≤ −

1

𝑑
1
(𝑘)

(

𝑘−1

∑

𝑖=𝑘−𝑑1(𝑘)

𝛿
𝑇

(𝑖))𝑅
1
(

𝑘−1

∑

𝑖=𝑘−𝑑1(𝑘)

𝛿 (𝑖))

≤ −

1

𝑑
1

(

𝑘−1

∑

𝑖=𝑘−𝑑1(𝑘)

𝛿
𝑇

(𝑖))𝑅
1
(

𝑘−1

∑

𝑖=𝑘−𝑑1(𝑘)

𝛿 (𝑖)) ,

−

𝑘−𝑑1−1

∑

𝑖=𝑘−𝑑2(𝑘)

𝛿
𝑇

(𝑖) 𝑅
2
𝛿 (𝑖)

≤ −

1

𝑑
2
(𝑘) − 𝑑

1

(

𝑘−𝑑1−1

∑

𝑖=𝑘−𝑑2(𝑘)

𝛿
𝑇

(𝑖))𝑅
2
(

𝑘−𝑑1−1

∑

𝑖=𝑘−𝑑2(𝑘)

𝛿 (𝑖))

≤ −

1

𝑑
2
− 𝑑
1

(

𝑘−𝑑1−1

∑

𝑖=𝑘−𝑑2(𝑘)

𝛿
𝑇

(𝑖))𝑅
2
(

𝑘−𝑑1−1

∑

𝑖=𝑘−𝑑2(𝑘)

𝛿 (𝑖)) .

(22)

Thus, we have

Δ𝑉
4
(𝑘) ≤ 𝛿

𝑇

(𝑘) [𝑑
1
𝑅
1
+ (𝑑
2
− 𝑑
1
) 𝑅
2
] 𝛿 (𝑘)

−

1

𝑑
1

[𝑥
𝑇

𝑒
(𝑘) − 𝑥

𝑇

𝑒
(𝑘 − 𝑑

1
(𝑘))]

× 𝑅
1
[𝑥
𝑒
(𝑘) − 𝑥

𝑒
(𝑘 − 𝑑

1
(𝑘))]

−

1

𝑑
2
− 𝑑
1

[𝑥
𝑇

𝑒
(𝑘 − 𝑑

1
(𝑘)) − 𝑥

𝑇

𝑒
(𝑘 − 𝑑

2
(𝑘))]

× 𝑅
1
[𝑥
𝑒
(𝑘 − 𝑑

1
(𝑘)) − 𝑥

𝑒
(𝑘 − 𝑑

2
(𝑘))] .

(23)

Thus, we obtain

Δ𝑉 (𝑘) = Δ𝑉
1
(𝑘) + Δ𝑉

2
(𝑘) + Δ𝑉

3
(𝑘)

+ Δ𝑉
4
(𝑘) ≤ 𝜂

𝑇

(𝑘) Υ𝜂 (𝑘) ,

(24)

where

𝜂
𝑇

(𝑘)=[𝑥
𝑇

𝑒
(𝑘) 𝑥

𝑇

𝑒
(𝑘 − 𝑑

1
(𝑘)) 𝑥

𝑇

𝑒
(𝑘 − 𝑑

2
(𝑘)) 𝑤

𝑇

𝑒
(𝑘) ],

Υ =

[

[

[

[

Υ
11
Υ
12
Υ
13
Υ
14

∗ Υ
22
Υ
23
Υ
24

∗ ∗ Υ
33
Υ
34

∗ ∗ ∗ Υ
44

]

]

]

]

,

Υ
11
= 𝐴
𝑇

𝑒
𝑃𝐴
𝑒
+ (𝐴
𝑇

𝑒
− 𝐼) 𝑅 (𝐴

𝑒
− 𝐼) + 𝑄 − 𝑃 −

1

𝑑
1

𝑅
1
,

Υ
12
= 𝛽
0
𝐴
𝑇

𝑒
𝑃𝐴
𝑒𝑑
+ 𝛽
0
(𝐴
𝑇

𝑒
− 𝐼) 𝑅𝐴

𝑒𝑑
+

1

𝑑
1

𝑅
1
,

Υ
13
= (1 − 𝛽

0
) 𝐴
𝑇

𝑒
𝑃𝐴
𝑒𝑑
+ (1 − 𝛽

0
) (𝐴
𝑇

𝑒
− 𝐼) 𝑅𝐴

𝑒𝑑
,

Υ
14
= 𝐴
𝑇

𝑒
𝑃𝐵
𝑒
+ (𝐴
𝑇

𝑒
− 𝐼) 𝑅𝐵

𝑇

𝑒
,

Υ
22
= 𝛽
2

0
𝐴
𝑇

𝑒𝑑
(𝑃 + 𝑅)𝐴

𝑒𝑑
− 𝑄
1
−

1

𝑑
1

𝑅
1
−

1

𝑑
2
− 𝑑
1

𝑅
2
,

Υ
23
= 𝛽
0
(1 − 𝛽

0
) 𝐴
𝑇

𝑒𝑑
(𝑃 + 𝑅)𝐴

𝑒𝑑
+

1

𝑑
2
− 𝑑
1

𝑅
2
,

Υ
24
= 𝛽
0
𝐴
𝑇

𝑒𝑑
(𝑃 + 𝑅) 𝐵

𝑒
,

Υ
33
= (1 − 𝛽

0
)
2

𝐴
𝑇

𝑒𝑑
(𝑃 + 𝑅)𝐴

𝑒𝑑
− 𝑄
2
−

1

𝑑
2
− 𝑑
1

𝑅
2
,

Υ
34
= (1 − 𝛽

0
) 𝐴
𝑇

𝑒𝑑
(𝑃 + 𝑅) 𝐵

𝑒
,

Υ
44
= 𝐵
𝑇

𝑒
(𝑃 + 𝑅) 𝐵

𝑒
,

𝑅 = 𝑑
1
𝑅
1
+ (𝑑
2
− 𝑑
1
) 𝑅
2
.

(25)

By Schur complement, it can be concluded from (17) thatΥ <
0. By similar lines as in [32], the stochastic stability can be
guaranteed if condition (17) holds.

Then, define the performance index as follows:

𝐽 =

∞

∑

𝑘=0

[𝑒
𝑇

(𝑘) 𝑒 (𝑘) − 𝛾
2

𝑤
𝑇

𝑒
(𝑘) 𝑤
𝑒
(𝑘)] . (26)
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Considering the fact that 𝑉(𝑘) ≥ 0, under the zero initial
condition, we have

𝐽 ≤

∞

∑

𝑘=0

[𝑒
𝑇

(𝑘) 𝑒 (𝑘) − 𝛾
2

𝑤
𝑇

𝑒
(𝑘) 𝑤
𝑒
(𝑘)] + 𝑉 (∞) − 𝑉 (0)

=

∞

∑

𝑘=0

[𝑒
𝑇

(𝑘) 𝑒 (𝑘) − 𝛾
2

𝑤
𝑇

𝑒
(𝑘) 𝑤
𝑒
(𝑘) + Δ𝑉 (𝑘)] .

(27)

Thus, 𝐽 < 0 is equal to

𝜂
𝑇

(𝑘) (Θ + Υ) 𝜂 (𝑘) < 0, (28)

where

Θ =

[

[

[

[

𝐶
𝑇

𝑒
𝐶
𝑒
𝛽
0
𝐶
𝑇

𝑒
𝐶
𝑒𝑑

(1 − 𝛽
0
) 𝐶
𝑇

𝑒
𝐶
𝑒𝑑

𝐶
𝑇

𝑒
𝐷
𝑒

∗ 𝛽
2

0
𝐶
𝑇

𝑒𝑑
𝐶
𝑒𝑑
𝛽
0
(1 − 𝛽

0
) 𝐶
𝑇

𝑒𝑑
𝐶
𝑒𝑑

𝛽
0
𝐶
𝑇

𝑒𝑑
𝐷
𝑒

∗ ∗ (1 − 𝛽
0
)
2

𝐶
𝑇

𝑒𝑑
𝐶
𝑒𝑑

(1 − 𝛽
0
) 𝐶
𝑇

𝑒𝑑
𝐷
𝑒

∗ ∗ ∗ 𝐷
𝑇

𝑒
𝐷
𝑒
− 𝛾
2

𝐼

]

]

]

]

.

(29)

Through applying Schur complement, it is shown that (Θ +
Υ) < 0 can be guaranteed by condition (17). That is to say,
once (17) is satisfied, theH

∞
performance can be guaranteed

to be less than 𝛾. Thus, the proof is completed.
At this point, the second desired property of the system

will be considered, which is the envelope constraints demand.
First, some notations are introduced [34]:

𝑦 =

[

[

[

[

[

𝑦 (0)

𝑦 (1)

...
𝑦 (𝑚)

]

]

]

]

]

, 𝑙 =

[

[

[

[

[

𝑙 (0)

𝑙 (1)

...
𝑙 (𝑛)

]

]

]

]

]

,

𝑢 =

[

[

[

[

[

𝑢 (0)

𝑢 (1)

...
𝑢 (𝑛)

]

]

]

]

]

, 𝑓 =

[

[

[

[

[

𝑓 (0)

𝑓 (1)

...
𝑓 (𝑛
𝑓
)

]

]

]

]

]

,

𝑌 =

[

[

[

[

[

[

[

[

[

[

[

[

[

[

𝑦 (0) 0 ⋅ ⋅ ⋅ 0

𝑦 (1) 𝑦 (0) ⋅ ⋅ ⋅ 0

... 𝑦 (1) ⋅ ⋅ ⋅

...

𝑦 (𝑚)

... 𝑦 (0)

0 𝑦 (𝑚)

... 𝑦 (1)

...
...

...
0 0 ⋅ ⋅ ⋅ 𝑦 (𝑚)

]

]

]

]

]

]

]

]

]

]

]

]

]

]

,

(30)

where 𝑌 is an 𝑛 × (𝑛
𝑓
+ 1)matrix, 𝑛 = 𝑚 + 𝑛

𝑓
+ 1,

{𝑦 (0) 𝑦 (1) ⋅ ⋅ ⋅ 𝑦 (𝑚) 0 0 ⋅ ⋅ ⋅} (31)

is a given signal, and

{𝑙 (0) 𝑙 (1) ⋅ ⋅ ⋅ 𝑙 (𝑚)} ,

{𝑢 (0) 𝑢 (1) ⋅ ⋅ ⋅ 𝑢 (𝑚)}

(32)

Are, respectively, the upper and lower bounds.Therefore, the
constraint of (15) is equal to

diag (𝑙) ≤ diag (𝑌𝑓) ≤ diag (𝑢) , (33)

where diag(∙) denotes a conversion from a vertical vector to
a diagonal matrix.

Based on Theorem 7 and (33), we can establish another
theorem to determine the filter that satisfies the envelope con-
straint meanwhile possessing optimalH

∞
performance.

Theorem 8. AnH
∞

optimal filter of the form (7)-(8) satisfy-
ing envelope constraint in (15) can be obtained by solving the
following LMI optimization problem:

min
𝑃>0,𝑄1>0,𝑄2>0, 𝑅1>0, 𝑅2>0, 𝑓

𝛾, (34)

subject to

Ξ =
[

[

Ξ
11
Ξ
12
Ξ
13

∗ Ξ
22
Ξ
23

∗ ∗ Ξ
33

]

]

< 0,

diag (𝑙) ≤ diag (𝑌𝑓) ,

diag (𝑌𝑓) ≤ diag (𝑢) ,

(35)

where Ξ is defined in (17).

4. An Illustrative Example

In this section, an example is given to support the filter design
method proposed in the paper. Consider a filtering system as
shown in Figure 1. The parameters for Σ

𝑙
are given by

𝐴
𝑙
=

[

[

[

[

[

[

−2.3060 −2.9625 −2.2590 −1.0922 −0.3009 −0.0325

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

]

]

]

]

]

]

,

𝐵
𝑙
=

[

[

[

[

[

[

1

0

0

0

0

0

]

]

]

]

]

]

,

𝐶
𝑙
= [0 0 0 0 0.0062 0.2170] .

(36)

The parameters for the delay channel Σ
𝑐
are given by

𝐴
𝑐
= [

0 1

0 −0.1
] , 𝐴

𝑑
= [

0

0.1
] , 𝐵

𝑐
= [

0.1

0.1
] ,

𝐶
𝑐
= [0 1] , 𝐶

𝑐𝑑
= 0.2, 𝐷

𝑐
= 1,

𝑑
1
= 2, 𝑑

2
= 3, 𝛽

0
= 0.7.

(37)

UsingTheorem 8, theH
∞
optimal filter is obtained via using

the LMI toolbox of MATLAB with 𝑛
𝑓
chosen to be 5. The
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Figure 2: Source signal 𝑠(𝑘), filter input signal 𝑦(𝑘), and envelope
bounds.
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Figure 3: Output of the filter without disturbance.

resultant optimal 𝛾 is 8.5057 and filter gains are given as
follows:

𝐶
𝑓
= [0.0437 −0.3344 −0.4023 0.2045 −0.5089] ,

𝐷
𝑓
= 4.3664.

(38)

The expected envelope constraints and 𝑠(𝑘) (the output
of Σ
𝑙
) corresponding to a particular case where input signal

0.3

0.25

0.2

0.15

0.1

0.05

0

−0.05

−0.1

−0.15

−0.2

Filtering error e(k)

0 5 10 15 20 25 30 35 40 45 50
Time in samples

Figure 4: Filtering error 𝑒(𝑘) without disturbance.

𝑤(𝑘) is chosen to be unit impulse signal are shown in Figure 2.
The transmitted signal 𝑦(𝑘) through Σ

𝑐
which is generated

with no noise added is also given in the figure. The filter
output 𝑠(𝑘) and filtering error 𝑒(𝑘) are given in Figures 3 and
4, respectively.

Furthermore, to illustrate the performance of the
designed filter, we add the disturbance signal V(𝑘) chosen as
white noise with mean of zero and variance of 1 × 10−3 into
the system. The resultant filter output and filtering error are
shown in Figures 5 and 6, respectively. It is shown that the
designed filter is effective.

5. Conclusions

In this paper, we have solved the filtering design problem of
time-delay system. The time-delay considered here is time-
varying meanwhile with a certain stochastic characteristic,
and the probability of delay distribution is assumed to
be known. Furthermore, the envelope constraints are also
considered in the process of filtering design. The delay-
distribution-dependent criterion is formed for the filtering
error system, employing the information about not only
the size of delay but also its probability distribution. A
set of linear matrix inequalities (LMIs) are formulated to
solve the problem. Through solving the LMI optimization
problem, theH

∞
performance isminimized and pulse-shape

demand imposed by envelope constraints is satisfied. Finally,
an illustrative example is presented to demonstrate the effec-
tiveness of the filtering design approach. For future research
directions, extending the filter design approach proposed
in this paper to networked control systems and distributed
systems is an interesting issue. Besides, more general filter
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Figure 5: Output of the filter with disturbance.
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Figure 6: Filtering error 𝑒(𝑘) with disturbance.

design approaches considering delays in different forms with
different characteristics also deserve further investigation.
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