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Summary

Channel simulation models have proved to be an indispensable tool for designing
mobile radio communication systems. By means of computer simulations design-
ers are able to assess the performance of wireless communication systems under
various propagation conditions without resorting to field trials, which are costly
and time consuming. The effectiveness of using channel simulation models to a
large extend depends on how accurate the models are in reflecting the most impor-
tant characteristics of real-world wave propagation environments. Clearly, when
the parameters of a channel simulation model are determined from measurement
data, a higher level of accuracy can be expected.

In this dissertation, we describe two approaches to designing measurement-
based simulation models for mobile wireless communication channels. The first
method allows synthesizing channel transfer functions with joint spatial-temporal-
frequency correlation properties approximating those of real-world radio channels.
The parameters of a channel simulator are determined by fitting the space-time-
frequency correlation matrix of the simulation model to the estimated space-time-
frequency correlation matrix of a physical channel. For this purpose, an iterative
parameter computation algorithm has been developed. In the second approach,
a multichannel two-dimensional autoregressive model is proposed for simulating
multiple-input multiple-output wideband mobile wireless channels. The param-
eters of the autoregressive models are estimated from real-world measurement
data. We also address the problem of possible instability of the multichannel two-
dimensional autoregressive model and develop a model stabilization procedure,
which is based on numerical optimization techniques.

The methods proposed for designing measurement-based channel simulation
models presume stationarity of radio channels. We discuss a new test for de-
termining the time intervals, over which a wireless channel can be considered
stationary. The stationarity intervals are identified by comparing the delay power
spectral densities estimated at different time instances. The test is applicable to
single-input single-output as well as to multiple-input multiple-output real-world
wireless channels.

In this thesis, we also investigate the problem of estimating the velocity of mo-
bile stations. In particular, we analyze to what extend the velocity estimation can



ii Summary

be improved in wideband mobile stations equipped with multiple antennas. For
this purpose, a simple algorithm, which is suitable for real-time implementations,
has been developed.
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Chapter 1

Introduction

1.1 Classification of Measurement-Based Channel
Models

In the development and performance evaluation of wireless communication sys-
tems, channel models play an important role. Wireless channel models mathe-
matically describe the essential properties of propagation environments, i.e., the
properties that have considerable impact on the performance of radio communi-
cation systems. In recent years, a number of wireless channel models have been
proposed in the literature, see, e.g., [1-4| and the multiple references therein.

According to the classification presented in [5] and also in [6], wireless channel
models can be divided into physical models and analytical (non-physical) models.
The parametrization of physical channel models explicitly accounts for the mul-
tipath propagation of the electromagnetic waves in wireless channels (consider,
e.g., the double-directional model [7]). On the other hand, analytical models de-
scribe the statistical properties of the channel system functions, i.e., the impulse
responses (IRs) or the transfer functions (TFs), without considering the physical
aspects of the wave propagation. As an example representing analytical chan-
nel models, we can mention the correlation-based wireless channel models (see,
e.g., |6]).

As it follows from the title, in this thesis we consider measurement-based
channel models. The term measurement-based signifies the fact that some or
all of the model parameters are determined from the measured IR or TF of a
real-world wireless channel. Certainly, the classification of wireless channel mod-
els into physical and analytical ones can also be applied to measurement-based
models. However, this classification scheme, which is based solely on the model
parametrization, does not always allow us to judge what kind of information can
be obtained from the model about a physical propagation channel. In attempt to
resolve this issue and also in order to facilitate the interpretation of the results
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presented in this thesis, we suggest another classification for measurement-based
channel models. The proposed classification is based on the intended usage of
a model and, therefore, allows us to differentiate channel models with respect
to (w.r.t.) the model parametrization and also to the approach employed for
determining the model parameters.

We distinguish between two types of wireless channel models. Models of the
first type are oriented to the analysis of wireless channels, while models of the
second type — to the synthesis (simulation) of wireless channels. A normal as-
sumption made about a channel model of the first type is that it can adequately
predict the behavior of a real-world wireless channel. Thus, by analyzing esti-
mated parameters of the channel model, we obtain information about different
properties of the physical radio channel. The double-directional channel model
mentioned above, with the parameters estimated from the measured IR of a real-
world channel by employing, e.g., the SAGE [8] or RIMAX [9] algorithms, can
serve as an example of channel models of the first type.

On the other hand, the task delegated to channel models of the second type
is of different nature. It consists in simulating wireless channels with specified
statistics. Here, in contrast to the analysis task, we accept the fact that there
might be more than one channel model parametrization that allows to synthesize
channels with the specified statistical properties. The measurement-based channel
simulation models constitute the main subject of this dissertation.

It should be noted that models of the first type can also be used to synthesize
the channel IRs (TFs).

1.2 Measurement-Based Channel Simulation Models

The main virtue of channel simulation models designed based on measurement
data is the capability of synthesizing realistic channel system functions. Fur-
thermore, the advantage of resorting to measurement-based channel simulation
models as compared to the stored TFs or IRs of real-world channels [4], becomes
clear when we consider, as an example, the problem of estimating the bit error
rate (BER) for a wireless communication system. A reliable estimation of the
BER requires a large number of samples of the measured channel system func-
tions. Consequently, it becomes prohibitively expensive (if possible) to acquire
and store a required amount of measurement data, particularly for wideband
multiple-input multiple-output (MIMO) channels. A feasible alternative is to use
a measurement-based channel simulation model to assess this important system
performance characteristic.

As it has been pointed out above, channel simulation models are aimed to gen-
erate realizations of the channel system functions with specified statistics. Under
specified statistics, we understand the important first- and second-order statistical
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characteristics, e.g., the probability density function (PDF) of the channel gains at
different time instances and frequencies and the various correlation functions (see,
e.g., [10]). In the following, our attention will be mainly concentrated on the corre-
lation properties of the simulated channel system functions in time, frequency, and
space. These second-order statistical characteristics of fading channels drastically
affect the performance of many signal processing techniques including interleav-
ing, error-correction coding, diversity, frequency hopping, and equalization [11].
Additionally, analytical performance analysis of wireless communication systems
utilizing these processing techniques is very difficult. Thus, accurate represen-
tation of the correlation properties of fading channels in simulation models is
particularly important.

For measurement-based channel simulation models, the statistics of interest
are estimated from the measured system functions of real-world channels. The
system functions of real-world channels are obtained by using channel sounders!
during measurement campaigns (see, e.g., [12]).

It is worth mentioning that the problem of simulating channel system func-
tions essentially falls into a more general framework of synthesizing realizations
of random processes with specified first- and second-order statistics. This general
problem has been studied in the literature (see, e.g., [13-15]).

In the previous subsection, we noted that there might exist more than one
model parametrization allowing simulating the channel TFs or IRs with specified
statistics. Thus, a practical approach to designing measurement-based channel
simulation models starts with finding a model parametrization, which satisfies
certain criteria, e.g., low computational load in synthesizing channel TFs, a small
number of the channel simulation model parameters, etc. In the following chap-
ters, we discuss two approaches to designing measurement-based simulation mod-
els for wireless communication channels. In these approaches, we have taken into
account the following considerations:

e A model parametrization should be suitable for constructing measurement-
based channel simulation models for narrowband single-input single-output
(SISO) as well as narrowband MIMO time-variant wireless communication
channels.

e A model parametrization should be suitable for constructing measurement-
based channel simulation models for wideband SISO and wideband MIMO

time-variant wireless channels.

e A model parametrization and methods for determining the values of the
model parameters should enable constructing channel simulation models

'Hereafter, we presume that the measured system functions of real-world channels are digi-
tized and converted to the complex baseband.



4 Chapter 1

based on real-world wireless channels corresponding to various propagation

environments, e.g., outdoor and indoor propagation environments.

e A model parametrization and methods for determining the values of the
model parameters should enable constructing measurement-based channel
simulation models without assuming separability of the channel correlation
properties in time, frequency, and space (see, e.g., [16]).

e The parameters of the measurement-based channel simulation models should
be determined efficiently.

1.3 Organization of the Thesis

The rest of the thesis is organized as follows. In Chapter 2, we describe a sta-
tistical test proposed for determining the intervals of stationarity for wireless
communication channels. The stationarity test has been applied to several radio
communication channels measured in different propagation scenarios. The results
of the analysis of the identified stationarity intervals are presented. In Chap-
ter 3, we discuss a method for designing measurement-based stochastic models
for simulating wideband MIMO wireless channels. The proposed approach allows
synthesizing channel TFs with the spatial-temporal-frequency correlation proper-
ties approximating those of real-world radio channels. In this chapter, we also
present two modifications of the method for creating measurement-based channel
simulation models for narrowband MIMO and wideband SISO channels, respec-
tively. The multichannel two-dimensional (2D) autoregressive (AR) model for
MIMO wideband mobile wireless channels is presented in Chapter 4. In Chap-
ter 5, we consider the problem of estimating the velocity of mobile stations (MSs)
in wireless communication systems. In particular, we investigate to what extend
the velocity estimation can be improved in wideband MS equipped with multiple
antennas. For this purpose, we develop a simple velocity estimation algorithm.
The performance of the algorithm is assessed by simulations. Finally, we summa-
rize the results presented in this thesis in Chapter 6.
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Stationarity of Wireless
Communication Channels

2.1 Introduction

Chapters 3 and 4 of this thesis deal with modeling of mobile wireless communi-
cation channels. The channel models considered in these chapters presume the
wide-sense stationarity of randomly time-variant radio channels [10]. In prac-
tice, however, real-world channels often demonstrate ‘quasi-stationary’ behavior,
i.e., the assumption of wide-sense stationarity can be accepted only for limited
intervals of time and frequency [10,17]. The simplest way to justify the quasi-
stationarity of a measured wireless channel is by taking into account the physical
arguments such as the transmitter/receiver speed, the frequency bandwidth, the
distance to the scatterers surrounding the transmitter/receiver, etc. Unfortu-
nately, the choice of stationarity intervals based on these simple physical consid-
erations is not always valid. Thus, it is important to develop a test procedure
that can be used to reliably identify regions of stationarity for wireless channels.

A number of stationarity tests have been proposed in the literature related to
such disciplines as wireless channel modeling, spectrum analysis, signal detection,
etc. The correlation between consecutive ‘instantaneous’ delay power spectral
densities (PSDs) has been used in [18] to identify the local region of stationarity
(LRS) for wireless channels. A nonstationarity detector based on the time-variant
autoregressive (TVAR) model has been described in [19]. In [20], the authors
suggest to identify the intervals of stationarity by analyzing changes in the wave-
number spectrum estimated at different locations. The use of the nonparametric
run-test [21] for determining the stationarity intervals of radio channels has been
investigated in [22|. An interesting test for wide-sense stationarity of MIMO
wireless channels has been developed in [23]|. This approach is based on analyzing
the evolutionary spectrum of a signal estimated at different instances of time [24].

5
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Also one cannot help mentioning the tests for stationarity developed based on the
time-frequency (time-scale) analysis of signals (see, e.g., [25,26]).

In the development of the stationarity test proposed in [27] and presented
below in this chapter, the primary importance has been assigned to analyzing the
statistical properties of radio channels without time averaging, under condition
that the available frequency bandwidth allows that. Time averaging intrinsically
leads to a contradiction, i.e., the test validates the stationarity of the data by
presuming its stationarity on intervals determined by the length of the window.
Often (if not always), the length of the window is chosen heuristically by conduct-
ing preliminary eyeball analysis of the measurement data. The proposed approach
allows to skip windowing of the measurement data in time. Hence, a greater level
of automation in the test procedure can be provided. The proposed test is based
on the hypothesis that the estimated delay PSD of a channel does not change with
time over the interval of stationarity. The test is applicable both to SISO and
MIMO radio channels. The design of the test procedure relies on the definition of
a random (multivariate) wide-sense stationary (WSS) process (see, e.g. [28]). It
is assumed that the time-variant frequency response (TVFR) of a channel is WSS
(jointly WSS for MIMO channels) w.r.t. frequency. However, it appears that this
assumption is not restrictive, if, similar to [18], the channel stationarity intervals
are defined as the intervals over which the locations of the scatterers, transmitter,
and receiver do not change significantly.

This chapter is organized as follows. In Section 2.2, the stationarity test for
SISO and MIMO wireless communication channels is developed. The results of
the performance evaluation for the developed test are presented in Section 2.3.
The analysis of the stationarity intervals for several real-world propagation en-
vironments is presented in Section 2.4. The concluding remarks are given in
Section 2.5.

2.2 Stationarity Tests

Let the TVFR H(f’,t) describing a SISO wireless channel in frequency f’ and
time ¢ be a complex 2D random process. It is assumed that the TVFR H(f’,t)
is an ergodic process w.r.t. frequency f’.

Wide-sense stationarity of the TVFR H(f’,t) w.r.t. time ¢ implies that the
delay PSD is time-invariant. This observation forms the basics of the statistical
test proposed for validating the hypothesis that the measured TVFR H(f’,t) is
a WSS processes w.r.t. time t.

In the following subsection, the stationarity test for SISO wireless channels
is described. In Subsection 2.2.2, the procedure will be extended to test the
stationarity of MIMO radio channels.
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2.2.1 Stationarity Test for SISO Channels

Suppose that the TVFR H(f’,t) of a SISO radio channel has been measured at
discrete frequencies f; = —B/2+mAf' € [-B/2,B/2], m=0,...,M — 1, and
at discrete time instances ¢, = nAt € [0,7], n = 0,...,N — 1. Hereafter, the
sampling interval in the frequency domain is signified by A f’, while At stands
for the sampling interval in the time domain. The frequency bandwidth and the
measurement time interval are denoted as B and T, respectively. The measured
TVFR of the channel can be represented in a matrix form

H[0,0] ... HI[0O,N —1]
H= : - : . (2.1)
H[M —1,0]... H[M —1,N — 1]
The elements H[m,n] of the matrix H in (2.1) are complex random variables.
As it was mentioned above, it is assumed that the columns of the channel matrix

H, i.e., the snapshots of the channel TVFR at time instances t,, are ergodic
processes. Thus, for each of these processes, the mean can be determined as

n[n] = (H[m,n]) (2.2)
and the frequency autocorrelation function (FACF) is given by
relk,n] = (Hm,n|H*[m + k,n]) p (2.3)

where * designates the complex conjugate and () p = 37 SM-1() denotes aver-
aging over frequency.

The delay PSD of the radio channel at time t,, is given by

P(r' t,) = Af Z rf/[/ﬁ,n]e_ﬂ”,”Af,. (2.4)

KR=—00

where 7' stands for the propagation delay.

According to the definition, wide-sense stationarity of the TVFR H w.r.t.
time requires that the mean n[n] and the FACF rp[s,n] are time-invariant, i.e.,

nln] =n (2.5)

rplk,n) =1kl (2.6)

Condition (2.6) corresponds to the time-invariance of the delay PSD P(7/,t,),
which can be written as
P(r',t,) = P(7"). (2.7)
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Using (2.7), the null hypothesis Hy can be formulated as follows
Ho : (P(7' tny) — P(7',tny)) =0, tny # tn, (2.8)

which implies that the delay PSD at time t¢,, equals the delay PSD at time t,,.

Note that the hypothesis Hg also suggests the equality of the mean values,
i.e., n[n1] = n[ng]. This follows from the observation that

/_ T P t)dr = 1[0, m] = 0?[n] + 1] (2.9)

where o%[n] denotes the variance o%[n] = ((H[m,n] — n[n])(H[m,n] — n[n])*) .

The procedure presented below allows to compare the delay PSDs estimated
at two different time instances' and to determine whether the hypothesis Hg can
be excepted.

The following five-step data processing algorithm significantly simplifies the
statistical analysis of the null hypothesis H.

Step 1. The n-th column of the channel matrix H in (2.1) is divided into
K nonoverlapping segments each of length M. The restriction imposed here is
K > M. Let

e®) = H[(k = )My +m,n], m=0,...,M,—1 (2.10)
denote a complex data sequence corresponding to the k-th segment, k =1,..., K.
Step 2. For each of the K sequences {xﬁ,’i)}f‘f;gl, k=1,...,K, calculate the
periodogram at the discrete delays 7, = ﬁAf” q=0,...,Ms—1, ie.,
M,—1 2
- AT N
k) _ k) —j2nriAf
B = M, mz_:o e Pmmatsm) (2.11)

It is known (see, e.g., [29]) that asymptotically (M — oo)

(2.12)

) {qug/z g=1,.. M My M1
q

Pk o
quf, q=0and %

where x? and x3 signify the chi-square distributions with one and two degrees of
freedom, respectively. The symbol ~ stands for the equality in distribution. The
true value of the delay PSD at the discrete delay Té is denoted by F;.

Step 3. For each of the K periodograms {P(I(k)}é‘/is(]_l, k=1,...,K, create an

! As will be shown shortly, the comparison is actually done in terms of the estimated cepstrum.
Recall that the cepstrum of a signal is related to the PSD through an invertible one-to-one
transformation.
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auxiliary data sequence {yp }2%05 as follows
pM p=0,..., M, —1
g =4 8 (2.13)
P p=M,... 2M, 3.

Step 4. For each of the K sequences {yp )}2MS 3 k=1,...,K, estimate the

l( ) at the discrete frequencies w; = I /(Ms — ), l=0,...,2M; — 3,
according to

cepstrum ¢

*) 1 2Ms—3

z (k k jw

M = 3 In(y)erw. 2.14
! 2Ms —9 = n(yp )6 ( )

(k)

Here, it is implicitly assumed that y, ’ > 0 for all p, which is true in practical

situations. Also note that due to the symmetry in {y(k }2%05 -3 @(k) is real and

&) =M fori=0,... M, -1

It has been shown in [30,31] that asymptotically, i.e., as My — oo, the esti-
mated cepstrum {@l(k)}l]\ﬁfl follows the multivariate Gaussian distribution with
the covariance matrix C. The matrix C is a constant diagonal matrix independent

of the periodogram {Pq(k)}fl\/[:sgl.

Step 5. Stack the estimated cepstrum sequences {@l(k)}l;o_l, k=1,...,K,
as columns into a matrix U,, of dimensions M, x K. Let the column vector u,
of dimensions M, x 1 contain the sample mean of each row of the matrix U,,.

To verify the hypothesis Hg, the algorithm described above is applied to the
ni-th and the no-th columns of the channel matrix H representing the channel
frequency response at two distinct time instances t,,, and t,,. As the outcome, we
obtain two matrices U,,, Uy, and two column vectors u,,, ty,. The vectors u,,
and 4, are the cepstrum estimates at the time instances ¢,, and t,,,, respectively.
The matrices Uy,,, U,, and the vectors u,,, u,, can now be supplied to the
Hotelling T2-test [32,33].

First, define two matrices

S1 = U,U} —Ku,aul,
Sy = U,UL — Kup,a}, (2.15)

where K is the number of segments (see Step 1 of the algorithm above) and the
operator {-}T denotes transposition. It is known [32] that the statistic
(p(sla 827 ﬁnl ) ﬁng) given by

KQ2K —M,—-1) ,_ _ _1,_ _
(p(sla SQaﬁnpﬁng) = ( )(unl - ung)T(Sl + SQ) 1(un1 - ung)

2M,
(2.16)
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follows the F-distribution, i.e., ¢(S1,So, Uy, Up,) ~ F(M4, 2K — Mg — 1).
Thus, the null hypothesis Hy in (2.8) is accepted if

@(SlaSQaﬁnlaﬁng) < fa (217)

where f, is the critical value corresponding to the 100(1 — )% confidence level.

2.2.2 Stationarity Test for MIMO Channels

We consider a MIMO wireless channel with Nz transmitting and Ng receiving
antennas. Each of the Ny Ng subchannels establishing the communication links
between each transmitting and each receiving antennas, is represented by the
measured TVFR channel matrix H;, i = 1,..., NpNg, defined in (2.1). As in the
previous subsection, the elements H;[m, n] of the channel matrices H; are assumed
to be complex random variables. Furthermore, it is assumed that at every time
instance t,, the TVFRs of all the subchannels are jointly WSS processes w.r.t.
frequency.
The delay cross power spectral densities (CPSDs) at time ¢, is defined as

00

ol /

PHi,Hi/(T/,tn) = Af/ Z Tf}_I,H/[’{an]e j27TTI€Af’
ity

R=—0C

i,i' =1,...,NrNg (2.18)

where rp [k, n] is the frequency cross-correlation function (FCCF) at time ¢,

between the TVFR H; of the i-th subchannel and the TVFR H; of the '-th
subchannel given by

Py ] = (Himon) S [m + s, nl)
i,i’ =1,...,NrNg. (2.19)

The wide-sense stationarity of the considered MIMO channel w.r.t. time requires
that the delay CPSDs Py, m,(7',t,), i,i' = 1,...,NrNg, are time invariant.
Therefore, the null hypothesis Hg can be expressed as

Ho - (PHi,Hi/ (T,atm) - PHi,Hi/ (T/atng)) =0,
i,i, =1,...,NprNg and t,, # tn,. (2.20)

The objective here is to validate the null hypothesis Hy by using the procedure
developed in the previous subsection for SISO wireless channels.

In 34, Chapter 15|, the author describes an interesting approach to estimat-
ing CPSDs. It is mentioned, however, that this approach cannot guarantee the
magnitude squared coherence [34] between two subchannels to be always bounded
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by 1. As we are interested in the time variation of the estimated delay CPSD and
not in the estimated coherence between the subchannels, this drawback is not

relevant for our purpose.

Following [34], the real and the imaginary parts of the delay CPSDs Py, g, (7', t5)
can be written as

8%{]DIL-,IT{,L/ (T/a tn)} == (PZii’=Zii’ (7—/7 tn) - PHi,Hi (T/7 tn) - PHi/,H,L/ (T/a tn))

N DN

%{PHI-,H,L/ (T,a tn)} = (PWii’vwii’ (7—,7 tn) - PHZ-,HI- (7—,7 tn) - PH,L/,Hi/ (T/a tn))

(2.21)

for i,i' = 1,...,NyNg and i # i, where Pz, 7 (7',t,) and Pw,_, w., (7' t,)

denote, respectively, the delay PSDs of the signals
Zii’ [ma TL] = HZ [ma TL] + Hi’ [m7 n]
Wiglm,n] = H;lm,n]+ jHy[m,n]. (2.22)

Taking (2.21) into account, the null hypothesis Hg in (2.20) can be reformulated
as follows

Hoa (PHmHi(T/’ tny) — P, 1, (7—/’ tnz)) =0,
1= 1,... ,NTNR and tnl 75 tng
Hop (PZii’7Zii’ (T/’ tnl) o PZii”Zii/ (T/’ t”2)) =0,
i, =1,...,NpNg,i # 4 and t,, # tp,
HOC : (PWii/7Wii/ (T/’ tnl) B PWii”Wii’ (T/’ t”2)) = O’

i,i' =1,...,NpNp,i # i and t,, # tn,. (2.23)

Note the absence of the delay CPSDs in (2.23). Thus, the null hypotheses
A Hoa}, {Hop}, {Hoc}} can be verified by using the method described in Sub-
section 2.2.1 for SISO channels.

The total number of the null hypotheses in (2.23) is equal to (N7 Ng)?. Based
on the results of testing these hypotheses, the decision is to be taken on whether
a MIMO channel is WSS. One approach is to accept the wide-sense stationarity
of a MIMO channel only if all of the hypotheses {{Hoa}, {Hos}, {Hoc}} have been
validated. The probability of the Type I error, i.e., erroneously rejecting any of
the hypotheses {{Hoa}, {Hos}, {Hoc}}, is equal to « (see (2.17)). Thus, assuming
the independence of such errors, the probability of falsely rejecting the hypothesis
that a MIMO channel is WSS can be expressed as

Pr{error} = 1 — (1 — a)(NTNR)*, (2.24)
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As it follows from Table 2.1, even for MIMO channels of moderate dimensions,
the probability of error Pr{error} is unacceptable. A possible solution to this
problem is to allow a certain number of hypotheses in (2.23) to be rejected. For
example, suppose the stationarity of a 2 x 2 MIMO channel is verified. The
probability of error in a single hypothesis test « is set to 0.01. The goal is to
maintain Pr{error} equal to or less than « for the decision based on the results
of (N7 Ng)? = 16 hypothesis tests. Using the Bernoulli trials scheme [28], it can
be easily shown that in this case Pr{error} < 0.01 if at least 1 of 16 hypotheses
in (2.23) is allowed to be rejected.

Table 2.1: Probability Pr{error} of a wrong rejection of the hypothesis that a
MIMO channel of dimensions Np x N is WSS

Ny xNrp | «a=0,05 | «a=0.01 | a=0.003
2x2 0.36 0.14 0.047
3x3 0.984 0.557 0.216
4 x4 0.9998 0.924 0.537

Let us now reconsider the assumption of the wide-sense stationarity of the
channel TVFR w.r.t. frequency. What can be said if this assumption is not valid?
As it is described in Subsection 2.2.1, the Hotelling T2-test verifies the hypothesis
that the two column vectors u,, and u,, are equal. If the WSS assumption of
the TVFR in the frequency domain is not valid, then the vectors u,, and u,,
are derived from the inconsistent estimates of the delay PSDs. Thus, the null
hypotheses formulated in (2.8) and (2.23) cannot be verified, i.e., nothing can be
said about WSS property of the channel TVFR w.r.t. time.

However, it is plausible to assume that if the geographical locations of the
scatterers, transmitter, and receiver remain unchanged between the time instances
tn, and t,,, then the vectors u,, and u,, are equal. In this case, the tests
developed above verify the empirical channel stationarity as defined in [18].

2.3 Performance Evaluation

The performance of the proposed stationarity test has been evaluated based on
synthetic TVFRs generated using the geometrical two-ring channel simulation
model (see e.g., [35]). Some of the channel simulator parameters are specified
below:

e Carrier frequency: 5.255 GHz;
e Bandwidth: B = 100 MHz;
e Receiving antenna: uniform linear array;

e Transmitting antenna: uniform linear array;
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e Antenna element spacing at the receiver: 0.5\;

e Antenna element spacing at the transmitter: 0.5\;

Interval between the frequencies: A f’ = 1.957 - 10° Hz;

Time between channel snapshots: At = 0.02 s;
e Maximum Doppler frequency: 22 Hz;
e SNR: 10 dB.

A hundred scatterers are located on the rings around the base station (BS)
and the MS (see also Chapter 5). It has been verified that the Doppler frequen-
cies and the propagation delays are different for all propagation paths. Under this
condition the generated TVFR is ergodic w.r.t. time and frequency [11]. All the
propagation path gains are equal to 1/ v/100. The parameters of the channel sim-
ulator do not change with time. It has been observed that for the confidence level
of 99% (a = 0.01) and the parameter My = 16, the error probability Pr{error}
is equal to 0.0073, 0.0145, and 0.0064 for SISO, 2 x 2 MIMO, and 4 x 4 MIMO
channels, respectively. Evidently, the resulting error probabilities are close to the
target value of 0.01.

Analysis of the test sensitivity based on the simulated channel TVFRs reveals
that the maximum Doppler frequency does not significantly influence the perfor-
mance of the test procedure. On the other hand, a non-Gaussianity of the TVFRs
(as in the case of a small number of scatterers, e.g., below 20, in the simulation
setup described above) demonstrates a strong impact on the error probability
Pr{error}. Such impact can be reduced by increasing the segment length Mj.

2.4 Applications to Measurement Data

In this section, we present the results of applying the test procedure developed
in Section 2.2 to real-world measurement data. The measurement campaign has
been conducted by Telenor R&D, Norway. The description of the measurement
sites as well as the measurement equipment can be found in Appendix A.

The antenna arrays at the transmitter and the receiver allow us to investigate
the distribution of the stationarity interval lengths for SISO and MIMO channels.
For the measurements considered below, the parameter M (see Subsection 2.2.1)
is equal to 16. The confidence level is set to 99% (a = 0.01).

2.4.1 Micro Cell Site — Regular Street Geometry

The first propagation environment corresponds to an urban micro-cell site with a
regular street grid. A series of the measured impulse responses for this propagation
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Figure 2.1: Magnitude of the impulse response (micro cell site — regular street
geometry).
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Figure 2.2: Mean-square value of the TVFR (micro cell site — regular street
geometry).

scenario is shown in Fig. 2.1. The trend existing in the time variation of the mean-
square value of the TVFR can be observed in Fig. 2.2.

In Fig. 2.3, the P-value in the Hotelling T%-test is shown for the SISO channel.
The P-value is the probability that the statistic ¢(S1, Se, Uy, y,), defined in
(2.16), would take a value greater than the observed one ¢(S1, S2, Uy, , Uy, ), under
condition the null hypothesis H (2.8) is true [36]. The significance value o = 0.01
is also depicted in Fig. 2.3.
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The complementary cumulative distribution functions (CCDFs) of the length
of the stationarity intervals? obtained for SISO, 2 x 2 MIMO, and 4 x 4 MIMO
channels are presented in Fig. 2.4. The mean length of the identified stationarity
intervals decreases from 0.59 s for the SISO channel to 0.28 s for the 2 x 2 MIMO
and to 0.18 s for 4 x 4 MIMO channels. The standard deviations of the interval
lengths are equal to 0.79 s, 0.34 s, and 0.21 s, for the SISO, 2 x 2 MIMO, and 4 x 4
MIMO channels, respectively. Also, the percentage of the identified stationarity
intervals longer or equal than for example 0.5 s drops from 40% for the SISO
channel to 20% for the 2 x 2 MIMO and 10% for 4 x 4 MIMO channels.

%Since the moving speed is known only approximately, the stationarity intervals are measured
in seconds and not in wavelengths, which otherwise might be a preferable measure.
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Figure 2.4: CCDF of the length of the stationarity intervals (micro cell site —
regular street geometry).

2.4.2 Micro Cell Site — Open Market Place

The second propagation environment corresponds to a town market square.

The measured impulse responses and the graph of the TVFR mean-square
value are demonstrated in Figs. 2.5 and 2.6, respectively.

The P-value in the Hotelling 7-test for the SISO channel is shown in Fig. 2.7.

The CCDFs of the length of the stationarity intervals for the SISO, 2 x 2
MIMO, and 4 x 4 MIMO channels are depicted in Fig. 2.8. The average length
of the identified stationarity intervals decreases from 0.51 s for the SISO chan-
nel to 0.25 s for the 2 x 2 MIMO and 0.14 s for 4 x 4 MIMO channels, while
the standard deviations of the interval lengths are equal to 0.64 s, 0.25 s, and
0.14 s, respectively. Note that similar to the previously considered propagation
environment, the number and the length of the stationarity intervals decrease as
the number of antennas at the receiver and transmitter increases. The percentage
of the identified stationarity intervals longer or equal than 0.5 s is equal to 36%
for the SISO channel, 15% for the 2 x 2 MIMO channel, and 4% for the 4 x 4
MIMO channel.
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Figure 2.5: Magnitude of the impulse response (micro cell site — open market
place).
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Figure 2.6: Mean-square value of the TVFR (micro cell site — open market
place).
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Figure 2.7: P-value in the Hotelling T?-test for the SISO channel (micro cell
site — open market place).
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Figure 2.8: CCDF of the length of the stationarity intervals (micro cell site —
open market place).
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2.4.3 Micro/Pico Cell Site — Passageway

The measurement data has been collected in a passageway connecting the market
square, mentioned in the previous subsection, with a side street (see Appendix A).

A series of the impulse responses of the measured channel is depicted in
Fig. 2.9. The mean-square value of the TVFR of the measured channel is demon-
strated in Fig. 2.10.

100,
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Figure 2.9: Magnitude of the impulse response (micro/pico cell site — passage-
way).

The P-value for the SISO channel and the empirical CCDFs of the length of
the stationarity intervals for the SISO, 2 x 2 MIMO, and 4 x4 MIMO channels are
shown in Figs. 2.11 and 2.12, respectively. The means and the standard deviations
of the length of identified stationarity intervals are equal to 0.61 s and 0.79 s for
the SISO channel, 0.29 s and 0.31 s for the 2 x 2 MIMO channel, 0.13 s and
0.17 s for the 4 x 4 MIMO channel. The percentage of the identified stationarity
intervals longer or equal than 0.5 s is equal to 39% for the SISO channel, 23% for
the 2 x 2 MIMO channel, and 4% for 4 x 4 MIMO channel.

Note again that the number and the length of the stationarity intervals de-
crease as the number of antennas at the receiver and transmitter increases.
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Figure 2.10: Mean-square value of the TVFR (micro/pico cell site — passage-
way).
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Figure 2.11: P-value in the Hotelling 72-test for the SISO channel (micro/pico
cell site — passageway).
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Figure 2.12: CCDF of the length of the stationarity intervals (micro/pico cell
site — passageway).

2.4.4 Indoor Cell Site

The stationarity test outlined in Section 2.2 has been applied to a measured indoor
wireless channel.

The sequence of the impulse responses and the graph of the mean-square
value of the TVFR are shown in Figs. 2.13 and 2.14, respectively. As it follows
from 2.14, the variability of the measured TVFR in time is significantly smaller
compared to the TVFRs of the channels analyzed above. This observation is
supported by the results presented in Figs. 2.15 and 2.16 for the P-value in the
Hotelling T?-test for the SISO channel and the empirical CCDFs of the length of
the stationarity intervals for the SISO, 2 x 2 MIMO, and 4 x 4 MIMO channels.
A possible explanation to the reduced variability of the measured TVFR is the
absence of the moving objects along the measurement route. For this channel,
the percentage of the identified stationarity intervals longer or equal than 0.5 s is
equal to 56% for the SISO channel, 45% for the 2 x 2 MIMO channel, and 32%
for the 4 x 4 MIMO channel. The mean lengths of the stationarity intervals and
the standard deviations are equal , respectively, to 1 s and 1.51 s for the SISO
channel, 0.77 s and 1.31 s for the 2 x 2 MIMO channel, 0.47 s and 0.76 s for the
4 x 4 MIMO channel. As for all previously considered channels, we note that the
number and the length of the stationarity intervals decrease for this environment

as the number of antennas at the receiver and transmitter increases.
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Figure 2.13: Magnitude of the impulse response (indoor cell site).
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Figure 2.14: Mean-square value of the TVFR (indoor cell site).
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Figure 2.15: P-value in the Hotelling T?-test for the SISO channel (indoor cell
site).
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Figure 2.16: CCDF of the length of the stationarity intervals (indoor cell site).
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2.5 Chapter Summary

In this chapter, we describe a stationarity test for wireless communication chan-
nels. The test is based on analyzing the delay PSD estimated at two different
time instances. If the changes in the estimated delay PSDs are statistically in-
significant, the hypothesis that the channel is stationary during the considered
time interval is accepted. The proposed stationarity test has been extended to
validate the stationarity of real-world MIMO wireless channels.

In selecting values for the parameters of the test procedure, particularly the
confidence level, which has been set in all our experiments to 99%, we have been
guided by considering the probability of the Type I error as the primary per-
formance evaluation criterion. The reason for choosing this particular criterion
lies in the fact that the risk of erroneous rejection of the null hypothesis for the
developed test can be assessed objectively. On the other hand, evaluating the
statistical power of the test, i.e., the probability of the Type II error, requires
the non-stationary channel TVFRs. On closer inspection it turns out that the
non-stationary channel TVFRs can be synthesized in a variety of manners. For
example, the changes in the channel delay PSDs can be abrupt and easily iden-
tified, while gradual transitions in the delay PSDs make the definition of the
channel stationarity interval itself rather difficult and subjective.

The analysis of the TVFRs of wireless channels measured in different propa-
gation environments suggests that the length of the channel stationarity intervals
is greatly dependent on the number of antennas at the transmitter and the re-
ceiver. Generally, the stationarity intervals are longer and occur more often for
SISO communication channels compared to MIMO channels. It appears that
the measured TVFR becomes more “sensitive” to the changes in the propagation
environment as the number of antennas at the transmitter and receiver increases.

In the following chapters, we use the stationarity test procedure presented
above to identify the intervals, over which the TVFRs of the real-world wireless
can be assumed WSS.
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Design of Measurement-Based
Stochastic Channel Simulators

3.1 Introduction

Correlation-based models are widely used for simulating wireless channels (see,
e.g., [37-39]). In the simplest form these models describe only the spatial correla-
tion properties of MIMO channels. In [40,41], the so-called Kronecker model has
been combined with the tap-delay line model to represent wideband MIMO chan-
nels. Recently, a structured model, based on the eigenvalue decomposition of the
channel correlation matrix, has been proposed in [42] for wideband MIMO chan-
nels. A correlation-based model for wideband MIMO Rayleigh fading channels
with selectivity in space, time, and frequency has been described in [43,44]. Sim-
ulation techniques based on the orthogonal decomposition of the channel impulse
response are presented in [45,46].

In this chapter, we describe a method for designing measurement-based stochas-
tic simulation models for time-variant wireless channels [47]. The method has
been developed based partly on the results published in [48-50]. The distinctive
feature of the proposed design method is the capability of generating realizations
of the channel TVFRs with the spatial, temporal, and frequency correlation char-
acteristics closely approximating those of a real-world prototype channel. Note
that the separability of the correlation properties in time, frequency, and space
(see [16,51]) is not presumed. The usefulness of the method is illustrated by de-
signing several stochastic channel simulators based on the TVFRs of real-world
channels measured in different propagation environments.

This chapter is organized as follows. In Section 3.2, the stochastic simula-
tion model is described for MIMO wideband channels. The problem of designing
measurement-based MIMO wideband channel simulators is formulated in Sec-
tion 3.3. The algorithm proposed for determining the parameters of MIMO wide-

25
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band channel simulators is presented in Section 3.4. In Section 3.5, we validate
the correctness of the parameter calculation algorithm by simulations. Examples
illustrating the development of stochastic channel simulators based on real-world
wideband MIMO channels are presented in Section 3.6. In Sections 3.7 and 3.8,
we consider the design of stochastic simulators for MIMO narrowband channels
and SISO wideband channels, respectively. The concluding remarks are given in
Section 3.9.

3.2 A Stochastic Channel Simulation Model for MIMO
Wideband Channels

In this section, we describe a stochastic simulation model for MIMO wideband
radio channels. It is presumed that the transmitter and the receiver are equipped
with N7 and Np antennas, respectively.

3.2.1 Time-Variant Frequency Response

The simulated TVFR of a MIMO wideband wireless channel at the discrete fre-
quencies f;, = —B/2+mAf' € [-B/2,B/2], m = 0,...,M — 1, and at the
discrete time instances t,, = nAt € [0,7], n =0,...,N — 1, is represented by the

matrix sequence

Hyim,n] ... Hjpnz[m,n]
H[m,n] = : : (3.1)
Hypalm,n] ... Hpy, nglm,n]
where each element H;, ;,[m,n], iy =1,..., Ny and iy = 1,..., Ng, is a sampled

TVFR of the subchannel between the ¢;-th transmitting antenna and the io-th
receiving antenna. The parameters B and T' denote the frequency bandwidth and
the observation time interval, respectively. In the vectorized form, the TVFR
H[m,n| is given by

Hl,l[m,n]

HQJ[TTL,TZ]

him, n] = vec(H[m,n]) = (3.2)

HNTyNR [m,n]

Before we proceed with describing the stochastic simulation model for MIMO
wideband radio channels, it makes sense to sketch the line of reasoning behind
the chosen modeling approach. For this purpose, we consider a general discrete-
time WSS zero-mean complex random process y(t,), t, € [0,T]. The canonical



Chapter 3 27

decomposition of the random process y(t,,) is given by [52]

y(tn) = ZUl@l(tn) (33)
l

where U; are uncorrelated zero-mean complex random variables and ¢;(t,) are

deterministic basis functions.

For the complex random process y(t,), represented by (3.3), the canonical
decomposition of the correlation function Y(t,,t,) = E{y(t,)y*(t;)} is expressed
as

T(tn.tq) = Z ‘TZQJl‘Pl(tn)SOZk (tq) (3.4)
l

where lefz denotes the variance of the random variable Uj.

It is well-known that the optimal choice of the basis functions (¢, ) is dictated
by the Karhunen-Loéve expansion (KLE) [53-55]. The drawback of the KLE is
the lack of an analytical solution for the basis functions ¢;(t,), except for a few
special cases. As a consequence, it is not possible to generate realizations of the
random process y(t,) at arbitrary chosen time instances.

An alternative approach to selecting the basis functions ¢;(t,) in (3.3) is to
employ a generic basis!, e.g., the Fourier basis. Such ‘universality’ in representing
radio propagation channels is provided by the Maxwellian basis. As postulated
in [11, Chapter 4|, any wireless channel satisfying the bounded free-space prop-
agation conditions can be represented as a combination of plane waves, which
constitute a subset of the Maxwellian basis. It seems reasonable then to choose
the functions describing the plane waves as the basis functions for modeling the
TVFRs of wireless communication channels.

The simulation model proposed in this chapter for generating realizations
of the TVFR h[m,n] = [hi[m,n],... ,hNTNR]T is based on the stochastic local
area channel (SLAC) model [11]. The TVFR of each subchannel h;[m,n], i =
1,...,NpNg, is a 2D complex zero-mean random process, represented in the
generalized form by the sum (cf. (3.3))

L
hilm,n] = Uypi,[m, n] (3.5)
=1

where {U;}¥ are independent zero-mean complex random variables and {¢;, [m, n]}¥
are deterministic 2D functions defined as

o, [m,n] = g, Ot =27fuT) 1 Landi=1,...,NrNg.  (3.6)

!By qualifying a basis as generic, we mean a broad applicability of the basis for representing
signals under mild conditions, which are fulfilled in many practical situations.
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Each function ¢;,[m, n] describes a homogeneous electromagnetic plane wave. It
is characterized by the complex path gain g;,, the Doppler frequency fg,, and the
propagation delay 7/. In contrast to the SLAC model [11], the number of terms
in the sum (3.5) is necessarily finite.

As follows from (3.5) and (3.6), the TVFR h[m,n| is a weighted sum of L

complex exponentials?

L
h[m,n] _ ZClglej(27rfdltn727rf7/n7'l')Ul. (37)
=1
where the vector g is defined as g; = [gll, . ,gNTNRJT. In the polar coordinate

system, the complex weighting coefficients {U; = Z;e/®1}¥ are represented by the
phase shifts {©;}¥ and the magnitudes {Z;}¥. The phase shifts {©;}} are inde-
pendent identically distributed (i.i.d.) random variables, each having a uniform
distribution on the interval [0,27). The magnitudes {=;}} are independent, but
not necessarily identically distributed random variables. Moreover, the random
variables =; and ©; are statistically independent for all [ =1,..., L.

As will be shown in the next subsection, the correlation properties of the
channel simulation model in (3.7) in time, frequency, and space are completely
described by the set of parameters P = {L,{c;}¥, {g}¥, {fa,}¥, {7/}¥}. Note
that the number of the components L is also considered here (with some abuse
of notation) as a model parameter. For a measurement-based stochastic channel
simulator, the set of parameters P is determined from the measured TVFR of a
prototype physical wireless channel.

The distributions of the random variables {El}lL can, in principle, be defined
arbitrarily, but restricted to having unit variance. For example, when {Z;}{ are
Rayleigh distributed or, equivalently, U; ~ CN(0,1) (I = 1,..., L) [28], the TVFR
h{m,n] in (3.7) is a complex Gaussian multivariate 2D random vector process. If
the magnitudes {Z;}¥ are constant and all are equal to 1, it can be shown that
the envelope PDF py;,(7) of the simulated TVFR h;[m,n] of the ith subchannel
is given by (see [11, p.118])

o L
Pin|() = /0 xJo(z() (H JO(’QQ@';K)) ¢d¢, i=1,...,NrNg (3.8)
=1

where Jy(-) denotes the zero-order Bessel function of the first kind. Although the
products {clgil}lL are in general not equal, it can be expected that the envelope
PDF pyp,, () approaches the Rayleigh distribution as L — oo due to the central

limit theorem.

>The reason for keeping the gain factors {¢;} as separate parameters will become clear in
Section 3.4, where the parameter computation method is considered.
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3.2.2 Space-Time-Frequency Correlation Matrix

The correlation between the samples of the simulated TVFR h[m,n| is charac-
terized by the space-time-frequency correlation matrix R that is defined as

R=F {v[m,n]vH[m,n]} =

RO o Rlmman0 o RO —tma] o Rl i
R[Hn;ax, 0] - R[(;, 0] : R[Iimax‘a —lmax] - RJ0, ;Lmax]
R[O,‘Lmax] .- R[—nm;x, tmax] - R[(:), 0] . R[—n;nax, 0]

| Rimeomed o ROmed o Rbmeo0] oo RO0
(3.9]

where the operator (-) stands for a complex conjugate transpose of a matrix and
the vector v[m,n] designates

vim,n] = [hT[m,n]...h7[m — Kkpax, 1)

.. .hT[m, N — lmax] - - - hT[m — Kmax, 0 — Lmax]]T. (3.10)

After substituting (3.7) into (3.10), the space-time-frequency correlation ma-
trix R of the channel simulation model can be written as

R=) ¢R,®Ry ®R,, (3.11)
=1

where the symbol ® denotes the Kroneker product. Note that Kroneker struc-
ture of the correlation matrix R results from absence of any combinations of the
space-frequency-time cross-terms in the complex eponentials in (3.7) (¢f. the con-
ditions for the wave propagation in the local area |11, Chapter 4|). The Toeplitz
Hermitian matrices Ry,, sz' and the Hermitian matrix R,, are defined as

1 . e—j27rfdleaxAt
Ry, = : : (3.12)
ej27rfdl tmax At 1
1 A eJQWTl/’imafol

e—j27r’rl’/@mafo/ . 1
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and
Ry, =g (3.14)

The space-time-frequency correlation matrix R in (3.9) is Hermitian and dou-
bly block-Toeplitz.

For the case of complex weighting coefficients with the constant magnitudes
{Z, = 1}¥ in (3.7), it is worth mentioning that the TVFR h[m,n] is correlation-
ergodic w.r.t. time and frequency under the conditions fy, # fq, and 7], # 7/ for
all n # 1.

3.3 Problem Formulation

As it has been stated in Section 3.2, the set of parameters P of the stochastic
channel simulation model in (3.7) is to be determined from the TVFR of a pro-
totype physical wireless channel. Our aim is to develop an algorithm that allows
creating channel simulators with the correlation properties in time, frequency, and
space closely approximating the corresponding correlation properties of prototype
real-world channels.

Let H[m, n] denote the TVFR of a real-world wireless Ny x Np MIMO channel
measured at the discrete frequencies f/,, m = 0,..., M — 1, and at the discrete
time instances t,, n = 0,..., N — 1. The TVFR H[m,n] in the vectorized form
is given by

h[m,n]= [ﬁl[m, nj,... ’BNTNR [m, n]} g

- 8 . T
=vec(H[m,n]) = [Hl,l[m,n], e ,HNT,NR[m,n]] . (3.15)

The TVFR of each subchannel ﬁi[m,n], i =1,...,NpNg, is assumed to be a
2D zero-mean complex random process. Furthermore, we assume that the TVFR
fl[m,n] of a real-world channel is ergodic with respect to time and frequency,
therefore, an estimate of the space-time-frequency correlation matrix R, defined
similar to the correlation matrix R in (3.9), can be obtained from a single realiza-
tion of the TVFR ﬁ[m, n] by averaging over time and frequency. The estimation
of the correlation matrix E is considered in the next section.

The problem of designing a measurement-based stochastic channel simulator
can now be formulated as follows:

Given the estimated correlation matriz R of a real-world channel, design a
channel simulation model in such a way that the correlation matriz R of the

channel simulator approzimates closely the estimated correlation matriz R.

Taking into account the possible inaccuracy of the model in (3.7), as well
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as the errors in the estimated correlation matrix R, we suggest using the fol-
lowing design criterion (see also [6,56]) for determining the set of parameters
P = {L {a} {g}t {fa ¥, {r/}1} of the channel simulation model defined in
Section 3.2

P = min
P

E—EHF (3.16)

where the symbol ||| » denotes the Frobenius matrix norm. The Frobenius matrix
norm, in this case, plays the role of the Fuclidian vector norm in the traditional
least-square fitting of a data sequence formulation. After substituting (3.11) into
(3.16) we obtain

P =min [R- L, R, @Ry @Ry | (3.17)

where the matrices Ry, Ry, and Ry, are defined in (3.12), (3.13), and (3.14),
respectively.
In the next section, we develop an iterative algorithm for determining the

parameters of the channel simulation model by minimizing the Frobenius norm

in (3.17).

3.4 Computation of the Channel Simulator Parameters

3.4.1 Estimation of the Channel Correlation Matrix

By assumption, the measured TVFR h[m,n] is WSS (ergodic) with respect to
time and frequency. Theoretically, this means that the matrix R must be doubly
block-Toeplitz®. This can hardly be observed in practical situations due to the
statistical variations in the correlation matrix, estimated from a limited number
of measured data samples.

Therefore, in order to ensure the doubly block-Toeplitz structure of the es-
timated correlation matrix R, we first obtain the estimates of the correlation
matrices ﬁ[n, t] for K = —Kmax,--+,0, ..., Kmax and

L= —lmax,---,0,...,lmax, as follows

M—1—|s| N=1—||

2 1 ~
him,n]h® [m + k,n+41.  (3.18)

Blsd = ar =y =1

m=0 n=0

Note that the correlation matrix estimator (3.18) is unbiased, i.e.,

E{R[x,1]} =

3Recall that the TVFR h[m,n] is measured on the grid of equally distant frequencies f., =
—B/2+mAf',m=0,...,M — 1, and time instances t, = nAt, n =0,...,N — 1.
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M—1—|k| N—1—|¢|

— o)) Z Z E{fl[m,n]le[m+I€,n+L]} :f{[n, t].
m=0 n=0

(3.19)

1
(M — |s[)(N

Also for the complex random process ﬁ[m, n], which is jointly Gaussian for any
set of frequencies f], and time instances t,,, it can be shown that the variance of the

(i1,12)-th element f{ihiQ [k, ], i1,92 = 1,..., NpNg, of the estimated correlation
matrix in (3.18), given by

E{ (ﬁil,z‘g [k, ()R iy [, L])(fiim [k, 1] =Ry in [, 1])* } —

M—1—|s| N=1—|¢| M—1—|r| N—1—]|

T M w)(N—H Z 22 2

=0 n1=0 mo=0 no=0

E{BZ1 [ma, nl]ﬁz [m1+ Kk,n1 + L]iLiQ [ma + Kk, ng + L]ﬁfl [ma, ng]}

_‘Ril,m [, ”])‘2 =
M—-1—|g| N=1—|¢| M—1—|k| N—1—|¢|

:(M—Iml);(N—|L|)2 )OEED DD DD

m1=0 n1=0 mo=0 no=0

[ { [ma, na]hg, [mg,ng]}E{flfQ[m1+/€,n1+b]f~li2[m2+/€,n2+d} -

h;
{ m1,n1 ir M2 + K, no + L]}E{B;‘Z [m1 + k,n1 + L]BZ [m2,n2]}]
(3.20)

asymptotically (as N — oo, M — o) approaches zero under the condition

Z Z WM[ { hiy [m, )b [m + 9, n—i—C]}

PY=—00G¢=—00

XE{iLiQ[m,n]iL;;[m —9,n — g]} +E{f~zi1 [m,n]fzig[mﬂ—ﬁ—k K,m+¢+ L]}

xE{BZ[m,n]iﬁQ[m -0+ Kn—¢+ L]H < o0

(3.21)

where we have defined ¥ = ms —m; and ¢ = ng — ny. The condition in (3.21) is
normally fulfilled in practice.

The estimated correlation matrix R is created by combining the estimated
matrices R/[x, ¢] similar to (3.9). It can be easily checked that the resulting matrix
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R is Hermitian and doubly block-Toeplitz.

3.4.2 [Iterative Parameter Computation Method

Observe that the minimization of the Frobenius norm in (3.17) resembles the
problem of finding tpe optimal (in the Frobenius norm sense) decomposition of the
correlation matrix E over a library X of the Hermitian matrices X = Ry @ Ry ®
R,. Each member X, = Ry, @R £l ®Ry, of the matrix library A" is constructed by
substituting a set of the channel simulator parameters v; = {g, fa,,7,} € I into
(3.12)—(3.14). Here, I' denotes the set of all possible sets ;. To find the matrices
{X;} that minimize the Frobenius norm in (3.17), we adapt the matching pursuit
(MP) approach [57] often employed, e.g., for selecting the ‘best’ wavelet packet
basis decomposition of a given signal.

The estimated correlation matrix R is decomposed as

R. X
(R, 1>X IR

R= o
—_— <X1, X1> =—resi

(3.22)
where (A, B) designates the matrix inner product and X; = Ry, @ Ry @Ry, isa
member of the matrix library X obtained, as mentioned above, by substituting the
set of the simulation model parameters v ={g1, fa,, 71} € T into (3.12)—(3.14).

The Hermitian matrix Rres1 represents the residual approximation error. It

can be shown that the matrices X; and f{ , are orthogonal, i.e. (RTGSI,XQ =0,
consequently R
2o [(RX0)P
IRz = XX, + HRresluF (3.23)

From (3.23), it follows that ||R||F > ||R

{g1, fa,, 71}, which minimizes the norm of the residual error R

r and the set of arameters ;3 =
=Yresy p Y

R, .s,, can be deter-
mined as

n ={g fa, 71} = arg max &’;?&5 (3.24)

Also, from the comparison of (3.17) and (3.23), the squared gain factor ¢? is given
by R

2 <Ea X1>
2 =

4= XXy (3.25)

Equation (3.11) implies that the gain factors ¢; must be real and nonnegative.
Hence, the maximizer in (3.24) has to be supplemented with the constraint
(R,X;) = |(R,X})|, i.e., the inner product (R,X;) must be real and greater
than or equal to zero.
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In turn, the residual error matrix R is decomposed into the sum

=Yresy

A

2 (R ,X2> 2
Bresl - ﬁ Rresg (326)

Again, it can be shown that (R, ., ,Xz) = 0, and consequently

Teso )

~

[(Ryes, Xo2)[?

R
|| resl||F <X2,X >

+ R (3.27)

r652||l7

where the matrix X5 is a member of the library X corresponding to the parameter
set v2 = {g2, f4,, 75} € I'. Similar to (3.24) and (3.25), the parameter set 7y is
obtained by maximizing <RT681,X,€>/(X;€, X) under the constraint <Rr6517X2> =
|<ﬁ X32)|, and the squared gain factor c3 = <R X2)/(X2,X2). Observe

Tlresy )
that according to (3.27) ||R F> HR

=Xresy?

res1|| resz‘|1?

Continuing in a similar way, we obtain the following decomposition of the

estimated correlation matrix E

~

= ——resl 1’ =
R= ; X% x,+RmL (3.28)

Accordingly, the Fobenius norm in (3.17) is given by

A

= L <R 7Xl>
IR->. %XIHF IRyes, 17 (3.29)
l 1 l’ l
Note that the inequality HRTGSl |F > HRWS“r1 |7 holds true for all [ = 0,...,L—1.

Let us now assume that the matrices {X;}/* € X, as well as the corresponding

X;)/(X;, X))}, have been determined. In
order to further reduce the residual approximation error given by (3.29), we want

squared gain factors {¢} = (R

res;—17?

to find the best possible solution to the following maximization problem (see
(3.24))

<Rres ’Xk)
{8L+41, fap,1> 7L} = arg maxX—rg (3.30)
gk?fdvak

A~

under the constraint <RreSL,XL+1> = |(ET€SL,XL+1>|.

Using the properties of the Kronecker product and the definitions in (3.12)-
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(3.14), any member X}, of the matrix library X can be written as
Xp = xpx = (e, ® ey @ gp)(ey, ® ey @ gy) " (3.31)
where

€t =

. . T
[1 ej27rfdkAt 6]27dekbmaxAti|
x R

- ! ! - ! /T
e = [1 e IO oI K O } . (3.32)

It follows that the maximizer in (3.30) can be equivalently expressed as

{841, fap > 7141} = arg max——F"L— (3.33)
g]mfdva]:; Xk‘ Xk

To reduce the computational difficulties associated with the multidimensional
search for the parameters {gL+1,de+1,Ti+1} in (3.33), we use the procedure
developed below.

The maximum of the Rayleigh quotient in (3.33) is equal to the largest eigen-

value Amax, of the matrix R, [58]. This observation suggests an idea to make

resy,
the vector x7,11 as much as possible collinear with the eigenvector uy, associated
with the eigenvalue Apax,. Thus, the maximization problem in (3.33) can be
reformulated as

kaPka

{gr+1, fap 1 7Ly} = argmin (3.34)

gkvfdk77-]:; Xk‘ Xk

where the matrix Py, = I—uLug is the orthogonal projector on the (Np Ng(Kmax+
1)(tmax + 1) — 1)-dimensional subspace complementary to the subspace spanned
by the vector uy, and I denotes the unity matrix of appropriate dimensions. In
(3.34), the property PfPL = P has been used.

On substituting x; = e, ® ey, ® gy, into (3.34), we obtain*

<R'f,’C ® ngv P/Lk>

8L+1, fdp 1T 1) = argmin (3.35)
{ e } 8k Sy, Th (eietk)(eﬁefé)(gﬁgk)
where the matrix P’z, is defined as
P'p, = (efl @T)Pr(ey, ®T). (3.36)

*Recall that for any square matrix A and a vector b, the following equalities hold b7 Ab =
trace{bb? A} = (bb™ A).
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The Couchy-Bunyakovsky-Schwarz (CBS) inequality allows us to write
Ry, @Ry P10l < Ry, @ Ry 16 P, 15 (3.37)
Thus, as a solution to (3.35), we use the Doppler frequency fg, ., determined as

LAY

H
etk etk

(3.38)

fap,, = argmin
dy

After substituting the Doppler frequency fq, ., that minimizes (3.38) into (3.36),
the channel simulator parameters {g L1, 7] +1} are found from the following equa-
tion

<ng > P//Lk>

/ .
8I+1,TL 1} = argmin (3.39)
{ } g (efer) (et sr)
where the matrix Py, is defined as
Py, = (e]{i @D)P'L(ey @1T). (3.40)
Application of the CBS inequality to (3.39) results in
P//
01 = argminl £ 2el? (3.41)
USRI/
and after substituting 77 ;, which minimizes (3.41), into (3.39), we obtain
HP//
g1 1 = argminSi—_LBE (3.42)
8k g1 8k

The equation (3.42) is minimized by choosing the vector g 11 to be equal to the
eigenvector corresponding to the smallest eigenvalue of the matrix P” .

In passing note that the simulation model parameters {gL+1, Jdp i1 Tiﬂ} can
be computed directly from the eigenvector uy without generating the matrices
Py, P, and P} as in (3.38), (3.41), and (3.42).

The squared gain factor c% 41 1s determined as

A~

<EresL ) XL+1>

L (X1, Xph) (343)

where the matrix X1 € X is obtained by substituting the computed parameters

{8r+1. fay - 7141} into (3.31). Since the residual error matrix ETGSL is Hermi-

tian, the parameter C%+1 is real. However, because the matrix R, ., cannot be

guaranteed to be positive definite, the parameter C% 41 can be negative. If this is
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the case, no solution to the maximization problem in (3.30) can be found using
the method described above, i.e., the final approximation residual error is then
(see (3.28)).

The empirical results of applying the proposed parameter computation method

given by the matrix R, .
demonstrate that the residual approximation error can be significantly reduced
by applying the cyclic minimization technique [59].

As before, presume that the matrices {X;}¥ € X and the corresponding
squared gain factors {le}lL have been determined. Using the computational steps
described in (3.30)—(3.42), we obtain the set of parameters {gr41, fa, .1, 7141} €
I' and, consequently, the matrix Xy,1 € X. We assume that c% 41 = 0. Other-
wise, the minimization of the Frobenius norm (3.17) is finalized with the residual
approximation error matrix R

=Yresr*

The matrices {X;}2*! and the squared gain factors {c7}<*!

are supplied as
initial parameter values {X(O A and {02(0 A1 into an iterative minimization
procedure described below.

On every iteration ¢, ¢ = 1,2, ..., the following steps are executed:
1) Forp=1,...,L+ 1, we culculate the auxiliary matrices ZSJ) according to
R - G xey, p=1
Z}()q) = 3 s 1 2(Q)X(q ZZL?H 2(q— 1)Xl(q71)’2 <p<L (3.44)
E_lelcl l(q)’ p=L+1

Use the matrix Z(Q) in lieu of RMSL in (3.30)—(3.43) to compute the param-
eters { ,f ’(q ,C (‘J)}

2) Calculate the Frobenius norm of the residual approximation error matrix

E%)S 141 as follows

L+1

5 2(q)

IR-S" X p = IR, |Ir- (3.45)
=1

3) If the condition HRMSLJr1 lr < HRMSLJr1 || is satisfied, begin a new 1terat10n
Alternatlvely, set the channel simulator parameters {gy, f4,, 7}, cl}1 equal

{ , f d T (‘J)}l and proceed with determining the initial values

for the parameters {8142, fay s T} 10sCLt2} using (3.30)—(3.43).

As it has already been mentioned, the parameter computation algorithm de-
veloped above is based on the MP approach [57]. In particular, it inherits the
energy conservation property of the MP method [55], which results in decrease
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of the approximation error given by (3.29), as the number of components L in-
creases. The convergence of the general MP method has been analyzed in [55,57].
Taking into account the arguments given in [55,57| and also the comments in [60],
we conclude that the proposed method of determining the parameters P of the
channel simulation model in (3.7) can be considered only as a heuristic algorithm.
That means that even though the Frobenius norm of the residual approximation

error matrix R, is a strictly nonincreasing function of the number of the com-

=—res
ponents L, it doeLs not imply that the proposed algorithm necessarily produces
the optimal solution to the problem stated in Section 3.3.

The iterative nature of the parameter computation algorithm described in
this section impedes an assessment of its computational complexity. Further-
more, the complexity of the algorithm depends on the properties of the estimated
correlation matrix R and desired (acceptable) accuracy of the correlationA matrix
approximation, i.e., the acceptable residual approximation error norm HE

(3.29).

resLHF

3.5 Simulation Results

Here, we verify the correctness of the iterative parameter computation algorithm
described in the previous section. Additionally, we investigate the influence of
the white noise present in the measured TVFR of a wireless channel exerted on
the performance of the algorithm. For these purposes, we employ the geometrical
two-ring channel simulation model that has been used in Section 2.3. Note that
the correlation matrix R of the geometrical two-ring channel simulation model,
which is defined similarly to (3.11), can be easily obtained by substituting the
known gains {¢}¥, the Doppler frequencies { fdl}f, the propagation delays {;’ 1
and the vectors {g;}} into (3.11), (3.12), (3.13), and (3.14), respectively. The
vector g;, I = 1,...,L, is given by the Kroneker product of the steering vector
(see Chapter 5) of a transmitting antenna, calculated for the known direction-of-
departure (DOD) v, and the steering vector of a receiving antenna, calculated
for the known direction-of-arrival (DOA) ¢;. Below, we refer to the correlation
matrix R of the geometrical two-ring channel simulation model as the sample
correlation matrix.

Some of the parameters of the geometrical two-ring channel simulation model
read as (see also Section 2.3):

e Number of scatterers: L = 50;
e Receiving antenna: 2-element omnidirectional uniform linear array;
e Transmitting antenna: 2-element omnidirectional uniform linear array;

e Time between channel snapshots: At = 0.07 s;
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e Maximum Doppler frequency: 7 Hz;
e SNR: 5 dB.

According to the problem formulation stated in Section 3.3, we determine the
set of parameters P = { L, {c,}¥, {&}¥, {fa,}¥, {7/}{} of the channel simulation
model (3.7) as follows

P =min||R - R (3.46)

where the matrix R = R + 02 is the sample-plus-noise correlation matrix. The
term oI represents the correlation matrix of the complex zero-mean multivariate
Gaussian white noise. The parameter o2 signifies the power of the noise com-
ponent corresponding the specified SNR. The identity matrix I is of the same
dimensions as the sample correlation matrix R.

In Fig. 3.1, several examples of the sample-plus-noise temporal cross-correlation
functions (TCCFs) Tts i [t] and the sample-plus-noise frequency cross-correlation
functions (FCCFs) ’flfill,ig [k], 91,72 = 1,..., N7 Npg, are presented together with
the corresponding TCCFs ry, . [1] and FCCFs r I [k] of the channel simulation
model (3.7). The TCCFs 74, , [1] and FCCFs ’flfill,ig [] are extracted from the

calculated sample-plus-noise correlation matrix® R (see Section 3.2). Similarly,
the TCCFs ry, , [t] and FCCFs r I [k] are extracted from the correlation matrix
R. In Fig. 3.1, we also show the sample TCCFs 1*]2(1@ [£] and the sample FCCFs
/,\ajfill,iQ [k] of the geometrical two-ring channel simulation model for the noise-free

case, extracted from the sample correlation matrix R.

As can be seen from the figure, the correlation properties of the resulting
channel simulation model (3.7) closely approximate the corresponding correlation
properties of the geometrical two-ring channel simulation model and are not signif-
icantly effected by the presence of the noise component in the sample-plus-noise
correlation matrix R. The observed resistance of the parameter computation
method to the white noise present in the TVFR can be attributed to the fact
that the eigenvectors of the sample correlation matrix R are also the eigenvectors
of the sample-plus-noise correlation matrix R. Recall that the channel simula-
tor parameters {{g}¥, {fa,}¥.{7/}}} are determined by using the eigenvectors
of the correlation matrix R (see Subsection 3.4.2). It should be mentioned, how-
ever, that the capability to single out the white noise component contained in
the correlation matrix to a large extend depends on the range of the time lags
|t] < tmax and the range of the frequency lags |k| < Kmax, at which the correlation
properties of the channel TVFR are estimated. The conducted simulations sug-

5The sample-plus-noise TCCFs 7 [] and the sample-plus-noise FCCFs 7¢  [k], i1,42 =
1,2

11,42
1,..., Ny Ng, are defined as E{hi, [m, n]h], [m,n+]} and E{hi, [m, n]h}, [m+#,n]}, respectively,
where hi[m,n], i = 1,..., NrNg, designates the TVFR of the i-th subchannel synthesized by
using the geometrical two-ring channel simulation model and contaminated with white noise.
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gest that for the chosen time interval between channel snapshots At = 0.07 s and
the interval between the frequencies Af’ = 1.957 - 10° Hz, the results similar to
those presented in Fig. 3.1 are achieved when the values of Kpax and tpyax satisfy
the condition Kmaxtmax > 0.

141
b —e— Sample-plus-noise TCCF, 7, , v 1.4

120 pep ) Tl —e—Sample-plus-noise FCCF, 7y, [x]
B —#— Channel simulator, r, , [¢] 12 ) '
9 ' [ —s— Channel simulator, 7 []
8 13 - - -Sample TCCF, 74, , [1] 8 ) i
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= 0.8
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Figure 3.1: Examples of the TCCFs and FCCFs of the geometrical two-ring
channel simulation model (with and without white noise) and the
corresponding TCCFs and FCCFs of the designed channel simulator.

3.6 Applications to Real-World Measurement Data

The usefulness of the proposed design method is illustrated by constructing several
MIMO wideband channel simulators based on the measured TVFRs of real-world
channels. Our prime interest is to test the convergence of the parameter com-
putation algorithm (see Section 3.4), as well as to assess the complexity of the
channel simulators measured by the number of terms L in (3.7).

The channel simulator design method described in this chapter is based on the
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assumption that the TVFR of a physical radio channel is WSS w.r.t. time and
frequency. The intervals in the time-frequency plane, over which the measured
TVFRs can be assumed WSS, have been identified using the stationarity test
developed in Chapter 2.

The description of the measurement sites can be found in Appendix A. Addi-
tionally, Appendix A contains information about the measurement method and
the equipment setup.

3.6.1 Micro Cell Site — Regular Street Geometry

HF/HEHF versus the

number of components L in (3.7) is depicted in Fig. 3.2 (a). As can be seen from

The normalized residual approximation error norm [R,..,

the figure, the normalized error norm drops below 5% at L = 63. The resulting
normalized error norm corresponding to L = 120 is about 3%.

0.7¢ 0.7

Normalized residual error norm
Normalized residual error norm

0 80 100 120 20 40 60 80 100 120
Number of components, L Number of components, L

(a) (b)

Figure 3.2: The normalized residual approximation error norm versus the num-
ber of components L for (a) the MIMO wideband channel simulator
and (b) the truncated discrete KLE (micro cell site — regular street
geometry).

For comparison reasons, we show in Fig. 3.2 (b) the results obtained from
the truncated discrete KLE of the measured channel TVFR [61]. The normalized
residual approximation error norm for the truncated discrete KLE is calculated
according to the following expression

= 5 > A — > A
IRyes, lr/ IR =\/ ZZ SV (3.47)
1N

where A\y > Ay > ... are the ordered eigenvalues of the matrix E The normalized
error norm of 5% is achieved with L = 41 principal components corresponding to



42 Chapter 3

the largest eigenvalues of the estimated correlation matrix R. For L = 120, the
normalized error norm is about 1%.

It is important to note that the truncated discrete KLE provides the optimal,
in the mean-square error sense, approximation of the estimated correlation matrix
R for a given L. As we have mentioned in Section 3.2, the disadvantage of the
truncated discrete KLE is the lack of an analytical solution for the eigenvectors
of the correlation matrix R. To illustrate this point, assume that we need to
synthesize a realization of the channel TVFR on an interval of time of duration
0.7 s. Without going into details, it is sufficient to say that the size of the estimated
correlation matrix R has to be doubled in each dimension as compared to the size
of the correlation matrix enrolled in this subsection. If we applied the truncated
discrete KLE to the enlarged matrix R, the number of the principal components
required to approximate the new correlation matrix with the same 5% normalized
approximation error norm would be increased to L = 62, i.e., by 50%, and would
be comparable with L = 63 exponential components in the channel simulation
model (3.7).

In Fig. 3.3, several examples of the calculated TCCFs 7, , [¢] and the FC-
CFs TR [K], i1,i2 = 1,..., NpNg, are presented together with the corresponding

estimated TCCFs f:'til ., [t} and FCCFs r 7 [K] of the measured channel. The esti-
’ 11,19
mated TCCFs 7, , [] and FCCFs 7y [k] of the measured channel are extracted
s 11,19

from the estimated space-time-frequency correlation matrix E (see Section 3.4).
The approximate 95% confidence intervals [62] for the estimated TCCFs and FC-
CFs shown in Fig. 3.3 have been obtained assuming that the elements of the
estimated matrices R[k,¢] in (3.18) are complex Gaussian distributed random
variables. As can be seen from Fig. 3.3, the correlation functions of the channel
simulator are well fitted to the corresponding estimated correlation functions of
the physical channel. A significant discrepancy exists between the TACFs ry, ]
and the estimated TACFs ﬁt” [t] at time lag ¢ = 0 as well as between the FACFs
ry [k] and the estimated FACFs f:'fi/i[fs] at the frequency lag x = 0. Taking
into account the results presented in Section 3.5, a possible explanation for this
discrepancy could be the presence of ‘measurement’ noise in the TVFR fl[m, nl,
weakly correlated in time, frequency, and space.
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Figure 3.3: Examples of the estimated TCCFs and FCCFs of the physical chan-
nel and the corresponding TCCFs and FCCEFs of the designed MIMO
wideband channel simulator (micro cell site — regular street geome-

try).
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Recall that the envelope PDFs of the subchannels h;[m,n|, i = 1,..., NpNg,
are not directly taken into account in the design method described in Section 3.4.
Nevertheless, it is of interest to consider the resulting envelope PDFs py;,, (x) given
by (3.8) for a special case of the complex weighting coefficients with the constant
magnitudes Z; = 1, [ = 1,...,L, (see Section 3.2). Figure 3.4 presents the
calculated envelope PDFs for two subchannels. The calculated envelope PDFs
Pn,|(z) in Fig. 3.4 are shown together with the estimated empirical envelope
PDFs p|;”|(x) and the Rayleigh PDFs corresponding to the complex weighting
coefficients U; ~ CN(0,1). Note that the envelope PDFs calculated by using (3.8)

follow the Rayleigh distribution.

200 200
Measured channel, pj;, | (x) Measured channel, p, ;Lw‘(:r)
o Channel simulator, pj,|(r) o Channel simulator, pj,,|(z)
- - =Rayleigh PDF g - - =Rayleigh PDF
150 150r o D
4 of %
- |4 .
& 9 = N )
—100r ¢ =100f . S
& ! s 9
J | §
®
50¢ 1 50t ?
0 L L J G L n J
0 0.005 0.01 0.015 0.02 0.025 0 0.005 0.01 0.015 0.02
T T
(a) (b)

Figure 3.4: Examples of the envelope PDFs for the MIMO wideband channel
simulator py,,(z) and the corresponding empirical PDFs p|;”|(m)

(micro cell site — regular street geometry).

In Fig. 3.5, the cumulative distribution functions (CDFSs) of the instantaneous
channel capacity (mutual information) of the measured channel and a synthesized
channel are presented. The instantaneous capacity C[n] for the simulated channel

can be obtained for all time instances ¢t,,, n = 1, ..., N, according to the definition
[4,41,42]
| M-l p
_ H
Clnl = 57 mzo log, {det <I + -NTT[n]H[m’n]H [m,n])] (3.48)

where the channel matrix H[m, n] has been defined in (3.1), p denotes the signal-
to-noise ratio (SNR), and I is the unity matrix. The normalization factor F[n] at

each time instance is given by

1 M—-1 )
Fln] =+ > [H[m.n]||7. (3.49)
m=0
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The instantaneous capacity of the measured physical channel is defined in a similar
way.

Due to the fact that the number N of the available snapshots of the TVFR
is limited for a real-world wireless channel, we split the available frequency band-
width B = 100 MHz into smaller frequency bands of about 20 MHz. The in-
stantaneous capacities of the measured channel and the simulated channel are
calculated for each of the frequency bands according to the formulas (3.48) and
(3.49).

As it can be seen from Fig. 3.5, the capacity CDF of the generated channel is
biased compared to the capacity CDF of the measured channel. This result can
be foreseen by inspecting the plots in Fig. 3.3. As it has already been mentioned,
the TACFs ry, ;[0] and the FACFs 7 [0], which define the variances of the gen-
erated TVFRs h;[m,n],i=1,... ,NfNR, are smaller than the estimated TACFs
?ti’i[O] and FACFs 7 #2.10] of the corresponding measured TVFRs hi[m,n]. It is of
interest to investigaté if the bias can be removed by adjusting the variances of the
TVFRs hilm,n|, i = 1,..., NpNg. For this purpose, a complex ‘measurement’
noise®, uncorrelated in time, space, and frequency, is added to the generated re-
alizations of the TVFR h[m,n]. Indeed, as can be seen from Fig. 3.5, adding the
‘measurement’ noise, which follows the complex multivariate Gaussian distribu-
tion with zero means and the diagonal covariance matrix, to the TVFR h[m,n],
eliminates the bias. The elements along the main diagonal of the ‘measurement’

noise covariance matrix are given by o? = 74, ,[0] — r,;0],i=1,..., N Ng.
1.4r
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= 1t
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Figure 3.5: Capacity CDFs of the simulated channel and the measured channel
for the SNR p = 20 dB (micro cell site — regular street geometry).

5The ‘measurement’ noise should not be confused with the noise at the input of a receiver
represented by the SNR p in (3.48).
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The estimated mean puc values and standard deviations ¢ of the instanta-
neous capacity of the measured channel and the simulated channels (with and

without ‘measurement’ noise) are given in Table 3.1.

Table 3.1: Estimated mean and standard deviation of the capacity (micro cell
site — regular street geometry).

Measured | Channel Channel simulator
channel | simulator | with ‘measurement’ noise
Mean, puc (bps/Hz) 7.25 6.48 7.23
Standard deviation, o¢ (bps/Hz) 0.81 0.9 0.81

3.6.2 Micro Cell Site — Open Market Place

The normalized residual approximation error norm is shown in Fig. 3.6 (a). The
7% normalized error norm is achieved with L = 179 components in the chan-
nel simulation model (3.7). Compare this value with the results presented in
Fig. 3.6 (b) for the truncated discrete KLE. Here, the 5% normalized error norm
is achieved with L = 104 principal components, while for L = 179 components

the normalized residual approximation error norm is about 2%.

o ©
[N) >
o © ©
[N) > o

o
[
o
[

Normalized residual err
o
w
Normalized residual err
o
w

o
o

50 100 150 200 50 100 150 200
Number of components, L Number of components, L

(a) (b)

Figure 3.6: The normalized residual approximation error norm versus the num-
ber of components L for (a) the channel simulator and (b) the trun-
cated discrete KLE (micro cell site — open market place).

Examples of the estimated TCCFs /ﬁtil,ig [t] and FCCFs ;fill,ig [k] of the mea-
sured channel are depicted in Fig. 3.7 together with their respective counterparts
Tt;, 4, ] and R [k] calculated for the developed channel simulator. As it can
be seen from Fig 3.7, the TCCFs 4, . [1] and the FCCFs TR [k] of the designed
channel simulator closely approximate the corresponding TCCFs and FCCFs es-

timated from the measurement data.
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Figure 3.7: Examples of the estimated TCCFs and FCCFs of the physical chan-
nel and the corresponding TCCFs and FCCFs of the designed MIMO
wideband channel simulator (micro cell site — open market place).
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Examples of the envelope PDFs py;, () (see (3.8)) and the empirical envelope
PDFs Pl (x) estimated from the measurement data are shown in Fig. 3.8. Clearly,
the envelope PDFs py,, () follow the Rayleigh distribution.

2501 250,
Measured channel, p, }"11‘(.'1,‘) Measured channel, p, ,;,2‘(:10)
o Channel simulator, p|h“(r) o Channel simulator, pj,| ()
200! - - -Rayleigh PDF 200} - - -Rayleigh PDF
—~ 150} — 150
£ <
=100 100+
50 50
0] : . 0 : - !
0 0.005 0.01 0.015 0.02 0 0.005 0.01 0.015 0.02
T x

(a) (b)

Figure 3.8: Examples of the envelope PDFs of the MIMO wideband channel sim-
ulator pp,(x) and the corresponding empirical PDFs p| ;m(x) (micro
cell site — open market place).

The CDFs of the instantaneous channel capacity C[n| of a synthesized chan-
nel and of the measured channel calculated as described in Subsection 3.6.1 are
demonstrated in Fig. 3.9. Note the absence of the bias between the two CDF

curves shown in the figure.
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Figure 3.9: Capacity CDFs of the simulated channel and the measured channel
for an SNR p = 20 dB (micro cell site — open market place).
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The mean values pc and the standard deviations o¢ of the instantaneous
capacity of the synthesized channel and the measured channel are presented in
Table 3.2.

Table 3.2: Estimated mean and standard deviation of the capacity (micro cell
site — open market place).

Measured | Channel Channel simulator
channel simulator | with ‘measurement’ noise
Mean, puc (bps/Hz) 8.63 8.67 8.75
Standard deviation, o¢ (bps/Hz) 1.32 1.05 0.93

3.6.3 Micro/Pico Cell Site — Passageway

In Figs. 3.10 (a)-(b), the normalized residual approximation error norm is shown
for the channel simulator and the truncated discrete KLE, respectively. The
5% normalized error norm is achieved with L = 143 components in the channel
simulator (3.7) vs. L = 67 principal components in case of the truncated discrete
KLE (see (3.47)). Correspondingly, L = 161 components in (3.7) provide the
normalized error norm below 4.9%, while for L = 161 components in the truncated
discrete KLE the normalized error norm is below 3.5%.
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Figure 3.10: The normalized residual approximation error norm versus the num-
ber of components L for (a) the MIMO wideband channel simu-
lator and (b) the truncated discrete KLE (micro/pico cell site —
passageway ).

Examples of the estimated TCCFs ﬁtil ., [t] and FCCFs ?fg _ [k] of the mea-
’ 11,22
sured channel together with their respective counterparts r¢, . [¢] and 7y [x]
! 11,29
calculated for the developed channel simulator are depicted in Fig. 3.11.
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Figure 3.11: Examples of the estimated TCCFs and FCCFs of the physical
channel and the corresponding TCCFs and FCCFs of the designed
MIMO wideband channel simulator (micro/pico cell site — passage-

way).
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Note the discrepancy between the TACFs f:’tm[b] and 7, ,[¢] at time lag « = 0,
and between the FACFs 7 g, [k] and ryp [K] at frequency lag k = 0.

Figure 3.12, demonstrates the examples of the envelope PDFs py, (z) (see
(3.8)). The corresponding empirical envelope PDFs p‘ﬁi‘(:c) are also plotted in
the same figure. It can be observed that the envelope PDFs py;,|(z) given by (3.8)
follow the Rayleigh distributions. In Fig. 3.12, it is shown that the empirical
envelope PDFs p|,~”|(ac) also follow the Rayleigh distributions. Thus, the evident
discrepancy between the envelope PDFs py;,, () and the empirical envelope PDFs
in Fig. 3.12 is due to the difference in the variances (the TACFs ry, ,[0] and 74, , [0]
in Fig. 3.11) of the corresponding random processes h; and hi.

4007 _ 400
” Measured channel, p“:“;‘(m) é% Measured channel, Dl (z)
350r ¢ o Channel simulator, py;,|(z) 350 ,5 (%; o Channel simulator, p,q|(z)
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300F 4 3001 ¢ »,
1
®
__ 2501 2501 !
B )
B 200+ — 200
= 150} = 150
10014 1009
50 sod
0 0
0
(a) (b)

Figure 3.12: Examples of the envelope PDFs of the MIMO wideband channel
simulator pj,,(z) and the corresponding empirical PDFs p|,~”|(m)
(micro/pico cell site — passageway).

In Fig. 3.13, the CDFs of the instantaneous channel capacity (see Subsec-
tion 3.6.1) of the measured channel and of a simulated channel realization are
depicted. Observe, that the mismatch between the capacity CDFs (bias) can be
reduced by adding a white ‘measurement’ noise to the simulated TVFR h[m, n],

as described in Subsection 3.6.1.
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Figure 3.13: Capacity CDFs of a simulated channel and the measured channel
for an SNR p = 20 dB (micro/pico cell site — passageway).

The mean values pc and the standard deviations o¢ of the instantaneous
capacity of the simulated channels and the measured channel are presented in
Table 3.3.

Table 3.3: Estimated mean and standard deviation of the capacity (micro/pico
cell site — passageway).

Measured | Channel Channel simulator
channel simulator | with ‘measurement’ noise
Mean, puc (bps/Hz) 8.45 7.9 8.59
Standard deviation, o¢ (bps/Hz) 1.17 1.21 0.82

3.6.4 Indoor Cell Site

For the indoor propagation scenario, the normalized residual approximation error
norm versus the number of components L is shown in Figs. 3.14 (a)-(b) for the
channel simulator and the truncated discrete KLE, respectively. In this case, the
normalized error norm for the designed channel simulator has converged to 10%
for L = 220 components (see (3.7)). The truncated discrete KLE with L = 220
principal components provides the normalized residual approximation error norm
of about 2%. For the reference, the 5% normalized error norm is achieved with
L = 139 components in case of the truncated discrete KLE.
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Figure 3.14: The normalized residual approximation error norm versus the num-
ber of components L for (a) the channel simulator and (b) the
truncated discrete KLE (indoor cell site).

Fig. 3.15 depicts several examples of the TCCFs 7%,51.171.2 [t] and FCCFs 7%}2/1’1,2 [K],
estimated from the measurement data, as well as the TCCFs ry, . [¢] and the FC-
CFsr o [k], calculated for the developed channel simulator. As can be seen from
Fig. 3.15, the approximation of the FCCFs is worse compared to the propagation
scenarios considered in the previous subsections.

Examples of the envelope PDFs p;,, () obtained by using (3.8) and the corre-
sponding empirical envelope PDFs p) M(x) estimated from the measured TVFRs
are shown in Fig. 3.16. We observe that the envelope PDFs py;,, () given by (3.8)
follow the Rayleigh PDF.

The instantaneous channel capacity CDFs of the measured channel and of a
generated channel realization (see Subsection 3.6.1) are demonstrated in Fig. 3.16.
The mean values p¢ and the standard deviations o¢ of the instantaneous capacity
are presented in Table 3.4.

Table 3.4: Estimated mean and standard deviation of the capacity (indoor cell

site).
Measured | Channel Channel simulator
channel simulator | with ‘measurement’ noise
Mean, puc (bps/Hz) 8.15 7.97 8.1
Standard deviation, o¢ (bps/Hz) 1.03 0.85 0.79
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Figure 3.15: Examples of the estimated TCCFs and FCCFs of the physical
channel and the corresponding TCCFs and FCCFs of the designed
MIMO wideband channel simulator (indoor cell site).



Chapter 3

40¢
Measured channel, p,j, | (x)
357 o Channel simulator, pjp,(x)
- - =Rayleigh PDF
307
257
&
—~ 207
=
ISH
151
107,
5
0 1 1 )
0 0.02 0.04 0.06 0.08 0.1
x
(a)

95

Measured channel, py;, (z)
35¢ o Channel simulator, pj,|(2)
- - =Rayleigh PDF

Figure 3.16: Examples of the envelope PDFs of the MIMO wideband channel
simulator pj;,(z) and the corresponding empirical PDFs p|,~”|(az)

(indoor cell site).

1.4
—— Measured channel
E] 120 Channel simulator
a 1.
2 = = =Channel simulator with ‘measurement’ noise
= 1t
V
Zosf
Q
3
2,
§ 0.6r
i
= 0.4
Q0
=
2o
S 0.2f
o
0 z w ‘

6 8 10
Capacity (bps/Hz)

12
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3.7 Design of Measurement-Based Stochastic Channel
Simulators for MIMO Narrowband Channels

So far, we have been concerned with the design of stochastic channel simula-
tors for MIMO wideband channels. In this section, we describe an adaptation of
the method, proposed in the previous sections, for designing measurement-based
channel simulators for MIMO narrowband channels. In agreement with the defi-
nition of a narrowband channel [3,4], it is presumed that the TVFR H[m,n] of
a real-world Ny x Np MIMO wireless channel has a constant magnitude and a
linear phase shift over the frequency interval [—-B/2, B/2] (flat fading).

3.7.1 Stochastic Channel Simulation Model

The synthesized TVFR of a MIMO narrowband wireless channel at discrete time
instances t, = nAt € [0,T], n = 0,...,N — 1, is represented by the matrix
sequence

HLl[TL] Hl,NR[n]
H[n| = : : : (3.50)

HNTal[n] HNTvNR[n]

The TVFR HJn], in the vectorized form, is generated using the following simula-
tion model

L
hin] = vec(H[n]) = chgleﬂ’rfdlt"Ul. (3.51)
=1

where the set of parameters P = {L,{c}{,{g}},{fs,}]} and the complex
weighting coefficients {U;}¥ are specified as in Section 3.2.

The space-time correlation matrix R is defined as follows

R[0] -+ R[—tmax]
R=E{vinv[n]} = : : . (3.52)
Rlmas - R[
where the vector v[n] is defined by v[n] = [hT[n]... hT[n — tymay]]?. Using (3.51),

the correlation matrix R can be written as

L
R=> ¢R;, @R, (3.53)
=1

where the matrices Ry, and Ry, are defined in (3.12) and (3.14), respectively.
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3.7.2 Parameter Computation Method

The following criterion is proposed for determining the set of parameters P of the
channel simulation model (3.51)

P o o, o3

where R. is the estimated correlation matrix, which is defined similarly to (3.52)

as
A ﬁ[O] R[—Lmax]
R= : - : : (3.55)
R[Lmax] e R[O]
The consistent estimates of the correlation matrices f{[L], L= —lmax,-++50,. .., bmax,

tmax € R in (3.55) are obtained as

N—1-[

—1—
R L :# h mn ~HTL L
R[] T n;) h[n]h[n + 4. (3.56)

The minimization of the Frobenius norm in (3.54) is accomplished by applying
an adapted version of the iterative parameter computation method described in
Subsection 3.4.2. The method is based on decomposing the estimated correlation
matrix R over a library & of the Hermitian matrices X = R; ® Ry, where each
member X = Ry, ® Ry, of the matrix library can be written as (cf. (3.31))

X = xpxp = (e, @ gr)(ey, @ gr)™. (3.57)

The set of parameters P = { L, {¢;}1, {&:}¥, {f4,}1'} is computed according to
the procedure described in Subsection 3.4.2. However, the Equations (3.39)—(3.42)
are to be dropped as they are not relevant for narrowband channels. Instead, after
substituting the Doppler frequency fg, ,, which minimizes (3.38), into (3.36), the
vector gr41 is found as

. gl P'Lgy
gr+1 = arg min =~ ——>=

(3.58)
e glgk

Below, we present some examples of designing channel simulators for real-
world MIMO narrowband channels.
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3.7.3 Applications to Real-World Measurement Data

In the considered examples, which illustrate the development of channel simulators
for MIMO narrowband channels, we use the same measured TVFRs of the real-
world channels that have been already employed in Section 3.6 for illustrating the
design of the channel simulators for MIMO wideband channels.

First, we consider the convergence of the iterative parameter computation
method of Subsection 3.7.2. The normalized residual approximation error norm
IR
ent propagation environments in Figs. 3.18 (a)-3.21 (a). For comparison reasons,

resy, |#/|IR||F versus the number of components L in (3.51) is shown for differ-
Figs. 3.18 (b) — 3.21 (b) depict the normalized residual approximation error
norms obtained according to (3.47) for the truncated discrete KLEs. For the case
of MIMQ narrowband channels, the ordered eigenvalues Ay > Ay > ... of the
matrix R defined in (3.55) are substituted into (3.47). As it can be seen from
Figs. 3.18-3.21, the resulting normalized error norm is below 5% for all developed
channel simulators.

Examples of the estimated TCCFs ﬁtiLQ [¢] of the measured channels together
with their respective counterparts ry, , [¢] calculated for the developed channel
simulators are depicted in Figs. 3.22-3.25. As can be seen from the plots, the
TCCEFs of all developed channel simulators closely approximate the corresponding
TCCFs of the measured channels. Note that due to a small number of the TCCFs
samples, Kmax = D, the parameter computation method of Subsection 3.7.2 is not
able to single out the contribution of the ‘measurement’ noise in the estimated
correlation matrix R, (see Section 3.5).
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Figure 3.18: The normalized residual approximation error norm versus the num-
ber of components L for (a) the MIMO narrowband channel simu-
lator and (b) the truncated discrete KLE (micro cell site — regular
street geometry).
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Figure 3.19: The normalized residual approximation error norm versus the num-
ber of components L for (a) the MIMO narrowband channel sim-
ulator and (b) the truncated discrete KLE (micro cell site — open
market place).



60 Chapter 3

0.7 0.7
:
g 0.6 0.6
38 5
£0.5 £05
() ()
ELPL S0.4
=] ©
£o.3f €03
e E
X0.2 N0.2
E E
% 0.1 Zo1
Z - Z

0 : : : : : 0 : : : : :
20 40 60 80 100 120 20 40 60 80 100
Number of components, L Number of components, L
(a) (b)

Figure 3.20: The normalized residual approximation error norm versus the num-
ber of components L for (a) the MIMO narrowband channel sim-
ulator and (b) the truncated discrete KLE (micro/pico cell site —
passageway ).
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Figure 3.21: The normalized residual approximation error norm versus the num-
ber of components L for (a) the MIMO narrowband channel sim-
ulator and (b) the truncated discrete KLE (indoor cell site).
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Figure 3.22: Examples of the estimated TCCFs of the physical channel and the
corresponding TCCFs of the designed MIMO narrowband channel
simulator (micro cell site — regular street geometry).
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corresponding TCCFs of the designed MIMO narrowband channel
simulator (micro cell site — open market place).
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Figure 3.24: Examples of the estimated TCCFs of the physical channel and the
corresponding TCCFs of the designed MIMO narrowband channel
simulator (micro/pico cell site — passageway).
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Figure 3.25: Examples of the estimated TCCFs of the physical channel and the
corresponding TCCFs of the designed MIMO narrowband channel

simulator (indoor cell site).
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3.8 Design of Measurement-Based Stochastic Channel
Simulators for SISO Wideband Channels

In this section, the channel simulation model described in Section 3.2 is adapted
for synthesizing TVFRs of SISO wideband channels. Additionally, the model pa-
rameter computation method developed in Section 3.4 is modified for determining
the parameters of measurement-based SISO wideband channel simulators.

It is assumed that the TVFR h[m,n] of a real-world SISO wideband channel
has been measured at discrete frequencies f;, = —B/2+ mAf' € [-B/2,B/2],
m =0,...,M—1, and at discrete time instances t,, = nAt € [0,T],n=0,..., N—
1. We assume that the measured TVFR B[m,n] is a 2D zero-mean complex
random process, which is time- and frequency-shift invariant w.r.t. the correlation

properties.

3.8.1 Stochastic Channel Simulation Model

The TVFR him,n] of a SISO wideband wireless channel at discrete frequencies
r,m =0,...,M — 1, and at discrete time instances t,, n = 0,...,N — 1, is

described as

Cl@j 27deltn 27TfmTl)Ul (359)

Mh

=1

where the simulation model parameters P = {L, {c;}¥,{f4,}}, {7/}} as well as
the complex weighting coefficients U;, [ = 1,...,L, have been defined in Sec-
tion 3.2.

When the magnitudes {Z;}/" of the complex weighting coefficients {U;}} are
constant and all are equal to 1, the envelope PDF pjj, () of the simulated TVFR
him,n] is given by (cf. (3.8))

pin () :/o zJo(x() (H Jo(lei|C) ) ¢dg. (3.60)

The correlation properties of the synthesized TVFR h[m,n] are described by
the temporal-frequency correlation matrix R which is defined as (¢f. (3.9))
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R=F {v[m,n]vH[m,n]} =

[0, 0] <o r[Fmax,0] - [0, —tmax] <o+ r[—Kmax, —tmax)
r[Kmax, 0] e [0, 0] o 7[Kmax; —lmax] - [0, —tmax]
70, tmax] <o+ r[—Kmax, bmax] 7"[0‘, 0] e 7[—Kmax, 0]
| 7[Fmax; tmax] 70, tmax] e 7[Kmax, 0] e 7’[0., 0] |
(3.61)

where the vector v[m,n] is defined by v[m,n] = [h[m,n] ... hlm—FKmax,n] ... h[m,n—
Lmax) - - - MM = Kmax, M — tmax]]” - By using (3.59), the correlation matrix R, can

be written as
L

R=> R, @Ry (3.62)
=1
where the matrices Ry, and Ry, have been defined in (3.12) and (3.13), respec-
tively. Note that the positive semi-definite matrix R is Hermitian and block-
Toeplitz.

3.8.2 Parameter Computation Method

The set of parameters P of the channel simulation model defined in (3.59) is
determined according to the following criterion

P = min HR — YL Ry, @ Ry

. (3.63)

where R is the estimated correlation matrix defined similarly to (3.61). The

elements of the estimated matrix E are obtained as

M—1—|k| N=1—|¢|

! him,n]hf[m+k,n+4.  (3.64)

(M = |&[)(N = ¢])

7%[&, ] =

m=0 n=0

The minimization of the Frobenius norm in (3.63) is accomplished by using a
modification of the iterative algorithm proposed in Subsection 3.4.2. In particular,
the matrix library X (see Subsection 3.4.2) consists of the matrices X, = Ry, ®
Rfl::. Each member X}, of the matrix library is constructed by substituting the
channel simulator parameters fg, and 7 into (3.12) and (3.13), respectively. The
only required modification of the procedure described by the expressions (3.33)—
(3.43) in Subsection 3.4.2, is that Equation (3.42) is to be omitted.
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The performance of the modified parameter computation method is demon-
strated with examples in the next subsection.

3.8.3 Applications to Real-World Measurement Data

The parameter computation method developed in Subsection 3.8.2 has been ap-
plied to the measured TVFRs of the real-world channels (see Appendix A). Since
SISO wideband channels are considered in this section, only data obtained from
a single pair of transmitting-receiving antennas have been used to determine the
parameters of the channel simulators. The results illustrating the performance of
the designed channel simulators are presented below.

The normalized residual approximation error norm ||R,..,, | #/|| R/ versus the

|
Tes

number of components L in (3.59) is shown for the designed Zhannel simulators in
Figs. 3.26-3.29. The dashed line in the figures signifies the 5% normalized error
norm. Clearly, the resulting normalized error norm for all four channel simulators
is below this value. For comparison reasons, Figs. 3.26-3.29 also demonstrate the
corresponding normalized residual approximation error norms for the truncated

discrete KLEs calculated according to (3.47).
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Figure 3.26: The normalized residual approximation error norm versus the num-
ber of components L for (a) the SISO wideband channel simulator
and (b) the truncated discrete KLE (micro cell site — regular street
geometry).

The estimated TACFs 7[¢] and FACFs 7 [x] of the four real-world channels
and the TACFs r.[t] and FACFs r[x] of the corresponding channel simulators are
depicted in Figs. 3.30-3.33. As can be seen from the figures, noticeable discrepan-
cies exist between the TACFs 7[c] and 4[] at ¢ = 0 as well as between the FACFs
7p/[k] and 7p/[K] at & = 0 corresponding to the regular street and the passageway
propagation scenarios (cf. the results presented in Figs. 3.3, 3.7, 3.11, 3.15).
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Figure 3.27: The normalized residual approximation error norm versus the num-
ber of components L for (a) the SISO wideband channel simulator
and (b) the truncated discrete KLE (micro cell site — open market

place).
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Figure 3.28: The normalized residual approximation error norm versus the num-
ber of components L for (a) the SISO wideband channel simulator
and (b) the truncated discrete KLE (micro/pico cell site — passage-

way).

Figures 3.34-3.37 depict the envelope PDFs calculated by using (3.60) in case
of the complex weighting coefficients U; having the constant magnitudes =; = 1,
Il =1,...,L (see Subsection 3.2.1). As expected, the envelope PDFs calculated
by using (3.60) match the Rayleigh PDFs. Figs. 3.34-3.37 also demonstrate the
empirical envelope PDFs p| m(x) of the real-world channels.
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Figure 3.29: The normalized residual approximation error norm versus the num-
ber of components L for (a) the SISO wideband channel simulator
and (b) the truncated discrete KLE (indoor cell site).
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Figure 3.30: (a) The TACFs and (b) the FACFs of the real-world channel and
the SISO wideband channel simulator (micro cell site — regular
street geometry).
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Figure 3.31: (a) The TACFs and (b) the FACFs of the real-world channel and
the SISO wideband channel simulator (micro cell site — open mar-

ket place).
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Figure 3.32: (a) The TACFs and (b) the FACFs of the real-world channel and
the SISO wideband channel simulator (micro/pico cell site — pas-

sageway ).
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Figure 3.33: (a) The TACFs and (b) the FACFs of the real-world channel and
the SISO wideband channel simulator (indoor cell site).

1401

Measured channel, p,;,  (z)
o Channel simulator, pjs,|(x)
- - =Rayleigh PDF

S,

1201

1001

80 4

p|hl\(1’)

601

20

0.03

Figure 3.34: The envelope PDF py () of the SISO wideband channel simulator
and the empirical PDF p;, (x) of the real-world channel (micro cell

site — regular street geometry).
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Figure 3.35: The envelope PDF pj;,|(z) of the SISO wideband channel simulator
and the empirical PDF p;, (x) of the real-world channel (micro cell
site — open market place).
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Figure 3.36: The envelope PDF py;,(z) of the SISO wideband channel simula-
tor and the empirical PDF p|,~1|(3:) of the real-world channel (mi-

cro/pico cell site — passageway).
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Figure 3.37: The envelope PDF pj,|(z) of the SISO wideband channel simulator
and the empirical PDF py;, (z) of the real-world channel (indoor cell
site).

3.9 Chapter Summary

In this chapter, we have presented a method for designing measurement-based
stochastic channel simulators for wireless time-variant communication channels.
The method is grounded on fitting the correlation properties of a channel sim-
ulation model to the corresponding correlation properties of a prototype real-
world channel. Depending on whether a channel simulator is to be designed for a
MIMO/SISO or narrowband/wideband radio channel, a combination of the tem-
poral, frequency, and spatial correlation properties is taken into consideration. It
should be mentioned that the separability of the correlation properties in time,
frequency, and space is not presumed.

The parameters of channel simulators are determined by using an iterative
algorithm developed in this chapter. As it has been demonstrated by various
examples, the proposed algorithm is able to produce acceptable results for wire-
less channels in different propagation environments. Additionally, the algorithm
exhibits resistance to the white ‘measurement’ noise component possibly present
in the estimated correlation matrix of a real-world channel. However, a serious
drawback of the proposed parameter computation algorithm is its rather high
computational complexity, especially for the case of MIMO wideband channels.

In the next chapter, we will consider a different approach to the develop-
ment of measurement-based channel simulation models for time-variant wireless

communication channels.
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Chapter 4

Two-Dimensional Autoregressive

Model for MIMO Wideband
Mobile Radio Channels

4.1 Introduction

In the previous chapter, we have considered a method for designing stochastic
simulation models for wireless channels, which is based on approximating the
correlation properties of a real-world channel. It has been demonstrated that
the method provides a close fitting between the space-time-frequency correlation
matrix R (3.11) of the simulation model (3.7) and the estimated space-time-
frequency correlation matrix R of a physical channel (see Subsection 3.4.1).

Due to the ‘quasi-stationary’ behavior of real-world channels [10], the num-
ber of samples of the measured TVFR, which are available for estimating the
space-time-frequency correlation matrix E, is always confined. It means that in
all practical situations, the correlation properties of a real-world channel can be
reliably estimated only in a finite range of the time shifts ¢+ and the frequency
shifts &, i.e., [t| < tmax and |k| < Kmax. Under these circumstances, it is then
reasonable to question if a channel simulator developed by using the method of
Chapter 3 is adequate in representing the important spectral characteristics of
a real-world channel, such as the delay and the Doppler spectrum spreads. The
answer to this question depends on several factors, which vary from one particular
scenario to another. For example, a channel simulator developed by approximat-
ing the space-time-frequency correlation matrix R can be adequate if the temporal
and the frequency correlation functions of a prototyping physical channel decay
sufficiently fast w.r.t. time shift + and frequency shift k, respectively. However,
if this assumption is not valid, other methods for designing channel simulation
models, which, perhaps, do not require estimation of the correlation properties of

6]
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a real-world channel from the measurement data, might be preferable.

In this chapter, we describe the multichannel 2D AR model for MIMO wide-
band mobile wireless channels [63|. In this model, radio channels between each of
the transmitting and the receiving antennas are represented by 2D rational trans-
fer functions. Our interest in the multichannel 2D AR model is motivated by
the high level of flexibility intrinsic to the AR models, which has been extensively
used in spectrum estimation and system identification, see, e.g. [34,64,65] and the
multiple references therein. It is also important to emphasize that the multichan-
nel 2D AR model does not presume separability of the correlation properties of a
radio channel in time, frequency, and space. Some of the previous works related
to the AR modeling and simulation of wireless communication channels can be
found, for example, in [66—68]. Spectral estimation for multiple 2D signals using
the multichannel 2D AR model is discussed in [69].

As it is shown in the following, the parameters of the multichannel 2D AR
model can be estimated from the real-world measurement data by using the well-
known Yule-Walker algorithm or, alternatively, by employing the prediction error
minimization (PEM) algorithm. None of these methods, however, guarantees the
stability of the resulting multichannel 2D AR model. Therefore, special attention
is paid to the problem of the model stability, which arises when the multichannel
2D AR model is used for synthesizing the TVFRs of wireless channels.

The utility of the multichannel 2D AR model is verified by designing channel
simulators based on the TVFRs of the real-world channels.

This chapter is organized as follows. In Section 4.2, we describe the multi-
channel 2D AR model. The model parameter estimation methods are presented
in Section 4.3. In Section 4.4, we consider the stability of the multichannel 2D AR
model. The method for synthesizing the TVFR of a channel in the delay-Doppler
domain is presented in Section 4.5. The performance of the multichannel 2D AR
model has been assessed based on the simulated MIMO channels as described in
Section 4.6. The multichannel 2D AR models developed based on the measured
TVFRs of the physical radio channels are presented in Section 4.7. Finally, the

concluding remarks are given in Section 4.8.

4.2 The Multichannel 2D Autoregressive Model

We consider a MIMO wideband wireless channel, which contains Np antennas
at the transmitter side and Ngi antennas at the receiver side. Let the matrices
H[im,n|,m=0,...,M—1andn =0,..., N—1, be the channel TVFRs generated
at discrete frequencies f], = —B/2 + mAf' € [-B/2,B/2] and at discrete time
instances t, = nAt € [0,7], n = 0,...,N —1. As in the previous chapters, we
denote the frequency bandwidth and the observation time interval as B and T,
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respectively. As before, the matrices

Hyim,n] ... Hing[m,n]
H[m,n] = : : (4.1)

HNTl[m,n] ...HNTNR[m,TL]

can be equivalently represented in the vectorized form as

Hll [m, TL]

Ho1im,n
h[m, n] = vec(H[m,n]) = 21[_ ]

HNTNR [ma n]

where h[m,n] = [hi[m,n], halm,n], ..., hn, Ny [m,n]]" and h;[m,n],
1=1,...,NpNg, is the TVFR of the i-th subchannel.

The TVFR h;[m,n| of each subchannel is a complex zero mean 2D WSS
random process (random field). Furthermore, the TVFR h[m,n] corresponds to
the multichannel 2D AR process of the form

him,n] == > Y AT[iy,igJh[m — i1, n — iy] + um,n (4.3)
[i1,i2]€S
[i1,i2]7#(0,0]
where Aliq,i9] are complex matrix coefficients of dimensions Ny Np x NpNg.
The vector sequence u[m,n] is a complex multichannel 2D white noise with the
cross-correlation matrix Ry, [k, (] defined as

Ry [k, 1] = E{u[m,nJu” [m + k,n + 1]} = P,d[k,] (4.4)

where 4§k, [] is the 2D Dirac delta function and P,, denotes the noise delay-Doppler
PSD matrix!, which is constant.

We assume that the channel model (4.3) is recursively computable (causal)
[70]. The two most commonly used support regions S that guarantee the recur-
sive computability of the TVFR h|m,n| are the finite nonsymmetric half-plane
(NSHP) and the finite quarter plane (QP) supports [64]. In the following, we
focus our attention on the multichannel 2D AR models (4.3) with the finite QP
support region Sgp defined as

Sop = {[i1,12] : 0 <41 < p1,0 <dp <o} (4.5)

!The diagonal elements of the delay-Doppler PSD matrix are the delay-Doppler spectra of
the individual sub-channels h;[m,n] (4.2) at the certain delay and Doppler frequency. The
off-diagonal elements correspond to the samples of the cross-subchannel delay-Doppler spectra.
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Figure 4.1: The support region Sgp for a multichannel 2D AR(1,2) model.

where (p1,p2) is the order of the multichannel 2D AR model, henceforth designated
AR(p1,p2). As an illustrative example, the support region Sgp for a multichannel
2D AR(1,2) model is shown in Fig. 4.1.

Using the relationship between the input PSD and the output PSD of a linear
shift-invariant (LST) multichannel 2D filter (see, e.g., [34,69]), we define the delay-
Doppler PSD Py (7', f4) of the multichannel 2D AR model as

Pu(r, fa) = H(7, fa)PHT (7, f)) A f At (4.6)
where
P1 p2 ] . , . —1
H(T', fa) = (I+ DO Alig,igle 2T AS +fmAt>) (4.7)
11 =012=0
[i1,i2]#[0,0]

and 7" and fy are the propagation delay and the Doppler frequency, respectively.
The matrix I is the identity matrix.

4.3 Estimation of the Model Parameters

Suppose that the sampled TVFR ﬁ[m, n] of a real-world MIMO channel, obtained
from a channel sounder during a measurement campaign, is a multichannel 2D
AR process.

Assume that the order (p;,p2) of the multichannel 2D AR(p1,p2) model (4.3)
has been determined (see Subsection 4.7.1). The parameters of the model, i.e.,
the matrix coefficients A[iq, i2] and the noise PSD matrix P,,, are to be estimated
from the measured TVFR fl[m,n], which is a vectorized representation of the
sampled TVFR H[m,n] defined similar to (4.2).
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R,[0,0] -+ Rp[-p1,0] -+ Ru[0,—p2] -+ Rp[—p1,—p2] ]
Ru[p1,0] -~ Ry[0,0] - Ryplpr,—pa] -+ Ru[0,—pal
IS : s s x
Rp[0,p2] -+ Rp[-pr,p] -+ Ry[0,0] -+ Ry[—p1,0]
| Rulp1,p2) -+ Ral0,p2] - Rylps,0] - R,,[0, 0]
R,
_ . ) b
AT[py,0] 0
X : = [(49)
AT[Oap2] 0
L AT[plap2] i | 0 i

4.3.1 Yule-Walker Normal Equations

The cross-correlation matrix Ry[k,¢] of the TVFR h[m,n] can be defined as
follows
Ry [k, 1] = E{h[m,n]h® [m + k,n +]}. (4.8)

Substituting (4.3), (4.4) into (4.8) and noting that the multichannel 2D AR(p1,p2)
model (4.3) is casual we obtain a system of the Yule-Walker normal equations
(4.9). The matrix coefficients A[i1, i3] and the noise delay-Doppler PSD matrix
P, that solve the normal equations (4.9) can be efficiently determined by the
method described, e.g., in [71].

In practice, the matrix Eh in (4.9) has to be estimated from the finite-sample
vector sequence fl[m, n| implying the latter is ergodic. The suitable estimator of
the matrix Eh is given by

| M-
_ - Gl
=% . vim [m,n] (4.10)

m=0

2

1>

3
I
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where

h{m,n]

fl[m —-pl,n]
vim,n] = : . (4.11)

h{m,n — p]

| him —pi,n —po] |

Note that the components of the vector v[m,n] in (4.11) with the negative indices
have to be set to zero, i.e., fl[m —p1,n —p2] = 0 for m < p; and/or n < po.

The matrix R,, (4.10) is Hermitian and positive semidefinite. In general, the
matrix coefficients Al[iq,i2] and the noise delay-Doppler PSD matrix P, cannot

be determined uniquely even if all the eigenvalues of the matrix Eh are greater
than zero. The reason is that the number of the unknown complex parameters
in (4.9) is equal to (p1p2 + p1 + p2) N2N2 and is greater than the number of the

known independent complex elements of the matrix Rh, which is (2p1p2 + p1 +
p2 + 1)N7Ng (see also [65]).

4.3.2 Prediction Error Minimization

The PEM method is based on the strong relationship existing between the AR
modeling and the linear prediction problem [65].

The linear forward predictor of h[m,n] is defined as

him,n] == YY" AT[iy, ig]h[m — i1, n — iy (4.12)
[i1,92]€Sgp
[7/177/2}#[070]
with the prediction error given by
&[m, n] = h[m,n] — hjm,n]. (4.13)
Consequently, the prediction error power matrix can be written as

> = E{&[m,n]&[m,n]}. (4.14)

For the finite-sample vector sequence h[m,n] the estimator of the matrix 3
takes the form

s = (Z + YX)H(Z + YX) (4.15)
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where the matrices Z, Y, and X are defined below

h’[M —1,N —1]
n?[M —2,N —1]

7 — (4.16)
flT[Pl’pQ]
WM —-2,N—-1] --- hT[M —p —1,N —py —1]
N hWI'[M—-3N—-1 --- hi'[M—p;—2,N—py—1
v [ | ] | [ P | p2 — 1] (4.17)
h'[py —1,po] -+ h7'[0, 0]
AT[1,0]
A2,
X = _ . (4.18)
AT py, po]

The matrix coefficients Aliy, i3] of the multichannel 2D AR(p;,p2) model can
be estimated by minimizing the sum of the estimated prediction error powers, i.e.,

{A[il, iz]}[[l;l’fjif[(?g]’ = {AI[Iilli,Iilg}} {trace (Z:])} . (4.19)

This is a linear least-squares estimation problem. The estimate of the matrix
X (4.18) that minimizes (4.19) can be written as

~

X=-YZ (4.20)

where YT is the Moore-Penrose pseudoinverse of the matrix Y [58].

The estimated noise delay-Doppler PSD matrix P, is equal to the residual
prediction error power matrix X, obtained by substituting the solution X
(4.20) into (4.15).
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4.4 Model Stability

The channel model (4.3) is stable when the following condition is fulfilled [64]

P11 P2

det | T+ > )" Alir,ig]2i'2 | #0, (4.21)

11=012=0
[ilviﬂ#[ovo]
for all {(z1,29) : |z1] < 1,|22| < 1}

where z; and z9 are complex variables.

Both, the Yule-Walker and the PEM methods, described in Section 4.3, do
not guarantee the stability of the resulting multichannel 2D AR(p1,p2) model.
Additionally, the stability test (4.22) is almost useless in practice due to the
heavy computational load.

4.4.1 State-Space Representation of the Multichannel 2D AR
Model

In the past years, a number of stability tests has been proposed for 2D recursive
filters in state-space form [72,73]. An attractive feature of the state-space repre-
sentation is that it can be extended to multichannel 2D recursive filters, i.e., to
the multichannel 2D AR(p1,p2) model (4.3).

In this section, we consider the 2D state-space model representation developed
by Roesser [74]|. The Roesser’s state-space model can be formulated as follows |70]

xp[m + 1, n] Al A xp[m, n] B, ufm, n]
Xyp[m,n + 1] Ay Ago Xyp[m, n] B, ’
hjm,n] = { C; C, } zh[zﬂ:’ﬂ + Du[m, n] (4.22)

where x;, and x, are the model state variable vectors. The model input u[m,n|
and the model output h[m,n| in (4.22) are the same processes u[m,n| and h[m, n|
as in (4.3).

The two possible candidates for the model stability test of the Roesser’s state-
space model are presented below [73].

The Roesser’s state-space model (4.22) is bounded input bounded output
(BIBO) stable if

{ A is stable (4.23)

Ago + Ao (1T — Aq1) 1A, 21| =1 s stable
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where a square matrix, e.g., Ajj, is stable if the maximum magnitude of its
eigenvalues is less than 1. The second possible group of stability criteria is defined

as
A 1
[ Al < . (4.24)
[Ag2ll2 + [[A21([2(1 = [[Asrll2) " [[Aszlla <1

where || - ||2 is equal to the largest singular value of the matrix.

The criteria in (4.23) are sufficient and necessary conditions for the BIBO
stability of the model (4.22). On the other hand, the criteria in (4.24) are sufficient
but not necessary [73]. The experimental results show that the BIBO stability
conditions (4.23) are more suitable for the stabilization procedure presented below,
in spite of the obvious computational advantages associated with the stability test
implemented according to the criteria in (4.24).

To be able to apply the stability test (4.23), the multichannel 2D AR(p1,p2)
model (4.3) has to be converted to the Roesser’s state-space representation (4.22).
The conversion between the model representations can be done in at least two
ways. As an example, the two possible realizations of a simple multichannel 2D
AR(1,1) model are presented in Fig. 4.2. The shift operators are indicated in the
flowgraphs as z; L and 2y . The state variables in x;, and x,, are assigned to the
outputs of the shift operators. The matrix coefficients Aliy,is], i1,i2 = {0,1},
are shown in Fig. 4.2 along the appropriate branches.

u[m,n] N h[m,n]
U
Y'Y X, [m,n]
f\;A[O,l] 171
) 2 u[m,n] h{m,n]
A N s
» X
z |Xalm.n] —A[1,0]
X, b nl X, [m,n] Z;] Zl’] x,[m,n]
—A[L1] 1
<A>< 2 —_ZAl.1]
—A[1,0] NP -A[L1]

(a) (b)

Figure 4.2: Two possible flowgraphs representing the multichannel 2D AR(1,1)
model.

Considering the computational load required to test the stability of the model,
it is desirable to minimize the number of state variables, i.e., the number of the
shift operators in a flowgraph. For example, the minimal state-space realization
of the model (4.22) corresponding to the multichannel 2D AR(1,1) model is shown
in Fig. 4.2 (b).
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4.4.2 Stabilization Procedure

In this subsection, we describe a procedure that can be applied to resolve the
possible instability of the multichannel 2D AR(p;,p2) model (4.3).

Step 1. Estimate the matrix coefficients A(®) [i1,72] and the noise delay-
Doppler PSD matrix 15180) either by solving the Yule-Walker normal equations
of Subsection 4.3.1 or by minimizing the sum of the estimated prediction error
powers in (4.19) (see Subsection 4.3.2).

Step 2. Calculate the matrices A1, A1, Ao1, and Aoy of the Roesser’s
state-space representation (4.22). If the BIBO stability conditions in (4.23) are
satisfied, skip the next steps.

Step 3. Formulate the minimization problem (4.19) under constrains (4.23) as
a multi-objective optimization problem that can be solved by the goal-attainment
method [75], i.e.,

i 4.25
min (4.25)

subject to

~

trace (E) —wyy < trace <PSIS,L)>

p(A11) —way <1
p(Ag2 + Agi (211 — Aqp) T A) — w3y < 1, ]2 =1

where p(-) denotes the spectral radius of a square matrix [58|, {w1, w2, w3} are
the weighting coefficients that signify the relative trade-off between the objectives,
and ~ is a scalar parameter (see, e.g, [75,76]). Note that the matrices 3 A,
Ajg, Aoy, and Agy in (4.25) are functions of the matrix coefficients Aliy,is],
[i1,12] € Sgp,[i1,12] # [0,0]. The solution to the multi-objective minimization
problem formulated in (4.25) can be found by applying the fgoalattain function
implemented in MATLAB. The estimates A(9[i;,i5] obtained at Step 1 can be
used as the initial parameter values.

Step 4. The matrix coefficients A[il,ig] obtained in Step 3 are substituted
into (4.19) to get the estimate of the matrix X. Finally, the estimate of the noise
delay-Doppler PSD matrix P, is equal to the residual prediction error power
matrix Ty, calculated by substituting the matrix X into (4.15) (see Section 4.3).

A note regarding Step 2 and Step 3 of the algorithm described above is re-
quired. For the second stability criterion in (4.23) the largest magnitude eigen-
value of the corresponding matrix has to be calculated at the infinite number of
points z1 along the unit circle, |z1| = 1. The conducted simulations suggest that a
limited number of points z; is sufficient to check the stability of the multichannel
2D AR(p1,p2) model.
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4.5 Synthesis of the Time-Variant Frequency Response
in the Delay-Doppler Domain

Channel simulators based on the 2D AR(p1,p2) model represented in the form of
(4.3) or in the state-space form (4.22) allow recursive computation of the TVFR
hm,n]. Although computationally efficient, the model representations (4.3) and
(4.22) require stability of the multichannel 2D AR(p;,p2) model. If the multi-
channel 2D AR(pi1,p2) model is unstable, the stabilization procedure presented
in Subsection 4.4.2 can be applied. However, the computational load associated
with Step 3 of the stabilization algorithm quickly increases as the order (p1,p2) of
the model grows.

On the other hand, the lack of guaranteed stability of the multichannel 2D
AR(p1,p2) is not a serious drawback for estimating the delay-Doppler PSD P, (7', f4)
of a radio channel (see, e.g., the discussions in [65, Chapter 3| and [64, Chapter
15]). This observation underlies the method for generating the TVFR h[m,n] in
the delay-Doppler domain presented below.

Let a complex zero-mean multichannel 2D white noise w[m,n], with the con-
stant delay-Doppler PSD P, (7', f4) = I, be an input to the LSI shaping filter
represented by its delay-Doppler transfer function W(7/, f;), which is a matrix of
dimensions N7 Nr x N7 Ng at every propagation delay 7/ and Doppler frequency
fa-

The delay-Doppler PSD P, (7, fq) of the signal y[m,n] at the output of the
filter is given by (cf. (4.6))

P, (7, f1) = O (7, fo) PO (7 fq) = (7, f)®H (7', f4). (4.26)

Assuming that ¥ (7', fy) = P}L/Z(T/,fd), where the square root of the delay-
Doppler PSD matrix Py (7', f4) (4.6) is obtained by applying the singular value
decomposition? (SVD) [58], the delay-Doppler PSD of the signal at the output of
the filter P, (7', f4) (4.26) is equal to P (7', fq).

A practical approach to generating the TVFR h[m,n] of a wireless channel is
by implementing the shaping filter in the delay-Doppler domain as follows

Mol e 1 N AN
hlm.n} = kz_(”_z;m [MAf’NAtPh <MAf”NAt>}

k l . m , In
g W(Wm) 2SR (4.27)

where the discrete Fourier transform (DFT) W (ﬁf” ﬁ) of the noise signal

*Recall that the delay-Doppler PSD matrix Pp, (7', f4) (4.6) is Hermitian.
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w[m,n| at the discrete delays ﬁf” k=0,...,M—1, and at the discrete Doppler
frequencies NLAw l=—-N/2,...,N/2, is given by

W < P ) - MiNiW[m nje 92+ R) (4.28)
MNAf’ NAt)  MN e ’ ‘ '

By construction, the TVFR h[m,n] in (4.27) is a complex multichannel 2D
random process with the delay-Doppler PSD approximating the desired Py, (7, f4)
given by (4.6). Note that the TVFR h[m, n] generated according to (4.27) is peri-
odic w.r.t. frequency f’ and time ¢ with the periods M A f’ and N /At, respectively.

The agreement between the delay-Doppler PSD of the random process h[m, n]
(4.27) and the desired delay-Doppler PSD Py (7', f;) can be improved by substi-
tuting W (ﬁf” ﬁ) — /9% into (4.27) instead of (4.28). The vectors @[k, ],
k=0,....M—1and l = —N/2,...,N/2, consist of realizations of the i.i.d.
random variables, each having the uniform distribution on the interval [0, 27). If
M and N are sufficiently large, then the distribution of the TVFR h[m,n]| ap-
proaches the complex Gaussian multivariate distribution due to the central limit
theorem (CLT) [28].

In practice, the delay-Doppler PSD P (7, f;) is unknown. Therefore, an
estimate f’h(T’ , fa), obtained by substituting the estimated matrix coefficients

{A[il’i2]}[i1,i2}€SQP, and the noise delay-Doppler PSD P, (see Section 4.3) into

[i17i2}7£[070]
(4.6), is used in lieu of the delay-Doppler PSD Py (7', f4) in (4.27).

4.6 Simulation Results

In this section, we present two examples that illustrate the performance of the
multichannel 2D AR models employed as channel simulators. In each of the ex-
amples, the role of the measured 2 x 2 MIMO channel is played by a channel
simulator with known parameter values, in the following referred to as the pro-
totype model. The task is to estimate the parameters of the multichannel 2D
AR(p1,p2) model (4.3), the target model, from the TVFR fl[m,n] synthesized by
using the prototype model.

In the first example, the prototype model is the multichannel 2D AR(2,2)
model. The parameters of the target multichannel 2D AR(2,2) model, i.e., the
matrix coefficients Ali, i3] and the noise delay-Doppler PSD matrix P, have
been estimated from a training TVFR sequence fl[m,n], 1 <m <193, 1<
n < 100, by employing the PEM and the YW methods (see Section 4.3). The
BIBO stability test (4.23) shows that both target multichannel 2D AR(2,2) models
resulting from applying the PEM and the YW parameter estimation methods are
stable.
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To evaluate the performance of the target multichannel 2D AR(2,2) models,
the test TVFRs h[m,n] have been generated using the resulting target models.
Another test TVFR. h[m,n], of the same length as h[m,n], has been obtained
using the prototype model. The TCCFs 7y, . [], 41,42 = 1,..., N7 Ng, and the
FCCFs 7 I [k], of the target multichannel 2D AR(2,2) models are estimated from

the test TVFRs h{m,n]. Similarly, the TCCFs 7%% i, [t] and the FCCFs f:'fg [k] of
’ 11,02

the prototype model are estimated from the test TVFR fl[m, n]. Some estimated
TCCFs and FCCFs of the target models and of the prototype model are shown in
Fig. 4.3.

As can be seen in Fig. 4.3, the selected TCCFs and the FCCFs of the target
multichannel 2D AR(2,2) models approximate well their respective counterparts
of the prototype model. Similar results are observed for other estimated temporal
and frequency cross-correlation functions. Additionally, the results presented for
the target model obtained by applying the PEM parameter estimation method
are very close to those corresponding to the target model obtained by using the
YW algorithm.

The prototype model in the second example, is a channel simulator based on
the double-directional channel model [5]. In the double-directional model the wire-
less propagation channel is represented by a set of L complex exponents (multipath
components). Each of these complex exponents is characterized by the complex
amplitude, Doppler frequency, propagation delay, direction-of-arrival, direction-
of-departure, and, possibly, polarization matrix. In our double-directional model,
the transmitter is stationary and the receiver is moving. The transmitter and
the receiver are equipped with linear antenna arrays. Each of the antenna arrays
consists of two (Np = Nr = 2) omnidirectional single-polarization antenna ele-
ments separated by a half wavelength distance. The radio waves propagate in the
azimuthal plane. Several other parameters are specified below:

e Number of multipath components: L = 530;

Time interval between snapshots: At = 10 ms;

Signal carrier frequency: f. = 5.2 GHz;

Interval between frequencies: Af’ = 3.125 - 10° Hz;

e Frequency bandwidth: B = 60 MHz;

o Measurement noise SNR: 20 dB.

The multipath components of the prototype model in the delay-Doppler plane
are shown in Fig. 4.4. Note that this example represents an extreme case in a
sense that the delay-Doppler PSD of the TVFR synthesized using the prototype
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Figure 4.3: The TCCFs and FCCFs of the prototype multichannel 2D AR(2,2)
model and of the target multichannel 2D AR(2,2) model (example
1).
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model is discrete, while the target multichannel 2D AR(p;,p2) model implies a
continuous delay-Doppler PSD.

0.08

0.06

Magnitude

30

10

Delay, 7' (us) 0 -20 Doppler frequency, fy
Figure 4.4: The multipath components (example 2).

Again, as in the first example, the training TVFR h[m,n], 1 <m < 193,1 <
n < 100, has been generated using the prototype model and supplied to the
PEM to estimate the parameters Ali1,is] and P, of the target multichannel 2D
AR(p1,p2) model. In this case, the parameters of the multichannel 2D AR(1,1),
AR(3,3), AR(5,5), and AR(10,10) models have been estimated. All of the target
models have been stabilized using the procedure described in Subsection 4.4.2.

The TCCFs ftiNQ [t], i1, = 1,...,NprNg, of the resulting target models
and the TCCFs ry, , [1] of the prototype model have been estimated from the
generated test sequences h[m,n] and h[m, n], respectively. Similarly, the FCCFs
ffi/m [k] of the resulting target models and the FCCFs f:'fi/m [k] of the original
model have been estimated from the corresponding test sequences. In Fig. 4.5,
we demonstrate the estimated TCCFs and FCCFs for several subchannels of the
resulting (stabilized) target models and of the prototype model. The TCCFs
and FCCFs of the target models rather poorly approximate the corresponding
correlation functions of the prototype model as compared to the results presented
in Fig. 4.3.
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Figure 4.5: The TCCFs and FCCFs of the prototype model and of the target

models (example 2).
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The effect of applying the stabilization procedure to the target multichannel
2D AR(10,10) model can be observed in Fig. 4.6 where we depict the delay-
Doppler PSD (for the first subchannel) before and after stabilization. The delay-
Doppler PSDs of the target models have been calculated using (4.6). Note the
presence of multiple spurious peaks in the delay-Doppler PSD, which are partic-
ularly noticeable in Fig. 4.6 (b).

Power spectral density (dB)
Power spectral density (dB)

Delay, 7' (us) 0 -50 Doppler frequency, fq (Hz) Delay, 7" (s) 0 =80 Doppler frequency, fa (Hz)

(a) (b)

Figure 4.6: The delay-Doppler PSD of the target multichannel 2D AR(10,10)

model (a) before stabilization and (b) after stabilization (example
2).

4.7 Application to Measurement Data

In this section, we develop several multichannel 2D AR(p;,p2) models based on
real-world measurement data. The description of the measurement sites and the
measurement equipment can be found in Appendix A.

The parameters of all multichannel 2D AR(p1,p2) models presented below have
been estimated from the measurement data by using the PEM algorithm described
in Subsection 4.3.2. Empirically, it has been observed that the PEM algorithm is
preferable for estimating the parameters of the multichannel 2D AR(p1,p2) models
as compared to the YW method (see Subsection 4.3.1). As this observation is in
a agreement with the results available in the literature for the case of 1D AR
models (see, e.g., [64]), we do not provide the details related to the performance

of the multichannel 2D AR(p1,p2) models developed by using the YW parameter
estimation method.
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4.7.1 Model Order Selection

The development of the multichannel 2D AR(pq,p2) model starts with selecting
an appropriate order (py,p2) of the model. A number of methods for model order
selection has been proposed in the literature (see, e.g., [34,36,77,78]). In this
work, we use the well-known cross-validation method [36,77]. This choice is
motivated by the fact that the cross-validation method does not rely on any a
priory information or analytical analysis of the measurement data.

For comparison reasons, we also assess the order of the multichannel 2D
AR(p1,p2) model by using the following rule. A realization of the channel TVFR
h{m,n] is generated by using a candidate multichannel 2D AR(p;,p2) model.
The parameters P, and A[il,ig], 0 < i1 < p1,0 < 9 < po, of the candidate
model are estimated from the measured TVFR h[m,n] of a real-world channel
by employing the PEM algorithm. The correlation matrix E, estimated from the
synthesized TVFR h[m,n| as described in Subsection 3.4.1, is compared to the
correlation matrix E estimated similarly from the measured TVFR. h[m,n]. The
comparison is done in terms of the normalized approximation error norm defined
as |R — R||r/||R||r. Finally, a candidate model, which provides the smallest
normalized error norm, is chosen. In the following, this rule will be referred to
as the correlation matrix fitting (CMF) rule. Note that the CMF rule represents
an intuitive way of choosing the order of the multichannel 2D AR(p1,p2) model,
according to the problem formulation given in Section 3.3.

It should be mentioned that in all examples presented below, we have consid-
ered the candidate multichannel 2D AR(p1,p2) models in the range 1 < p; < 15,
1<ps <6.

4.7.2 Micro Cell Site — Regular Street Geometry

For the measured TVFR of the channel considered in this subsection, the cross-
validation method and the CMF rule yield as the best candidate, respectively, the
multichannel 2D AR(6,1) and AR(9,5) models. The stability test (4.23) shows
that the multichannel 2D AR(9,5) model is unstable. Hence, the four-step proce-
dure described in Subsection 4.4.2 has been applied to stabilize the model.

In Fig. 4.7, several estimated TCCFs ?tilh [t] and FCCFs ?fi/l@ [k], extracted

from the correlation matrix E of the measured channel (see Subsection 3.4.1),
are presented. In the same figure, we also show the corresponding estimates
of the TCCFs 7, , [¢] and the FCCFs ffi/l,ig [k], 41,42 = 1,..., NpNpg, for the
multichannel 2D AR(6,1) and AR(9,5) models. Note that the approximate 95%
confidence intervals depicted in Fig. 4.7 are related to the TCCFs f:'th@ [¢] and
FCCFs Ff{N'Q [k] estimated from the real-world measurement data. The results
presented in Fig. 4.7 can be compared to the results in Fig. 3.3.
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Figure 4.7: Examples of the estimated TCCFs and FCCFs of the physical chan-
nel and the corresponding TCCFs and FCCFs of the multichannel
2D AR(p1,p2) models (micro cell site — regular street geometry).
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It follows from Fig. 4.7 that the multichannel 2D AR(9,5) model better ap-
proximates the temporal correlation characteristics of the real-world prototype
channel than the 2D AR(6,1) model.

The estimated delay-Doppler PSDs Ph(T/, fa) of the 2D AR(6,1) and the 2D
AR(9,5) models are depicted in Fig. 4.8.

Power spectral density (dB)
Power spectral density (dB)

5

Delay, 7/ - -
elay, 7" (ks) 2 -10 Doppler frequency, fz (Hz) Delay, 7' (us) 2 -10 Doppler frequency, f4 (Hz)

(a) (b)

Figure 4.8: The delay-Doppler PSD P, (7', f4) of the (a) 2D AR(6,1) model;
(b) 2D AR(9,5) (micro cell site — regular street geometry).

The estimated Doppler PSDs P, s,(fa) of the multichannel 2D AR(6,1) and

AR(9,5) models are shown in Fig. 4.9 together with the Doppler PSD thd(fd)
estimated from the measured TVFR Bl,l[m,n]. The estimate of the Doppler

PSD ﬁh 54 (f4) has been obtained by using the averaged periodogram method (see,
e.g., [64]). To reduce the bias in the estimated Doppler PSD, we have tapered the
measured TVFR hy 1[m,n] in the time domain with the Hanning window [79].
Similarly, the estimated delay PSDs P’w (7") of the multichannel 2D AR(6,1) and

~

AR(9,5) models as well as the delay PSD ]E’hT, (7') estimated from the measured
TVFR hy 1[m,n] are presented in Fig. 4.10. Since the variances of the estimated
Doppler PSD ]gh ;,(fa) and the delay PSD ]é’hT, (') are rather small, the corre-
sponding confidence intervals are not shown in Figs. 4.9 and 4.10.

From Fig. 4.9, it appears that the order of the AR(6,1) model w.r.t. time is
underestimated, which results in the oversmoothed Doppler PSD. As the main
reason for an underestimated order of the multichannel 2D AR model selected by
the cross-validation method (see Subsection 4.7.1), we consider a small number
N of the available channel TVFR snapshots (IV < 20 for the examples presented
in this and the following two subsections).

It is of interest to analyze the results presented in Fig. 4.9 in terms of the first
two spectral moments, i.e., the estimated average Doppler shift and the estimated
Doppler spread. The estimated average Doppler shift ﬁ’fd and the estimated
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Figure 4.9: The Doppler PSDs for the multichannel 2D AR(p1,p2) models and
the measured channel (micro cell site — regular street geometry).
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Figure 4.10: The delay PSDs for the multichannel 2D AR(p;,p2) models and
the measured channel (micro cell site — regular street geometry).

Doppler spread 3f , of a measured channel are defined, respectively, as

. ffdma" fded (fa)dfa

fify = (4.29)
[ By (fa)dfs
and
fdmax 2 2
2 f f fded(fd)dfd N
o, = o — (g% (4.30)

ffdmax Pfd (fa)dfa

where fg . is given by fg . = 1/(2At) and At denotes the interval between
the channel snapshots. Of cause in practice, the integrals in (4.29),(4.30) have
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to be approximated with the finite sums. The average Doppler shift ji;, and the
Doppler spread 6, of the estimated Doppler PSD b, 54 (fq) of the multichannel
2D AR(p1,p2) model are defined in a similar way.

By analogy, the results presented in Fig. 4.10 can be analyzed in terms of
the estimated average delay shift and the estimated delay spread. The estimated
average delay shift ﬁ.r/ and the estimated delay spread &, of a measured real-world
channel are given by

. f:},‘b T’ﬁT/ (r")dr'
[y = —2 4.31
fir " B (e (4.31)
T
and
R f:,ub 2P (") dr! R
&T’ = lt;_/b z , , _(ﬂT,)2 (432)
f—Tl’b PT/(T )dT

respectively. The average delay shift fi,» and the delay spread 6, of the estimated
delay PSD PhT, (7') of the multichannel 2D AR(p1,p2) model are defined similarly.
The limits of the integrals 7, and 7, in (4.31),(4.32) correspond to the —20 dB
noise threshold as referred to the maximum of the estimated delay PSD fth/ (7))
[2]. The integrals in (4.31),(4.32) are approximated with the finite sums.

The estimated spectral moments of the multichannel 2D AR(6,1) and AR(9,5)
models as well as the spectral moments obtained from the estimated single-
dimensional PSDs P, ;,(fa) and PhT, (7") of the measured channel are collected
in Table 4.1. Additionally, we have also included in Table 4.1 the results obtained
for the channel simulator based on the model (3.7), which has been developed
in Subsection 3.6.1 by using the design method of Subsection 3.4.2. The confi-
dence intervals for the spectral moments estimated from the measurement data
are specified in brackets.

Table 4.1: Spectral moments (micro cell site — regular street geometry).

Measured 2D AR(6,1) | 2D AR(9,5) Channel
channel simulator (3.7)
Doppler shift, 0.51 0.95 0.85 0.66
wr, (Hz) [0.47,0.54]
Squared Doppler 14.72 15.52 14.76 14.55
spread, o7 (Hz*) | [14.58,14.85]
Delay shift, 2.709 2.708 2.714 2.705
o (ps) [2.707,2.710]
Squared delay 0.0037 0.0027 0.0029 0.0022
spread, o2, (us?) | [0.0035,0.0039]

The (squared) Doppler and delay spreads represent the main interest for us.
As it follows from Table 4.1, the squared delay and Doppler spreads of the multi-
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channel 2D AR(9,5) model are somewhat closer, as compared to other considered
channel simulators, to the squared delay and Doppler spreads of the measured
channel.

Note that the specified confidence intervals for the estimated spectral mo-
ments of the measured channel, although useful for indicating the variability of
the corresponding parameters, are not sufficient for determining if the differences
between the spectral moments of the channel simulation models and the spectral
moments of the measured channel are significant. For example, the estimated
squared delay spread is equal to 0.0042 us? or 0.0035 us? when the Blackman or
Hamming window [79], respectively, is used for estimating the delay spectral mo-
ments from the measurement data. Both these values are outside the confidence
interval [0.0035,0.0039] s given in Table 4.1.

In Fig. 4.11, the CDFs of the instantaneous channel capacity (mutual informa-
tion) C[n] (3.48) of the measured channel and of the channels generated by using
the multichannel 2D AR(6,1) and 2D AR(9,5) models? are presented. Clearly, the
capacity CDFs of the multichannel 2D AR models are slightly biased towards the
higher capacity values. The estimated mean pc values and standard deviations
oc of the capacity for the multichannel 2D AR(6,1) model, 2D AR(6,1) model,
and the measured channel are given in Table 4.2.

Table 4.2: Estimated mean and standard deviation of the capacity (micro cell
site — regular street geometry).

Measured | 2D AR(6,1) | 2D AR(9,5)
channel
Mean, puc (bps/Hz) 7.25 7.58 7.7
Standard deviation, o¢ (bps/Hz) 0.81 0.8 0.82

The capacity CDFs in Fig. 4.11 can be compared to the capacity CDF for the
channel simulator (3.7) demonstrated in Fig. 3.5

3In the following, we refer to the instantaneous capacity of channels synthesized by a multi-
channel 2D AR(p1,p2) model simply as the capacity of the multichannel 2D AR(p1,p2) model.
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Figure 4.11: Capacity CDFs of the multichannel 2D AR(p1,p2) models and of
the measured channel for an SNR p = 20 dB (micro cell site —
regular street geometry).

4.7.3 Micro Cell Site — Open Market Place

The results of applying the cross-validation method and the CMF rule (see Subsec-
tion 4.7.1) suggest that the multichannel 2D AR(6,1) model (the cross-validation
method) and the AR(6,2) model (the CMF rule) are the best candidates. The
stability test (4.23) demonstrates that both the multichannel 2D AR(6,1) and
AR(6,2) models are BIBO stable.

Examples of the estimated TCCFs 7, , [1] and FCCFs # T [k] of the multi-
channel 2D AR(6,1) and AR(6,2) models are depicted in Fig 4.12 together with
their respective counterparts ,ﬁtilviQ [t] and ;f{ . [k] of the measured channel. As
can be seen from the graphs presented in Fig 4.12, some improvement in the
approximation of the TCCFs ?tiLQ [t] can be observed for the multichannel 2D
AR(6,2) model compared to the AR(6,1) model, although, at the expense of wors-
ening the agreement between the estimated FCCFs. Figure 4.12 can be compared
with the corresponding results presented in Figure 3.7.

The estimated delay-Doppler PSDs Ph(T’,fd) of the 2D AR(6,1) and 2D
AR(6,2) models are depicted in Fig 4.13. The spectral characteristics of the mul-
tichannel 2D AR(6,1) and 2D AR(6,2) models are further compared in Figs. 4.14
and 4.15, where the estimated Doppler and delay PSDs are shown, respectively.



Chapter 4 99

o X 10
—6— Measured channel, 7+, , [1] 2X 10°
\ —%—2D AR(6,1) model, 7, , [¢] —e— Measured channel, ;:f{ K]
M| R ,
81- \ ——2D AR(6,2) model, 7, , [1] % \“ —%-2D AR(6,1) model, 7y, , [
; 8 1 X ——2D AR(6,2) model, 7y,  [x]
Al
g Li 95% confidence interval
E =
> <
2 2
E :
< =
0 : * ‘ : :
0 01 02 03 04 o 1_ 2 3 4 5 6
Time lag, ¢ (s Frequency lag, x (MHz
g
(a) (b)
X 10°
—6— Measured channel, 7, , 1] oX 10°
‘\ —#—2D AR(6,1) model, 7, , [1] —o— Measured channel, %fg’ ) (K]
5 . —0—2D AR(6,2) model, 7, , [1] | ' -
ot % ' ——2D AR(6,1) model, 1, [K]
% ot ~6-2D AR(6,2) model, 7, [x]
o
E 2
g 95% confidence interval =
() A §
= , g
2 ) £
Zost "W/ Tteeio----T So
= =
0 : ¥ \ : ‘ ‘ ‘ ‘ ‘
0 01 02 0.3 0.4 0 1 2 3 4 5 6
Time lag, ¢ (s) Frequency lag, x (MHz)
(c) (d)
X 10°
- -5
—6— Measured channel, 7, ,[¢] 2X 10
—%—2D AR(6,1) model, 7, ,[¢] —e—Measured channel, %,«; L[]
1. ‘\‘ 0-2D AR(6,2) model, 7y, ,[] \ —%—2D AR(6,1) model, 7, [x]

——2D AR(6,2) model, 7y, , [x]

95% confidence interval

95% confidence interval

Absolute value of TCCF

Absolute value of FCCF
o
'q-n =

0 0.1 0.2 0.3 0.4 o 1_2 3 a4 s
Time lag, ¢ (s) Frequency lag, x (MHz)

(e) (f)

Figure 4.12: Examples of the estimated TCCFs and FCCFs of the physical chan-
nel and the corresponding TCCFs and FCCFs of the multichannel
2D AR(p1,p2) models (micro cell site — open market place).
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Figure 4.13: The delay-Doppler PSD P, (7', f4) of the (a) 2D AR(6,1) model
and (b) 2D AR(6,2) (micro cell site — open market place).
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Figure 4.14: The Doppler PSDs for the multichannel 2D AR(p1,p2) models and
the measured channel (micro cell site — open market place).

As in the previous subsection, we have collected the estimated first and sec-
ond order spectral moments for the measured channel and the 2D AR models
in Table 4.3. As it can be seen from Table 4.3, the squared Doppler spread of
the channel simulator based on the model (3.7), which has been developed in
Subsection 3.6.2, is a bit closer to the squared Doppler spread of the measured
channel as compared to the results provided by the multichannel 2D AR models.
However, the squared delay spread of the multichannel 2D AR models is closer to
the squared delay spread of the estimated delay PSD ZShT/ (7'). Consistent with
Figs. 4.14 and 4.15, the differences between the estimated spectral moments of
the multichannel 2D AR(6,1) and 2D AR(6,2) models are rather small.

The CDFs of the instantaneous channel capacity C[n] (3.48) of the measured
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Table 4.3: Spectral moments (micro cell site — open market place).
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The delay PSDs for the multichannel 2D AR(pj,p2) models and

Measured | 2D AR(6,1) | 2D AR(6,2) Channel
channel simulator (3.7)
Doppler shift, 1.106 —0.11 0.19 0.02
15, (Hz) [1.05,1.16]
Squared Doppler 24.5 21.7 22.47 23.87
spread, 0% (Hz?) | [24.36,24.64]
Delay shift, 0.71 0.707 0.68 0.704
prr (s) [0.706,0.722]
Squared delay 0.053 0.051 0.054 0.048
spread, o2, (us?) | [0.051,0.055]

channel and of the multichannel 2D AR(6,1) and 2D AR(6,2) models are demon-
strated in Fig. 4.16. Clearly, the CDF curves are in good agreement. The mean

values pc and the standard deviations o¢ of the capacity for the multichannel
2D AR models and the measured channel are presented in Table 4.4.

Table 4.4: Estimated mean and standard deviation of the capacity (micro cell
site — open market place).

Measured | 2D AR(6,1) | 2D AR(9,5)
channel
Mean, puc (bps/Hz) 8.63 8.73 8.75
Standard deviation, o¢ (bps/Hz) 1.32 1 1.03

The capacity CDFs of the multichannel 2D AR(6,1) and 2D AR(6,2) models
in Fig. 4.16 can be compared with the capacity CDF of the channel simulator
based on the model (3.7) presented in Fig. 3.9.
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Figure 4.16: Capacity CDFs for the multichannel 2D AR(p;,p2) models and the
measured channel for an SNR p = 20 dB (micro cell site — open
market place).

4.7.4 Micro/Pico Cell Site — Passageway

As before, we start with selecting an appropriate order of the multichannel 2D
AR(p1,p2) model. Again, for this purpose we employ two approaches: the cross-
validation method and the CMF rule described in Subsection 4.7.1. The two
methods yield two different best candidate models, which are the multichannel 2D
AR(5,1) model (according to the cross-validation method) and the multichannel
2D AR(10,4) model (the CNF rule). Both these models are BIBO stable according
to the results obtained by using the stability test (4.23).

In Fig. 4.17, the examples of the TCCFs ?tiLQ [t] and FCCFs 7’:'fi/1’i2 [K], esti-
mated from the measured TVFR of the real-world channel, are depicted together
with the estimated TCCFs 7, , [¢] and FCCFs rf/ [n] of the multichannel 2D
AR(5,1) and AR(10,4) models The estimated TCCOFs 7 Pt;, i, [¢] of the multichannel
2D AR(5,1) model decay faster than the corresponding estlmated TCCFs ﬁtilviQ [¢]
of the measured channel and the estimated TCCFs 7, . [¢] of the multichannel
2D AR(10,4) model.
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Figure 4.17: Examples of the estimated TCCFs and FCCFs of the physical chan-
nel and the corresponding TCCFs and FCCFs of the multichannel
2D AR(p1,p2) models (micro/pico cell site — passageway).
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As it can also be seen from Fig. 4.17, increasing the order of the model from
(5,1) to (10,4) does not remove the discrepancy between the estimated FCCFs
r s [k] of the measured channel and the estimated FCCFs 7 I [s] of the mul-
tichannel 2D AR models. The estimated TCCFs 7, . [¢] and FCCFs ffi/l,ig [k] of
the multichannel 2D AR(5,1) and AR(10,4) models presented in Fig. 4.17 can be
compared to the corresponding correlation functions in Fig. 3.11.

The estimated 2D delay-Doppler PSDs Ph(T',fd) of the 2D AR(5,1) and
2D AR(10,4) models are depicted in Fig 4.18. Correspondingly, the estimated

Doppler PSDs thd (fq4) and the delay PSDs ]ShT/ (7') of the multichannel 2D
AR models are shown together with the Doppler PSD P, . (fq) and the delay

PSD ]E’hT, (7') of the measured channel, estimated from the TVFR iLl,l[m,n], in
Figs. 4.19 and 4.20, respectively. Clearly, the order of the multichannel 2D
AR(5,1) model is underestimated w.r.t. time (see the comment in Subsection 4.7.2
regarding the results presented in Fig. 4.9).
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Figure 4.18: The delay-Doppler PSD P, (7', f4) of the (a) 2D AR(5,1) model
and (b) 2D AR(10,4) (micro/pico cell site — passageway).

We further analyze the results depicted in Figs. 4.19 and 4.20 in terms of
the first and second order spectral moments presented in Table 4.5. Clearly, the
estimated spectral moments of the multichannel 2D AR(10,4) model are closer to
the corresponding spectral moments of the measured channel, compared to the
spectral moments obtained for the 2D AR(5,1) model and the channel simulator
based on the model (3.7). Asin the previous subsections, the squared delay spread
of the channel simulation model (3.7) is smaller than the analogues characteristic
of the measured channel and the multichannel 2D AR models. Also note that
in spite of the poor agreement between the Doppler PSD B, i (fq) of the 2D

AR(5,1) model and the estimated Doppler PSD P, i (fa) of the measured channel
in Fig. 4.19, the Doppler spectrum moments of the AR(5,1) model are rather close
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Figure 4.19: The Doppler PSDs for the multichannel 2D AR(p1,p2) models and
the measured channel (micro/pico cell site — passageway).
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Figure 4.20: The delay PSDs for the multichannel 2D AR(p;,p2) models and
the measured channel (micro/pico cell site — passageway).

to the estimated average Doppler shift and the Doppler spread of the measured
channel.

The CDFs of the instantaneous channel capacity (3.48) of the multichannel
2D AR(5,1) and 2D AR(10,4) models as well as the instantaneous capacity CDF
of the measured channel are shown in Fig. 4.21. The results presented in Fig. 4.21
are comparable to those obtained for the channel simulator developed in Subsec-
tion 3.6.3 and depicted in Fig. 3.13. The estimated mean values and the standard
deviations of the capacity for the 2D AR(5,1), 2D AR(10,4), and the measured
channel are shown in Table 4.6.
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Table 4.5: Spectral moments (micro/pico cell site — passageway).

Measured 2D AR(5,1) | 2D AR(10,4) Channel
channel simulator (3.7)
Doppler shift, ~0.275 ~0.47 ~0.29 ~0.63
1y, (Hz) [—0.315, —0.24]
Squared Doppler 16 16.82 15.8 15.23
spread, o (Hz*) | [15.88,16.15]
Delay shift, 2.57 2.56 2.55 2.55
e (ps) [2.564,2.57]
Squared delay 0.022 0.019 0.018 0.013
spread, o2, (us?) [0.021,0.023]

Table 4.6: Estimated mean and standard deviation of the capacity (micro/pico
cell site — passageway).

Measured | 2D AR(6,1) | 2D AR(9,5)
channel
Mean, puc (bps/Hz) 8.45 8.7 8.7
Standard deviation, o¢ (bps/Hz) 1.16 0.825 0.79
1.4¢ 1.4¢

—— Measured channel —— Measured channel
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Figure 4.21: Capacity CDFs of the multichannel 2D AR(p1,p2) models and the
measured channel for an SNR p = 20 dB (micro/pico cell site —
passageway).

4.7.5 Indoor Cell Site

For the real-world channel considered in this subsection, the multichannel 2D
AR(5,3) and the 2D AR(15,3) models have been chosen based on the results
provided by the cross-validation method and the CMF rule (Subsection 4.7.1),
respectively. Both models are BIBO stable according to the stability test (4.23).
In Fig. 4.22, several TCCFs ﬁtil,ig [t] and FCCFs ﬁf{l,iQ [k], estimated from the
measurement data, as well as the corresponding estimated TCCFs 7, [¢] and
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Figure 4.22: Examples of the estimated TCCFs and FCCFs of the physical chan-
nel and the corresponding TCCFs and FCCFs of the multichannel

2D AR(p1,p2) models (indoor cell site).
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the FCCFs ffill,ig [] of the multichannel 2D AR(5,3) and 2D AR(15,3) models
are depicted. It can be observed that while the increase in the model order from
(5,3) to (15,3) improves the agreement between the FCCFs 7 Foas [£] and 7 I (K],
it worsens the fitting between the estimated TCCFs of the multichannel 2D AR
models and the estimated TCCFs of the measured channel. The results presented
in Fig. 4.22 can be compared to the results shown in Fig. 3.15

The estimated 2D delay-Doppler PSDs Ph(T’, fa) of the 2D AR(5,3) and 2D
AR(15,3) models are demonstrated in Fig 4.23. The estimated single-dimensional
Doppler PSDs and the delay PSDs are shown in Figs. 4.19 and 4.20, respectively,
for the multichannel 2D AR(5,3) and AR(15,3) models as well as the correspond-
ing single-dimensional PSDs estimated from the measured TVFR.

Power spectral density (dB)
Power spectral density (dB)

5 , 5
Delay, 7 (us) 1 -10 Doppler frequency, f4 (Hz) Delay, 7 (us) 0 -10 Doppler frequency, fa (Hz)

(a) (b)

Figure 4.23: The delay-Doppler PSD Py, (7', f4) of the (a) 2D AR(5,1) model;
(b) 2D AR(10,4) (indoor cell site).
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Figure 4.24: The Doppler PSDs for the multichannel 2D AR(p1,p2) models and
the measured channel (indoor cell site).
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Figure 4.25: The delay PSDs for the multichannel 2D AR(p;,p2) models and
the measured channel (indoor cell site).

The estimated first and second order spectral moments for the measured chan-
nel and the multichannel 2D AR models are presented in Table 4.7. As in the
previous subsections, in Table 4.7 we include the spectral moments calculated
for the channel simulator based on the model (3.7) developed in Subsection 3.6.4
based on the same measured TVFR. It appears that the increase in the order of
the multichannel 2D AR model from (5,3) to (15,3) does not significantly influ-
ence the values of the estimated spectrum moments. Again, the calculated delay
spread of the channel simulator (3.7) is smaller compared to the delay spread es-

timated from the measurement data and to the delay spread of the multichannel
2D AR models.

Table 4.7: Spectral moments (indoor cell site).

Measured | 2D AR(5,3) | 2D AR(15,3) Channel
channel simulator (3.7)

Doppler shift, —1.23 —0.88 —0.845 —-1.4
11, (Hz) [—1.27, —1.2]

Squared Doppler 13.5 13.4 14.2 12.12
spread, 0% (Hz?) | [13.33,13.66]

Delay shift, 2.394 2.394 2.392 2.383
o (ps) [2.391, 2.396]

Squared delay 0.097 0.083 0.086 0.057

spread, o2, (us?) [0.094,0.1]

In Fig. 4.26, the instantaneous channel capacity CDFs (3.48) of the multichan-
nel 2D AR(5,3) and AR(15,3) models are shown together with the instantaneous
capacity CDF of the measured channel. As it can be seen from Fig. 4.26, the
instantaneous channel capacity CDFs of the 2D AR(5,3) and AR(15,3) models
are close to the instantaneous channel capacity CDF of the measured channel.
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The graphs presented in Fig. 4.26 can be compared to the capacity CDF of the
channel simulator based on the model (3.7) depicted in Fig. 3.17. The estimated
mean values and the standard deviations of the capacity for the 2D AR(5,3), 2D
AR(15,3), and the measured channel are presented in Table 4.8.

Table 4.8: Estimated mean and standard deviation of the capacity (indoor cell

site).
Measured | 2D AR(6,1) | 2D AR(9,5)
channel
Mean, puc (bps/Hz) 8.17 8.15 8.14
Standard deviation, o¢ (bps/Hz) 0.83 1 0.85
14 1.4
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Figure 4.26: Capacity CDFs of the multichannel 2D AR(p1,p2) models and the
measured channel for the SNR p = 20 dB (indoor cell site).
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4.8 Concluding Remarks

In this chapter, we have described the use of the multichannel 2D AR model for
simulating MIMO wideband mobile radio channels. The parameters of the mul-
tichannel 2D AR model are estimated from the measured TVFR of a real-world
prototype channel. The estimates of the multichannel 2D AR model parameters
can be obtained by solving the set of Yule-Walker normal equations or, alterna-
tively, by employing the PEM method.

One of the main problems associated with the multichannel 2D AR model is a
possible instability of a resulting channel simulator. The stabilization procedure
proposed in this chapter can be used to stabilize the multichannel 2D AR model.
However, due to the large number of the model parameters, the stabilization
procedure might be time consuming even for the multichannel 2D AR models of
a moderate order, say p; > 5, p2 > 5 for 2 x 2 MIMO systems.

If the multichannel 2D AR model is to be used for generating realizations
of the channel TVFR, which do not exceed the duration of several transmitted
symbols, then the method of synthesizing the TVFR in the delay-Doppler domain
can be employed. This method is based on the observation that the lack of the
guaranteed stability of the multichannel 2D AR model is not a serious drawback
for estimating the delay-Doppler PSD of a wireless channel. Thus, a spectrum
shaping filter can be created and applied to an input white noise in the delay-
Doppler domain.

In this chapter, we have considered the important characteristics of several
multichannel 2D AR models developed based on the TVFRs of the real-world
channels measured in different propagation environments. The results presented
in this chapter can be compared to the performance results for the stochastic
channel simulators designed in Chapter 3. Below is a summary of the key ob-
servations related to the development and performance of multichannel 2D AR
models:

e The multichannel 2D AR model is generally less efficient in synthesizing
realizations of the TVFR of a wireless MIMO channel than the channel
simulation model (3.7) described in Chapter 3. This is due to the fact
that a relatively large amount of data has to be stored in the memory for
calculating the samples of the channel TVFR. This is true for multichannel
2D AR models represented in the form of (4.3) or (4.22) as well as in the
form of the spectrum shaping filter (4.27).

e Estimating the parameters of the multichannel 2D AR(p1,p2) model can be
characterized as a moderate complexity computational problem. For exam-
ple, the computational cost of estimating the model parameters by using
the PEM method described in Subsection 4.3.2 can roughly be estimated as
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O {(M — p1)(N — p2)NZNZ [(p1p2 + p1 + p2)* + (pip2 + p1 + p2) + 1)] }.

e It has been observed that the multichannel 2D AR model even of a relatively
low order, which provides only a very smooth estimate of the delay-Doppler
PSD of a real-world prototype channel, is often sufficient for adequate rep-
resentation of the important statistics of the prototype channel.
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Velocity Estimation in Wideband
Mobile Stations Equipped With
Multiple Antennas

5.1 Introduction

During the last two decades, a number of publications has been devoted to the
problem of estimating the MS velocity from the received signal in cellular net-
works. Such interest is due to the fact that significant improvements in the perfor-
mance of wireless communication systems are possible if the MS speed is known.
For example, the knowledge of the MS velocity allows to minimize the number
of handovers in multilayer cellular networks. Furthermore, the information about
the MS speed can be used to tune up different adaptive signal processing algo-
rithms implemented in the transceivers.

Several methods for estimating the MS velocity can be found in the litera-
ture, see e.g., [80-87]. The performance evaluation of some of the estimation
algorithms, as well as their comparison, are presented in [88, Chapter 5] and also
in [89]. According to the theoretical and simulation-based analysis provided in
the references, the main factors that cause degradation in the performance of
the available velocity estimators are the additive noise, presence of shadowing,
and the nonisotropic scattering environment. An additional factor, which is often
omitted from the consideration, is the limited time interval over which the channel
statistics have to be estimated.

Although the existing velocity estimators can be employed without any changes
in wideband MIMO systems, it is of interest to investigate how additional degrees
of freedom, e.g., signal bandwidth and multiple antennas at a MS, can be uti-
lized to improve the accuracy of the velocity estimation for different propagation
scenarios. The results of the investigations might be useful in the context of

113
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developing the newly emerged Ultra Mobile Broadband (UMB) [90] and mobile
WiMAX [91] technologies. It is worth mentioning that the problem of improving
the robustness of MS velocity estimators by taking advantage of a wide bandwidth
and antenna arrays (at the BS), has been recently analyzed in [92].

In this chapter, we describe an MS velocity estimation method designed for
wideband MIMO communication systems [93]. In our method, the speed of the
MS is estimated using the well-known relationship between the DOAs and the
Doppler shifts that characterizes the multipath signal components. According
to [4, Chapter 7], the distribution of the DOAs is a function of delays. The
assumption that we make regarding the propagation environment is that the mul-
tipath components arriving at the MS from a certain bounded interval of DOAs
can be uniquely identified with a certain range of propagation delays. This as-
sumption allows us to simplify the otherwise complicated parameter estimation
algorithms that can be applied to simultaneously estimate the DOAs and the cor-
responding Doppler frequencies of the multipath components. The performance
of the proposed MS velocity estimator has been evaluated on simulated channel
TVFRs. The presented results demonstrate that the suggested velocity estimation
algorithm is less sensitive to noise and nonisotropic scattering compared to several
other known methods. It is also shown how the performance of the proposed MS
speed estimator is affected by the available signal bandwidth.

The rest of the chapter is organized as follows. In Section 5.2, we describe
the model of the channel TVFR. The MS velocity estimation method is presented
in Section 5.3. Section 5.4 provides the results of the performance evaluation.
Concluding remarks are given in Section 5.5.

5.2 The Time-Variant Frequency Response of the Chan-

nel

In this section, we establish the model for the TVFR of a mobile MIMO radio
propagation channel. In MIMO systems, the MS and the BS are equipped with
antenna arrays consisting of Nysg and Npg elements, respectively. For simplicity
reasons and without loss of generality, we let Npg = 1.

It is assumed that the TVFR vector H(f',t) = [Hl(f’,t),...,HNMS(f’,t)]T
of the mobile radio channel consists of a finite number L of multipath components

(cf. (3.7)), ie.,

L
H(f/, t) — Z g(¢l)Clej(2ﬂ'fdlt727rf/7-l/+9l) (51)

n=1
where f’ and ¢ denote the frequency and time variables, respectively, and H;(f’,t),
1 =1,...,Npyg, is the TVFR of the i-th subchannel. Each of the L multipath
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components is characterized by the path gain ¢;, Doppler frequency fg,, propaga-
tion delay 7/, phase shift #;, and the DOA ¢;. Here, we implicitly assume that
the planar electromagnetic waves propagate horizontally.

The steering vector g(¢) in (5.1) is defined as [94]

g(¢) = [g1()e Tkolern) gn o (@)edRolderny T (5.2)

where the vector r;, i = 1,..., Njysg, specifies the location of the i-th MS antenna
array element with respect to a chosen reference point; k is a unit vector pointing
in the direction of the wave propagation; kg is the free-space wavenumber, related
to the wavelength A by kg = 2w /\. The radiation pattern of the i-th antenna array
element is given by ¢;(¢), i = 1,..., Nyg. If the MS is equipped with a uniform
linear array (ULA), we presume that the radiation pattern of the MS antenna
array is effectively restricted to the range of ¢ € [—7/2,7/2] (see, e.g., [65]),
where the DOA ¢ is measured w.r.t. the normal to the linear antenna array.

In practice, the TVFR H(f’,t) has to be estimated, e.g., using pilot tones as in
orthogonal frequency division multiplexing (OFDM) communication systems [4].
The errors in the estimated TVFR ﬂ( f’,t) are represented by a complex spa-
tially uncorrelated (independent) additive white Gaussian noise (AWGN) vector
w(f' 1), ie.,

H(f't) = H(f' 1) + w(/',t) (5.3)

where each component of the vector w(f',t) = [wi(f',t),...,wn,s(f,1)]T has
zero-mean and variance 202. Similar to the previous chapters, we assume that
the TVFR H(/f’,t) is estimated at discrete frequencies f; = —B/2 + mAf' €
[-B/2,B/2], m=0,...,M — 1, and at discrete time instances t,, = nAt € [0, 7],
n =0,...,N — 1, where B and T denote the frequency bandwidth and the
time observation interval, respectively. The frequency sampling interval A f’ and
the time sampling interval At are constants. The time sampling interval At is
supposed to be less than 1/(2fg,.. ) with the maximum Doppler frequency defined
as fa,.. = V/Ac, where v is the speed of the MS and A, = ¢/f.! with ¢ denoting
the speed of light.

5.3 Velocity Estimation Algorithm

In this section, we describe the algorithm proposed for estimating the MS veloc-
ity. The basic idea behind the algorithm comes from the well-known relationship
between the Doppler frequency fg, and the DOA ¢; of the I-th multipath compo-
nent in (5.1). Under the condition that the Doppler effect is caused only by the

Tn a typical wideband communication system, the inequality B/ f. < 1 still holds, where f.
is the center frequency of the modulated bandpass signal.
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MS movement, this relationship can be expressed as

fa, = % cos(¢; — ay) (5.4)

where v is the MS velocity and «, designates the direction of the MS movement.

5.3.1 Least-Squares Velocity Estimator

Suppose that estimates of the DOAs {qgk} and the Doppler frequencies { fdk}
of K < L multipath components in (5.1) are available. The least-squares (LS)
estimator of the MS velocity v and the direction of the MS movement «, can be
expressed as

K
(6.6,) = arg min {z@dk 2 o - W} 69

v,0y 1

Using the identity

~

)\% cos(P — o) =

~ A~

)\% [cos(¢r) cos(ay) + sin(¢y) sin(ay)] (5.6)

we can define the system of linear equations

Ab=ld (5.7)
where A A
cos(¢1)  sin(¢r)
ho E N (5.8)
cos(dr)  sin(dr)
— b _ U/)\CCOS(QU)
. L?] - [U/)\cSiD(av)] ’ (5.9)
and

fd: [fdl""’de]T' (510)

The LS solution of (5.7) is given by?
b=(ATA)'ATE, (5.11)

Thus, the LS estimate of the MS velocity that solves the minimization problem

2Since uncertainties due to the estimation errors are present in both the matrix A in (5.9)
and the vector f; in (5.11), it makes sense to find the total least-squares (TLS) [95] solution for
the vector b.
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in (5.5) can be written as

b= Ae\/ 2 + D2 (5.12a)

b
Gy, = arctan <A—2> . (5.12b)

b1

5.3.2 Estimation of the Direction-of-Arrivals and the Doppler
Frequencies

Hypothetically, it seems to be an attractive approach to select the multipath com-
ponents in (5.1) clustered around a known DOA ér by using, e.g., beamforming
techniques [96]. Then, assuming the selected multipath components have approx-
imately the same Doppler frequency, it is relatively easy to obtain the estimate
fdk. In practice, however, the small aperture (see, e.g., [94]) of an antenna array
at the MS makes it impossible to construct a spatial filter (beamformer) with
good selectivity properties® in the angular domain. On the other hand, in wide-
band communication systems, the ‘aperture’ in the frequency domain, determined
by the signal bandwidth B, is relatively large. Thus, the multipath components
in (5.1) with the propagation delays clustered around a known delay 7, can be
selected. Furthermore, we assume that the Doppler spectrum of the multipath
components clustered in the delay domain around %,’g possesses a global maximum,
which can be associated with a certain Doppler frequency fq, -

The above-mentioned considerations have led to the following algorithm for
estimating the DOAs {¢;} and the Doppler frequencies {fq, }, k =1,..., K.

Step 1. Select the multipath components with the propagation delays, which
are close to a specified delay 7; chosen as described below. For this purpose,
pass the estimated TVFR H, [m,n] = H; [mAf' , nAt], i =1,..., Nyg, of the i-th
subchannel through a delay bandpass filter with the transfer function centered at
71.. The filtering operation can be implemented in the form of a discrete Fourier
transform (DFT) as

1 FS - /
yiln; 7] = i[m, m]e 72mTA (5.13)

where y;[n; 7] denotes the sampled signal at the output of the bandpass filter.
Step 2. Estimate the DOA ¢;. Assuming the antenna array calibration

data as well as the locations of the antenna elements w.r.t. the reference point is

available at the MS, the DOA ¢y, can be estimated using the beamforming method

3By the selectivity properties, we understand the width of the main lobe and the level of the
side lobes of the filter transfer function.



118 Chapter 5

(see, e.g., [94,96])

; g (o) (% 00 vl 71y " s 7)) ()
Lk — arg max

i e (o) (5.14)

where y[k; 7] = [y1[n; 7, - - - ynys [ )17, g(9) is defined in (5.2).
Step 3. Estimate the Doppler frequency fg, by allocating a maximum of the
periodogram, i.e.,

N-1 2
f, = argmax { — 2n; 7L, dpple? T ar stn 5.15
fa, ga NT;) [1; T, D] (5.15)
where the sampled function z[n; 7, gﬁk] is given by
.~ 21 _ _H/) L~

The Steps 1-3 presented above are illustrated with a signal flow diagram in
Fig. 5.1.
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Figure 5.1: Signal flow diagram for estimating the DOAs and the Doppler fre-
quencies.

Note that the choice of the delay bandpass filter used in Step 1 was mainly
governed by the simplicity of implementation. For example, the DFT in Step 1
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can be readily computed using the fast Fourier transform (FFT). It might be
possible, however, to improve the characteristics of the filter, e.g., by using data
windowing (65, 79].

Based on the conducted simulations, we suggest to use as {77} the locations
of the K highest peaks in the impulse response of the first subchannel obtained
by taking the FFT of H, [m,n] w.r.t. the frequency index m.

On obtaining the estimates {(ﬁk, fdk}, k=1,...,K, the MS velocity is deter-
mined as described in Subsection 5.3.1.

5.4 Simulation Results

In this section, we present the results of the performance evaluation for the MS
velocity estimation algorithm described in the previous section.

The performance of the proposed MS velocity estimator has been assessed
on a number of TVFRs H(f',t) generated using a simple geometrical model. In
this model, the distance D between the BS and the MS is assumed to be 750 m.
The MS is equipped with a ULA consisting of two (Nj;s = 2) omnidirectional
antenna elements separated by a half wavelength distance. The signal frequency
band is centered at f. =2 GHz. The normal to the MS antenna array points to-
wards the BS. The scatterers are uniformly distributed in the region between the
BS and the MS. The dimensions of the region are determined by the maximum
allowed propagation delay 7/ .. = 1/Af’. Thus, the DOAs {¢;} of the multi-
path components [see (5.1)] lie in the range [—7/2,7/2] and, therefore, can be
unambiguously estimated. The path gains {¢;} are realizations of i.i.d. random
variables, each having a uniform distribution in the interval [0, 1]. The path gains
are first normalized, so that ZIL: 1 cl2 = 1, then each of them is multiplied by the
= D/c. The
chosen multiplication factor represents the exponential decay normally observed

exponential factor exp[log(0.1)(7] — Thin)/ (Taax — Tonin)]» Where 7/

in the measured channel power-delay profile (PDP) [97]. The direction of the
MS movement «,, is an outcome of a random number generator having a uniform

distribution in the interval [0,27). The other parameters are specified as below:

e Number of multipath components: L = 230;
e Time interval between snapshots: At = 1 ms;
e Number of snapshots: N = 100;

e Interval between frequencies: Af’ = 3.125 - 10° Hz.

Note that the propagation delay 7/ of the I-th multipath component is a func-
tion of the DOA ¢; in the synthesized TVFR of the channel. An example of the
simulated multipath components in the delay-DOA plane is depicted in Fig. 5.2.
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Figure 5.3: Normalized bias as a function of the MS velocity and the SNR (B

= 20 MHz).

The performance of the MS velocity estimator is evaluated in terms of the

normalized bias E{(0—v)/v} and the mean-squared relative error (MSRE) E{[(0—
v)/v]?} of the estimates. These two characteristics are shown in Figs. 5.3 and 5.4,
respectively, for different values of the SNR. It can be observed that the normalized
bias and the MSRE are almost independent of the actual MS speed. As expected,
with increasing SNR, the velocity estimates become less biased and have smaller

MSRE.
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Figure 5.4: Mean-squared relative error as a function of the MS velocity and
the SNR (B = 20 MHz).

Figures 5.5 and 5.6 demonstrate the degree to which the performance of the
proposed velocity estimation algorithm depends on the available signal bandwidth
B. It can be seen that for B > 15 MHz the normalized bias and the MSRE do
not change significantly. A somewhat greater MSRE in the velocity estimates is
observed for B =5 MHz.
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We have also compared the performance of the proposed MS velocity esti-
mation algorithm with several existing methods, namely: the instantaneous fre-
quency (IF) method [85], the level-crossing rate (LCR) method [80], the zero-
crossing rate (ZCR) method [80], and the covariance-based (COV) estimation
method [81]*. All of these methods assume isotropic scattering. To satisfy this as-
sumption, the performances of the velocity estimators have been compared based
on the TVFRs, generated using the geometrical one-ring simulation model [35].
In this model, the scatterers are located on a ring. The DOAs {¢,,} are realiza-
tions of i.i.d. random variables, each having a uniform distribution in the interval
[—7, 7] All path gains {¢,} are equal to 1/v/N. To avoid the ambiguity in the
estimation of the DOAs {¢, }, three neighboring elements of an 8-element omni-
directional uniform circular array (UCA) are used as the MS antenna. The other
simulation model parameters are unchanged compared to the channel simulator
described above. The Rician K-factor, which is zero in this propagation scenario,
is assumed known in the IF velocity estimation method.

The normalized bias and the MSRE of the velocity estimates obtained using
the aforementioned estimation methods are depicted in Figs. 5.7 and 5.8, respec-
tively. The performance results for the IF, LCR, ZCR, and COV methods are
in agreement with the similar results presented in [88, Chapter 5]. It can be ob-
served that the proposed velocity estimation method demonstrates smaller bias
and smaller MSRE in the broad range of the considered MS speeds.
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Figure 5.7: Normalized bias as a function of the MS velocity (SNR = 10 dB, B
= 10 MHz).

*The channel statistics required for the velocity estimation by using the IF, LCR, ZCR, and
COV methods have been averaged over M frequencies and Njss subchannels.
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Figure 5.8: Mean-squared relative error as a function of the MS velocity (SNR
= 10 dB, B = 10 MHz).

5.5 Concluding Remarks

In this chapter, we have considered a method for the velocity estimation in MSs
equipped with multiple antennas and operating over wideband communication
channels. The velocity is estimated by employing the well-known relationships
between the DOAs, the MS speed, and the Doppler frequencies of the multipath
components representing the TVFR of the channel. The method is based on the
assumption that the Doppler spectrum of the multipath components clustered in
the delay domain possesses a global maximum, which can be associated with a
certain Doppler frequency.

Using computer simulations, the performance of the proposed MS velocity
estimation method has been evaluated for different SNRs and different signal
bandwidths. It has been demonstrated that the new estimation algorithm is
not restricted to isotropic scattering scenarios. The proposed velocity estimator
appears to be more robust to noise compared to several other existing MS speed

estimation methods.
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Summary of Contributions and
Outlook

6.1 Contributions

In this thesis, we have focused on the methods for designing measurement-based

simulation models for wireless communication channels. Below is the summary of

the contributions:

e A stationarity test has been proposed for real-world wireless communication
channels. The test has been extended to validate the stationarity of MIMO

wireless channels.

The stationarity of the TVFRs of wireless communication channels mea-
sured in different propagation environments has been analyzed. We have
found that the length of the channel stationarity intervals decreases as the

number of antennas at the transmitter and the receiver increases.

We have proposed a method for designing measurement-based stochastic
channel simulation models for time-variant wideband MIMO wireless chan-
nels. The method has also been adapted for designing measurement-based
stochastic channel simulators for wideband SISO and narrowband MIMO

wireless channels.

Experimental investigations based on simulations and measurement data
corresponding to various propagation environments have shown that the
proposed method can be used for creating simulators for wireless communi-
cation channels. Additionally, it has been demonstrated that the method is
robust against white noise present in the measurement data.

We have proposed the multichannel 2D AR model for simulating MIMO
wideband mobile radio channels. The parameters of the multichannel 2D
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AR model are estimated from the measured TVFR of a real-world channel.
We have investigated the problem of a possible instability of the resulting
multichannel 2D AR channel model. A model stabilization procedure has
been proposed to stabilize the multichannel 2D AR model. Also, we have
considered synthesizing the TVFRs of MIMO wideband mobile radio chan-
nels in the delay-Doppler domain. This channel simulation method can be
used even in the case of unstable multichannel 2D AR models.

e We have analyzed the problem of estimating the velocity in wideband MSs
equipped with multiple antennas. Using a developed velocity estimation
algorithm, it has been demonstrated that the MS velocity estimations can
be significantly improved as compared to the results provided by several
existing methods.

6.2 Outlook

The results of the basic performance analysis for the stationarity test developed
in Chapters 2 have been presented. However, a more detailed study of the test
behavior under various conditions is required. The purpose of this study is to
investigate the dependence between the level of confidence for an outcome of the
stationarity test and the data sample size, i.e., the available signal bandwidth.

The part, which has not been covered in this dissertation, is the analysis of
effects the errors in representing the correlation properties in time, frequency, and
space produce on the performance of wireless receivers. Potentially, such analysis
opens possibilities for optimizing the choice of the parameters in the algorithm
presented in Chapters 3 and also for reducing the computational load associated
with determining the parameters of the simulation model (3.7).

The methods for designing measurement-based channel simulators described
in Chapters 3 and 4 allow synthesizing realizations of the channel TVFR with
the correlation properties approximating those of a prototype real-world channel.
Presuming that the first-order PDF of the TVFR of the prototype real-world chan-
nel can be approximated by the complex Gaussian PDF, the channel simulator
developed by using one of the methods presented in this thesis allows an adequate
analysis of the performance of wireless communication systems. The justification
for the assumed Gaussianity of real-world radio channels, including empirical re-
sults obtained during multiple measurement campaigns, can be found in many
references. However, it has also been reported in the literature that the estimated
distribution of the TVFR of measured channels can significantly deviate from the
complex Gaussian PDF. In [14] and [15], it is mentioned that a general approach to
simulating stationary random processes with specified correlation properties and
arbitrary first-order PDFs is based on a non-linear memoryless transformation of
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Gaussian random processes. A possible application of this approach to the devel-
opment of channel simulators for wireless communication channels constitutes an
interesting research topic.

In the stochastic channel simulation model presented in Chapter 3, the space-
time-frequency correlation matrix R of the model is represented as a sum of the
Kroneker products of the matrices Ry, Ry, and Ry, defined in (3.12), (3.13),
(3.14), respectively. The correlation matrices Ry, I = 1,..., L, can be further
parameterized in terms of the DOAs and DODs. Such parametrization can reduce
the total number of the channel simulation model parameters. To investigate
this possibility, the measurement data have to be supplemented with accurate
calibration data for the transmitter and receiver equipment used in a measurement
campaign.

The methods for designing measurement-based simulation models presented in
this thesis are appropriate for generating wireless channels that satisfy the wide-
sense stationarity assumption in the delay-Doppler domain. However, as it has
been mentioned above, for real-world channels this assumption can be accepted
only on limited intervals of time. Therefore, further research is necessary for de-
veloping measurement-based channel simulation models capable of reproducing
the quasi-stationary (nonstationary) behavior of physical radio communication
channels. This subject is particularly important for the mobile-to-mobile commu-
nications, where very short intervals of channel stationarity can be expected.
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Appendix A

Measurement Equipment and
Propagation Scenarios

The content of this appendix is a compilation of the relevant details, which have
been found in the two technical reports provided by Telenor R&D together with
the measurement data.

A.1 Measurement Equipment

The measurement campaign was conducted by Telenor R&D in Oslo, Norway, in
July 2003. The measurements were performed using a wideband channel sounder
with synchronized multiplexing of the transmitter and receiver antennas. The
channel sounder was manufactured by SINTEF Telecom and Informatics, Trond-
heim, Norway, on assignment from Telenor R&D. Both the transmitter and the
receiver were equipped with eight element uniform linear arrays consisting of ver-
tically polarized rectangular patch antennas with an inter-element spacing of one-
half wavelength. A linear frequency chirp signal was used for channel sounding.
The block diagrams of the channel sounder transmitter and receiver are shown in
Figs. A.1 and A.2, respectively.

The transmitter was mounted on a mobile trolley at the height of 1.5 m above
ground. The receiver antenna was stationary and mounted on a 1.7 m high tripod
mast. In addition, the following parameters describing the set up are listed below.

e Carrier frequency: f! =5.255 GHz;

Bandwidth: B = 100 MHz;

Interval between the frequencies: A f’ = 1.957 - 10° Hz;

Time between channel snapshots: At = 0.07 s;

Impulse response length: 5.12 us.
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Figure A.1: Channel sounder transmitter.

Figure A.2: Channel sounder receiver.
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A.2 Propagation Scenarios

A.2.1 Micro Cell Site - Regular Street Geometry

This site is a part of Oslo downtown with a regular street grid. The building mass
is homogenous and materials used are mostly brick and concrete. The building
height varies between 20 — 30 m. In Fig. A.3, the position of the receiving antenna
is shown.

The measurement route is shown on the map in Fig. A.4. The photo of the
measurement route is depicted in Fig. A.5.

Figure A.3: Position of the receiving antenna (micro cell site — regular street
geometry).
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Figure A.4: Map of the measurement route (micro cell site — regular street ge-
ometry).

Figure A.5: Photo of the measurement route (micro cell site — regular street
geometry).
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A.2.2 Micro Cell Site - Open Market Place

The second measurement site is a market square partly filled with market stalls.
The surrounding buildings are of variable size and height. The size of the square
is about 100 x 100m?. One side of the square is approximately 5 m above the
other. The receiving antenna was placed at the elevated side of the square. The
position of the receiving antenna is marked with a red circle in Fig. A.6. The

measurement route is shown in Fig. A.7.

Figure A.6: Position of the receiving antenna (micro cell site - open market

place).
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Figure A.7: Map of the measurement route (micro cell site — open market place).
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A.2.3 Micro/Pico Cell Site - Passageway

At the south-east side of the market square, described in the previous subsection,
a pedestrian passageway leads through a building to the next street. The route
is shown on the map in Fig. A.8. This site was chosen for testing the so-called
‘key-hole’ effect.

The interior of the passageway is presented in Fig. A.9.
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Figure A.8: Map of the measurement route (micro/pico cell site - passageway).

Figure A.9: Photo of the measurement route (micro/pico cell site - passageway).
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A.2.4 Indoor Cell Site

The indoor measurements were performed in the Telenor headquarters building.
This is a modern office building with open indoor areas. The building materials
used are mostly glass and steel with wood covered computer floors or stone tiles.
Very few cubicle offices are used. The working zones are with a high degree of
openness. The building has an irregular structure.

The interior of the working zone at Telenor headquarters is shown in Fig. A.10.
The map of the measurement route and the photo of the route are shown in
Figs. A.11 and A.12, respectively.

e 1

Figure A.10: Working zone interior (indoor cell site).

Figure A.11: Map of the measurement route (indoor cell site).
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Figure A.12: Photo of the measurement route (indoor cell site).
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