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This paper concerns the problem of dynamic output-feedback control for a class of nonlinear systems with nonuniform uncertain
sampling via Takagi-Sugeno (T-S) fuzzy control approach. The sampling is not required to be periodic, and the state variables are
not required to be measurable. A new type fuzzy dynamic output-feedback sampled-data controller is constructed, and a novel
time-dependent Lyapunov-Krasovskii functional is chosen for fuzzy systems under variable sampling. By using Lyapunov stability
theory, a sufficient condition for very-strict passive analysis of fuzzy systems with nonuniform uncertain sampling is derived. Based
on this condition, a novel fuzzy dynamic output-feedback controller is designed such that the closed-loop system is very-strictly
passive. The existence condition of the controller can be solved by convex optimization approach. Finally, a numerical example is
provided to demonstrate the effectiveness of the proposed method.

1. Introduction

The fuzzy logic control [1–5] is one of the most effective
approaches to handle complex nonlinear systems and has
been applied into various real systems. Takagi-Sugeno (T-
S) [6] fuzzy model is a popular and effective method to
represent complex nonlinear systems into a weighted sum
of some simple linear subsystems [7–9]. Complex nonlinear
systems can be represented by T-S fuzzy model in a set of
IF-THEN rules [10]. Recently, many stability and control
problems were investigated for T-S fuzzy systems; see, for
example, [11–15]. The authors in [10] proposed fuzzy control
systems design and analysis results via linear matrix inequal-
ity (LMI) approach, and paper [7] presented a survey on
recent advances and the state of the art of analysis and design
of model based fuzzy control systems. More recently, many
results on stability analysis, controller synthesis, and filter
design for T-S fuzzy systems with time delays have been
reported in [16–24] and the references therein.

On the other hand, it is significant to study the sampled-
data control problems for practical control systems [25–31].

In the past few decades, there are two main approaches
being utilized to solve stability analysis and control syn-
thesis problems for sampled-data systems. The first one is
that a sampled-data system is structured as a discrete-time
system [29]. Another is to structure a sampled-data system
as a continuous-time system with a delayed control input
[31, 32]. It has been shown that the first method is more
difficult to analyze or synthesize for complex systems than
the second one. Recently, the sampled-data control problem
for T-S fuzzy systems via input delay method has received
considerable attention. Some state-feedback control design
methods have been proposed [32–35], and observer-based
control approach has been used in [36]. Via input delay
approach, the stabilization of nonuniform sampling fuzzy
control systems has been studied in [34]. However, it should
be mentioned that there are few results on fuzzy dynamic
output-feedback controller design for T-S fuzzy systems with
nonuniform uncertain sampling. More recently, the passivity
analysis and passive control problems for fuzzy systems have
received considerable attention, and many results have been
reported [37–39]. In [39], the authors considered very-strict
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passive control for T-S fuzzy systemswith both state and input
delays. When the state variables are not measurable, there
are few results about output-feedback control for T-S fuzzy
systems based on passive theory, which motivates this study.

In this paper, a new type of dynamic output-feedback
control is designed for a class of nonlinear systems with vari-
able sampling. Firstly, by choosing a novel time-dependent
Lyapunov-Krasovskii functional andusing Lyapunov stability
theory, a sufficient condition is presented for very-strict
passive analysis for fuzzy systems with nonuniformuncertain
sampling. Based on the conception of very-strict passivity,
a new sampled-data dynamic output-feedback controller is
designed to guarantee that the closed-loop system is very
strictly passive. The existence condition of the controller
can be solved by convex optimization approach. Finally, a
numerical example is given to show the effectiveness of the
proposed results.Themain contributions of this paper can be
summarized as follows: (i) a new dynamic output-feedback
sampled-data controller is constructed for T-S fuzzy system
with variable sampling; (ii) a novel time-dependent and fuzzy
membership dependent Lyapunov-Krasovskii functional is
chosen for synthesizing output-feedback sampled-data con-
troller for T-S fuzzy system. The remainder of the paper
is organized as follows. The problem to be addressed is
formulated in Section 2, and dynamic output-feedback con-
troller is designed for fuzzy systems with variable sampling
in Section 3. A numerical example is provided in Section 4 to
demonstrate the effectiveness of the developed approach, and
Section 5 concludes the paper.

Notation. R𝑛 stands for the 𝑛-dimensional Euclidean space.
𝐼 and 0 represent, respectively, identity matrix and zero
matrix, and [𝐴]

𝑠
is used to denote 𝐴 + 𝐴𝑇 for simplicity.

diag{⋅ ⋅ ⋅ } stands for a block-diagonal matrix. 𝑃 > 0 (≥ 0)

stands for a symmetric and positive definite (semidefinite),
and the superscript “𝑇” and “−1” stand for matrix transpo-
sition and inverse. In symmetric block matrices, we use an
asterisk (⋆) to represent a term that is induced by symmetry.

2. Problem Formulation

Consider the following T-S fuzzy systems.
Plant Rule 𝑖. IF 𝜃

1
(𝑡) is𝑁

𝑖1
and ⋅ ⋅ ⋅ and 𝜃

𝑝
(𝑡) is𝑁

𝑖𝑝
THEN

�̇� (𝑡) = 𝐴
𝑖
𝑥 (𝑡) + 𝐵

𝑖
𝑢 (𝑡) + 𝐵

𝑤𝑖
𝑤 (𝑡) ,

𝑧 (𝑡) = 𝐶
𝑖
𝑥 (𝑡) + 𝐷

𝑖
𝑢 (𝑡) + 𝐷

𝑤𝑖
𝑤 (𝑡) ,

𝑦 (𝑡) = 𝐶
𝑦𝑖
𝑥 (𝑡) , 𝑖 = 1, 2, 3, . . . , 𝑟,

(1)

where 𝑥(𝑡) ∈ R𝑛 is the state vector, 𝑢(𝑡) ∈ R𝑚 is the control
input, 𝑤(𝑡) ∈ R𝑝 is the disturbance input, 𝑧(𝑡) ∈ R𝑞 is the
control output, and 𝑦(𝑡) ∈R𝑠 is the measured output.𝐴

𝑖
, 𝐵
𝑖
,

𝐵
𝑤𝑖
,𝐶
𝑖
,𝐷
𝑖
,𝐷
𝑤𝑖
, and𝐶

𝑦𝑖
are systemmatrices with appropriate

dimensions. The scalar 𝑟 is the number of IF-THEN rules.
𝜃
1
(𝑡), 𝜃
1
(𝑡), . . . , 𝜃

𝑝
(𝑡) are the premise variables,𝑁

𝑖𝑗
is the fuzzy

set, 𝑖 = 1, 2, 3, . . . , 𝑟, 𝑗 = 1, 2, 3, . . . , 𝑝. For a given input

and output (𝑥(𝑡), 𝑢(𝑡)), the defuzzified output of system (1)
is inferred as follows:

�̇� (𝑡) =

𝑟

∑

𝑖=1

ℎ (𝜃 (𝑡)) [𝐴
𝑖
𝑥 (𝑡) + 𝐵

𝑖
𝑢 (𝑡) + 𝐵

𝑤𝑖
𝑤 (𝑡)] ,

𝑧 (𝑡) =

𝑟

∑

𝑖=1

ℎ (𝜃 (𝑡)) [𝐶
𝑖
𝑥 (𝑡) + 𝐷

𝑖
𝑢 (𝑡) + 𝐷

𝑤𝑖
𝑤 (𝑡)] ,

𝑦 (𝑡) =

𝑟

∑

𝑖=1

ℎ (𝜃 (𝑡)) 𝐶
𝑦𝑖
𝑥 (𝑡) ,

(2)

where ℎ
𝑖
(𝜃(𝑡))denotes the normalizedmembership functions

satisfying

ℎ
𝑖
(𝜃 (𝑡)) =

𝜔
𝑖
(𝜃 (𝑡))

∑
𝑟

𝑖=1
𝜔
𝑖
(𝜃 (𝑡))

, 𝜔
𝑖
(𝜃 (𝑡)) =

𝑟

∏

𝑗=1

𝑁
𝑖𝑗
(𝜃
𝑗
(𝑡)) ,

(3)

where 𝑁
𝑖𝑗
(𝜃
𝑗
(𝑡)) is the grade of membership of 𝜃

𝑗
(𝑡) in 𝑁

𝑖𝑗
.

Notice the facts that 𝜔
𝑖
(𝜃(𝑡)) ≥ 0 and ∑𝑟

𝑖=1
𝜔
𝑖
(𝜃(𝑡)) > 0, ∀𝑡 ≥

0. Then, it can be seen that ℎ
𝑖
(𝜃(𝑡)) ≥ 0 and ∑𝑟

𝑖=1
ℎ
𝑖
(𝜃(𝑡)) =

1 for 𝑖 = 1, 2, . . . , 𝑟. Suppose that the updating signal is
successfully transmitted from the sampler to the controller
and to the zero-order-hold (ZOH) at the instant 𝑡

𝑘
. It is

assumed that the sampling intervals are bounded:

𝑡
𝑘+1
− 𝑡
𝑘
≤ ℎ. (4)

Here ℎ denotes themaximum time span between the time
𝑡
𝑘
at which the state is sampled and the time 𝑡

𝑘+1
at which the

next update arrives at the destination. The initial conditions
of 𝑥(𝑡) and 𝑢(𝑡) are given as 𝑥(𝑡) = 𝜑(𝑡) and 𝑢(𝑡) = 0

for 𝑡 ∈ [𝑡
0
− ℎ, 𝑡
0
], where 𝜑(𝑡) is a differentiable function.

When the state variables are unmeasurable or unknown, the
state-feedback control method is not available. In this paper,
a novel dynamic output-feedback sampled-date controller is
constructed as follows.

Controller Rule 𝑖. IF 𝜃
𝑗
(𝑡
𝑘
) is𝑁
𝑗1
and ⋅ ⋅ ⋅ 𝜃

𝑝
(𝑡
𝑘
) is𝑁
𝑗𝑝
THEN

̇
�̂� (𝑡) = 𝐴

𝑐𝑗
𝑥 (𝑡) + 𝐴

𝑑𝑗
𝑥 (𝑡
𝑘
) + 𝐵
𝑐𝑗
𝑦 (𝑡
𝑘
) ,

𝑢 (𝑡) = 𝐶
𝑐𝑗
𝑥 (𝑡) .

(5)

Similar to the fuzzy model, the same fuzzy rule is used to
construct the following overall fuzzy control law:

̇
�̂� (𝑡) =

𝑟

∑

𝑗=1

ℎ
𝑗
(𝜃 (𝑡
𝑘
)) [𝐴
𝑐𝑗
𝑥 (𝑡) + 𝐴

𝑑𝑗
𝑥 (𝑡
𝑘
) + 𝐵
𝑐𝑗
𝑦 (𝑡
𝑘
)] ,

𝑢 (𝑡) =

𝑟

∑

𝑗=1

(𝜃 (𝑡
𝑘
)) 𝐶
𝑐𝑗
𝑥 (𝑡) ,

(6)

where𝑥 ∈R𝑛 is the state vector of the dynamic controller and
𝑡
𝑘
(𝑘 = 0, 1, 2, . . .) denotes the 𝑘th sampling instant, 𝑡

0
≥ 0,

and lim
𝑘→∞

𝑡
𝑘
= ∞. 𝐴

𝑐𝑗
, 𝐴
𝑐𝑑𝑗
, 𝐵
𝑐𝑗
, and 𝐶

𝑐𝑗
(𝑗 = 1, 2, . . . , 𝑟)

are control matrices with appropriate dimensions. 𝑡
𝑘+1

is
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the updating instant time of the ZOH after 𝑡
𝑘
. Denote 𝑑(𝑡) =

𝑡−𝑡
𝑘
for 𝑡
𝑘
≤ 𝑡 ≤ 𝑡

𝑘+1
. It is clear that 0 ≤ 𝑑(𝑡) ≤ 𝑡

𝑘+1
−𝑡
𝑘
≤ ℎ. It

can be seen that 𝑑(𝑡) is sawtooth structure, that is, piecewise-
linear with derivative ̇

𝑑(𝑡) = 1, 𝑡 ̸= 𝑡(𝑘). Utilizing 𝑑(𝑡) = 𝑡− 𝑡
𝑘
,

the following systems can be obtained:

̇
�̂� (𝑡) =

𝑟

∑

𝑗=1

ℎ
𝑗
(𝜃 (𝑡 − 𝑑 (𝑡)))

× [𝐴
𝑐𝑗
𝑥 (𝑡) + 𝐴

𝑑𝑗
𝑥 (𝑡 − 𝑑 (𝑡)) + 𝐵

𝑐𝑗
𝑦 (𝑡 − 𝑑 (𝑡))] ,

𝑢 (𝑡) =

𝑟

∑

𝑗=1

ℎ
𝑗
(𝜃 (𝑡 − 𝑑 (𝑡))) 𝐶

𝑐𝑗
𝑥 (𝑡) .

(7)

Applying the fuzzy controller (7) to system (2) and
yielding the closed-loop system as follows:

̇
𝑥 (𝑡) =

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

ℎ
𝑖
ℎ
𝑘

𝑗
[𝐴
𝑖𝑗
𝑥 (𝑡) + 𝐵

𝑖𝑗
𝑥 (𝑡 − 𝑑 (𝑡)) + 𝐵

𝑤𝑖𝑗
𝑤 (𝑡)] ,

𝑧 (𝑡) =

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

ℎ
𝑖
ℎ
𝑘

𝑗
[𝐶
𝑖𝑗
𝑥 (𝑡) + 𝐷

𝑖𝑗
𝑤 (𝑡)] ,

(8)

where

𝐴
𝑖𝑗
= [

𝐴
𝑖
𝐵
𝑖
𝐶
𝑐𝑗

0 𝐴
𝑐𝑗

] , 𝐵
𝑖𝑗
= [

0 0

𝐵
𝑐𝑗
𝐶
𝑦𝑖
𝐴
𝑐𝑑𝑗

] ,

𝐵
𝑤𝑖𝑗
= [

𝐵
𝑤𝑖

0

] , 𝐶
𝑖𝑗
= [𝐶
𝑖
𝐷
𝑖
𝐶
𝑐𝑗
] ,

𝐷
𝑤𝑖𝑗
= 𝐷
𝑤𝑖
, 𝑥 (𝑡) = [

𝑥 (𝑡)

𝑥 (𝑡)

] ,

𝑟

∑

𝑖=1

ℎ
𝑖
=

𝑟

∑

𝑖=1

ℎ
𝑖
(𝜃 (𝑡)) ,

𝑟

∑

𝑗=1

ℎ
𝑘

𝑗
=

𝑟

∑

𝑗=1

ℎ
𝑗
(𝜃 (𝑡 − 𝑑 (𝑡))) .

(9)

3. Main Results

In order to develop the main results, the definition is
introduced as follows.

Definition 1 (see [39]). System (8) is said to be very-strictly
passive if there exist constants 𝜀 > 0, 𝛿 > 0 and 𝜌 such that

2∫

𝑡

0

𝑧
𝑇

(𝑠) 𝑤 (𝑠) 𝑑𝑠

≥ 𝜌 + 𝜀∫

𝑡

0

𝑧
𝑇

(𝑠) 𝑧 (𝑠) 𝑑𝑠 + 𝛿∫

𝑡

0

𝑤
𝑇

(𝑠) 𝑤 (𝑠) 𝑑𝑠

(10)

holds for all 𝑡 ≥ 0.

In this section, a novel dynamic output-feedback
sampled-data controller for system in (2) is designed to
guarantee that the closed-loop system (8) is very-strictly
passive. For given dynamic output-feedback control gain

matrices𝐴
𝑖𝑗
, 𝐵
𝑖𝑗
, 𝐵
𝑤𝑖𝑗

,𝐶
𝑖𝑗
, and𝐷

𝑤𝑖𝑗
, the condition of passivity

analysis is proposed for the closed-loop system (8).

Theorem 2. Consider the closed-loop system (8), for given
scalar ℎ > 0 and matrices with appropriate dimensions 𝐴

𝑖𝑗
,

𝐵
𝑖𝑗
, 𝐵
𝑤𝑖𝑗

, 𝐶
𝑖𝑗
, and 𝐷

𝑤𝑖𝑗
; the closed-loop system (8) is very-

strictly passive, if there exist scalars 𝜀 > 0, 𝛿 > 0 and matrices
𝑃 = 𝑃

𝑇

> 0, 𝐿
𝑖𝑗
= 𝐿
𝑇

𝑖𝑗
> 0, 𝑄

𝑖𝑗
= 𝑄
𝑇

𝑖𝑗
> 0, 𝑁

1
= 𝑁
𝑇

1
> 0,

𝑍
1
= 𝑍
𝑇

1
> 0, and 𝑍

2
= 𝑍
𝑇

2
> 0 with appropriate dimensions,

such that the following LMIs hold for 𝑖, 𝑗 = 1, 2, . . . , 𝑟:

[

[

[

[

[

[

[

Φ
11𝑖𝑗
+ Θ
1𝑖𝑗
Φ
12𝑖𝑗

Φ
13𝑖𝑗

Φ
14𝑖𝑗

Φ
15𝑖𝑗

⋆ −𝜀𝐼 0 0 0

⋆ ⋆ −𝐿
𝑖𝑗

0 0

⋆ ⋆ ⋆ −𝜀𝐼 0

⋆ ⋆ ⋆ ⋆ Φ
55𝑖𝑗

]

]

]

]

]

]

]

< 0, (11)

[

[

[

Φ
11𝑖𝑗
+ Θ
2𝑖𝑗
Φ
12𝑖𝑗

Φ
13𝑖𝑗

⋆ −𝜀𝐼 0

⋆ ⋆ −𝐿
𝑖𝑗

]

]

]

< 0, (12)

𝑄
𝑖𝑗
< 𝐿
𝑗𝑖
, (13)

where

Φ
11𝑖𝑗
=

[

[

[

[

[

ϝ
11𝑖𝑗

ϝ
12𝑖𝑗

0 ϝ
14𝑖𝑗

⋆ ϝ
22𝑖𝑗

𝑄
𝑖𝑗

0

⋆ ⋆ ϝ
33𝑖𝑗

0

⋆ ⋆ ⋆ ϝ
44𝑖𝑗

]

]

]

]

]

,

Θ
1𝑖𝑗
=

[

[

[

[

[

−𝑄
𝑖𝑗
𝑄
𝑖𝑗
0 0

𝑄
𝑖𝑗
−𝑄
𝑖𝑗
0 0

0 0 0 0

0 0 0 0

]

]

]

]

]

,

Θ
2𝑖𝑗
=

[

[

[

[

[

0 0 0 0

0 −𝑄
𝑖𝑗
𝑄
𝑖𝑗
0

0 𝑄
𝑖𝑗
−𝑄
𝑖𝑗
0

0 0 0 0

]

]

]

]

]

,

Φ
15𝑖𝑗
= [

ℎ𝐴
𝑖𝑗

ℎ𝐵
𝑖𝑗

0 ℎ𝐵
𝑤𝑖𝑗

ℎ𝑍
1
𝐴
𝑖𝑗
ℎ𝑍
1
𝐵
𝑖𝑗
0 ℎ𝑍

1
𝐵
𝑤𝑖𝑗

]

𝑇

,

ϝ
11𝑖𝑗
= 𝑃𝐴
𝑖𝑗
+ 𝐴

𝑇

𝑖𝑗
𝑃 − 𝑄

𝑖𝑗
−

1

ℎ

𝑍
1
− 𝑍
2
+ 𝑁
1
,

ϝ
12𝑖𝑗
= 𝑃𝐵
𝑖𝑗
+ 𝑄
𝑖𝑗
+

1

ℎ

𝑍
1
+ 𝑍
2
,

ϝ
14𝑖𝑗
= 𝑃𝐵
𝑤𝑖𝑗
− 𝐶

𝑇

𝑖𝑗
, ϝ

22𝑖𝑗
= −2𝑄

𝑖𝑗
−

1

ℎ

𝑍
1
− 𝑍
2
,

ϝ
33𝑖𝑗
= −𝑄
𝑖𝑗
− 𝑁
1
, ϝ

44𝑖𝑗
= 𝛿𝐼 − 𝐷

𝑤𝑖𝑗
− 𝐷

𝑇

𝑤𝑖𝑗
,

Φ
12𝑖𝑗
= [𝐶
𝑖𝑗
0 0 𝐷

𝑤𝑖𝑗
]

𝑇

,

Φ
13𝑖𝑗
= [ℎ𝑅

𝑖𝑗
𝐴
𝑖𝑗
ℎ𝑅
𝑖𝑗
𝐵
𝑖𝑗
0 ℎ𝑅
𝑖𝑗
𝐵
𝑤𝑖𝑗
]

𝑇

,
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Φ
14𝑖𝑗
= [ℎ𝑍

2
−ℎ𝑍
2
0 0]

𝑇

,

Φ
55𝑖𝑗
= diag {−ℎ𝐼, −ℎ𝑍

1
} .

(14)
Proof. Consider the following Lyapunov-Krasovskii func-
tional:

𝑉 (𝑡) = 𝑉
1
(𝑡) + 𝑉

2
(𝑡) + 𝑉

3
(𝑡) ,

𝑉
1
(𝑡) = 𝑥

𝑇

(𝑡) 𝑃𝑥 (𝑡) + ∫

𝑡

𝑡−ℎ

𝑥
𝑇

(𝑠)𝑁
1
𝑥 (𝑠) 𝑑𝑠,

𝑉
2
(𝑡) = ℎ∫

0

−ℎ

∫

𝑡

𝑡+𝜃

̇
𝑥

𝑇

(𝑠) 𝐿
𝑖𝑗

̇
𝑥 (𝑠) 𝑑𝑠 𝑑𝜃,

𝑉
3
(𝑡)

= (ℎ − 𝑑 (𝑡))

× ∫

𝑡

𝑡−𝑑(𝑡)

̇
𝑥

𝑇

(𝑠) 𝑍
1

̇
𝑥 (𝑠) 𝑑𝑠 + (ℎ − 𝑑 (𝑡)) 𝜗

𝑇

(𝑡) 𝑍
2
𝜗 (𝑡) ,

(15)

where𝐿(𝑡) = ∑𝑟
𝑖=1
∑
𝑟

𝑗=1
ℎ
𝑖
ℎ
𝑘

𝑗
𝐿
𝑖𝑗
> 0 and𝜗 = (𝑥(𝑡)−𝑥(𝑡−𝑑(𝑡))),

𝑡
𝑘
≤ 𝑡 ≤ 𝑡

𝑘+1
. Hence 𝑉(𝑡) > 0 and is continuous in time.

The derivatives of 𝑉
1
(𝑡), 𝑉
2
(𝑡), and 𝑉

3
(𝑡) with time 𝑡 can be

obtained as
�̇�
1
(𝑡) = 2𝑥

𝑇

𝑃
̇
𝑥 (𝑡) + 𝑥

𝑇

(𝑡)𝑁
1
𝑥 (𝑡) − 𝑥

𝑇

(𝑡 − ℎ)𝑁
1
𝑥 (𝑡 − ℎ) ,

�̇�
2
(𝑡) = ℎ

2 ̇
𝑥

𝑇

(𝑡) 𝐿 (𝑡)
̇
𝑥 (𝑡) − ℎ∫

𝑡

𝑡−ℎ

̇
𝑥

𝑇

(𝑠) 𝐿 (𝑠)
̇
𝑥 (𝑠) 𝑑𝑠,

�̇�
3
(𝑡) = − ∫

𝑡

𝑡−𝑑(𝑡)

̇
𝑥

𝑇

(𝑠) 𝑍
1

̇
𝑥 (𝑠) 𝑑𝑠 + (ℎ − 𝑑 (𝑡))

̇
𝑥

𝑇

(𝑡) 𝑍
1

̇
𝑥 (𝑡)

− 𝜗
𝑇

(𝑡) 𝑍
2
𝜗 (𝑡) + 2 (ℎ − 𝑑 (𝑡)) 𝜗

𝑇

(𝑡) 𝑍
2

̇
𝑥 (𝑡) .

(16)
It can be seen from condition (13) that 𝑄(𝑡) =

∑
𝑟

𝑖=1
∑
𝑟

𝑗=1
ℎ
𝑖
ℎ
𝑘

𝑗
𝑄
𝑖𝑗
< 𝐿(𝑡). For the second term in �̇�

2
(𝑡)

the following inequalities can be obtained:

− ℎ∫

𝑡

𝑡−ℎ

̇
𝑥

𝑇

(𝑠) 𝐿 (𝑠)
̇
𝑥 (𝑠) 𝑑𝑠

< −ℎ∫

𝑡

𝑡−ℎ

̇
𝑥

𝑇

(𝑠) 𝑄 (𝑠)
̇
𝑥 (𝑠) 𝑑𝑠

= −ℎ∫

𝑡−𝑑(𝑡)

̇
𝑥

𝑇

(𝑠) 𝑄 (𝑠)
̇
𝑥 (𝑠) 𝑑𝑠

− ℎ∫

𝑡−𝑑(𝑡)

𝑡−ℎ

̇
𝑥

𝑇

(𝑠) 𝑄 (𝑠)
̇
𝑥 (𝑠) 𝑑𝑠

= − (ℎ − 𝑑 (𝑡)) ∫

𝑡

𝑡−𝑑(𝑡)

̇
𝑥

𝑇

(𝑠) 𝑄 (𝑠)
̇
𝑥 (𝑠) 𝑑𝑠

− 𝑑 (𝑡) ∫

𝑡

𝑡−𝑑(𝑡)

̇
𝑥

𝑇

(𝑠) 𝑄 (𝑠)
̇
𝑥 (𝑠) 𝑑𝑠

− (ℎ − 𝑑 (𝑡)) ∫

𝑡−𝑑(𝑡)

𝑡−ℎ

̇
𝑥

𝑇

(𝑠) 𝑄 (𝑠)
̇
𝑥 (𝑠) 𝑑𝑠

− 𝑑 (𝑡) ∫

𝑡−𝑑(𝑡)

𝑡−ℎ

̇
𝑥

𝑇

(𝑠) 𝑄 (𝑠)
̇
𝑥 (𝑠) 𝑑𝑠

≤ −

ℎ − 𝑑 (𝑡)

ℎ

𝜉
𝑇

1
(𝑡) 𝑄 (𝑡) 𝜉

1
(𝑡) − 𝜉

𝑇

1
(𝑡) 𝑄 (𝑡) 𝜉

1
(𝑡)

− 𝜉
𝑇

2
(𝑡) 𝑄 (𝑡) 𝜉

2
(𝑡) −

𝑑 (𝑡)

ℎ

𝜉
𝑇

2
(𝑡) 𝑄 (𝑡) 𝜉

2
(𝑡)

= 𝜉
𝑇

3
(𝑡) 𝑈
1
𝜉
3
(𝑡) +

ℎ − 𝑑 (𝑡)

ℎ

𝜉
𝑇

3
(𝑡) 𝑈
2
𝜉
3
(𝑡)

+

𝑑 (𝑡)

ℎ

𝜉
𝑇

3
(𝑡) 𝑈
3
𝜉
3
(𝑡) ,

(17)

where

𝜉
1
(𝑡) = ∫

𝑡

𝑡−𝑑(𝑡)

̇
𝑥 (𝑠) 𝑑𝑠, 𝜉

2
(𝑡) = ∫

𝑡−𝑑(𝑡)

𝑡−ℎ

̇
𝑥 (𝑠) 𝑑𝑠,

𝜉
𝑇

3
(𝑡) = [𝑥

𝑇

(𝑡) 𝑥
𝑇

(𝑡 − 𝑑 (𝑡)) 𝑥
𝑇

(𝑡 − ℎ)] ,

𝑈
1
=
[

[

[

−𝑄 (𝑡) 𝑄 (𝑡) 0

𝑄 (𝑡) −2𝑄 (𝑡) 𝑄 (𝑡)

0 𝑄 (𝑡) −𝑄 (𝑡)

]

]

]

,

𝑈
2
=
[

[

[

−𝑄 (𝑡) 𝑄 (𝑡) 0

𝑄 (𝑡) −𝑄 (𝑡) 0

0 0 0

]

]

]

,

𝑈
3
=
[

[

[

0 0 0

0 −𝑄 (𝑡) 𝑄 (𝑡)

0 𝑄 (𝑡) −𝑄 (𝑡)

]

]

]

.

(18)

Similarly, for the first term in �̇�
3
(𝑡), we can have

− ∫

𝑡

𝑡−𝑑(𝑡)

̇
𝑥

𝑇

(𝑠) 𝑍
1

̇
𝑥 (𝑠) 𝑑𝑠

≤ [

𝑥(𝑡)

𝑥(𝑡 − 𝑑(𝑡))

]

𝑇[

[

[

[

[

−

1

ℎ

𝑍
1

1

ℎ

𝑍
1

1

ℎ

𝑍
1
−

1

ℎ

𝑍
1

]

]

]

]

]

[

𝑥 (𝑡)

𝑥 (𝑡 − 𝑑 (𝑡))

] .

(19)

For the last term in �̇�
3
(𝑡), one can have

2 (ℎ − 𝑑 (𝑡)) 𝜗
𝑇

(𝑡) 𝑍
2

̇
𝑥 (𝑡)

≤

ℎ − 𝑑 (𝑡)

ℎ

[ℎ𝜗
𝑇

(𝑡) 𝑍
2
𝑍
2
𝜗 (𝑡) + ℎ

̇
𝑥

𝑇

(𝑡)
̇
𝑥 (𝑡)] .

(20)

In addition, the following inequality holds:

𝑧
𝑇

(𝑡) 𝑧 (𝑡) =

{

{

{

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

ℎ
𝑖
ℎ
𝑘

𝑗
[𝐶
𝑖𝑗
𝑥(𝑡) + 𝐷

𝑖𝑗
𝑤(𝑡)]

}

}

}

𝑇

×

{

{

{

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

ℎ
𝑖
ℎ
𝑘

𝑗
[𝐶
𝑖𝑗
𝑥 (𝑡) + 𝐷

𝑖𝑗
𝑤 (𝑡)]

}

}

}
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≤

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

ℎ
𝑖
ℎ
𝑘

𝑗
[𝐶
𝑖𝑗
𝑥 (𝑡) + 𝐷

𝑖𝑗
𝑤 (𝑡)]

𝑇

× [𝐶
𝑖𝑗
𝑥 (𝑡) + 𝐷

𝑖𝑗
𝑤 (𝑡)] .

(21)

It is straight forward to obtain the following results:

�̇� (𝑡) +

1

𝜀

𝑧
𝑇

(𝑡) 𝑧 (𝑡) + 𝛿𝑤
𝑇

(𝑡) 𝑤 (𝑡) − 2𝑧
𝑇

(𝑡) 𝑤 (𝑡)

≤

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

ℎ
𝑖
ℎ
𝑘

𝑗
𝜂
𝑇

(𝑡)

× [Φ
11𝑖𝑗
+

1

𝜀

Φ
12
𝑖𝑗
𝑇

Φ
12𝑖𝑗
+ Φ
𝑇

13𝑖𝑗
𝐿
−1

𝑖𝑗
Φ
13𝑖𝑗

+

ℎ − 𝑑 (𝑡)

ℎ

× (Θ
1𝑖𝑗
+

1

𝜀

Φ
𝑇

14𝑖𝑗
Φ
14𝑖𝑗
− Φ
𝑇

15𝑖𝑗
Φ
−1

55
Φ
15𝑖𝑗
)

+

𝑑 (𝑡)

ℎ

Θ
2𝑖𝑗
] 𝜂 (𝑡)

=

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

ℎ
𝑖
ℎ
𝑘

𝑗
𝜂
𝑇

(𝑡)

× [

ℎ − 𝑑 (𝑡)

ℎ

× (Φ
11𝑖𝑗
+ Θ
1𝑖𝑗
+

1

𝜀

Φ
𝑇

12𝑖𝑗
Φ
12𝑖𝑗

+ Φ
𝑇

13𝑖𝑗
𝐿
−1

𝑖𝑗
Φ
13𝑖𝑗
+

1

𝜀

Φ
𝑇

14𝑖𝑗
Φ
14𝑖𝑗

−Φ
𝑇

15𝑖𝑗
Φ
−1

55
Φ
15𝑖𝑗
)

+

𝑑 (𝑡)

ℎ

× (Φ
11𝑖𝑗
+ Θ
2𝑖𝑗
+

1

𝜀

Φ
𝑇

12𝑖𝑗
Φ
12𝑖𝑗

+Φ
𝑇

13𝑖𝑗
𝐿
−1

𝑖𝑗
Φ
13𝑖𝑗
) ] 𝜂 (𝑡) ,

(22)

where

𝜂
𝑇

(𝑡) = [𝑥
𝑇

(𝑡) 𝑥
𝑇

(𝑡 − 𝑑 (𝑡)) 𝑥
𝑇

(𝑡 − ℎ) 𝑤
𝑇

(𝑡)] . (23)

By using Schur complement to LMI conditions (11)–(13)
in Theorem 2, the following inequality holds:

�̇� (𝑡) +

1

𝜀

𝑧
𝑇

(𝑡) 𝑧 (𝑡) + 𝛿𝑤
𝑇

(𝑡) 𝑤 (𝑡) − 2𝑧
𝑇

(𝑡) 𝑧 (𝑡) ≤ 0.

(24)

Integrating both sides of the inequality yields

2∫

𝑡

0

𝑧
𝑇

(𝑠) 𝑤 (𝑠) 𝑑𝑠

≥ 𝑉 (𝑡) − 𝑉 (0) +

1

𝜀

∫

𝑡

0

𝑧
𝑇

(𝑠) 𝑧 (𝑠) 𝑑𝑠 + 𝛿∫

𝑡

0

𝑤
𝑇

(𝑠) 𝑤 (𝑠) 𝑑𝑠

≥ 𝜌 +

1

𝜀

∫

𝑡

0

𝑧
𝑇

(𝑠) 𝑧 (𝑠) 𝑑𝑠 + 𝛿∫

𝑡

0

𝑤
𝑇

(𝑠) 𝑤 (𝑠) 𝑑𝑠,

(25)

where 𝜌 = −𝑉(0). From Definition 1, it can be seen that
system (8) is very-strictly passive. The proof is finished.

In the following part of this section, the control gain
matrices 𝐴

𝑐𝑖
, 𝐴
𝑐𝑑𝑖
, 𝐵
𝑐𝑖
, and 𝐶

𝑐𝑖
in (8) will be solved. Based

on the LMI conditions inTheorem 2, the existence condition
of controller (6) for the closed-loop system in (8) is given in
the following theorem.

Theorem 3. Consider the closed-loop system (8), for given
scalar ℎ > 0, 𝜐

𝑅𝑖𝑗
> 0, 𝜐

𝐼
> 0, 𝜐

𝑍1
> 0, and 𝜐

𝑍2
> 0; the

closed-loop system in (8) is very-strictly passive, if there exist
scalars 𝜀 > 0, 𝛿 > 0, matrices 𝑃 = 𝑃𝑇 > 0, �̌�

𝑖𝑗
= �̌�
𝑇

𝑖𝑗
> 0,

�̌�
𝑖𝑗
= �̌�
𝑇

𝑖𝑗
> 0, ̌

𝑍
1
=

̌
𝑍
𝑇

1
> 0, ̌

𝑍
2
=

̌
𝑍
𝑇

2
> 0, 𝐼 = 𝐼𝑇 > 0,

�̌�
1
= �̌�
𝑇

1
> 0, R = R𝑇 > 0, S = S𝑇 > 0, and A

𝑖
, A
𝑑𝑖
, B
𝑖
,

C
𝑖
with appropriate dimensions, such that the following LMIs

hold for 𝑖, 𝑗 = 1, 2, . . . , 𝑟:

[

[

[

[

[

[

[

[

Ψ
11𝑖𝑗
+ Γ
1𝑖𝑗
Ψ
12𝑖𝑗

Ψ
13𝑖𝑗

Ψ
14𝑖𝑗

Ψ
15𝑖𝑗

⋆ Ψ
22𝑖𝑗

0 Ψ
24𝑖𝑗

0

⋆ ⋆ Ψ
33𝑖𝑗

Ψ
34𝑖𝑗

0

⋆ ⋆ ⋆ Ψ
44𝑖𝑗

0

⋆ ⋆ ⋆ ⋆ Ψ
44𝑖𝑗

]

]

]

]

]

]

]

]

< 0, (26)

[

[

[

[

[

Ψ
11𝑖𝑗
+ Γ
2𝑖𝑗
Ψ
𝑇

12𝑖𝑗
Ψ
14𝑖𝑗

Ψ
15𝑖𝑗

⋆ Ψ
22𝑖𝑗

Ψ
24𝑖𝑗

0

⋆ ⋆ Ψ
44𝑖𝑗

0

⋆ ⋆ ⋆ Ψ
44𝑖𝑗

]

]

]

]

]

< 0, (27)

�̌�
𝑖𝑗
< �̌�
𝑖𝑗
, (28)

where

Ψ
11𝑖𝑗
=

[

[

[

[

[

Υ
11𝑖𝑗

Υ
12𝑖𝑗

0 Υ
14𝑖𝑗

⋆ Υ
22𝑖𝑗

Υ
23𝑖𝑗

0

⋆ ⋆ Υ
33𝑖𝑗

0

⋆ ⋆ ⋆ Υ
44𝑖𝑗

]

]

]

]

]

,

Ψ
12𝑖𝑗
=
[

[

𝜆
𝑇

4𝑖𝑗
+ 𝜆
𝑇

4𝑗𝑖
0 0 𝐷

𝑇

𝑤𝑖𝑗
+ 𝐷

𝑇

𝑤𝑗𝑖

ℎ𝜆
1𝑖𝑗

ℎ𝜆
2𝑖𝑗
0 𝜆
3𝑖𝑗
+ 𝜆
3𝑗𝑖

]

]

𝑇

,

Γ
1𝑖𝑗
=

[

[

[

[

[

[

−𝑄
𝑖𝑗
𝑄
𝑖𝑗
0 0

𝑄
𝑖𝑗
−𝑄
𝑖𝑗
0 0

0 0 0 0

0 0 0 0

]

]

]

]

]

]

,
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Γ
2𝑖𝑗
=

[

[

[

[

[

0 0 0 0

0 −𝑄
𝑖𝑗
𝑄
𝑖𝑗
0

0 𝑄
𝑖𝑗
−𝑄
𝑖𝑗
0

0 0 0 0

]

]

]

]

]

,

Ψ
13𝑖𝑗
=
[

[

[

2ℎ]
𝑍2
Δ 2ℎ]

𝑍2
Δ 0 0

ℎ𝜆
1𝑖𝑗

ℎ𝜆
2𝑖𝑗

0 ℎ𝜆
3𝑖𝑗
+ ℎ𝜆
3𝑗𝑖

ℎ𝜆
1𝑖𝑗

ℎ𝜆
2𝑖𝑗

0 ℎ𝜆
3𝑖𝑗
+ ℎ𝜆
3𝑗𝑖

]

]

]

𝑇

,

Ψ
14𝑖𝑗
= [𝜇
1𝑖𝑗
0 0 0]

𝑇

,

Ψ
15𝑖𝑗
= [𝜇
2𝑖𝑗
𝜇
3𝑖𝑗
0 0]

𝑇

,

Ψ
44𝑖𝑗
= [

−𝐼 0

0 −𝐼
] , Ψ

24𝑖𝑗
= [0 ℎ𝜇

1𝑖𝑗
]

𝑇

,

Ψ
22𝑖𝑗
= diag {−2𝜀𝐼, Π

1𝑖𝑗
} ,

Ψ
33𝑖𝑗
= diag {2ℎΠ

2𝑖𝑗
, 2ℎΠ
2𝑖𝑗
, 2ℎΠ
3𝑖𝑗
} ,

Ψ
34𝑖𝑗
= [0 ℎ𝜇

1𝑖𝑗
ℎ𝜇
1𝑖𝑗
]

𝑇

,

Υ
12𝑖𝑗
= 𝜆
2𝑖𝑗
+ �̌�
𝑖𝑗
+ �̌�
𝑗𝑖
+

2

ℎ

̌
𝑍
1
+ 2𝜐
𝑍2
Δ,

Υ
11𝑖𝑗
= [𝜆
1𝑖𝑗
]
𝑠

− �̌�
𝑖𝑗
− �̌�
𝑗𝑖
−

2

ℎ

̌
𝑍
1
− 2𝜐
𝑍2
Δ − 2�̌�

1
,

Υ
14𝑖𝑗
= 𝜆
3𝑖𝑗
− 𝜆
4𝑖𝑗
+ 𝜆
3𝑗𝑖
− 𝜆
4𝑗𝑖
,

Υ
23𝑖𝑗
= −�̌�
𝑖𝑗
− �̌�
𝑗𝑖
,

Υ
22𝑖𝑗
= −�̌�
𝑖𝑗
− �̌�
𝑗𝑖
−

2

ℎ

̌
𝑍
1
− 2𝜐
𝑍2
Δ,

Υ
33𝑖𝑗
= −�̌�
𝑖𝑗
− �̌�
𝑗𝑖
− 2�̌�
1
,

Υ
33𝑖𝑗
= 2𝛿𝐼 − 𝐷

𝑤𝑖𝑗
− 𝐷

𝑇

𝑤𝑖𝑗
− 𝐷
𝑤𝑗𝑖
− 𝐷

𝑇

𝑤𝑗𝑖
,

Π
2𝑖𝑗
= 𝜐
2

𝐼
𝐼 − 2ℎ𝜐

𝐼
Δ,

Π
1𝑖𝑗
= 𝜐
2

𝐿 𝑖𝑗

𝐿
𝑖𝑗
+ 𝜐
2

𝐿𝑗𝑖

𝐿
𝑗𝑖
− 2𝜐
𝐿 𝑖𝑗
Δ − 2𝜐

𝐿𝑗𝑖
Δ,

Π
3𝑖𝑗
= 𝜐
2

𝑍1

𝑍
1
− 4ℎ𝜐

𝑍1
Δ,

𝜆
1𝑖𝑗
= [

R𝐴
𝑖
+R𝐴

𝑗
A
𝑖
+ A
𝑗

𝐴
𝑖
+ 𝐴
𝑗

𝐴
𝑖
S + 𝐵

𝑖
C
𝑗
+ 𝐴
𝑗
S + 𝐵

𝑗
C
𝑖

] ,

𝜇
𝑇

1𝑖𝑗
= [

R (𝐵
𝑖
− 𝐵
𝑗
) B
𝑗
− B
𝑖

0 0

] ,

𝜆
2𝑖𝑗
= [

B
𝑗
𝐶
𝑦𝑖
+ B
𝑖
𝐶
𝑦𝑗

A
𝑑𝑖
+ A
𝑑𝑗

0 0

] ,

𝜆
3𝑖𝑗
= [

R𝐵
𝑤𝑖

𝐵
𝑤𝑖

] , 𝜆
4𝑖𝑗
= [

𝐶
𝑇

𝑖

S𝐶𝑇
𝑖
+ C
𝑗
𝐷
𝑇

𝑖

] ,

𝜇
2𝑖𝑗
= [

0 0

C𝑇
𝑗
− C𝑇
𝑖
0

]

𝑇

,

𝜇
3𝑖𝑗
= [

0 0

0 S(𝐶
𝑦𝑖
− 𝐶
𝑦𝑗
)

𝑇]

𝑇

, Δ = [

R 𝐼

𝐼 S
] ,

�̌�
1
= [

𝑁
11
𝑁
12

⋆ 𝑁
13

] ,
̌
𝑍
1
= [

𝑍
11
𝑍
12

⋆ 𝑍
13

] ,

̌
𝑍
2
= [

𝑍
21
𝑍
22

⋆ 𝑍
23

] ,

�̌�
𝑖𝑗
= [

𝑅
1𝑖𝑗
𝑅
2𝑖𝑗

⋆ 𝑅
3𝑖𝑗

] , �̌�
𝑖𝑗
= [

𝑄
1𝑖𝑗
𝑄
2𝑖𝑗

⋆ 𝑄
3𝑖𝑗

] ,

(29)

𝐼 = [

𝐼
1
𝐼
2

⋆ 𝐼
3

] . (30)

Thus, the dynamic output-feedback control gain matrices can
be obtained as shown below:

𝐴
𝑐𝑖
= M
−1

(A
𝑖
−R𝐵
𝑖
C
𝑖
−R𝐴

𝑖
S)N
−𝑇

,

𝐴
𝑐𝑑𝑖
= M
−1

(A
𝑑𝑖
− B𝐶
𝑦𝑖
S)N
−𝑇

,

𝐵
𝑐𝑖
= M
−1

B
𝑖
,

𝐶
𝑐𝑖
= C
𝑖
N
−𝑇

,

(31)

whereM and N are nonsingular matrices satisfying

MN
𝑇

= 𝐼 −RS. (32)
Proof. By the Schur complement, it can be seen that (26) is
equivalent to

[

[

[

Ψ
11𝑖𝑗
+ Γ
1𝑖𝑗
Ψ
12𝑖𝑗

Ψ
13𝑖𝑗

⋆ Ψ
22𝑖𝑗

0

⋆ ⋆ Ψ
33𝑖𝑗

]

]

]

+ 𝛼𝛼
𝑇

+ 𝛽𝛽
𝑇

+ 𝜍𝜍
𝑇

+ 𝜛𝜛
𝑇

< 0,

(33)
where

𝛼
𝑇

= [ (𝐵
𝑖
− 𝐵
𝑗
)

𝑇

R𝑇 0
1×7

ℎ(𝐵
𝑖
− 𝐵
𝑗
)

𝑇

R𝑇 0
1×3

ℎ(𝐵
𝑖
− 𝐵
𝑗
)

𝑇

R𝑇 0 ℎ(𝐵
𝑖
− 𝐵
𝑗
)

𝑇

R𝑇 0 ] ,

𝛽
𝑇

= [ (B
𝑗
− B
𝑖
)

𝑇

0
1×7

ℎ(B
𝑗
− B
𝑖
)

𝑇

0
1×3

ℎ(B
𝑗
− B
𝑖
)

𝑇

0 ℎ(B
𝑗
− B
𝑖
)

𝑇

0 ] ,

𝜍
𝑇

= [0 (C
𝑗
− C
𝑖
) 0
1×14

] ,

𝜛
𝑇

= [0
1×3

(𝐶
𝑦𝑖
− 𝐶
𝑦𝑗
)S𝑇 0

1×12
] .

(34)

It is clear to see that

𝛼𝛼
𝑇

+ 𝜍𝜍
𝑇

+ 𝛽𝛽
𝑇

+ 𝜛𝜛
𝑇

≥ 𝛼𝜍
𝑇

+ 𝜍𝛼
𝑇

+ 𝛽𝜛
𝑇

+ 𝜛𝛽
𝑇

,

(35)
which means

[

[

[

[

Ψ
11𝑖𝑗
+ Γ
1𝑖𝑗
Ψ
12𝑖𝑗

Ψ
13𝑖𝑗

⋆ Ξ̌
22𝑖𝑗

0

⋆ ⋆ Ξ̌
33𝑖𝑗

]

]

]

]

+ 𝛼𝜍
𝑇

+ 𝜍𝛼
𝑇

+ 𝛽𝜛
𝑇

+ 𝜛𝛽
𝑇

< 0.

(36)
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By the output-feedback controller, the matrix 𝑃 is partitioned
and inverted as

𝑃 = [

S N

N𝑇 Y
] , 𝑃

−1

= [

R M

M𝑇 T
] . (37)

It can be seen that (32) holds via𝑃𝑃−1 = 𝐼. According to Schur
complement formula, it implies that R − S−1 > 0; therefore
RS − 𝐼 is nonsingular. This shows that there exist nonlinear
matrices N andM such that (32) is satisfied. Set

Ω
1
= [

R 𝐼

M𝑇 0
] , Ω

2
= [

𝐼 S

0 N𝑇
] . (38)

Then, we obtain from (38) that

𝑃Ω
1
= Ω
2
. (39)

It follows that

Ω
𝑇

1
𝑃Ω
1
= Ω
𝑇

1
Ω
2
= [

R 𝐼

𝐼 S
] , (40)

which shows that the matricesΩ
1
andΩ

2
in (39) are positive

definite. It can be found that the matrix 𝑃 can be expressed
as 𝑃 = Ω

2
Ω
−1

1
, and it is known that 𝑃 > 0. The following

equations can be obtained:

R𝐴
𝑖
S +R𝐵

𝑖
C
𝑖
+M𝐴

𝑐𝑖
N
𝑇

+R𝐴
𝑗
S +R𝐵

𝑗
C
𝑗

+M𝐴
𝑐𝑗
N
𝑇

+R (𝐵
𝑖
− 𝐵
𝑗
) (C
𝑗
− C
𝑖
)

= R𝐴
𝑖
S +R𝐵

𝑖
C
𝑗
+M𝐴

𝑐𝑗
N
𝑇

+R𝐴
𝑗
S +R𝐵

𝑗
C
𝑖

+M𝐴
𝑐𝑖
N
𝑇

,

B
𝑖
𝐶
𝑦𝑖
S +M𝐴

𝑐𝑑𝑖
N
𝑇

+ B
𝑗
𝐶
𝑦𝑗
S +M𝐴

𝑐𝑑𝑗
N
𝑇

+ (B
𝑗
− B
𝑖
) (𝐶
𝑦𝑖
− 𝐶
𝑦𝑗
)S

= B
𝑖
𝐶
𝑦𝑗
S +M𝐴

𝑐𝑑𝑗
N
𝑇

+ B
𝑗
𝐶
𝑦𝑖
S +M𝐴

𝑐𝑑𝑖
N
𝑇

.

(41)

Because of the nonsingular matrices M and N, the control
gain matrices 𝐴

𝑐𝑖
, 𝐴
𝑐𝑑𝑖
, 𝐵
𝑐𝑖
, and 𝐶

𝑐𝑖
can be solved from (31).

Then, by performing a congruent transformation to (36) by
diag {Ω−1

1
, Ω
−1

1
, Ω
−1

1
, 𝐼, 𝐼, Ω

−1

1
, Ω
−1

1
, Ω
−1

1
, Ω
−1

1
}, the following

inequality holds:

[

[

[

[

Ξ
11𝑖𝑗
+ Ξ
11𝑗𝑖
+ Θ
1𝑖𝑗
+ Θ
1𝑗𝑖

Ξ
12𝑖𝑗
+ Ξ
12𝑗𝑖

Ξ
13𝑖𝑗
+ Ξ
13𝑗𝑖

⋆ Ξ
22𝑖𝑗
+ Ξ
22𝑗𝑖

0

⋆ ⋆ Ξ
33𝑖𝑗
+ Ξ
33𝑗𝑜

]

]

]

]

< 0,

(42)

where

Ξ
11𝑖𝑗
=

[

[

[

[

[

[

[

Φ
11𝑖𝑗

Φ
12𝑖𝑗

0 Φ
14𝑖𝑗

⋆ Φ
22𝑖𝑗

𝑄
𝑖𝑗

0

⋆ ⋆ Φ
33𝑖𝑗

0

⋆ ⋆ ⋆ Φ
44𝑖𝑗

]

]

]

]

]

]

]

,

Φ
11𝑖𝑗
= [𝐴
𝑖𝑗
𝑃]
𝑠

− 𝑄
𝑖𝑗
−

1

ℎ

𝑍
1
− 𝜐
𝑍2
𝑃 + 𝑁

1
,

Φ
12𝑖𝑗
= 𝐵
𝑖𝑗
𝑃 + 𝑄

𝑖𝑗
+

1

ℎ

𝑍
1
+ 𝜐
𝑍2
𝑃,

Φ
14𝑖𝑗
= 𝐵
𝑤𝑖𝑗
− 𝑃𝐶

𝑇

𝑖𝑗
, Φ

22𝑖𝑗
= −2𝑄

𝑖𝑗
−

1

ℎ

𝑍
1
− 𝜐
𝑍2
𝑃,

Φ
33𝑖𝑗
= −𝑄
𝑖𝑗
− 𝑁
1
, Φ

44𝑖𝑗
= 𝛿𝐼 − 𝐷

𝑤𝑖𝑗
− 𝐷

𝑇

𝑤𝑖𝑗
,

Ξ
22𝑖𝑗
= diag {−𝜀𝐼, 𝜐2

𝑅𝑖𝑗
𝑅
𝑖𝑗
− 2𝜐
𝑅𝑖𝑗
𝑃} ,

Ξ
33𝑖𝑗
= diag {𝜐2

𝐼
𝐼 − 2𝜐

𝐼
𝑃, 𝜐
2

𝐼
𝐼 − 2𝜐

𝐼
𝑃, ℎ (𝜐

2

𝑍1

𝑍
1
− 2𝜐
𝑍1
𝑃)} ,

Ξ
12𝑖𝑗
= [

𝐶
𝑖𝑗
𝑃 0 0 𝐷

𝑤𝑖𝑗

ℎ𝐴
𝑖𝑗
𝑃 ℎ𝐵

𝑖𝑗
𝑃 0 ℎ𝐵

𝑤𝑖𝑗

]

𝑇

,

Ξ
13𝑖𝑗
=

[

[

[

[

ℎ𝜐
𝑍2
𝑃 ℎ𝜐
𝑍2
𝑃 0 0

ℎ𝐴
𝑖𝑗
𝑃 ℎ𝐵

𝑖𝑗
𝑃 0 ℎ𝐵

𝑤𝑖𝑗

ℎ𝐴
𝑖𝑗
𝑃 ℎ𝐵

𝑖𝑗
𝑃 0 ℎ𝐵

𝑤𝑖𝑗

]

]

]

]

𝑇

.

(43)

It can be seen from 𝜐
𝑍1
> 0 that

(𝜐
𝑍1
𝑍
1
− 𝑃)𝑍

−1

1
(𝜐
𝑍1
𝑍
1
− 𝑃) ≥ 0, (44)

which means

−𝑃𝑍

−1

1
𝑃 ≤ 𝜐

2

𝑍1

𝑍
1
− 2𝜐
𝑍1
𝑃. (45)

Similarly

−𝑃𝑅

−1

𝑖𝑗
𝑃 ≤ 𝜐

2

𝑅𝑖𝑗

𝑅
𝑖𝑗
− 2𝜐
𝑅𝑖𝑗
𝑃,

−𝑃 𝐼

−1

𝑃 ≤ 𝜐
2

𝐼
𝐼 − 2𝜐

𝐼
𝑃.

(46)

Then, we know that

[

[

[

[

Ξ
11𝑖𝑗
+ Ξ
11𝑗𝑖
+ Θ
1𝑖𝑗
+ Θ
1𝑗𝑖

Ξ
12𝑖𝑗
+ Ξ
12𝑗𝑖

Ξ
13𝑖𝑗
+ Ξ
13𝑗𝑖

⋆ Ξ
22𝑖𝑗
+ Ξ
22𝑗𝑖

0

⋆ ⋆ Ξ
33𝑖𝑗
+ Ξ
33𝑗𝑖

]

]

]

]

< 0,

(47)



8 Mathematical Problems in Engineering

where

Ξ
22𝑖𝑗
= diag {−𝜀𝐼, −𝑃𝑅−1

𝑖𝑗
𝑃} ,

Ξ
33𝑖𝑗
= diag {−𝑃 𝐼−1𝑃, −𝑃 𝐼−1𝑃, −ℎ𝑃𝑍

−1

1
𝑃} .

(48)

For (47), through the congruence transformations by
diag{𝑃, 𝑃, 𝑃, 𝐼, 𝐼, 𝑅

𝑖𝑗
, 𝐼, 𝐼, 𝑍

1
} with the change of matrix vari-

ables defined by 𝑃 = 𝑃−1, 𝑅
𝑖𝑗
= 𝑃

−1

𝑅
𝑖𝑗
𝑃

−1, 𝑍
1
= 𝑃

−1

𝑍
1
𝑃

−1

and 𝐼 = 𝑃−1𝐼 𝑃−1, one has

[

[

[

[

[

[

[

[

Φ
11𝑖𝑗
+ Φ
11𝑗𝑖
+ Θ
1𝑖𝑗
+ Θ
1𝑗𝑖

Φ
12𝑖𝑗
+ Φ
12𝑗𝑖

Φ
13𝑖𝑗
+ Φ
13𝑗𝑖

Φ
14𝑖𝑗
+ Φ
14𝑗𝑖

Φ
15𝑖𝑗
+ Φ
15𝑗𝑖

⋆ −2𝜀𝐼 0 0 0

⋆ ⋆ −𝐿
𝑖𝑗
− 𝐿
𝑗𝑖

0 0

⋆ ⋆ ⋆ −2𝜀𝐼 0

⋆ ⋆ ⋆ ⋆ Φ
55𝑖𝑗
+ Φ
55𝑗𝑖

]

]

]

]

]

]

]

]

< 0. (49)

Similarly,

[

[

[

Φ
11𝑖𝑗
+ Φ
11𝑗𝑖
+ Θ
2𝑖𝑗
+ Θ
2𝑗𝑖

Φ
12𝑖𝑗
+ Φ
12𝑗𝑖

Φ
13𝑖𝑗
+ Φ
13𝑗𝑖

⋆ −2𝜀𝐼 0

⋆ ⋆ −𝐿
𝑖𝑗
− 𝐿
𝑗𝑖

]

]

]

< 0.

(50)
It is shown that

[

[

[

[

[

[

[

[

Φ
11𝑖𝑗
+ Θ
1𝑖𝑗
Φ
12𝑖𝑗

Φ
13𝑖𝑗

Φ
14𝑖𝑗

Φ
15𝑖𝑗

⋆ −𝜀𝐼 0 0 0

⋆ ⋆ −𝐿
𝑖𝑗

0 0

⋆ ⋆ ⋆ −𝜀𝐼 0

⋆ ⋆ ⋆ ⋆ Φ
55𝑖𝑗

]

]

]

]

]

]

]

]

< 0,

[

[

[

Φ
11𝑖𝑗
+ Θ
2𝑖𝑗
Φ
12𝑖𝑗

Φ
13𝑖𝑗

⋆ −𝜀𝐼 0

⋆ ⋆ −𝐿
𝑖𝑗

]

]

]

< 0.

(51)

Therefore, all the conditions in Theorem 2 are satisfied. The
proof is completed.

4. Numerical Example

In this section, a numerical example is given to show the
effectiveness of the proposed results. We consider the follow
fuzzy system.

Plant Rule 1. IF 𝑥
1
(𝑡) is ℎ

1
(𝜃(𝑡)), THEN

�̇� (𝑡) = 𝐴
1
𝑥 (𝑡) + 𝐵

1
𝑢 (𝑡) + 𝐵𝑤

1
𝑤 (𝑡) ,

𝑧 (𝑡) = 𝐶
1
𝑥 (𝑡) + 𝐷

1
𝑢 (𝑡) + 𝐷𝑤

1
𝑤 (𝑡) ,

𝑦 (𝑡) = 𝐶
𝑦1
𝑥 (𝑡) .

(52)

Plant Rule 2. IF 𝑥
1
(𝑡) is ℎ

2
(𝜃(𝑡)), THEN

�̇� (𝑡) = 𝐴
2
𝑥 (𝑡) + 𝐵

2
𝑢 (𝑡) + 𝐵𝑤

2
𝑤 (𝑡) ,

𝑧 (𝑡) = 𝐶
2
𝑥 (𝑡) + 𝐷

2
𝑢 (𝑡) + 𝐷𝑤

2
𝑤 (𝑡) ,

𝑦 (𝑡) = 𝐶
𝑦2
𝑥 (𝑡) ,

(53)

where

𝐴
1
= [

0 0.7

−0.314 1
] , 𝐴

2
= [

0 0.3

0.1 −0.256
] ,

𝐵
1
= [

0

0.1
] , 𝐵

2
= [

0.1

0
] ,

𝐵
𝑤1
= [−1 0]

𝑇

, 𝐵
𝑤2
= [0 −1]

𝑇

,

𝐶
1
= [1 0] , 𝐶

2
= [−1 0] , 𝐷

1
= 0.01,

𝐶
𝑦1
= [1 0.5] , 𝐶

𝑦2
= [−0.5 1] ,

𝐷
2
= 0.02, 𝐷

𝑤1
= 0.1, 𝐷

𝑤2
= 0.2.

(54)

For ℎ = 0.05, ℎ
1
(𝜃(𝑡)) = 𝑒

(1−𝑥2)
2

/(𝑒
(1−𝑥2)

2

+ 𝑒
(−𝑥2)

2

), and
ℎ
2
(𝜃(𝑡)) = 1−ℎ

1
(𝜃(𝑡)), it is found that 𝛿 = 13, 𝜀 = 12, and the

system with output-feedback sampled-delay controller meets
the passive performance. Then the dynamic output-feedback
control gain matrices can be obtained as shown below:

𝐴
𝑐1
= [

3.6932 7.1253

3.0405 9.5623
] ,

𝐴
𝑐2
= [

4.9324 25.7304

3.9106 21.1046
] ,

𝐵
𝑐1
= 10
−4

× [

−0.5860

0.0185
] ,

𝐵
𝑐2
= 10
−4

× [

−0.2391

−0.3317
] ,

𝐴
𝑐𝑑1
= [

−0.0098 0.2607

0.0008 −0.0277
] ,

𝐴
𝑐𝑑2
= [

0.0003 −0.0105

0.0063 −0.1557
] ,

𝐶
𝑐1
= [−3.5198 −18.1033] ,

𝐶
𝑐2
= [−3.9239 −23.6327] .

(55)
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5. Conclusions

In this paper, the problem of dynamic output-feedback
control has been investigated for a class of nonlinear systems
via T-S fuzzy control approach. By using Lyapunov stability
theory, a sufficient condition for very-strict passive perfor-
mance analysis for fuzzy systems with nonuniform uncertain
sampling has been derived. Based on the condition, a novel
fuzzy dynamic output-feedback controller has been designed
such that the closed-loop system is very-strictly passive. The
existence condition of the controller has been solved by
convex optimization approach. Finally, a numerical example
has been provided to demonstrate the effectiveness of the
proposed method. In future work, the fault-tolerant control
problems [40, 41] will be investigated for fuzzy systems via
dynamic output-feedback control design method.
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