
A Service Based Approach

For
Future Internet Architectures

Ram Kumar Ravikumar Santhi

A Service Based Approach
for

Future Internet Architectures

Doctoral Dissertation for the degree Philosophiae Doctor (PhD)

in Information and Communication Technology

UNIVERSITY OF AGDER
Faculty of Engineering and Science

2010

ram.kumar@uia.no
http://www.uia.no
http://www.uia.no/tekreal

Doctoral Dissertations at the University of Agder 28

ISBN: 978-82-7117-685-3

ISSN: 1504-9272

©Ram Kumar, 2010

Printed by the Printing Office, University of Agder

Kristiansand

ii

Preface

I owe my deepest gratitude to my supervisor Prof. Frank Reichert for his encouragement,
guidance and patience throughout the duration of my work on this thesis. His support
enabled me to develop an understanding of the subject and I could not have imagined
having a better advisor and mentor for my Ph.D study. My sincere thanks go to my co-
supervisor Prof. Vladimir Oleschuk for his encouragement during my study and work at
the university.

I thank my student colleagues at the University of Agder: Dmitry Umansky, Andreas
Häber, Liping Mu, Yuanyuan Ma, Morten Bak, Cheelim Nge and Martin Choux for
the stimulating discussions, for the much needed caffeine and for all the fun we have
had in the last four years. I am indebted to many more of my friends, colleagues and
students at UiA, whose company has made my duration of study memorable and fruitful.
I also extend my gratitude to Prof. Andreas Prinz and Trine Tønnessen for their help in
navigating the administrative and regulatory mazes.

Last but not the least, I would like to thank my parents, brothers and Rashmi for their
understanding and patience with me during the ups and downs of my PhD life. Without
their encouragement and support it would have been impossible for me to finish this
work.

iii

iv

For my parents

They bore me, raised me, supported me, taught me and loved me.

and

Dedicated to

My little angel, Rayna.

v

vi

Summary

Over the past three decades, the Internet has evolved from a point to point, open, aca-
demic network to an applications and services oriented critical infrastructure. The In-
ternet has become a vital component of society today, from its humble origins as an
academic research project, but still uses the one dimensional layered model as the un-
derlying communication architecture. During this transition, numerous applications and
usages of the network emerged that cannot be efficiently implemented by adhering to the
original design tenets of the Internet. Some of these principles have been broken, others
diluted and new ones are emerging to accommodate new paradigms.

Simultaneously, applications and services have been moving slowly but consistently to-
wards a uniform model based on Service Oriented Approach (SOA). The shift towards
abstract models, objects and services however is not supported by the underlying deliv-
ery platforms, especially the legacy Internet architecture. An architectural rethinking is
necessary at the network level, to accommodate future services, applications and routing
priorities. We argue that there is a pressing need to move towards a next generation net-
work architecture built to natively support parallel processing of communication tasks,
high level network resource abstraction, enhanced routing, privacy, Quality of Experi-
ence (QoE), heterogeneous networking etc. This new architecture should be manifested
according to the principles of SOA to ensure interoperability, backwards compatibility
and migration. We extend this approach by following SOA to make components more
reusable and scalable. This thesis proposes a new communication architecture allowing
integration of characteristics from several dimensions, in particular security, mobility
and context-sensitivity. This new architecture integrates these dimensions in ways not
feasible within the layered paradigm.

vii

viii

CONTENTS

Preface iii

Summary vii

List of Figures xi

1 Introduction 1
1.1 Motivation and Background . 4
1.2 Organization of Thesis . 18
1.3 Summary . 19

2 State Of The Art 20
2.1 Current Efforts to Overcome Internet Network Architecture Shortcomings 22
2.2 New Service Driven Architectures . 35
2.3 Discussion . 46
2.4 Summary . 47

3 Aspects of Service Oriented Design for an Architecture Framework 48
3.1 System Architecture Analysis and Evaluation 50
3.2 Towards a Service Oriented Approach 54
3.3 Service Terminologies . 59
3.4 Service Design Principles . 70
3.5 Service Composition . 81
3.6 Summary . 91

ix

Contents x

4 A Relationship Oriented Service Architecture (ROSA) 92
4.1 Principles for Architecture Composition 94
4.2 Service Oriented Analysis of Network Communication 106
4.3 The Relationship Oriented Service Architecture 112
4.4 Instances of ROSA . 118
4.5 Domain and Network Composition . 128
4.6 Summary . 133

5 Open Issues and Discussion 134
5.1 Benefits of ROSA . 135
5.2 Open Issues . 143
5.3 Comparison with other proposed architectures 148
5.4 Drawbacks . 151

6 Conclusion 153

A 5th Generation Networking Principles for a Service Driven Future Internet
Architecture 160
A.1 Abstract . 160
A.2 Introduction . 162
A.3 The need for a New Architecture . 163
A.4 Challenges to a New Architecture . 169
A.5 Existing Approaches . 170
A.6 A different Approach to Networking 173
A.7 A Relationship based Service Oriented Architecture 178
A.8 Conclusions and Future Work . 186

B Selection of Papers 188

References 190

LIST OF FIGURES

1.1 The growth of Internet, a snapshot[1] 2
1.2 Global ICT developments (1998-2009)[1] 3
1.3 Mobile telephone subscribers per 100 inhabitants (2000-2009)[1] 4
1.4 How Middle-boxes violate end to end principle. 5
1.5 Cross-layering in MANETS [2] . 7
1.6 Internet security controls and countermeasure [3] 8
1.7 Cellular coverage (2003-2009)[1] . 10
1.8 How mobility breaks naming and addressing 11
1.9 A summary of Internet evolution . 14

2.1 Internet users per 100 inhabitants (1997-2009) 21
2.2 The IP Hourglass illustration . 23
2.3 Mobile telephone subscribers per 100 inhabitants (1997-2009)[1] 30
2.4 Basic components of SOA architecture 38
2.5 Web-Services stack . 40
2.6 Web-Services protocols based on XML 41

3.1 The Iterative and Incremental Development (IID) model 52
3.2 Relationship between Models . 53
3.3 The vision of Network as a Service. 56
3.4 Service Models based on scope . 62
3.5 Service Modeling process based on use case models. 63
3.6 Defining Services at various levels . 64
3.7 Integration of Business partners [4] . 65
3.8 Service Contracts . 72
3.9 Service coupling visualization . 74
3.10 Service Normalization[5] . 76
3.11 The traditional SOA triangle model, indicating the central nature of the

Service Discovery Facility . 78

xi

List of Figures xii

3.12 Service Orchestration and Choreography 87

4.1 Network resources abstracted as a Service 95
4.2 Reducing administrative regions and functionality into Domains and Ser-

vices . 97
4.3 The concept of Domains Meeting . 98
4.4 A Domain and its Relationship Manager(RM) 99
4.5 The control plane indicating flow of control information among RMs . . 100
4.6 A Mobile Device with Imaging Services as a Sub-Domain 101
4.7 Domain RMs agree on Negotiation Language, ontologies and policies

using a meta-negotiation language . 103
4.8 The domains use a Relationship Database to keep track of associations . 105
4.9 ROSA Service Inventory . 108
4.10 RM in Broker Mode - RM(B) . 116
4.11 RM in Transparent Mode - RM(T) . 117
4.12 A first generation ROSA instance (Domain Control Services) 120
4.13 A next generation ROSA instance (Domains Control Services) 129

A.1 Internet security controls and countermeasure [3] 164
A.2 The vision of Network as a Service. 175
A.3 Basic components of SOA architecture 177
A.4 A sample ROSA instance . 181
A.5 ROSA Framework Services . 183

CHAPTER 1

INTRODUCTION

This chapter sets the stage for this thesis. The sections within this

chapter describe the motivation for the research question and breaks

down the background problems into subsections. A view of the the

approach taken and the organization of the thesis is given in sec-

tion 1.2 and a summary of the motivational issues are compacted

into a table at the end of the chapter

The Internet, as a network of connected computers, came into existence in the 1970s

[6]. There has not been any fundamental change in the architecture since then, even

though the usage and possibilities have expanded beyond its initial scope. The early

Internet interconnected a stationary set of nodes. The architecture and the protocols used

were designed to accommodate the simple stationary nature. The designers wanted to

build a network infrastructure to interconnect all the computers in the world together and

provide a framework for yet unknown applications to be invented and run [7]. The nodes

were well described by IP addresses that identified the nodes directly on the network.

Routing protocols then took advantage of the static nature of the Internet.

1

Chapter 1. Introduction 2

The Internet has grown over the years with more powerful routers, faster backbones,

faster processing at end points, QoS (although limited) and traffic shaping to accommo-

date newer models of traffic and faster access to customers. From a mere 15 hosts during

the beginning of the 1970s [8], the number has presently passed the 1.8 billion mark in

2009 and steadily increasing Fig. 1.1. The exponential growth is more remarkable con-

sidering the growth of other aspects such as Internet Domains, Internet Networks etc. as

can be seen in [1].

FIGURE 1.1: The growth of Internet, a snapshot[1]

Handley [9] argues as to ‘why Internet only just works’ with a perspective on the current

and medium term challenges faced by the Internet and puts forth a view that a state

of struggle has been historically the natural state of the Internet which will continue

to be so in the future as well. While the strain between the emerging requirements

and the existing architecture is expected, there are shortcomings in the current Internet

architecture that do not facilitate a positive outcome to the ongoing struggle.

Traditionally, the Internet has been associated with access via fixed nodes. Past decade

witnessed the Internet expanding with mobile devices and special characteristic nodes

Chapter 1. Introduction 3

like sensors and vehicles. A perspective of this change can be seen in Fig. 1.2 which

indicates the growth pattern in the global ICT domain. The significantly growing trend

in the global ICT market place is Mobile device subscriptions and Mobile broadband

subscriptions (Fig. 1.3). Putting these trends in perspective of the fact that in 2009, 90%

of the world’s population now reside in areas covered by mobile cellular signal (Fig. 1.7)

indicates that the usage of the Internet is departing from its fixed access roots towards

more dynamic mobile access realm.

FIGURE 1.2: Global ICT developments (1998-2009)[1]

Chapter 1. Introduction 4

FIGURE 1.3: Mobile telephone subscribers per 100 inhabitants (2000-2009)[1]

1.1 Motivation and Background

Although far from being efficient and ideal, the design principles of the original Internet

are still followed today. The success of the Internet has by itself shackled the possibil-

ity of any dramatic change or a completely new architecture from being implemented

to accommodate the requirements that were not envisioned in initial design stage. The

massive installed base of routers, clients and other network equipment supporting to-

day’s network infrastructure make sure that any significant changes to the architecture

of the Internet protocol (IP) based network will be overlooked, if not ignored. The fi-

nancial aspects of migration will play a significant, probably the most important part

in migrating to any other replacement proposed from today’s architecture. Most of the

businesses, governments and academic institutions have invested significant amount of

capital into existing network and communication infrastructure, and might resist revolu-

tionary changes which necessitates them to duplicate their investment for similar but a

Chapter 1. Introduction 5

little more efficient functionality.

The current usage of the Internet is at odds with most of the design principles initially

conceived. One example can be perceived in Fig. 1.4 where end to end principle is vi-

olated by middle boxes, NATs, etc. to improve security or accelerate applications using

caches [10]. We can also find that fairness is restricted via traffic shaping, packet in-

spection; best effort is breached with overlays; stateless network concept is infringed by

intelligent middle boxes, stateful proxies, label based router, etc [11]. These departures,

from the network as a purely transparent carrier of packets, do not follow any new ap-

proaches, but are add-ons or overlays piggy-backing on the same old design [10]. These

have made the network unnecessarily complex and heavily patched.

(a) End to end Connectivity.

(b) End to end nodes are not visible in the network.

FIGURE 1.4: How Middle-boxes violate end to end principle.

Chapter 1. Introduction 6

The vastness and distributed control nature of Internet makes it difficult to implement

distributed applications with realtime guarantees such as latency, bandwidth and secu-

rity. Some of the urgent problems like address exhaustion, a uniform mobility model,

better compatibility to emerging technologies via header extensions and better security

are squeezed into the IPv6; which still addresses only a part of problem, not the network

architecture limitations as a whole. There is still a lack of common trust, privacy and

security approach, besides inconsistent error handling across communication layers.

1.1.1 Cross Layering: Breaking Layers Intentionally

Ad-hoc networks and sensor networks with millions of nodes pose a massive threat to the

traditional internet architecture at various levels [12]. This is not limited to IP address

exhaustion, non-routable nodes, limited scope for legacy routing protocols and extreme

mobility. The IETF MANET Working Group considers MANETs as an evolution of the

Internet, forcing its layered architecture adoption for MANETs. But, as indicated by

Godsmith and Wicker [13], a strict layered design is not flexible enough to cope with the

dynamic nature of ad hoc networks preventing performance optimizations. Each layer

in the protocol stack is designed and operated independently with interfaces between

them static and independent of individual network constraints and applications. Security

and energy management cannot efficiently be accomplished using the traditional layered

architecture as indicated in Fig. 1.5 [2]. The practical approach varies between the ex-

tremes of strict layering for compatibility and fully cross-layer design. In such a cross

layer design for example, the link layer can adapt rate, power and coding to meet the

application requirements given the current channel and network conditions [13]. 1.
1Detailed arguments for this approach is discussed in [13]

Chapter 1. Introduction 7

FIGURE 1.5: Cross-layering in MANETS [2]

1.1.2 The Matter of Security

We can find an instance of this complexity in the current Internet security architecture.

Security was not as important a concern as openness and fairness during the birth of the

ARPAnet. The fact that the network placed no restrictions on connectivity meant that

innovative applications could be deployed without obstacles, which essentially lead to

the growth of the Internet to the magnitude we witness today. However, the very same

design tenet has now made protecting the network from malicious hosts very difficult.

Chapter 1. Introduction 8

For example, while rudimentary security measures solve most of the problems (e.g., se-

curity holes in an applications can be patched and end-to-end security protocols can be

deployed, or security overlays for specific protocols), the openness has made it difficult

to defend against Denial of Service (DoS) attacks. The security vulnerabilities in the

current architecture has been exploited to many nefarious as well as commercial pur-

poses, from cyber warfare [14] to commercial espionage [15] to small scale Denial of

Service(DDoS) attacks against individual websites.

As an illustration, Fig. 1.6 (adapted from [3]) indicate the complicated and patched se-

curity architecture of the current Internet. The lack of a harmonized security strategy

and multiple approaches manifest themselves as cross layering and conflicting overlays.

FIGURE 1.6: Internet security controls and countermeasure [3]

Chapter 1. Introduction 9

1.1.3 Traffic Shaping and QoS

Internet has also affected business models and market places. The basic architectural dif-

ference between IP based networks and traditional telecommunication is that data trans-

port is separated from application services. The Internet architecture maximizes innova-

tion in applications and application services. Consequently, network service providers

look for innovative ways to profit from the converging or changing market places, by

introducing technologies like Deep Packet Inspection (DPI) [16] and content based net-

working. For traffic shaping and Quality of Service (QoS), routers in the core networks

may analyze IEEE 802 frame info, IP header info (TOS bits, port number), TCP header

info (receive window) or even the application data stream. This in essence violates the

principle of ‘end to end’ design and fairness of the internet that the network is passive,

not to mention the obvious security/privacy implications. Privacy protocols may be used

to obscure these fields leading to conflicts and absence of guaranteed or preferential ser-

vices. Large operators, for example, can negotiate their own peering agreements and

disconnect from Internet exchange points, thereby being less bound by ‘fairness’ rules

required to use these exchange points.

1.1.4 Mobility

Mobility as a single critical factor warranting a design review will be inspected in later

sections. A brief description of the mobility problem also supports the need for a change

in single dimensional layered paradigm. IP decides the next-hop by determining the

network information from the destination IP address of the packet (Routing). On the

other hand, higher level layers like TCP maintain information about connections that

are indexed by a quadruplet containing the IP addresses of both the endpoints and the

port numbers. Thus, while trying to support mobility on the Internet under the existing

protocol suite, we face with two mutually conflicting requirements:

Chapter 1. Introduction 10

A mobile node has to change its IP address whenever it changes its point of attach-

ment, so that packets destined to the node are routed correctly. To maintain existing

TCP connections, the mobile node has to keep its IP address the same. Changing the

IP address will cause the connection to be disrupted and lost as illustrated in Fig. 1.8.

Although HTTP redirect and dynamic DNS are used to mitigate this problem, they are

insufficient. For instance, if the data changes administrative domains, these solutions

no longer works unless the operator of the previous domain provides perpetual support.

This challenge cannot be directly solved in today’s internet without using multiple ad-

dresses or revamping the naming and addressing system.

FIGURE 1.7: Cellular coverage (2003-2009)[1]

Addressing the mobility challenge has been the core issue at many research projects. The

solutions proposed or work around suggested often tend to work within the limitations

of a particular layer belonging to the one dimensional TCP/IP model. The argument

on ‘which layer does mobility belong?’ has even been studied with varying outcomes

[17, 18]. We believe that mobility, like security, is not a layer feature but an aspect that

characterizes an architecture. This means that it cannot be implemented efficiently by

Chapter 1. Introduction 11

(a) Mobile Device 1 changes location.

(b) Mobile Device 1 renews address making it unreachable.

FIGURE 1.8: How mobility breaks naming and addressing.

tweaking a single layer or even layers, since the interface among the layers being still

static will beat the purpose of cross layer cooperation anyways.

Chapter 1. Introduction 12

1.1.5 Cloud Computing and Scalability

Over the past few years, the term Cloud computing is coined to present both a model and

new opportunities for technology buyers in an enterprise [19, 20]. The essential charac-

teristics of cloud computing include both the delivery model and the commercial model.

In terms of the delivery model, it should be available as a service over the Network (most

commonly, the Internet) and accessible either from a Web browser or as a Web service.

Commercially, users pay for service usage; both the overall maintenance effort and user

costs are low. The attractiveness of Services available in the network lies with the oppor-

tunity for enterprises and businesses to focus on the core capabilities while outsourcing

certain aspects of required IT Services at marginal cost. The support hassles are trans-

ferred to the cloud-service provider, while accelerating provisioning and deployment.

The Cloud Computing paradigm, while hyped to an extend [21], has the capability to

alter the way in which organizations build their infrastructure and applications.

Various standards and technologies such as server virtualization, Web Security, and Web

Services come together in implementing Cloud Computing. Cloud Computing models

could offer, among other, Infrastructure as a Service (IaaS), Platform as a Service (PaaS)

or Software as a Service (SaaS) [22, 23]. Cloud Computing adoption exports secu-

rity, performance, availability and reliability concerns from enterprises to Cloud Service

Providers, who have to address these issues through appropriate architectural measures

and service-level agreements (SLAs) to gain user confidence in the Cloud.

There are certain requirements that need to be in place before Cloud Computing becomes

the norm. One is the clear definitions of domain boundaries. Interconnecting services

across domain boundaries means the need for procedures to establish and monitor ser-

vice relations across boundaries. With multiple Cloud Service Providers available to

choose from, robust service discovery and negotiation facilities (preferably automated)

need to be in place. There is also the need for standardized commonly adopted negotia-

tion and meta-negotiation languages [24, 25].

Chapter 1. Introduction 13

1.1.6 New Paradigms

The Internet evolution has been characterized by ingenuity on the part of software and

application designers to circumvent the architectural limitations, and has brought into

play varying players into the sphere of influence [7]. The resulting tussle influences not

only the direction of the future evolution of the Internet, but also the nature of the next

generation architecture from the notions on design along tussle boundaries, leave space

for tussle to play out, etc. However, it is worth inspecting the origin of some of the new

requirements, as it can help us classify common trends into parameters or independent

modules in a future architecture. In Fig. 1.9, we show some of the new requirements and

possible motivations for architectural changes.

Technologies emerge independent of the Internet, which in due course requires inter-

acting with the network for various reasons. We find powerful mobile communications

devices, sensors, medical implants, vehicles and a host of other network capable appli-

ances emerging. Besides, new networking models like ad-hoc networks, vehicular and

sensor networks present challenges which are not efficiently handled by the current ar-

chitecture [26, 27]. The number of connected nodes in the Internet has gone from a few

in the early eighties to millions (currently), with a strong possibility to be trillions [28]

with the inclusion of ad-hoc nodes, cheap sensors and networked vehicles in the future.

A change in the programming domain reflects the change in the nature of applications

being implemented on the Internet. As programming frameworks migrated from func-

tional to object oriented, Internet evolved from a single application network to become

distributed and service-oriented. User demands like interactive resources, user generated

content, content sharing, local access of distributed content, anywhere/anytime access of

own data, etc. requires the underlying architecture to support a set of basic capabilities,

which are inefficiently implemented into the legacy Internet [29]. The demands can also

include demands based on behalf of the users by other entities such as governments,

corporations and content owners. For example, the open and end-to-end nature of the

Chapter 1. Introduction 14

FIGURE 1.9: A summary of Internet evolution

Internet is broken by middle boxes to accommodate for address exhaustion, security etc

[10]. This necessitates architectural changes incorporating such additions [30].

These are not independent driving forces. These factors tend to influence each other to

a stage where the underlying architecture can no longer efficiently support the newly

construed paradigms. This will be the case with any new tightly designed architecture.

The boundaries of such architectures will be tested. One of the more accommodating

architectures would be the ones which account for this growth (‘design for tussle’, for

Chapter 1. Introduction 15

example [7]), or a system modular enough to keep pace with the innovations around it.

The idea of service oriented architecture and service composition, manifested in different

proposals as network composition (e.g. Ambient Networks) must be considered in this

context.

1.1.7 Adaptability, Migration and Evolution

Once it is clear that critical problems exist with the current architecture and a new

thought process is required from an architectural perspective, there are two common

methods of approach that can be utilized. One is the ‘Incremental Approach’ to try fix-

ing some immediate and pressing problems. The other approach is to have a ‘Clean Slate

Thinking’ to fix all the problems that can be identified as being inherent in the current

architecture. A study of the current state of the art will reveal that both approaches are

being explored by various entities globally, substantiating the necessity and urgency of

such a transition [30–32].

An inspection of the life cycle of similar attempts can provide critical input into the ac-

commodating nature or the resilience of current implementations and business models.

Architectural changes to the core of the Internet (E.g. IPv6) and add-on/overlay services

(E.g.: MIPv4, MIPv6, IMS etc.) have met with varying levels of success. There are a

host of new architecturally superior implementations and changes dismissed a priori by

the marketplace, due to reasons such as ossification of the TCP/IP model and financial

aspects of bringing about a dramatic change in the currently installed infrastructure base.

It is easier for researchers to consider a clean slate approach of a new architecture, proto-

cols and service. However, such an approach is generally unacceptable due the changes

required to already existing infrastructure and devices. This approach, while ideal from

a research standpoint is difficult to implement in the current scenario.

Chapter 1. Introduction 16

The incremental approach to addressing the current limitations is attractive to service

providers and network operators in terms of cost and availability. This approach, how-

ever, produces inefficient and often complicated solutions. An ideal solution to this co-

nundrum will be to suggest modular incremental changes to current architecture aimed

at addressing immediate problems, which functions as a milestone or part of the transi-

tion towards a completely reconsidered and modular network architecture. The idea of

overlay networks (for example, Peer-to-peer overlay networks [33]) is quite relevant in

this context, where a new technology can be implemented at ‘present time’ over existing

architecture, so as to bring in the new functionality without a radical change to the un-

derlying architecture. This functionality, at a later time can be accommodated as a part

of the architecture itself, if designed to relevant open standards.

The above mentioned approach is not only true for functionality overlays like IMS, but

completely reworked architecture as well. Consider the migration towards IPv6 from

IPv4 in this context. The newer Internet layer (IPv6) can coexist with the current one

(IPv4) via gateways connecting islands of IPv6 routers to the IPv4 world, software en-

capsulation like the 6to4 transition mechanism [11] or tunnelling etc. [34]. In the future,

when most of the nodes (routers, specifically in this case) support IPv6 in the future, the

IPv6 ‘islands’ automatically become the ‘main network’, with IPv4 becoming ‘legacy

islands’ interfaced via ‘legacy’ gateways. This approach however requires a large scale

consensus and collaboration from major players in the research community and industry.

1.1.8 Other Challenges

The lack of a common trust, privacy and security approach is just some of the shortcom-

ings of the current Internet architecture. The Ambient Networks project, a European

sixth frame work project identifies some of the requirements to be addressed for their

next generation communication architecture [35]. Haggle [36] identifies that the root

cause for some of the usability deficiencies with regards to mobile devices today arises

from the synchronous IP-based APIs presented to applications along with the numeric

Chapter 1. Introduction 17

addresses as end-points. Applications implemented in such models rely on networking

infrastructure for end to end communication without taking advantage or being aware

of local or neighboring resources. Besides, any unconventional usage or resources force

users to possess high technical awareness of their connectivity environment. We can list

a few of the challenges or requirements encountered by applications as follows:

• Concept of Location/Neighbourhood awareness, proximity etc.

• End to end service oriented communication.

• Separation of identifier and location in naming and addressing.

• Session continuity & management across domains.

• Common trust, anonymity and federated identity management.

• Parameter/Metric based routing (added value based routing).

• Routing facilities based on application layer needs.

• Multi homing, delegation, indirection.

• Capability signalling across devices, domains.

• Real-time and Distributed real-time application requirements like priority, guaran-

tees etc.

• Scalability for trillions of nodes.

As can be observed from the above list, the issues to be addressed are rather basic and

spread across the existing ‘layers’ of TCP/IP model; i.e., it is difficult to solve the above

shortcomings at a particular ‘layer’ of the current Internet architecture. The stress on

the current architecture is not limited to the new usages of existing technologies, but

also arises from new technologies that are incompatible, but forced into compatibility

for legacy interoperability. For instance, Ad-hoc, vehicular and sensor networks differ

Chapter 1. Introduction 18

dramatically from the relatively static ‘client-gateway-server’ design of the Internet with

the number of nodes stretching into billions and extremely dynamic mobility scenarios.

A migration of applications, services and devices (voice communication, video distribu-

tion) from traditional mode of communication to IP based networks have further compli-

cated the network as well as the business models. Different overlay networks and addons

to the traditional architecture handle the architectural necessities of such requirements,

albeit inefficiently. Thus, Internet’s increasing ubiquity and prominence have made its

flaws all the more apparent and addressing them, urgent. There is a consensus that the

architecture of the internet needs revisiting [37–42].

1.2 Organization of Thesis

The remainder of this thesis is organized as follows. The state of the art in current

approaches that are being investigated to overcome the shortcomings in the existing

Internet architecture is covered in chapter 2. In chapter 3, we discuss the various aspects

of Service Oriented design aimed at communication and networking architectures. We

introduce the basics of Services and explore the various Service design principles as

well. The approaches used to combine various Services to form a more useful composite

Services are further discussed together with the challenges faced during the process.

In chapter 4, we propose the principles supporting our architecture and formalize the

new Service Oriented network architecture. We also demonstrate two instances of such

an architecture. We discuss the proposed architecture in chapter 5 together with the

benefits of our approach and contrasts them with the shortcoming. We compare our

approach with few of the most relevant competing proposals and finally concludes in

chapter 6, proposing future work to move the study forward.

Chapter 1. Introduction 19

1.3 Summary

The table below summaries the issues discussed in this chapter and sets the goal for this

work.

INTERNET DEFICIT/ISSUE GOAL OF THE THESIS

Broken end-to-end Principle Propose a Service to Service paradigm

Inefficient Layering Propose Service Oriented layer-less

architecture

Fragmented Security Solution Integrate security into the architecture

Lack of uniform Mobility and Session

stability

Handle session dynamics in a flexible

manner

Uncertain Scalability Provide aggregation capabilities to aid

scalability

Cumbersome Evolution / Adaptability Separation of Implementation and Inter-

face

Inefficient Virtualization support Accommodate virtualization features

Difficulty in Integrating Business bor-

ders and policies

Recognize business borders

Inefficient Real-Time support Delayed binding and QoS Awareness

within the architecture

CHAPTER 2

STATE OF THE ART

Before developing a new architecture we study efforts to overcome

shortcomings of the current Internet in the first part of this chapter

following a bottom-up approach. The second part focuses on service

driven architectures that try to change the Internet from a top-down

approach. This thesis has components of both these solutions to

have a realistic chance to contribute to the ongoing discussion on

the direction the Internet evolution.

The original design tenets for the internet such as self describing datagram1, fate shar-

ing2, layered abstraction3 and end-to-end principle4 [43] were relevant for early static

packet based best effort communication paradigm and some of them are relevant still.

But as more and more new requirements come into picture, the old architecture strains to
1Control information should be carried within each datagram including necessary address and identifier infor-

mation necessary to route datagrams between end points
2State information should be used within the entity where it is used
3A hierarchical protocol structure with a clear identification and separation of services provided by each layer,

with networking layer as the unifying layer supporting heterogeneity of higher and lower layers
4The principle limiting the implementation of functionality in a network

20

Chapter 2. State Of The Art 21

FIGURE 2.1: Internet users per 100 inhabitants (1997-2009)

accommodate them. Engineering solutions are proposed to address these new require-

ments and these optimizations essentially break the original design principles. In the

sections below, we discuss some proposed solutions and state of the art for the problems

suggested in section 1.1. This chapter also highlights the effort that networking com-

munity put into engineering solution to circumvent the limitations of the architecture,

leading to a less elegant overall implementation. Subsequential to the initial design,

most crucial redesigns (like DNS, Link state routing protocols, BGP) to the network

were undertaken to mitigate scalability issues [9].

Chapter 2. State Of The Art 22

2.1 Current Efforts to Overcome Internet Network Architec-

ture Shortcomings

While the internet has tried to avoid vertical silo (or smoke stack/chimney model) effect

by abstracting horizontally with layers rather than complete end to end solutions, in

reality, the effect has been more hard-coupled. The proliferation of IP as the de facto

standard for network abstraction has made the generic concept into an IP-Hourglass

model (Fig. 2.2) [44]. This model has worked remarkably well over the past few decades,

but does not perform well when exercised against the new paradigms and applications.

There is an interesting discussion growing around the ‘waistline’ of the internet with

various opinions and concepts emerging on ‘what will or should’ replace or added to

expand the waistline of the current network architecture [32, 44].

With the shortcomings of IP (such as the identifier/locator dichotomy, inability to accom-

modate multihoming) [45], it is only logical to provide an alternate addressing scheme

to take advantage of the innovation in the networking and routing domains over the past

few years. However, ‘what is the best alternative?’ is still an open question. It is this

openness that should be embraced rather than providing a solution which in a few years

will find itself inefficient or even unsuitable for use due to newer unforseen requirements.

The self contained packet and the best effort delivery makes no differentiation of control

and data flow in IP-Datagrams. Control of the data delivery is becoming more rele-

vant as applications require more than just best effort guarantees. Certain protocols like

Session Initiation Protocol (SIP) emerged to incorporate a concept of session and flow

management. The emergence of overlay architectures over IP networks also attempts to

addresses this shortcoming.

In a best effort packet delivery mechanism like IP, the concept of a separate control

channel is diminished (apart from already existing internal and external routing pro-

tocols) [44]. Each packet carried enough information for processing at intermediary

nodes. Following convergence and adoption of IP as the de facto abstraction at the

Chapter 2. State Of The Art 23

FIGURE 2.2: The IP Hourglass illustration

network layer, the concept of the self contained packet became the norm. This simple

and common layer was advantageous for interoperability but is manifesting as a major

challenge for the flexibility for applications running at higher layers. With the new re-

quirements like QoS and security, extra intelligence needed to be built into routers to

examine the contents of each packets to decipher what needed to be done with it for ad-

ditional functionality (as per end user signalling through RSVP, for example). With the

emergence of realtime multimedia as a major part of the traffic on the internet, separate

control protocols had to be developed (SIP, RTP) just to facilitate the delivery of mul-

timedia streams/sessions. With QoS, routing is no longer simple forwarding of packets

but consists of prioritizing, queuing, dropping, tagging/marking and so on. The routing

architecture of the current Internet does not support packet forwarding based on such

rich or descriptive parameters.

These trends segment the Internet as a collection of application level networks (Bit-

Torrent, IMS etc), each overlay addressing a specific application requirement or func-

tionality. Different control protocols implemented in a distributed fashion decide the

Chapter 2. State Of The Art 24

nature of the overlays. As articulated by Aguiar [44], the concept of in-band control sig-

nalling through the packets necessitates the ‘hard’ processing of each packet to provide

additional functionality to the flow. This is hardly efficient when the choices become nu-

merous and the packet count follows suit. A separate control plane or architecture might

be necessary, independent of data flow to facilitate added functionality to the commu-

nication via networks. This will facilitate capability negotiation across different control

domains (like businesses, Autonomous Systems etc) for setting up sessions or tempo-

rary peering agreements separate from data delivery mechanisms. The proposal to have

an additional hourglass model for the control architecture complementing the data hour-

glass model (with IP at the waist) [44] for networking might be one approach to address

this challenge. The idea of separation of concerns (control and data) within the network

architecture brings flexibility at the cost of simplicity.

2.1.1 Cross-Layering in Mobile Ad-hoc Networks

The layered architecture has its limitations. A strict layered design cannot cope with dy-

namic environments like Mobile ad-hoc networks (MANETS) , preventing performance

optimizations [2]. For instance, the mutually independent implementation of multime-

dia streaming and compression algorithms at application layer without considering the

resource management, adaptation strategies, error protection or scheduling available at

the lower (physical, MAC or network) layers leads of inefficient usage of resources. A

couple of work-arounds to this inefficiency have been proposed in Layer Triggering and

Cross-Layer Design [12, 46, 47], specifically where performance related optimizations

are significant like wireless sensor and ad-hoc networks. Since wireless links cerate

problems for protocol design that cannot be handled well within the framework of lay-

ered design, network designers were motivated to violate the layers [46]. This approach

allow applications to adapt based on underlying channel and network characteristics and

vice versa. To enable such interactions, the information in layers is shared across layer

boundaries.

Chapter 2. State Of The Art 25

However, most of the implementations still fall short when it comes to adapting to QoS

requirements, dynamic channel conditions and interoperability across heterogenous net-

works [48]. Kawadia and Kumar [49] cautions against applying too much cross-layering

especially optimize wireless network performance and concludes that such an approach

‘can run at cross purposes with sound and longer term architectural principles, and can

lead to various negative consequences’. This is relevant as an unbridled cross-layer de-

sign can produce ‘spaghetti-like’ design that is impossible to maintain efficiently. Every

modification must be propagated across all protocols and can produce unintended inter-

actions among protocols, such as adaptation loops, that result in performance degrada-

tion. We conclude that such as approach is not in the interest of a long term evolution of a

solid and stable network. The longevity and proliferation on the Internet was based on its

sound layered architecture, and modifying this design for performance optimizations via

violating the design principle is unsustainable. While the above cases are made mostly

for the Network layer and below in the OSI architecture, the cross-layer approach is af-

fects higher layers. For example, Common transport protocols (like TCP and SCTP) also

includes network layer state. FTP uses network layer information (IP address) directly

on the FTP control channel.

2.1.2 Naming and Addressing

The issue of separation of naming (identifier) and location locator for routing has been

a recurring theme in network architecture evolution discussions, for example, with in

the Name Space Research Group (NSRG)[50] within the IRTF. Under the current net-

work architecture, the applications are responsible for setting up all bindings required

for communication. This necessitates that the software is written to specific underlying

network architecture, without modularity. The close binding also makes it difficult for

developers to implement applications and solutions that can adapt to new communica-

tion mechanisms. Most of the new suggestions, proposed to overcome such limitations

concentrate on abstracting the applications from the underlying network architecture,

Chapter 2. State Of The Art 26

mostly by adding one more abstraction layer over the existing naming system (using IP

addresses to identify and locate end nodes). These approaches, to an extend, mitigate

the ill effects from current dual usage of IP addresses as end point identifier (name) and

location (address). The reliance of certain applications on the Domain Naming System

(email, web addresses etc.) together with the inability of the DNS to adapt to rapid

updates make it more difficult in dynamic mobile environments.

The newly adopted (albeit slowly) IP version 6 (IPv6) tries to mitigate most glaring prob-

lems related to IPv4 like address exhaustion, ownership allocation, scaling and mobility

(partially). IPv6 provides a substantially larger IP address space that IPv4 and does away

with the requirement for NATs1. But, the basis for IPv6 follows the same arguments as

IPv4 and inherits the latter’s shortcoming due to the requirement for some backward

compatibility.

Host Identity Protocol (HIP) [51] identifies the naming and addressing of entities as

the key challenge in today’s architecture and proposes as a solution to separate them,

decoupling the usage of the address (i.e. the IP address) as the identity of resources or

nodes. The separation is achieved by introducing a new layer between the conventional

TCP/IP stack between the network layer and the transport layer. HIP uses cryptographic

identifiers as the namespace which helps to integrate baseline end-to-end security into

the architecture when used with Diffie-Hellman [52] and appropriate security protocol,

such as Encapsulated Security Payload (ESP) [53]. The layered naming architecture [30]

builds on the concept of HIP to propose four layered naming abstraction with three levels

of name resolution in between: user level descriptors, service identifiers and endpoint

identifiers and finally IP addresses (or other locators) to name network locations.

Other suggestions such as ‘8+8’ addressing architecture [54] and SHIM6 [55] are more

of engineering solutions instead of or based on IPv6 addressing schemes. Ambient Net-

works Project (AN) [56], part of the European Union’s Sixth Framework Program [57]
1This feature makes NAT transversal for applications unnecessary and better support for peer-to-peer applica-

tions

Chapter 2. State Of The Art 27

proposes to use naming architecture which adopts a layered naming model, with sep-

aration concepts borrowed from layered naming architecture and HIP [30, 51]. Inten-

tional Naming System (INS) [58] proposes a simple language based on attributes and

values to be used as names. Applications use the language to describe what they are

looking for (intent), not location (or hostnames), and INS incorporates resolvers which

self-configure to form an application-level overlay network to discover and bind to end

nodes.

To accommodate heterogeneity across networks, the Web-services Addressing work

group proposes the WS-Addressing as transport-neutral mechanisms to address Web-

Services and messages [59]. This specification enables messaging systems to sup-

port message transmission through networks that include intermediate processing nodes

such as enpoint managers, firewalls, gateways etc in a transport neutral manner. WS-

Addressing defines two interoperable constructs that convey information typically pro-

vided by transport protocols and messaging systems. These constructs, endpoint ref-

erences and message information headers, normalize this underlying information into

a uniform format that can be processed independently of transport or application. The

endpoint references (built on URI) convey the information needed to identify/reference

a Web service endpoint1 and also to provide addresses for individual messages sent to

and from Web services. Message Information headers convey end-to-end message char-

acteristics including addressing for source and destination endpoints as well as message

identity.

2.1.3 Security

Security in networks has been a much studied realm within ICT research with shifting fo-

cus from information assurance to network infrastructure security [60]. But as discussed

before, security by itself was not a significant design tenet for the Internet architecture.

Under IPv4, it is the responsibility of the email client at the end nodes to provide those
1A Web service endpoint refers to an entity, processor, or resource where Web service messages can be targeted.

Chapter 2. State Of The Art 28

services. Today, the Internet faces threats such as Denial of Service attacks, malicious

code distribution, man-in-the-middle (MIM) attacks, fragmentation attacks and recon-

naissance attacks [14, 15].

Introducing middle-boxes like Network Address Translation (NAT) and Network Ad-

dress Port Translation (NAPT) provided some level of protection against some of the

threats mentioned above using methods such as firewalls. The introduction of the IPSec

protocol, allowed some communication to be encrypted but its implementation in IPv4

is optional and the whole responsibility of ensuring secure communication still lies with

the end nodes. Such security measures are too little and too fragmented to provide com-

prehensive security, especially to new applications like mobile e-commerce and portals

which demand end-to-end security.

In IPv6 [61], IPSec as a mandatory major protocol requirement ensures better security

than IPv4. Besides, IPv6 also mandates cryptographic extensions. IPSec contains a set of

cryptographic protocols for ensuring secure data communication and key exchange. The

main protocols used within IPv6 include Authentication Header (AH) protocol, which

enables authentication and integrity of data, Encapsulating Security Payload (ESP) pro-

tocol [53], which enables both authentication and integrity of data as well as privacy

of data and Internet Key Exchange (IKE) protocol [62]. The latter protocol suite helps

the initial set up and negotiation of security parameters between two end points, and

subsequent communication security over the lifetime of the session. These end-to-end

security mechanisms within IPv6 provide authentication and encryption abilities to all

applications thereby eliminating the need for applications to have integrated support for

such abilities themselves.

2.1.4 Mobility

Many engineering solutions have been proposed to accommodate a mobility paradigm

within the Internet architecture designed for static nodes. The pace at which mobile

Chapter 2. State Of The Art 29

devices with Internet access on the move is growing at an exponential rate (Fig. 2.1).

Since IP is the most widespread unifying layer, IP mobility has been the most researched

in terms of solutions for device mobility. However, due to the limitations with the IP

network architecture and routing architecture it is difficult to attain true mobility using

a IP single address. Mobile IPv4 [63] is one of the proposed solutions for mobility

support in IPv4 networks. Each mobile node is assigned a home address (the address

of a home agent). When a mobile node is not at home, it conveys information about

its present location, also called, care-of-address to the home agent. If a node wants

to communicate with this mobile mode, it will first send the information packets to

the home address, which in turn forwards these packets to the care-of-address of the

mobile node. However, this solution is not optimal as it maps the telecom solution for

subscriber mobility into the packet based networks without the support of a separate

control channel. Besides, using the IPv4 address for transport layer sessions (home

address) and using a different IP address for routing packets to the end node is not a

uniform solution. Other shortcomings of this solution include the requirement for a

special router in the location of the mobile node for the node to be mobile, lack of

mandatory route optimization and ingress filtering problem 1.

Mobile IPv6 (MIPv6) [64] indicates the mobility solution corresponding to IPv6, where

mobility support is mandatory. Route optimization is also a mandatory feature for

MIPv6. The need foe a special router at the visiting network is avoided using features

like Neighbor Discovery and Address Auto-configuration. Ingress-filtering problem in

MIPv6 is avoided through the use of care-of address as the source address. IPv6 also

has a large address space ensuring that each mobile device can have its own unique IPv6

address.

Ratola [18] the mobility solutions existing at different network layers - MIPv6 at layer

3, HIP at layer ‘3.5’ and SCTP at layer 4. He admits that there is no straight forward

solution to the choice of a layer for mobility. Each traditional layer is either overloaded
1The correspondent node uses the home address as the source address of the packet and there may be confusion

on which IP addresses it should be allowed to accept or not

Chapter 2. State Of The Art 30

FIGURE 2.3: Mobile telephone subscribers per 100 inhabitants (1997-2009)[1]

with functionality or lacks flexibility to to implement a comprehensive mobility solution

within the layer boundaries. The HIP mobility solution seems to the better among the

compared ones, but the ultimate conclusion, as expected, is ‘to rethink and renovate the

whole architecture’ as some modification is anyway necessary for implementing HIP

based mobility solutions.

The current need for engineering solutions and optimization in mobility protocols is in-

dicative of the architectural limitations with in the current approach. Other proposals for

architectural modifications includes new tussle aware design principles such as infor-

mation exposure, separation of policy and mechanism, fuzzy end principle and resource

pooling [65]. Several solutions [66–68] have been proposed to accommodate mobility

and Multihoming for alternative proposal using HIP.

Chapter 2. State Of The Art 31

2.1.5 Scalability

Scalability has always been an issue with the Internet architecture. In fact, most of

the changes to the core of the network (DNS, CIDR, BGP) and the current ongoing

changes being applied (migration to IPv6) can be partially attributed to scalability con-

cerns. With the rapid growth of routing tables, Classless Inter-Domain Routing (CIDR)

replaced prior classful network design, which was not scalable [69]. While the new

forwarding mechanism based on CIDR (Longest Prefix Match) increased efficiency and

imposed a hierarchy within addresses, the scalability concerns were renewed in the light

of further developments. One such scalability issue was multihoming, which under the

current architecture can cripple aggregation. Without the concept of route aggregation,

the routing table size inflates.

If a single node has non-contiguous prefixes or multiple geographic locations exist

within the same prefix there exists no opportunity for aggregation. Thus, single pre-

fix spread across multiple locations or contiguous prefixes across multiple locations or

discontiguous prefixes in the same location causes inflation of routing table size and

increased routing table churn.

With IPv6, some of these problems are mitigated to an extend with deeper hierarchy

and policies for network architecture flexibility, support for route aggregation, easier

renumbering and multihoming. Out of the 128-bit address space, top 48-bits are assigned

as global routing prefix, subsequent 16-bit identifies the subnet (enabling aggregation

within an AS) and the last 64-bit represents the interface ID (48-bit Ethernet + 16 more

bits). This approach still does not address all scalability concerns. Other proposal to

support multihoming has been proposed. SHIM6 [55] is a layer 3 shim for providing

locator agility below the transport protocols, so that multi-homing can be provided for

IPv6 with fail-over and load-sharing properties.

Another proposal is to use various proposed namespaces simultaneously between do-

mains which uses or shares different naming/addressing formats [70], but this approach

Chapter 2. State Of The Art 32

requires further translations. This is necessary if the domains that communicate do not

share a common name-space. Gateways (identical to NATs) between domains or even

Specialized Services within domains can translate the identifiers used at a particular con-

text. If flat name spaces are used, then routing becomes challenging, since the routing

information of nodes with flat names is inherently difficult to aggregate.

The Ambient Networks project proposes two alternatives to approach this challenge.

In the first main alternative, the top level structure of the global network consists of

arbitrarily connected network domains, much like the InternetŠs Autonomous System

(AS) structure. The difference is that the network domains can use different internal

addressing schemes. The top-level routing problem is thus similar to the one that BGP

solves in the Internet, but with the difference that address prefixes are not used, just the

equivalence of AS numbers and paths. Finally, the name resolution system needs to

consult top-level routing information to be able to resolve names into addresses.

Flat naming has been proposed by other projects as well like HIP [32], but scalability

and efficient with such approaches is still far from ideal. One study which looks into

routing over flat labels [71] reaches similar conclusion.

2.1.6 Realtime

Real time communication in a packet based based network using self-contained packets

in the absence of a separate control channel is hard to achieve. The Internet architecture

is also built around the concept of best effort delivery, with transport layer protocols

assuring end to end delivery using resending, without much QoS support. In IPv4, QoS

is achieved using the ‘Type of Service’ field or the ‘Differentiated Services Code Point’

field in the packet header. This approach classifies the packet into what kind of service

is expected by the packet, while being delivered through routers across the network.

The header information is used by devices in the network, to assign resources based on

Chapter 2. State Of The Art 33

their configurations. However, this also means that not all QoS-compliant devices are

compatible with one another.

In IPv6, provisioning for QoS is improved with header containing a new field, called

Flow Label field that defines how particular packets are identified and handled by the

routers. The ‘Flow Label’ field identifies packets that belong to a particular flow1 and

allows a router to handle them efficiently. This label ensures more efficient delivery of

information from one end to another without the need for extra processing in interme-

diate nodes, which is helpful for peer-to-peer applications like VoIP and other real-time

applications. If the architecture is viewed as a Distributed Real-time Embedded (DRE)

middleware, QoS control has been proposed [72].

The emergence of broadband wireless mobile cellular and ad-hoc networks, together

with increased computational power has provided the impetus for a new breed of real-

time multimedia applications such as video conferences, Voice over IP (VoIP) and other

multimedia streaming services to become prevalent forcing network infrastructure providers

to accommodate these new paradigms. The QoS guarantees for such applications cannot

be provided just by over-provisioning bandwidth alone (as was the approach till the us-

age caught up with and exceeded the bandwidth capabilities of the network providers).

Network providers have continued to experiment with various options including prefer-

ential treatment based on pricing (tiered pricing and service), bandwidth limiting, traffic

shaping. Since, QoS is an end to end characteristic for a flow (a generic term used to

identify traffic streams in a network), it is impossible to provision a reliable QoS with-

out providing it through out the length of the path, which might cross administrative

boundaries. For such a QoS framework, there are various components which needs to

be addressed such as flow specification, routing, resource reservation, routing and ad-

mission control. There are various protocols proposed to address these components, like

Resource reservation protocol (RSVP) specifically covering resource reservation com-

ponent [73]. RSVP is a receiver based resource reservation signalling protocol designed
1The connection session that start from a particular host and head to a particular destination

Chapter 2. State Of The Art 34

specifically to work over IP [74]. Applications can use RSVP to communicate their

requirements to the network in an robust and efficient way.

2.1.7 Layerless Architecture

With the restrictions of Layered architectures in perspective, alternative proposals are

being increasingly discussed within the networking community [75, 76]. The nested

levels of abstraction called protocol layers is not a sufficiently flexible abstraction for

network software modularity and alternatives have been proposed, such as Role-Based

Architecture [38] and Haggle [36].

Haggle approaches these challenges using the concept of Pocket Switched Networks

(PSN)[77, 78], while Ambient Networks [35] adopts a more complex merging of net-

work domains (meeting of network domain). The Haggle network architecture is aimed

at providing seamless network connectivity and application functionality in mobile en-

vironments by separating application logic from underlying network architecture. It is

constructed around the concept of PSN to take advantage of both infrastructure based

and Ad Hoc (peer to peer) communications opportunistically. To insulate the applica-

tions from changes in the underlying architecture, Haggle uses late binding to map the

application parameters to underlying network architecture. Haggle suggest a new set of

mobile networking principles such as forwarding using application layer information,

asynchronous operation to accommodate opportunistic or intermittent connectivity, in-

telligent and involved middle nodes etc to accommodate the new architecture.

Data-Oriented Network Architecture (DONA) [79], borrowing heavily from other ex-

ercises like TRIAD, SFS and HIP, suggests a clean-slate redesign of Internet naming

and name resolution, to address specific features such as persistence, availability, and

authentication for service access or data retrieval. DONA justifies this proposal pointing

out the existing discordance between historical design (host-oriented) and current usage

(data-oriented). However, the clean slate approach is mostly limited to the how Internet

Chapter 2. State Of The Art 35

names are structured and resolved. As with HIP, DONA replaces DNS names with flat,

self-certifying names, and replacing DNS name resolution with a name-based anycast

primitive that lives above the IP layer. DONA proposes that names handle persistence

and authenticity, while name resolution handles availability. There are other attempts

to approach the problem from enterprise perspective through Application Oriented Net-

work Architecture (AON) [80], borrowing ideas from NGN architecture [81].

2.2 New Service Driven Architectures

The terms ‘Middleware’ and ‘Distributed Systems’ have been liberally used in various

contexts [82]. Some authors use the former two as at least partial synonyms. Others

point out clear distinctions between the two ideas. For Dollimore et al [83], middleware

is ‘a software layer that provides a programming abstraction as well as masking the het-

erogeneity of the underlying networks, hardware, operating systems and programming

language’. Examples offered include CORBA [84] and JavaRMI [85]. Weerawarana

[86] describes CORBA along with J2EE and COM as ‘distributed system technologies’.

For these authors middleware includes higher-level frameworks, supporting functions

such as transactions, security, management, and messaging.

Erl [87] broadly includes as middleware software, systems and products that enable

inter-application communication, especially in heterogeneous environments. He specif-

ically considers EAI [88] as one type of middleware, but his definition appears to allow

Web services into this role as well. Most authors agree that middleware stands between

the application layer and the network layer. Less settled questions on middleware center

mostly on how much functionality resides there versus at higher application layers such

as those involving Web services.

The traditional distributed systems have some shortcoming like being tightly coupled

object systems, centered around object technology. A Service within such systems is

implemented as a methods of a class implemented by the object. Another shortcoming

Chapter 2. State Of The Art 36

is the lack of interoperability. Different distributed systems are incompatible (CORBA,

J2EE, COM, etc), with even the underlying framework being incompatible (transactions,

security, management, messaging etc).

One method to improve inter-operability within Distributed Systems is to implement

a standard based interface and a common messaging platform to communicate among

them. Lack of interoperability among vertical silos or chimney design create indepen-

dent islands of implementations with new requirement to integrate these islands (EAI -

enterprise application integrations). We observe a similar situation in the network world

with proposed future network architectures. EAI uses message oriented middleware to

bridge different domains which will be a good principle to apply to network architec-

tures.

Based on the central concept around which the architecture evolves and logical organi-

zation of software components, they can be classified into:

Layered Uses layers to simplify the architecture of a complex system. Examples in-

clude OSI and TCP/IP architectures. In a strictly layered architecture, requests

flow down the layers while replies flow up the hierarchy.

Object Based Where objects (encapsulation of functionality) for the basis of the archi-

tecture with uniform procedure interfaces. [89]

Data Centered Where data plays the main role. Examples include DONA [79] and

Haggle.

Event Based Revolves around the occurrence of events [90] such as Publish/Subscribe

systems [91].

Service Oriented Where the main paradigm is the Service. Services are published,

discovered, composed and used depending on the context within the architecture.

Chapter 2. State Of The Art 37

2.2.1 Service Oriented Architecture (SOA)

SOA represents an abstract architectural concept of building software systems that are

based on loosely coupled components (Services) that have been described in a uniform

way and can be discovered and composed [86]. Loose coupling precludes any knowl-

edge or assumptions regarding the specific platform, implementation, formats or proto-

cols. The services that form the part of an SOA should be dynamically composable by

any entity interested in availing it. The core elements that comprise an SOA is illustrated

in Fig. 2.4(a).

The figure represents the basic building blocks in an SOA approach. The concept re-

volves around Services, which can be user by an entity called Service User. The Ser-

vices are made available by the Service Provider and is published in a Service Registry

to be discovered by potential Service Users. A service registry organizes information

about Services and provide facilities to publish and discover services. Services can be

reused by various Users and the service registry facilitates reuse. It refers to a place in

which service providers can impart information about their offered services and potential

clients can search for services.

The SOA architecture can further extended with a Service Bus (SB) (Fig. 2.4(b)) to make

the discovery and binding process more transparent to the requesting service by visualiz-

ing the candidate services from the requestor’s perspective. The Service Bus virtualizes

the candidate services from the requestor’s perspective. The Service Bus accepts the

service description from the requestor, uses discovery facility to find out relevant can-

didate services, selects one of them, retrieves the necessary binding information, binds

the service accordingly, transforms the input data from the requestor accordingly, send

the request to the message to the service, receives the response which is passed on to

the requestor. The concept of SB is important as it forms a decision making entity or a

middleware on behalf of the requesting service. The SB "accepts the service description

from the requestor, uses discovery facility to find the list of qualifying services, selects

one out of them, retrieves necessary binding information, binds the service accordingly,

Chapter 2. State Of The Art 38

transforms the data from the requestor properly, send the corresponding request mes-

sage to the service, receives the response and passes this response in the proper format

to the requestor" [86].

(a) SOA Triangle.

(b) SOA Triangle enhanced with Service Bus.

FIGURE 2.4: Basic components of SOA architecture

Despite the prevalence and adaptation of SOA in enterprises over the years, the full

potential of SOA (like dynamism, adaptivity) is still not fully exploited [92].

Chapter 2. State Of The Art 39

Future Proofing

The concept of wrapper/interface isolates the service implementation without impacting

the other parts of the system. This is a very desirable property. Allowing this property

to be applied dynamically provides flexibility to configure networks and components

dynamically. This feature requires that there exists a universally agreed standard to

approach to describe (in a machine readable way) the wrappers or interfaces that the

services provide. The Web Services Description Language (WSDL), within the context

of Web-Services provides this capability. While Web-Services are not the only approach

to realize SOA, it is certainly the most accepted and widely a adopted by industry[93].

There are different methods to realize SOA in communication systems. Web-Services

represent one important approach and is the most adopted and widespread within the IT

industry. There are various other Middleware (OMG CORBA, MSDCOM etc.) that can

be used for such abstraction, but Web-Services have marked advantages like being much

more loosely coupled, dynamic and adaptable to change. Besides, it supports and open

way to develop specifications and using technology via a broad consortia, which takes

into account the stakeholder interests1.

Web-Services

We note the best known implementation of SOA in Web Services (WS-*) [94] speci-

fications, standardization and its implementations. While, Web Services specifications

specifically address Enterprise Application Integration (EAI [95]), we need a similar

principle and framework to be applied to future heterogenous communication networks

in order to interconnect business borders and administrative domains.

The world wide consortium (W3C) defines Web-Services as:
1While the specifications are still susceptible to evolution and further standardization, the design supporting

each of the specifications are unlikely to change in fundamental ways

Chapter 2. State Of The Art 40

A Web-Service is a software system designed to support interoperable machine-

to-machine interaction over a network. It has an interface described in

a machine-processable format (specifically WSDL). Other systems interact

with the Web service in a manner prescribed by its description using Simple

Object Access Protocol (SOAP) messages, typically conveyed using HTTP

with an XML serialization in conjunction with other Web-related standards.

Turning to the definition of Web services, [83] describes these simply as ‘a collection of

operations that can be used over the Internet’. Weerawarana [86] tightens this focus to

mean, more precisely ‘a standards-based, XML-centric realization of an SOA’ (Fig. 2.5).

Web services may range anywhere from minimal XML messaging over HTTP [87] to a

comprehensive SOA. All Web services definitions agree that Web services reside at the

application layer and involve some sort of messaging over Internet protocols.

FIGURE 2.5: Web-Services stack

Web-Services provide a uniform way of describing components or services with in a net-

work, locating them and accessing them. Web-Service specifications define formats and

protocols that allow services to interoperate across those vendor platforms that provide

Chapter 2. State Of The Art 41

conforming implementations, either natively or by mapping them onto existing propri-

etary middleware offerings. The standards and specifications that are adopted are being

developed in an open way through community organizations like W3C and OASIS. The

process allows for a consensus based standardization and vetting by commercial inter-

ests before being accepted or approved as a standard. Web services rely on XML for

the basic underlying data model, SOAP for the message processing and data model,

and WS-Addressing for addressing services and identifying messages independent of

transport. Web-Services are inherently transport neutral, which means one can use any

communication protocols, including proprietary ones or the widely used HTTP/HTTPS.

FIGURE 2.6: Web-Services protocols based on XML

A Web-Service can be associated with temporary roles, depending upon its utilization

during runtime. It could act as a service provider when it receives and responds to a

service request. It can in turn act as a service consumer when it need to send requests

to another Web-Service. Or, it could take up both roles during a service composition.

Web-service framework provides a communication framework based on physically de-

coupled contracts allowing each service contract to be fully standardized independent of

its implementations providing a potentially high level of service abstraction.

Chapter 2. State Of The Art 42

Simple Object Access Protocol (SOAP)

Simple Object Access Protocol (SOAP)[96] is a simple and extensible XML based com-

munication protocol that provides a way to exchange structured and typed information

between applications running on different operating systems, with different technologies

and programming languages. It defines and extensible enveloping mechanism contain-

ing three distinct elements: an Envelope a Header and a Body [96]. With SOAP, the

underlying transport might change as the message is routed between nodes, even the

mechanism selected for each hop may vary as required. An important facility is the fea-

ture that the messages can be routed based on the content of the headers and the data

inside the message body. SOAP forms the messaging framework of ROSA, owing to

these attributes. Another specification, WS-Addressing provides an interoperable trans-

port independent way for identifying message senders and receivers associated with a

message exchange. Besides securing end-to-end endpoint identification in messages,

this specification enables messaging systems to support message transmission the net-

works that include middleboxes like endpoint managers, firewalls, gateways etc. Further

details of these specifications are available at [94, 97].

The middleboxes mentioned above can be fitted into the category of SOAP Interme-

diaries. Intermediaries are entities positioned between a client and service provider

that provide additional functionality and value-added services. For example, Interme-

diaries can offer functionality like customization, personalization, caching, filtering,

and transcoding by modifying and enhancing data as it flows between a Web-Service

User and the Provider. Intermediaries intercepting messages, perform their designated

functions and subsequently forward the updated message towards the ultimate receiver.

SOAP messages can be routed through numerous intermediaries on it way to the desti-

nation node.

Intermediaries provides a way to extend the functionality of the Service Provider and

User. They also offer flexibility, since they can be dynamically added and removed. The

Chapter 2. State Of The Art 43

SOAP messages can be routed based on the content of the header as well as the mes-

sage body making enabling highly flexible routing. Web services protocols (in particular

SOAP) provide clean, decentralized, and modular support for intermediaries. Intermedi-

aries themselves can be implemented as SOAP services. Extensibility has always been

one of SOAP’s major design goals, and intermediaries are supported by using the SOAP

extensibility model.

Web Services Description Language (WSDL)

WSDL [98] provides a model and XML format for describing what a Web-Service of-

fers. This standard Service description in WSDL isolates the Service functionality from

the implementation details of the Service. WSDL models Web-Services as a set of end-

points operating on messages containing either document-oriented or procedure-oriented

information [99]. WSDL describes a Web-Service as an abstract and a concrete defini-

tion. The operations and messages are described abstractly, and then bound to a concrete

network protocol and message format to define an endpoint. Related concrete endpoints

are combined into abstract endpoints (Services). WSDL is extensible to allow descrip-

tion of endpoints and their messages regardless of what message formats or network

protocols are used to communicate [99]. The metadata provides the abstract definition

of the information necessary to deploy and interact with a Web-Service.

Universal Description Discovery and Integration (UDDI)

UDDI [100] provides an infrastructure that supports the description, publication, and

discovery of service providers; the services that they offer; and the technical details for

accessing those services. A core aspect of UDDI is how it organizes information about

services and the providers of services. Information entities (UDDI data) are organized

in a data model and stored in a UDDI service registry. Inquiring (search and lookup

entries) and publication (publish, delete, and update registryŰrelated information) are

Chapter 2. State Of The Art 44

core APIs. There are three common implementations of UDDI based on accessability:

Public, Intra-enterprise (within a domain) and inter-enterprise (among domains).

The Service registry is enhanced with Service categorization to distinguish services and

classify them according to one or more categories. Services whose description includes

similar or related concepts, but different syntax, can cause confusion during the discov-

ery phase by Service users. The semantic research community has proposed alterna-

tives to enrich service descriptions semantically and enhance classification schemas in

services registries. Basic taxonomies can be enriched or replaced by ontologies. On-

tologies structure concepts within a domain and define their meaning. Axioms constrain

possible interpretations of concepts and reasoning mechanisms that support inferences

from existing data. However, several issues still must be addressed, such as reducing the

computational cost of reasoning, maintaining the ontologies, and refining search results

to improve effectiveness [101].

Web-Service Extensions (WS-*)

Apart from the above mentioned specifications, the Service descriptions are enhanced

by various extensions. For example, policies can indicate the constraints, permissions

and other requirements associated with a specified Service. A Policy service can use the

WS-Policy [102], an extensible framework for Web-Services constraints and conditions

allowing for a clear and and uniform expression of of the available options.

Another WS specification, WS-MetaDataExchange extension supports the dynamic ex-

change of relevant metadata for service interaction directly between interacting Web-

Service endpoints without the need for third-party registries or discovery facilities. The

extension WS-Reliability Messaging enables message reliability checking, as the name

indicates. WS-Addressing [59], through extensible XML elements, provides an interop-

erable, transport independent way to identify message senders and receivers associated

with a message exchange. It decouples the address information from specific trans-

port used by providing a mechanism to place the important address information directly

Chapter 2. State Of The Art 45

within the Web-Service message. This specification enables messaging systems to sup-

port message transmission through networks that include middleboxes like end-point

managers, firewalls, gateways etc over heterogenous transport mechanisms.

WSDL by itself does not support rich expression of QoS associated with a Service.

But, it is possible to express parameters through extensions such as Security (WS-

Security) [103], transactions support (WS-Transactions)[104]1, message reliability (WS-

ReliableMessaging)[105] etc. The Web-Services recommendations and standards facil-

itate applications to utilize various interaction patterns like Asynchronous send/Receive

and Anycast apart from traditional Synchronous request/response model. This support

can be built into the middleware in a uniform way. Besides, the delivery based on SOAP

enables applications to have fine tuned parameters on message delivery that allows

SOAP messages to be reliably delivered between distributed applications in the presence

of software component, system, or network failures (WS-ReliableMessaging). Such ex-

tensions allows applications to make use of delivery options such as AtLeastOnce, At-

MostOnce, ExactlyOnce, InOrder without handling the related messaging themselves.

The process of delivering SOAP messages through a series of nodes (called SOAP In-

termediaries) is called SOAP routing and is defined in the WS-Routing protocol. In

SOAP routing, each intermediary provides value added functionality such as logging,

validation, auditing etc apart from the basic provision of a message delivery channel.

SOAP Routing Protocol (SOAP-RP) is a stateless protocol for the exchange of SOAP

messages supporting various patterns (one-way, request-response, guaranteed-response,

peer-to-peer) independent of the underlying protocols.

Interoperability requires a paradigm, programming language and platform agnostic mes-

saging communication channel/layer/middleware. The internet is an example for such an

abstraction using TCP/IP, DNS, HTTP etc. Web-Services extends this capability using

XML, SOAP, WSDL and UDDI [106].
1WS-Transaction or WS-TX consists of three separate specifications[104]: WS-Coordination, WS-

AtomicTransaction and WS-BusinessActivity

Chapter 2. State Of The Art 46

2.3 Discussion

The goal of middleware technologies discussed in section 2.2 was interoperability. Web-

Services, based on SOA, share this goal, but aim to achieve interoperation in a simpler,

more standards-based manner. But, there are disagreements regarding the positioning of

Web-Services with regards to traditional Object Oriented Middleware. In certain cases

(reliability checking, for example) a certain overlap of functionality may occur when

Web-Services begin to take on roles formerly played by middleware. This overlapping

may occur in functionalities fulfilled by traditional middleware like compression, en-

cryption, management, transactions, and other critical functions of an end-to-end solu-

tion. Web-Services can even provide functionality formerly provided by middleware or

even by lower levels of the network stack.

Stal [107] argues that even though Web-Services deliver on the integration of heteroge-

neous islands of information, they lack certain aspects of Object Oriented Middleware

and hence is not a replacement, but a complement to the latter1. This shortcoming of

Web-Services necessities the role of object-oriented middleware to integrate back-end

solutions in an SOA. Since the strong point of Web-Services over traditional middle-

ware is interoperability, it is vital to avoid incompatibilities within its specifications,

standards and its implementation.

WS-Interoperability (WS-I) has published a WS-I Basic Profile that defines a set of

cross-platform standards to promote and ensure interoperability. During the time of

writing,Web-Services Interoperability Organization is working on the working draft for

Basic profile version 2.0 [108]. 2 Sheth and Miller [110] argues that Web-services has

the potential to have a revolutionary impact since it is incrementally implementable,

has low barriers and costs of entry as well as a standards-based approach. They also
1He notes that despite including the word "Object" in its name, SOAP and other XML Web services languages

lack notions of inheritance, polymorphism, and even of objects themselves.
2Some of the misconceptions regarding Web-Services are clarified by Vogal in ‘Web Services Are Not Dis-

tributed Objects’[109].

Chapter 2. State Of The Art 47

argue, however, that beyond the initial adoption, there exists a need for Semantic Web

technologies for Web services over the long term.

2.4 Summary

After an inspection of the state of the art in emerging communication and networking

paradigms, we conclude that a layer-less network architecture is an ideal option for a

future generation network architecture. In order to mitigate the challenges faced in com-

plexity when the layers are blurred, we would need a abstraction to separate functionality

and provide flexibility in the architecture. Cross-layering fails in this regard as it is im-

possible to propose a cross layer solution which will address all the new requirements

using an uniform approach, without breaking the layered paradigm (thus making the

layers moot) or avoiding extreme complexity. We propose to use a Service Oriented

approach as the unifying solution and Services as the basic abstraction to mitigate com-

plexity. We still need to extend these principles and propose new tenets to accommodate

a new network architecture, but having a proven and widely used paradigms form a re-

liable base to build up on. We will inspect the aspects of Service Oriented approaches

that we adopt in the subsequent chapter.

CHAPTER 3

ASPECTS OF SERVICE ORIENTED

DESIGN FOR AN ARCHITECTURE

FRAMEWORK

In their paper introducing ‘Scenario-Based Analysis’ of Software Architecture, Kazman

et.al [111] discusses the need for Architectural Analysis from a software system point

of view1. This is an evolved version of the Software Architecture Analysis Method

(SAAM) [112] to include structured scenario based analysis. SAAM was a precursor to

the Architecture Tradeoff Analysis Method (ATAM). The architectural analysis forms

the basic study regarding the validity of the requirements and strategy adopted for the

proposed architecture.

The quality of the final system can be seen as the summation of the quality achieved

at the various stages of the system development life-cycle. While it is easy to observe

that the lack of quality at any of the stage can adversely affect the final system quality,

it is difficult to qualitatively measure the positive contribution at any stage. There is
1Specifically, see section Architectural Analysis: Critical Tool and related references

48

Chapter 3. Service Oriented Aspects for an Architecture Framework 49

a consensus, however, that any quality that the system needs at the end, will have to

be provisioned at the design stage. That is to say that, if the quality of the system can

be measured or is dependent on a set of quality attributes, then the architectural phase

plays the major role by provisioning the attributes into the design. A lack of quality

(in quantitative terms) at the architectural stage with regards to accommodating such

attributes cannot be corrected at later stages, but by revisiting the architectural stage

again. More experienced narrations are available in [113].

This discussion is important when we talk about continually evolving systems such as

communication network architectures. For instance, the design constraints or quality

attributes considered during the design of the IP network (around the 60s and 70s) might

be superseded by more attributes and requirements at present. Similarly, future network

architecture requirements might be different and unpredictable at this point in time. This

is evident from the humorous admission by Tim Berners-Lee (one of the major contrib-

utors to the inception of World Wide Web) that "the double slash (’//’ after the ‘http:’ in

Web addresses), though a programming convention at the time, turned out to be unnec-

essary [114]. While this is not a major design flaw, it points to the fact that some of the

conventions we use extensively are no more than rules of thumb or personal preferences

from a few academics from the 1970s. There are significant shortcomings too with the

present network architecture, as we have seen earlier.

The question we need to address is ‘whether it is possible to design an architecture

with appropriate or enough quality attributes at design stage (present) to accommodate

inclusion of future attributes’. This invariably points us to a ‘plug and play’ architecture

for architectural components. To study this possibility, it is important to analyze the

relationship between the quality attributes coined during the requirement stage and how

that translates via architecture design to system quality.

Functionality and quality attributes are orthogonal [113]. This assertion helps us to

examine the relation between quality attributes and functionality of systems. The im-

portant insight we can acquire is that attributes and functionality can evolve independent

Chapter 3. Service Oriented Aspects for an Architecture Framework 50

of each other. This indicates that it is possible, theoretically at least, to design a system

with similar quality attributes, but varying functionality to accommodate various require-

ments. However, orthogonality here does not mean they do not influence each other at

all. Just because an attribute has been provisioned in the design, it will not necessarily

translate into any level of functionality. For example, security as a quality attribute will

not necessarily lead to the end system being highly secure. Conversely, for a system to

be secure it helps significantly if security is considered as a quality attribute and design

stage accommodates for its provision.

3.1 System Architecture Analysis and Evaluation

The architecture development process need to follow some standard Development Life

Cycle (DLC) process for modifiability and to clarify the rationality behind decisions

made 1. There are many existing architecture centric analysis and design methods that

can be utilized for our architecture [115], some of which are listed below:

• Scenarios-Based Analysis of Architecture [111]

• Quality Attribute Workshop (QAW) [116]

• Cost-Benefit Analysis Method (CBAM) [117]

• Active Reviews for Intermediate Designs (ARID) [118]

• Attribute-Driven Design (ADD) Method [113]

• Architecture Tradeoff Analysis Method (ATAM) [119]

Besides being architecture centric, these methods share some common characteristics.

These methods use scenarios to drive the direction and focus of the method’s activities.
1When the life cycle development method specifically targets software architectures, the term used is Software

Development Life Cycle

Chapter 3. Service Oriented Aspects for an Architecture Framework 51

These methods all focus of how certain quality attributes influence the architecture. One

of the most important features is the documentation of the rationale behind the decisions

made which serves as a knowledge base on which current and future decisions are made.

Besides, all these methods elicit multiple views involving various stakeholder resulting

in the architecture.

While the representation might vary, a typical Systems Development Life Cycle (SDLC)

contains the (al least) the following steps Fig. 3.1 [113, 115]:

1. Initiation/Planning

(a) Understanding the business case/need and constraints

(b) Understanding the requirements

2. Architecture Design

(a) Creating/selecting the architecture

(b) Detailed design of the architecture

(c) Analysing, Evaluating and Documenting the architecture

3. Implementation

(a) Implementing the system based on the architecture

4. Testing

(a) Ensuring that the implementation conforms to the architecture

5. Deployment

6. Maintenance

These activities do not imply any particular development process and is generic enough

to be accommodated into any development process such as waterfall, spiral, etc. In re-

ality, systems development is a complex, continuous, iterative, and repetitive process,

Chapter 3. Service Oriented Aspects for an Architecture Framework 52

FIGURE 3.1: The Iterative and Incremental Development (IID) model

specifically in our case. The simpler development models like waterfall model do not

reflect this complexity. Since, the architecture will evolve in the the future to accom-

modate new paradigms, we propose the Iterative and Incremental Development (IID)

approach as a model for the architecture development. Such an approach is essential to

avoid a single-pass sequential, document-driven, gated-step approach [120].

Separating an architecture development process into interim steps to specify partial ar-

chitectures, provides us with milestones and checkpoints where the output can be eval-

uated and the next iterations substantiated. These intermediate steps are Frameworks,

Reference Models, and Designs which can be constructed in a top down approach. A

typical example of this process is where a Framework is used to derive a Reference

Model, which is then used in a particular Design which in turn results in an Artefact,

such as a piece of delivered software Fig. 3.2. There exists no one-to-one relationship

among these, as multiple Reference Models can be derived from a single Framework

and a single Reference Model can be drawn from multiple Frameworks.

The core task of creating a Framework is to define a broad set of Services,i.e, a Frame-

work consists of a set of Services defined at various levels of detail. The process of par-

titioning the required functionality into service boundaries (defining Services) is termed

‘factoring services’[5]. The granularity of the defined Services can vary depending on

Chapter 3. Service Oriented Aspects for an Architecture Framework 53

FIGURE 3.2: Relationship between Models

the attributes and factors considered for its design. As a rule of thumb, more fine-grained

Services provide more flexibility for Reference Models and Designs to group Services

for a specific purpose. As the design considerations and factors influencing the factoring

is likely to change over time, the Factoring of Services themselves is an ongoing pro-

cess. This is a common theme in SOA, since experience informs the choice of Services,

identifies gaps, and indicates that Services require splitting or joining [121]. There is no

current ‘best practice’ for factoring Services within a Framework, but one rule of thumb

is to define Services that are fine-grained in overall scope, yet whose operations are still

capable of encapsulation for efficient remote access.1

1There is no current best practice for factoring Services within a Framework, but one rule of thumb is to define
Services that are fine grained in overall scope and define a single behavior or step within a composable architectural
process[121].

Chapter 3. Service Oriented Aspects for an Architecture Framework 54

3.2 Towards a Service Oriented Approach

Issues with current distributed systems models prevent them from being usable for a next

generation network architecture. Tight coupling and lack of interoperability among var-

ious existing middleware causes islands of incompatible implementations. We develop

our vision from a top down approach, from the point of view of the application devel-

opers. From such a perspective, networking is not just connectivity specified by an end

point tuple (as in Berkeley APIs). A network is a collection of distributed services that

are available to the applications. The application developer should not worry about the

state of the network at application runtime during the application design. This decou-

pling of addressing network end points directly in applications can be achieved through

a uniform approach to exploit the underlying network infrastructure via a generic, rich

and standardized interface. Such an interface provides abstraction of network capabil-

ities to applications and decouples the heterogeneity arising from the below mentioned

factors. Adapting to heterogeneity forms one of the basic characteristics of our approach.

Heterogeneity in various layers of the current architecture arise from various sources in-

cluding:

• Network technologies, devices and Operating Systems

• Middleware solutions and communication paradigms

• Programming models and languages

• Services and interface technologies

• Domains and architectures

• Data and document formats

• Nonfunctional aspects such as information models, security, availability, transac-

tions etc

• Business borders

Chapter 3. Service Oriented Aspects for an Architecture Framework 55

• Communication procedures and security policies

This high level abstraction for a network has various advantages. Such an approach in-

herently accommodates the business boundaries existing in the real world networks such

as commercial boundaries, administrative domains etc and helps traversing across these

a natural part of service negotiation and usage. Usage of resources such as processing

power, storage, bandwidth etc can be considered as services thus can be described via

web services. This can be considered as service oriented middleware.

3.2.1 Network as a Service

We state that the layered paradigm in networking architecture is not the ideal path for

abstraction, as discussed in chapter 1. As with ‘Haggle’, we propose a layer-less archi-

tecture which abstracts the underlying connectivity and network computational resources

to applications via a high level API. Applications should not be burdened with attaching

themselves directly with end points or the connectivity status of various available inter-

faces; it should be automatically taken care of by the underlying architecture. We argue

that network connectivity is a service for any application to use which is the orchestrated

from underlying (possibly orthogonal) capabilities of the node and the environment that

the application presently resides in. This enables us to look at architecture from a service

oriented point to view. This high level abstraction for a network has various advantages.

Such an approach inherently accommodates the business boundaries existing in the real

world networks such as commercial boundaries, administrative domains etc and helps

traversing across these a natural part of service negotiation and usage.

3.2.2 Network Service as a Collection of Services

The next step is to identify the basis with which we compartmentalize the capabilities

into modules, which can be later orchestrated. We take cues from the ‘tussle’ [7] being

Chapter 3. Service Oriented Aspects for an Architecture Framework 56

FIGURE 3.3: The vision of Network as a Service.

played out in the networking world to impose boundaries on the modules. A module

encompasses a well defined service small enough to be a factor in the tussle but large

enough to provide a specific, well defined, usable and non-trivial service. Identifying a

set of modules which provides the services needed to compose a network architecture is

not straight forward considering the fact that as a ‘future’ network architecture, it should

be able to gracefully accommodate a wide spectrum of potential uses and abuses, both

those encountered in the present scenarios as well as those possible in the future. The

borders of modules and which attributes to consider as a module is of course, an open

question. Different approaches can propose different modules to accomplish the same

goals and it might be probable that it is impossible to agree on a standard set. But,

as long as different modules provide a uniform interface and a clear description of its

capabilities, the architectural principles we propose hold true.

From the above research directions, a sense of future direction can be derived. We can

see not one ‘Internet’ but many ‘Internets’ of varying capabilities and characteristics

(inter-network of things, inter-network of specific applications, inter-network of specific

intentions etc.). This concept is already starting to evolve if we consider Peer-to-peer

application ‘networks’ using the existing infrastructure as a transport network. This

brings us very close to a similar problem that existed in enterprises towards the begin-

ning of the 21st century. Enterprises built their IT systems to streamline their processes.

Chapter 3. Service Oriented Aspects for an Architecture Framework 57

Large distributed enterprises built middleware to support transactions and interconnect

their systems across domains. Since there were no standards for such systems, these

proprietary systems posed a problem during instances of interoperability (mergers, ac-

quisitions, collaborations etc). The concept of Service Oriented Architecture (SOA) [97]

was adopted to enable a standardised and open way for enterprises to open up their IT

infrastructure for collaboration. We note the best known implementation of SOA in Web

Services (WS-*) [94] specifications, standardization and its implementations. While,

Web Services specifications specifically address Enterprise Application Integration (EAI

[95]), we need a similar principle and framework to be applied to future heterogenous

communication networks in order to interconnect business borders and administrative

domains.

Virtualization is a another approach to mitigate the heterogeneity. The abstraction of

capabilities as services with generic interfaces helps facilitate virtualizing underlying

capabilities across domain boundaries, without the need for applications to be concerned

about the platforms on which they might implemented. We take clues from the concept

of application layer implementations of distributed web services. The simple sounding

goal of ‘connecting to customers, suppliers or partners electronically’ [122] translated

into web services that offer standard based mechanisms to create or compose services

from composite and often cross-organizational components and Web services [123]. We

look at the underlying network architecture under the same requirement considerations,

i.e, a service to be offered to applications, composed of various other services, local or

distributed.

3.2.3 The Principles of Service Orientation

Before we apply service orientation principles to the network architecture, it is helpful

to identify the definition of a Service. A Service is defined as ‘an entity with a specific

Functionality which can be Described using metadata and can be Discovered by Users

who can Compose them to use the fucntionality[86]’.

Chapter 3. Service Oriented Aspects for an Architecture Framework 58

If a domain abstracts its services/infrastructure so that it presents its functionality clearly

in the form or loosely coupled coarse-grained services, then other entities can use the

services independent of the underlying platform. Moreover, this approach helps an IT

infrastructure to meet yet unknown requirements which is not easily attainable using

traditional IT planning and design methodologies.

One pattern that enterprises use to facilitate SOA is via the use of Enterprise Service Bus

(ESB)[124]. We adopt the concept of ESB (Fig. 2.4(b)) and not the notion of proprietary

middleware (or proprietary definitions) that major solution providers propose under the

collective term ESB. From an application developer’s point of view, the ESB has the

intelligence to manage most of the common network related tasks, but we maintain that

this should be done in a standardized and open approach.

The next step is to identify the basis with which we compartmentalize the capabilities

into modules, which can then later be orchestrated. We take cues from the ‘tussle’ [7]

being played out in the networking world to impose boundaries on the modules. A mod-

ule encompasses a well defined service small enough to be a factor in the tussle but large

enough to provide a specific, well defined, usable and non-trivial service. Identifying a

set of modules which provides the services needed to compose a network architecture is

not straight forward considering the fact that as a ‘future’ network architecture, it should

be able to gracefully accommodate a wide spectrum of potential uses and abuses, both

those encountered in the present scenarios as well as those possible in the future.

The boundaries and definition of modules can be defined based on the study of the cur-

rent as well as the emerging views on networking architectures. For example, TCP/IP

provides clues to successful abstractions, albeit through layering. HIP and similar pro-

posals argue for a separation of ‘names’ and ‘locations’. DONA and TRIAD argues for

flat labels, which has interesting implications arising from ideas such as routing on flat

labels [71] and mobile ad-hoc networks where a hierarchical naming convention is not

required and short labels have obvious advantages. Thus naming and addressing and

subsequent routing form separate tussle spaces and hence different modules.

Chapter 3. Service Oriented Aspects for an Architecture Framework 59

In this section, we will focus on the argument that the given modules can be composed

into a coherent architecture via a single paradigm, namely Relationships. We define

‘relation’ as an association among dynamically collaborating nodes, devices and services

in a network. A relationship description contains parameters (‘relationship metrics’) to

express the nature and background of the collaboration. For example, the intention of an

application with the network can be translated as a relationship between the underlying

architectural modules and provided as a service to the invoking application. This not to

be confused with the relationship attribute in the Haggle architecture which is a class of

meta-data used to tag a haggle Data Object (DO)[77].

While the modules represent different services abstracted for applications, the architec-

ture itself needs to present a coherent set of high level APIs that the services can utilize to

take advantage of the functionalities. We take clues from the concept of application layer

implementations of distributed web services. The simple sounding goal of ‘connecting

to customers, suppliers or partners electronically’ [122] translated into web services that

offer standard based mechanisms to create or compose services from composite and of-

ten cross-organizational components and Web services [123]. We look at the underlying

network architecture under the same requirement considerations, i.e, a service to be of-

fered to applications, composed of various other services, local or distributed.

3.3 Service Terminologies

A ‘Service’ is a unit of logic [5] or a publicized package of functionality [86]. Ser-

vices are characterized by certain attributes, which define how the functionality is made

available for use by other entities:

Functionality : Services implement some functionality.

Chapter 3. Service Oriented Aspects for an Architecture Framework 60

Composable : Services are composable, which implies that an entity can use the ser-

vice depending on the conditions specified either directly or as a part of another

service.1.

Describable : Services can be fully described using their metadata or other methods.

Discoverable : Services are discoverable based on their descriptions, policies for use

etc.

We use ‘Service’ in this thesis within the context of service orientation and service ori-

ented solution logic. The relation between Services, Service Orientation and Service

Oriented Solution Logic is indicated by Erl[5] as:

“Service-orientation is a design paradigm comprised of a specific set of de-

sign principles. The application of these principles to the design of solution

logic results in service-oriented solution logic. The most fundamental unit of

service-oriented solution logic is the service.”

A service is a pattern that can be used to solve a specific problem and can be defined

with in a framework at different levels [125]. Some examples of entities that qualifies as

a Service is listed below. According to [126], a Service can be (among others):

• A single application with a well defined API (which also includes wrapped appli-

cations from legacy codes). In this case, the software application is offering some

service (which may vary in granularity from a simulation kernel to a molecular

dynamics application, for instance). In order to run such an application, it may

be necessary to configure the environment, and make available third party numeric

libraries on the host where execution is requested. Furthermore, execution of the

application may also involve the need to have dynamic link libraries available on

the host platform, and for these libraries to be compatible with the compiler used to
1This characteristic is clarified in later sections.

Chapter 3. Service Oriented Aspects for an Architecture Framework 61

create the application executable. Seen as a service, these dependencies are hidden

from the user needing access to the service and the underlying environment which

supports the service is required to handle these dependencies.

• A single application used to access services on other resources controlled by a

different administrator

• A collection of coupled applications, with well defined dependencies

• A software library, with a number of sub-services, which are all related in some

functional sense. For instance, a graphics or a numerics library etc

• An interface to a third party software library

• A software library for managing access to a resource (this may include access

rights and security, scheduling priorities, license checking software etc)

All services are not of similar scope or functionality. They can be categorized based

on their functionality (logic they encapsulate), the reusability of the service and the

relation of the function (dependencies on other Services) within the domain. These

classifications or models help to scope the services into logical abstraction layers [5] :

Utility Services : forms the basic level of services. These services implement highly

reusable and cross domain functionalities which are ideally application agnostic.

Examples of such services are logging, alerts etc.

Entity Services : represent domain centric services, ideally composed of various Utility

Services and encapsulates a more domain specific functionality. These services are

reusable across domains using similar logic and functionality, to a large extend. In

enterprises, these services represent business centric services [5].

Task Services : indicate high level domain or business tasks, which are specifically as-

sociated with the parent process or business task respectively. These services have

less reuse potential, since they implement highly domain specific tasks and are

Chapter 3. Service Oriented Aspects for an Architecture Framework 62

usually responsible for controlling and composing various agnostic entity/utility

services.

These services form three distinct logical layers as seen in Fig. 3.4. The service models

(utility, entity and task) are generic enough to be applied to any type of domains.

FIGURE 3.4: Service Models based on scope

Common to all service models is the concept of Service Characteristics, which primarily

consists of the functional aspects (what it is and does) of the service (using WSDL

in Web-Services). Apart from this, constraints and conditions regarding its usage are

specified via policies. This information should be made available for other services to

use. It is useful to extend this basic information with Deployment Descriptors1 [5] to

indicate additional information necessary to deploy the services in a working solution.

We use the service modeling process to create candidate services[5]. Our approach

followed the Service factoring and identification based on common use cases[127]. See

how the Services are identified based on use cases2 in Fig. 3.5. These candidate services

are documented in the service inventory blueprint. These services are further defined and

their descriptions and capabilities included in the service inventory. Implementations are

then connected to these descriptions.
1Examples of deployment descriptors may include QoS parameters, other parameters which determine the

behavior of the component with respect to framework specific transactions like state management, dependencies
on other services, parameters governing application specific contexts etc

2This is an intermediary step in domain analysis before formalizing Service Definitions

Chapter 3. Service Oriented Aspects for an Architecture Framework 63

FIGURE 3.5: Service Modeling process based on use case models.

3.3.1 Defining Services

Within the context of a Framework, Service refers to a pattern that can be used to solve

a particular type of problem. A Service may be realized in a number of ways, including

as a Web Service, but also as an API, or as a manual work-flow.

An important characteristic of this Service Oriented approach is that its is agnostic to the

implementation technologies and the processes it forms part of. The significant factor

here is the collection of defined interactions that a Service supports, i.e, the functionality

and expected behaviour. Services can be characterized within a Framework at several

degrees of resolution[121]:

• As a definition of function and scope (in descriptive natural language)

• As an abstract model of data and behaviour (for example, in UML)

• As a data representation specification (for example, using XML)

• As an Application Programming Interface (API) specification (for example, in

Java)

• As a Web Service specification (for example, using WSDL)

Chapter 3. Service Oriented Aspects for an Architecture Framework 64

The set of definitions taken together can provide enough details to create a fully featured

Web-Service implementation, although it is not necessary. The granularity of the defi-

nition in the list above is progressive with each level adding more details specification

towards realization of the Service Fig. 3.6.

FIGURE 3.6: Defining Services at various levels

The functional definition of the Service is expressed in descriptive natural language and

forms the basis for the all other definitions. An abstract model that lays out a more

formal definitions of the expected behaviors of the Service Instance together with the

information structure it deals with can be derived from this functional definitions and

expressed in a more formal language such as UML. From this abstract model of the

Service, it is possible to extract interface definitions (in WSDL, for example) and data

definitions (in XML, for instance) to represent it as a Web-Service which can be imple-

mented. The Service User who invokes the Service and the Service Provider who makes

it available need a shared understanding of a common business process for the Service,

with a shared formal model of the behaviour and data (Fig. 3.7). In applications, this is

Chapter 3. Service Oriented Aspects for an Architecture Framework 65

realized with an Interface to access a Web-Service that has commonly agreed operation

definitions (WSDL) and data structures (XML schemas).

FIGURE 3.7: Integration of Business partners [4]

The Web-Service implemented according to the standard model can communicate with

nodes across a shared Messaging infrastructure using standard and open specifications

like SOAP or REST. It is necessary for two collaborating systems to agree on a range of

specifications at different degrees of abstraction to successfully communicate. However,

some aspects of the systems may remain proprietary to each partner, including the data,

the application code, and the interface (API) used to integrate the application code with

the Web-Service.

Numerous Service description schemes are available today besides the ones based on the

combination of WSDL/XML/UDDI/SOAP [126]. Some of these description schemes

can be differentiated based on the Domain they are used in like communication, e-

commerce, scientific-computing etc. Ontology based schemes such as OWL and OWL-S

[128], can be used to identify how domain Services relate to each other. But these ap-

proaches do not how the data model (encoded in different schemes) is to be implemented

or shared across services. It is unlikely that a single service representation scheme will

be adopted, and many domain specific extensions are likely within existing schemes.

Chapter 3. Service Oriented Aspects for an Architecture Framework 66

Hence, a future proof approach should not necessitate the use of a single representa-

tion scheme but allow various domains that employ different scheme for representing

services co-exist.

3.3.2 Partitioning the Service Space

Partitioning the domain functionality (Service space) into Service boundaries is a do-

main knowledge dependent exercise. Certain principles need to be adhered to avoid

Service Boundary overlap and functionality duplication in the Service Inventory. While

each domain can apply varying principles to accomplish this exercise, we propose the

following main tenets for a communication domain. Each Service boundary should

include considerations to accommodate preferably all of tenets, especially the Utility

Services. Higher level Services like Entity and Task Services can use these as recom-

mendations or pointers, since the reusability potential is low and is more focussed on

particular functionality. The main partitioning arguments are:

Functionality is the main criteria behind partitioning the Service space is functionality.

Each well defined and required functionality is implemented availed as a Service

and constrained by the Service boundary.

Reusability is the ability of the Services to be used in various composition. The most

basic services within the communication domain are Utility services and are the

most reused1.

Autonomy implies that Services should offer a clearly defined functionality with mini-

mal dependencies on other external Services. This increases reliability and Modi-

fiability of the Services themselves and increases confidence in composite service

composed out of such component Services.
1See section 3.3 for Service classifications

Chapter 3. Service Oriented Aspects for an Architecture Framework 67

Tussle defines the ability for service boundaries to contain Tussle [7]. For instance, even

if it is possible to classify some functionality as a single service, there might be a

change that that functionality depends on two or more component functions that

evolve independently under conflicts. It makes better design sense to apply the ser-

vice boundary at the component functionality to let the Service evolve separately1.

These above mentioned arguments are used in conjunction with already existing SOA

Service attributes like discoverability, composability etc which are covered later in this

chapter.

Distributed systems approaches such as e-flow[129], StarWSCOP[130] and Computa-

tional Grid[131] already use Service Oriented approaches to abstract computational re-

sources as Services. Our proposal integrates such approaches with the networked com-

munication domain by including communication resources as Services as well. The

outcome is a communication network architecture that treats distributed computational

resources and communication resources as a uniform abstraction of Services, which can

be invoked in a similar manner. The application, thus need only worry about functional-

ities which they need from Services, without having to delve any deeper.

From various studies applying SOA to distributed computing, the services can assume

various Roles [126]. From our point of view, there can be two specialized roles for

services:

Service Consumer requests functionality from another Service.

Service Provider makes available Services to be invoked by other Services.
1For example, it is easier to visualize a component service that implements the AAA (Authentication, Autho-

rization and Accounting) functionality, but each of these evolve separately under tussle. The ideal design choice
here is to have three separate Utility Services that accomplish each functionality separately. Domains can offer
aggregated AAA services as a composition of these individual component services

Chapter 3. Service Oriented Aspects for an Architecture Framework 68

The Service Consumer invokes, initiates and terminates the required Service(s) and han-

dles exceptions generated by the invoked Services. The Service Provider offers an inter-

face for invoking a service and other related criteria, along with specification of param-

eters associated with managing the service. The network architecture can then be built

purely based on the aggregation, decomposition, discovery, composition and execution

of suitable services.

There are various Design Patterns that can be leveraged to partition the service space and

apply the boundaries. These patterns derived from Service Oriented Design [132] and

Distributed Computing [126] enable us to provide proven solutions to common design

problems. A catalog of design patterns established with in SOA is covered in [132]1.

Apart from the patterns from SOA, the following concepts are adopted from Distributed

Computing paradigm into our architecture:

Service Broker is used as an intermediary between a Service User and a Service Provider,and

can be used to discover and synchronize Services based on one or more criteria,

dynamic Service selection or support registration of Services (or the above func-

tionality combined together for a matchmaking Service to locate a Service of inter-

est). We utilize this pattern to provide common intermediate Services of varying

complexity to tradeoff between reusable simplicity in Services and a usable higher

level function2.

Service Adapter is used to enable a Service Provider ‘wrapt’ a non-standard function-

ality (an application or a library), and make this available as a standard single

Service. This approach can be used to interoperate with legacy functionality and

other non-compatible Services.

Service Decomposers are specialized brokers that decomposes a service request to sub-

requests to find better matches for Services, in case a single Service that satisfies

the request is not available.
1A descriptive take on how Web-Services are used to implement the Decoupled Contract in SOA is covered in

[132]
2A Broker Service may use a number of other services to achieve its objective.

Chapter 3. Service Oriented Aspects for an Architecture Framework 69

Service Composers ,like Service Decomposers, are specialized broker Services which

aggregates components service functionalities into a single Service in response to

a request from the User.

Discovery Service addresses the most significant part of the process, to find a match be-

tween the Service request and the Service provided by a Service Provider. Various

sub-patterns on how the matching is done (based on syntax, context, semantic)[132]

are available, but beyond the scope of this report.

Service Optimizer maybe used to improve the performance of s group of Services by

sharing common request, advance reservation of Service(s), or caching resources

for pre-composed frequently used Services.

Reputation Service is a pattern used to include trust, risk and related assessments (such

as QoS certification) to increase the reliability of the architecture. This pattern can

be applied to produce numerous Services which handles various subcategories in

the trust generation, risk mitigation and maintenance.

Execution Platform implies a middleware which supports the launching of Services

on available computational resources and monitor their life-cycle. It is necessary

that several Services need to be initiated and coordinated to achieve a certain func-

tionality. It is overwhelming for one application to manage such execution, due to

complexity and diversity. This responsibility is delegated to an Execution Platform

(Like SEA) to act as an intermediary to resource management systems1[133, 134].

Service Migration pattern is used to support Mobile Service not tied to a particular

host (or domain) which may be migrated on demand. This pattern also support

state migration of Services to a remote location to create a new instance of the

Service.
1Where a tight coupling between the User Service and the communication resources are required, execution

may be directly managed by the User Service.

Chapter 3. Service Oriented Aspects for an Architecture Framework 70

3.4 Service Design Principles

One of the ultimate goals for using Service Oriented Architecture is to minimize the

amount of custom development effort required to implement solution and instead reuse

more and more of the available services to this end. Development of these Services

should follow a specific approach to design (Service Design Principles) agnostic services

at the utility and if possible, entity service level [5]. Agnostic Services imply that its

logic is independent from its business process, proprietary technology or application

platforms and thus have high reuse potential as the generic logic implemented can be

used in multiple compositions. 1

3.4.1 Service Contracts

Standardization plays a significant role in Service definitions and agreements to ensure

that the components selected by the Service Users form a various sources work together.

Without standards, the scope of the definitions his ad-hoc and becomes unsustainable in

a wider sense. Standardization is not only required in data interchange specifications,

but also in behavioral modeling. The functional service expression, the data formats and

associated agreements setup the Service Contract where standardization is inevitable to

provide interoperability and reusability. . They form a core part of the Service design.

Depending on the context, contracts can have various definition. With in the context of

Service Oriented Architecture, Erl [5] defines it as:

“A contract for a service (or a service contract) establishes the terms of en-

gagement, providing technical constraints and requirements as well as any

semantic information the service owner wishes to make public.”
1For a lucid explanation of the various service design principles and how they influence each other, see Part II

of [5]

Chapter 3. Service Oriented Aspects for an Architecture Framework 71

Comprised of one or more service description documents, describing technical interface

and other relevant (maybe non technical information). An example of such non-technical

service description is the Service Level Agreement (SLA), which can be used to estab-

lish the QoS characteristics, such as availability, accessibility and performance. Such

requirements, while not technically binding might have legal implications and is hence

important.

Services share standardized contracts to enable the interoperability and to allow the ca-

pability and purpose of the service to be easily understood. Each individual parts of the

contract need to be carefully designed since they expose the capabilities of the services

and restrict how other services can make use of them.

Normally, technical contracts have been specified using interfaces such as Application

Programming Interfaces (APIs). These APIs can be accessed remotely (to invoke the

service through the network, for example) through Remote Invocation Frameworks like

Remote Procedure Calls (RPCs). These frameworks are frequently expressed using In-

terface Definition Language (IDL) and the Abstract Syntax Notation (ASN).

These APIs were very platform specific and proprietary, and were often created as a part

of the custom designed solutions. This Web Services principle establishes the require-

ment for a non-proprietary distributed communications framework with WSDL as the

core part of the technical service contract.

The technical interface description forms the basis of service contracts. This description,

most often will contain a formal definition of the data (input/output) required by each

service capability. If two service capabilities within the same composition represent the

same data using different representations like schema and data models, this follows that

the data representation is not standardized. This scenario can lead to incompatibilities

mitigated by using data transformation. Besides, the data transformation logic needs to

implemented as an actual software component (such as an XSLT style sheet) and runs

every time the incompatible Services needs to be access/exchange information, which

is inefficient and avoidable using standardization. In Web Services, data representation

Chapter 3. Service Oriented Aspects for an Architecture Framework 72

(a) Visualizing Service Contracts

(b) Service contract components in Web Services

FIGURE 3.8: Service Contracts

architecture can be developed and standardized independently from service layer and

allows for centralized schemas (which can be shared). However, SOA does not require

global data model standardization, since Domain Inventory design pattern supports par-

titioning of an enterprise into separate domains which can be separately standardized.In

this pattern, the main areas of standardization are functional expression, data represen-

tation, and policies. Naming conventions and policy standardizations are also required

for interoperability1.
1For a more detailed discussion on the implications and significance of this design principle, see Chapter 6 of

[5]

Chapter 3. Service Oriented Aspects for an Architecture Framework 73

3.4.2 Service Coupling

Coupling indicates the dependency among Services and is unavoidable. Anything that

connects has coupling and coupled things can form dependencies on each other. A mea-

sure of coupling between two services is the level of dependency that exists between

them [5]. For instance, depending on the directionality of the coupling it could be bidi-

rectional or unidirectional. This pattern focusses on the dependency between the services

within our framework. One basic approach when specifying Services is that they must

be loosely coupled from each other with their service contracts having as much inde-

pendency from their implementations. The service contract is the core element around

which most coupling-related considerations revolve.

The various dependencies which lead to service contract coupling (in various degrees)

can be from service logic, vendor technologies, implementation technologies, parent

business processes and other services which will be used during composition. However,

to avoid further undesirable dependencies, consumers of the service should be restricted

to accessing the capabilities of the service via the published contract only. This, while

creating a service to consumer coupling will centralize the logic design pattern.

It is possible for consumer services to have indirect coupling to underlying technologies

and implementations via the tightly coupled Service Contracts of the consumed service.

This can be minimized by minimizing the (undesirable) contract coupling during design

time (Figure 3.9). The indirect coupling and passing negative coupling characteristics

being passed on through chains of services arises as issues during service compositions.

Therefore, individual attention to each inter-Service coupling is needed during design

time. The Service model (discussed earlier in section 3.3) also serves a model to indi-

cate the level of coupling they exhibit. Task services are sometimes functionally coupled,

business logic coupled or even service-to-consumer coupled while Entity services pro-

vide the opportunity to implement a independent and decoupled service contracts. Utility

services are usually implementation coupled or sometimes vendor technology coupled.

Chapter 3. Service Oriented Aspects for an Architecture Framework 74

FIGURE 3.9: Service coupling visualization

Within a new framework, factoring the Services and specifying the Service boundaries

should be specified with this pattern in mind.

3.4.3 Service Abstraction

Service Abstraction indicates the process of hiding information about the service not

necessary for the service to be used effectively. The abstraction of legacy functionality,

technology and implementation (i.e, non-essential service information for service con-

sumers) reduce the impact of migration and increase the level of interoperability and

reuse.

Chapter 3. Service Oriented Aspects for an Architecture Framework 75

3.4.4 Service Reusability

This design principle necessities that the Service is defined by context that is agnostic to

any particular scenario and that the logic should be generic enough to facilitate numerous

usage scenarios. Besides, the Service contract should be generic and extensible. Service

could be reused by the same consumer service repeatedly to fulfil a single business task

or it can be invoked by numerous consumer services as a part of composition to solve

multiple tasks.

3.4.5 Service Autonomy

Service autonomy indicates the independence of the service implementation. Highly

autonomous services will have higher ability to evolve independently from external in-

fluences, and will be more reliable. If the Services are designed to be autonomous, they

will exhibit consistently reliable runtime execution performance, greater degree of per-

formance reliability, an option to be isolated in response to specific security, reliability or

performance requirements, among other characteristics. Besides these advantage, com-

partmentalizing Services through Service autonomy has Security implications as well.

Autonomy allows isolation of Services in response to a change in policies or invoke

alternate behavior based on policies.

Another significance for this design principle - Composition of services are inherently

non-autonomous process and produce a task service whose autonomy depends on the

collective autonomy of the component services. Thereby, the reliability of the composed

service depends indirectly on the autonomy of individual component services. As is

evident from definitions, Service autonomy and service loose coupling have a close re-

lationship. Autonomy can be runtime autonomy or design time autonomy, where former

implies the amount of control the service itself has over its execution environment at

runtime and the latter indicates the amount of governance control a service owner has

Chapter 3. Service Oriented Aspects for an Architecture Framework 76

over service design. A rudimentary but expandable measurement framework for auton-

omy, classified into contract autonomy and implementation autonomy can be found in

Section 10.4 in [5]

FIGURE 3.10: Service Normalization[5]

3.4.6 Service Statelessness

The state of a Service implies its general condition. During the invocation of a service,

certain data might be generated in relation to the functions provided by the service. The

amount of data that needs to be retained during the lifetime of a composition can be

substantial. The effort to manage such generated data over the lifetime of the service

Chapter 3. Service Oriented Aspects for an Architecture Framework 77

activity, even if it is temporary, (or state management) can have notable effect on the

performance of the architecture. The performance bottleneck due to the state memory

can be significant for a service.

Service can be active or passive in state, while the state conditions can vary on Stateless.

The Service state depends on the amount of data retained or processed during various

stages of its lifetime. State related data could be Session data, Context data or Business

data. The design priority should be to maximize Service statelessness.

3.4.7 Service Discoverability

The process of searching for and finding solution logic within a specified environment is

referred to as a discovery. To accomplish this it is necessary that information about ser-

vices, their capabilities and policies be consistently, clearly and accurately made avail-

able to be discovered. These are usually the metadata relevant to the services and in-

cludes the functional capabilities (from standardized Service Contracts), relevant tech-

nology and programmatic information, and QoS specifications. The QoS here implies

the behavioral characteristics, operational thresholds and policies runtime of the service.

Thus the metadata describes the purpose, capabilities and limitations of a Service.

This information (metadata) should be stored centrally (ideally) and be accessible in

a consistent format so that users can locate, retrieve and interpret services in a simple

and standard manner. This central location (physical/virtual) where a user can find the

relevant services is termed Service Registries. UDDI [100] is a such popular open stan-

dards based registry. One important property of such registries is that they should be

searchable. This facilitates the short listing of suitable solution logic based on keywords

or tags. The central role played by this principle is evident from the traditional SOA

Triangle model.

Chapter 3. Service Oriented Aspects for an Architecture Framework 78

FIGURE 3.11: The traditional SOA triangle model, indicating the central nature of the Service
Discovery Facility

This design principle significantly impacts the reusability factor of the parent service

and normalization of service repositories. The lack of discoverability can also add re-

dundancy and governance overhead to repositories through design phase and persist

during runtime. The quality of metadata associated with a service is an indication of

its discoverability. This principle has a significant impact within the context of our ar-

chitecture. Adding semantic description of domain Services to Web-Services using On-

tologies can result is a much more descriptive version of Web-Services (called Semantic

Web-Services). Adding semantic information to WS increase the scope and precision of

Service discoverability [135].

3.4.8 Service Composability

The Service Orientation approach provides a design platform where logic is decom-

posed and recomposed [5]. This is a natural fit for Distributed Computing paradigm

where assembling capabilities from different sources to solve a larger problem forms

the foundation. Composability is one of the key design principles which results from

the correct application of all the other design principles mentioned above. All the other

Chapter 3. Service Oriented Aspects for an Architecture Framework 79

design principles in the Service Oriented paradigm directly or indirectly supports the

extend of composability attainable by a Service [5]. This design principle states that

Services are designed to be composable.

Depending on the complexity of composition and the size of service activity, Composi-

tions can be classified into simple and complex, although the demarcation between the

two are often blurred and not that evident. One example of a simple composition would

be a hop-by-hop routing between nodes (across multiple nodes, even) where processing

is based on a single document or a few parameters. A business task however could be

complex depending on the number of messages exchanges and services involved.

3.4.9 Service Inventory Blueprint

The aim of the Service inventory blueprint is to provide a complete perspective of so-

lution logic across a specific domain represented by an inventory of service candidates.

Each Service boundary must be modeled to accurately represent the service’s functional

context while not overlapping with other service boundaries. Also, the dependencies

among services should be mapped to provide a clear picture on the type and quantity of

logic each should encapsulate.

The service candidates established within the Service inventory blueprint form the basis

Service contracts with well-defined functional scope. The steps involved in creating the

inventory blueprint are [5]:

1. Initial population of the Inventory (possible from domain research, or Service de-

livery projects)

2. Hybrid applications and a growing Inventory. More legacy applications wrapped

in standard interfaces become available for migration and backward compatibility.

Chapter 3. Service Oriented Aspects for an Architecture Framework 80

3. A mature Service Inventory where majority of the new tasks encountered can be

addressed using compositions of services from within the Inventory without mod-

ifications.

3.4.10 Service Normalization

Normalization is an approach to reduce or even eliminate redundancy across data entities

and structures. In the world of service-orientation there is a specific Service Normaliza-

tion pattern is applied to minimize the amount of functional redundancy across a service

inventory and is one of the primary reasons to invest in the creation of a service in-

ventory blueprint prior to actually building the service inventory. This principle tries to

avoid functional overlap which can lead to redundancy in a service inventory, resulting

in functional denormalization and potentially convoluted composition architectures.

The maintenance of coherent Service Inventory becomes an issue when Services within

the Inventory needs to be changed (from implementation itself to parts of the service

description in a service repository) due to various reasons. Although modifications to an

existing Service can be done by extending its capabilities while maintaining backward

compatibility, it is not always possible to accommodate all future requirements this way.

Hence, new versions of the Service will need to be introduced, which introduces certain

challenges, such as versioning. There are many approaches to Service versioning. One

popular approach is to replicate previous versions of the Service and add additional or

modified elements to form the new Service. New versions are named differently (by

using some naming convention), and their description is stored in the registry as a new

entry. Since WSDL and UDDI do not inherently support versioning, Juric et al [136]

propose extensions to WSDL and UDDI for service versioning. The approach addresses

run-time and development-time versioning. Notifications about new and deprecated ver-

sions are communicated to Service Users with traceability support to track changes.

Chapter 3. Service Oriented Aspects for an Architecture Framework 81

Service Discovery design principles are significant for our architecture at various levels.

Traditionally, Services were described and documented to be discovered and interpreted

by humans. Subject matter experts and system architects could search a given system

registry or database (even a simple webpage, table, excel sheet or LDAP database would

suffice) and interpret the metadata and related documents to conclude if any of the avail-

able services are appropriate for the task at hand. This approach (commonly termed De-

sign time discovery) might work for enterprises with limited scope and scale. However,

it is imperative to have automated composition capabilities for dynamic environments

like networks. This highlights one of the challenges faced by Web Services today. To

have automated composition, software agents should be able to discover, retrieve and

interpret services on their own with minimal external influence. This follows that not

only service metadata should be described in rich syntaxes, but also the service capabil-

ities should be expressed in machine understandable manner (probably semantically) so

that they can be modeled by software. This state of the art in technology today does not

make it possible for this to happen reliably. Dynamic discovery and automated compo-

sition of Web Services is an ongoing research topic and the outcome of that studies will

have significant impact on some of the core ideas proposed in this thesis. That being

said, it is possible to have limited scope automatic composition today by specifying and

restricting the process flows of composition behavior to a subset of possible predictable

behaviors.

3.5 Service Composition

Web-Services are sufficient for most of the simple interaction needs, but they might not

suffice for integration of unique process requests that involve multiple Services. Busi-

ness process integration, for example, in real business scenarios involve long-running in-

teractions, transactions management, stateful invocations and are often driven by a work-

flow engine that execute a specified business process model to automate the information

flow and the business operations. This raises the needs for coordinated aggregation of

Chapter 3. Service Oriented Aspects for an Architecture Framework 82

Web-Services that provides the mechanism to fulfill the complexity of such processes.

The process of developing a composite service is called Service Composition[87].

There are two main research trends to realize Service Compositions. Among the business

community, Service specification, composition and execution standards revolve around

XML syntax (for example, BPEL, WSFL). Another approach is by by Semantic web

communities (mostly academic driven) focus on reasoning based on Service precondi-

tions and effects held within according ontologies [90, 137].

In the latter approach, Services are regarded as network resources described in Resource

Description Format (RDF) [138] using RDFSchema [139] and other Semantically ex-

pressive languages. One approach is to enhance Service descriptions with semantics

such as inference and reasoning mechanisms by extending existing WSDL annotating

(with inputs, outputs, preconditions, and effects, for example) to produce WSDL-S

[140]. Similarly, OWL-S [128] uses the Web Ontology Language (OWL) for seman-

tic descriptions and also provides a WSDL grounding to execute Web Services. Both

the Semantic Web Services Framework (SWSF) [141] and the Web Service Modeling

Ontology (WSMO) [142] initiative define a description language, ontology, and rules

to provide a framework for multiple tasks in the Semantic Web Services domain such

as description, execution, or reasoning. METEOR-S [142] is another approach for the

semantic service annotation with specific focus on QoS and composition features.

To accomplish the fusion of single Services, plans1 are required which contain the ab-

stract specification of a set of services together with specific control structures defining

their interaction and data flow. Within Service Composition plans, Services are regarded

as blueprints, i.e., as placeholders built up of semantic descriptions that specify the type

of service that is required. During composition, these blueprints are bound to real ser-

vices, providing an instance of a service composition plan [143].

The semantics of Web services is crucial to enabling automatic service composition. It is

important to ensure that selected services for composition offer the right features which
1often called Service Composition Plans

Chapter 3. Service Oriented Aspects for an Architecture Framework 83

may be expressed syntactically or semantically. Semantic features of Web-Services are

expressed using ontologies [144] and play a central role in the Semantic Web, extend-

ing syntactic service interoperability to semantic interoperability [145]. An ontology

is a shared conceptualization based on the semantic proximity of terms in a specific

domain of interest [135]. Several techniques are proposed for composition and recently

automated composition based on semantic web technologies have been becoming promi-

nent. For example, Ramparany et al [146] proposes a composition technique for device

services based on abstract composition plan considering additional information like con-

texts. However, these kind of approaches need the extension of standards semantic lan-

guages (in this case, OWL-S) to accommodate attributes like type, inputs, outputs, local

parameters, input and output properties, as well as a context condition.

The common pattern used within Service Oriented approaches to determine the require-

ment for Composition are termed Service Aggregator/Decomposer. These can utilize

domain specific ontologies to determine alternative service providers of interest, and en-

able these requests to be forwarded. The approaches adopted depend on the representa-

tion scheme used to encode the ontology, and the service definitions. The aggregator/de-

composer must use the same representation scheme as the service discovery agents and

confirmed through an initial message exchange. This pattern provides a means to split a

service request into sub-services, and to subsequently compose the results. The Aggre-

gator/Decomposer pattern is applicable when a large number of computational services

exist, but there are no requests which exactly match these services. Also, if no suitable

computational services can be found, or if the computational services most suited to run-

ning an application are busy or computational services which match a particular request

criteria (such as cost, performance or security/access rights) cannot be met, this pattern

can be applied. This pattern is also useful in scenarios where the Service User may wish

to tradeoff criteria such as precision vs. speed, precision vs. cost, or performance vs.

cost among available Services.

Chapter 3. Service Oriented Aspects for an Architecture Framework 84

3.5.1 Service Composition Challenges

Automatic service composition is a critical requirement[135, 137]. Automation of ser-

vice composition requires not just functionality of inputs of services, but also much

more metadata such as service model, preconditions (input state and input data) and

postconditions/effects (output state and output data). Automatic composition implies

that a method can generate the process model automatically and the method can locate

the correct services if an abstract process model is given [147].

One of the main problems faced during Service composition is the non-standard nam-

ing conventions used for Services [148]. Other issues identified with automated Service

composition include Service coordination, Transactions, Context, Conversation model-

ing, Execution monitoring, Infrastructure which are covered in the survey by Dustdar

and Schreiner[149]. These are not the only problems limited the widespread use of such

techniques. When composing services with in complex environments, coordination of

the sequence of events is need to mitigate inconsistency and ensure correctness. Various

solutions have been proposed to accommodate this requirement like WS-Coordination

[150] and Web Services Composite Application Framework (WS-CAF) [151]. To pro-

vide reliability and guarantee to interactions, whether they are atomic transactions or

long running transactions, the coordination framework should provide relevant provi-

sions 1. WS-Transactions[152] is one such specification.

Context implies the Information utilized by the Web-Service to adjust execution and out-

put to provide the client with a customized and personalized behavior [153]. The concept

of context-awareness seems to be a promising solution for a lot of problems which have

been implied by the usage of mobile terminals in ever-changing environments [154].

This property, defined in an extensible manner, can be widely utilized throughout the

Service Oriented workflow to efficiently tailor and tweak the logic. WS-Context [155]

specifies contexts and its sharing and management.
1These protocols should impart reliability guarantees such as ACID (Atomicity, Consistency, Isolation and

Durability) to the transactions; These properties might be difficult to guarantee for long running Web-Service
transactions

Chapter 3. Service Oriented Aspects for an Architecture Framework 85

Conversation modeling or composition modeling indicates the composition workflow of

the solution from individual services. It includes service discovery, binding (preferably

dynamic), service composition model generation and validation, analysis and verifica-

tion of generated compositions. numerous approaches have been suggested to support

defining service models and richer WS abstractions like Web Services Conversation Lan-

guage (WSCL), Web Service Choreography Interface(WSCI) etc.

Once the composition has been created, verified and validated, it needs to be executed.

Here, execution monitoring ensures correctness of the process. Composed Web-Services

can be executed either centrally or in a distributed manner. In centralized, a single co-

ordinator controls the execution of the components. In distributed, the WSes execute

independently of other participating WSes, but coordinates their activities via a shared

execution context. Each domain running a WS has its own coordinator which has to

collaborate with coordinators of other hosts to guarantee a correct ordered execution of

the services.

Besides the obvious requirements and properties, there can be numerous other factors

which can influence the service selections, composition and execution. These could be

runtime QoS parameters based on the service environment like scalability, capacity, per-

formance related properties (response time, latency, throughput), reliability, availability,

flexibility, exception handling, accuracy etc. Transaction supported QoS like regula-

tory, supported standards, stability, cost and completeness can also come into play as

non-technical properties. Security related like authentication, authorization, confiden-

tiality, traceability, auditability, data-encryption and non-repudiation can also factor in

when considering critical services. This implies that a simple registry of services is

not enough, since service discovery using metadata may not be enough for automated

compositions. One proposal is to implement a QoS certifier [156] as an extension to

the service registry. This approach provides a facility to avoid services that are incom-

plete or broken by verifying the Service Provider QoS claims via the QoS Certificate 1.
1The QoS claims by the Service Provider can be verified and the service certified before the registration of a

service in the service registry

Chapter 3. Service Oriented Aspects for an Architecture Framework 86

This requires that current registry specifications (like UDDI) need to be extended with

additional information to accommodate the QoS parameters.

Another challenge in the automatic composition of Web services is whether those ser-

vices are composable [149]. Composability refers to the process of checking if Web ser-

vices to be composed can actually interact with each other, i.e, that is, if the associated

message interchange protocol among them is compatible. This requirement means that

the message syntax and semantics should be compatible and deadlock-free. When more

and more services are offered and advertised in repositories, there are more chances of

satisfying a service demand by composing existing services. However, mediation at the

protocol level (using a Mediator component) might be required to solve matchmaking

conflicts at the message/conversation level [157].

3.5.2 Orchestration and Choreography

But, Web-Services composition is a highly complex task especially when the number

of services increases. Manual processing of all workflow is not a practical approach.

Composition rules deal with how different services are composed into a coherent higher

level service. In particular, they specify the order in which services are invoked, and

the conditions under which a certain service may or may not be invoked. This compo-

sition could be static or dynamic [158]. Two possible approaches for the static service

composition called Orchestration and Choreography are normally studied [123].

Orchestration and choreography describe two approaches to create business processes

from composite Web services. The definitions of these terms tend to overlap but Peltz

[123] illustrates their high level relationship as indicated in Fig. 3.12. Orchestration

combines available services adding a central coordinator (the orchestrator) which is re-

sponsible for invoking and combining the single sub-activities. The interactions occur

at the message level and include business logic and task execution order spanning appli-

cations and organizations to define a long-lived, transactional, multistep process model.

Chapter 3. Service Oriented Aspects for an Architecture Framework 87

Orchestration always represents control from one party’s perspective. This differs from

choreography, which is more collaborative and allows each involved party to describe

its part in the interaction. Web services choreography defines complex tasks via the def-

inition of the conversation that should be undertaken by each participant. Following this

approach, the overall activity is achieved as the composition of peer-to-peer interactions

among the collaborating services.

FIGURE 3.12: Service Orchestration and Choreography

Various business process language facilitate Orchestration and Choreography of busi-

ness processes. BPEL, WSCI, and BPML all take somewhat different approaches to

orchestration and choreography [123, 159]. Both BPEL and BPML provide capabili-

ties to define an executable business process, whereas WSCI introduces a collaborative

extension to WSDL describing how to choreograph the available WSDL operations. It

supports message correlation, sequencing rules, exception handling, transactions and

dynamic collaboration. WSCI’s approach is more choreographed and collaborative, re-

quiring each message-exchange participant to define a WSCI interface. In WSCI, no

single process manages the interaction via basic and structured activities. Other specifi-

cation include Web Services Flow Language (WSFL)[160], Web Services Choreography

Description Language (WSCDL)[161] etc. Most of the standards focus on representing

service compositions where the flow of the process and bindings between the services

Chapter 3. Service Oriented Aspects for an Architecture Framework 88

are known a priori. A comparison of BPEL4WS, BPML, WS-CDL, WSCI and DAML-

S composition languages are covered in [162]. It can be seen that none of these methods

support agreements on QoS support in a business to business scenario.

3.5.3 Service Composition Requirements

There are many approaches to Service Composition based on various criteria. A main

classification is based on the stage at which the composition is done - static vs dynamic.

Static composition implies that the composition is chosen, linked and deployed at deign

time. The shortcoming, as evident, is that this approach is too restrictive for updating

older Services, Service definition changes and system redesigns. Dynamic composition,

in contrast, processes the specification that automatically configure at runtime. The com-

position methods can also be classified depending on the basis for composition. Com-

positions could be Model Driven, Declarative [163], Work flow based[164] or based on

AI planning[147].

Service compositions can also be classified based on the entity who chooses the com-

position. It could be manual (done by a human controller) or automated. Automatic

composition generation is a challenge with full automation of dynamic composition be-

ing still a subject of ongoing research [162]. Dynamic and automated compositions

could be possible overcome using semantic web technologies and a survey of dynamic

composition approaches are covered in [165].

Service composition will work only with frameworks designed for it. this contradicts the

vision of interoperability of Web-Services. The lack of a uniform model or framework

by itself is a serious concern to create service composition frameworks, since current

specifications lack additional specifications/capabilities to address sematic extension (in

WSDL for example). Some composition methods have developed their own data struc-

ture for extending WSDL (MAIS for context based, Onto-Mat service and SHOP2 for

semantic, WebTransact and StarWSCoP for dynamic composition) which is not an ideal

Chapter 3. Service Oriented Aspects for an Architecture Framework 89

approach and induces fragmentation [149]. Most established methods lack semantic

description and composition capabilities.

Component Model

A service composition produces a composite Service from component Services. In a

service composition, each component service should be able to be defined in a structured

way to identify its nature [93]. As a general requirement, component model should be

able to describe the type of component services and service interface. Also, a different

but related nomenclature puts Service selection models that deals with static and dynamic

bindings (design time or runtime).

Orchestration Model

Orchestration describes the way in which different services can be brought together into

a coherent composite service to provide a value-added service. Control flows specify the

order in which individual operations of services are executed, and the conditions under

which a certain service may or may not be invoked [93]. One composition language

should provide the control constructs to define logic over a set of service interactions.

To support a variety of practical composition requirements, control constructs in many

aspects should resemble a programming-language. Specifically, the control construct

should be able to break up the flow of execution by employing decision making (if-then-

else, switch), looping (while, for), and branching (break, return, continue), enabling the

composed service to conditionally execute particular operation. Therefore, control flow

is one of the essential requirements for service composition.

This model defines the order and conditions in which the Web-Services are invoked,

using process modeling languages like UML activity diagrams, Petri-nets, state charts,

Π-calculus etc [149].

Chapter 3. Service Oriented Aspects for an Architecture Framework 90

Data and Data Flow Model

Service components interact with each other by exchanging data which should be defined

and accessed in an explicit ways [93]. From service composition point of view, data

flow refers to the flow of information in a composed service. One composition language

should provide means to define data, to describe how data can be exchanged between

component services being composed, and to describe inputs and outputs of the composed

service.

Error Handling and Transactions

It is desirable for a composition system to offer an efficient and effective error han-

dling and compensation mechanism. Such mechanism will help to identify faults (i.e.

error handling mechanism) and undo work that is partially or successfully completed

(i.e. compensation mechanism). When error occurs during execution, the system can

deal with exceptional behavior to guarantee system stability. Transaction models defines

which transactional semantics can be associated to the composition. Exception han-

dling models defines handling exceptional states during execution without service being

aborted.

Quality of Service (QoS)

Non-functional QoS like timeliness, security, dependability etc. With the increase of

Web Services as a business solution to enterprise application integration, the quality of

service (QoS) offered by Web Services will become more and more important for service

providers and their partners. A better QoS for a Web Service will make it more com-

petitive than others. Therefore, it is desirable to carry the quality of service information

which is a key non-functional property for service composition.

Chapter 3. Service Oriented Aspects for an Architecture Framework 91

3.6 Summary

This chapter took a closer look at the term ‘Service’ and important aspects that need to

be taken into account when creating a new Service Oriented Architecture. Especially the

way how Services are chosen and described as basic building blocks will influence the

composability and orchestration of future applications.

A Service Oriented approach certainly adds flexibility and better application support.

On the other hand, many basic mechanisms like dynamic composition, semantics etc

are not yet standardized. Therefore, the discussion of a future Internet architecture is

important to understand key requirements for the development of SOA mechanisms and

standards.

CHAPTER 4

A RELATIONSHIP ORIENTED SERVICE

ARCHITECTURE (ROSA)

This chapter explains the proposed architecture and related Services.

A description of how the mandatory services fit together to form an

implementable network architecture is also given.

Moving away from the layered abstraction, we have identified Service Orientation and

Standard Interfaces as an approach for abstraction. The concept of Services encap-

sulating functionality provides us with an elegant and flexible concept. What is nec-

essary now is to outline the fundamental set of principles that enables us to tie these

Services together in a simple and standardized manner to form a coherent architecture.

The functions, which formed the basis for the original Internet becomes functionalities

implemented by Services within our architecture. For example, the connectivity across

heterogenous networks, one of the basic requirements of IP based networking can be

provided by a single service, for example, a Connectivity Service.

92

Chapter 4. The Relationship Oriented Service Architecture 93

A reference architecture forms an important step in realizing a reference model and sub-

sequently, a architectural implementation [113]. The reference architecture defines the

structure of systems, essential building blocks, their responsibilities and their collabora-

tion. In discussions related to the European perspective of the future Internet, Stricker et

al[166] refers to three types of reference architectures:

Functional Reference Architecture which separates the functionality into logical func-

tional boundaries (or concerns). Their collaboration, the data flow, the responsibil-

ities and dependencies are also specified.

Logical Reference Architecture where the structure of the architecture is defined using

components and layers, together with their hierarchy and communication depen-

dencies. No particular implementation technology is specified.

Technical Reference Architecture defines the implementation details of components

and refers to specific technology to realize them. Several Technical Reference

Architectures can be derived from a single logical Reference Architecture.

In this work, we focus on the Functional Reference Architecture based on Service Ori-

ented approaches. We also refer to the Logical Reference Architecture within a limited

scale, where further refining is warranted. Wherever possible, we also indicate the spe-

cific technology that can be used to implement the described component or Service, but

these do not form a complete technical Reference Architecture. We will specify the

Functional Reference Architecture by separating the functional range of the network

architecture into logical functional boundaries.

The most important aspect of such an approach is the definition and scope of the services

that the architecture presents to applications and to other services with in the domain

boundaries. The services that make up the architecture (which are later composed to

provide networking as a Service) should be elaborated with definition, functionality,

description and design. The principles of service design in SOA is not a new topic [5].

The methods have been tried and tested in various enterprise scenarios over the years.

Chapter 4. The Relationship Oriented Service Architecture 94

But, designing services using this methods to cover the Internet as a whole, let alone the

network architecture of the future warrants much more attention than enterprise services.

The loose coupling and abstraction principles [5] which are characteristics of services to

be designed within a service oriented framework provide us leeway in this process.

4.1 Principles for Architecture Composition

We codify the design axioms for our new approach in the following list:

• The architecture must be layer-less.

• The abstraction uses Services following a Service Oriented Approach.

• All Services must be handled in a uniform way.

• The architecture must accommodate the concept of administered domain bound-

aries.

• Accommodate and handle different standards used by different domains.

• Allowing migration towards new Service capabilities and accommodate Service

virtualization.

• Allow for transition from past and to future architectures.

We propose a layer-less architecture comprised of Services (Fig. 4.1). The functionality

of the Services and their dependencies may vary, but all Services will conform to the

same standards of specifying their capabilities and how to invoke them. Services with

varying scope, for example Communication Services, Enabling Services or Application

Services are all handled equally. A network abstracted as a service or a collection of

services has significant implications. Continuing from the previous section, where we

discussed the rationale behind our approach, we outline the architecture of our approach

Chapter 4. The Relationship Oriented Service Architecture 95

FIGURE 4.1: Network resources abstracted as a Service

in this chapter. While, the approach of Service Orientation and Network as a Service

might not be by themselves new paradigms, our approach of top down abstraction of

Network architecture based on Service orientation is unorthodox, and arguably com-

pelling enough proposal to warrant a serious discussion.

Various other approaches using SOA use specific models to compose together individ-

ual services, like business rules [167] or predetermined models [149]. These can be

restrictive to a more generic approach such as the one proposed in this thesis. Com-

position based on business rules is ideal for intra-enterprise or inter-business service

composition, but this approach requires agreement on the specific business processes

and workflow prior to compositions. The model based composition is much more suited

to static compositions, where the models are predetermined and not generated on the

fly. For a dynamic environment with changing service landscape, a much more dynamic

principle needs to be isolated to form the basis for composition. We identify two such

principles and argue that these can form the fundamental approach for Services to be

brought together to form a usable framework. The principles we propose are Meeting of

Domains and The concept of Relationship.

Chapter 4. The Relationship Oriented Service Architecture 96

4.1.1 Visualizing Meetings of Domains

When two entities meet (i.e, share a channel capable of exchanging messages) they might

wish to interact with each other. The entity here do not particularly refer to a node, a

device, a piece of software or a service. We define an entity (within our architecture)

as anything that offers or consumes a Service and has a well defined boundary with a

single point of access or contact. Thus, an entity here could be a Device or a business

domain or a composite service etc. The boundary could be physical, ownership, service

type etc. We would like to be agnostic regarding how the intelligence for the service is

implemented. We represent the wish to communicate of two domains (with the intent

and ability to do so) as the Meeting of Domains (Fig. 4.3(a)).

Domains can be visualized as a region (physical or virtual) characterized by a common

theme and restricted by boundaries. A generic example for such a domain could be a

Business Entity with business boundaries, offering specific services and characterised

by business processes. This approach has been used elsewhere as TurfNet1 [168] and

Ambient Networks [35], although in different contexts. We foresee administrative (in-

cluding possibly legal) control as the main criteria that outlines the domain boundary.

The functionality offered by a domain is represented as Services within the domain as

visualized in Fig. 4.2. Domains gives us a generic enough platform boundary within

which the services can reside and interact. For example, a transaction between services

of different business entities (B2B) naturally classifies into a meeting of business do-

mains (where the boundary is defined by business ownership). A physical device forms

a domain with the common characteristic of a physical boundary and (usually) a sin-

gle ownership. In this case as well, connecting two devices together can be reduced to

meeting of two domains as illustrated in Fig. 4.3.

This Concept of Domains can be extended recursively for already collaborating domains,

i.e, when two domains meet and agree upon the various aspects of service sharing and

usage, their collaboration can be again abstracted further as a single domain, which being
1Defined as a ‘completely autonomous network domain’.

Chapter 4. The Relationship Oriented Service Architecture 97

FIGURE 4.2: Reducing administrative regions and functionality into Domains and Services

the collection of capabilities that they together can perform. The implications of such

recursive nature derives from the composability of services within an SOA. There are

two basic requirements for the meeting of domains view. One of them, as mentioned

before, is the necessity of a common communication channel. The other requirement

is the presence of a well known entity which speaks a common language to initiate the

bootstrapping of the communication environment 1. This entity presents a well know

address (to be reachable) and a well described service (to be usable) to form the starting

point for further interaction between the domains (see Figure 4.3). This implies that the

common point of interaction is a well known service which fits in well within our scope

of a service oriented framework. In such a scenario where a well defined contact point (a

service) exists, the meeting of domains starts with the exchange of information between

these well known services.
1This is analogous to various protocols using a well known port number to initialize connection

Chapter 4. The Relationship Oriented Service Architecture 98

(a) Domains meeting

(b) Abstracting with a Well-known Common Service

FIGURE 4.3: The concept of Domains Meeting

Chapter 4. The Relationship Oriented Service Architecture 99

FIGURE 4.4: A Domain and its Relationship Manager(RM)

The Meeting of domains can vary in scope like Merging of Domains where the meet-

ing domains loose their individual identities and form a new merged domain1 or Inter-

connection of one domain’s capabilities to another domain while preserving individual

domain autonomies2. The meeting of domains forms the starting point for the central

architectural principle of composing a Domain network. Domain Network composition

allows communicating Domains to automatically negotiate inter-working agreements

and policies using which they establish an inter-domain communication. Our archi-

tecture maintains the abstraction through Services as the absolute paradigm and hence

do not differentiate control functions from other Services. The ‘Relationship Manager’

(RM)3 of a domain (Fig. 4.4) is responsible for the bootstrapping, negotiation and estab-

lishment of a relationship with another domain (through it own RM). This indicates that

the Relationship Managers of collaborating domains form a control plane, coordinating

traditional control functionalities in a network Fig. 4.5. This common common Service

replaces the need for high level control Interface for the architecture. The domain itself

can be considered as a Service by other domains (or even Services) prior to Domain

Network composition, with capabilities published/negotiated by the RM. The domain

Services are administered by this coordinating Service, which presents an overview of

the overall capability of the domain. Iteratively, a domain like an enterprise domain or
1Similar to Horizontal Composition in TurfNet[168]
2Analogous to vertical Composition in TurfNet
3See subsection 4.3.1 for more details.

Chapter 4. The Relationship Oriented Service Architecture 100

FIGURE 4.5: The control plane indicating flow of control information among RMs

the web or a device can have subdomains delineating certain functionality or adminis-

tratively delegated control. Such sub-domains are administered by a coordinating sub-

function within the scope of that sub-domain. This Service can as a point of contact for

that sub-capability or Service. At domain level, these sub-functions are coordinated by

the domain level RM. For example, a camera with multiple imaging capabilities (a high

resolution camera, a low resolution front facing camera and an IR camera) can present

its functionality to other Services via a combined Imaging Sub-Domain, accessible as

a single imaging Service. A single point for accessing various imaging capabilities is

accomplished through the sub-domain RM (RM2 in figure)Fig. 4.6. The imaging sub-

Services can provide access to each of these capabilities. These capabilities can be

grouped under an imaging Service with each sub-Service encapsulating each capability

and coordinated by a sub-function (for that sub-Domain). External Services will still

have to negotiate with the Domain RM (RM1 in Fig. 4.6) to access its Services includ-

ing any imaging Service. This indicates that the mobile device can share its imaging

capability (if it allows) with another domain (another mobile device) which might not

have the capability. A simple example is to use another Mobile Phone’s camera to take

pictures.

Conversely, collaborating domains can agree to merge their capabilities as being pre-

sented by a single domain with a single point of contact (The collaborating RMs can

decide to delegate or replicate their functionality among themselves). Depending on

Chapter 4. The Relationship Oriented Service Architecture 101

FIGURE 4.6: A Mobile Device with Imaging Services as a Sub-Domain

the Service implementation standards within the meeting domains, additional Services

might be needed to facilitate the actual exchange of information. If the Domains follow

different protocols and naming conventions, for example, then additional Services like a

Translation Service are necessary to interoperate. This Service is transparent if the Do-

mains implement the same standards, implement the same protocols and use the same

namespace, for instance. We discuss the Services required for network composition

within domains in subsequent sections.

End to end communications across this architecture is non-trivial given the nature of

network composition and domains (heterogeneity, isolation via boundaries etc). Certain

domains (routers or ISPs) can offer specialized Services such as connectivity, packet

forwarding, reachability to other domains or even a generic Service which provides

‘connectivity to global Internet’. Other domains (gateways) can offer connectivity to

a very specific set of Services (following policies under a restricted administrative con-

trol). These domains can impose certain restrictions to other domains wanting to use

such Services. Domains can also specify and maintain a ‘Domain Ontology’ to classify

Chapter 4. The Relationship Oriented Service Architecture 102

Services. This can improve Service capability descriptions, dependencies among Ser-

vices, Service Discovery and matchmaking, but will need a translation Service to enable

interoperation with other domains following different ontologies.

RM Discovery and Negotiation

The primary step involved to setup a relation between two communicating domains is

to agree upon the standards, data formats, policies and other conditions. This requires

negotiation between the RMs of the respective domains. The collection of communi-

cating domains with RMs form systems composed of multiple autonomous agents and

negotiation enables them to arrive at a mutual agreement regarding their relationships

[169]. Since, this process creates the connecting environment for the domains, it is nec-

essary that a rich semantic language be available to them to negotiate [170]. However,

there is no single language that forms a standard negotiation language. Besides, the as-

sumption that another RM (thus the domain) speaks a specific negotiation language is

an unsafe assumption. We propose the use of a meta-negotiation language [25, 171].

This initial exchange (Fig. 4.7) concludes with the negotiation language supported by

both domains, the semantics of negotiation, policies applicable to the negotiation and

other related aspects. Once the negotiation language has been agreed upon, the domains

can exchange capabilities, requirements and policies to setup a relation between them.

Once a rich negotiation language has been finalized, the Domains can exchange infor-

mation to establish a ‘relationship’. This relationship forms the basis for all the further

communication among the Services of the domains.

4.1.2 Visualizing Relationships

We define ‘Relation’ as an association among dynamically collaborating nodes, devices

and services in a network, characterized by a ‘relationship metrics’. We propose a frame

work termed ‘Relationship Oriented Service Architecture’ (ROSA)[172] to agree upon a

Chapter 4. The Relationship Oriented Service Architecture 103

FIGURE 4.7: Domain RMs agree on Negotiation Language, ontologies and policies using a
meta-negotiation language

broad vocabulary that will be used to model recurring themes in communication domain

and integration environments. The aim of such a framework is to be able to reference one

or more open specifications or standards for each identified service, that can be used to

implement various version of the service. This is a flexibility available in the SOA. SOA

principles are considered in all aspects of design including interfaces between modules

and the relationship description. This enables us to decouple certain aspects or modules

and develop it independently. Besides, the services provided by some of the modules

can be accomplished by a web based service or remote entity. This would be helpful

in abstracting the network architecture across domains and networks without too much

reworking of the communication network. This should also simplify integration with

existing infrastructure and third party service providers (like standards based trust and

security service providers).

The relationships in the first generation of ROSA architecture is restricted to a few well

defined associations due to technological limitations and to reduce complexity. We de-

fine four types of relationships among domains for ROSA:

Resource Sharing Relationship In this relationship, domains keep control over its own

Chapter 4. The Relationship Oriented Service Architecture 104

Services, and policies are applied within domains. RM acts as a gateway Ser-

vice for communication between domains and exerts control over requests and re-

sponses traversing through it. Example scenarios are domain roaming between two

operators, One domain using a connectivity Service of another domain to access

external resources.

Control Sharing Relationship Domain boundaries remain the same, but RCS can share

control over some of the Services from peering domains. This shared control

means that both domains can advertise these shared Services as available within

their own boundaries. Example scenario could be a business meeting where the

control of a shared whiteboard is dispersed among the participating devices to be

used.

Control Delegation Relationship Control of certain Services within a domain is dele-

gated to another domain. This is an extension of the Control Sharing Relationship

where the Service disappears from the original domain and is available only at the

delegated domain. Example scenario could be using a authentication Service of a

visiting domain.

Domain Merging Relationship A relationship when two domain negotiate and merge

into a single domain (as presented to other external domains), with a union of

Services from both the domains. Example scenarios could be a PAN becoming

a part of the home network or few domains merging to become a larger domain

(during business merger).

After negotiations (Fig. 4.7), Domain A will have a clear understanding with Domain B

(and vice-versa). The information outcome of negotiations include standards, data for-

mats, contexts, domains policies, Services available, Service descriptions and associated

policies, QoS etc. Since we associate and extend the ‘Domains meeting’ concept to all

communications, it is usual for a domain to have numerous relationships with multiple

domains at the same time. A ‘Relationship Database Service’ (RDS) is maintained by

Chapter 4. The Relationship Oriented Service Architecture 105

each domain to store and track relationships1(Fig. 4.8). The RDS functions as a snapshot

for the environment that the domains operates in. Domains can choose to be stateful or

stateless in their relationship with a particular domain. For example, routing domains

(traditional routers) can choose to be stateful of other routing domains only (to pop-

ulate and maintain routing tables) while remaining stateless about the domains which

just request a basic routing functionality. An extension to this is a partially stateful ap-

proach, when some state (preferably soft-state) information needs to be maintained to

provide QoS for a specific flow. It is also possible, following the Service abstraction of

FIGURE 4.8: The domains use a Relationship Database to keep track of associations

domains, to virtualize another domain (with which a relationship has been setup) as a

Service with its boundary. This virtual Service is specified within its Service Repository

using the Relationship descriptions as interfaces, capabilities and policies. It is up to the

domain to maintain a naming format to identify itself and uniquely identify another do-

main. It could be a global namespace such as IP, or a layered naming convention such as

in FARA [41] or HIP identities or AN identities. The domain which identifies itself with

a specific element of a namespace should associate enough information for collaborating

domains to verify its identity.

The overall architecture provides an ‘Intelligent Middleware’ (similar to ESB) manag-

ing the communication, while providing an API towards the applications and managing

connectivity resources independently (Fig. 4.1). In SOA, the actual services are usually
1The format and standards for the relationship entry and the relationship database need further study.

Chapter 4. The Relationship Oriented Service Architecture 106

relatively simple ‘black boxes’ that can be applied in a flexible fashion in a variety of

instances, with focus on minimizing duplication of functionality. While it is not effi-

cient to dictate that all applications orchestrate and construct their own solutions from

the a given set of services, any large scale application can do so via the APIs that these

services expose individually. For normal scenarios, the separation of application logic

from transport logic to make applications communication agnostic can achieved by pro-

viding a higher level aggregate functions of these services via more generic APIs. This

is done via the ‘Relationship Manager’ (RM) 1. We focus on the argument that the given

modules can be composed into a coherent architecture via a single paradigm, namely

Relationships. A relationship description contains parameters (‘relationship metrics’) to

express the nature, context and background of the collaboration.

4.2 Service Oriented Analysis of Network Communication

To propose a network architecture within the structure of SOA, it is necessary to define

a collection of services and define the environment (or a framework) within which they

function. This is a non-trivial exercise, given that our intention is to define a generic

architecture for the next generation communication networks. To arrive at such a ar-

chitecture, we inspect the highest level abstraction required for any communication. A

service oriented analysis of communication architecture need to be done to compartmen-

talize capabilities and functionalities into clearly defined functional boundaries. These

can be later assigned service boundaries, keeping with the design principles discussed

in section 3.4. This is perhaps the most important phase of the architectural design. The

architecture being specific to communication domains, other design principles need to

be incorporated such as tussle, business borders etc.
1This concept is covered in subsection 4.3.1

Chapter 4. The Relationship Oriented Service Architecture 107

Service Oriented analysis of network communication is necessary to identify features

that need to be divided into services and iteratively analyze each service to identify ca-

pabilities. The traditional concept of networking is exchange of data between physically

separate entities (traditional nodes). This implies that such approaches cannot be used

to address physically co-located networks (in-device) with the same approach as the

geographically separated ones. Our approach with the help of service abstractions facil-

itates a uniform approach to this problem. We partition the functionalities required with

in communication networks into service boundaries using criteria described in subsec-

tion 3.3.2.

A representative set of abstract Services that can be used within our framework is pre-

sented in Figure 4.9. We regard this as a good set of Services for ROSA. However,

thanks to the SOA approach, the set of Services is extensible and adaptive to a domain’s

needs. A brief description of the functionality and logic behind the Service boundary

follows. The conceptual blueprint for all planned services is together indicated in the

framework and is indicated as the Service inventory blueprint. The services that are in

the framework are evolved via the Service Modeling Process which is a sub-process of

the Service Oriented Analysis (section 3.4). The end result of the Service Modeling Pro-

cess is the gradual creation of a collection of Service Candidates1. The Service Oriented

Design uses a set of predefined service candidates from the service inventory blueprint

from which actual physical service contracts are derived. The Service Candidate in the

service oriented design represents a conceptual service within the inventory blueprint,

whereas the Service indicates a physical implementation2.

A selection of ‘building block’ services (service candidates), which can be orchestrated

to form higher level services is depicted in Fig. 4.9 to visualize the framework. All these

services candidates have certain set of capabilities, carried out using some solution logic.

The descriptions of the capabilities that can be accessed by another service is expressed
1A Service Candidate is a conceptual service definition which represents a usable modular logic to solve a

unique problem.
2Since, one definition essentially points to another, we use these terms interchangeably; differentiated only

when it is necessary.

Chapter 4. The Relationship Oriented Service Architecture 108

as its service contract. The name of services depend on the service models (task, entity

or utility) and the process/function it will be automating1.

We specify two kinds of mandatory services within this architecture. One kind of service

implements some logic internally and the second implements an interface to an external

logic. To the users of the services, this might be oblivious but is worth noting with

regards to the services listed below. We partition the requirements in communication

FIGURE 4.9: ROSA Service Inventory

domain into Services and present them as a list below. These Services form the Service

framework for the new architecture. A collection of these functions (or a composition of

the related Services) can satisfy the application requirements.

Alert: Dissemination of alerts, updates or announcements.

Authentication: establishes the identity of resources (nodes, services etc.).

Authorization: establishes the rights and permissions to use resources in a ceratin

context.
1For better human readability, the operations for all services should be based on the format verb + noun and

exclude the name of the service

Chapter 4. The Relationship Oriented Service Architecture 109

Calendar/Scheduler: Provide/share a system wide calendaring and scheduler for

user/applications/other services.

Charging: Manages charging related functions for applications.

Connectivity: Provides information regarding the status of connectivity resources

available with rich parameters like speed, cost, reliability, trust etc. Abstracts in-

terfaces available for communication.

Contact Management: To manage a system wide repository of contacts (other

users) with rich metadata.

Context: Maintains information about the nature of the activity a user is currently

engaging in, with relation to information such as role, location, presence/status etc.

Also supports registering and deregistering of context by applications.

DRM: Supports the allocation and application of rights policies against resources

through standards (e.g. REL) to determine access.

Federated Search: Supports the processing of search across multiple repository

types, such as a combined search using SRW, XQuery and Z39.50 protocols against

repositories maintaining a range of different metadata formats. Aggregation and a

unified presentation format can be supported.

Forwarding Manager: supports different forwarding algorithms to provide suit-

ability of next hop for transmission.

Group/Role management: To manage group/community information, group mem-

berships, credentials and roles for access management.

Harvesting: Supports harvesting copies of some or all metadata and/or resources.

History: Long term preservation and managed destruction of metadata about con-

nectivity, data, transactions etc.

Chapter 4. The Relationship Oriented Service Architecture 110

Identity Management: manages the creation, registering, deregistering and persis-

tency of identifiers for resources such as local labels or HITs [51].

Identity Resolution: Use identifiers and other metadata to provide current location

or redirection locations for resources. Also supports cross-mapping of values in

different identity namespaces.

Location Discovery: supports the proximity awareness of a node, by providing

support for own location, neighbourhood discovery and related information.

Logging: Provides generic logging services for applications/debugging.

Messaging/Chat: Support for one-to-one or multi-entity messaging and chat man-

agement. also supports broadcast of messages to users or groups.

Metadata management: Supports the management of metadata for resources.

Metadata Schema registry: Supports the registration of metadata schemas and

retrieving definitions of entities.

Policy: supports access to, creation and management of rules and policies, to facil-

itate access management or activity processing. This Service maintains business

constraints within and across domain boundaries.

Presence: Provides information about the status of a resource or user.

Profile: Supports maintenance of machine readable information on user or appli-

cation preferences.

Protocol Manager: Encapsulates available protocols for late-binding and makes

available a list for late binding.

Remote Storage: Supports access to remote/decentralized storage facilities like

‘Cloud’, SAN etc.

Chapter 4. The Relationship Oriented Service Architecture 111

Reputation: Support creation, management and use of secondary metadata such as

user ratings and annotations. This Service can use data created by the Trust/Risk

Service as an input and provide ratings of Communication Services to other Ser-

vices.

Search: Fast search implementation for a single query grammar over a single

repository (mostly local).

Service Discovery: Encapsulates various service discovery protocols to be used

by applications or relationship manager. The Service Discovery module can query

over metadata that describes services.

Service Registry: Supports maintenance of a repository of available services.

Translation: Supports transformation of information between incompatible for-

mats.

Trust/Risk: Manages Trust/risk scores associated with resources including cre-

ation, updating, and evaluation of such scores

The core task of creating the above described framework is to identify a broad set of ser-

vices that need to be defined (called ‘factoring services’). We consider factoring to be an

ongoing process as experience informs the choice of services, identifies shortcomings

and indicate the services that require creation, discount, splitting or joining. We pro-

pose Services here as a definition of function and scope. The functional focus provides

the capacity to be specific about the range of expected behaviour of individual service,

while being agnostic with regards to the implementation details or design of solutions.

While this definition is far from sufficient to implement a network architecture, it pro-

vides as a starting grid to more detailed specifications and a reference model. From the

abstract models of services, it is possible to derive XML schemas that define data to be

exchanged. This approach enables specific SOA standard based definition for services

to be implemented (as a webservice, for example). Such a framework is realized in an

Chapter 4. The Relationship Oriented Service Architecture 112

application with an interface to access a service that has commonly agreed operation

definitions (e.g. WSDL) and data structures (e.g XML schemas) [98].

Based on the above patterns and Web-Services based frameworks like WebTransact

[173], we derive the following conclusions. Any inconsistencies arising from the differ-

ences in competing protocols or data types (semantic dissimilarities), a Manager Service

to abstract them should be the norm. These Services (which together form a Mediation

layer as in WebTransact) provide a homogenizing layer between the Web-Services and

the compositions. Semantically equivalent Web-Services can be aggregated as a new ab-

stract Service exposing a homogenized interface of those Web-Services, facilitating Ser-

vice compositions on top of the abstract Service. For example, to conceal differences or

inconsistencies in data types, security policy or context of Web-Services, a communica-

tion manager is required to translate messages between different transport protocols like

HTTP or SMTP. A security manager Service can traverse firewalls and handle authenti-

cation and authorization. A content manager can manage conversions between different

document representations or data types. QoS is an area of varied Tussle. A compos-

ite Service (QoS manager) to monitor QoS metrics of component WS is necessary to

delegate and manage sub-Services dealing with specific parameters and varying evalua-

tion logic. These abstraction form the Logical reference Architecture for the proposed

Architecture and we call it Relationship Oriented Service Architecture (ROSA)[172].

4.3 The Relationship Oriented Service Architecture

We propose a logical framework termed ‘Relationship Oriented Service Architecture’

(ROSA) to agree upon a broad vocabulary that will be used to model recurring themes

in ICT and integration environments [174]. The aim of such a framework is to be able to

reference one or more open specifications or standards for each identified service, that

can be used to implement various versions of the service. This is a flexibility available

in the Service Oriented Approach (SOA). SOA principles are considered in all aspects

Chapter 4. The Relationship Oriented Service Architecture 113

of design including interfaces between modules and the relationship description. This

enables us to decouple certain aspects or modules and develop it independently. Besides,

this also implies that the services provided by some of the modules can be accomplished

by a web based service or remote entity. This would be helpful in abstracting the network

architecture across domains and networks without too much reworking of the commu-

nication network. This should also simplify integration with existing infrastructure and

third party service providers (like standard based trust and security service providers).

We can observe the scalability and flexibility of our architecture in the logical reference

architecture. Different logical workflows can be composed to form different logical ar-

chitectures and can later be implemented to form reference models and ultimately work-

ing solutions. The smallest common denominator Service is the Relationship Manager

since it handles the basis for the architecture compositions, i.e, Relationships. Additional

Services contribute the necessary functionalities desired from the architecture. We cover

two such reference architectures in this section. One is a simple Network Architecture

which can address basic networking functions, using pre-existing Services to provide

matching queries. The second instance of the architecture provides a much more com-

plex snapshot of a network Architecture where Solutions to queries which do not have

pre-configured solution Services are composed on the fly out of existing available com-

ponent Services. The latter case requires more advances in technologies than that is

currently available.

As discussed previously, Services can be differentiated based on their functionality,

scope and dependencies. The most useful basic Services addresses a single task and

is very reusable. However, the functionality attached to these services are minimal

(mostly, a single purpose). A solution to common network tasks require many such

Services working together as components to form a much more complete albeit complex

composed Service. Such composed Services can be used by Applications to implement

their solution logic. The interfaces to all types of Services remain the same, but the

composed Services provide a much more usable Service to the applications (in our case,

via the RM). From the concept of a domain of Services, as covered in Figure 4.3, when

Chapter 4. The Relationship Oriented Service Architecture 114

two domains meet, the RM forms the well known point of initial contact. To share the

domain Services with another domain (or in our architecture, to establish a relation-

ship), a significant quantity if information needs to be exchanged. This includes, but

not limited to, list of capabilities and the list of Services available within the domain

boundaries, parameters and additional information attached to these Services, policies

and other usage related criteria and so on. If a domain (or a Service within that domain)

requests a functionality from another domain, then a user/provider relationship needs to

be setup between the domains. This involves exchange of queries, replies, policies and

other negotiations. We delegate the responsibility of negotiation handling to a dedicated

Service named Negotiation Manager1. We will inspect the essential Services required to

compose the simple network architecture below.

4.3.1 Relationship Manager

The relationship manager (Fig. 4.4) is itself a service which orchestrates other available

services and makes available APIs to accomplish most of the common services that ap-

plications need. The RM fits the numerous service components into a logical process

(Orchestration) and facilitates the translation of data flow between services that may in-

terpret a term differently. RM helps to avoid the ‘monolithic silos’ traditionally formed

when implementing a complete usable service. The RM orchestrates the services for

processes (on behalf of applications), based on contexts. Each entity communication

space must provide a set of objects, the services of which an entity, process or indi-

vidual, can use to achieve his goals. Entities always communicate with objects in their

environment according to a certain context2.

By being a service by itself, the RM is also replaceable. However, to be truly modular

and avoid tussle in the core, the relationship manager should be minimal, analogous to a
1See section 4.4.1 for more details.
2A context represents a ‘universe of discourse’ in an entity communication space. It defines relationships and

causalities of an entity to and between particular objects of the relevant communication spaces [175]. The context
is expressed in the context service and the RM contains the logic to use it for orchestration.

Chapter 4. The Relationship Oriented Service Architecture 115

micro-kernel in an operating system. This means that all useful services should be imple-

mented outside the RM, or in services space and the only service that the RM provides

is a meaningful orchestration. However, even for environments where the applications

directly manage the orchestration, RM must be present for bootstrapping purposes.

From a different perspective, the RM virtualizes the available services to the applica-

tions. This is similar to the concept in Fig. 2.4(b) where the Service Bus virtualizes the

candidate services from the requestor’s point of view. The RM can be thought of as

a local instantiation of a Service Bus, which simplifies the search, query, binding and

access of other services within the ROSA framework.

RM can operate in two modes, the Broker Mode (RM(B)) and the transparent mode

(RM(T)). These modes also influences the architecture of the composed network. In

RM(B), all external requests to the domain are routed, interpreted and handled via the

RM exclusively (Fig. 4.10). This is the simplest option for an external application/ser-

vice and requires the most intelligence from the RM. However, this mode can be inef-

ficient for many large scale applications that want to use individual Services available

within a domain and have enough intelligence to compose them. The latter can request

the RM(T) mode (Fig. 4.11), where the RM is in observational state and do not inter-

cept the service requests from external domain (a certain amount of monitoring is still

warranted to ensure security and enforce domain-wide policies). RM is the only Service

which maintains and overview of all resources in a domain and is able to apply policies

in using them1.

The requesting Service (User) initiates a request for relationship, by querying a well

know Service (here, the RM). The RM replies to the query with more information on its

own capabilities and Domain wide mandatory profiles (applicable to itself as well). This

step initiates further negotiations between the User Service and the RM.
1SIP offers similar flexibility in using Services

Chapter 4. The Relationship Oriented Service Architecture 116

(a) RM in Broker Mode (RM(B)

(b) Message Sequence for RM(B)

FIGURE 4.10: RM in Broker Mode - RM(B)

Chapter 4. The Relationship Oriented Service Architecture 117

(a) RM in Transparent Mode (RM(T)

(b) Message Sequence for RM(T)

FIGURE 4.11: RM in Transparent Mode - RM(T)

Chapter 4. The Relationship Oriented Service Architecture 118

4.4 Instances of ROSA

In this section, we demonstrate how a network architecture can be composed out of the

framework components discussed till now. Given the numerous choices that can be made

for Services and their combinations, there could be any number of network architecture

instances that can exist. However, the basic approach of deriving the architecture from

the framework remains the same. The main steps that need to be done is the compo-

nent Services within a domain, logical structuring of the Services around RM and the

relationships the domain can hold with other domains. Once these requirements have

been formalized, the following models are specified to clarify how the domain handles

Service requests from Service Users:

• Component model

• Orchestration model

• Data model

• Transaction and error handling

• Quality of Service model

These models specify how the Services fit together, how they are invoked (sequence,

for example), the data formats used and how to manage and recover from errors and

exceptions, among other things. These can be specified using syntax based standard

languages (for example, BPEL) or semantic languages (for example, DAML-S) or even

a proprietary language1 and are domain dependent.

The ROSA architecture is flexible enough to accommodate domains with varying Ser-

vice profile. A router domain’s priority is to forward information based on a lookup

table (traditional router functionality). An extended router with QoS guarantees (or even

DPI capabilities) can have more Services incorporated than just lookup and forward. A
1This practice is not recommended since it leads to inefficiencies and maintenance issues.

Chapter 4. The Relationship Oriented Service Architecture 119

mobile phone can have a variety of other Services, but can also incorporate the routing

functionality (to act as an intermediate router in mobile ad-hoc networks, for instance)

by implementing corresponding routing Services.

We present the first steps in composing two instances of ROSA, the first generation

ROSA and the next generation ROSA. The first generation ROSA is proposed with cur-

rent technological limitations in perspective.

4.4.1 ROSA (Mandatory) Control Services

Some of the control Services in ROSA are mandatory since they are necessary to perform

certain recurring functionality. We list the mandatory ROSA Domain Control Services

(DCS) below:

Negotiation Manager (NM)

To establish a Relationship and further to enable the Service User to find services which

best fit to its requirements (functional and non-functional properties), service users should

negotiate and communicate with RM (in RM-B mode) or RM and numerous available

services (in RM-T mode). Non-functional requirements of a service execution are usu-

ally QoS parameters, and are expressed and negotiated by means of Service Level Agree-

ments (SLAs). SLA templates represent empty SLA documents with all required ele-

ments like parties, SLA parameters, metrics and objectives, but without QoS values.

Since it is possible that the communicating Services might not have prior knowledge

about the negotiation protocols before entering the negotiation or that they have match-

ing SLA templates. This is specifically true for environments where services are dis-

covered dynamically and on demand. Hence, meta-negotiations are required to allow

two parties to reach an agreement on what specific negotiation protocols, security stan-

dards, and documents to use before starting the actual negotiation [171]. The Negotiation

Chapter 4. The Relationship Oriented Service Architecture 120

Manager assists the RM with meta-negotiations, SLA mappings and if necessary, actual

negotiations before the Service is actually invoked and used 1.

FIGURE 4.12: A first generation ROSA instance (Domain Control Services)

Relationship Database Service (RDS)

This Service interfaces the relationship database to other Services. The relationship

database is populated with the established domain relationships with other domains.

This Service also enables policy management since domains can define relationships for

other specific domains (such as interactions rules and security requirements) prior to ne-

gotiations. The format and model for relationship representation needs further research

and standardization.
1More on various implementation details can be found in [25]

Chapter 4. The Relationship Oriented Service Architecture 121

Resource/Service Manager (RS-M)

The default service registry standard used in Web-Services is UDDI . But, as service

capabilities continue to increase, the metadata along with the discovery and description

mechanisms are susceptible to change. To accommodate for this evolution, we interface

the service registry via a Service Registry Interface Service, whose purpose is to provide

a uniform interface to heterogenous service registries or databases available within the

domain.

The Resource Manager could directly provide generic abstraction for various network

technologies used and the network infrastructure. Or these functionality could be sepa-

rated and managed by a Connectivity Service that interacts with the underlying connec-

tivity resources and provide a generic interface (Fig. 4.12). Other Services can utilize

the connectivity resources though the technology independent methods provided by the

Connectivity Service. Further, applications can use the RCS to establish, maintain and

terminate end-to-end connection across domains.

Translator Service (TS)

The Translator Service (TS) converts between various representation formats in order

to aid flexibility and aid modifiability for Services and standards. This service trans-

forms/translates between the external language used by the participants and the internal

language used by other services such as the composition generator. Each step/service

might require different protocols and procedures.

This Service which provides request and language translation facilities distinguishing

and independent evolution of external and internal service specification languages. Ser-

vice users can specify requirements in a relatively easy (descriptive) manner and increase

accessibility. Internal languages (for instance, input to the Composition Generator in

next generation ROSA) need to be more formal and precise for automatic processing.

Chapter 4. The Relationship Oriented Service Architecture 122

An example of this operation can be transforming input from users in WSDL or DAML-

S to a language for composition generation.

4.4.2 ROSA (Optional) Control Services

These Domain Control Services described above follow the SOA paradigm and are dis-

tributed and modular. While the mandatory DCSes are required to make the ROSA

flexible, more optional Services could be incorporated to vastly improve various factors

of the architecture like efficiency, security, reliability etc. Additional domain specific

Services add completeness to the architecture. Some optional Domain Control Services

are mentioned below:

Service QoS Certifier

This is an optional Service, which significantly improves the reliability of the architec-

ture. Every Service follows a life-cycle of its own, as an independent entity. The func-

tionality (or the Quality)of a Service can vary over time or context. It is essential to have

an arbitrator which can clarify the available functionality, the accuracy of Service claims

and Other QoS claims put forth by the Service provider. We propose a QoS Certifier

(Broker) Service (ROSA-QC) to handle this functionality. The parameters verified by

this Service includes performance and dependability related attributes, especially non-

functional attributes like cost, payment. A provider and Service independent approach

for evaluation of QoS attributes of Web-Services is covered in [176]. Apart from ver-

ifying QoS claims, this Service can enhance trust and reliability of compositions and

Services available by incorporating reputation as a parameter within its considerations.

Since, ROSA-QC Service is a Broker Service, it can utilize third party reputation and

trust providers as delegates. Reputation is a subjective assessment of a characteristic or

an attribute assigned to one entity by another based on observations or past experiences

[177]. The ROSA-QC Service relies on claimed provider qualities and past interaction

Chapter 4. The Relationship Oriented Service Architecture 123

experience to establish trust among known and unknown participants. Even the reputa-

tion of newly created or known Web-Services can be evaluated using various techniques

[178].

Composition Generator

In the real world, it is possible that every query cannot be fulfilled by an exact matching

Service. However, if the query is broken down into a series of simpler requests, it might

be possible to satisfy each with appropriate Services. This implies decomposition of the

request into sub-requests to find appropriate matching solutions. Another option is to

build a composite Service out of the Services available within the domain to provide a

solution for the request. This means that Service composition can be part of the solution

process. For a flexible and efficient network architecture, automatic on-the-fly composi-

tion generation is necessary to produce meaningful composite Services out of what could

be possibly numerous available Services. This function is handled by the Composition

Generator (CG). For each query, the CG tries to generate a plan that composes the avail-

able services in the service repository to fulfill the request. [179] discusses a method for

dynamic selection of optimal service from several semantically equivalent Web-Services

based on performance criteria. Similar work is also carried out by Oldham et al in [180],

but where matching is based on SLA semantics.

There are numerous approaches to create compositions out of component Services. One

is eflow (graphs). Another approach uses Polymorphic Process Models (PPM) where

composition is modeled as state machines and transitions; where dynamic composition

is enabled by reasoning based on state machines[181]. Another approach using AI plan-

ning (Situation calculus, PDDL1, rule based planning, theorem proving etc[181].). The

specific method by which the compositions are achieved is beyond the scope of this

work.
1PDDL is a widely recognized and standardized input for planners.

Chapter 4. The Relationship Oriented Service Architecture 124

Composition Evaluation/Verfication

This service is essential to implement an automated and dynamic composition method

within the Composition Generator. The Composition Generator can produce more than

one composite Service fulfilling the request or requirement. This is possible since many

Service present in the repository can have similar functionality. To select the most ap-

propriate composite Service, the different options are evaluated based on non-functional

requirements and attributes such as QoS and Security. Without delving into implemen-

tation details, there are many methods that can be utilized such as assigning various

weights to various attributes and ranking the compositions. Another approach is to ex-

press the QoS requirements in an appropriate language and compare the compositions

for match or compatibility.

The composite service (or services) proposed by the composition generator needs to be

checked for its correctness with regards to constraints and context, and to verify the va-

lidity of the proposed solution. While this could be achieved within the composition

generator itself, it is safe to abstract as a new service since model checking and veri-

fication methods are dynamic and could be provided independently of the composition

approach, model or methods. This service can will require the composite service condi-

tions (input, output and states), user and component service requirements (input, output),

domains policies and parameters derived from information such as profiles and contexts,

to name a few. Evaluation of semantic based service composition [182]. In a next gener-

ation ROSA domain, the compositions are generated automatically. It is ideal to verify

the correctness of such compositions before executing them. However, the current state

of verification technology is not advanced enough for automated verifications. Besides,

the tools ecisting today are insufficient to automatically translate to a verification nota-

tion (or languages such as PROMELA, for example) and verify it. The validation of a

composition of complex Services is very likely to have too large a state space to be able

to be verified in a reasonable amount of time. A more convenient approach may emerge

in the future for automatic runtime verification of dynamic compositions, wherein the

Chapter 4. The Relationship Oriented Service Architecture 125

functionality can be included as a Service within the framework. Till then (an in first

generation ROSA) this is more of a token Service to implement a rudimentary verifica-

tion such as checking process flow, input, output for inconsistencies and adherence to

domain policies.

Execution of a Composite Service

Once a unique composite Service has been selected, it needs to be executed. It can be

visualized as a sequence of message passing according to the composition model. Data

flow can be modeled as the output data of a former executed Service transferring to

the input of the next atomic Service to be executed. Result dissemination and cleanup

after execution including listing successfully completed composite Service as a Service

candidate in the registry for future use.

The RM as a coordinating Service must oversee and manage contingencies in case of

errors or exceptions during normal functioning. This is specially relevant for pervasive,

mobile and highly dynamic environments. It has to determine the alternative course

during unavailability or replacement of a Service within a given composition. RM can

delegate exception management to other Service, like the composition generator to be

reinvoked to find a replacement Service.

4.4.3 The first generation ROSA

The first generation ROSA suggests a reference Architecture for a simple Network Ar-

chitecture. We assume in this instance that the requests that are encountered by domains

involve previously known Services and no intelligence apart from selection of the appro-

priate solution Service is necessary further. This limits the usability of this architecture,

but is necessary due to the technological limitations in the early introduction phase of

such an architecture.

Chapter 4. The Relationship Oriented Service Architecture 126

As we have discussed earlier, negotiations form the core of establishing a relationship

between domains and are handled by a Negotiation Manager. The relationships formed

are codified and stored in a relationship database and is accessed via the Relationship

database Service (RDS). These form the core Services of ROSA, along with the RM to

control the network composition. We call these ‘Domain Control Services’ (DCS) and

are minimum requirements for ROSA. Apart these, there are a few other Services that

is required for a simple network architecture. One important requirement is a reposi-

tory of locally available Service descriptions, their capabilities and related parameters

(including QoS related criteria). We introduce a broker Service called Resource/Service

Manager to address this requirement. A visual representation of this architecture is in-

dicated in Fig. 4.12. The proposed mandatory Services (DCSes) within this Reference

Architecture are listed below:

As mentioned earlier, the Translator Service provides certain flexibility for Service users

to specify their requirements. Depending on the expressiveness or formalization of the

requests, the domain ROSA architecture composition complexity varies. For instance, if

the request is formulated as ‘an abstract composition/process model + set of tasks + data

dependencies + additional QoS parameters (or other clauses to select atomic Services)’,

then the domain ROSA only needs to select the appropriate Services available within the

domain registry to fit the model. On the other hand, if the request is a ‘task + constraints

+ policies’, then a dynamic composition might be required.

4.4.4 A next generation ROSA

The approach of simple ROSA holds true as long as request from Service users matches

the functionality and criteria provided by existing Pre-defined Services. This approach

is not flexible enough to incorporate an anomalous or unprecedented Service request, the

solution to which might be the combined functionality of several Services (the sequence

of which is not pre-defined). This is a restriction to the dynamic nature required for

the architecture and automatic Service Composition is vital for this functionality. The

Chapter 4. The Relationship Oriented Service Architecture 127

Service composition of Web-Services by itself is a subject of intense research, and it is

beyond the scope of this work to specify which methods or technologies to adopt. But, it

is essential to provide place holders for the Tussle to play out in this context. We provide

an example reference architecture for such a scenario where, the architecture exploits

the ability to automatically compose itself from component Services.

The distributed versus centralized approach for DCSes are considered in the design of

the first generation as well as the future generation ROSA. A centralized control logic

and resource management (a monolithic Service) would be the ideal approach for per-

formance. But, distributed approach of control and resource management have their own

advantages such as separation of concerns to ensure security and privacy, extensibility,

flexibility (both business and operational) etc. We weight these options and implement

a partially-distributed system architecture where the separation of concerns are achieved

via distribution to Service managers but avoid the expensive and complex choreogra-

phy among them to attain a network composition. Instead, these Services provided are

orchestrated by a centralized function (RM) to make decision. This approach becomes

significant in the next generation ROSA when Services are handled automatically and

network composition is dynamically generated and used. With the numerous number

of Services available within a domain, an ad-hoc or distributed composition strategy

without a central controller might lead to scalability and complexity issues.

The reliance on RM to aggregate and manage the domain specific functions demands

high reliability and availability from its implementation. In our architecture, ROSA-RM

plays a core role in setting up and maintaining the work flow of the composed network

instances. When various application or processes are concurrently using the network

connectivity through ROSA, the RM will be handling multitude of connections with

state data and various other information associated with it. The scalability of the archi-

tecture will be crippled if RM has to maintain all this data concurrently by itself. We

propose to achieve high resilience for the RM using a state database interfaced through

Chapter 4. The Relationship Oriented Service Architecture 128

the RM state Manager (ROSA-RMSM) using full architectural state management de-

ferral or internally deferred state management [5]1. The ROSA-RM can push various

state and transaction data relevant to processes to the database when not needed (within

the life time of that transaction) and remain active with minimal overhead. The state

database is also helpful in restoring the architecture from exceptions where RM needs

to restart and remember the states of running transactions without having to terminate

them. Thus, the ROSA-RMSM provides reliability, redundancy and scalability to the

architectural core.

For a next generation ROSA, we propose the following Domain Control Services (DCS)

to delineate the required functionality into boundaries.

4.5 Domain and Network Composition

In our architecture, we treat all Services in a uniform manner. All follow the SOA

paradigm with interfaces and capabilities defined using Web-Services standards. In

ROSA, there are two different compositions required, based on the candidates for com-

position. One is the ROSA domain composition, wherein the Services within a domain

boundary are combined to provide a composite functionality.

4.5.1 ROSA Domain Composition

This is a localized composition in the sense that this composition occur within the bound-

ary of a domain and the process is governed by the local domain policies and conditions.

In the first generation ROSA, we expect these compositions to be manually specified

and statically composed. In the next generation ROSA, these domain Services can be

selected, composed and configured on the fly (dynamic and automated composition) to
1See section 11.4 Measuring Service Statelessness of [5] for a description on the techniques to achieve scala-

bility and reliability via an external database

Chapter 4. The Relationship Oriented Service Architecture 129

FIGURE 4.13: A next generation ROSA instance (Domains Control Services)

produce a composite Service. This enables the domain to respond to dynamic requests

within and from outside the domain, with minimal human intervention. This design

provides a uniform approach to provision locally available functionality in a Service

Oriented approach, as Services. Legacy functionality could be wrapped in Web-Service

specifications to be included as a ROSA Service and this take part in the next generation

domain and subsequently network compositions. We inspect an example ROSA domain

and a sample domain composition below.

The ROSA Domain Control Services (DCS) consist of a set of mandatory and optional

Services that implement the domain and network control functionality. The RCS is a

collection of Services and hence distributed, modular and extensible. The mandatory

DCS have very familiar and identifiable symbolic names within a domain. For instance,

Chapter 4. The Relationship Oriented Service Architecture 130

RM must always be available at ‘RM@domainA’ (in an example domain ‘domainA’).

Similarly, the domain Service registry must be available at ‘registry@domainA’. Simi-

larly, each of the other DCS must be reachable at an agreed address ‘name@domainA’.

Any changes to this convention, must be updated in the registry of the domain. For ex-

ample, if the ‘negotiation@domainA’ Service can be delegated to another Service (say

‘negotiation@domainB’), it must be updated in the registry so that any Services looking

for this Service can find a currently usable version. We assume that domain Services are

capable of registering themselves (by a Service provider, a common domain discovery

and registry Service) to registry@domainA.

The Service registration processes populate the Service registry with Service descrip-

tions (using WSDL for descriptions, UDDI or DAML-S Service profile for repository).

The properties to be specified in the registry include Service signature (inputs, outputs,

exceptions), states of the Service (pre and post conditions) and non-functional values

(QoS attributes like cost, Service quality, security, reliability). Each of the mandatory

Services specified in the architecture have a specific part in the domain control function.

4.5.2 ROSA Network Composition

Where domains come together to form a network, the ‘meeting of domains’ is the ab-

straction for the network composition and is the basic action for network composition.

Ideally, domains Services should be able to be composed based on requests from appli-

cation in other peered domains as well. Network composition is based on relationship

agreed by the domain controllers. Similarly to the AN concept of composition degree

[183], relationships define the level of cooperation between the composing networks.

Relationship can range from simple untrusted interworking where each domain exercise

maximum control over its own resources that are being exposed to merging into a single

domain (an extremely trustful scenario)1.
1A new 3GPP standard [184] for network composition is evolving but is at a very early stage

Chapter 4. The Relationship Oriented Service Architecture 131

Given the ROSA architecture, networks can be composed in phases. We identify five

phases for network composition and life-cycle management listed below:

4.5.2.1 Network composition trigger

In this phase, a domain senses a change in context that calls for initiation of a new com-

position. This could be a discovery of a new medium becoming available, an internal

Service request mandating a functionality not available within the domain (or already

available relationships) or an application initiated request. The context for composition

trigger can be changed based on the domain characteristics and policies such as security,

energy conservation (for mobile devices) or just media sense (for ah-hoc networks). The

outcome of this phase is the identification of a medium of communication and establish-

ing a communication channel.

4.5.2.2 Domain discovery and advertisement

After composition trigger, domains pass into the domain advertisement and discovery

phase, where depending on domain policies, it can:

• advertise (broadcast) itself with information including resources, capabilities, Ser-

vices, standards etc to any other listening domains.

• passively discover by listening for other domain advertisements.

• actively discover by following a Service Discovery Protocol.

The outcome of this phase is that the domains to be composed are selected and identified.

Chapter 4. The Relationship Oriented Service Architecture 132

4.5.2.3 ROSA domain negotiation setup

A basic interworking relationship is established through a meta-negotiation language.

This phase includes agreeing on a common negotiation language, basic security, domain

semantics and negotiation policies. The basic security could be authentication and au-

thorization of participating domains either mutually or via a third party, generation and

sharing of a cryptographic session key etc. The outcome of this phase is that the domains

are able to negotiate in a rich expressive environment.

4.5.2.4 Relationship negotiation and establishment

Once the domains have established an environment for negotiations, they can commence

the negotiations for a relationship agreement, which covers the following areas (not an

exhaustive list):

• Nature of relationship

• Service capability utilization and policies

• Security and restrictions

• Semantics

• Exceptions and error handling

• Compensation, charging, billing, pricing etc.

All negotiations are carried out between the RMs (of the associated domains) with the

help of Negotiation Manager. RM can further delegate parts of the negotiation among

RCS to make the negotiations distributed in nature. After this phase, a relationship is

established between the participating domains.

Chapter 4. The Relationship Oriented Service Architecture 133

4.5.2.5 Relationship Agreement life-cycle management

Once the relationship has been established, the various participating Services and poli-

cies can be updated with relevant applicable parameters. There might be certain event

triggers and other domain characteristics that need to set according to the relationship

agreement and domain Service inventory to be updated.

4.6 Summary

This chapter specified in more detail a Service Oriented architecture along with the tech-

niques and concepts for domain and network composition. The main control Services

within ROSA and their functionality were introduced. The phases of ROSA network

composition were also discussed which positions to overcome the static nature of the

networks today. We formalized the relationships which form the basis for network com-

position and also inspected the ROSA control and domain Services.

We showed how Service Oriented domain builds up relations with other domains by us-

ing a ‘Relationship Manager’ and key support services inside a domain. We outlined

a migration strategy from an early architecture with predefined sets of Services (first

generation ROSA) to a future architecture with dynamic service composition and nego-

tiation.

CHAPTER 5

OPEN ISSUES AND DISCUSSION

The driving factors behind this approach: context awareness, man-

aging contingencies, heterogenous devices, empowering users/ap-

plications.

One of the significant questions that emerged when considering this topic was ‘How

will future networks look like?’. There are whole industries constructed around this

question with experts and non-experts venturing opinions1. It is hard to predict this

future especially with pace of technology related evolution[186]. But, it is possible

to infer a general direction in various disciplines by watching the emerging trends. The

original Internet assumes interconnection of different sites possibly running independent

applications and protocols. That concept was diluted with the proliferation of TCP/IP

as the de facto protocol standard. This can be attributed to the single point of origin

of standards and the unprecedented influence a single group (DARPA) had over the

emerging networking community and other limited geopolitical and economic factors

[187].
1See discussions about an Internet Operating System [185] implying a delivery technology/connectivity agnos-

tic interface for the Internet.

134

Chapter 5. Open Issues and Discussion 135

The scenarios are much more complicated now. The players and stakeholders are nu-

merous with varying geopolitical and economic influence. It is difficult if not impossible

to reach a global consensus on even the simplest of issues 1. How do we accommodate

such a world view into a singular networking paradigm? We believe that the solution

lies in an architecture which lets these issues play out, i.e provide an approach with

modularity and flexibility to accommodate the changing landscape of technology and

policies. An architecture providing for the ‘tussles’[7] to play out. For instance, the

same Service or functionality provided by the same business entity might need different

policies at different locations, even if it is implemented on a uniform Service delivery

platform such as the Internet (as can be seen in the following articles [188–190]). These

requirements make implementation on policy and business rules significant and neces-

sary. Isolating various aspects of the network architecture becomes increasingly obvious

with such emerging requirements.

5.1 Benefits of ROSA

Our architecture is conceived with exactly these parameters and requirements in mind.

Simplicity is another major consideration along with providing mechanisms to handle

different domain knowledge through a uniform interface. For a successful new proposal,

the requirements are not restricted to the technological merits alone. The decisions for

widespread acceptance of a certain technology is influenced by policy makers, devel-

opers and suppliers of related infrastructure, content (and solution) providers and even

communities that involve in practice of the related technology [187]. We can discuss the

merits of our approach for these groups to identify the acceptability of our architecture.

Basic principles we consider to propose the new architecture include:

• A layer-less architecture composed of Services.
1See articles on the great firewall of China, Extra judicial Wiretapping, Blackberry messaging Service contro-

versy in India etc. for a range of issues

Chapter 5. Open Issues and Discussion 136

• Communication Services, Enabling Services, Application Services etc are all han-

dled equally.

• Domains containing a number of entities administered by a coordinating entity.

• Providing mechanisms to handle/interface different standards used by different do-

mains.

Benefits for stakeholders and players

For policymakers, the uniform SOA based approach provides a coherent vision on how to

integrate systems to support organizational and cross-organizational processes to enable

effective policy implementations on required functionality. A domain centric view (as

followed in our architecture) facilitates communication of technical policies via a single

standardized manner, provide an efficient centralized policy repository, eases its enforce-

ment and provides monitoring facilities with quick implementation of policy decisions.

The Service oriented approach for functionality also supports planning for technical and

interoperability specifications and standards development. The framework we propose

can be used to document the specifications and standards required ti support the network

architecture of practice. A Service oriented view of the domain also helps to identify

activities, business models and gaps, providing focus for decisions about priorities and

resource allocation.

Our architectural framework also provides advantages to businesses and organizations

that deliver and manage network services, infrastructure and content. The Service Ori-

ented approach is in line with how most of the enterprises implement their business

processes, which in turn is derived from their business models. This is true for Ser-

vices providers and traditional infrastructure providers1. The framework of Services we

provided are an indicative set of Services (Candidates) and the framework works sim-

ilarly for Services determined by other domain business processes and implemented.
1The traditional infrastructure providers are within the scope of Service providers with approaches like Service

Oriented Computing (SoC) and Computational Grid (CG).

Chapter 5. Open Issues and Discussion 137

These Services can be reconfigured to meet changing operational requirements to adapt

to organizational changes without a fundamental reworking. This is a major advantage

when it comes to tailoring Services provided by a domain to various aspects of a peer-

ing agreement with another domain. For Service providers, our approach provides a

modular technological base. The specific advantage of this framework is to enable the

development of composable modular and flexible systems where the individual compo-

nents can be added or replaced more easily than traditional models and where an entire

new system or sub-system can be composed from the collection of available Services.

For domain administrators (and policy makers), the collaboration among domains is

made easier through defining the behaviors and processes which are needed to share

information between domains. Our architecture also makes sharing of applications or

functionality easier, as it will be simpler to define Services which can be deployed to

meet the common needs of each domain. These in turn provide better returns on tech-

nology investment. Besides, Services can be developed or acquired as needed, which

means that only those parts of the systems that really need to be changed are replaced,

retaining the rest of the systems, thereby reducing both purchasing and implementation

costs. In our architecture, leveraging standardised interfaces and component behaviors,

domains can integrate with each other regardless of source (location) thus allowing or-

ganizations to choose the most suitable application for their purposes.

Our architecture also enables the faster deployment of technology as Services are inde-

pendent entities. It will often be easier to deploy new Services as long as the needs of the

new Services are compatible with the existing interfaces. Even where this is not the case

it may still be simpler to alter or replace other components to supply the requirements

of new systems. Well defined behaviors and interfaces allow software components to

be developed independently, and ideally these components are reusable granular build-

ing blocks. Services are defined via their behaviors and interfaces and thus can be used

without knowledge of the internal workings of the component providing the service,

allowing components to be replaced without causing widespread disruption. Since Ser-

vices have agreed interfaces, applications can be more easily implemented at another

Chapter 5. Open Issues and Discussion 138

organization or utilized by other applications in the domain, supporting transportability.

The proposed framework can be used to provide a Road Map that allows organizations

to implement their solution in stages. Organizations do not need to implement infras-

tructure all at once if modeled using a our Service Oriented framework. They can choose

to implement within a heterogeneous environment the standards based interactions that

are appropriate for their infrastructure. Legacy systems can be integrated into a Service

Oriented infrastructure by providing a Services layer on top of the existing applications,

protecting legacy investments.

Migration towards new capabilities and Services

With standards based interfaces, the capabilities of Services can be extended by adding

newer capability descriptions to the interface description. Completely new Services can

be added or even replace existing ones by publishing them in the registry or making

them available within the domain (if the capability for auto-discovery exists). In real-

life situations, the standards used will have certain amount of disparity associated with

them. A mechanism is needed to address this issue. Besides, in the spirit of bridging

across domains, even domain with proprietary interfaces might need to be incorporated,

though actively discouraged. one option is to provide for a schema/policy database and

translator Service to convert the proprietary formats into standard ones. This Service

could be inside the domain,a third party Service or a Service provided by the domain

implementing the proprietary standards and data formats.

Versioning is still an open issue, since there are not widely adopted standards to accom-

modate this. A destructive change (like a domain reconfiguring its business model and

Service portfolio) can still be accommodated as the point of first contact remains simi-

lar, but the capabilities advertised will now be different. Existing users might need to be

updated via Service or domain status updates where appropriate. Older functionality can

be made available in this architecture by encapsulating it using standard Web-Service in-

terfaces and describing its data formats in using standard specifications. This might need

Chapter 5. Open Issues and Discussion 139

a Translator/Broker pattern to be used to convert Web-Service requests into proprietary

ones. This is an inefficient and expensive proposition in the long term and hence will

encourage the migration towards standards based Services in the subsequent iterations.

Any proposed solution (as ours) must allow for transition from past to present and

present to future architectures. From the implementation of Web-Services in Enterprise

application integration (EAI) , their success and usability of the associated standards,

we can infer a pattern to accommodate past architectures with the new approach and

upcoming architectures to relate to the our proposal. In our proposal, the focus is on

domains and Services, a concept basically present in all communications transactions.

Our architecture merely mandates the use of the standardizing of these concepts and tie

them together using relationships. It is possible to fit any architectural paradigm within

this approach, either natively supporting the standards or via mediators. The require-

ment is a transport protocol to reach entities and this forms the homogenizing factor for

our architecture. The transport protocol would be RESTful [191] (like HTTP) or XML

based (like SOAP). How the nodes are identified and routed to by the underlying infras-

tructure is beyond the influence of our proposal, but we allow tussle to form a consensus

to provide an efficient system.

Virtualization of Services

The principle of decoupling of Service interface and capability from Implementation

and location extends itself to accommodate other requirement like virtualization. A

domain can present a virtual service among its capability, when the Service itself is not

Physically implemented within its administrative control, but is still capable of invoking

it. Such capability facilitate the provision and transparent usage of remote Services

within a domain, with minimum resource provisioning. This approach will however

require policy enforcements and long lived SLAs.

Chapter 5. Open Issues and Discussion 140

Benefits to Communities of Practice

Our architecture supports network functionality diversity. It becomes possible to support

a diverse set of Services and business models through providing the capacity to config-

ure the low level elements of the network architecture. The Service Oriented framework

enables domain driven implementations by exposing modular processes as separate Ser-

vices, which can be configured in multiple ways. The construction of technology so-

lutions can be driven by network functionality and policy imperatives implying faster

response to community needs. New applications can be created by combining exist-

ing Services in new ways in response to community needs allowing for shorter times

between identification of a requirement and implementation.

The Domains and Services based approach also allow configuring and re-configuring

network architecture based on current requirements and provide agility to functionality.

Domain and Service security policies and algorithms can be updated quickly in response

to a spreading threat or a newly identified flaw in the existing implementation. For exam-

ple, a DDoS attack on a particular domain can be mitigated by spreading the information

on the incident among collaborating domains, delegating part of the responsibility (filter-

ing, verifying client identities, load balancing etc) to its peers. On demand virtualization

of Services can also be a Service that can be provided, which enables other domains to

meet SLA criteria in case of unexpected of unprecedented demands.

Improving Security

Security is a holistic approach and not a single implementation which can be accommo-

dated in a particular layer or Service. It requires the coordinated functioning of various

factors. A Service oriented approach to security helps to add layers to buffer threats

as needed. Apart from a single domain which can implement security policies widely,

each Service by itself can mandate specify and implement its own security protocols and

requirement thereby owning part of the security responsibility.

Chapter 5. Open Issues and Discussion 141

A domain security function or Service can be implemented to coordinate and enforce

domain wide security policies and requirements. Other individual Services within that

domain to wanting to use Services pertaining to the domain can be mandated to refer

to this specific Service for security functionality. for example, this Service can enforce

data encryption on all outgoing content or mandate DRM solutions to protect sensitive

data. For mission critical and highly sensitive domains, a sandbox Service can verify the

correctness and validity of external Service requests before processing by actual domain

Services. By providing the ability to delegate functionality like security across Services

and even domains, a much more mature and flexible solution can be adopted.

Apart from security, the issue of trust among domains is another parameter that affects

offer and demand in an inter-domain scenario. Subjective trust and trust in others1 could

be criteria for assigning trust to other accessible Services [192]. But, unlike security

trust provisioning can be implemented as a Service within a domain, although with the

current state of the art eventual bias for positive ratings, unfair ratings, and the variations

of quality between ratings can occur [193].

Accommodating Mobility and QoS

Mobility, similar to security, is not a single layer or Service problem. This is one of the

main reasons why most of the proposed engineering solutions fail to catch on in layered

architectures. Service oriented approach and domains services can provide a modular

framework to delegate the various requirements to accomplish successful mobility. Un-

der our architecture, various types of traditional mobility scenarios like node, personal,

network, session, etc can be reduced to permutations of Domain Mobility2 and Service

Mobility. The solutions to these kinds of mobility and their associated requirements need
1If company X knows that a service is being used or was positively rated for company Y, whom X trusts, the

reputation of that service would increase from the point of view of X.
2Domain Mobility occurs when a domain has to sever its relationships with existing peers due to a change in

context such as network connectivity domain-wide policy enforcements

Chapter 5. Open Issues and Discussion 142

to be explored further, but appears to be a much more simpler problem to work with at

domain/Service abstraction rather than link/network/transport layer abstractions.

As mobility compared to IP networks can be improved by adopting HIP by tweaking the

architecture, our approach provides much more flexibility to implement mobility solu-

tions. We do not restrict the solution into a single solution, but take away the restriction

of layers within the architecture this enabling competition among mobility solution pro-

posals. It is straight forward to accommodate proposed mobility solutions for IP based

networks within our architecture, but we suggest a revamped look since our architecture

offers much more flexibility.

Scalability

The architecture by itself is scalable, since functionality can be aggregated at Service,

domain and inter-domain level. Other design patterns like gateways and brokers can be

used to improve scalability and abstraction. The flexibility in selecting a subset of the

Service Inventory (or Service Candidates) to implement domain functionalities lead to

very flexible architectures. For instance, limited capability devices need only implement

a limited set of additional Services apart from mandatory Services, as is the case with

special function domains (routers, sensors etc). The available number of Services will

scale dramatically based on open standards and competitive boundaries. Scalability be-

comes an significant issue when it comes to composition and management. Solutions

have been proposed to address global Web-Service management [194] based on models

and industry standards.

A clear study of the drawbacks of our proposal needs to be carried out, to propose im-

provements to the architecture at initial stages. Coupling of numerous independent ser-

vices which communicate among themselves locally or over a connectivity link will

generate a large quantity of messages. The quantity of messages increases significantly

with the number of services utilized. This imposes a limit on the modularity of services,

as smaller services implies greater flexibility but with much higher overhead traffic. But,

Chapter 5. Open Issues and Discussion 143

this overhead can be mitigated using aggregation and broker patterns within SOA. For

instance, in our architecture we position RM as a central coordinating Service and thus

an aggregation Service for the domain. In the broker mode (RM-B), RM becomes the

only service that each of the other services interact with, thus reducing inter-service mes-

saging. The downside, however, is a significant complexity in the RM to correctly fit the

numerous services into a logical solution for different contexts. Besides, it is possible

to apply the SOA broker pattern independent of the RM, where a domain Service can

act as a broker Services for a number of atomic Services and provide a higher abstrac-

tion of their functionality to applications and other Service users. Thus the amount of

messaging for users is significantly reduced.

Efficiency for small set of services compared to legacy architectures will be less, us-

ing our approach. However, the advantages of SOA will be inherited into the proposed

architecture. The integration of components within heterogenous environments or dy-

namically changing component configurations is best addressed using our architecture.

SOA and Web-Services offer potentially significant benefits to large service sets that

undergo frequent change and facilitate reusability. Currently, the XML footprint and

parsing cost at both ends of a message exchange does take up time and resources. With

high performance as the criterion, Web-Services might not be as efficient as current ar-

chitectures. Binary XML for interchange can improve the performance, but it is yet to

be standardized.

5.2 Open Issues

Our proposal is divided into two different architectures as mentioned in the previous

chapter: A simpler first generation ROSA network architecture and a next generation

ROSA. We indicate this division because the technologies and standards that are re-

quired to implement a fully functional ROSA framework is not yet available or mature

enough. But, the fundamental approach for both these proposals remain the same. Thus,

Chapter 5. Open Issues and Discussion 144

the first generation ROSA can be migrated to a next generation ROSA by adding the ad-

ditional control Services required and reconfiguring the domain to make use of them. We

discuss some of the open issues existing in the state of the art today which poses chal-

lenges to the implementation of a next generation ROSA architecture. Some of them are

relevant to the first generation ROSA as well like the standardization, Service evolution

management and domain ownerships.

Evolution of Service specification standards

Many different standards have been proposed and various approaches have been taken to

create a widely accepted and usable service composition platform for developing com-

posite Web-Services. Web-Services composition seems to have higher chances of suc-

cess compared to traditional composition middleware, due to the standardization efforts

that have taken place already and widely being used in enterprises and business sce-

narios. With WSDL, Web-Services may be described in a consistent way according to

their functionalities. The standards and specifications we propose for Service and inter-

face descriptions are Web Service (WS-*) standards. These standards have been widely

used in enterprises and proven. However, as a requirement for new parameters (like

support for semantics and better support for RESTful WebServices) emerge, the stan-

dards evolve and are updated. For example, the WSDL standards is in its third iteration,

from WSDL 1.0, through WSDL 1.1 to the current version of WSDL 1.2 (renamed as

WSDL 2.0). Although some of the changes might be minor (such as renaming PortTypes

and Ports in WSDL1.1 to interfaces and endpoints in WSDL 2.0), some changes to stan-

dards are major improvements or fixes to existing problems. This creates inconsistencies

in the specification on services. However, it is more easier to deal with this challenge

in our architecture due to the interface and implementation separation inherent in the

SOA approach. But, additional steps like versioning and change management might be

necessary when existing specifications standards are updated and used.

Chapter 5. Open Issues and Discussion 145

Maintaining a current Service inventory with updated specifications, interactions, non-

functional attributes, and internal changes invisible to the outside world is a necessary

and nontrivial extension to this challenge. When services are updated or changed, the

utility and perspective of that Service for its users change. Information like who is man-

ages the changes, who propagates them and the new Service characteristics must be

provided for Service Users for them to related to the new Service. All these considera-

tions affect issues such as compatibility and versioning of Services which are part of the

ongoing research work in service composition and evolution

A discussion on Domains and ownerships

Since our Concept of Domains is a novel approach to composing networks, the defini-

tion of domains need to be further exercised against the current scenarios which impose

overlapping of administrative functionality. While it is a straightforward exercise to

model the meeting of domains for clearly demarcated domains, this approach becomes

complex when considering domains which has overlapping, multiple of shared domain

boundaries. For instance, a mobile device with the capability to use a GSM service

provider to make calls will need to have the network provider mandated SIM card to be

used in the device. This SIM card and the Services provided by it is within the domain

of the network operator, which it is physically within the domain on the device owner

(and hence have some administrative control over it). This scenario projects a shared

domain model, where a Service within a domain delegates part of its control to an ex-

ternal domain, i.e, each domain can include the Service within its Service repository but

with limited administrative rights and strict policies. It is possible to define a new class

of Services to indicate this shared nature, but we believe it is easier to extend the current

model of domain Services, but with more constrains for domains on Service ownerships.

Chapter 5. Open Issues and Discussion 146

Semantics and Ontologies

As automation becomes necessary in stringing together Services to extract more use-

ful functionality, the methods used to describe Services becomes critical. Besides the

Service capabilities and Interfaces expressed in standard formats, it is also necessary to

specify the effects and characteristics of the Service to models its functionality. This

requires accurate semantic descriptions of the Service to be available. However, the field

of semantic languages and domain ontologies are still an ongoing research area. Stan-

dardization is slow and widespread use of these technologies outside of academia and

research projects are few. Standardization of domain ontologies in necessary to enable

automatic peering between domains, which in one of the fundamental design tenets of

out architecture. This would enable domains to agree on and understand what various

terms mean in a global scale. Including a rich sematic language based description to

Services also facilitate more accurate search and matchmaking capabilities for ROSA,

together with increased capability to inspect and process user requests. It is also possi-

ble to classify and compartmentalize similar Services within the inventory based on their

inputs, outputs, behavior (semantics) and other parameters which are not possible to be

expressed semantically. More accurate provision of QoS is also a derivative of sematic

models of a Service. The sematic models are also quite useful when Services need to be

dynamically replaced at runtime with minimal effect of the remaining processes1.

Automatic Dynamic Service Composition

Our future architectural proposal functions with an automatic dynamic composition of

Services as its fundamental requirement. We assume that Services are fully described

with semantics covering all aspects of its behavior. We assume that such technologies

will be available to combine selected Services based on domain policies and contexts by
1A replacement Service with similar input/output/parameters with a similar semantic behavior is much more

suitable for replacement that just syntax match

Chapter 5. Open Issues and Discussion 147

a Composition generator to produce a composite Service which can provide a meaning-

ful functionality to satisfy a query by a Service user. Both automatic Service composi-

tion (composition without human involvement at any stages) and dynamic composition

(where Services are orchestrated on demand, based on the incoming Service request) are

both fields of ongoing research, with focus changing towards semantic representation,

composition description and composition generation. Until a reliable and proven solu-

tion emerges to this end, the capability and scope of the proposed future ROSA will be

limited. But, the fundamental approach remains the same with more capable composi-

tion related control Services replacing the currently existing limited ones.

This network architecture based on a dynamic runtime service composition requires

much more improvement in dynamic composition methods and related verifications.

The idea of automatic composition of component services to form a composite service

to solve a particular problem is not a new approach. These methods are widely used in

enterprises and businesses in Web-Services. Most of the composition are done manually

and the correctness of the functionality of the composite service is done during design

time and manually as well. But, when we look at our architecture, and the idea behind

compositions (relationships), there could be potentially thousands of instances of ser-

vices that could be utilized. To retain flexibility of the architecture, a capability must

exist for these services to be chosen and composed during runtime based on constraints

and relationship metrics. Under such a scenario, dynamic and automatic composition of

services are essential.

We introduce the need for verification of the correctness of these compositions in real-

time as well. The composition of a composite service can be based on a process descrip-

tion, a model or a requirement. The end result of the composition is a solution logic and

a list of services to be used. But, this solution depends on the intelligence of the RM

and the composition logic used. It is imperative that there exists a mechanism to verify

the correctness of the composition (at runtime) so that any potential errors or exceptions

can be inspected and mitigated. One proposal is to use formal methods to model and

simulate the composition, and verify the correctness. This can be done using a dedicated

Chapter 5. Open Issues and Discussion 148

service within the domain or a third-party service. While most of the common tasks

will already have verified composition solutions available, the capability discussed here

will add more reliability and confidence in the obtained service compositions within this

architecture.

An extension to this challenge is the verification of the generated Service compositions.

In mission critical and production environments, it is important to verify the correctness

and validity of automatically generated compositions before they are invoked to solve a

specific problem. This is also an ongoing research topic, with many approaches being

explored. We bound this challenge within the Composition Verification Service, and

leave it to the tussle for an efficient and accepted implementation.

A security framework

With Service interfaces as abstraction, we have argued that security can be accommo-

dated as necessary within the individual Services, and the cumulative policies and con-

straints contribute to the overall Security of the architecture. This approach does not go

far enough to provide a uniform security solution for our proposal. A security architec-

ture for ROSA is needed to enforce security parameters at Service and Domain level to

coordinate, enforce, monitor and maintain the security component contribution by indi-

vidual Services within a domain. A single Security Service is not the ideal solution here,

as security is not a single Service characteristic.

5.3 Comparison with other proposed architectures

Many alternate architectures have been proposed along similar veins as our proposal,

out of the identified need for a improvements in the current approach. We have cov-

ered some of the proposals in chapter 2. Two of the notable proposal include Ambient

Chapter 5. Open Issues and Discussion 149

Networks (AN) and TurfNet[168]. These proposals provide a much more comprehen-

sive approach for a new network architecture than other projects that address a subset of

concerns such as HIP, DONA, TRIAD etc. Many of the new proposals, in an effort to

bridge heterogenous networks, propose varying approaches, some as far as mandating

no common standards or even interfaces. TurfNet [168], for example, assigns complete

freedom to domains to act as they wish within their administrative boundaries also con-

versions among TurfNets. This solution leads to immense overhead and over reliance

on gateways to translate or act as proxies between communicating entities. This is not a

suitable approach with regards to scalability or interoperability.

The TurfNet proposal revolves around the meta-architectural principle that different re-

gions of the network should be allowed to differ from each other:“minimize the degree

of required global architectural consistency”[195]. Our contention is that too much di-

versity leads to fragmentation, incompatibility and lack of interoperability. Our proposal

strives to accommodate diversity but is careful enough with standards not to promote it

with incentives. In terms of scalability, TurfNet’s bottleneck lies with the explicitly de-

fined gateway nodes that relay inter-TurfNet traffic. The relay method is compounded by

state explosion in gateway nodes1. Further solutions are needed to address performance

or load problems associated with address translation of all inter-Turf communication.

In AN, the framework is divided into a modular control space (called Ambient Control

Space or ACS) and a configurable user plane. The ACS is proposed to allow for the

plug-and-play rearrangement of management and control functions, while the user plane

provides enhanced data transport over a wide variety of connecting infrastructures. Our

proposal agrees with the motivation behind AN [35] and the aim to build a “middle-

ware that hides most of the network complexity, as well as the aspects of dynamicity, to

maintain and sustain performance and usability objectives as the overall system devel-

ops”[196].
1These can be mitigated to a certain extend using state aggregation mechanisms.

Chapter 5. Open Issues and Discussion 150

The AN implements its control functionality (ACS) using a collection of Functional

Entities (FE), and differentiates various interfaces that it offers. The Ambient Service

Interface (ASI) towards applications and Service, the Ambient Resource Interface (ARI)

towards basic connectivity and communication between control space and Ambient Net-

work Interface (ANI) towards other dynamically connecting networks [196]. In contrast,

our proposal provides a simpler and more uniform approach for interfaces. The control

functions in our architecture are implemented in the same fashion as user functions and

invoking either of them also follows the same pattern. We do not differentiate among

Services in descriptions or invocation methodology. The differentiation presents itself

with the functionality of the Services. The control space (to borrow the term from AN)

in ROSA consists of a set of mandatory Services (Domain Control Services) that provide

domain specific control functionality, centered around the RM while additional function-

ality is provided by other Services.

Similar to AN ACS, the ROSA control framework (RMs + mandatory Domain Control

Services) are modular and support ‘plug-and-play’ where additional additional control

functions can be added and existing ones modified on the fly. This makes ROSA control

framework distributed and modular. Going through the list of AN control functions and

managers, we observe a similarity in the functions proposed, but we follow a much more

uniform approach. Similar to AN, policies play a critical role in our architecture too,

within and among domain interactions. AN focusses on a network of networks, where a

device form part of a network, which can further merge to form larger networks. In our

architecture, the building blocks are Services and domains. we expand and contract the

scope of these definitions to fit anything from small sensors (or a single function device)

to enterprises (with thousands of Services) under the same paradigm.

Chapter 5. Open Issues and Discussion 151

5.4 Drawbacks

Although the ROSA architecture can accommodate legacy network architectures through

patterns like brokers and wrapping, it functions efficiently and naturally with a transport

level delivery mechanism that need not be further broken down for processing for other

restricted layered architectures. For instance, the domains and Services fits into a hier-

archical addressing scheme and can be identified by directly using naming conventions

like URI. Inter-domain routing is the most efficient when domains can interpret and

route these instead of breaking it down further to IP-addresses. For our architecture to

achieve full potential, new routers (routing domains) and schemes are needed that can

route flat-label and URI-based communications with high efficiency and performance.

Coupling of numerous independent services which communicate among themselves lo-

cally or over a network will generate a large quantity of messages. The quantity of

messages increases significantly with the number of services utilized. This imposes a

limit on the modularity of services, as smaller services implies greater flexibility but

with much higher overhead traffic. ROSA is a message based architecture. When such

an SOA based architecture is composed, signalling and traffic load will be higher than

legacy network architectures. Besides, the main phase of composition is the establish-

ment of a relationship between domains, where negotiation can produce substantial sig-

nalling overhead.

In ROSA, communication and application Services are now a part of a layer-less archi-

tecture leading to new types or security challenges and potentially higher vulnerability.

The Web-Services security proposals can mitigate these challenges to a certain extend

and, theoretically at least, the argument that Service level security can vastly improve

the overall security. A ROSA security framework still needs to be proposed to outline

and enforce a fundamental level of protection to the architecture compositions. A set

of security protocols and mechanisms are to be identified and specified as a part of this

framework.

Chapter 5. Open Issues and Discussion 152

The idea of stateless network as envisioned by the inventors of the original Internet is

blurred in our architecture. The ROSA network is not stateless anymore as it relies on

‘relations’ that are based on computing a wide range of past and present parameters such

as history and trust.

CHAPTER 6

CONCLUSION

It is hard to predict the future of the Internet architecture, as it was hard to foresee the

success of the IP based Internet. The design has its roots in an early academic project.

The dynamic evolution of network technologies implies one constant factor that could

be safely predicted - and that is change itself.

With advances in technology came new application scenarios which further fuels the

demand for technology innovation. In a connected world, the network architecture has

to keep up with the evolution of applications and new technologies. The current Internet

architecture has well-known shortcomings in flexible naming & addressing, security,

mobility, QoS, real-time.

It is safe to assume that the network architecture of the future must be flexible, scalable,

evolvable, configurable and dynamic to facilitate new applications and new infrastruc-

ture scenarios. Our goal with this work was to contribute to the research for a new

Internet architecture and lay down a set of grounding principles to overcome current

Internet shortcomings.

153

Chapter 6. Conclusion 154

Past attempts to find engineering solutions to the above challenges by blurring the layer

boundaries (cross-layering) and adding on functionality (like security solutions) have

resulted in a complex, sub-optimal, fragmented and inefficient outcome. Extreme cross-

layering without a uniform abstraction leads to complex and ultimately inefficient de-

signs.

We propose a layer-less, ‘Service Oriented (SO)’ architecture approach as an alternative

to the existing layered paradigm. In our proposal, called Relationship Oriented Service

Architecture (ROSA), we identify services as the basic building blocks of the architec-

ture. We abstract communication and network resources in the same manner as any other

resources to provide a high level interface to applications and Services.

In ROSA, we define ‘domains’ as units of administrative control and logical space for

Services to be hosted, discovered and be used. In order for domains and their services to

cooperate, we established a ‘Relationship Manager’ (RM) as a well-known standard con-

tact point present in all domains. The RM orchestrates domain Services and is responsi-

ble for initiating, controlling and managing domain and inter-domains communications.

A RM is not a stateless entity as it computes various parameters such as trust, cost, QoS,

reliability, security, policies and others before activating a relationship between services.

We outlined an initial set of Domain Control Services to accomplish overall control and

management functions. The RM manages associations among Services within a do-

main, across domains and provides a high level abstraction to applications. In chapter 4,

we outlined the mechanisms, standards and communication models necessary between

domains to interact with each other.

The need for a new architecture is also recognized by other research groups, who have

proposed modifications and ‘clean-slate’ approaches for a new Internet architecture. No-

table ones include Ambient Networks (AN), TurfNet, Haggle, DONA, HIP etc. DONA

proposes a disruptive redesign in Internet naming, with the fundamental proposal sug-

gesting a move away from the host-to-host paradigm to a content (data) centric approach.

Chapter 6. Conclusion 155

However, DONA fails to address other architecture related shortcoming in the current

Internet like security, QoS etc.

Haggle adopts opportunistic connectivity, data/meta-data management and sharing for

applications. Although Haggle follows a layer-less architecture, there is no standard-

ized abstraction proposed. This leads to increasing complexity as utilization grows. The

initial scope of ‘seamless connectivity for mobile devices’ is not wide enough to accom-

modate all emerging requirements.

While the separation of names and addresses in the Internet architecture is long over-

due and could resolve some of the challenges, it still cannot address other architectural

limitations imposed by a layered abstraction. These limitations are simply ignored or

otherwise magnified. ‘Ambient Networks’ approaches these challenges with a compre-

hensive redesign of the architecture. The main focus is on seamless interoperability

between heterogeneous network domains. The original proposal to ignore IP-addresses

as the network layer technology (due to its shortcomings) was later changed with the

acceptance that IP might prevail after all1.

Ambient Network proposes three kinds of interfaces - Ambient Service Interface for

applications, Ambient Resource Interface to abstract connectivity layer and Ambient

Network Interface towards other networks to communicate and compose. All these in-

terfaces are controlled and managed by the Ambient Control Space (ACS). In our archi-

tecture, we do not make this distinction. We propose a simpler and uniform approach to

treat all resources (connectivity, application and control) in a similar manner, utilizing

accepted and proven standards. It is interesting to note that the prototype implementation

of the AN used for validation [197] used Web-Services as the front-end for FEs in the

ACS, substantiating our argument that SOA with WS as interface standards are a viable

option for accommodating any architectural implementation.

TurfNet is another notable proposal built on the idea of network composition. However,

we do not find it generic enough and TurfNet lacks the clear foundational guidelines
1See papers [35]and [183]

Chapter 6. Conclusion 156

as SOA or any others. An ultimate aim of all these approaches is to raise the level of

abstraction to shield the applications from low level communication details.

The Service Oriented based approach maintains a separation between interface and func-

tionality to fully exploit the advantages of Service Oriented Architecture. The ability for

Services to be location independent, modified, exchanged or replaced (even during run-

time) adds flexibility to our proposal. A further advantage is that the architecture will be

able to integrate different QoS and mobility methods into one solution.

A major concern for any clean slate approach is the ability to accommodate or migrate

from legacy architectures. This is a major challenge to all new proposals. A new archi-

tecture must offer migration strategies to increase acceptance, and to reduce technology

and business risks. We recognize the fact that IPv4 (and IPv6) will be around for a

long foreseeable future, but also adopt the view that other approaches besides IP-based

naming/addressing/routing schemes will emerge. There are already indications of such

evolution in HIP and other flat naming proposals. The architecture we proposed can

accommodate legacy architectures via various patterns like wrapping, gateways or en-

capsulation, analogous to how the migration is currently occurring from IPv4 to IPv6 in

the networking world.

We propose two architecture instances offering milestones along a path to replace to-

day’s legacy architectures, and to bridge gaps until certain new technologies like dy-

namic service composition are available. The First Generation ROSA is a version that

is implementable now. This version relies more on pre-configured services and con-

figurations. The Future Generation ROSA is an automated, dynamic version of our

architecture based on much intelligent Services and emerging technologies.

Many basic mechanisms still need to be studied to arrive at the full scalable and dynamic

future ROSA. Examples include representation of domain knowledge in machine under-

standable manner, understanding relationships in a semantic web, automatic and dy-

namic Service compositions, validating and verifying the correctness of potential com-

position candidates, control signalling and peering in a distributed multi-agent system

Chapter 6. Conclusion 157

etc.

Further research is needed before standardization bodies such as ‘OASIS Web Services

specifications’ will take them into account. Nevertheless we hope to have shown how

important these technologies will be for the evolvement towards a future Internet archi-

tecture, and that network and service architectures should be integrated into one com-

mon, overall solution.

NOMENCLATURE

CIDR Classless Inter-Domain Routing

DDoS Distributed Denial of Service

DPI Deep Packet Inspection

EAI Enterprise application integration

IRTF Internet Research Task Force

MANET Mobile Ad-Hoc Network

NAT Network Address Translation

PDDL Planning Domain Definition Language

PPM Polymorphic Process Models

QoS Quality of Service

RDF Resource Description Format

RSVP Resource reservation protocol

158

Abbreviations 159

SCTP Stream Control Transmission Protocol

SEA Service Execution Agent

SIP Session Initiation Protocol

SOAP Simple Object Access Protocol

UDDI Universal Description Discovery and Integration

WSCI Web Services Choreography Interface

APPENDIX A

5th GENERATION NETWORKING

PRINCIPLES FOR A SERVICE DRIVEN

FUTURE INTERNET ARCHITECTURE

The following article by the thesis author appeared in Springer Jour-

nal for Wireless Personal Communications dated September 2010

[174].

A.1 Abstract

The vision of all-IP networks where IP forms the simple common layer understandable

across the whole network has undeniable advantages. However, such simplicity comes

as a major hurdle to flexibility and functionality to the architecture. This is evident

from the increasingly numerous and complex engineering solutions and optimizations

160

Appendix A. 5th Generation Networking Principles 161

required to accommodate essential qualities like mobility, security, realtime communi-

cation support etc or to mitigate the shortcomings inherent in the ‘traditional Internet’

architecture. While a clean slate approach to address these shortcomings is not an option

in a realistic scenario, it is important to examine the architecture as a whole to address

emerging network requirements and overcome existing shortcomings at the architecture

level rather than engineering solutions to an existing inefficient one. This architectural

re-examination should also facilitate discussion into what design principles for future

generations of Network Architectures which will eventually replace the design tenets for

the current Internet. While 3G and 4G systems were more focussed on convergence to-

wards an All-IP network and some improvements in the core network, the architectural

design remains stagnant with layered paradigms and inherent inefficiencies. A depar-

ture from this shackled approach could be the distinguishing feature of 5G systems and

beyond.

We claim that there is a pressing need to move towards a Next Generation Network

(NGN) architecture built to natively support requirements such as network resource ab-

straction, mobility, security, enhanced routing, privacy, context communications, QoS,

parallel processing, heterogeneous networking etc. Instead of treating the network as

just providing connectivity specified by endpoints, it is of great advantage to applica-

tions to recognize it as a service characterized by attributes, abstracted to a higher level

to represent a collection of capabilities that the network offers. This uniform high level

abstraction can effectively mask the heterogeneity and implementation discrepancies in

the underlying infrastructure. Besides, in a network environment where an connectivity

instance might transverse diverse business/ownership/capability domains, the approach

proposed in this article can provide a transparent abstraction for resource negotiations

across the domain to be available for end-to-end setup. This architectural change should

also be manifested according to the principles of SOA to ensure interoperability, back-

wards compatibility and migration. In this article, we introduce a Service Oriented

framework and network architecture aimed at tackling the heterogeneity of emerging

requirements and proposed solutions into a coherent interoperable architecture using

Appendix A. 5th Generation Networking Principles 162

Web Services specifications as the basic standards. We propose propose t o model the

new architecture on relationships between entities and discuss the motivation this new

architecture in the form of a new framework called ROSA.

A.2 Introduction

The Internet, as a network of connected computers, came into existence in the 1970s

[198]. The early Internet interconnected a stationary set of nodes. The architecture and

the protocols used were designed to accommodate and exploit this simple stationary

nature. The designers wanted to build a network infrastructure to interconnect all com-

puters in the world together and provide a framework for yet unknown applications to

be invented and run [43]. The nodes were well described by IP addresses that identified

the nodes directly on the network. Routing protocols then took advantage of the static

nature of the Internet.

Although the usage and possibilities of the Internet have expanded beyond its initial

scope, the design principles and architecture of the original Internet are still followed

today. The success of the Internet has by itself shackled the possibility of any dramatic

change or a completely new architecture from being implemented to accommodate the

requirements that were not envisioned in initial design stage. The massive installed base

of routers, clients and other network equipment supporting today’s network infrastruc-

ture makes sure that any significant changes to the architecture of the Internet protocol

(IP) based network will be overlooked, if not ignored. The financial aspects of migration

will play an important part in migrating to any other replacement proposed from today’s

architecture.

Due to the explosive evolution of the Internet into what it is today, it is difficult to clearly

define ’the scope of the Internet’ or specify ’edges of the Internet’. The boundaries of the

legacy internet (if we can call the earlier iterations of the Internet that) is continuously

being blurred by the introduction of new devices, violation of the original design tenets

Appendix A. 5th Generation Networking Principles 163

and the incorporation of new paradigms. Currently, a typical view of the Internet implies

an electronic communications network that connects computer networks and organiza-

tional computer facilities around the world. This is a very generic definition which

makes the term ’Future Internet’ a very wide area for research and a ’Future Internet

Architecture’ a generic network architecture that could address all networks.

A.3 The need for a New Architecture

With time and technological advances, the networking solutions have been steadily in-

creasing in complexity. To accommodate new requirements, the Internet has been en-

gineered with more powerful routers, faster backbones, faster processing at end points

and traffic shaping to accommodate new models and better performance. These often

incompatible engineering solutions (or ‘hacks to the original stack’) provided temporary

fixes to new problems but introduced unnecessary complexity, a few of which will be

singled out in the later sections. There exist fundamental inefficiencies in the current

network architecture which cannot be addressed efficiently. For example, challenges

with mobility, end-to-end Quality of Service (QoS), security, trust etc. In implement-

ing the work-around, the Internet today breaks most of the design principles initially

conceived for it [9]. Some examples can be perceived from ‘end to end’ principle vi-

olated by middle boxes, NATs etc. [10]; fairness restricted via traffic shaping, packet

inspection; best effort breached with overlays; stateless network concept infringed by

intelligent middle boxes [11], stateful proxies, label based router etc. The vastness and

distributed control nature of Internet today, makes it difficult to implement distributed

applications with realtime guarantees necessary for certain types of communications.

These changes do not converge towards any new architectures, but are add-ons or over-

lays piggy-backing on the same old design. Some of the urgent problems like address

exhaustion, better compatibility to emerging technologies via header extensions and bet-

ter security are squeezed into the IPv6; which still addresses only a part of problem, not

the network architecture limitations as a whole.

Appendix A. 5th Generation Networking Principles 164

We can find an instance of this complexity in the current Internet security architecture.

Security was not as important a concern as openness and fairness during the birth of the

ARPAnet. The fact that the network placed no restrictions on connectivity meant that

innovative applications could be deployed without obstacles, which essentially lead to

the growth of the Internet to the magnitude we witness today. However, the very same

design tenet has now made protecting the network from malicious hosts very difficult.

For example, while rudimentary security measures solve most of the problems (e.g., se-

curity holes in an applications can be patched and end-to-end security protocols can be

deployed, or security overlays for specific protocols), the openness has made it difficult

to defend against Denial of Service (DoS) attacks. A visualization Fig. A.1, adapted

from [3] indicate the complicated and patched security architecture of the current Inter-

net. The lack of a harmonized security strategy and multiple approaches manifest them-

selves as cross layering and conflicting overlays. The lack of a common trust, privacy

FIGURE A.1: Internet security controls and countermeasure [3]

and security approach is just one of the shortcomings of the current Internet architecture.

The Ambient Networks project, a European sixth frame work project identified some of

Appendix A. 5th Generation Networking Principles 165

the requirements to be addressed for their next generation communication architecture

[35]. Haggle [36] identifies that the root cause for some of the usability deficiencies with

regards to mobile devices today arises from the synchronous IP-based APIs presented to

applications along with the numeric addresses as end-points. Applications implemented

in such models rely on networking infrastructure for end-to-end communication without

taking advantage or being aware of local or neighboring network resources. We list a

few of the challenges or requirements encountered by applications below:

• Concept of Location/Neighbourhood awareness, proximity etc.

• End to end service oriented communication.

• Separation of identifier and location in naming and addressing.

• Session continuity & management across domains.

• Common trust, anonymity and federated identity management.

• Parameter/Metric based routing (added value based routing).

• Routing facilities based on application layer needs.

• Efficient Mobility, Multihoming, delegation, indirection.

• Capability signalling across devices, domains.

• Real-time and Distributed real-time application requirements like priority, guaran-

tees etc.

• Scalability for trillions of nodes.

As can be observed from the above list, the issues to be addressed are rather basic and

spread across the existing ‘layers’ of TCP/IP model; i.e., it is difficult to solve the above

shortcomings at a particular ‘layer’ of the current Internet architecture. But, these argu-

ments in no way propone demise of the Internet, but suggest the strain impressed on the

Appendix A. 5th Generation Networking Principles 166

legacy architecture it still follows. The stress on the current architecture is not limited to

the new usages of existing technologies, but also arises from new technologies that are

incompatible, but forced into compatibility for legacy interoperability. For instance, ad

hoc, vehicular and sensor networks differ dramatically from the relatively static ‘client-

gateway-server’ design of the Internet with the number of nodes stretching into billions

and extremely dynamic mobility scenarios.

While the internet has tried to avoid vertical silo (smoke stack/chimney model) effect by

abstracting horizontally with layers rather than complete end to end solutions, in reality,

the effect has been more hard-coupled. The proliferation of IP as the de facto standard

for network abstraction has made the generic concept into an IP-Hourglass model [44].

This model has worked remarkably well over the past few decades, but does not perform

well when exercised against new paradigms and applications. There is an interesting

discussion growing around the ‘waistline’ of the internet with various opinions and con-

cepts emerging on ‘what will or should’ be replace or added to expand the waistline of

the current network architecture [32, 44]. With the shortcomings of IP (such as the iden-

tifier/locator dichotomy), it is only logical to provide an alternate addressing scheme to

take advantage of the innovation in the networking and routing domains over the past few

years. However, what is the best alternative? is still an open question. It is this openness

that should be embraced rather than providing a solution which in a few years will find

itself inefficient or even unsuitable for use due to newer unforseen requirements. In a

best effort packet delivery mechanism like IP, the concept of a separate control channel

is diminished (apart from already existing internal and external routing protocols) [44].

Each packet carried enough information for processing at intermediary nodes. Follow-

ing convergence and adoption of IP as the de facto abstraction at the network layer, the

concept of the self contained packet became the norm. This simple and common layer

was advantageous for interoperability but is manifesting as a major challenge for the

flexibility for applications running at higher layers. With the new requirements like QoS

and security, extra intelligence needed to be built into routers to examine the contents

of each packets to decipher what needed to be done with it for additional functionality

Appendix A. 5th Generation Networking Principles 167

(as per end user signalling through RSVP, for example). With the emergence of realtime

multimedia as a major part of the traffic on the internet, separate control protocols had

to be developed (SIP, RTP) just to facilitate the delivery of multimedia streams/sessions.

With QoS, routing is no longer simple forwarding of packets but consists of prioritizing,

queuing, dropping, tagging/marking and so on. The routing architecture of the current

Internet does not support packet forwarding based on such rich or descriptive parame-

ters.

These trends segment the Internet as a collection of application level networks (torrent,

IMS etc), each overlay addressing a specific application requirement or functionality.

Different control protocols implemented in a distributed fashion decide the nature of

the overlays. As articulated by Aguiar [44], the concept of in-band control signalling

through the packets necessitates the ’hard’ processing of each packet to provide addi-

tional functionality to the flow. This is hardly efficient when the choices become numer-

ous and the packet count follows suit. A separate control plane or architecture might

be necessary, independent of data flow to facilitate added functionality to the commu-

nication via networks. This will facilitate capability negotiation across different control

domains (like businesses, Autonomous Systems etc) for setting up sessions or tempo-

rary peering agreements separate from data delivery mechanisms. The proposal to have

an additional hourglass model for the control architecture complementing the data hour-

glass model (with IP at the waist) [44] for networking might be one approach to address

this challenge. The idea of separation of concerns (control and data) within the network

architecture brings flexibility at the cost of simplicity.

A.3.1 New Paradigms

The Internet evolution has been characterized by ingenuity on the part of software and

application designers to circumvent the architectural limitations, and has brought into

play varying ‘players’ into the sphere of influence [7]. The resulting ‘tussle’ influences

Appendix A. 5th Generation Networking Principles 168

not only the direction of the future evolution of the Internet, but also the nature of the

next generation architecture like notions on design, space for tussle etc.

Access technologies and applications emerge independent of the Internet, which in due

course requires interacting with the network for various reasons. We find powerful mo-

bile communications devices, sensors, medical implants, vehicles and a host of other

network capable appliances emerging. Besides, new networking models like ad-hoc

networks, vehicular and sensor networks present challenges which are not efficiently

handled by the current architecture. The number of connected nodes in the Internet has

gone from a few in the early eighties to millions (currently), with a strong possibility

to be trillions [28] with the inclusion of ad-hoc nodes, cheap sensors and networked

vehicles in the future.

User demands like interactive resources, user generated content, content sharing, local

access of distributed content, anywhere/anytime access of own data etc. requires the

underlying architecture to support a set of basic capabilities, which are inefficiently im-

plemented into the legacy Internet [29]. The demands can also include demands based on

or on behalf of the users by other entities such as governments, corporations and content

owners. For example, the open and end-to-end nature of the Internet is broken by mid-

dle boxes to accommodate for address exhaustion, security etc [10]. This necessitates

architectural changes incorporating such additions.

These are not independent driving forces. These factors tend to influence each other to

a stage where the underlying architecture can no longer efficiently support the newly

construed paradigms. This will be the case with any new tightly designed architecture.

The boundaries of such architectures will be tested. One of the more accommodating

architecture would be the one which account for this growth (‘design for tussle’ [7]),

or a system modular enough to keep pace with the innovations around it. The idea of

service oriented architecture and service composition, manifested in different proposals

as network composition is worth considering in this context.

Appendix A. 5th Generation Networking Principles 169

A.4 Challenges to a New Architecture

There are two common methods of approach that can be utilized when thinking forward.

One is the Incremental Approach aimed at maintaining backwards compatibility while

migrating towards a new architecture (E.g. IPv4 to IPv6 migration). The other approach

is to have a Clean Slate Thinking to fix all the problems that can be identified as being in-

herent in the current architecture. Architectural changes to the core of the Internet (E.g.:

IPv6) and add-on/overlay services (E.g.: MIPv4, MIPv6, IMS etc.) have met varying

levels of success. There are a host of new architecturally superior implementations and

changes dismissed a priori by the marketplace, due to reasons such as ossification of

the TCP/IP model and business aspects of bringing about a dramatic change in the cur-

rently installed infrastructure base. It is easier for researchers to consider a clean slate

approach of a new architecture, protocols and service. However, such an approach is

generally unacceptable due the changes required to already existing infrastructure and

devices and due to the disruption of existing businesses. This approach, while ideal from

a research standpoint is difficult to implement in the current scenario.

The incremental approach to addressing the current limitations is attractive to service

providers and network operators in terms of cost and availability. This approach often

produces inefficient and often complicated solutions. An ideal solution to this conun-

drum will be to suggest modular incremental changes to current architecture aimed at

addressing immediate problems, which function as milestones or part of the transition

towards a completely reconsidered and modular network architecture. The idea of over-

lay networks (for example, Peer-to-peer overlay networks [33]) is quite relevant in this

context, where a new technology can be implemented at ‘present time’ over existing

architecture, so as to bring in the new functionality without a radical change to the un-

derlying architecture. This functionality, at a later time can be accommodated as a part

of the architecture itself, if designed to relevant open standards.

The above mentioned approach is not only true for functionality overlays like IMS, but

completely reworked architectures as well. Consider the migration towards IPv6 from

Appendix A. 5th Generation Networking Principles 170

IPv4 in this context. The newer Internet layer (IPv6) can coexist with the current one

(IPv4) via gateways connecting islands of IPv6 routers to the IPv4 world, software en-

capsulation like the 6to4 transition mechanism [11] or tunneling etc. [34]. In the future,

when most of the nodes (routers, specifically in this case) support IPv6 in the future, the

IPv6 ‘islands’ automatically become the ‘main network’, with IPv4 becoming ‘legacy

islands’ interfaced via ‘legacy’ gateways. This approach however requires a scale, con-

sensus and collaboration from major players in the research community and industry. A

study of the current state of the art will reveal that both approaches are being explored

by various entities globally, substantiating the necessity and urgency of such a transition

[30, 32].

A.5 Existing Approaches

Under the current network architecture, the applications are responsible for setting up

all bindings required for communication. This necessitates that the software is writ-

ten to specific underlying network architecture, without modularity. The close binding

also makes it difficult for developers to implement applications and solutions that can

adapt to new communication mechanisms. Most of the new ‘flexible generic platform’

proposed to overcome such limitations concentrate on abstracting the applications from

the underlying network architecture, mostly by adding one more abstraction layer over

the existing naming system (IP). These approaches, to an extend, mitigate the ill effects

from current dual usage of IP addresses as end point identifier (name) and location (ad-

dress). The reliance of certain applications on the Domain Naming System (email, web

addresses etc.) together with the inability of the DNS to adapt to rapid updates make it

more difficult in dynamic mobile environments. The migration from IPv4 to IPv6 will

provide some temporary relief to pressing issues such as address exhaustion, resource

allocation support via header extensions and improved security features. But, IPv6 does

not address the architectural limitations of the Internet. There are various proposal and

Appendix A. 5th Generation Networking Principles 171

projects at different stages of maturity being considered by the Internet community, in-

dustry and academia related to the architectural nature of the Future Internet.

Host Identity Protocol [51] identifies the naming and addressing of entities as the key

challenge in today’s architecture and proposes as a solution to separate them, decou-

pling the usage of the address (i.e. the IP address) as the identity of resources or nodes.

The separation is achieved by introducing a new layer between the conventional TCP/IP

stack between the network layer and the transport layer. HIP uses cryptographic iden-

tifiers as the Namespace which helps to integrate baseline end-to-end security into the

architecture when used with Diffie-Hellman [52] and appropriate security protocol, such

as Encapsulated Security Payload (ESP) [53]. Each node has a private/public key pair

and the node’s identity is a hash of its public key. Several solutions have been pro-

posed to accommodate mobility and Multi-homing [66, 67] using HIP. However, there

are some undesirable consequences where the node loses its identity if the public key

is ever changed or compromised. Haggle approaches these challenges using the con-

cept of ‘Pocket Switched Networking’ [77, 78]) to take advantage of both infrastructure

based and Ad Hoc (peer to peer) communications opportunistically. The Haggle net-

work architecture is aimed at providing seamless network connectivity and application

functionality in mobile environments by separating application logic from underlying

network architecture.

Ambient Networks (AN) [35, 56] introduces the concept of horizontally structured mo-

bile systems that offer common control functions to a wide range of different applica-

tions and interface technologies to provide a common networking concept to adapt to

varying heterogeneous wireless and service environments. The AN naming architecture

adopts a layered naming model, with separation concepts borrowed from layered nam-

ing architecture [30] and HIP [51]. Dynamic bindings at different layers enable the basic

mobility of nodes, ‘bearers’ and applications [70].

Data-Oriented Network Architecture (DONA) [79], borrowing heavily from other ex-

ercises like TRIAD, SFS and HIP, suggests a clean-slate redesign of Internet naming

Appendix A. 5th Generation Networking Principles 172

and name resolution, to address specific features such as persistence, availability, and

authentication for service access or data retrieval. DONA justifies this proposal pointing

out the existing discordance between historical design (host-oriented) and current usage

(data-oriented). However, the clean slate approach is mostly limited to how Internet

names are structured and resolved. As with HIP, DONA replaces DNS names with flat,

self-certifying names, and replaces DNS name resolution with a name-based anycast

primitive that lives above the IP layer. DONA proposes that names handle persistence

and authenticity, while name resolution handles availability. There are other attempts

to approach the problem from enterprise perspective through Application Oriented Net-

work Architecture (AON) [80], borrowing ideas from NGN architecture [81].

Another approach is to extend today’s architecture using middle-boxes (TRIAD) to avoid

the migration to IPv6, or base the architecture on a new central parameter or paradigm.

DONA and Haggle architectures revolves around ‘data’ as the center piece. There are

advantages as well as pitfalls to all these approaches. For example, when the archi-

tecture is designed around data as the most important parameter, then the design must

encapsulate and manage all data as haggle proposes to do. This is not an ideal approach

as other applications might not want to relegate ownership of their data to middleware.

Identifier-Locator Network Protocol (ILNP) [199] proposes an extension of the 8+8 for

IPv6 [54] idea and SHIM6 [55]. ILNP specifically addresses mobility and multihoming

issues with current implementations, integration of middleboxes like NAT, enhancement

of end-to-end security, among other features. Reliance on DNS for location update of

mobile nodes apart from ICMP locator updates might be a shortcomings when dealing

with highly dynamic and unreliable environments.

There is a significant amount of discussion forming around the EIFFEL project [200] re-

garding the nature and process of arriving at the Future Internet, albeit from a European

perspective. This project, not limited to technological issues but also social issues sur-

rounding a future networked society, is organized around a number of Technical Areas

(TAs) focusing on technological, societal, regulatory and policy-related questions. For a

Appendix A. 5th Generation Networking Principles 173

project of such magnitude, it will be a while before its future internet architecture pro-

posal emerges, to be studied or compared to existing solutions. The projects mentioned

here are not a conclusive list of attempts to address the architectural shortcomings of the

Internet. They are too numerous and outside the scope of this article. But, the conclusion

derived implies that the research community and industry recognizes the shortcomings

and are exploring various approaches to address them.

A.6 A different Approach to Networking

We develop our vision from a top down approach, from the point of view of the applica-

tion developers. From such a perspective, networking is not just connectivity specified

by an end point tuple (as in Berkeley APIs). A network is a collection of distributed

services that are available to the applications. The application developer should not

worry about the state of the network at application runtime during the application de-

sign. This decoupling of addressing network end points directly in applications can be

achieved through a uniform approach to exploit the underlying network infrastructure

via a generic, rich and standardized interface. Such an interface provides abstraction of

network capabilities to applications and decouples the heterogeneity arising from the be-

low mentioned factors. Adapting to heterogeneity forms one of the basic characteristics

of our approach. Heterogeneity in various layers of the current architecture arise from

various sources including:

• Network technologies, devices and Operating Systems

• Middleware solutions and communication paradigms

• Programming models and languages

• Services and interface technologies

• Domains and architectures

Appendix A. 5th Generation Networking Principles 174

• Data and document formats

• Nonfunctional aspects such as information models, security, availability, transac-

tions etc

• Business borders

• Communication procedures and security policies

A.6.1 Network as a Service

We claim that the layered paradigm in networking architecture is not the ideal approach

for abstraction. As with Haggle[36], we propose a layer-less architecture which abstracts

the underlying connectivity and network computational resources to applications via a

high level API. Applications should not be burdened with attaching themselves directly

with end points or the connectivity status of various available interfaces; it should auto-

matically be taken care of by the underlying architecture. We argue that ideal network

connectivity is a service that any application should be able to use. It is a service that is

composed from underlying (possibly orthogonal) capabilities of the node and the envi-

ronment that the application then resides in. This obvious statement enables us to look at

architecture from a service oriented point to view. This high level abstraction for a net-

work has various advantages. Such and approach inherently accommodates the business

boundaries existing in the real world networks such as commercial boundaries, adminis-

trative domains etc and helps traversing across these a natural part of service negotiation

and usage. While this is also the approach of overlay networks, their implementation is

not uniform or generic enough to apply to the network architecture as a whole. We pro-

pose to integrate the available communication services and current higher layer services

in a unified and standardised manner.

Appendix A. 5th Generation Networking Principles 175

FIGURE A.2: The vision of Network as a Service.

A.6.2 Network Service as a Collection of Services

The next step is to identify the basis with which we compartmentalize the capabilities

into modules, which can be later orchestrated. We take cues from the ‘tussle’ [7] being

played out in the networking world to impose boundaries on the modules. A module

encompasses a well defined service small enough to be a factor in the tussle but large

enough to provide a specific, well defined, usable and non-trivial service. Identifying a

set of modules which provides the services needed to compose a network architecture is

not straight forward considering the fact that as a ‘future’ network architecture, it should

be able to gracefully accommodate a wide spectrum of potential uses. The borders of

modules and which attributes to consider as a module is of course, an open question.

Different approaches can propose different modules to accomplish the same goals and

it might be probable that it is impossible to agree on a standard set. But, as long as

different modules provide a uniform interface and a clear description of its capabilities,

the architectural principles we propose hold true.

From the above research directions, a sense of future direction can be derived. We can

see not one ‘Internet’ but many ‘Internets’ of varying capabilities and characteristics

(inter-network of things, inter-network of specific applications, inter-network of specific

intentions etc.). This concept is already starting to evolve if we consider Peer-to-peer

Appendix A. 5th Generation Networking Principles 176

application ‘networks’ using the existing infrastructure as a transport network. This

brings us very close to a similar problem that existed in enterprises towards the begin-

ning of the 21st century. Enterprises built their IT systems to streamline their processes.

Large distributed enterprises built middleware to support transactions and interconnect

their systems across domains. Since there were no standards for such systems, these

proprietary systems posed a problem during instances of interoperability (mergers, ac-

quisitions, collaborations etc). The concept of Service Oriented Architecture (SOA) [97]

was adopted to enable a standardised and open way for enterprises to open up their IT

infrastructure for collaboration. We note the best known implementation of SOA in Web

Services (WS-*) [94] specifications, standardization and its implementations. While,

Web Services specifications specifically address Enterprise Application Integration (EAI

[95]), we need a similar principle and framework to be applied to future heterogenous

communication networks in order to interconnect business borders and administrative

domains.

The simple sounding business goal of connecting to customers, suppliers or partners

electronically [122] translated into web services that offer standard based mechanisms to

create or compose services from composite and often cross-organizational components

and Web based services [123]. We look at the underlying network architecture under the

same requirement considerations, i.e, a service to be offered to applications, composed

of various other services, local or distributed.

A.6.3 The Principle of Service Orientation

Before we apply service orientation principles to the network architecture, it is helpful

to identity the definition of a service. A service as specific functionality is characterised

by the following features [86]:

Composable: An entity can use the service depending on the conditions specified either

directly or as a part of another service.

Appendix A. 5th Generation Networking Principles 177

Describable: A service can be fully described including what functions it provides and

how these functions can be accessed (e.g. through metadata).

Discoverable: A service can be discovered based on their metadata by other services or

entities.

SOA represents an abstract architectural concept of building software systems that is

based on loosely coupled components (services) that have been described in a uniform

way and can be discovered and composed [86]. The services that form the part of an

SOA should be dynamically composable by any entity interested in availing it. The

core elements that comprise an SOA is illustrated in Fig. A.3(a). This architecture is

further extended with a Service Bus (SB) to make the discovery and binding process

more transparent to the requesting service by visualizing the candidate services from

the requestor’s perspective (Fig. A.3(b)). The concept of SB is important as it forms a

decision making entity or a middleware on behalf of the requesting service.

(a) SOA Triangle. (b) SOA Triangle enhanced with Service Bus.

FIGURE A.3: Basic components of SOA architecture

We adopt this updated SOA approach to construct the elements for a Network Architec-

ture. The abstraction of network as a service or a collection of services can be gracefully

accommodated into this model.

Appendix A. 5th Generation Networking Principles 178

A.7 A Relationship based Service Oriented Architecture

To propose a network architecture within the structure of SOA, it is necessary to de-

fine a framework or a collection of services and define the environment within which it

functions. This is not a straight forward exercise, given that our intention is to define a

generic architecture for the next generation communication networks. To arrive at such

a architecture, we inspect the highest level abstraction required for any communication.

When two entities meet (have access to a channel with another entity) and wish to com-

municate with each other. The entity here do not particularly refer to a node, a device, a

piece of software or a service but could be any of the them. We would like to be agnostic

here regarding where or what implements the intelligence for communication. We visu-

alize the wish to communicate of two entities (with the intent and ability to do so) as the

meeting of two domains.

Domains can be conceived as a region (physical or virtual) characterized by a specific

feature and restricted by boundaries. A generic example for such a domain could be a

business with business boundaries and characterised by business processes. This gives

us a generic enough platform where services can reside and interact. For example, a

transaction between services of different business entities (B2B) naturally classifies into

a meeting of business domains. A physical device forms a domain with the common

characteristic of a physical boundary and (usually) a single ownership. In this case as

well, connecting two devices together can be reduced to a meeting of two domains. This

Concept of Domains can be extended recursively for already collaborating domains, i.e,

when two domains meet and agree upon the various aspects of service sharing and usage,

their collaboration can be again abstracted as a domain, which being the collection of

capabilities that they together can perform. The implications of such recursive nature

derives from the composability of services within an SOA.

In this paper, We define ‘Relation’ as an association among dynamically collaborat-

ing nodes, devices and services in a network, characterized by a ‘relationship met-

rics’. We propose a frame work termed ‘Relationship Oriented Service Architecture’

Appendix A. 5th Generation Networking Principles 179

(ROSA)[172] to agree upon a broad vocabulary that will be used to model recurring

themes in ICT and integration environments. The aim of such a framework is to be

able to reference one or more open specifications or standards for each identified ser-

vice, that can be used to implement various version of the service. This is a flexibility

available in the SOA. SOA principles are considered in all aspects of design including

interfaces between modules and the relationship description. This enables us to decou-

ple certain aspects or modules and develop it independently. Besides, this also implies

that the services provided by some of the modules can be accomplished by a web based

service or remote entity. This would be helpful in abstracting the network architecture

across domains and networks without too much reworking of the communication net-

work. This should also simplify integration with existing infrastructure and third party

service providers (like standard based trust and security service providers).

The overall architecture provides an ‘Intelligent Middleware’ managing the communi-

cation, while providing an API towards the applications and managing connectivity re-

sources independently. In SOA, the actual services are usually relatively simple ‘black

boxes’ that can be applied in a flexible fashion in a variety of instances, as such avoid-

ing duplication of functionality. While it is not efficient to dictate that all applications

orchestrate and construct their own solutions from the above services, any large scale

application can do so via the APIs that these services expose. For normal scenarios,

the separation of application logic from transport logic to make applications commu-

nication agnostic can achieved by providing a higher level aggregate of these services

via more specific generic APIs. This is done via the ‘Relationship Manager’ (RM). We

focus on the argument that the given modules can be composed into a coherent architec-

ture via a single paradigm, namely Relationships. We define ‘relation’ as an association

among dynamically collaborating nodes, devices and services in a network. A relation-

ship description contains parameters (‘relationship metrics’) to express the nature and

background of the collaboration.

Appendix A. 5th Generation Networking Principles 180

A.7.1 Relationship Manager

The relationship manager is itself a service which composes available services and of-

fers APIs to accomplish most of the common services that applications need. The RM (a

simplified version of ‘Enterprise Bus’ in Web Services) fits the numerous service com-

ponents into a logical process (Orchestration) and facilitates the translation of data flow

between services that may interpret a term differently. RM helps to avoid the ‘mono-

lithic silos’ traditionally formed when implementing a complete usable service. The

RM orchestrates the services for processes (on behalf of applications), based on con-

texts. Entities always communicate with services in their environment according to a

certain context. Orchestrating these services in context provides the definition of rela-

tionships and causalities between different services of an entity communication space

[175]. The context is expressed in the context service and the RM contains the logic to

use it for orchestration.

By being a service by itself, the RM is replaceable with other implementations offer-

ing similar interfaces. However, to be truly modular and avoid tussle in the core, the

relationship manager should be minimal, analogous to a micro-kernel in an operating

system. This means that all useful services should be implemented outside the RM, or in

services space and the only service that the RM provides is a meaningful orchestration.

However, even for environments where the applications directly manage the orchestra-

tion, RM must be present for bootstrapping purposes.

From a different perspective, the RM virtualizes the available services to the applica-

tions. This is similar to the concept in Fig. A.3(b) where the Service Bus virtualizes

the candidate services from the requestor’s point of view. The RM can be thought of as

a local instantiation of a Service Bus, which simplifies the search, query, binding and

access of other services within the ROSA framework.

Appendix A. 5th Generation Networking Principles 181

A.7.2 Service Composition

Fig. A.4 indicates an example of how a network can be composed out of available ser-

vices. The services indicated are highly aggregated services from other elementary ser-

vices available. The simple file transfer scenario mentioned above can be addressed by

encapsulating the available network interfaces (Wi-Fi, bluetooth, Wireless USB, NFC

etc.) and related protocols via the ‘connectivity’ service. This approach detaches the

applications from having to be aware of the device location, neighboring nodes and their

capabilities. If both devices support such a framework, then the underlying services can

be combined by the relationship manager to accomplish a request similar to ‘transfer the

file to the closest neighbor after verification, via the lowest cost path’. The application

need not know whether the interface used is Wi-Fi or bluetooth or NFC, or even how the

phone discovered its neighbor. The detachment of network services also enable applica-

FIGURE A.4: A sample ROSA instance

Appendix A. 5th Generation Networking Principles 182

tions to fully explore the ‘late binding’ (addressing the entity but postponing the entity

location till the last possible instance) or ‘relationship composition’ by the relationship

manager, as it can wait as late as possible to compose the architecture, utilizing the latest

context/network/location updates and status.

A.7.3 Services

A selection of ‘building block’ services, which can be orchestrated to form higher level

services is depicted in Fig. A.5 to visualize the framework. The services are clustered

into logical groups to aid readability and no dependencies or explicit associations exist

between service definitions. In practice, if several services with similar capabilities are

exposed in an environment, the service interface may be realized using a shared imple-

mentation. For example, presence, context and messaging could all be managed using a

single Jabber service. Or, authentication, authorization and accounting/charging (AAA)

can be done via a single AAA service. A brief intentions of each services are mentioned

in [172]. This is by no means an exhaustive list of services that can be made available,

as the service oriented approach facilitates adding more or deducting unused services

according to requirements. The core task of creating such a framework is to identify a

broad set of services that need to be defined (called ‘factoring services’). We consider

factoring to be an ongoing process as experience informs the choice of services, iden-

tifies shortcomings and indicate the services that require creation, discount, splitting or

joining. A service is a pattern that can used to solve a specific problem and can be defined

with in a framework at different levels [125]. While this pattern can be defined at vari-

ous degrees of granularity [86], we propose them as a definition of function and scope.

The functional focus provides the capacity to be specific about the range of expected be-

haviour of individual service, while being agnostic with regards to the implementation

details or design of solutions. While this definition is far from sufficient to implement

a network architecture, it provides as a starting grid to more detailed specifications and

a reference model. From the abstract models of services, it is possible to derive XML

Appendix A. 5th Generation Networking Principles 183

FIGURE A.5: ROSA Framework Services

schemas that define data to be exchanged. This approach enables specific SOA standard

based definition for services to be implemented (as a Web-Service, for example). Such

a framework is realized in an application with an interface to access a service that has

commonly agreed operation definitions (e.g. Web Service Definition language, WSDL)

and data structures (e.g XML schemas) [98].

There are different methods to realize SOA in communication systems. Web-Services

represent one important approach and is the most adopted and widespread within the IT

industry. There are various other Middleware (OMG CORBA, MSDCOM etc.) that can

be used for such abstraction, but Web-Services have marked advantages like being much

more loose coupled, dynamic and adaptable to change. Besides, it supports and open

way to develop specifications and using technology via a broad consortia, which takes

into account the stakeholder interests.

The world wide consortium (W3C) defines Web-Services as:

A Web-Service is a software system designed to support interoperable machine-

to-machine interaction over a network. It has an interface described in

Appendix A. 5th Generation Networking Principles 184

a machine-processable format (specifically WSDL). Other systems interact

with the Web service in a manner prescribed by its description using Simple

Object Access Protocol (SOAP) messages, typically conveyed using HTTP

with an XML serialization in conjunction with other Web-related standards.

Web-Services provide a uniform way of describing components or services with in a net-

work, locating them and accessing them. Web-Service specifications define formats and

protocols that allow services to interoperate across those vendor platforms that provide

conforming implementations, either natively or by mapping them onto existing propri-

etary middleware offerings. The standards and specifications that are adopted are being

developed in an open way through community organizations like W3C and OASIS. The

process allows for a consensus based standardization and vetting by commercial inter-

ests before being accepted or approved as a standard. Web services rely on XML for

the basic underlying data model, SOAP for the message processing and data model, and

WS-Addressing for addressing services and identifying messages independent of trans-

port.

SOAP is a simple and extensible XML based communication protocol that provides a

way to communicate between applications running on different operating systems, with

different technologies and programming languages. With SOAP, the underlying trans-

port might change as the message is routed between nodes, even the mechanism selected

for each hop may vary as required. An important facility is the feature that the messages

can be routed based on the content of the headers and the data inside the message body.

SOAP forms the messaging framework of ROSA, owing to these attributes. Another

specification, WS-Addressing provides an interoperable transport independent way for

identifying message senders and receivers associated with a message exchange. Besides

securing end-to-end endpoint identification in messages, this specification enables mes-

saging systems to support message transmission the networks that include middleboxes

like endpoint managers, firewalls, gateways etc. Further details of these specifications

are available at [94, 97].

Appendix A. 5th Generation Networking Principles 185

The above mentioned services can take advantage of the Service Descriptions frame-

work available in WS which defines metadata that fully describes the characteristics of a

service that are deployed in the network. This metadata provides the abstract definition

of the information necessary to deploy and interact with a service. In Web-Services, Web

Services Description language (WSDL) is most widely used for describing metadata for

Web-Services, i.e, what a Service can do. It offers a standard language-agnostic view

of services offered by a Web-Service. WSDL is an XML format for describing services

as a set of endpoints that operate on messages containing either document-oriented or

procedure oriented information and is well suited for the ROSA framework.

A Policy service can use the WS-Policy [102], an extensible framework for Web-Services

constraints and conditions allowing for a clear and and uniform expression of of the

available options. The Service Discovery module can query over metadata that describes

services. This metadata should be searchable and discoverable for users to find and use

services. Hence, aggregation and discovery services for metadata which in turn becomes

a repository or registry for services are very useful, if not unavoidable. Universal De-

scription Discovery and Integration (UDDI) is the most common used specification for

a Web-Service registry.

As can be realized at this point, the Service Oriented Architectural approach for Net-

working through the ROSA framework can be realized using the various Web-Services

specifications (WS-*). The next step is to select a subset of the services and create a

basic profile, which can bootstrap into a simple functioning model using Web-Services.

This is a future exercise related to this proposal.

A.7.4 Comparison with other Approaches

A clear study of the drawbacks of such an approach needs to be carried out, to propose

improvements to the architecture at initial stages. Coupling of numerous independent

services which communicate among themselves locally or over a network will generate

Appendix A. 5th Generation Networking Principles 186

a large quantity of messages. The quantity of messages increases significantly with the

number of services utilized indicating scalability issues. This might impose a limit on the

modularity of services, as smaller services imply greater flexibility but generate higher

overhead traffic. We can address this complexity partly through the use of RM which

becomes the only service that each of the other services interact with, thus reducing

inter-service messaging. The cost, however, is a significant complexity in the RM to

correctly fit the numerous services into a logical solution for different contexts.

Efficiency for small set of services compared to legacy architectures will be less, us-

ing our approach. However, the advantages of SOA will be inherited into the proposed

architecture. The integration of components within heterogenous environments or dy-

namically changing component configurations is best addressed using our architecture.

SOA and Web-Services offer potentially significant benefits to large service sets that

undergo frequent change and facilitate reusability. Currently, the XML footprint and

parsing cost at both ends of a message exchange does take up time and resources. With

high performance as the criterion, Web-Services might not be as efficient as current ar-

chitectures. Binary XML for interchange can improve the performance, but it is yet to

be standardized.

A.8 Conclusions and Future Work

For a 5th generation network, the principles and paradigms extend beyond bandwidth or

ubiquitous computing. In such a network, every device and service is immersed in an en-

vironment of usable services, transparent to the location, be it local or remote. Network

communication becomes an enabler or a pure service, where the focus shift from connec-

tivity to usage scenarios. Processing power on demand, expandable storage, guaranteed

service qualities etc will become the norm. For such a network, it is necessary that appli-

cations and users should not have to deal with low level infrastructure attributes, but an

Appendix A. 5th Generation Networking Principles 187

high level abstraction of such attributes as usable services. The architectural principles

proposed in this article is a step towards such a networking vision.

We introduced a new architecture that treats network resources and service resources in

the same way by applying service oriented principles. In addition to hiding heterogeneity

and respecting business borders, this approach gives enough flexibility to migrate from

today’s internet towards a network of future Internets.

APPENDIX B

SELECTION OF PAPERS

This appendix lists the author’s publications related to the work done

towards the fulfilment of this thesis.

[1] R. Kumar,“Fifth Generation Networking Principles for a Service Driven Future In-

ternet Architecture,” Wireless Personal Communications, vol. 55, 2010.

[2] R. Kumar, A. Haber, A. Yazidi, and F. Reichert, “Towards a relation oriented service

architecture” in COMSNETS’10: Proceedings of the 2nd international conference on

COMmunication systems and NETworks, pp. 452-459, 2010.

[3] R. Kumar, F. Reichert, A. Haber, A. Aasgard, and Lian Wu, “Migration of Enterprise

VoIP/SIP Solutions towards IMS”, in Testbeds and Research Infrastructure for the De-

velopment of Networks and Communities, 2007. TridentCom 2007. 3rd International

Conference on, pp. 1-6, 2007.

[4] A. Häber, M. Gerdes, F. Reichert, A. Fasbender, and R. Kumar, “Delivering Services

to Residential Appliances by Utilizing Remote Resource Awareness,” in Proceedings of

188

Appendix B. Selection of Papers 189

the 2008 The Second International Conference on Next Generation Mobile Applications,

Services, and Technologies, pp. 161-166, 2008.

[5] A. Haber, M. Gerdes, F. Reichert, A. Fasbender, and R. Kumar, “Remote Service Us-

age Through Sip with Multimedia Access as a Use Case,” in Personal, Indoor and Mobile

Radio Communications, 2007. PIMRC 2007. IEEE 18th International Symposium on,

pp. 1-5, 2007.

REFERENCES

[1] ITU-T, “Itu-t world telecommunication/ict indicators database,” Online, 2010.

[Online]. Available: http://www.itu.int/ITU-D/ict/statistics/

[2] M. Conti, G. Maselli, G. Turi, and S. Giordano, “Cross-layering in mobile ad hoc

network design,” Computer, vol. 37, no. 2, pp. 48–51, 2004.

[3] M. Gregg and S. Watkins, Hack the Stack: Using Snort and Ethereal to Master

the 8 Layers of an Insecure Network. Syngress Publishing, 2006.

[4] T. Erl, A. Karmarkar, P. Walmsley, H. Haas, L. U. Yalcinalp, K. Liu, D. Orchard,

A. Tost, and J. Pasley, Web Service Contract Design and Versioning for SOA,

1st ed. Prentice Hall, Oct. 2008.

[5] T. Erl, SOA Principles of Service Design (The Prentice Hall Service-Oriented

Computing Series from Thomas Erl). Upper Saddle River, NJ, USA: Prentice

Hall PTR, 2007.

[6] V. G. Cerf, Robert, and E. Icahn, “A protocol for packet network intercommuni-

cation,” IEEE Trans, p. 637, 1974.

190

http://www.itu.int/ITU-D/ict/statistics/

References 191

[7] D. Clark, J. Wroclawski, K. Sollins, and R. Braden, “Tussle in cyberspace: defin-

ing tomorrow’s internet,” Networking, IEEE/ACM Transactions on, vol. 13, no. 3,

pp. 462–475, 2005.

[8] R. H. Zakon. Hobbe’s internet timeline. [Online]. Available: http://www.zakon.

org/robert/internet/timeline/

[9] M. Handley, “Why the internet only just works,” BT Technology Journal, vol. 24,

no. 3, pp. 119–129, 2006.

[10] M. S. Blumenthal and D. D. Clark, “Rethinking the design of the internet: the end-

to-end arguments vs. the brave new world,” ACM Trans. Interet Technol., vol. 1,

no. 1, pp. 70–109, 2001.

[11] B. Carpenter and K. Moore, “Connection of ipv6 domains via ipv4 clouds,” RFC

3056 (Proposed Standard), Internet Engineering Task Force, Feb. 2001. [Online].

Available: http://www.ietf.org/rfc/rfc3056.txt

[12] J. Stine, “Cross-layer design of manets: The only option,” in Military Communi-

cations Conference, 2006. MILCOM 2006. IEEE, 2006, pp. 1–7.

[13] A. Goldsmith and S. Wicker, “Design challenges for energy-constrained ad hoc

wireless networks,” Wireless Communications, IEEE, vol. 9, no. 4, pp. 8–27,

2002.

[14] N. Kshetri, “Pattern of global cyber war and crime: A conceptual framework,”

Journal of International Management, vol. 11, no. 4, pp. 541–562, December

2005. [Online]. Available: http://papers.ssrn.com/sol3/papers.cfm?abstract_id=

842265

[15] K. J. Knapp and W. R. Boulton, “Cyber-warfare threatens corporations:

Expansion into commercial environments,” Information Systems Management,

vol. 23, no. 2, p. 76, 2006. [Online]. Available: http://www.informaworld.com/

10.1201/1078.10580530/45925.23.2.20060301/92675.8

http://www.zakon.org/robert/internet/timeline/
http://www.zakon.org/robert/internet/timeline/
http://www.ietf.org/rfc/rfc3056.txt
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=842265
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=842265
http://www.informaworld.com/10.1201/1078.10580530/45925.23.2.20060301/92675.8
http://www.informaworld.com/10.1201/1078.10580530/45925.23.2.20060301/92675.8

References 192

[16] T. Porter. The perils of deep packet inspection.

http://www.securityfocus.com/infocus/1817. [Online]. Available: http://www.

securityfocus.com/infocus/1817

[17] W. Eddy, “At what layer does mobility belong?” Communications Magazine,

IEEE, vol. 42, no. 10, pp. 155–159, 2004.

[18] M. Ratola, “Which layer for mobility? - comparing mobile ipv6, hip and sctp,”

HUT T-110.551 Seminar on Internetworking, 2004.

[19] A. Weiss, “Computing in the clouds,” netWorker, vol. 11, no. 4, pp. 16–25, 2007.

[Online]. Available: http://portal.acm.org/ft_gateway.cfm?id=1327513&type=

html&coll=GUIDE&dl=GUIDE&CFID=97904226&CFTOKEN=85754888

[20] M. Vouk, “Cloud computing - issues, research and implementations,” in Infor-

mation Technology Interfaces, 2008. ITI 2008. 30th International Conference on,

2008, pp. 31–40. [Online]. Available: 10.1109/ITI.2008.4588381

[21] R. Buyya, C. S. Yeo, and S. Venugopal, “Market-oriented cloud computing:

Vision, hype, and reality for delivering it services as computing utilities,”

in High Performance Computing and Communications, 2008. HPCC ’08. 10th

IEEE International Conference on, 2008, pp. 5–13. [Online]. Available:

10.1109/HPCC.2008.172

[22] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner, “A

break in the clouds: towards a cloud definition,” SIGCOMM Comput.

Commun. Rev., vol. 39, no. 1, pp. 50–55, 2009. [Online]. Available:

http://portal.acm.org/citation.cfm?id=1496100

[23] L. Youseff, M. Butrico, and D. D. Silva, “Toward a unified ontology of cloud

computing,” in Grid Computing Environments Workshop, 2008. GCE ’08, 2008,

pp. 1–10. [Online]. Available: 10.1109/GCE.2008.4738443

http://www.securityfocus.com/infocus/1817
http://www.securityfocus.com/infocus/1817
http://portal.acm.org/ft_gateway.cfm?id=1327513&type=html&coll=GUIDE&dl=GUIDE&CFID=97904226&CFTOKEN=85754888
http://portal.acm.org/ft_gateway.cfm?id=1327513&type=html&coll=GUIDE&dl=GUIDE&CFID=97904226&CFTOKEN=85754888
10.1109/ITI.2008.4588381
10.1109/HPCC.2008.172
http://portal.acm.org/citation.cfm?id=1496100
10.1109/GCE.2008.4738443

References 193

[24] K. Czajkowski, I. Foster, C. Kesselman, V. Sander, S. Tuecke, D. Feitelson,

L. Rudolph, and U. Schwiegelshohn, “Snap: A protocol for negotiating

service level agreements and coordinating resource management in distributed

systems,” in Job Scheduling Strategies for Parallel Processing. Springer Berlin

Heidelberg, Nov. 2002, vol. 2537, pp. 153–183. [Online]. Available:

http://dx.doi.org/10.1007/3-540-36180-4_9

[25] I. Brandic, D. Music, and S. Dustdar, “Service mediation and negotiation

bootstrapping as first achievements towards self-adaptable grid and cloud

services,” in Proceedings of the 6th international conference industry session on

Grids meets autonomic computing. Barcelona, Spain: ACM, 2009, pp. 1–8.

[Online]. Available: http://portal.acm.org/citation.cfm?id=1555302

[26] V. Srivastava and M. Motani, “Cross-layer design: a survey and the road ahead,”

Communications Magazine, IEEE, vol. 43, no. 12, pp. 112 – 119, 12 2005.

[27] I. Akyildiz, M. Vuran, and O. Akan, “A cross-layer protocol for wireless sensor

networks,” 03 2006, pp. 1102 –1107.

[28] P. Mahonen, J. Riihijarvi, M. Petrova, and Z. Shelby, “Hop-by-hop toward future

mobile broadband ip,” Communications Magazine, IEEE, vol. 42, no. 3, pp. 138–

146, 2004.

[29] I. G. Niemegeers and S. M. H. D. Groot, “From personal area networks to personal

networks: A user oriented approach,” Wirel. Pers. Commun., vol. 22, no. 2, pp.

175–186, 2002.

[30] H. Balakrishnan, K. Lakshminarayanan, S. Ratnasamy, S. Shenker, I. Stoica, and

M. Walfish, “A layered naming architecture for the internet,” in SIGCOMM ’04:

Proceedings of the 2004 conference on Applications, technologies, architectures,

and protocols for computer communications. Portland, Oregon, USA: ACM,

2004, pp. 343–352.

http://dx.doi.org/10.1007/3-540-36180-4_9
http://portal.acm.org/citation.cfm?id=1555302

References 194

[31] D. R. Cheriton and M. Gritter. (2000) Triad: A scalable deployable nat-based

internet architecture. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/

summary?doi=10.1.1.33.4093

[32] P. Nikander, “The host identity protocol (hip): Bringing mobility, multi- hom-

ing, and baseline security together,” in Security and Privacy in Communications

Networks and the Workshops, 2007. SecureComm 2007. Third International Con-

ference on, 2007, pp. 518–519.

[33] E. K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim, “A survey and com-

parison of peer-to-peer overlay network schemes,” IEEE COMMUNICATIONS

SURVEYS AND TUTORIALS, vol. 7, pp. 72—93, 2005.

[34] M. Samad, F. Yusuf, H. Hashim, M. Mahfudz, and M. Zan, “Deploying internet

protocol version 6 (ipv6) over internet protocol version 4 (ipv4) tunnel,” in Re-

search and Development, 2002. SCOReD 2002. Student Conference on, 2002, pp.

109–112.

[35] B. Ahlgren, L. Eggert, B. Ohlman, and A. Schieder, “Ambient networks: bridging

heterogeneous network domains,” in Proc. 16th Annual IEEE International Sym-

posium on Personal Indoor and Mobile Radio Communications (PIMRC), vol. 2,

2005, pp. 937–941 Vol. 2.

[36] J. Scott, J. Crowcroft, P. Hui, and C. Diot, “Haggle: a networking architecture

designed around mobile users,” in Proceedings of the Third Annual Conference

on Wireless On-demand Network Systems and Services, 2006, pp. 86, 78.

[37] D. D. Clark and K. Sollins, “Addressing reality: An architectural response to

demands on the evolving internet,” In ACM SIGCOMM Workshop on Future Di-

rections in Network Architecture, pp. 247—257, 2003.

[38] R. Braden, T. Faber, and M. Handley, “From protocol stack to protocol heap:

role-based architecture,” SIGCOMM Comput. Commun. Rev., vol. 33, no. 1, pp.

17–22, 2003.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.33.4093
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.33.4093

References 195

[39] B. Wong, A. Slivkins, and E. Sirer, “Meridian: A lightweight network location

service without virtual coordinates,” IN SIGCOMM, pp. 85—96, 2005.

[40] I. Castineyra, N. Chiappa, and M. Steenstrup, “The nimrod routing architecture,”

RFC 1992, Internet Engineering Task Force, August 1996. [Online]. Available:

http://www.ietf.org/rfc/rfc1992.txt

[41] D. Clark, R. Braden, A. Falk, and V. Pingali, “Fara: reorganizing the addressing

architecture,” in FDNA ’03: Proceedings of the ACM SIGCOMM workshop on

Future directions in network architecture. New York, NY, USA: ACM, 2003,

pp. 313–321.

[42] D. L. Tennenhouse, J. M. Smith, W. D. Sincoskie, D. J. Wetherall, and G. J. Min-

den, “A survey of active network research,” IEEE COMMUNICATIONS MAGA-

ZINE, vol. 35, pp. 80—86, 1997.

[43] D. Clark, “The design philosophy of the darpa internet protocols,” in SIGCOMM

’88: Symposium proceedings on Communications architectures and protocols.

New York, NY, USA: ACM, 1988, pp. 106–114.

[44] R. L. Aguiar, “Some comments on hourglasses,” SIGCOMM Comput. Commun.

Rev., vol. 38, no. 5, pp. 69–72, 2008.

[45] R. Atkinson, S. Bhatti, and S. Hailes, “A proposal for unifying mobility with

multi-homing, nat & security,” in MobiWac ’07: Proceedings of the 5th ACM

international workshop on Mobility management and wireless access. New York,

NY, USA: ACM, 2007, pp. 74–83.

[46] V. Srivastava and M. Motani, “Cross-layer design: a survey and the road ahead,”

Communications Magazine, IEEE, vol. 43, no. 12, pp. 112–119, 2005.

[47] S.-H. Choi, D. Perry, and S. Nettles, “A software architecture for cross-layer wire-

less network adaptations,” in Software Architecture, 2008. WICSA 2008. Seventh

Working IEEE/IFIP Conference on, 18-21 2008, pp. 281 –284.

http://www.ietf.org/rfc/rfc1992.txt

References 196

[48] J. Burbank and W. Kasch, “Cross-layer design for military networks,” in Military

Communications Conference, 2005. MILCOM 2005. IEEE, 2005, pp. 1912–1918

Vol. 3.

[49] V. Kawadia and P. Kumar, “A cautionary perspective on cross-layer design,” Wire-

less Communications, IEEE, vol. 12, no. 1, pp. 3 – 11, feb. 2005.

[50] E. Lear and R. Droms, What’s In A Name: Thoughts from the NSRG, Internet

Research Task Force (IRTF) Internet Draft, 2004, name Space Research Group

(NSRG). [Online]. Available: http://tools.ietf.org/html/draft-irtf-nsrg-report-10

[51] R. Moskowitz and P. Nikander, “Host identity protocol (hip) architecture,” RFC

4423 (Informational), Internet Engineering Task Force, May 2006. [Online].

Available: http://www.ietf.org/rfc/rfc4423.txt

[52] E. Rescorla, “Diffie-hellman key agreement method,” RFC 2631 (Proposed

Standard), Internet Engineering Task Force, Jun. 1999. [Online]. Available:

http://www.ietf.org/rfc/rfc2631.txt

[53] S. Kent, “Ip encapsulating security payload (esp),” RFC 4303 (Proposed

Standard), Internet Engineering Task Force, Dec. 2005. [Online]. Available:

http://www.ietf.org/rfc/rfc4303.txt

[54] M. O’Dell, “8+8 - an alternate addressing architecture for ipv6,” 10 1996.

[55] E. Nordmark and M. Bagnulo, “Shim6: Level 3 multihoming shim protocol for

ipv6,” June 2009. [Online]. Available: http://tools.ietf.org/html/rfc5533

[56] N. Niebert, A. Schieder, J. Zander, and R. Hancock, Ambient Networks: Co-

operative Mobile Networking for the Wireless World. Wiley Publishing, 2007.

[57] European fp6 project, european commission. [Online]. Available: http:

//europa.eu.int/comm/research/fp6/index_en.html

http://tools.ietf.org/html/draft-irtf-nsrg-report-10
http://www.ietf.org/rfc/rfc4423.txt
http://www.ietf.org/rfc/rfc2631.txt
http://www.ietf.org/rfc/rfc4303.txt
http://tools.ietf.org/html/rfc5533
http://europa.eu.int/comm/research/fp6/index_en.html
http://europa.eu.int/comm/research/fp6/index_en.html

References 197

[58] W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and J. Lilley, “The design and

implementation of an intentional naming system,” in SOSP ’99: Proceedings of

the seventeenth ACM symposium on Operating systems principles. New York,

NY, USA: ACM, 1999, pp. 186–201.

[59] M. Gudgin, M. Hadley, and T. Rogers, Web Services Addressing 1.0 - Core,

World Wide Web Consortium W3C Recommendation, May 2006. [Online].

Available: http://www.w3.org/TR/ws-addr-core/

[60] A. Wong and A. Yeung, Network Infrastructure Security. Springer Science Busi-

ness Media LLC, 2009, vol. 1, no. 978-1-4419-0165-1.

[61] R. Hinden and S. Deering, “Internet protocol version 6 (ipv6) addressing

architecture,” April 2003. [Online]. Available: http://www.ietf.org/rfc/rfc3513.txt

[62] D. Harkins and D. Carrel, “The internet key exchange (ike),” November 1998.

[Online]. Available: http://tools.ietf.org/html/rfc2409

[63] C. Perkins, “Mobile ip,” Communications Magazine, IEEE, vol. 40, no. 5, pp. 66

–82, may. 2002.

[64] D. Johnson, C. Perkins, and J. Arkko, “Mobility support in ipv6,” Network

Working Group, June 2004. [Online]. Available: http://www.ietf.org/rfc/rfc3775.

txt

[65] A. Ford, P. Eardley, and B. van Schewick, “New design principles for the internet,”

in Communications Workshops, 2009. ICC Workshops 2009. IEEE International

Conference on, June 2009, pp. 1–5.

[66] T. Koponen and A. Gurtov, “Application mobility with host identity protocol,” In

Proc. of NDSS Wireless and Security Workshop, 2005.

[67] S. Novaczki, L. Bokor, and S. Imre, “A hip based network mobility protocol,” in

SAINT-W ’07: Proceedings of the 2007 International Symposium on Applications

http://www.w3.org/TR/ws-addr-core/
http://www.ietf.org/rfc/rfc3513.txt
http://tools.ietf.org/html/rfc2409
http://www.ietf.org/rfc/rfc3775.txt
http://www.ietf.org/rfc/rfc3775.txt

References 198

and the Internet Workshops. Washington, DC, USA: IEEE Computer Society,

2007, p. 48.

[68] P. Nikander, J. Ylitalo, and J. Wall, “Integrating security, mobility, and multi-

homing in a hip way,” in NDSS’03: Proceedings of the Network and Distributed

Systems Security Symposium, Feb. 2003, pp. 87–99.

[69] Y. Rekhter and T. Li, “An architecture for ip address allocation with cidr,”

September 1993. [Online]. Available: http://tools.ietf.org/html/rfc1518

[70] B. Ahlgren, L. Eggert, B. Ohlman, J. Rajahalme, and A. Schieder, “Names, ad-

dresses and identities in ambient networks,” in DIN ’05: Proceedings of the 1st

ACM workshop on Dynamic interconnection of networks. New York, NY, USA:

ACM, 2005, pp. 33–37.

[71] M. Caesar, T. Condie, J. Kannan, K. Lakshminarayanan, and I. Stoica, “Rofl:

routing on flat labels,” SIGCOMM Comput. Commun. Rev., vol. 36, no. 4, pp.

363–374, 2006.

[72] R. E. Schantz, J. P. Loyall, C. Rodrigues, D. C. Schmidt, Y. Krishnamurthy, and

I. Pyarali, “Flexible and adaptive qos control for distributed real-time and em-

bedded middleware,” in Middleware ’03: Proceedings of the ACM/IFIP/USENIX

2003 International Conference on Middleware. New York, NY, USA: Springer-

Verlag New York, Inc., 2003, pp. 374–393.

[73] P. White, “Rsvp and integrated services in the internet: a tutorial,”

Communications Magazine, IEEE, vol. 35, no. 5, pp. 100–106, 1997. [Online].

Available: 10.1109/35.592102

[74] L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala, “Rsvp: a new re-

source reservation protocol,” Communications Magazine, IEEE, vol. 40, no. 5, pp.

116 –127, may. 2002.

http://tools.ietf.org/html/rfc1518
10.1109/35.592102

References 199

[75] J. Saarnio, R. Aguiar, and I. V. Kumar, “Layereless communications: From

dream to reality?” Wirel. Pers. Commun., vol. 44, no. 1, pp. 51–55, 2008.

[Online]. Available: http://portal.acm.org/citation.cfm?id=1325281

[76] R. Prasad, “A perspective of layerless communications,” Wireless Personal

Communications, vol. 44, no. 1, pp. 95–100, 2008. [Online]. Available:

http://dx.doi.org/10.1007/s11277-007-9385-x

[77] J. Su, J. Scott, P. Hui, J. Crowcroft, E. de Lara, C. Diot, A. Goel, M. Lim, and

E. Upton, Haggle: Seamless Networking for Mobile Applications., ser. Lecture

Notes in Computer Science. Springer, 2007, vol. 4717, pp. 391–408. [Online].

Available: http://www.cl.cam.ac.uk/~ph315/publications/haggle-ubicomp2007.

pdf

[78] P. Hui, A. Chaintreau, R. Gass, J. Scott, J. Crowcroft, and C. Diot, “Pocket

switched networking: Challenges, feasibility, and implementation issues,” in Pro-

ceedings of the Workshop on Autonomic Communications, 2005.

[79] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H. Kim, S. Shenker,

and I. Stoica, “A data-oriented (and beyond) network architecture,” SIGCOMM

Comput. Commun. Rev., vol. 37, no. 4, pp. 181–192, 2007.

[80] H. Bannazadeh and A. Leon-Garcia, “On the emergence of an application-

oriented network architecture,” in Proceedings of the IEEE International Confer-

ence on Service-Oriented Computing and Applications. IEEE Computer Society,

2007, pp. 47–54.

[81] K. Knightson, N. Morita, and T. Towle, “Ngn architecture: generic principles,

functional architecture, and implementation,” Communications Magazine, IEEE,

vol. 43, no. 10, pp. 49–56, 2005.

[82] A. S. Tanenbaum and A. S. Woodhull, Operating Systems Design and Implemen-

tation (3rd Edition) (Prentice Hall Software Series). Prentice Hall, January 2006.

http://portal.acm.org/citation.cfm?id=1325281
http://dx.doi.org/10.1007/s11277-007-9385-x
http://www.cl.cam.ac.uk/~ph315/publications/haggle-ubicomp2007.pdf
http://www.cl.cam.ac.uk/~ph315/publications/haggle-ubicomp2007.pdf

References 200

[83] J. Dollimore, T. Kindberg, and G. Coulouris, Distributed Systems: Concepts and

Design (4th Edition) (International Computer Science Series). Addison Wesley,

May 2005. [Online]. Available: http://www.amazon.ca/exec/obidos/redirect?tag=

citeulike09-20&path=ASIN/0321263545

[84] S. Vinoski, “Corba: integrating diverse applications within distributed heteroge-

neous environments,” Communications Magazine, IEEE, vol. 35, no. 2, pp. 46

–55, feb. 1997.

[85] T. B. Downing, Java RMI: Remote Method Invocation. Foster City, CA, USA:

IDG Books Worldwide, Inc., 1998.

[86] S. Weerawarana, F. Curbera, F. Leymann, T. Storey, and D. Ferguson,

Web Services Platform Architecture : SOAP, WSDL, WS-Policy, WS-Addressing,

WS-BPEL, WS-Reliable Messaging, and More. Prentice Hall PTR, march

2005. [Online]. Available: http://www.amazon.ca/exec/obidos/redirect?tag=

citeulike09-20&path=ASIN/0131488740

[87] T. Erl, Service-Oriented Architecture : A Field Guide to Integrating XML and

Web Services. Prentice Hall PTR, Apr. 2004. [Online]. Available: http://www.

amazon.ca/exec/obidos/redirect?tag=citeulike09-20&path=ASIN/0131428985

[88] J. Lee, K. Siau, and S. Hong, “Enterprise integration with erp and eai,” Commun.

ACM, vol. 46, no. 2, pp. 54 – 60, 2003.

[89] J. Rattner and G. Cox, “Object-based computer architecture,” SIGARCH Comput.

Archit. News, vol. 8, no. 6, pp. 4–11, 1980.

[90] A. Adi, S. Stoutenburg, and S. Tabet, Eds., Rules and Rule Markup Languages

for the Semantic Web. Berlin/Heidelberg: Springer-Verlag, 2005, vol. 3791.

[Online]. Available: http://www.springerlink.com/content/y58637312834r741/

[91] R. Baldoni, M. Contenti, and A. Virgillito, “The evolution of publish/subscribe

communication systems,” pp. 137–141, 2003.

http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20&path=ASIN/0321263545
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20&path=ASIN/0321263545
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20&path=ASIN/0131488740
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20&path=ASIN/0131488740
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20&path=ASIN/0131428985
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20&path=ASIN/0131428985
http://www.springerlink.com/content/y58637312834r741/

References 201

[92] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann, “Service-oriented

computing: State of the art and research challenges,” Computer, vol. 40, no. 11,

pp. 38–45, 2007.

[93] G. Alonso, F. Casati, H. Kuno, and V. Machiraju, Web Services: Concepts, Archi-

tectures and Applications. Berlin: Springer, 2004.

[94] W3C. W3c web services architecture. [Online]. Available: http://www.w3.org/

TR/ws-arch/

[95] D. S. Linthicum, Enterprise application integration. Essex, UK, UK: Addison-

Wesley Longman Ltd., 2000.

[96] M. Gudgin, M. Hadley, N. Mendelsohn, J.-J. Moreau, H. F. Nielsen,

A. Karmarkar, and Y. Lafon, SOAP Version 1.2 Part 1: Messaging Framework

(Second Edition), World Wide Web Consortium W3C Recommendation, April

2007. [Online]. Available: http://www.w3.org/TR/soap/

[97] OASIS. Oasis soa commitee. [Online]. Available: http://www.oasis-open.org/

committees/tc_cat.php?cat=soa

[98] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana, “Web service

definition language (wsdl),” World Wide Web Consortium, Tech. Rep. NOTE-

wsdl-20010315, March 2001. [Online]. Available: http://www.w3.org/TR/wsdl

[99] R. Chinnici, J.-J. Moreau, A. Ryman, and S. Weerawarana, “Web services

description language (wsdl) version 2.0 part 1: Core language,” June 2007.

[Online]. Available: http://www.w3.org/TR/wsdl20/

[100] L. Clement, A. Hately, C. von Riegen, and T. Rogers, OASIS Universal

Description Discovery and Integration (UDDI) Specification, Organization for

the Advancement of Structured Information Standards (OASIS) UDDI Spec

Technical Committee Draft 20 041 019, Rev. 3, February 2005. [Online].

Available: http://www.oasis-open.org/committees/uddi-spec

http://www.w3.org/TR/ws-arch/
http://www.w3.org/TR/ws-arch/
http://www.w3.org/TR/soap/
http://www.oasis-open.org/committees/tc_cat.php?cat=soa
http://www.oasis-open.org/committees/tc_cat.php?cat=soa
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl20/
http://www.oasis-open.org/committees/uddi-spec

References 202

[101] U. Küster, H. Lausen, and B. König-Ries, “Evaluation of semantic service dis-

covery - a survey and directions for future research,” in Proceedings of the 2nd

Workshop on Emerging Web Services Technology (WEWST07) in conjunction with

the 5th IEEE European Conference on Web Services (ECOWS07), vol. 2, 2008,

pp. 41–58.

[102] A. S. Vedamuthu, D. Orchard, F. Hirsch, M. Hondo, P. Yendluri, T. Boubez, and

Ümit Yalçinalp, “Web services policy framework (wspolicy),” September 2007.

[Online]. Available: http://www.w3.org/TR/ws-policy

[103] A. Nadalin, C. Kaler, R. Monzillo, and P. Hallam-Baker, Web Services Security

(WS-Security), OASIS OASIS Standard Specification, Rev. 1.1, February 2006.

[Online]. Available: http://docs.oasis-open.org/wss/v1.1

[104] I. Robinson and P. Knight, OASIS Web Services Transaction (WS-TX), OASIS

OASIS Standard, Rev. 1.2, February 2009. [Online]. Available: www.oasis-open.

org/committees/ws-tx

[105] Oasis web services reliable messaging (wsrm). [Online]. Available: http://docs.

oasis-open.org/wsrm/ws-reliability/v1.1/wsrm-ws_reliability-1.1-spec-os.pdf

[106] R. Monson-Haefel, J2EE(TM) Web Services, 1st ed. Addison-Wesley Profes-

sional, 10 2003.

[107] M. Stal, “Web services: beyond component-based computing,”

Commun. ACM, vol. 45, no. 10, pp. 71–76, 2002. [Online].

Available: http://portal.acm.org/ft_gateway.cfm?id=570934&type=html&coll=

GUIDE&dl=GUIDE&CFID=62266538&CFTOKEN=22342330

[108] R. Chumbley, J. Durand, G. Pilz, and T. Rutt, WS-Interoperability (WS-I)

Basic Profile Version 2.0, Web Services interoperability Organization Working

Group Draft 20 100 331, Rev. 2, March 2010. [Online]. Available: http:

//ws-i.org/profiles/BasicProfile-2.0-WGD.html

http://www.w3.org/TR/ws-policy
http://docs.oasis-open.org/wss/v1.1
www.oasis-open.org/committees/ws-tx
www.oasis-open.org/committees/ws-tx
http://docs.oasis-open.org/wsrm/ws-reliability/v1.1/wsrm-ws_reliability-1.1-spec-os.pdf
http://docs.oasis-open.org/wsrm/ws-reliability/v1.1/wsrm-ws_reliability-1.1-spec-os.pdf
http://portal.acm.org/ft_gateway.cfm?id=570934&type=html&coll=GUIDE&dl=GUIDE&CFID=62266538&CFTOKEN=22342330
http://portal.acm.org/ft_gateway.cfm?id=570934&type=html&coll=GUIDE&dl=GUIDE&CFID=62266538&CFTOKEN=22342330
http://ws-i.org/profiles/BasicProfile-2.0-WGD.html
http://ws-i.org/profiles/BasicProfile-2.0-WGD.html

References 203

[109] W. Vogels, “Web services are not distributed objects,” IEEE Internet

Computing, vol. 7, no. 6, pp. 59–66, 2003. [Online]. Available: http:

//portal.acm.org/citation.cfm?id=1050716

[110] A. Sheth and J. A. Miller, “Web services: Technical evolution yet practical revo-

lution,” IEEE Intelligent Systems (IEEEIS), vol. 18, pp. 78–80, 2003.

[111] R. Kazman, G. Abowd, L. Bass, and P. Clements, “Scenario-based analysis of

software architecture,” IEEE Software, vol. 13, no. 6, pp. 47–55, 1996.

[112] R. Kazman, L. Bass, G. Abowd, and M. Webb, “Saam: a method for analyzing

the properties of software architectures,” in Software Engineering, 1994. Proceed-

ings. ICSE-16., 16th International Conference on, 1994, pp. 81–90.

[113] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice,

Second Edition. Addison-Wesley Professional, Apr. 2003. [Online]. Avail-

able: http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20&path=

ASIN/0321154959

[114] S. Lohr, “The web’s inventor regrets one small thing,” The New York

Times, Oct. 2009. [Online]. Available: http://bits.blogs.nytimes.com/2009/10/12/

the-webs-inventor-regrets-one-small-thing/

[115] R. Kazman, R. Nord, and M. H. Klein, “A life-cycle view of architecture analysis

and design methods,” Carnegie Mellon, Technical Note CMU/SEI-2003-TN-026,

Sep. 2003. [Online]. Available: http://www.sei.cmu.edu/library/abstracts/reports/

03tn026.cfm

[116] M. R. Barbacci, R. J. Ellison, A. J. Lattanze, J. A. Stafford, C. B.

Weinstock, and W. G. Wood, “Quality attribute workshops qaws - third edition,”

Carnegie Mellon, Technical Report CMU/SEI-2003-TR-016, Oct. 2003. [Online].

Available: http://www.sei.cmu.edu/library/abstracts/reports/03tr016.cfm

http://portal.acm.org/citation.cfm?id=1050716
http://portal.acm.org/citation.cfm?id=1050716
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20&path=ASIN/0321154959
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20&path=ASIN/0321154959
http://bits.blogs.nytimes.com/2009/10/12/the-webs-inventor-regrets-one-small-thing/
http://bits.blogs.nytimes.com/2009/10/12/the-webs-inventor-regrets-one-small-thing/
http://www.sei.cmu.edu/library/abstracts/reports/03tn026.cfm
http://www.sei.cmu.edu/library/abstracts/reports/03tn026.cfm
http://www.sei.cmu.edu/library/abstracts/reports/03tr016.cfm

References 204

[117] R. Kazman, J. Asundi, and M. Klein, “Quantifying the costs and benefits of ar-

chitectural decisions,” in Software Engineering, 2001. ICSE 2001. Proceedings of

the 23rd International Conference on, 2001, pp. 297–306.

[118] P. C. Clements, “Active reviews for intermediate designs,” Carnegie Mellon,

Technical Note CMU/SEI-2000-TN-009, Aug. 2000. [Online]. Available:

http://www.sei.cmu.edu/library/abstracts/reports/00tn009.cfm

[119] R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lipson, and J. Carriere, “The

architecture tradeoff analysis method,” in Engineering of Complex Computer Sys-

tems, 1998. ICECCS ’98. Proceedings. Fourth IEEE International Conference on,

1998, pp. 68–78.

[120] C. Larman and V. R. Basili, “Iterative and incremental development: A brief his-

tory,” Computer, vol. 36, no. 6, pp. 47–56, 2003.

[121] S. Wilson, K. Blinco, and D. Rehak, “Service-oriented frameworks: Modelling

the infrastructure for the next generation of e-learning systems,” Altilab, Tech.

Rep. 1, July 2004, a Paper prepared on behalf of DEST (Australia), JISC-CETIS

(UK), and Industry Canada.

[122] C. S. Corporation, “13th ann. critical issues of is management survey,”

Computer Sciences Corporation, Tech. Rep., 2000. [Online]. Available:

www.csc.com/survey

[123] C. Peltz, “Web services orchestration and choreography,” Computer, vol. 36,

no. 10, pp. 46–52, 2003.

[124] D. A. Chappell, Enterprise service bus. O’Reilly Media, Inc., Jun. 2004.

[125] P. Nicholls, “Enterprise architectures and the international e-framework,”

e-Framework Partnership for Education and Research, Tech. Rep. 1.3 Final, Jul.

2009. [Online]. Available: http://www.e-framework.org/Portals/9/docs/EAPaper_

2009-07.pdf

http://www.sei.cmu.edu/library/abstracts/reports/00tn009.cfm
www.csc.com/survey
http://www.e-framework.org/Portals/9/docs/EAPaper_2009-07.pdf
http://www.e-framework.org/Portals/9/docs/EAPaper_2009-07.pdf

References 205

[126] F. A. Rabhi and S. Gorlatch, Eds., Patterns and skeletons for parallel and dis-

tributed computing. London, UK: Springer-Verlag, 2003.

[127] Y. Kim and K.-G. Doh, “The service modeling process based on use case refac-

toring,” in BIS’07: Proceedings of the 10th international conference on Business

information systems. Berlin, Heidelberg: Springer-Verlag, 2007, pp. 108–120.

[128] Web ontology language semantic markup for web services (owl-s). [Online].

Available: http://www.w3.org/Submission/OWL-S/

[129] F. Casati, S. Ilnicki, L.-J. Jin, and M.-C. Shan, “An open, flexible, and config-

urable system for service composition,” 2000, pp. 125 –132.

[130] H. Sun, X. Wang, B. Zhou, and P. Zou, “Research and implementation of dynamic

web services composition,” in Advanced Parallel Processing Technologies, ser.

Lecture Notes in Computer Science. Springer Berlin / Heidelberg, 2003,

vol. 2834, pp. 457–466, 10.1007/978-3-540-39425-9_54. [Online]. Available:

http://dx.doi.org/10.1007/978-3-540-39425-9_54

[131] I. Foster and C. Kesselman, “Computational grids,” in Vector and Parallel

Processing - VECPAR 2000, ser. Lecture Notes in Computer Science, J. Palma,

J. Dongarra, and V. Hernández, Eds. Springer Berlin / Heidelberg,

2001, vol. 1981, pp. 3–37, 10.1007/3-540-44942-6_2. [Online]. Available:

http://dx.doi.org/10.1007/3-540-44942-6_2

[132] T. Erl, SOA Design Patterns, 1st ed. Prentice Hall PTR, Jan. 2009.

[133] X. Ye, “Towards a reliable distributed web service execution engine,” in Web Ser-

vices, 2006. ICWS ’06. International Conference on, 18-22 2006, pp. 595 –602.

[134] A. L. Lopes, “Executing semantic web services with a context-aware service ex-

ecution agent,” in AAMAS’07/SOCASE’07: Proceedings of the 2007 AAMAS in-

ternational workshop and SOCASE 2007 conference on Service-oriented comput-

ing. Berlin, Heidelberg: Springer-Verlag, 2007, pp. 1–15, translator-Botelho,

Luís Miguel.

http://www.w3.org/Submission/OWL-S/
http://dx.doi.org/10.1007/978-3-540-39425-9_54
http://dx.doi.org/10.1007/3-540-44942-6_2

References 206

[135] S. McIlraith, T. Son, and H. Zeng, “Semantic web services,” Intelligent Systems,

IEEE, vol. 16, no. 2, pp. 46 – 53, mar-apr 2001.

[136] M. B. Juric, A. Sasa, B. Brumen, and I. Rozman, “Wsdl and uddi extensions for

version support in web services,” J. Syst. Softw., vol. 82, no. 8, pp. 1326 – 1343,

2009.

[137] T. Berners-Lee, J. Hendler, and O. Lassila, “The semantic web,” Scientific Amer-

ican, May 2001.

[138] “Resource description framework (rdf),” W3C RDF Working Group, Feb 2004.

[Online]. Available: http://www.w3.org/RDF/

[139] D. Brickley and R. Guha, “Rdf vocabulary description language 1.0: Rdf schema,”

Online, February 2004. [Online]. Available: http://www.w3.org/TR/rdf-schema/

[140] R. Akkiraju, J. Farrell, J. Miller, M. Nagarajan, M. T. Schmidt, A. Sheth, and

K. Verma, “Web service semantics wsdls,” Online, November 2005. [Online].

Available: http://www.w3.org/Submission/WSDL-S/

[141] S. Battle, A. Bernstein, H. Boley, B. Grosof, M. Gruninger, R. Hull, M. K. D.

Martin, S. McIlraith, D. McGuinness, J. Su, and S. Tabet, “Semantic web

services framework (swsf) overview,” September 2005. [Online]. Available:

http://www.w3.org/Submission/SWSF/

[142] J. de Bruijn, C. Bussler, J. Domingue, D. Fensel, M. Hepp, U. Keller, M. Kifer,

B. Konig-Ries, J. K. R. Lara, H. Lausen, E. Oren, A. Polleres, D. Roman,

J. Scicluna, and M. Stollberg, “Web service modeling ontology (wsmo),” Online,

June 2005. [Online]. Available: http://www.w3.org/Submission/WSMO/

[143] C. Jacob, H. Pfeffer, S. Steglich, L. Yan, and M. Qifeng, “A view-based approach

for semantic service descriptions,” Next Generation Mobile Applications, Services

and Technologies, International Conference on, vol. 0, pp. 213–221, 2008.

http://www.w3.org/RDF/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/Submission/WSDL-S/
http://www.w3.org/Submission/SWSF/
http://www.w3.org/Submission/WSMO/

References 207

[144] M. Uschold, M. Gruninger, M. Uschold, and M. Gruninger, “Ontologies:

Principles, methods and applications,” KNOWLEDGE ENGINEERING REVIEW,

vol. 11, pp. 93—136, 1996. [Online]. Available: http://citeseerx.ist.psu.edu/

viewdoc/summary?doi=10.1.1.111.5903

[145] B. Medjahed, A. Bouguettaya, and A. K. Elmagarmid, “Composing web services

on the semantic web,” The VLDB Journal, vol. 12, no. 4, pp. 333–351, 2003.

[Online]. Available: http://portal.acm.org/citation.cfm?id=953243

[146] F. Ramparany and L. Vercouter, “Flexible composition of smart device ser-

vices,” in In: The 2005 International Conference on Pervasive Systems and

Computing(PSC-05), Las Vegas, 2005, pp. 27 – 30.

[147] J. Rao and X. Su, “A survey of automated web service composition methods,”

In Proceedings of the first Internationsl Workshoo on Semantic Web Services and

Web Process Composition,SWSWPC2004, pp. 43–54, 2004. [Online]. Available:

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.90.9880

[148] M. Sheshagiri, N. M. Sadeh, and F. G, “Using semantic web services for context-

aware mobile,” in MobiSys 2004 Workshop on Context Awareness Applications,

2004.

[149] S. Dustdar and W. Schreiner, “A survey on web services composition,”

Int. J. Web Grid Serv., vol. 1, no. 1, pp. 1–30, 2005. [Online]. Available:

http://portal.acm.org/citation.cfm?id=1358538

[150] I. Robinson, E. Newcomer, M. Feingold, and R. Jeyaraman, OASIS Web Services

Coordination Version 1.2, OASIS Std., Rev. 1.2, February 2009. [Online].

Available: http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.2-spec.html

[151] D. Bunting, M. Chapman, O. Hurley, M. Little, J. Mischkinsky, E. Newcomer,

J. Webber, and K. Swenson, “Web services composite application framework (ws-

caf) ver1. 0,” 2003.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.111.5903
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.111.5903
http://portal.acm.org/citation.cfm?id=953243
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.90.9880
http://portal.acm.org/citation.cfm?id=1358538
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.2-spec.html

References 208

[152] I. BEA, “Microsoft: Web services transactions (ws-transactions),” 2002.

[153] M. Keidl and A. Kemper, “Towards context-aware adaptable web services,” in

WWW Alt. ’04: Proceedings of the 13th international World Wide Web conference

on Alternate track papers & posters. New York, NY, USA: ACM, 2004, pp. 55–

65.

[154] T. Strang and C. Linnhoff-Popien, “A context modeling survey,” in In: Workshop

on Advanced Context Modelling, Reasoning and Management, UbiComp 2004 -

The Sixth International Conference on Ubiquitous Computing, Nottingham/Eng-

land, 2004.

[155] M. Little, E. Newcomer, and G. Pavlik, “Web services context specification (ws-

context),” OASIS Committee Draft v. 0.8, 2004.

[156] S. Ran, “A model for web services discovery with qos,” SIGecom Exch., vol. 4,

no. 1, pp. 1–10, 2003.

[157] X. Li, Y. Fan, J. Wang, L. Wang, and F. Jiang, “A pattern-based approach to devel-

opment of service mediators for protocol mediation,” in WICSA ’08: Proceedings

of the Seventh Working IEEE/IFIP Conference on Software Architecture (WICSA

2008). Washington, DC, USA: IEEE Computer Society, 2008, pp. 137–146.

[158] N. Milanovic and M. Malek, “Current solutions for web service composition,”

IEEE Internet Computing, vol. 8, no. 6, pp. 51–59, 2004.

[159] W. van der Aalst, A. H. M. T. Hofstede, and M. Weske, “Business process man-

agement: A survey,” in Proceedings of the 1st International Conference on Busi-

ness Process Management, volume 2678 of LNCS. Springer-Verlag, 2003, pp.

1–12.

[160] F.Leymann, “Web services flow language (wsfl),” Technical Report, IBM, May

2001.

References 209

[161] N. Kavantzas, D. Burdett, G. Ritzinger, T. Fletcher, and Y. Lafon, December

2004. [Online]. Available: http://www.w3.org/TR/ws-cdl-10/

[162] A. Bucchiarone and S. Gnesi, “A survey on services composition languages and

models,” in International Workshop on Web Services Modeling and Testing (WS-

MaTe 2006), 2006.

[163] B. Benatallah, M. Dumas, Q. Z. Sheng, and A. H. H. Ngu, “Declarative compo-

sition and peer-to-peer provisioning of dynamic web services,” in In Proc. 18 th

International Conference on Data Engineering, 2002.

[164] B. Srivastava, “Planning with workflows - an emerging paradigm for web service

composition,” in In Proceedings of the ICAPS-2004 Workshop on Planning and

Scheduling for Web and Grid Services, 2004, pp. 78 – 85.

[165] A. Urbieta, G. Barrutieta, J. Parra, and A. Uribarren, “A survey of dynamic

service composition approaches for ambient systems,” in Proceedings of the

2008 Ambi-Sys workshop on Software Organisation and Monitoring of Ambient

Systems. Quebec City, Canada: ICST (Institute for Computer Sciences, Social-

Informatics and Telecommunications Engineering), 2008, pp. 1–8. [Online].

Available: http://portal.acm.org/citation.cfm?id=1413927.1413928

[166] V. Stricker, K. Lauenroth, P. Corte, F. Gittler, S. de Panfilis, and K. Pohl, Towards

the Future Internet - Emerging Trends from European Research. IOS Press, 2010,

vol. 0, no. ISBN 978-1-60750-538-9, ch. Creating a Reference Architecture for

Service Based Systems - A Pattern Based Approach, pp. 149 – 160.

[167] B. Orriëns, J. Yang, and M. P. Papazoglou, “A framework for business rule driven

service composition,” in In Proceedings of the Fourth International Workshop on

Conceptual. Springer, 2003, pp. 14–27.

[168] S. Schmid, L. Eggert, M. Brunner, and J. Quittek, “Turfnet: An architecture for

dynamically composable networks,” in Autonomic Communication, ser. Lecture

http://www.w3.org/TR/ws-cdl-10/
http://portal.acm.org/citation.cfm?id=1413927.1413928

References 210

Notes in Computer Science, M. Smirnov, Ed. Springer Berlin / Heidelberg, 2005,

vol. 3457, pp. 94–114.

[169] M. Beer, M. d’Inverno, N. R. Jennings, M. Luck, C. Preist, and M. Schroeder,

“Negotiation in multi-agent systems,” http://eprints.ecs.soton.ac.uk/3858/, 1999.

[Online]. Available: http://eprints.ecs.soton.ac.uk/3858/

[170] M. Wooldridge and S. Parsons, “On the use of logic in negotiation,” in In Pro-

ceedings of the Workshop on Agent Communication Languages, 2000.

[171] I. Brandic, S. Venugopal, M. Mattess, and R. Buyya, “Towards a meta-

negotiation architecture for sla-aware grid services,” 2009. [Online]. Available:

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.144.5602

[172] R. Kumar, A. Haber, A. Yazidi, and F. Reichert, “Towards a relation oriented

service architecture,” in COMSNETS’10: Proceedings of the 2nd international

conference on COMmunication systems and NETworks. Piscataway, NJ, USA:

IEEE Press, 2010, pp. 452–459.

[173] P. F. Pires, M. R. F. Benevides, and M. Mattoso, “Building reliable web ser-

vices compositions,” in Revised Papers from the NODe 2002 Web and Database-

Related Workshops on Web, Web-Services, and Database Systems. London, UK:

Springer-Verlag, 2003, pp. 59–72.

[174] R. Kumar, “Fifth generation networking principles for a service driven

future internet architecture,” Wireless Personal Communications, vol. 55, 2010.

[Online]. Available: http://www.springerlink.com/content/u330180x5720kn96/

[175] P. Bellavista and A. Corradi, The Handbook of Mobile Middleware. Auerbach

Publications, 2006.

[176] F. Rosenberg, C. Platzer, and S. Dustdar, “Bootstrapping performance and de-

pendability attributes of web services,” in Web Services, IEEE International Con-

ference on, vol. 0. Los Alamitos, CA, USA: IEEE Computer Society, 2006, pp.

205–212.

http://eprints.ecs.soton.ac.uk/3858/
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.144.5602
http://www.springerlink.com/content/u330180x5720kn96/

References 211

[177] Y. Wang and J. Vassileva, “Toward trust and reputation based web service

selection: A survey,” 2007. [Online]. Available: http://citeseerx.ist.psu.edu/

viewdoc/summary?doi=10.1.1.89.6365

[178] Z. Malik and A. Bouguettaya, “Reputation bootstrapping for trust establishment

among web services,” IEEE Internet Computing, vol. 13, no. 1, pp. 40 – 47,

2009. [Online]. Available: http://portal.acm.org/citation.cfm?id=1495880

[179] D. W. Walker, L. Huang, O. F. Rana, and Y. Huang, “Dynamic service selection

in workflows using performance data,” Sci. Program., vol. 15, no. 4, pp. 235–247,

2007.

[180] N. Oldham, K. Verma, A. Sheth, and F. Hakimpour, “Semantic ws-agreement

partner selection,” in WWW ’06: Proceedings of the 15th international conference

on World Wide Web. New York, NY, USA: ACM, 2006, pp. 697–706.

[181] D. Mcdermott, M. Ghallab, A. Howe, C. Knoblock, A. Ram, M. Veloso, D. Weld,

and D. Wilkins, “Pddl - the planning domain definition language,” Tech. Rep.,

1998. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.

1.1.37.212

[182] E. Silva, L. Pires, and M. van Sinderen, “A framework for the evaluation

of semantics-based service composition approaches,” in Web Services, 2009.

ECOWS ’09. Seventh IEEE European Conference on, 2009, pp. 66–74. [Online].

Available: 10.1109/ECOWS.2009.23

[183] F. Belqasmi, R. Glitho, and R. Dssouli, “Ambient network composition,”

Network, IEEE, vol. 22, no. 4, pp. 6–12, 2008. [Online]. Available:

10.1109/MNET.2008.4579765

[184] C. Kappler, P. Poyhonen, M. Johnsson, and S. Schmid, “Dynamic network

composition for beyond 3g networks: a 3gpp viewpoint,” Network, IEEE, vol. 21,

no. 1, pp. 47–52, 2007. [Online]. Available: 10.1109/MNET.2007.314538

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.89.6365
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.89.6365
http://portal.acm.org/citation.cfm?id=1495880
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.37.212
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.37.212
10.1109/ECOWS.2009.23
10.1109/MNET.2008.4579765
10.1109/MNET.2007.314538

References 212

[185] “The state of the internet operating system - o’reilly radar,” March 2010. [Online].

Available: http://radar.oreilly.com/2010/03/state-of-internet-operating-system.

html

[186] R. Schaller, “Moore’s law: past, present and future,” Spectrum, IEEE, vol. 34,

no. 6, pp. 52 – 59, jun. 1997.

[187] I. Maathuis and W. Smit, “The battle between standards: Tcp/ip vs osi

victory through path dependency or by quality?” in Proceedings of the 3rd

IEEE Conference on Standardization and Innovation in Information Technology,

T. Egyedi, K. Krechmer, and K. Jakobs, Eds. Piscataway, NJ: IEEE, 2003, pp.

161–176. [Online]. Available: http://doc.utwente.nl/46343/

[188] N. S. Nappinai, “Cyber crime law in india: Has law kept pace with emerging

trends? an empirical study,” Journal of International Commercial Law and

Technology, vol. 5, no. 1, pp. 22 – 28, Dec. 2009. [Online]. Available:

http://www.jiclt.com/index.php/jiclt/article/view/97

[189] K. Yadav, V. Naik, A. Singh, P. Singh, P. Kumaraguru, and U. Chandra,

“Challenges and novelties while using mobile phones as ict devices for indian

masses: short paper,” in Proceedings of the 4th ACM Workshop on Networked

Systems for Developing Regions. San Francisco, California: ACM, 2010, pp.

1–2. [Online]. Available: http://portal.acm.org/citation.cfm?id=1836011

[190] P. C. Ensign, N. P. Robinson, and L. Fournier, “BlackBerry in red

china: Research in motion navigates institutional barriers in an emerging

marketCase comment: RIM in china,” Thunderbird International Business

Review, vol. 50, no. 2, pp. 129–142, 2008. [Online]. Available: http:

//onlinelibrary.wiley.com/doi/10.1002/tie.20184/abstract

[191] R. T. Fielding, “Architectural styles and the design of network-based software

architectures,” Doctoral dissertation, University of California, Irvine, 2000.

[Online]. Available: http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

http://radar.oreilly.com/2010/03/state-of-internet-operating-system.html
http://radar.oreilly.com/2010/03/state-of-internet-operating-system.html
http://doc.utwente.nl/46343/
http://www.jiclt.com/index.php/jiclt/article/view/97
http://portal.acm.org/citation.cfm?id=1836011
http://onlinelibrary.wiley.com/doi/10.1002/tie.20184/abstract
http://onlinelibrary.wiley.com/doi/10.1002/tie.20184/abstract
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

References 213

[192] T. D. Huynh, N. R. Jennings, and N. R. Shadbolt, “An integrated trust

and reputation model for open multi-agent systems,” Autonomous Agents and

Multi-Agent Systems, vol. 13, no. 2, pp. 119–154, 2006. [Online]. Available:

http://portal.acm.org/citation.cfm?id=1146543.1146545

[193] A. Jøsang, R. Ismail, and C. Boyd, “A survey of trust and reputation systems for

online service provision,” Decis. Support Syst., vol. 43, no. 2, pp. 618–644, 2007.

[Online]. Available: http://portal.acm.org/citation.cfm?id=1225716

[194] W. Vambenepe, C. Thompson, V. Talwar, S. Rafaeli, B. Murray, D. Milojicic,

S. Iyer, K. Farkas, and M. Arlitt, “Dealing with scale and adaptation of global

web services management,” in ICWS ’05: Proceedings of the IEEE International

Conference on Web Services. Washington, DC, USA: IEEE Computer Society,

2005, pp. 339–346.

[195] R. Braden, D. Clark, S. Shenker, , and J. Wroclawski, “Developing a next-

generation internet architecture,” Whitepaper, July 2000.

[196] M. Johnsson, B. Ohlman, A. Surtees, R. Hancock, P. Schoo, K. Ahmed,

F. Pittmann, R. Rembarz, and M. Brunner, “A future-proof network architecture,”

in Mobile and Wireless Communications Summit, 2007. 16th IST, 2007, pp. 1–5.

[Online]. Available: 10.1109/ISTMWC.2007.4299192

[197] C. Simon, R. Rembarz, P. Paakkonen, H. Perkuhn, C. Bento, N. Akhtar,

R. Aguero, T. Katona, and P. Kersch, “Ambient networks integrated prototype

design and implementation,” in Mobile and Wireless Communications Summit,

2007. 16th IST, 2007, pp. 1–5. [Online]. Available: 10.1109/ISTMWC.2007.

4299300

[198] C. S. Carr, S. D. Crocker, and V. G. Cerf, “Host-host communication protocol

in the arpa network,” in AFIPS ’70 (Spring): Proceedings of the May 5-7, 1970,

spring joint computer conference. New York, NY, USA: ACM, 1970, pp. 589–

597.

http://portal.acm.org/citation.cfm?id=1146543.1146545
http://portal.acm.org/citation.cfm?id=1225716
10.1109/ISTMWC.2007.4299192
10.1109/ISTMWC.2007.4299300
10.1109/ISTMWC.2007.4299300

References 214

[199] R. Atkinson, S. Bhatti, and S. Hailes, “Ilnp: mobility, multi-homing,

localised addressing and security through naming,” Telecommunication Systems,

vol. 42, no. 3, pp. 273–291, Dec. 2009. [Online]. Available: http:

//dx.doi.org/10.1007/s11235-009-9186-5

[200] D. Trossen, B. Briscoe, P. M. K. Sollins, L. Zhang, P. Mendes, S. Hailes,

B. Jerman-Blaciz, and D. Papadimitrou, “Eiffel report: Starting the discussion,”

EIFFEL think tank, Tech. Rep., 2009.

http://dx.doi.org/10.1007/s11235-009-9186-5
http://dx.doi.org/10.1007/s11235-009-9186-5

	Preface
	Summary
	List of Figures
	1 Introduction
	1.1 Motivation and Background
	1.2 Organization of Thesis
	1.3 Summary

	2 State Of The Art
	2.1 Current Efforts to Overcome Internet Network Architecture Shortcomings
	2.2 New Service Driven Architectures
	2.3 Discussion
	2.4 Summary

	3 Aspects of Service Oriented Design for an Architecture Framework
	3.1 System Architecture Analysis and Evaluation
	3.2 Towards a Service Oriented Approach
	3.3 Service Terminologies
	3.4 Service Design Principles
	3.5 Service Composition
	3.6 Summary

	4 A Relationship Oriented Service Architecture (ROSA)
	4.1 Principles for Architecture Composition
	4.2 Service Oriented Analysis of Network Communication
	4.3 The Relationship Oriented Service Architecture
	4.4 Instances of ROSA
	4.5 Domain and Network Composition
	4.6 Summary

	5 Open Issues and Discussion
	5.1 Benefits of ROSA
	5.2 Open Issues
	5.3 Comparison with other proposed architectures
	5.4 Drawbacks

	6 Conclusion
	A 5th Generation Networking Principles for a Service Driven Future Internet Architecture
	A.1 Abstract
	A.2 Introduction
	A.3 The need for a New Architecture
	A.4 Challenges to a New Architecture
	A.5 Existing Approaches
	A.6 A different Approach to Networking
	A.7 A Relationship based Service Oriented Architecture
	A.8 Conclusions and Future Work

	B Selection of Papers
	References

