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SummaryChannel simulation models have proved to be an indispensable tool for designingmobile radio 
ommuni
ation systems. By means of 
omputer simulations design-ers are able to assess the performan
e of wireless 
ommuni
ation systems undervarious propagation 
onditions without resorting to �eld trials, whi
h are 
ostlyand time 
onsuming. The e�e
tiveness of using 
hannel simulation models to alarge extend depends on how a

urate the models are in re�e
ting the most impor-tant 
hara
teristi
s of real-world wave propagation environments. Clearly, whenthe parameters of a 
hannel simulation model are determined from measurementdata, a higher level of a

ura
y 
an be expe
ted.In this dissertation, we des
ribe two approa
hes to designing measurement-based simulation models for mobile wireless 
ommuni
ation 
hannels. The �rstmethod allows synthesizing 
hannel transfer fun
tions with joint spatial-temporal-frequen
y 
orrelation properties approximating those of real-world radio 
hannels.The parameters of a 
hannel simulator are determined by �tting the spa
e-time-frequen
y 
orrelation matrix of the simulation model to the estimated spa
e-time-frequen
y 
orrelation matrix of a physi
al 
hannel. For this purpose, an iterativeparameter 
omputation algorithm has been developed. In the se
ond approa
h,a multi
hannel two-dimensional autoregressive model is proposed for simulatingmultiple-input multiple-output wideband mobile wireless 
hannels. The param-eters of the autoregressive models are estimated from real-world measurementdata. We also address the problem of possible instability of the multi
hannel two-dimensional autoregressive model and develop a model stabilization pro
edure,whi
h is based on numeri
al optimization te
hniques.The methods proposed for designing measurement-based 
hannel simulationmodels presume stationarity of radio 
hannels. We dis
uss a new test for de-termining the time intervals, over whi
h a wireless 
hannel 
an be 
onsideredstationary. The stationarity intervals are identi�ed by 
omparing the delay powerspe
tral densities estimated at di�erent time instan
es. The test is appli
able tosingle-input single-output as well as to multiple-input multiple-output real-worldwireless 
hannels.In this thesis, we also investigate the problem of estimating the velo
ity of mo-bile stations. In parti
ular, we analyze to what extend the velo
ity estimation 
ani



ii Summarybe improved in wideband mobile stations equipped with multiple antennas. Forthis purpose, a simple algorithm, whi
h is suitable for real-time implementations,has been developed.



List of Publi
ations1. D. Umansky and M. Patzold, Stationarity test for wireless 
ommuni
ation
hannels, Pro
. IEEE Global Communi
ations Conferen
e, IEEE GLOBE-COM 2009, Honolulu, Hawaii, USA, Nov./De
. 2009.2. D. Umansky and M. Patzold, Design of measurement-based sto
hasti
 wide-band MIMO 
hannel simulators, Pro
. IEEE Global Communi
ations Con-feren
e, IEEE GLOBECOM 2009, Honolulu, Hawaii, USA, Nov./De
. 2009.3. D. Umansky and M. Patzold, Velo
ity Estimation in Wideband Mobile Sta-tions Equipped with Multiple Antennas, Pro
. IEEE 69th Vehi
ular Te
h-nology Conferen
e, IEEE VTC2009-Spring, Bar
elona, Spain, Apr. 2009.4. D. Umansky and M. Patzold, A Two-Dimensional Autoregressive Model forMIMO Wideband Mobile Radio Channels, Pro
. IEEE Global Commu-ni
ations Conferen
e, IEEE GLOBECOM 2008, New Orleans, LA, USA,Nov./De
. 2008. DOI 10.1109/GLOCOM.2008.ECP.7585. D. Umansky and M. Patzold, Design of Wideband Mobile Radio ChannelSimulators Based on Real-World Measurement Data, Pro
. 67th IEEE Ve-hi
ular Te
hnology Conferen
e, VTC2008�Spring, Singapore, May. 2008,pp. 319�324.6. D. Umansky and M. Patzold, Design of Measurement-Based Wideband Mo-bile Radio Channel Simulators, Pro
. 4th IEEE International Symposiumon Wireless Communi
ation Systems, ISWCS 2007, Trondheim, Norway,O
t. 2007, pp. 229�235.7. D. Umansky, M. Patzold, Estimation of Path Gains and Doppler Frequen
iesfrom the Temporal Auto
orrelation Fun
tion of Mobile Fading Channels,Pro
. of 13th European Wireless Conferen
e, EW 2007, Paris, Fran
e.
iii



iv Publi
ations



List of Figures2.1 Magnitude of the impulse response (mi
ro 
ell site � regular streetgeometry). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142.2 Mean-square value of the TVFR (mi
ro 
ell site � regular streetgeometry). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142.3 P -value in the Hotelling T 2-test for the SISO 
hannel (mi
ro 
ellsite � regular street geometry). . . . . . . . . . . . . . . . . . . . . 152.4 CCDF of the length of the stationarity intervals (mi
ro 
ell site �regular street geometry). . . . . . . . . . . . . . . . . . . . . . . . . 162.5 Magnitude of the impulse response (mi
ro 
ell site � open marketpla
e). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172.6 Mean-square value of the TVFR (mi
ro 
ell site � open market pla
e). 172.7 P -value in the Hotelling T 2-test for the SISO 
hannel (mi
ro 
ellsite � open market pla
e). . . . . . . . . . . . . . . . . . . . . . . . 182.8 CCDF of the length of the stationarity intervals (mi
ro 
ell site �open market pla
e). . . . . . . . . . . . . . . . . . . . . . . . . . . 182.9 Magnitude of the impulse response (mi
ro/pi
o 
ell site � passage-way). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192.10 Mean-square value of the TVFR (mi
ro/pi
o 
ell site � passageway). 202.11 P -value in the Hotelling T 2-test for the SISO 
hannel (mi
ro/pi
o
ell site � passageway). . . . . . . . . . . . . . . . . . . . . . . . . . 202.12 CCDF of the length of the stationarity intervals (mi
ro/pi
o 
ellsite � passageway). . . . . . . . . . . . . . . . . . . . . . . . . . . . 212.13 Magnitude of the impulse response (indoor 
ell site). . . . . . . . . 222.14 Mean-square value of the TVFR (indoor 
ell site). . . . . . . . . . 222.15 P -value in the Hotelling T 2-test for the SISO 
hannel (indoor 
ellsite). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232.16 CCDF of the length of the stationarity intervals (indoor 
ell site). . 233.1 Examples of the TCCFs and FCCFs of the geometri
al two-ring
hannel simulation model (with and without white noise) and the
orresponding TCCFs and FCCFs of the designed 
hannel simulator. 403.2 The normalized residual approximation error norm versus the num-ber of 
omponents L for (a) the MIMO wideband 
hannel simulatorand (b) the trun
ated dis
rete KLE (mi
ro 
ell site � regular streetgeometry). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41v



vi Figures3.3 Examples of the estimated TCCFs and FCCFs of the physi
al
hannel and the 
orresponding TCCFs and FCCFs of the designedMIMO wideband 
hannel simulator (mi
ro 
ell site � regular streetgeometry). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433.4 Examples of the envelope PDFs for the MIMO wideband 
hannelsimulator p|hi|(x) and the 
orresponding empiri
al PDFs p|h̃i|
(x)(mi
ro 
ell site � regular street geometry). . . . . . . . . . . . . . . 443.5 Capa
ity CDFs of the simulated 
hannel and the measured 
hannelfor the SNR ρ = 20 dB (mi
ro 
ell site � regular street geometry). . 453.6 The normalized residual approximation error norm versus the num-ber of 
omponents L for (a) the 
hannel simulator and (b) thetrun
ated dis
rete KLE (mi
ro 
ell site � open market pla
e). . . . 463.7 Examples of the estimated TCCFs and FCCFs of the physi
al
hannel and the 
orresponding TCCFs and FCCFs of the designedMIMO wideband 
hannel simulator (mi
ro 
ell site � open marketpla
e). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473.8 Examples of the envelope PDFs of the MIMO wideband 
hannelsimulator p|hi|(x) and the 
orresponding empiri
al PDFs p|h̃i|
(x)(mi
ro 
ell site � open market pla
e). . . . . . . . . . . . . . . . . . 483.9 Capa
ity CDFs of the simulated 
hannel and the measured 
hannelfor an SNR ρ = 20 dB (mi
ro 
ell site � open market pla
e). . . . . 483.10 The normalized residual approximation error norm versus the num-ber of 
omponents L for (a) the MIMO wideband 
hannel simulatorand (b) the trun
ated dis
rete KLE (mi
ro/pi
o 
ell site � passage-way). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493.11 Examples of the estimated TCCFs and FCCFs of the physi
al
hannel and the 
orresponding TCCFs and FCCFs of the designedMIMO wideband 
hannel simulator (mi
ro/pi
o 
ell site � passage-way). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503.12 Examples of the envelope PDFs of the MIMO wideband 
hannelsimulator p|hi|(x) and the 
orresponding empiri
al PDFs p|h̃i|
(x)(mi
ro/pi
o 
ell site � passageway). . . . . . . . . . . . . . . . . . . 513.13 Capa
ity CDFs of a simulated 
hannel and the measured 
hannelfor an SNR ρ = 20 dB (mi
ro/pi
o 
ell site � passageway). . . . . . 523.14 The normalized residual approximation error norm versus the num-ber of 
omponents L for (a) the 
hannel simulator and (b) thetrun
ated dis
rete KLE (indoor 
ell site). . . . . . . . . . . . . . . 533.15 Examples of the estimated TCCFs and FCCFs of the physi
al
hannel and the 
orresponding TCCFs and FCCFs of the designedMIMO wideband 
hannel simulator (indoor 
ell site). . . . . . . . . 543.16 Examples of the envelope PDFs of the MIMO wideband 
hannelsimulator p|hi|(x) and the 
orresponding empiri
al PDFs p|h̃i|
(x)(indoor 
ell site). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553.17 Capa
ity CDFs for a simulated 
hannel and the measured 
hannelfor an SNR ρ = 20 dB (indoor 
ell site). . . . . . . . . . . . . . . . 55



Figures vii3.18 The normalized residual approximation error norm versus the num-ber of 
omponents L for (a) the MIMO narrowband 
hannel simu-lator and (b) the trun
ated dis
rete KLE (mi
ro 
ell site � regularstreet geometry). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 593.19 The normalized residual approximation error norm versus the num-ber of 
omponents L for (a) the MIMO narrowband 
hannel sim-ulator and (b) the trun
ated dis
rete KLE (mi
ro 
ell site � openmarket pla
e). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 593.20 The normalized residual approximation error norm versus the num-ber of 
omponents L for (a) the MIMO narrowband 
hannel sim-ulator and (b) the trun
ated dis
rete KLE (mi
ro/pi
o 
ell site �passageway). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 603.21 The normalized residual approximation error norm versus the num-ber of 
omponents L for (a) the MIMO narrowband 
hannel simu-lator and (b) the trun
ated dis
rete KLE (indoor 
ell site). . . . . . 603.22 Examples of the estimated TCCFs of the physi
al 
hannel and the
orresponding TCCFs of the designed MIMO narrowband 
hannelsimulator (mi
ro 
ell site � regular street geometry). . . . . . . . . 613.23 Examples of the estimated TCCFs of the physi
al 
hannel and the
orresponding TCCFs of the designed MIMO narrowband 
hannelsimulator (mi
ro 
ell site � open market pla
e). . . . . . . . . . . . 623.24 Examples of the estimated TCCFs of the physi
al 
hannel and the
orresponding TCCFs of the designed MIMO narrowband 
hannelsimulator (mi
ro/pi
o 
ell site � passageway). . . . . . . . . . . . . 633.25 Examples of the estimated TCCFs of the physi
al 
hannel and the
orresponding TCCFs of the designed MIMO narrowband 
hannelsimulator (indoor 
ell site). . . . . . . . . . . . . . . . . . . . . . . 643.26 The normalized residual approximation error norm versus the num-ber of 
omponents L for (a) the SISO wideband 
hannel simulatorand (b) the trun
ated dis
rete KLE (mi
ro 
ell site � regular streetgeometry). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 673.27 The normalized residual approximation error norm versus the num-ber of 
omponents L for (a) the SISO wideband 
hannel simulatorand (b) the trun
ated dis
rete KLE (mi
ro 
ell site � open marketpla
e). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 683.28 The normalized residual approximation error norm versus the num-ber of 
omponents L for (a) the SISO wideband 
hannel simulatorand (b) the trun
ated dis
rete KLE (mi
ro/pi
o 
ell site � passage-way). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 683.29 The normalized residual approximation error norm versus the num-ber of 
omponents L for (a) the SISO wideband 
hannel simulatorand (b) the trun
ated dis
rete KLE (indoor 
ell site). . . . . . . . . 693.30 (a) The TACFs and (b) the FACFs of the real-world 
hannel andthe SISO wideband 
hannel simulator (mi
ro 
ell site � regularstreet geometry). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69



viii Figures3.31 (a) The TACFs and (b) the FACFs of the real-world 
hannel andthe SISO wideband 
hannel simulator (mi
ro 
ell site � open marketpla
e). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 703.32 (a) The TACFs and (b) the FACFs of the real-world 
hannel and theSISO wideband 
hannel simulator (mi
ro/pi
o 
ell site � passageway). 703.33 (a) The TACFs and (b) the FACFs of the real-world 
hannel andthe SISO wideband 
hannel simulator (indoor 
ell site). . . . . . . 713.34 The envelope PDF p|h|(x) of the SISO wideband 
hannel simulatorand the empiri
al PDF p|h̃|(x) of the real-world 
hannel (mi
ro 
ellsite � regular street geometry). . . . . . . . . . . . . . . . . . . . . 713.35 The envelope PDF p|h|(x) of the SISO wideband 
hannel simulatorand the empiri
al PDF p|h̃|(x) of the real-world 
hannel (mi
ro 
ellsite � open market pla
e). . . . . . . . . . . . . . . . . . . . . . . . 723.36 The envelope PDF p|h|(x) of the SISO wideband 
hannel simulatorand the empiri
al PDF p|h̃|(x) of the real-world 
hannel (mi
ro/pi
o
ell site � passageway). . . . . . . . . . . . . . . . . . . . . . . . . . 723.37 The envelope PDF p|h|(x) of the SISO wideband 
hannel simulatorand the empiri
al PDF p|h̃|(x) of the real-world 
hannel (indoor
ell site). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 734.1 The support region SQP for a multi
hannel 2D AR(1,2) model. . . 784.2 Two possible �owgraphs representing the multi
hannel 2D AR(1,1)model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 834.3 The TCCFs and FCCFs of the prototype multi
hannel 2D AR(2,2)model and of the target multi
hannel 2D AR(2,2) model (example1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 884.4 The multipath 
omponents (example 2). . . . . . . . . . . . . . . . 894.5 The TCCFs and FCCFs of the prototype model and of the targetmodels (example 2). . . . . . . . . . . . . . . . . . . . . . . . . . . 904.6 The delay-Doppler PSD of the target multi
hannel 2D AR(10,10)model (a) before stabilization and (b) after stabilization (example2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 914.7 Examples of the estimated TCCFs and FCCFs of the physi
al 
han-nel and the 
orresponding TCCFs and FCCFs of the multi
hannel2D AR(p1,p2) models (mi
ro 
ell site � regular street geometry). . . 934.8 The delay-Doppler PSD P̂h(τ
′, fd) of the (a) 2D AR(6,1) model;(b) 2D AR(9,5) (mi
ro 
ell site � regular street geometry). . . . . . 944.9 The Doppler PSDs for the multi
hannel 2D AR(p1,p2) models andthe measured 
hannel (mi
ro 
ell site � regular street geometry). . 954.10 The delay PSDs for the multi
hannel 2D AR(p1,p2) models and themeasured 
hannel (mi
ro 
ell site � regular street geometry). . . . . 954.11 Capa
ity CDFs of the multi
hannel 2D AR(p1,p2) models and ofthe measured 
hannel for an SNR ρ = 20 dB (mi
ro 
ell site �regular street geometry). . . . . . . . . . . . . . . . . . . . . . . . . 98



Figures ix4.12 Examples of the estimated TCCFs and FCCFs of the physi
al 
han-nel and the 
orresponding TCCFs and FCCFs of the multi
hannel2D AR(p1,p2) models (mi
ro 
ell site � open market pla
e). . . . . 994.13 The delay-Doppler PSD P̂h(τ
′, fd) of the (a) 2D AR(6,1) modeland (b) 2D AR(6,2) (mi
ro 
ell site � open market pla
e). . . . . . 1004.14 The Doppler PSDs for the multi
hannel 2D AR(p1,p2) models andthe measured 
hannel (mi
ro 
ell site � open market pla
e). . . . . 1004.15 The delay PSDs for the multi
hannel 2D AR(p1,p2) models and themeasured 
hannel (mi
ro 
ell site � open market pla
e). . . . . . . 1014.16 Capa
ity CDFs for the multi
hannel 2D AR(p1,p2) models and themeasured 
hannel for an SNR ρ = 20 dB (mi
ro 
ell site � openmarket pla
e). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1024.17 Examples of the estimated TCCFs and FCCFs of the physi
al 
han-nel and the 
orresponding TCCFs and FCCFs of the multi
hannel2D AR(p1,p2) models (mi
ro/pi
o 
ell site � passageway). . . . . . 1034.18 The delay-Doppler PSD P̂h(τ
′, fd) of the (a) 2D AR(5,1) modeland (b) 2D AR(10,4) (mi
ro/pi
o 
ell site � passageway). . . . . . 1044.19 The Doppler PSDs for the multi
hannel 2D AR(p1,p2) models andthe measured 
hannel (mi
ro/pi
o 
ell site � passageway). . . . . . 1054.20 The delay PSDs for the multi
hannel 2D AR(p1,p2) models and themeasured 
hannel (mi
ro/pi
o 
ell site � passageway). . . . . . . . 1054.21 Capa
ity CDFs of the multi
hannel 2D AR(p1,p2) models and themeasured 
hannel for an SNR ρ = 20 dB (mi
ro/pi
o 
ell site �passageway). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1064.22 Examples of the estimated TCCFs and FCCFs of the physi
al 
han-nel and the 
orresponding TCCFs and FCCFs of the multi
hannel2D AR(p1,p2) models (indoor 
ell site). . . . . . . . . . . . . . . . . 1074.23 The delay-Doppler PSD P̂h(τ
′, fd) of the (a) 2D AR(5,1) model;(b) 2D AR(10,4) (indoor 
ell site). . . . . . . . . . . . . . . . . . . 1084.24 The Doppler PSDs for the multi
hannel 2D AR(p1,p2) models andthe measured 
hannel (indoor 
ell site). . . . . . . . . . . . . . . . 1084.25 The delay PSDs for the multi
hannel 2D AR(p1,p2) models and themeasured 
hannel (indoor 
ell site). . . . . . . . . . . . . . . . . . . 1094.26 Capa
ity CDFs of the multi
hannel 2D AR(p1,p2) models and themeasured 
hannel for the SNR ρ = 20 dB (indoor 
ell site). . . . . 1105.1 Signal �ow diagram for estimating the DOAs and the Doppler fre-quen
ies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1185.2 Example of the simulated multipath 
omponents in the delay-DOAplane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1205.3 Normalized bias as a fun
tion of the MS velo
ity and the SNR (B= 20 MHz). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1205.4 Mean-squared relative error as a fun
tion of the MS velo
ity andthe SNR (B = 20 MHz). . . . . . . . . . . . . . . . . . . . . . . . . 1215.5 Normalized bias as a fun
tion of the MS velo
ity and the bandwidth(SNR = 10 dB). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122



x Figures5.6 Mean-squared relative error as a fun
tion of the MS velo
ity andthe bandwidth (SNR = 10 dB). . . . . . . . . . . . . . . . . . . . . 1225.7 Normalized bias as a fun
tion of the MS velo
ity (SNR = 10 dB,
B = 10 MHz). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1235.8 Mean-squared relative error as a fun
tion of the MS velo
ity (SNR= 10 dB, B = 10 MHz). . . . . . . . . . . . . . . . . . . . . . . . . 124A.1 Channel sounder transmitter. . . . . . . . . . . . . . . . . . . . . . 130A.2 Channel sounder re
eiver. . . . . . . . . . . . . . . . . . . . . . . . 130A.3 Position of the re
eiving antenna (mi
ro 
ell site � regular streetgeometry). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131A.4 Map of the measurement route (mi
ro 
ell site � regular streetgeometry). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132A.5 Photo of the measurement route (mi
ro 
ell site � regular streetgeometry). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132A.6 Position of the re
eiving antenna (mi
ro 
ell site - open marketpla
e). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133A.7 Map of the measurement route (mi
ro 
ell site � open market pla
e).133A.8 Map of the measurement route (mi
ro/pi
o 
ell site - passageway). 134A.9 Photo of the measurement route (mi
ro/pi
o 
ell site - passageway).134A.10 Working zone interior (indoor 
ell site). . . . . . . . . . . . . . . . 135A.11 Map of the measurement route (indoor 
ell site). . . . . . . . . . . 135A.12 Photo of the measurement route (indoor 
ell site). . . . . . . . . . 136



List of Tables2.1 Probability Pr{error} of a wrong reje
tion of the hypothesis that aMIMO 
hannel of dimensions NT ×NR is WSS . . . . . . . . . . . 123.1 Estimated mean and standard deviation of the 
apa
ity (mi
ro 
ellsite � regular street geometry). . . . . . . . . . . . . . . . . . . . . 463.2 Estimated mean and standard deviation of the 
apa
ity (mi
ro 
ellsite � open market pla
e). . . . . . . . . . . . . . . . . . . . . . . . 493.3 Estimated mean and standard deviation of the 
apa
ity (mi
ro/pi
o
ell site � passageway). . . . . . . . . . . . . . . . . . . . . . . . . . 523.4 Estimated mean and standard deviation of the 
apa
ity (indoor
ell site). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 534.1 Spe
tral moments (mi
ro 
ell site � regular street geometry). . . . 964.2 Estimated mean and standard deviation of the 
apa
ity (mi
ro 
ellsite � regular street geometry). . . . . . . . . . . . . . . . . . . . . 974.3 Spe
tral moments (mi
ro 
ell site � open market pla
e). . . . . . . 1014.4 Estimated mean and standard deviation of the 
apa
ity (mi
ro 
ellsite � open market pla
e). . . . . . . . . . . . . . . . . . . . . . . . 1014.5 Spe
tral moments (mi
ro/pi
o 
ell site � passageway). . . . . . . . 1064.6 Estimated mean and standard deviation of the 
apa
ity (mi
ro/pi
o
ell site � passageway). . . . . . . . . . . . . . . . . . . . . . . . . . 1064.7 Spe
tral moments (indoor 
ell site). . . . . . . . . . . . . . . . . . . 1094.8 Estimated mean and standard deviation of the 
apa
ity (indoor
ell site). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

xi



xii Tables



xiii



xiv Abbreviations
Abbreviations2D two-dimensionalAR autoregressiveAWGN additive white Gaussian noiseBER bit error rateBIBO bounded input bounded outputBS base stationCCDF 
omplementary 
umulative distribution fun
tionCDF 
umulative distribution fun
tionCLT 
entral limit theoremCMF 
orrelation matrix �ttingCOV 
ovarian
e-basedCPSD 
ross-power spe
tral densityDFT dis
rete Fourier transformDOA dire
tion-of-arrivalDOD dire
tion-of-departureFACF frequen
y auto
orrelation fun
tionFCCF frequen
y 
ross-
orrelation fun
tionFFT fast Fourier transformIF instantaneous frequen
yi.i.d. independent identi
ally distributedIR impulse responseKLE Karhunen-Loève expansionLCR level-
rossing rateLS least-squaresLSI linear shift-invariantLRS lo
al region of stationarityMIMO multiple-input multiple-outputMP mat
hing pursuitMS mobile stationMSRE mean-squared relative errorNSHP nonsymmetri
 half-planeOFDM orthogonal frequen
y division multiplexingPDF probability density fun
tionPDP power delay pro�lePEM predi
tion error minimizationPSD power spe
tral densityQP quarter plane



Abbreviations xvSAGE spa
e-alternating generalized expe
tation-maximizationSISO single-input single-outputSLAC sto
hasti
 lo
al area 
hannelSNR signal-to-noise ratioTACF temporal auto
orrelation fun
tionTCCF temporal 
ross 
orrelation fun
tionTF transfer fun
tionTLS total least-squaresTVAR time-variant autoregressiveTVFR time-variant frequen
y responseUCA uniform 
ir
ular arrayULA uniform linear arrayUMB ultra mobile broadbandw.r.t. with respe
t toWSS wide-sense stationaryWSSUS wide-sense stationary un
orrelated s
atteringYW Yule-WalkerZCR zero-
rossing rate



xvi Abbreviations



Chapter 1Introdu
tion
1.1 Classi�
ation of Measurement-Based ChannelModelsIn the development and performan
e evaluation of wireless 
ommuni
ation sys-tems, 
hannel models play an important role. Wireless 
hannel models mathe-mati
ally des
ribe the essential properties of propagation environments, i.e., theproperties that have 
onsiderable impa
t on the performan
e of radio 
ommuni-
ation systems. In re
ent years, a number of wireless 
hannel models have beenproposed in the literature, see, e.g., [1�4℄ and the multiple referen
es therein.A

ording to the 
lassi�
ation presented in [5℄ and also in [6℄, wireless 
hannelmodels 
an be divided into physi
al models and analyti
al (non-physi
al) models.The parametrization of physi
al 
hannel models expli
itly a

ounts for the mul-tipath propagation of the ele
tromagneti
 waves in wireless 
hannels (
onsider,e.g., the double-dire
tional model [7℄). On the other hand, analyti
al models de-s
ribe the statisti
al properties of the 
hannel system fun
tions, i.e., the impulseresponses (IRs) or the transfer fun
tions (TFs), without 
onsidering the physi
alaspe
ts of the wave propagation. As an example representing analyti
al 
han-nel models, we 
an mention the 
orrelation-based wireless 
hannel models (see,e.g., [6℄).As it follows from the title, in this thesis we 
onsider measurement-based
hannel models. The term measurement-based signi�es the fa
t that some orall of the model parameters are determined from the measured IR or TF of areal-world wireless 
hannel. Certainly, the 
lassi�
ation of wireless 
hannel mod-els into physi
al and analyti
al ones 
an also be applied to measurement-basedmodels. However, this 
lassi�
ation s
heme, whi
h is based solely on the modelparametrization, does not always allow us to judge what kind of information 
anbe obtained from the model about a physi
al propagation 
hannel. In attempt toresolve this issue and also in order to fa
ilitate the interpretation of the results1



2 Chapter 1presented in this thesis, we suggest another 
lassi�
ation for measurement-based
hannel models. The proposed 
lassi�
ation is based on the intended usage ofa model and, therefore, allows us to di�erentiate 
hannel models with respe
tto (w.r.t.) the model parametrization and also to the approa
h employed fordetermining the model parameters.We distinguish between two types of wireless 
hannel models. Models of the�rst type are oriented to the analysis of wireless 
hannels, while models of these
ond type � to the synthesis (simulation) of wireless 
hannels. A normal as-sumption made about a 
hannel model of the �rst type is that it 
an adequatelypredi
t the behavior of a real-world wireless 
hannel. Thus, by analyzing esti-mated parameters of the 
hannel model, we obtain information about di�erentproperties of the physi
al radio 
hannel. The double-dire
tional 
hannel modelmentioned above, with the parameters estimated from the measured IR of a real-world 
hannel by employing, e.g., the SAGE [8℄ or RIMAX [9℄ algorithms, 
anserve as an example of 
hannel models of the �rst type.On the other hand, the task delegated to 
hannel models of the se
ond typeis of di�erent nature. It 
onsists in simulating wireless 
hannels with spe
i�edstatisti
s. Here, in 
ontrast to the analysis task, we a

ept the fa
t that theremight be more than one 
hannel model parametrization that allows to synthesize
hannels with the spe
i�ed statisti
al properties. The measurement-based 
hannelsimulation models 
onstitute the main subje
t of this dissertation.It should be noted that models of the �rst type 
an also be used to synthesizethe 
hannel IRs (TFs).1.2 Measurement-Based Channel Simulation ModelsThe main virtue of 
hannel simulation models designed based on measurementdata is the 
apability of synthesizing realisti
 
hannel system fun
tions. Fur-thermore, the advantage of resorting to measurement-based 
hannel simulationmodels as 
ompared to the stored TFs or IRs of real-world 
hannels [4℄, be
omes
lear when we 
onsider, as an example, the problem of estimating the bit errorrate (BER) for a wireless 
ommuni
ation system. A reliable estimation of theBER requires a large number of samples of the measured 
hannel system fun
-tions. Consequently, it be
omes prohibitively expensive (if possible) to a
quireand store a required amount of measurement data, parti
ularly for widebandmultiple-input multiple-output (MIMO) 
hannels. A feasible alternative is to usea measurement-based 
hannel simulation model to assess this important systemperforman
e 
hara
teristi
.As it has been pointed out above, 
hannel simulation models are aimed to gen-erate realizations of the 
hannel system fun
tions with spe
i�ed statisti
s. Underspe
i�ed statisti
s, we understand the important �rst- and se
ond-order statisti
al
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hara
teristi
s, e.g., the probability density fun
tion (PDF) of the 
hannel gains atdi�erent time instan
es and frequen
ies and the various 
orrelation fun
tions (see,e.g., [10℄). In the following, our attention will be mainly 
on
entrated on the 
orre-lation properties of the simulated 
hannel system fun
tions in time, frequen
y, andspa
e. These se
ond-order statisti
al 
hara
teristi
s of fading 
hannels drasti
allya�e
t the performan
e of many signal pro
essing te
hniques in
luding interleav-ing, error-
orre
tion 
oding, diversity, frequen
y hopping, and equalization [11℄.Additionally, analyti
al performan
e analysis of wireless 
ommuni
ation systemsutilizing these pro
essing te
hniques is very di�
ult. Thus, a

urate represen-tation of the 
orrelation properties of fading 
hannels in simulation models isparti
ularly important.For measurement-based 
hannel simulation models, the statisti
s of interestare estimated from the measured system fun
tions of real-world 
hannels. Thesystem fun
tions of real-world 
hannels are obtained by using 
hannel sounders1during measurement 
ampaigns (see, e.g., [12℄).It is worth mentioning that the problem of simulating 
hannel system fun
-tions essentially falls into a more general framework of synthesizing realizationsof random pro
esses with spe
i�ed �rst- and se
ond-order statisti
s. This generalproblem has been studied in the literature (see, e.g., [13�15℄).In the previous subse
tion, we noted that there might exist more than onemodel parametrization allowing simulating the 
hannel TFs or IRs with spe
i�edstatisti
s. Thus, a pra
ti
al approa
h to designing measurement-based 
hannelsimulation models starts with �nding a model parametrization, whi
h satis�es
ertain 
riteria, e.g., low 
omputational load in synthesizing 
hannel TFs, a smallnumber of the 
hannel simulation model parameters, et
. In the following 
hap-ters, we dis
uss two approa
hes to designing measurement-based simulation mod-els for wireless 
ommuni
ation 
hannels. In these approa
hes, we have taken intoa

ount the following 
onsiderations:
• A model parametrization should be suitable for 
onstru
ting measurement-based 
hannel simulation models for narrowband single-input single-output(SISO) as well as narrowband MIMO time-variant wireless 
ommuni
ation
hannels.
• A model parametrization should be suitable for 
onstru
ting measurement-based 
hannel simulation models for wideband SISO and wideband MIMOtime-variant wireless 
hannels.
• A model parametrization and methods for determining the values of themodel parameters should enable 
onstru
ting 
hannel simulation models1Hereafter, we presume that the measured system fun
tions of real-world 
hannels are digi-tized and 
onverted to the 
omplex baseband.



4 Chapter 1based on real-world wireless 
hannels 
orresponding to various propagationenvironments, e.g., outdoor and indoor propagation environments.
• A model parametrization and methods for determining the values of themodel parameters should enable 
onstru
ting measurement-based 
hannelsimulation models without assuming separability of the 
hannel 
orrelationproperties in time, frequen
y, and spa
e (see, e.g., [16℄).
• The parameters of the measurement-based 
hannel simulation models shouldbe determined e�
iently.1.3 Organization of the ThesisThe rest of the thesis is organized as follows. In Chapter 2, we des
ribe a sta-tisti
al test proposed for determining the intervals of stationarity for wireless
ommuni
ation 
hannels. The stationarity test has been applied to several radio
ommuni
ation 
hannels measured in di�erent propagation s
enarios. The resultsof the analysis of the identi�ed stationarity intervals are presented. In Chap-ter 3, we dis
uss a method for designing measurement-based sto
hasti
 modelsfor simulating wideband MIMO wireless 
hannels. The proposed approa
h allowssynthesizing 
hannel TFs with the spatial-temporal-frequen
y 
orrelation proper-ties approximating those of real-world radio 
hannels. In this 
hapter, we alsopresent two modi�
ations of the method for 
reating measurement-based 
hannelsimulation models for narrowband MIMO and wideband SISO 
hannels, respe
-tively. The multi
hannel two-dimensional (2D) autoregressive (AR) model forMIMO wideband mobile wireless 
hannels is presented in Chapter 4. In Chap-ter 5, we 
onsider the problem of estimating the velo
ity of mobile stations (MSs)in wireless 
ommuni
ation systems. In parti
ular, we investigate to what extendthe velo
ity estimation 
an be improved in wideband MS equipped with multipleantennas. For this purpose, we develop a simple velo
ity estimation algorithm.The performan
e of the algorithm is assessed by simulations. Finally, we summa-rize the results presented in this thesis in Chapter 6.



Chapter 2Stationarity of WirelessCommuni
ation Channels
2.1 Introdu
tionChapters 3 and 4 of this thesis deal with modeling of mobile wireless 
ommuni-
ation 
hannels. The 
hannel models 
onsidered in these 
hapters presume thewide-sense stationarity of randomly time-variant radio 
hannels [10℄. In pra
-ti
e, however, real-world 
hannels often demonstrate `quasi-stationary' behavior,i.e., the assumption of wide-sense stationarity 
an be a

epted only for limitedintervals of time and frequen
y [10, 17℄. The simplest way to justify the quasi-stationarity of a measured wireless 
hannel is by taking into a

ount the physi
alarguments su
h as the transmitter/re
eiver speed, the frequen
y bandwidth, thedistan
e to the s
atterers surrounding the transmitter/re
eiver, et
. Unfortu-nately, the 
hoi
e of stationarity intervals based on these simple physi
al 
onsid-erations is not always valid. Thus, it is important to develop a test pro
edurethat 
an be used to reliably identify regions of stationarity for wireless 
hannels.A number of stationarity tests have been proposed in the literature related tosu
h dis
iplines as wireless 
hannel modeling, spe
trum analysis, signal dete
tion,et
. The 
orrelation between 
onse
utive `instantaneous' delay power spe
traldensities (PSDs) has been used in [18℄ to identify the lo
al region of stationarity(LRS) for wireless 
hannels. A nonstationarity dete
tor based on the time-variantautoregressive (TVAR) model has been des
ribed in [19℄. In [20℄, the authorssuggest to identify the intervals of stationarity by analyzing 
hanges in the wave-number spe
trum estimated at di�erent lo
ations. The use of the nonparametri
run-test [21℄ for determining the stationarity intervals of radio 
hannels has beeninvestigated in [22℄. An interesting test for wide-sense stationarity of MIMOwireless 
hannels has been developed in [23℄. This approa
h is based on analyzingthe evolutionary spe
trum of a signal estimated at di�erent instan
es of time [24℄.5



6 Chapter 2Also one 
annot help mentioning the tests for stationarity developed based on thetime-frequen
y (time-s
ale) analysis of signals (see, e.g., [25, 26℄).In the development of the stationarity test proposed in [27℄ and presentedbelow in this 
hapter, the primary importan
e has been assigned to analyzing thestatisti
al properties of radio 
hannels without time averaging, under 
onditionthat the available frequen
y bandwidth allows that. Time averaging intrinsi
allyleads to a 
ontradi
tion, i.e., the test validates the stationarity of the data bypresuming its stationarity on intervals determined by the length of the window.Often (if not always), the length of the window is 
hosen heuristi
ally by 
ondu
t-ing preliminary eyeball analysis of the measurement data. The proposed approa
hallows to skip windowing of the measurement data in time. Hen
e, a greater levelof automation in the test pro
edure 
an be provided. The proposed test is basedon the hypothesis that the estimated delay PSD of a 
hannel does not 
hange withtime over the interval of stationarity. The test is appli
able both to SISO andMIMO radio 
hannels. The design of the test pro
edure relies on the de�nition ofa random (multivariate) wide-sense stationary (WSS) pro
ess (see, e.g. [28℄). Itis assumed that the time-variant frequen
y response (TVFR) of a 
hannel is WSS(jointly WSS for MIMO 
hannels) w.r.t. frequen
y. However, it appears that thisassumption is not restri
tive, if, similar to [18℄, the 
hannel stationarity intervalsare de�ned as the intervals over whi
h the lo
ations of the s
atterers, transmitter,and re
eiver do not 
hange signi�
antly.This 
hapter is organized as follows. In Se
tion 2.2, the stationarity test forSISO and MIMO wireless 
ommuni
ation 
hannels is developed. The results ofthe performan
e evaluation for the developed test are presented in Se
tion 2.3.The analysis of the stationarity intervals for several real-world propagation en-vironments is presented in Se
tion 2.4. The 
on
luding remarks are given inSe
tion 2.5.2.2 Stationarity TestsLet the TVFR H(f ′, t) des
ribing a SISO wireless 
hannel in frequen
y f ′ andtime t be a 
omplex 2D random pro
ess. It is assumed that the TVFR H(f ′, t)is an ergodi
 pro
ess w.r.t. frequen
y f ′.Wide-sense stationarity of the TVFR H(f ′, t) w.r.t. time t implies that thedelay PSD is time-invariant. This observation forms the basi
s of the statisti
altest proposed for validating the hypothesis that the measured TVFR H(f ′, t) isa WSS pro
esses w.r.t. time t.In the following subse
tion, the stationarity test for SISO wireless 
hannelsis des
ribed. In Subse
tion 2.2.2, the pro
edure will be extended to test thestationarity of MIMO radio 
hannels.



Chapter 2 72.2.1 Stationarity Test for SISO ChannelsSuppose that the TVFR H(f ′, t) of a SISO radio 
hannel has been measured atdis
rete frequen
ies f ′m = −B/2 +m△f ′ ∈ [−B/2, B/2], m = 0, . . . ,M − 1, andat dis
rete time instan
es tn = n△t ∈ [0, T ], n = 0, . . . , N − 1. Hereafter, thesampling interval in the frequen
y domain is signi�ed by △f ′, while △t standsfor the sampling interval in the time domain. The frequen
y bandwidth and themeasurement time interval are denoted as B and T , respe
tively. The measuredTVFR of the 
hannel 
an be represented in a matrix form
H =






H[0, 0] . . . H[0, N − 1]... . . . ...
H[M − 1, 0] . . . H[M − 1, N − 1]




 . (2.1)The elements H[m,n] of the matrix H in (2.1) are 
omplex random variables.As it was mentioned above, it is assumed that the 
olumns of the 
hannel matrix

H, i.e., the snapshots of the 
hannel TVFR at time instan
es tn, are ergodi
pro
esses. Thus, for ea
h of these pro
esses, the mean 
an be determined as
η[n] = 〈H[m,n]〉f ′ (2.2)and the frequen
y auto
orrelation fun
tion (FACF) is given by

rf ′ [κ, n] = 〈H[m,n]H∗[m+ κ, n]〉f ′ (2.3)where ∗ designates the 
omplex 
onjugate and 〈·〉f ′ = 1
M

∑M−1
m=0 (·) denotes aver-aging over frequen
y.The delay PSD of the radio 
hannel at time tn is given by

P (τ ′, tn) = △f ′
∞∑

κ=−∞

rf ′ [κ, n]e−j2πτ ′κ△f ′

. (2.4)where τ ′ stands for the propagation delay.A

ording to the de�nition, wide-sense stationarity of the TVFR H w.r.t.time requires that the mean η[n] and the FACF rf ′ [κ, n] are time-invariant, i.e.,
η[n] = η (2.5)

rf ′ [κ, n] = rf ′ [κ]. (2.6)Condition (2.6) 
orresponds to the time-invarian
e of the delay PSD P (τ ′, tn),whi
h 
an be written as
P (τ ′, tn) = P (τ ′). (2.7)



8 Chapter 2Using (2.7), the null hypothesis H0 
an be formulated as follows
H0 :

(
P (τ ′, tn1

)− P (τ ′, tn2
)
)
= 0, tn1

6= tn2
(2.8)whi
h implies that the delay PSD at time tn1

equals the delay PSD at time tn2
.Note that the hypothesis H0 also suggests the equality of the mean values,i.e., η[n1] = η[n2]. This follows from the observation that

∫ ∞

−∞
P (τ ′, tn)dτ

′ = rf ′ [0, n] = σ2[n] + η2[n] (2.9)where σ2[n] denotes the varian
e σ2[n] = 〈(H[m,n]− η[n])(H[m,n] − η[n])∗〉f ′ .The pro
edure presented below allows to 
ompare the delay PSDs estimatedat two di�erent time instan
es1 and to determine whether the hypothesis H0 
anbe ex
epted.The following �ve-step data pro
essing algorithm signi�
antly simpli�es thestatisti
al analysis of the null hypothesis H0.Step 1. The n-th 
olumn of the 
hannel matrix H in (2.1) is divided into
K nonoverlapping segments ea
h of length Ms. The restri
tion imposed here is
K > Ms. Let

x(k)m = H[(k − 1)Ms +m,n], m = 0, . . . ,Ms − 1 (2.10)denote a 
omplex data sequen
e 
orresponding to the k-th segment, k = 1, . . . ,K.Step 2. For ea
h of the K sequen
es {x(k)m }Ms−1
m=0 , k = 1, . . . ,K, 
al
ulate theperiodogram at the dis
rete delays τ ′q = q

Ms△f ′ , q = 0, . . . ,Ms − 1, i.e.,
P̂ (k)
q =

△f ′
Ms

∣
∣
∣
∣
∣

Ms−1∑

m=0

x(k)m e−j2πτ ′q△f ′m

∣
∣
∣
∣
∣

2

. (2.11)It is known (see, e.g., [29℄) that asymptoti
ally (Ms → ∞)
P̂ (k)
q ∼

{

Pqχ
2
2/2, q = 1, . . . , Ms

2 − 1, Ms

2 + 1, . . . ,Ms − 1

Pqχ
2
1, q = 0 and Ms

2

(2.12)where χ2
1 and χ2

2 signify the 
hi-square distributions with one and two degrees offreedom, respe
tively. The symbol ∼ stands for the equality in distribution. Thetrue value of the delay PSD at the dis
rete delay τ ′q is denoted by Pq.Step 3. For ea
h of the K periodograms {P̂ (k)
q }Ms−1

q=0 , k = 1, . . . ,K, 
reate an1As will be shown shortly, the 
omparison is a
tually done in terms of the estimated 
epstrum.Re
all that the 
epstrum of a signal is related to the PSD through an invertible one-to-onetransformation.



Chapter 2 9auxiliary data sequen
e {y(k)p }2Ms−3
p=0 as follows

y(k)p =

{

P̂
(k)
p , p = 0, . . . ,Ms − 1

P̂
(k)
2Ms−2−p, p =Ms, . . . , 2Ms − 3.

(2.13)Step 4. For ea
h of the K sequen
es {y(k)p }2Ms−3
p=0 , k = 1, . . . ,K, estimate the
epstrum Φ̂

(k)
l at the dis
rete frequen
ies ωl = lπ/(Ms − 1), l = 0, . . . , 2Ms − 3,a

ording to

Φ̂
(k)
l =

1

2Ms − 2

2Ms−3∑

p=0

ln(y(k)p )ejωlp. (2.14)Here, it is impli
itly assumed that y(k)p > 0 for all p, whi
h is true in pra
ti
alsituations. Also note that due to the symmetry in {y(k)p }2Ms−3
p=0 , Φ̂(k)

l is real and
Φ̂
(k)
2Ms−2−l = Φ̂

(k)
l for l = 0, . . . ,Ms − 1.It has been shown in [30, 31℄ that asymptoti
ally, i.e., as Ms → ∞, the esti-mated 
epstrum {Φ̂(k)

l }Ms−1
l=0 follows the multivariate Gaussian distribution withthe 
ovarian
e matrix C. The matrix C is a 
onstant diagonal matrix independentof the periodogram {P̂ (k)

q }Ms−1
q=0 .Step 5. Sta
k the estimated 
epstrum sequen
es {Φ̂(k)

l }Ms−1
l=0 , k = 1, . . . ,K,as 
olumns into a matrix Un of dimensions Ms ×K. Let the 
olumn ve
tor ūnof dimensions Ms × 1 
ontain the sample mean of ea
h row of the matrix Un.To verify the hypothesis H0, the algorithm des
ribed above is applied to the

n1-th and the n2-th 
olumns of the 
hannel matrix H representing the 
hannelfrequen
y response at two distin
t time instan
es tn1
and tn2

. As the out
ome, weobtain two matri
es Un1
, Un2

and two 
olumn ve
tors ūn1
, ūn2

. The ve
tors ūn1and ūn2
are the 
epstrum estimates at the time instan
es tn1

and tn2
, respe
tively.The matri
es Un1

, Un2
and the ve
tors ūn1

, ūn2

an now be supplied to theHotelling T 2-test [32, 33℄.First, de�ne two matri
es

S1 = Un1
UT

n1
−Kūn1

ūT
n1

S2 = Un2
UT

n2
−Kūn2

ūT
n2

(2.15)where K is the number of segments (see Step 1 of the algorithm above) and theoperator {·}T denotes transposition. It is known [32℄ that the statisti

ϕ(S1,S2, ūn1

, ūn2
) given by

ϕ(S1,S2, ūn1
, ūn2

) =
K(2K −Ms − 1)

2Ms
(ūn1

− ūn2
)T (S1 + S2)

−1(ūn1
− ūn2

)(2.16)



10 Chapter 2follows the F-distribution, i.e., ϕ(S1,S2, ūn1
, ūn2

) ∼ F(Ms, 2K −Ms − 1).Thus, the null hypothesis H0 in (2.8) is a

epted if
ϕ(S1,S2, ūn1

, ūn2
) < fα (2.17)where fα is the 
riti
al value 
orresponding to the 100(1 − α)% 
on�den
e level.2.2.2 Stationarity Test for MIMO ChannelsWe 
onsider a MIMO wireless 
hannel with NT transmitting and NR re
eivingantennas. Ea
h of the NTNR sub
hannels establishing the 
ommuni
ation linksbetween ea
h transmitting and ea
h re
eiving antennas, is represented by themeasured TVFR 
hannel matrix Hi, i = 1, . . . , NTNR, de�ned in (2.1). As in theprevious subse
tion, the elements Hi[m,n] of the 
hannel matri
esHi are assumedto be 
omplex random variables. Furthermore, it is assumed that at every timeinstan
e tn, the TVFRs of all the sub
hannels are jointly WSS pro
esses w.r.t.frequen
y.The delay 
ross power spe
tral densities (CPSDs) at time tn is de�ned as

PHi,Hi′
(τ ′, tn) = △f ′

∞∑

κ=−∞

rf ′

Hi,Hi′
[κ, n]e−j2πτ ′κ△f ′

,

i, i′ = 1, . . . , NTNR (2.18)where rf ′

Hi,Hi′
[κ, n] is the frequen
y 
ross-
orrelation fun
tion (FCCF) at time tnbetween the TVFR Hi of the i-th sub
hannel and the TVFR Hi′ of the i′-thsub
hannel given by

rf ′

Hi,Hi′
[κ, n] = 〈Hi[m,n]H

∗
i′ [m+ κ, n]〉f ′ ,

i, i′ = 1, . . . , NTNR. (2.19)The wide-sense stationarity of the 
onsidered MIMO 
hannel w.r.t. time requiresthat the delay CPSDs PHi,Hi′
(τ ′, tn), i, i′ = 1, . . . , NTNR, are time invariant.Therefore, the null hypothesis H0 
an be expressed as

H0 :
(
PHi,Hi′

(τ ′, tn1
)− PHi,Hi′

(τ ′, tn2
)
)
= 0,

i, i′ = 1, . . . , NTNR and tn1
6= tn2

. (2.20)The obje
tive here is to validate the null hypothesis H0 by using the pro
eduredeveloped in the previous subse
tion for SISO wireless 
hannels.In [34, Chapter 15℄, the author des
ribes an interesting approa
h to estimat-ing CPSDs. It is mentioned, however, that this approa
h 
annot guarantee themagnitude squared 
oheren
e [34℄ between two sub
hannels to be always bounded



Chapter 2 11by 1. As we are interested in the time variation of the estimated delay CPSD andnot in the estimated 
oheren
e between the sub
hannels, this drawba
k is notrelevant for our purpose.Following [34℄, the real and the imaginary parts of the delay CPSDs PHi,Hi′
(τ ′, tn)
an be written as

ℜ{PHi,Hi′
(τ ′, tn)} =

1

2
(PZii′ ,Zii′

(τ ′, tn)− PHi,Hi
(τ ′, tn)− PHi′ ,Hi′

(τ ′, tn))

ℑ{PHi,Hi′
(τ ′, tn)} =

1

2
(PWii′ ,Wii′

(τ ′, tn)− PHi,Hi
(τ ′, tn)− PHi′ ,Hi′

(τ ′, tn))(2.21)for i, i′ = 1, . . . , NTNR and i 6= i′, where PZii′ ,Zii′
(τ ′, tn) and PWii′ ,Wii′

(τ ′, tn)denote, respe
tively, the delay PSDs of the signals
Zii′ [m,n] = Hi[m,n] +Hi′ [m,n]

Wii′ [m,n] = Hi[m,n] + jHi′ [m,n]. (2.22)Taking (2.21) into a

ount, the null hypothesis H0 in (2.20) 
an be reformulatedas follows
H0a :

(
PHi,Hi

(τ ′, tn1
)− PHi,Hi

(τ ′, tn2
)
)
= 0,

i = 1, . . . , NTNR and tn1
6= tn2

H0b :
(
PZii′ ,Zii′

(τ ′, tn1
)− PZii′ ,Zii′

(τ ′, tn2
)
)
= 0,

i, i′ = 1, . . . , NTNR, i 6= i′ and tn1
6= tn2

H0c :
(
PWii′ ,Wii′

(τ ′, tn1
)− PWii′ ,Wii′

(τ ′, tn2
)
)
= 0,

i, i′ = 1, . . . , NTNR, i 6= i′ and tn1
6= tn2

. (2.23)Note the absen
e of the delay CPSDs in (2.23). Thus, the null hypotheses
{{H0a}, {H0b}, {H0c}} 
an be veri�ed by using the method des
ribed in Sub-se
tion 2.2.1 for SISO 
hannels.The total number of the null hypotheses in (2.23) is equal to (NTNR)

2. Basedon the results of testing these hypotheses, the de
ision is to be taken on whethera MIMO 
hannel is WSS. One approa
h is to a

ept the wide-sense stationarityof a MIMO 
hannel only if all of the hypotheses {{H0a}, {H0b}, {H0c}} have beenvalidated. The probability of the Type I error, i.e., erroneously reje
ting any ofthe hypotheses {{H0a}, {H0b}, {H0c}}, is equal to α (see (2.17)). Thus, assumingthe independen
e of su
h errors, the probability of falsely reje
ting the hypothesisthat a MIMO 
hannel is WSS 
an be expressed as
Pr{error} = 1− (1− α)(NTNR)2 . (2.24)



12 Chapter 2As it follows from Table 2.1, even for MIMO 
hannels of moderate dimensions,the probability of error Pr{error} is una

eptable. A possible solution to thisproblem is to allow a 
ertain number of hypotheses in (2.23) to be reje
ted. Forexample, suppose the stationarity of a 2 × 2 MIMO 
hannel is veri�ed. Theprobability of error in a single hypothesis test α is set to 0.01. The goal is tomaintain Pr{error} equal to or less than α for the de
ision based on the resultsof (NTNR)
2 = 16 hypothesis tests. Using the Bernoulli trials s
heme [28℄, it 
anbe easily shown that in this 
ase Pr{error} ≤ 0.01 if at least 1 of 16 hypothesesin (2.23) is allowed to be reje
ted.Table 2.1: Probability Pr{error} of a wrong reje
tion of the hypothesis that aMIMO 
hannel of dimensions NT ×NR is WSS

NT ×NR α = 0, 05 α = 0.01 α = 0.003
2× 2 0.36 0.14 0.047
3× 3 0.984 0.557 0.216
4× 4 0.9998 0.924 0.537Let us now re
onsider the assumption of the wide-sense stationarity of the
hannel TVFR w.r.t. frequen
y. What 
an be said if this assumption is not valid?As it is des
ribed in Subse
tion 2.2.1, the Hotelling T 2-test veri�es the hypothesisthat the two 
olumn ve
tors ūn1

and ūn2
are equal. If the WSS assumption ofthe TVFR in the frequen
y domain is not valid, then the ve
tors ūn1

and ūn2are derived from the in
onsistent estimates of the delay PSDs. Thus, the nullhypotheses formulated in (2.8) and (2.23) 
annot be veri�ed, i.e., nothing 
an besaid about WSS property of the 
hannel TVFR w.r.t. time.However, it is plausible to assume that if the geographi
al lo
ations of thes
atterers, transmitter, and re
eiver remain un
hanged between the time instan
es
tn1

and tn2
, then the ve
tors ūn1

and ūn2
are equal. In this 
ase, the testsdeveloped above verify the empiri
al 
hannel stationarity as de�ned in [18℄.2.3 Performan
e EvaluationThe performan
e of the proposed stationarity test has been evaluated based onsyntheti
 TVFRs generated using the geometri
al two-ring 
hannel simulationmodel (see e.g., [35℄). Some of the 
hannel simulator parameters are spe
i�edbelow:

• Carrier frequen
y: 5.255 GHz;
• Bandwidth: B = 100 MHz;
• Re
eiving antenna: uniform linear array;
• Transmitting antenna: uniform linear array;
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• Antenna element spa
ing at the re
eiver: 0.5λ;
• Antenna element spa
ing at the transmitter: 0.5λ;
• Interval between the frequen
ies: △f ′ = 1.957 · 105 Hz;
• Time between 
hannel snapshots: △t = 0.02 s;
• Maximum Doppler frequen
y: 22 Hz;
• SNR: 10 dB.A hundred s
atterers are lo
ated on the rings around the base station (BS)and the MS (see also Chapter 5). It has been veri�ed that the Doppler frequen-
ies and the propagation delays are di�erent for all propagation paths. Under this
ondition the generated TVFR is ergodi
 w.r.t. time and frequen
y [11℄. All thepropagation path gains are equal to 1/

√
100. The parameters of the 
hannel sim-ulator do not 
hange with time. It has been observed that for the 
on�den
e levelof 99% (α = 0.01) and the parameter Ms = 16, the error probability Pr{error}is equal to 0.0073, 0.0145, and 0.0064 for SISO, 2 × 2 MIMO, and 4 × 4 MIMO
hannels, respe
tively. Evidently, the resulting error probabilities are 
lose to thetarget value of 0.01.Analysis of the test sensitivity based on the simulated 
hannel TVFRs revealsthat the maximum Doppler frequen
y does not signi�
antly in�uen
e the perfor-man
e of the test pro
edure. On the other hand, a non-Gaussianity of the TVFRs(as in the 
ase of a small number of s
atterers, e.g., below 20, in the simulationsetup des
ribed above) demonstrates a strong impa
t on the error probability

Pr{error}. Su
h impa
t 
an be redu
ed by in
reasing the segment length Ms.2.4 Appli
ations to Measurement DataIn this se
tion, we present the results of applying the test pro
edure developedin Se
tion 2.2 to real-world measurement data. The measurement 
ampaign hasbeen 
ondu
ted by Telenor R&D, Norway. The des
ription of the measurementsites as well as the measurement equipment 
an be found in Appendix A.The antenna arrays at the transmitter and the re
eiver allow us to investigatethe distribution of the stationarity interval lengths for SISO and MIMO 
hannels.For the measurements 
onsidered below, the parameter Ms (see Subse
tion 2.2.1)is equal to 16. The 
on�den
e level is set to 99% (α = 0.01).2.4.1 Mi
ro Cell Site � Regular Street GeometryThe �rst propagation environment 
orresponds to an urban mi
ro-
ell site with aregular street grid. A series of the measured impulse responses for this propagation
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Figure 2.1: Magnitude of the impulse response (mi
ro 
ell site � regular streetgeometry).
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Figure 2.2: Mean-square value of the TVFR (mi
ro 
ell site � regular streetgeometry).s
enario is shown in Fig. 2.1. The trend existing in the time variation of the mean-square value of the TVFR 
an be observed in Fig. 2.2.In Fig. 2.3, the P -value in the Hotelling T 2-test is shown for the SISO 
hannel.The P -value is the probability that the statisti
 ϕ(S1,S2, ūn1
, ūn2

), de�ned in(2.16), would take a value greater than the observed one ϕ̂(S1,S2, ūn1
, ūn2

), under
ondition the null hypothesis H0 (2.8) is true [36℄. The signi�
an
e value α = 0.01is also depi
ted in Fig. 2.3.
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Figure 2.3: P -value in the Hotelling T 2-test for the SISO 
hannel (mi
ro 
ellsite � regular street geometry).The 
omplementary 
umulative distribution fun
tions (CCDFs) of the lengthof the stationarity intervals2 obtained for SISO, 2 × 2 MIMO, and 4 × 4 MIMO
hannels are presented in Fig. 2.4. The mean length of the identi�ed stationarityintervals de
reases from 0.59 s for the SISO 
hannel to 0.28 s for the 2× 2 MIMOand to 0.18 s for 4 × 4 MIMO 
hannels. The standard deviations of the intervallengths are equal to 0.79 s, 0.34 s, and 0.21 s, for the SISO, 2×2 MIMO, and 4×4MIMO 
hannels, respe
tively. Also, the per
entage of the identi�ed stationarityintervals longer or equal than for example 0.5 s drops from 40% for the SISO
hannel to 20% for the 2× 2 MIMO and 10% for 4× 4 MIMO 
hannels.

2Sin
e the moving speed is known only approximately, the stationarity intervals are measuredin se
onds and not in wavelengths, whi
h otherwise might be a preferable measure.
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Figure 2.4: CCDF of the length of the stationarity intervals (mi
ro 
ell site �regular street geometry).2.4.2 Mi
ro Cell Site � Open Market Pla
eThe se
ond propagation environment 
orresponds to a town market square.The measured impulse responses and the graph of the TVFR mean-squarevalue are demonstrated in Figs. 2.5 and 2.6, respe
tively.The P -value in the Hotelling T 2-test for the SISO 
hannel is shown in Fig. 2.7.The CCDFs of the length of the stationarity intervals for the SISO, 2 × 2MIMO, and 4 × 4 MIMO 
hannels are depi
ted in Fig. 2.8. The average lengthof the identi�ed stationarity intervals de
reases from 0.51 s for the SISO 
han-nel to 0.25 s for the 2 × 2 MIMO and 0.14 s for 4 × 4 MIMO 
hannels, whilethe standard deviations of the interval lengths are equal to 0.64 s, 0.25 s, and
0.14 s, respe
tively. Note that similar to the previously 
onsidered propagationenvironment, the number and the length of the stationarity intervals de
rease asthe number of antennas at the re
eiver and transmitter in
reases. The per
entageof the identi�ed stationarity intervals longer or equal than 0.5 s is equal to 36%for the SISO 
hannel, 15% for the 2 × 2 MIMO 
hannel, and 4% for the 4 × 4MIMO 
hannel.



Chapter 2 17

Figure 2.5: Magnitude of the impulse response (mi
ro 
ell site � open marketpla
e).
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Figure 2.6: Mean-square value of the TVFR (mi
ro 
ell site � open marketpla
e).
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Figure 2.7: P -value in the Hotelling T 2-test for the SISO 
hannel (mi
ro 
ellsite � open market pla
e).
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Figure 2.8: CCDF of the length of the stationarity intervals (mi
ro 
ell site �open market pla
e).



Chapter 2 192.4.3 Mi
ro/Pi
o Cell Site � PassagewayThe measurement data has been 
olle
ted in a passageway 
onne
ting the marketsquare, mentioned in the previous subse
tion, with a side street (see Appendix A).A series of the impulse responses of the measured 
hannel is depi
ted inFig. 2.9. The mean-square value of the TVFR of the measured 
hannel is demon-strated in Fig. 2.10.

Figure 2.9: Magnitude of the impulse response (mi
ro/pi
o 
ell site � passage-way).The P -value for the SISO 
hannel and the empiri
al CCDFs of the length ofthe stationarity intervals for the SISO, 2×2 MIMO, and 4×4 MIMO 
hannels areshown in Figs. 2.11 and 2.12, respe
tively. The means and the standard deviationsof the length of identi�ed stationarity intervals are equal to 0.61 s and 0.79 s forthe SISO 
hannel, 0.29 s and 0.31 s for the 2 × 2 MIMO 
hannel, 0.13 s and
0.17 s for the 4× 4 MIMO 
hannel. The per
entage of the identi�ed stationarityintervals longer or equal than 0.5 s is equal to 39% for the SISO 
hannel, 23% forthe 2× 2 MIMO 
hannel, and 4% for 4× 4 MIMO 
hannel.Note again that the number and the length of the stationarity intervals de-
rease as the number of antennas at the re
eiver and transmitter in
reases.
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Figure 2.10: Mean-square value of the TVFR (mi
ro/pi
o 
ell site � passage-way).
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Figure 2.11: P -value in the Hotelling T 2-test for the SISO 
hannel (mi
ro/pi
o
ell site � passageway).
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Figure 2.12: CCDF of the length of the stationarity intervals (mi
ro/pi
o 
ellsite � passageway).2.4.4 Indoor Cell SiteThe stationarity test outlined in Se
tion 2.2 has been applied to a measured indoorwireless 
hannel.The sequen
e of the impulse responses and the graph of the mean-squarevalue of the TVFR are shown in Figs. 2.13 and 2.14, respe
tively. As it followsfrom 2.14, the variability of the measured TVFR in time is signi�
antly smaller
ompared to the TVFRs of the 
hannels analyzed above. This observation issupported by the results presented in Figs. 2.15 and 2.16 for the P -value in theHotelling T 2-test for the SISO 
hannel and the empiri
al CCDFs of the length ofthe stationarity intervals for the SISO, 2× 2 MIMO, and 4× 4 MIMO 
hannels.A possible explanation to the redu
ed variability of the measured TVFR is theabsen
e of the moving obje
ts along the measurement route. For this 
hannel,the per
entage of the identi�ed stationarity intervals longer or equal than 0.5 s isequal to 56% for the SISO 
hannel, 45% for the 2 × 2 MIMO 
hannel, and 32%for the 4× 4 MIMO 
hannel. The mean lengths of the stationarity intervals andthe standard deviations are equal , respe
tively, to 1 s and 1.51 s for the SISO
hannel, 0.77 s and 1.31 s for the 2× 2 MIMO 
hannel, 0.47 s and 0.76 s for the
4× 4 MIMO 
hannel. As for all previously 
onsidered 
hannels, we note that thenumber and the length of the stationarity intervals de
rease for this environmentas the number of antennas at the re
eiver and transmitter in
reases.
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Figure 2.13: Magnitude of the impulse response (indoor 
ell site).
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Figure 2.14: Mean-square value of the TVFR (indoor 
ell site).
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Figure 2.15: P -value in the Hotelling T 2-test for the SISO 
hannel (indoor 
ellsite).
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Figure 2.16: CCDF of the length of the stationarity intervals (indoor 
ell site).



24 Chapter 22.5 Chapter SummaryIn this 
hapter, we des
ribe a stationarity test for wireless 
ommuni
ation 
han-nels. The test is based on analyzing the delay PSD estimated at two di�erenttime instan
es. If the 
hanges in the estimated delay PSDs are statisti
ally in-signi�
ant, the hypothesis that the 
hannel is stationary during the 
onsideredtime interval is a

epted. The proposed stationarity test has been extended tovalidate the stationarity of real-world MIMO wireless 
hannels.In sele
ting values for the parameters of the test pro
edure, parti
ularly the
on�den
e level, whi
h has been set in all our experiments to 99%, we have beenguided by 
onsidering the probability of the Type I error as the primary per-forman
e evaluation 
riterion. The reason for 
hoosing this parti
ular 
riterionlies in the fa
t that the risk of erroneous reje
tion of the null hypothesis for thedeveloped test 
an be assessed obje
tively. On the other hand, evaluating thestatisti
al power of the test, i.e., the probability of the Type II error, requiresthe non-stationary 
hannel TVFRs. On 
loser inspe
tion it turns out that thenon-stationary 
hannel TVFRs 
an be synthesized in a variety of manners. Forexample, the 
hanges in the 
hannel delay PSDs 
an be abrupt and easily iden-ti�ed, while gradual transitions in the delay PSDs make the de�nition of the
hannel stationarity interval itself rather di�
ult and subje
tive.The analysis of the TVFRs of wireless 
hannels measured in di�erent propa-gation environments suggests that the length of the 
hannel stationarity intervalsis greatly dependent on the number of antennas at the transmitter and the re-
eiver. Generally, the stationarity intervals are longer and o

ur more often forSISO 
ommuni
ation 
hannels 
ompared to MIMO 
hannels. It appears thatthe measured TVFR be
omes more �sensitive� to the 
hanges in the propagationenvironment as the number of antennas at the transmitter and re
eiver in
reases.In the following 
hapters, we use the stationarity test pro
edure presentedabove to identify the intervals, over whi
h the TVFRs of the real-world wireless
an be assumed WSS.



Chapter 3Design of Measurement-BasedSto
hasti
 Channel Simulators
3.1 Introdu
tionCorrelation-based models are widely used for simulating wireless 
hannels (see,e.g., [37�39℄). In the simplest form these models des
ribe only the spatial 
orrela-tion properties of MIMO 
hannels. In [40,41℄, the so-
alled Krone
ker model hasbeen 
ombined with the tap-delay line model to represent wideband MIMO 
han-nels. Re
ently, a stru
tured model, based on the eigenvalue de
omposition of the
hannel 
orrelation matrix, has been proposed in [42℄ for wideband MIMO 
han-nels. A 
orrelation-based model for wideband MIMO Rayleigh fading 
hannelswith sele
tivity in spa
e, time, and frequen
y has been des
ribed in [43,44℄. Sim-ulation te
hniques based on the orthogonal de
omposition of the 
hannel impulseresponse are presented in [45, 46℄.In this 
hapter, we des
ribe a method for designing measurement-based sto
has-ti
 simulation models for time-variant wireless 
hannels [47℄. The method hasbeen developed based partly on the results published in [48�50℄. The distin
tivefeature of the proposed design method is the 
apability of generating realizationsof the 
hannel TVFRs with the spatial, temporal, and frequen
y 
orrelation 
har-a
teristi
s 
losely approximating those of a real-world prototype 
hannel. Notethat the separability of the 
orrelation properties in time, frequen
y, and spa
e(see [16, 51℄) is not presumed. The usefulness of the method is illustrated by de-signing several sto
hasti
 
hannel simulators based on the TVFRs of real-world
hannels measured in di�erent propagation environments.This 
hapter is organized as follows. In Se
tion 3.2, the sto
hasti
 simula-tion model is des
ribed for MIMO wideband 
hannels. The problem of designingmeasurement-based MIMO wideband 
hannel simulators is formulated in Se
-tion 3.3. The algorithm proposed for determining the parameters of MIMO wide-25
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hannel simulators is presented in Se
tion 3.4. In Se
tion 3.5, we validatethe 
orre
tness of the parameter 
al
ulation algorithm by simulations. Examplesillustrating the development of sto
hasti
 
hannel simulators based on real-worldwideband MIMO 
hannels are presented in Se
tion 3.6. In Se
tions 3.7 and 3.8,we 
onsider the design of sto
hasti
 simulators for MIMO narrowband 
hannelsand SISO wideband 
hannels, respe
tively. The 
on
luding remarks are given inSe
tion 3.9.3.2 A Sto
hasti
 Channel Simulation Model for MIMOWideband ChannelsIn this se
tion, we des
ribe a sto
hasti
 simulation model for MIMO widebandradio 
hannels. It is presumed that the transmitter and the re
eiver are equippedwith NT and NR antennas, respe
tively.3.2.1 Time-Variant Frequen
y ResponseThe simulated TVFR of a MIMO wideband wireless 
hannel at the dis
rete fre-quen
ies f ′m = −B/2 + m△f ′ ∈ [−B/2, B/2], m = 0, . . . ,M − 1, and at thedis
rete time instan
es tn = n△t ∈ [0, T ], n = 0, . . . , N − 1, is represented by thematrix sequen
e
H[m,n] =






H1,1[m,n] . . . H1,NR
[m,n]... . . . ...

HNT ,1[m,n] . . . HNT ,NR
[m,n]




 (3.1)where ea
h element Hi1,i2 [m,n], i1 = 1, . . . , NT and i2 = 1, . . . , NR, is a sampledTVFR of the sub
hannel between the i1-th transmitting antenna and the i2-thre
eiving antenna. The parameters B and T denote the frequen
y bandwidth andthe observation time interval, respe
tively. In the ve
torized form, the TVFR

H[m,n] is given by
h[m,n] = vec(H[m,n]) =









H1,1[m,n]

H2,1[m,n]...
HNT ,NR

[m,n]









. (3.2)Before we pro
eed with des
ribing the sto
hasti
 simulation model for MIMOwideband radio 
hannels, it makes sense to sket
h the line of reasoning behindthe 
hosen modeling approa
h. For this purpose, we 
onsider a general dis
rete-time WSS zero-mean 
omplex random pro
ess y(tn), tn ∈ [0, T ]. The 
anoni
al
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omposition of the random pro
ess y(tn) is given by [52℄
y(tn) =

∑

l

Ulϕl(tn) (3.3)where Ul are un
orrelated zero-mean 
omplex random variables and ϕl(tn) aredeterministi
 basis fun
tions.For the 
omplex random pro
ess y(tn), represented by (3.3), the 
anoni
alde
omposition of the 
orrelation fun
tion Υ(tn, tq) = E{y(tn)y∗(tq)} is expressedas
Υ(tn, tq) =

∑

l

σ2Ul
ϕl(tn)ϕ

∗
l (tq) (3.4)where σ2Ul

denotes the varian
e of the random variable Ul.It is well-known that the optimal 
hoi
e of the basis fun
tions ϕl(tn) is di
tatedby the Karhunen-Loève expansion (KLE) [53�55℄. The drawba
k of the KLE isthe la
k of an analyti
al solution for the basis fun
tions ϕl(tn), ex
ept for a fewspe
ial 
ases. As a 
onsequen
e, it is not possible to generate realizations of therandom pro
ess y(tn) at arbitrary 
hosen time instan
es.An alternative approa
h to sele
ting the basis fun
tions ϕl(tn) in (3.3) is toemploy a generi
 basis1, e.g., the Fourier basis. Su
h `universality' in representingradio propagation 
hannels is provided by the Maxwellian basis. As postulatedin [11, Chapter 4℄, any wireless 
hannel satisfying the bounded free-spa
e prop-agation 
onditions 
an be represented as a 
ombination of plane waves, whi
h
onstitute a subset of the Maxwellian basis. It seems reasonable then to 
hoosethe fun
tions des
ribing the plane waves as the basis fun
tions for modeling theTVFRs of wireless 
ommuni
ation 
hannels.The simulation model proposed in this 
hapter for generating realizationsof the TVFR h[m,n] = [h1[m,n], . . . , hNTNR
]T is based on the sto
hasti
 lo
alarea 
hannel (SLAC) model [11℄. The TVFR of ea
h sub
hannel hi[m,n], i =

1, . . . , NTNR, is a 2D 
omplex zero-mean random pro
ess, represented in thegeneralized form by the sum (
f. (3.3))
hi[m,n] =

L∑

l=1

Ulϕil [m,n] (3.5)where {Ul}L1 are independent zero-mean 
omplex random variables and {ϕil [m,n]}L1are deterministi
 2D fun
tions de�ned as
ϕil [m,n] = gile

j(2πfdl tn−2πf ′

mτ ′
l
), l = 1, . . . , L and i = 1, . . . , NTNR. (3.6)1By qualifying a basis as generi
, we mean a broad appli
ability of the basis for representingsignals under mild 
onditions, whi
h are ful�lled in many pra
ti
al situations.
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h fun
tion ϕil [m,n] des
ribes a homogeneous ele
tromagneti
 plane wave. Itis 
hara
terized by the 
omplex path gain gil , the Doppler frequen
y fdl , and thepropagation delay τ ′l . In 
ontrast to the SLAC model [11℄, the number of termsin the sum (3.5) is ne
essarily �nite.As follows from (3.5) and (3.6), the TVFR h[m,n] is a weighted sum of L
omplex exponentials2
h[m,n] =

L∑

l=1

clgle
j(2πfdl tn−2πf ′

mτ ′
l
)Ul. (3.7)where the ve
tor gl is de�ned as gl = [g1l , . . . , gNTNRl

]T . In the polar 
oordinatesystem, the 
omplex weighting 
oe�
ients {Ul = Ξle
jΘl}L1 are represented by thephase shifts {Θl}L1 and the magnitudes {Ξl}L1 . The phase shifts {Θl}L1 are inde-pendent identi
ally distributed (i.i.d.) random variables, ea
h having a uniformdistribution on the interval [0, 2π). The magnitudes {Ξl}L1 are independent, butnot ne
essarily identi
ally distributed random variables. Moreover, the randomvariables Ξl and Θl are statisti
ally independent for all l = 1, . . . , L.As will be shown in the next subse
tion, the 
orrelation properties of the
hannel simulation model in (3.7) in time, frequen
y, and spa
e are 
ompletelydes
ribed by the set of parameters P =

{
L, {cl}L1 , {gl}L1 , {fdl}L1 , {τ ′l}L1

}. Notethat the number of the 
omponents L is also 
onsidered here (with some abuseof notation) as a model parameter. For a measurement-based sto
hasti
 
hannelsimulator, the set of parameters P is determined from the measured TVFR of aprototype physi
al wireless 
hannel.The distributions of the random variables {Ξl}L1 
an, in prin
iple, be de�nedarbitrarily, but restri
ted to having unit varian
e. For example, when {Ξl}L1 areRayleigh distributed or, equivalently, Ul ∼ CN (0, 1) (l = 1, . . . , L) [28℄, the TVFR
h[m,n] in (3.7) is a 
omplex Gaussian multivariate 2D random ve
tor pro
ess. Ifthe magnitudes {Ξl}L1 are 
onstant and all are equal to 1, it 
an be shown thatthe envelope PDF p|hi|(x) of the simulated TVFR hi[m,n] of the ith sub
hannelis given by (see [11, p.118℄)

p|hi|(x) =

∫ ∞

0
xJ0(xζ)

(
L∏

l=1

J0(|clgil |ζ)
)

ζdζ, i = 1, . . . , NTNR (3.8)where J0(·) denotes the zero-order Bessel fun
tion of the �rst kind. Although theprodu
ts {clgil}L1 are in general not equal, it 
an be expe
ted that the envelopePDF p|hi|(x) approa
hes the Rayleigh distribution as L → ∞ due to the 
entrallimit theorem.2The reason for keeping the gain fa
tors {cl} as separate parameters will be
ome 
lear inSe
tion 3.4, where the parameter 
omputation method is 
onsidered.



Chapter 3 293.2.2 Spa
e-Time-Frequen
y Correlation MatrixThe 
orrelation between the samples of the simulated TVFR h[m,n] is 
hara
-terized by the spa
e-time-frequen
y 
orrelation matrix R that is de�ned as
R = E

{
v[m,n]vH [m,n]

}
=
















R[0, 0] · · · R[−κmax, 0] · · · R[0,−ιmax] · · · R[−κmax,−ιmax]... . . . ... . . . ... . . . ...
R[κmax, 0] · · · R[0, 0] · · · R[κmax,−ιmax] · · · R[0,−ιmax]... . . . ... . . . ... . . . ...
R[0, ιmax] · · · R[−κmax, ιmax] · · · R[0, 0] · · · R[−κmax, 0]... . . . ... . . . ... . . . ...

R[κmax, ιmax] · · · R[0, ιmax] · · · R[κmax, 0] · · · R[0, 0]














(3.9)where the operator (·)H stands for a 
omplex 
onjugate transpose of a matrix andthe ve
tor v[m,n] designates

v[m,n] = [hT [m,n] . . .hT [m− κmax, n]

. . .hT [m,n− ιmax] . . .h
T [m− κmax, n− ιmax]]

T . (3.10)After substituting (3.7) into (3.10), the spa
e-time-frequen
y 
orrelation ma-trix R of the 
hannel simulation model 
an be written as
R =

L∑

l=1

c2lRtl ⊗Rf ′

l
⊗Rgl (3.11)where the symbol ⊗ denotes the Kroneker produ
t. Note that Kroneker stru
-ture of the 
orrelation matrix R results from absen
e of any 
ombinations of thespa
e-frequen
y-time 
ross-terms in the 
omplex eponentials in (3.7) (
f. the 
on-ditions for the wave propagation in the lo
al area [11, Chapter 4℄). The ToeplitzHermitian matri
es Rtl , Rf ′

l
and the Hermitian matrix Rgl are de�ned as

Rtl =






1 · · · e−j2πfdl ιmax△t... . . . ...
ej2πfdl ιmax△t · · · 1




 (3.12)

Rf ′

l
=






1 · · · ej2πτ
′

l
κmax△f ′... . . . ...

e−j2πτ ′
l
κmax△f ′ · · · 1




 (3.13)
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Rgl = glg

H
l . (3.14)The spa
e-time-frequen
y 
orrelation matrix R in (3.9) is Hermitian and dou-bly blo
k-Toeplitz.For the 
ase of 
omplex weighting 
oe�
ients with the 
onstant magnitudes

{Ξl = 1}L1 in (3.7), it is worth mentioning that the TVFR h[m,n] is 
orrelation-ergodi
 w.r.t. time and frequen
y under the 
onditions fdn 6= fdl and τ ′n 6= τ ′l forall n 6= l.3.3 Problem FormulationAs it has been stated in Se
tion 3.2, the set of parameters P of the sto
hasti

hannel simulation model in (3.7) is to be determined from the TVFR of a pro-totype physi
al wireless 
hannel. Our aim is to develop an algorithm that allows
reating 
hannel simulators with the 
orrelation properties in time, frequen
y, andspa
e 
losely approximating the 
orresponding 
orrelation properties of prototypereal-world 
hannels.Let H̃[m,n] denote the TVFR of a real-world wireless NT×NR MIMO 
hannelmeasured at the dis
rete frequen
ies f ′m, m = 0, . . . ,M − 1, and at the dis
retetime instan
es tn, n = 0, . . . , N − 1. The TVFR H̃[m,n] in the ve
torized formis given by
h̃[m,n]=

[

h̃1[m,n], . . . , h̃NTNR
[m,n]

]T

=vec(H̃[m,n]) =
[

H̃1,1[m,n], . . . , H̃NT ,NR
[m,n]

]T
. (3.15)The TVFR of ea
h sub
hannel h̃i[m,n], i = 1, . . . , NTNR, is assumed to be a2D zero-mean 
omplex random pro
ess. Furthermore, we assume that the TVFR

h̃[m,n] of a real-world 
hannel is ergodi
 with respe
t to time and frequen
y,therefore, an estimate of the spa
e-time-frequen
y 
orrelation matrix R̃, de�nedsimilar to the 
orrelation matrix R in (3.9), 
an be obtained from a single realiza-tion of the TVFR h̃[m,n] by averaging over time and frequen
y. The estimationof the 
orrelation matrix R̃ is 
onsidered in the next se
tion.The problem of designing a measurement-based sto
hasti
 
hannel simulator
an now be formulated as follows:Given the estimated 
orrelation matrix R̃ of a real-world 
hannel, design a
hannel simulation model in su
h a way that the 
orrelation matrix R of the
hannel simulator approximates 
losely the estimated 
orrelation matrix R̃.Taking into a

ount the possible ina

ura
y of the model in (3.7), as well
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orrelation matrix R̃, we suggest using the fol-lowing design 
riterion (see also [6, 56℄) for determining the set of parameters
P =

{
L, {cl}L1 , {gl}L1 , {fdl}L1 , {τ ′l}L1

} of the 
hannel simulation model de�ned inSe
tion 3.2
P̂ = min

P

∥
∥
∥R̃−R

∥
∥
∥
F

(3.16)where the symbol ‖·‖F denotes the Frobenius matrix norm. The Frobenius matrixnorm, in this 
ase, plays the role of the Eu
lidian ve
tor norm in the traditionalleast-square �tting of a data sequen
e formulation. After substituting (3.11) into(3.16) we obtain
P̂ = min

P

∥
∥
∥R̃−∑L

l=1 c
2
lRtl ⊗Rf ′

l
⊗Rgl

∥
∥
∥
F

(3.17)where the matri
es Rtl , Rf ′

l
, and Rgl are de�ned in (3.12), (3.13), and (3.14),respe
tively.In the next se
tion, we develop an iterative algorithm for determining theparameters of the 
hannel simulation model by minimizing the Frobenius normin (3.17).3.4 Computation of the Channel Simulator Parameters3.4.1 Estimation of the Channel Correlation MatrixBy assumption, the measured TVFR h̃[m,n] is WSS (ergodi
) with respe
t totime and frequen
y. Theoreti
ally, this means that the matrix R̃ must be doublyblo
k-Toeplitz3. This 
an hardly be observed in pra
ti
al situations due to thestatisti
al variations in the 
orrelation matrix, estimated from a limited numberof measured data samples.Therefore, in order to ensure the doubly blo
k-Toeplitz stru
ture of the es-timated 
orrelation matrix R̃, we �rst obtain the estimates of the 
orrelationmatri
es R̃[κ, ι] for κ = −κmax, . . . , 0, . . . , κmax and

ι = −ιmax, . . . , 0, . . . , ιmax, as follows
ˆ̃
R[κ, ι] =

1

(M − |κ|)(N − |ι|)

M−1−|κ|
∑

m=0

N−1−|ι|
∑

n=0

h̃[m,n]h̃H [m+ κ, n+ ι]. (3.18)Note that the 
orrelation matrix estimator (3.18) is unbiased, i.e.,
E{ ˆ̃R[κ, ι]} =3Re
all that the TVFR h̃[m,n] is measured on the grid of equally distant frequen
ies f ′

m =
−B/2 +m△f ′, m = 0, . . . ,M − 1, and time instan
es tn = n△t, n = 0, . . . , N − 1.
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1

(M − |κ|)(N − |ι|)

M−1−|κ|
∑

m=0

N−1−|ι|
∑

n=0

E{h̃[m,n]h̃H [m+ κ, n + ι]} = R̃[κ, ι].(3.19)Also for the 
omplex random pro
ess h̃[m,n], whi
h is jointly Gaussian for anyset of frequen
ies f ′m and time instan
es tn, it 
an be shown that the varian
e of the(i1, i2)-th element ˆ̃
Ri1,i2 [κ, ι], i1, i2 = 1, . . . , NTNR, of the estimated 
orrelationmatrix in (3.18), given by

E

{

( ˆ̃Ri1,i2 [κ, ι]−R̃i1,i2 [κ, ι])(
ˆ̃
Ri1 i2 [κ, ι]−R̃i1,i2 [κ, ι])

∗

}

=

=
1

(M − |κ|)2(N − |ι|)2
M−1−|κ|
∑

m1=0

N−1−|ι|
∑

n1=0

M−1−|κ|
∑

m2=0

N−1−|ι|
∑

n2=0

E

{

h̃i1 [m1, n1]h̃
∗
i2 [m1 + κ, n1 + ι]h̃i2 [m2 + κ, n2 + ι]h̃∗i1 [m2, n2]

}

−|R̃i1,i2 [κ, ι])|2 =

=
1

(M − |κ|)2(N − |ι|)2
M−1−|κ|
∑

m1=0

N−1−|ι|
∑

n1=0

M−1−|κ|
∑

m2=0

N−1−|ι|
∑

n2=0
[

E

{

h̃i1 [m1, n1]h̃
∗
i1 [m2, n2]

}

E

{

h̃∗i2 [m1 + κ, n1 + ι]h̃i2 [m2 + κ, n2 + ι]

}

+

E

{

h̃i1 [m1, n1]h̃i2 [m2 + κ, n2 + ι]

}

E

{

h̃∗i2 [m1 + κ, n1 + ι]h̃∗i1 [m2, n2]

}](3.20)asymptoti
ally (as N → ∞, M → ∞) approa
hes zero under the 
ondition
∞∑

ϑ=−∞

∞∑

ς=−∞

|ϑ||ς|
[

E

{

h̃i1 [m,n]h̃
∗
i1 [m+ ϑ, n+ ς]

}

×E
{

h̃i2 [m,n]h̃
∗
i2 [m− ϑ, n− ς]

}

+ E

{

h̃i1 [m,n]h̃i2 [m+ ϑ+ κ, n + ς + ι]

}

×E
{

h̃∗i1 [m,n]h̃
∗
i2 [m− ϑ+ κ, n − ς + ι]

}]

<∞(3.21)where we have de�ned ϑ = m2 −m1 and ς = n2 − n1. The 
ondition in (3.21) isnormally ful�lled in pra
ti
e.The estimated 
orrelation matrix ˆ̃
R is 
reated by 
ombining the estimatedmatri
es ˆ̃

R[κ, ι] similar to (3.9). It 
an be easily 
he
ked that the resulting matrix
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ˆ̃
R is Hermitian and doubly blo
k-Toeplitz.3.4.2 Iterative Parameter Computation MethodObserve that the minimization of the Frobenius norm in (3.17) resembles theproblem of �nding the optimal (in the Frobenius norm sense) de
omposition of the
orrelation matrix ˆ̃

R over a library X of the Hermitian matri
es X = Rt ⊗Rf ′ ⊗
Rg. Ea
h member Xk = Rtk⊗Rf ′

k
⊗Rgk of the matrix library X is 
onstru
ted bysubstituting a set of the 
hannel simulator parameters γk = {gk, fdk , τ ′k} ∈ Γ into(3.12)�(3.14). Here, Γ denotes the set of all possible sets γk. To �nd the matri
es

{Xl}L1 that minimize the Frobenius norm in (3.17), we adapt the mat
hing pursuit(MP) approa
h [57℄ often employed, e.g., for sele
ting the `best' wavelet pa
ketbasis de
omposition of a given signal.The estimated 
orrelation matrix ˆ̃
R is de
omposed as

ˆ̃
R =

〈 ˆ̃R,X1〉
〈X1,X1〉

X1 +
ˆ̃
Rres1 (3.22)where 〈A,B〉 designates the matrix inner produ
t and X1 = Rt1 ⊗Rf ′

1
⊗Rg1 is amember of the matrix library X obtained, as mentioned above, by substituting theset of the simulation model parameters γ1 = {g1, fd1 , τ ′1} ∈ Γ into (3.12)�(3.14).The Hermitian matrix ˆ̃

Rres1 represents the residual approximation error. It
an be shown that the matri
esX1 and ˆ̃
Rres1 are orthogonal, i.e., 〈 ˆ̃Rres1,X1〉 = 0,
onsequently

‖ ˆ̃R‖2F =
| ˆ〈R̃,X1〉|2
〈X1,X1〉

+ ‖ ˆ̃Rres1‖2F . (3.23)From (3.23), it follows that ‖ ˆ̃R‖F ≥ ‖ ˆ̃Rres1‖F and the set of parameters γ1 =

{g1, fd1 , τ ′1}, whi
h minimizes the norm of the residual error ˆ̃
Rres1 , 
an be deter-mined as

γ1 = {g1, fd1 , τ ′1} = argmax
γk∈Γ

〈 ˆ̃R,Xk〉
〈Xk ,Xk〉

. (3.24)Also, from the 
omparison of (3.17) and (3.23), the squared gain fa
tor c21 is givenby
c21 =

〈 ˆ̃R,X1〉
〈X1,X1〉

. (3.25)Equation (3.11) implies that the gain fa
tors cl must be real and nonnegative.Hen
e, the maximizer in (3.24) has to be supplemented with the 
onstraint
〈 ˆ̃R,X1〉 = |〈 ˆ̃R,X1〉|, i.e., the inner produ
t 〈 ˆ̃R,X1〉 must be real and greaterthan or equal to zero.
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Rres1 is de
omposed into the sum

ˆ̃
Rres1 =

〈 ˆ̃Rres1 ,X2〉
〈X2,X2〉

X2 +
ˆ̃
Rres2 . (3.26)Again, it 
an be shown that 〈 ˆ̃Rres2 ,X2〉 = 0, and 
onsequently

‖ ˆ̃Rres1‖2F =
|〈 ˆ̃Rres1 ,X2〉|2

〈X2,X2〉
+ ‖ ˆ̃Rres2‖2F (3.27)where the matrix X2 is a member of the library X 
orresponding to the parameterset γ2 = {g2, fd2 , τ ′2} ∈ Γ. Similar to (3.24) and (3.25), the parameter set γ2 isobtained by maximizing 〈 ˆ̃Rres1 ,Xk〉/〈Xk,Xk〉 under the 
onstraint 〈 ˆ̃Rres1 ,X2〉 =

|〈 ˆ̃Rres1 ,X2〉|, and the squared gain fa
tor c22 = 〈 ˆ̃Rres1 ,X2〉/〈X2,X2〉. Observethat a

ording to (3.27) ‖ ˆ̃Rres1‖F ≥ ‖ ˆ̃Rres2‖F .Continuing in a similar way, we obtain the following de
omposition of theestimated 
orrelation matrix ˆ̃
R

ˆ̃
R =

L∑

l=1

〈 ˆ̃Rresl−1
,Xl〉

〈Xl,Xl〉
Xl +

ˆ̃
RresL (3.28)where ˆ̃

Rres0 =
ˆ̃
R.A

ordingly, the Fobenius norm in (3.17) is given by

‖ ˆ̃R −
L∑

l=1

〈 ˆ̃Rresl−1
,Xl〉

〈Xl,Xl〉
Xl‖F = ‖ ˆ̃RresL‖F . (3.29)Note that the inequality ‖ ˆ̃Rresl

‖F ≥ ‖ ˆ̃Rresl+1
‖F holds true for all l = 0, . . . , L−1.Let us now assume that the matri
es {Xl}L1 ∈ X , as well as the 
orrespondingsquared gain fa
tors {c2l = 〈 ˆ̃Rresl−1

,Xl〉/〈Xl,Xl〉}L1 , have been determined. Inorder to further redu
e the residual approximation error given by (3.29), we wantto �nd the best possible solution to the following maximization problem (see(3.24))
{
gL+1, fdL+1

, τ ′L+1

}
= argmax

gk,fdk ,τ
′

k

〈 ˆ̃RresL
,Xk〉

〈Xk ,Xk〉 (3.30)under the 
onstraint 〈 ˆ̃RresL
,XL+1〉 = |〈 ˆ̃RresL

,XL+1〉|.Using the properties of the Krone
ker produ
t and the de�nitions in (3.12)�
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an be written as
Xk = xkx

H
k = (etk ⊗ ef ′

k
⊗ gk)(etk ⊗ ef ′

k
⊗ gk)

H (3.31)where
etk =

[

1 ej2πfdk△t . . . ej2πfdk ιmax△t
]T

ef ′

k
=

[

1 e−j2πτ ′
k
△f ′

. . . e−j2πτ ′
k
κmax△f ′

]T
. (3.32)It follows that the maximizer in (3.30) 
an be equivalently expressed as

{
gL+1, fdL+1

, τ ′L+1

}
= argmax

gk,fdk ,τ
′

k

xH
k
ˆ̃
RresLxk

xH
k xk

. (3.33)To redu
e the 
omputational di�
ulties asso
iated with the multidimensionalsear
h for the parameters {gL+1, fdL+1
, τ ′L+1

} in (3.33), we use the pro
eduredeveloped below.The maximum of the Rayleigh quotient in (3.33) is equal to the largest eigen-value λmaxL of the matrix ˆ̃
RresL

[58℄. This observation suggests an idea to makethe ve
tor xL+1 as mu
h as possible 
ollinear with the eigenve
tor uL asso
iatedwith the eigenvalue λmaxL . Thus, the maximization problem in (3.33) 
an bereformulated as
{
gL+1, fdL+1

, τ ′L+1

}
= argmin

gk,fdk ,τ
′

k

xH
k PLxk

xH
k xk

(3.34)where the matrixPL = I−uLu
H
L is the orthogonal proje
tor on the (NTNR(κmax+

1)(ιmax + 1) − 1)-dimensional subspa
e 
omplementary to the subspa
e spannedby the ve
tor uL, and I denotes the unity matrix of appropriate dimensions. In(3.34), the property PH
LPL = PL has been used.On substituting xk = etk ⊗ ef ′

k
⊗ gk into (3.34), we obtain4

{
gL+1, fdL+1

, τ ′L+1

}
= argmin

gk,fdk ,τ
′

k

〈Rf ′

k
⊗Rgk ,P

′
Lk
〉

(eHtketk)(e
H
f ′

k

ef ′

k
)(gH

k gk)
(3.35)where the matrix P′

Lk
is de�ned as
P′

Lk
= (eHtk ⊗ I)PL(etk ⊗ I). (3.36)4Re
all that for any square matrix A and a ve
tor b, the following equalities hold b

H
Ab =

trace{bbH
A} = 〈bbH ,A〉.



36 Chapter 3The Cou
hy-Bunyakovsky-S
hwarz (CBS) inequality allows us to write
|〈Rf ′

k
⊗Rgk ,P

′
Lk
〉| ≤ ‖Rf ′

k
⊗Rgk‖F ‖P′

Lk
‖F . (3.37)Thus, as a solution to (3.35), we use the Doppler frequen
y fdL+1

determined as
fdL+1

= argmin
fdk

‖P′
Lk
‖F

eHtketk
. (3.38)After substituting the Doppler frequen
y fdL+1

that minimizes (3.38) into (3.36),the 
hannel simulator parameters {gL+1, τ
′
L+1

} are found from the following equa-tion
{
gL+1, τ

′
L+1

}
= argmin

gk,τ
′

k

〈Rgk ,P
′′
Lk

〉
(eH

f ′

k

ef ′

k
)(gH

k gk)
(3.39)where the matrix P′′

Lk
is de�ned as
P′′

Lk
= (eHf ′

k
⊗ I)P′

L(ef ′

k
⊗ I). (3.40)Appli
ation of the CBS inequality to (3.39) results in

τ ′L+1 = argmin
τ ′
k

‖P′′
Lk

‖F
eH
f ′

k

ef ′

k

(3.41)and after substituting τ ′L+1, whi
h minimizes (3.41), into (3.39), we obtain
gL+1 = argmin

gk

gH
k P′′

Lgk

gH
k gk

. (3.42)The equation (3.42) is minimized by 
hoosing the ve
tor gL+1 to be equal to theeigenve
tor 
orresponding to the smallest eigenvalue of the matrix P′′
L.In passing note that the simulation model parameters {gL+1, fdL+1
, τ ′L+1

} 
anbe 
omputed dire
tly from the eigenve
tor uL without generating the matri
es
PL, P′

L, and P′′
L as in (3.38), (3.41), and (3.42).The squared gain fa
tor c2L+1 is determined as

c2L+1 =
〈 ˆ̃RresL ,XL+1〉
〈XL+1,XL+1〉

(3.43)where the matrix XL+1 ∈ X is obtained by substituting the 
omputed parameters
{
gL+1, fdL+1

, τ ′L+1

} into (3.31). Sin
e the residual error matrix ˆ̃
RresL is Hermi-tian, the parameter c2L+1 is real. However, be
ause the matrix ˆ̃
RresL 
annot beguaranteed to be positive de�nite, the parameter c2L+1 
an be negative. If this is
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ase, no solution to the maximization problem in (3.30) 
an be found usingthe method des
ribed above, i.e., the �nal approximation residual error is thengiven by the matrix ˆ̃
RresL

(see (3.28)).The empiri
al results of applying the proposed parameter 
omputation methoddemonstrate that the residual approximation error 
an be signi�
antly redu
edby applying the 
y
li
 minimization te
hnique [59℄.As before, presume that the matri
es {Xl}L1 ∈ X and the 
orrespondingsquared gain fa
tors {c2l }L1 have been determined. Using the 
omputational stepsdes
ribed in (3.30)�(3.42), we obtain the set of parameters {gL+1, fdL+1
, τ ′L+1

}
∈

Γ and, 
onsequently, the matrix XL+1 ∈ X . We assume that c2L+1 ≥ 0. Other-wise, the minimization of the Frobenius norm (3.17) is �nalized with the residualapproximation error matrix ˆ̃
RresL

.The matri
es {Xl}L+1
1 and the squared gain fa
tors {c2l }L+1

1 are supplied asinitial parameter values {X(0)
l }L+1

1 and {c2l
(0)}L+1

1 into an iterative minimizationpro
edure des
ribed below.On every iteration q, q = 1, 2, . . . , the following steps are exe
uted:1) For p = 1, . . . , L+ 1, we 
ul
ulate the auxiliary matri
es Z(q)
p a

ording to

Z(q)
p =







ˆ̃
R−∑L+1

l=2 c
2
l
(q−1)

X
(q−1)
l , p = 1

ˆ̃
R−∑p−1

l=1 c
2
l
(q)

X
(q)
l −∑L+1

l=p+1 c
2
l
(q−1)

X
(q−1)
l , 2 ≤ p ≤ L

ˆ̃
R−∑L

l=1 c
2
l
(q)

X
(q)
l , p = L+ 1.

(3.44)Use the matrix Z
(q)
p in lieu of ˆ̃

RresL
in (3.30)�(3.43) to 
ompute the param-eters {g(q)

p , f
(q)
dp
, τ ′p

(q), cp
(q)
}.2) Cal
ulate the Frobenius norm of the residual approximation error matrix

ˆ̃
R

(q)
resL+1

as follows
‖ ˆ̃R−

L+1∑

l=1

c2l
(q)

X
(q)
l ‖F = ‖ ˆ̃R(q)

resL+1
‖F . (3.45)3) If the 
ondition ‖ ˆ̃R(q)

resL+1
‖F < ‖ ˆ̃R(q−1)

resL+1
‖F is satis�ed, begin a new iteration.Alternatively, set the 
hannel simulator parameters {gl, fdl , τ ′l , cl}L+1

1 equalto {g(q)
l , f

(q)
dl
, τ ′l

(q), cl
(q)
}L+1

1
and pro
eed with determining the initial valuesfor the parameters {gL+2, fdL+2

, τ ′L+2, cL+2

} using (3.30)�(3.43).As it has already been mentioned, the parameter 
omputation algorithm de-veloped above is based on the MP approa
h [57℄. In parti
ular, it inherits theenergy 
onservation property of the MP method [55℄, whi
h results in de
rease



38 Chapter 3of the approximation error given by (3.29), as the number of 
omponents L in-
reases. The 
onvergen
e of the general MP method has been analyzed in [55,57℄.Taking into a

ount the arguments given in [55,57℄ and also the 
omments in [60℄,we 
on
lude that the proposed method of determining the parameters P of the
hannel simulation model in (3.7) 
an be 
onsidered only as a heuristi
 algorithm.That means that even though the Frobenius norm of the residual approximationerror matrix ˆ̃
RresL is a stri
tly nonin
reasing fun
tion of the number of the 
om-ponents L, it does not imply that the proposed algorithm ne
essarily produ
esthe optimal solution to the problem stated in Se
tion 3.3.The iterative nature of the parameter 
omputation algorithm des
ribed inthis se
tion impedes an assessment of its 
omputational 
omplexity. Further-more, the 
omplexity of the algorithm depends on the properties of the estimated
orrelation matrix ˆ̃

R and desired (a

eptable) a

ura
y of the 
orrelation matrixapproximation, i.e., the a

eptable residual approximation error norm ‖ ˆ̃RresL‖F(3.29).3.5 Simulation ResultsHere, we verify the 
orre
tness of the iterative parameter 
omputation algorithmdes
ribed in the previous se
tion. Additionally, we investigate the in�uen
e ofthe white noise present in the measured TVFR of a wireless 
hannel exerted onthe performan
e of the algorithm. For these purposes, we employ the geometri
altwo-ring 
hannel simulation model that has been used in Se
tion 2.3. Note thatthe 
orrelation matrix R̆ of the geometri
al two-ring 
hannel simulation model,whi
h is de�ned similarly to (3.11), 
an be easily obtained by substituting theknown gains {c̆l}L1 , the Doppler frequen
ies {f̆dl}L1 , the propagation delays {τ̆ ′l}L1 ,and the ve
tors {ğl}L1 into (3.11), (3.12), (3.13), and (3.14), respe
tively. Theve
tor ğl, l = 1, . . . , L, is given by the Kroneker produ
t of the steering ve
tor(see Chapter 5) of a transmitting antenna, 
al
ulated for the known dire
tion-of-departure (DOD) ψl, and the steering ve
tor of a re
eiving antenna, 
al
ulatedfor the known dire
tion-of-arrival (DOA) φl. Below, we refer to the 
orrelationmatrix R̆ of the geometri
al two-ring 
hannel simulation model as the sample
orrelation matrix.Some of the parameters of the geometri
al two-ring 
hannel simulation modelread as (see also Se
tion 2.3):
• Number of s
atterers: L = 50;
• Re
eiving antenna: 2-element omnidire
tional uniform linear array;
• Transmitting antenna: 2-element omnidire
tional uniform linear array;
• Time between 
hannel snapshots: △t = 0.07 s;
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• Maximum Doppler frequen
y: 7 Hz;
• SNR: 5 dB.A

ording to the problem formulation stated in Se
tion 3.3, we determine theset of parameters P =

{
L, {cl}L1 , {gl}L1 , {fdl}L1 , {τ ′l }L1

} of the 
hannel simulationmodel (3.7) as follows
P̂ = min

P

∥
∥Ř−R

∥
∥
F (3.46)where the matrix Ř = R̆+ σ2I is the sample-plus-noise 
orrelation matrix. Theterm σ2I represents the 
orrelation matrix of the 
omplex zero-mean multivariateGaussian white noise. The parameter σ2 signi�es the power of the noise 
om-ponent 
orresponding the spe
i�ed SNR. The identity matrix I is of the samedimensions as the sample 
orrelation matrix R̆.In Fig. 3.1, several examples of the sample-plus-noise temporal 
ross-
orrelationfun
tions (TCCFs) řti1,i2 [ι] and the sample-plus-noise frequen
y 
ross-
orrelationfun
tions (FCCFs) řf ′

i1,i2
[κ], i1, i2 = 1, . . . , NTNR, are presented together withthe 
orresponding TCCFs rti1,i2 [ι] and FCCFs rf ′

i1,i2
[κ] of the 
hannel simulationmodel (3.7). The TCCFs řti1,i2 [ι] and FCCFs řf ′

i1,i2
[κ] are extra
ted from the
al
ulated sample-plus-noise 
orrelation matrix5 Ř (see Se
tion 3.2). Similarly,the TCCFs rti1,i2 [ι] and FCCFs rf ′

i1,i2
[κ] are extra
ted from the 
orrelation matrix

R. In Fig. 3.1, we also show the sample TCCFs r̆f ′

i1,i2
[κ] and the sample FCCFs

r̆f ′

i1,i2
[κ] of the geometri
al two-ring 
hannel simulation model for the noise-free
ase, extra
ted from the sample 
orrelation matrix R̆.As 
an be seen from the �gure, the 
orrelation properties of the resulting
hannel simulation model (3.7) 
losely approximate the 
orresponding 
orrelationproperties of the geometri
al two-ring 
hannel simulation model and are not signif-i
antly e�e
ted by the presen
e of the noise 
omponent in the sample-plus-noise
orrelation matrix Ř. The observed resistan
e of the parameter 
omputationmethod to the white noise present in the TVFR 
an be attributed to the fa
tthat the eigenve
tors of the sample 
orrelation matrix R̆ are also the eigenve
torsof the sample-plus-noise 
orrelation matrix Ř. Re
all that the 
hannel simula-tor parameters {{gl}L1 , {fdl}L1 , {τ ′l}L1 } are determined by using the eigenve
torsof the 
orrelation matrix Ř (see Subse
tion 3.4.2). It should be mentioned, how-ever, that the 
apability to single out the white noise 
omponent 
ontained inthe 
orrelation matrix to a large extend depends on the range of the time lags

|ι| ≤ ιmax and the range of the frequen
y lags |κ| ≤ κmax, at whi
h the 
orrelationproperties of the 
hannel TVFR are estimated. The 
ondu
ted simulations sug-5The sample-plus-noise TCCFs řti1,i2
[ι] and the sample-plus-noise FCCFs řf ′

i1,i2

[κ], i1, i2 =

1, . . . , NTNR, are de�ned as E{ȟi1 [m,n]ȟ∗

i2
[m,n+ι]} and E{ȟi1 [m,n]ȟ∗

i2
[m+κ, n]}, respe
tively,where ȟi[m,n], i = 1, . . . , NTNR, designates the TVFR of the i-th sub
hannel synthesized byusing the geometri
al two-ring 
hannel simulation model and 
ontaminated with white noise.



40 Chapter 3gest that for the 
hosen time interval between 
hannel snapshots △t = 0.07 s andthe interval between the frequen
ies △f ′ = 1.957 · 105 Hz, the results similar tothose presented in Fig. 3.1 are a
hieved when the values of κmax and ιmax satisfythe 
ondition κmaxιmax ≥ 50.
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(d)Figure 3.1: Examples of the TCCFs and FCCFs of the geometri
al two-ring
hannel simulation model (with and without white noise) and the
orresponding TCCFs and FCCFs of the designed 
hannel simulator.3.6 Appli
ations to Real-World Measurement DataThe usefulness of the proposed design method is illustrated by 
onstru
ting severalMIMO wideband 
hannel simulators based on the measured TVFRs of real-world
hannels. Our prime interest is to test the 
onvergen
e of the parameter 
om-putation algorithm (see Se
tion 3.4), as well as to assess the 
omplexity of the
hannel simulators measured by the number of terms L in (3.7).The 
hannel simulator design method des
ribed in this 
hapter is based on the



Chapter 3 41assumption that the TVFR of a physi
al radio 
hannel is WSS w.r.t. time andfrequen
y. The intervals in the time-frequen
y plane, over whi
h the measuredTVFRs 
an be assumed WSS, have been identi�ed using the stationarity testdeveloped in Chapter 2.The des
ription of the measurement sites 
an be found in Appendix A. Addi-tionally, Appendix A 
ontains information about the measurement method andthe equipment setup.3.6.1 Mi
ro Cell Site � Regular Street GeometryThe normalized residual approximation error norm ‖ ˆ̃RresL‖F /‖
ˆ̃
R‖F versus thenumber of 
omponents L in (3.7) is depi
ted in Fig. 3.2 (a). As 
an be seen fromthe �gure, the normalized error norm drops below 5% at L = 63. The resultingnormalized error norm 
orresponding to L = 120 is about 3%.
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(b)Figure 3.2: The normalized residual approximation error norm versus the num-ber of 
omponents L for (a) the MIMO wideband 
hannel simulatorand (b) the trun
ated dis
rete KLE (mi
ro 
ell site � regular streetgeometry).For 
omparison reasons, we show in Fig. 3.2 (b) the results obtained fromthe trun
ated dis
rete KLE of the measured 
hannel TVFR [61℄. The normalizedresidual approximation error norm for the trun
ated dis
rete KLE is 
al
ulateda

ording to the following expression
‖ ˆ̃RresL

‖F /‖ ˆ̃R‖F =

√∑

l λ
2
l −

∑

l≤L λ
2
l

∑

l λ
2
l

(3.47)where λ1 ≥ λ2 ≥ . . . are the ordered eigenvalues of the matrix ˆ̃
R. The normalizederror norm of 5% is a
hieved with L = 41 prin
ipal 
omponents 
orresponding to



42 Chapter 3the largest eigenvalues of the estimated 
orrelation matrix ˆ̃
R. For L = 120, thenormalized error norm is about 1%.It is important to note that the trun
ated dis
rete KLE provides the optimal,in the mean-square error sense, approximation of the estimated 
orrelation matrix

ˆ̃
R for a given L. As we have mentioned in Se
tion 3.2, the disadvantage of thetrun
ated dis
rete KLE is the la
k of an analyti
al solution for the eigenve
torsof the 
orrelation matrix ˆ̃

R. To illustrate this point, assume that we need tosynthesize a realization of the 
hannel TVFR on an interval of time of duration
0.7 s. Without going into details, it is su�
ient to say that the size of the estimated
orrelation matrix ˆ̃

R has to be doubled in ea
h dimension as 
ompared to the sizeof the 
orrelation matrix enrolled in this subse
tion. If we applied the trun
ateddis
rete KLE to the enlarged matrix ˆ̃
R, the number of the prin
ipal 
omponentsrequired to approximate the new 
orrelation matrix with the same 5% normalizedapproximation error norm would be in
reased to L = 62, i.e., by 50%, and wouldbe 
omparable with L = 63 exponential 
omponents in the 
hannel simulationmodel (3.7).In Fig. 3.3, several examples of the 
al
ulated TCCFs rti1,i2 [ι] and the FC-CFs rf ′

i1,i2

[κ], i1, i2 = 1, . . . , NTNR, are presented together with the 
orrespondingestimated TCCFs ˆ̃rti1,i2 [ι] and FCCFs ˆ̃rf ′

i1,i2
[κ] of the measured 
hannel. The esti-mated TCCFs ˆ̃rti1,i2 [ι] and FCCFs ˆ̃rf ′

i1,i2
[κ] of the measured 
hannel are extra
tedfrom the estimated spa
e-time-frequen
y 
orrelation matrix ˆ̃

R (see Se
tion 3.4).The approximate 95% 
on�den
e intervals [62℄ for the estimated TCCFs and FC-CFs shown in Fig. 3.3 have been obtained assuming that the elements of theestimated matri
es ˆ̃
R[κ, ι] in (3.18) are 
omplex Gaussian distributed randomvariables. As 
an be seen from Fig. 3.3, the 
orrelation fun
tions of the 
hannelsimulator are well �tted to the 
orresponding estimated 
orrelation fun
tions ofthe physi
al 
hannel. A signi�
ant dis
repan
y exists between the TACFs rti,i [ι]and the estimated TACFs ˆ̃rti,i [ι] at time lag ι = 0 as well as between the FACFs

rf ′

i,i
[κ] and the estimated FACFs ˆ̃rf ′

i,i
[κ] at the frequen
y lag κ = 0. Takinginto a

ount the results presented in Se
tion 3.5, a possible explanation for thisdis
repan
y 
ould be the presen
e of `measurement' noise in the TVFR h̃[m,n],weakly 
orrelated in time, frequen
y, and spa
e.
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(f)Figure 3.3: Examples of the estimated TCCFs and FCCFs of the physi
al 
han-nel and the 
orresponding TCCFs and FCCFs of the designed MIMOwideband 
hannel simulator (mi
ro 
ell site � regular street geome-try).



44 Chapter 3Re
all that the envelope PDFs of the sub
hannels hi[m,n], i = 1, . . . , NTNR,are not dire
tly taken into a

ount in the design method des
ribed in Se
tion 3.4.Nevertheless, it is of interest to 
onsider the resulting envelope PDFs p|hi|(x) givenby (3.8) for a spe
ial 
ase of the 
omplex weighting 
oe�
ients with the 
onstantmagnitudes Ξl = 1, l = 1, . . . , L, (see Se
tion 3.2). Figure 3.4 presents the
al
ulated envelope PDFs for two sub
hannels. The 
al
ulated envelope PDFs
p|hi|(x) in Fig. 3.4 are shown together with the estimated empiri
al envelopePDFs p|h̃i|

(x) and the Rayleigh PDFs 
orresponding to the 
omplex weighting
oe�
ients Ul ∼ CN (0, 1). Note that the envelope PDFs 
al
ulated by using (3.8)follow the Rayleigh distribution.
0 0.005 0.01 0.015 0.02 0.025

0

50

100

150

200

x

p
|h

i
|(
x
)

Measured channel, p|h̃9|(x)

Channel simulator, p|h9|(x)
Rayleigh PDF

(a) 0 0.005 0.01 0.015 0.02
0

50

100

150

200

x

p
|h

i
|(
x
)

Measured channel, p|h̃10|(x)

Channel simulator, p|h10|(x)
Rayleigh PDF

(b)Figure 3.4: Examples of the envelope PDFs for the MIMO wideband 
hannelsimulator p|hi|(x) and the 
orresponding empiri
al PDFs p|h̃i|
(x)(mi
ro 
ell site � regular street geometry).In Fig. 3.5, the 
umulative distribution fun
tions (CDFs) of the instantaneous
hannel 
apa
ity (mutual information) of the measured 
hannel and a synthesized
hannel are presented. The instantaneous 
apa
ity C[n] for the simulated 
hannel
an be obtained for all time instan
es tn, n = 1, . . . , N , a

ording to the de�nition[4, 41, 42℄

C[n] =
1

M

M−1∑

m=0

log2

[

det

(

I+
ρ

NTF [n]
H[m,n]HH [m,n]

)] (3.48)where the 
hannel matrix H[m,n] has been de�ned in (3.1), ρ denotes the signal-to-noise ratio (SNR), and I is the unity matrix. The normalization fa
tor F [n] atea
h time instan
e is given by
F [n] =

1

M

M−1∑

m=0

‖H[m,n]‖2F . (3.49)



Chapter 3 45The instantaneous 
apa
ity of the measured physi
al 
hannel is de�ned in a similarway.Due to the fa
t that the number N of the available snapshots of the TVFRis limited for a real-world wireless 
hannel, we split the available frequen
y band-width B = 100 MHz into smaller frequen
y bands of about 20 MHz. The in-stantaneous 
apa
ities of the measured 
hannel and the simulated 
hannel are
al
ulated for ea
h of the frequen
y bands a

ording to the formulas (3.48) and(3.49).As it 
an be seen from Fig. 3.5, the 
apa
ity CDF of the generated 
hannel isbiased 
ompared to the 
apa
ity CDF of the measured 
hannel. This result 
anbe foreseen by inspe
ting the plots in Fig. 3.3. As it has already been mentioned,the TACFs rti,i [0] and the FACFs rf ′

i,i
[0], whi
h de�ne the varian
es of the gen-erated TVFRs hi[m,n], i = 1, . . . , NTNR, are smaller than the estimated TACFs

ˆ̃rti,i [0] and FACFs ˆ̃rf ′

i,i
[0] of the 
orresponding measured TVFRs h̃i[m,n]. It is ofinterest to investigate if the bias 
an be removed by adjusting the varian
es of theTVFRs hi[m,n], i = 1, . . . , NTNR. For this purpose, a 
omplex `measurement'noise6, un
orrelated in time, spa
e, and frequen
y, is added to the generated re-alizations of the TVFR h[m,n]. Indeed, as 
an be seen from Fig. 3.5, adding the`measurement' noise, whi
h follows the 
omplex multivariate Gaussian distribu-tion with zero means and the diagonal 
ovarian
e matrix, to the TVFR h[m,n],eliminates the bias. The elements along the main diagonal of the `measurement'noise 
ovarian
e matrix are given by σ2i = ˆ̃rti,i [0]− rti,i [0], i = 1, . . . , NTNR.
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Figure 3.5: Capa
ity CDFs of the simulated 
hannel and the measured 
hannelfor the SNR ρ = 20 dB (mi
ro 
ell site � regular street geometry).6The `measurement' noise should not be 
onfused with the noise at the input of a re
eiverrepresented by the SNR ρ in (3.48).



46 Chapter 3The estimated mean µC values and standard deviations σC of the instanta-neous 
apa
ity of the measured 
hannel and the simulated 
hannels (with andwithout `measurement' noise) are given in Table 3.1.Table 3.1: Estimated mean and standard deviation of the 
apa
ity (mi
ro 
ellsite � regular street geometry).Measured Channel Channel simulator
hannel simulator with `measurement' noiseMean, µC (bps/Hz) 7.25 6.48 7.23Standard deviation, σC (bps/Hz) 0.81 0.9 0.813.6.2 Mi
ro Cell Site � Open Market Pla
eThe normalized residual approximation error norm is shown in Fig. 3.6 (a). The
7% normalized error norm is a
hieved with L = 179 
omponents in the 
han-nel simulation model (3.7). Compare this value with the results presented inFig. 3.6 (b) for the trun
ated dis
rete KLE. Here, the 5% normalized error normis a
hieved with L = 104 prin
ipal 
omponents, while for L = 179 
omponentsthe normalized residual approximation error norm is about 2%.
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(b)Figure 3.6: The normalized residual approximation error norm versus the num-ber of 
omponents L for (a) the 
hannel simulator and (b) the trun-
ated dis
rete KLE (mi
ro 
ell site � open market pla
e).Examples of the estimated TCCFs ˆ̃rti1,i2 [ι] and FCCFs ˆ̃rf ′

i1,i2
[κ] of the mea-sured 
hannel are depi
ted in Fig. 3.7 together with their respe
tive 
ounterparts

rti1,i2 [ι] and rf ′

i1,i2
[κ] 
al
ulated for the developed 
hannel simulator. As it 
anbe seen from Fig 3.7, the TCCFs rti1,i2 [ι] and the FCCFs rf ′

i1,i2
[κ] of the designed
hannel simulator 
losely approximate the 
orresponding TCCFs and FCCFs es-timated from the measurement data.
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(f)Figure 3.7: Examples of the estimated TCCFs and FCCFs of the physi
al 
han-nel and the 
orresponding TCCFs and FCCFs of the designed MIMOwideband 
hannel simulator (mi
ro 
ell site � open market pla
e).



48 Chapter 3Examples of the envelope PDFs p|hi|(x) (see (3.8)) and the empiri
al envelopePDFs p|h̃i|
(x) estimated from the measurement data are shown in Fig. 3.8. Clearly,the envelope PDFs p|hi|(x) follow the Rayleigh distribution.
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(b)Figure 3.8: Examples of the envelope PDFs of the MIMO wideband 
hannel sim-ulator p|hi|(x) and the 
orresponding empiri
al PDFs p|h̃i|
(x) (mi
ro
ell site � open market pla
e).The CDFs of the instantaneous 
hannel 
apa
ity C[n] of a synthesized 
han-nel and of the measured 
hannel 
al
ulated as des
ribed in Subse
tion 3.6.1 aredemonstrated in Fig. 3.9. Note the absen
e of the bias between the two CDF
urves shown in the �gure.
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Figure 3.9: Capa
ity CDFs of the simulated 
hannel and the measured 
hannelfor an SNR ρ = 20 dB (mi
ro 
ell site � open market pla
e).



Chapter 3 49The mean values µC and the standard deviations σC of the instantaneous
apa
ity of the synthesized 
hannel and the measured 
hannel are presented inTable 3.2.Table 3.2: Estimated mean and standard deviation of the 
apa
ity (mi
ro 
ellsite � open market pla
e).Measured Channel Channel simulator
hannel simulator with `measurement' noiseMean, µC (bps/Hz) 8.63 8.67 8.75Standard deviation, σC (bps/Hz) 1.32 1.05 0.933.6.3 Mi
ro/Pi
o Cell Site � PassagewayIn Figs. 3.10 (a)�(b), the normalized residual approximation error norm is shownfor the 
hannel simulator and the trun
ated dis
rete KLE, respe
tively. The
5% normalized error norm is a
hieved with L = 143 
omponents in the 
hannelsimulator (3.7) vs. L = 67 prin
ipal 
omponents in 
ase of the trun
ated dis
reteKLE (see (3.47)). Correspondingly, L = 161 
omponents in (3.7) provide thenormalized error norm below 4.9%, while for L = 161 
omponents in the trun
ateddis
rete KLE the normalized error norm is below 3.5%.
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(b)Figure 3.10: The normalized residual approximation error norm versus the num-ber of 
omponents L for (a) the MIMO wideband 
hannel simu-lator and (b) the trun
ated dis
rete KLE (mi
ro/pi
o 
ell site �passageway).Examples of the estimated TCCFs ˆ̃rti1,i2 [ι] and FCCFs ˆ̃rf ′

i1,i2

[κ] of the mea-sured 
hannel together with their respe
tive 
ounterparts rti1,i2 [ι] and rf ′

i1,i2

[κ]
al
ulated for the developed 
hannel simulator are depi
ted in Fig. 3.11.



50 Chapter 3

0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1
x 10

−5

Time lag, ι (s)

A
b
so

lu
te

va
lu

e
of

T
C

C
F

Measured channel, ˆ̃rt15,15
[ι]

Channel simulator, rt15,15
[ι]

95% confidence interval

(a) 0 2 4 6 8
0

0.2

0.4

0.6

0.8

1
x 10

−5

Frequency lag, κ (MHz)

A
b
so

lu
te

va
lu

e
of

F
C

C
F

 

 

Measured channel, ˆ̃rf′

15,15
[κ]

Channel simulator, rf′

15,15
[κ]

95% confidence interval

(b)

0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1
x 10

−5

Time lag, ι (s)

A
b
so

lu
te

va
lu

e
of

T
C

C
F

Measured channel, ˆ̃rt16,16
[ι]

Channel simulator, rt16,16
[ι]

95% confidence interval

(
) 0 2 4 6 8
0

0.2

0.4

0.6

0.8

1
x 10

−5

Frequency lag, κ (MHz)

A
b
so

lu
te

va
lu

e
of

F
C

C
F

 

 

Measured channel, ˆ̃rf′

16,16
[κ]

Channel simulator, rf′

16,16
[κ]

95% confidence interval

(d)

0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1
x 10

−5

Time lag, ι (s)

A
b
so

lu
te

va
lu

e
of

T
C

C
F

Measured channel, ˆ̃rt15,16
[ι]

Channel simulator, rt15,16
[ι]

95% confidence interval

(e) 0 2 4 6 8
0

0.2

0.4

0.6

0.8

1
x 10

−5

Frequency lag, κ (MHz)

A
b
so

lu
te

va
lu

e
of

F
C

C
F

 

 

Measured channel, ˆ̃rf′

15,16
[κ]

Channel simulator, rf′

15,16
[κ]

95% confidence interval

(f)Figure 3.11: Examples of the estimated TCCFs and FCCFs of the physi
al
hannel and the 
orresponding TCCFs and FCCFs of the designedMIMO wideband 
hannel simulator (mi
ro/pi
o 
ell site � passage-way).



Chapter 3 51Note the dis
repan
y between the TACFs ˆ̃rti,i [ι] and rti,i [ι] at time lag ι = 0,and between the FACFs ˆ̃rf ′

i,i
[κ] and rf ′

i,i
[κ] at frequen
y lag κ = 0.Figure 3.12, demonstrates the examples of the envelope PDFs p|hi|(x) (see(3.8)). The 
orresponding empiri
al envelope PDFs p|h̃i|

(x) are also plotted inthe same �gure. It 
an be observed that the envelope PDFs p|hi|(x) given by (3.8)follow the Rayleigh distributions. In Fig. 3.12, it is shown that the empiri
alenvelope PDFs p|h̃i|
(x) also follow the Rayleigh distributions. Thus, the evidentdis
repan
y between the envelope PDFs p|hi|(x) and the empiri
al envelope PDFsin Fig. 3.12 is due to the di�eren
e in the varian
es (the TACFs rti,i [0] and ˆ̃rti,i [0]in Fig. 3.11) of the 
orresponding random pro
esses hi and h̃i.
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(b)Figure 3.12: Examples of the envelope PDFs of the MIMO wideband 
hannelsimulator p|hi|(x) and the 
orresponding empiri
al PDFs p|h̃i|
(x)(mi
ro/pi
o 
ell site � passageway).In Fig. 3.13, the CDFs of the instantaneous 
hannel 
apa
ity (see Subse
-tion 3.6.1) of the measured 
hannel and of a simulated 
hannel realization aredepi
ted. Observe, that the mismat
h between the 
apa
ity CDFs (bias) 
an beredu
ed by adding a white `measurement' noise to the simulated TVFR h[m,n],as des
ribed in Subse
tion 3.6.1.
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Figure 3.13: Capa
ity CDFs of a simulated 
hannel and the measured 
hannelfor an SNR ρ = 20 dB (mi
ro/pi
o 
ell site � passageway).The mean values µC and the standard deviations σC of the instantaneous
apa
ity of the simulated 
hannels and the measured 
hannel are presented inTable 3.3.Table 3.3: Estimated mean and standard deviation of the 
apa
ity (mi
ro/pi
o
ell site � passageway).Measured Channel Channel simulator
hannel simulator with `measurement' noiseMean, µC (bps/Hz) 8.45 7.9 8.59Standard deviation, σC (bps/Hz) 1.17 1.21 0.823.6.4 Indoor Cell SiteFor the indoor propagation s
enario, the normalized residual approximation errornorm versus the number of 
omponents L is shown in Figs. 3.14 (a)�(b) for the
hannel simulator and the trun
ated dis
rete KLE, respe
tively. In this 
ase, thenormalized error norm for the designed 
hannel simulator has 
onverged to 10%for L = 220 
omponents (see (3.7)). The trun
ated dis
rete KLE with L = 220prin
ipal 
omponents provides the normalized residual approximation error normof about 2%. For the referen
e, the 5% normalized error norm is a
hieved with
L = 139 
omponents in 
ase of the trun
ated dis
rete KLE.



Chapter 3 53

50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

Number of components, L

N
or

m
al

iz
ed

re
si

d
u
al

er
ro

r
n
or

m

(a) 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

Number of components, L

N
or

m
al

iz
ed

re
si

d
u
al

er
ro

r
n
or

m

(b)Figure 3.14: The normalized residual approximation error norm versus the num-ber of 
omponents L for (a) the 
hannel simulator and (b) thetrun
ated dis
rete KLE (indoor 
ell site).Fig. 3.15 depi
ts several examples of the TCCFs ˆ̃rti1,i2 [ι] and FCCFs ˆ̃rf ′

i1,i2
[κ],estimated from the measurement data, as well as the TCCFs rti1,i2 [ι] and the FC-CFs rf ′

i1,i2
[κ], 
al
ulated for the developed 
hannel simulator. As 
an be seen fromFig. 3.15, the approximation of the FCCFs is worse 
ompared to the propagations
enarios 
onsidered in the previous subse
tions.Examples of the envelope PDFs p|hi|(x) obtained by using (3.8) and the 
orre-sponding empiri
al envelope PDFs p|h̃i|

(x) estimated from the measured TVFRsare shown in Fig. 3.16. We observe that the envelope PDFs p|hi|(x) given by (3.8)follow the Rayleigh PDF.The instantaneous 
hannel 
apa
ity CDFs of the measured 
hannel and of agenerated 
hannel realization (see Subse
tion 3.6.1) are demonstrated in Fig. 3.16.The mean values µC and the standard deviations σC of the instantaneous 
apa
ityare presented in Table 3.4.Table 3.4: Estimated mean and standard deviation of the 
apa
ity (indoor 
ellsite). Measured Channel Channel simulator
hannel simulator with `measurement' noiseMean, µC (bps/Hz) 8.15 7.97 8.1Standard deviation, σC (bps/Hz) 1.03 0.85 0.79
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(f)Figure 3.15: Examples of the estimated TCCFs and FCCFs of the physi
al
hannel and the 
orresponding TCCFs and FCCFs of the designedMIMO wideband 
hannel simulator (indoor 
ell site).
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(b)Figure 3.16: Examples of the envelope PDFs of the MIMO wideband 
hannelsimulator p|hi|(x) and the 
orresponding empiri
al PDFs p|h̃i|
(x)(indoor 
ell site).

4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Capacity (bps/Hz)

P
ro

b
a
b
il
it
y

(c
a
p
a
ci

ty
<

a
b
sc

is
sa

)

 

 
Measured channel

Channel simulator

Channel simulator with ‘measurement’ noise

Figure 3.17: Capa
ity CDFs for a simulated 
hannel and the measured 
hannelfor an SNR ρ = 20 dB (indoor 
ell site).



56 Chapter 33.7 Design of Measurement-Based Sto
hasti
 ChannelSimulators for MIMO Narrowband ChannelsSo far, we have been 
on
erned with the design of sto
hasti
 
hannel simula-tors for MIMO wideband 
hannels. In this se
tion, we des
ribe an adaptation ofthe method, proposed in the previous se
tions, for designing measurement-based
hannel simulators for MIMO narrowband 
hannels. In agreement with the de�-nition of a narrowband 
hannel [3, 4℄, it is presumed that the TVFR H̃[m,n] ofa real-world NT × NR MIMO wireless 
hannel has a 
onstant magnitude and alinear phase shift over the frequen
y interval [−B/2, B/2] (�at fading).3.7.1 Sto
hasti
 Channel Simulation ModelThe synthesized TVFR of a MIMO narrowband wireless 
hannel at dis
rete timeinstan
es tn = n△t ∈ [0, T ], n = 0, . . . , N − 1, is represented by the matrixsequen
e
H[n] =






H1,1[n] . . . H1,NR
[n]... . . . ...

HNT ,1[n] . . . HNT ,NR
[n]




 . (3.50)The TVFR H[n], in the ve
torized form, is generated using the following simula-tion model

h[n] = vec(H[n]) =
L∑

l=1

clgle
j2πfdl tnUl. (3.51)where the set of parameters P =

{
L, {cl}L1 , {gl}L1 , {fdl}L1

} and the 
omplexweighting 
oe�
ients {Ul}L1 are spe
i�ed as in Se
tion 3.2.The spa
e-time 
orrelation matrix R is de�ned as follows
R = E

{
v[n]vH [n]

}
=






R[0] · · · R[−ιmax]... . . . ...
R[ιmax] · · · R[0]




 . (3.52)where the ve
tor v[n] is de�ned by v[n] = [hT [n] . . .hT [n− ιmax]]

T . Using (3.51),the 
orrelation matrix R 
an be written as
R =

L∑

l=1

c2lRtl ⊗Rgl (3.53)where the matri
es Rtl and Rgl are de�ned in (3.12) and (3.14), respe
tively.



Chapter 3 573.7.2 Parameter Computation MethodThe following 
riterion is proposed for determining the set of parameters P of the
hannel simulation model (3.51)
P̂ = min

P

∥
∥
∥
ˆ̃
R−∑L

l=1 c
2
lRtl ⊗Rgl

∥
∥
∥
F

(3.54)where ˆ̃
R is the estimated 
orrelation matrix, whi
h is de�ned similarly to (3.52)as

ˆ̃
R =







ˆ̃
R[0] · · · ˆ̃

R[−ιmax]... . . . ...
ˆ̃
R[ιmax] · · · ˆ̃

R[0]






. (3.55)The 
onsistent estimates of the 
orrelation matri
es ˆ̃

R[ι], ι = −ιmax, . . . , 0, . . . , ιmax,
ιmax ∈ R in (3.55) are obtained as

ˆ̃
R[ι] =

1

(N − |ι|)

N−1−|ι|
∑

n=0

h̃[n]h̃H [n+ ι]. (3.56)The minimization of the Frobenius norm in (3.54) is a

omplished by applyingan adapted version of the iterative parameter 
omputation method des
ribed inSubse
tion 3.4.2. The method is based on de
omposing the estimated 
orrelationmatrix ˆ̃
R over a library X of the Hermitian matri
es X = Rt ⊗Rg, where ea
hmember Xk = Rtk ⊗Rgk of the matrix library 
an be written as (
f. (3.31))

Xk = xkx
H
k = (etk ⊗ gk)(etk ⊗ gk)

H . (3.57)The set of parameters P =
{
L, {cl}L1 , {gl}L1 , {fdl}L1

} is 
omputed a

ording tothe pro
edure des
ribed in Subse
tion 3.4.2. However, the Equations (3.39)�(3.42)are to be dropped as they are not relevant for narrowband 
hannels. Instead, aftersubstituting the Doppler frequen
y fdL+1
, whi
h minimizes (3.38), into (3.36), theve
tor gL+1 is found as

gL+1 = argmin
gk

gH
k P′

Lgk

gH
k gk

. (3.58)Below, we present some examples of designing 
hannel simulators for real-world MIMO narrowband 
hannels.



58 Chapter 33.7.3 Appli
ations to Real-World Measurement DataIn the 
onsidered examples, whi
h illustrate the development of 
hannel simulatorsfor MIMO narrowband 
hannels, we use the same measured TVFRs of the real-world 
hannels that have been already employed in Se
tion 3.6 for illustrating thedesign of the 
hannel simulators for MIMO wideband 
hannels.First, we 
onsider the 
onvergen
e of the iterative parameter 
omputationmethod of Subse
tion 3.7.2. The normalized residual approximation error norm
‖ ˆ̃RresL

‖F /‖ ˆ̃R‖F versus the number of 
omponents L in (3.51) is shown for di�er-ent propagation environments in Figs. 3.18 (a)�3.21 (a). For 
omparison reasons,Figs. 3.18 (b) � 3.21 (b) depi
t the normalized residual approximation errornorms obtained a

ording to (3.47) for the trun
ated dis
rete KLEs. For the 
aseof MIMO narrowband 
hannels, the ordered eigenvalues λ1 ≥ λ2 ≥ . . . of thematrix ˆ̃
R de�ned in (3.55) are substituted into (3.47). As it 
an be seen fromFigs. 3.18�3.21, the resulting normalized error norm is below 5% for all developed
hannel simulators.Examples of the estimated TCCFs ˆ̃rti1,i2 [ι] of the measured 
hannels togetherwith their respe
tive 
ounterparts rti1,i2 [ι] 
al
ulated for the developed 
hannelsimulators are depi
ted in Figs. 3.22�3.25. As 
an be seen from the plots, theTCCFs of all developed 
hannel simulators 
losely approximate the 
orrespondingTCCFs of the measured 
hannels. Note that due to a small number of the TCCFssamples, κmax = 5, the parameter 
omputation method of Subse
tion 3.7.2 is notable to single out the 
ontribution of the `measurement' noise in the estimated
orrelation matrix ˆ̃

R (see Se
tion 3.5).
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(b)Figure 3.18: The normalized residual approximation error norm versus the num-ber of 
omponents L for (a) the MIMO narrowband 
hannel simu-lator and (b) the trun
ated dis
rete KLE (mi
ro 
ell site � regularstreet geometry).
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(b)Figure 3.19: The normalized residual approximation error norm versus the num-ber of 
omponents L for (a) the MIMO narrowband 
hannel sim-ulator and (b) the trun
ated dis
rete KLE (mi
ro 
ell site � openmarket pla
e).
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(b)Figure 3.20: The normalized residual approximation error norm versus the num-ber of 
omponents L for (a) the MIMO narrowband 
hannel sim-ulator and (b) the trun
ated dis
rete KLE (mi
ro/pi
o 
ell site �passageway).
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(b)Figure 3.21: The normalized residual approximation error norm versus the num-ber of 
omponents L for (a) the MIMO narrowband 
hannel sim-ulator and (b) the trun
ated dis
rete KLE (indoor 
ell site).
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(f)Figure 3.22: Examples of the estimated TCCFs of the physi
al 
hannel and the
orresponding TCCFs of the designed MIMO narrowband 
hannelsimulator (mi
ro 
ell site � regular street geometry).
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(f)Figure 3.23: Examples of the estimated TCCFs of the physi
al 
hannel and the
orresponding TCCFs of the designed MIMO narrowband 
hannelsimulator (mi
ro 
ell site � open market pla
e).
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(f)Figure 3.24: Examples of the estimated TCCFs of the physi
al 
hannel and the
orresponding TCCFs of the designed MIMO narrowband 
hannelsimulator (mi
ro/pi
o 
ell site � passageway).
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(f)Figure 3.25: Examples of the estimated TCCFs of the physi
al 
hannel and the
orresponding TCCFs of the designed MIMO narrowband 
hannelsimulator (indoor 
ell site).



Chapter 3 653.8 Design of Measurement-Based Sto
hasti
 ChannelSimulators for SISO Wideband ChannelsIn this se
tion, the 
hannel simulation model des
ribed in Se
tion 3.2 is adaptedfor synthesizing TVFRs of SISO wideband 
hannels. Additionally, the model pa-rameter 
omputation method developed in Se
tion 3.4 is modi�ed for determiningthe parameters of measurement-based SISO wideband 
hannel simulators.It is assumed that the TVFR h̃[m,n] of a real-world SISO wideband 
hannelhas been measured at dis
rete frequen
ies f ′m = −B/2 +m△f ′ ∈ [−B/2, B/2],
m = 0, . . . ,M−1, and at dis
rete time instan
es tn = n△t ∈ [0, T ], n = 0, . . . , N−
1. We assume that the measured TVFR h̃[m,n] is a 2D zero-mean 
omplexrandom pro
ess, whi
h is time- and frequen
y-shift invariant w.r.t. the 
orrelationproperties.3.8.1 Sto
hasti
 Channel Simulation ModelThe TVFR h[m,n] of a SISO wideband wireless 
hannel at dis
rete frequen
ies
f ′m, m = 0, . . . ,M − 1, and at dis
rete time instan
es tn, n = 0, . . . , N − 1, isdes
ribed as

h[m,n] =

L∑

l=1

cle
j(2πfdl tn−2πf ′

mτ ′
l
)Ul (3.59)where the simulation model parameters P =

{
L, {cl}L1 , {fdl}L1 , {τ ′l}L1

} as well asthe 
omplex weighting 
oe�
ients Ul, l = 1, . . . , L, have been de�ned in Se
-tion 3.2.When the magnitudes {Ξl}L1 of the 
omplex weighting 
oe�
ients {Ul}L1 are
onstant and all are equal to 1, the envelope PDF p|h|(x) of the simulated TVFR
h[m,n] is given by (
f. (3.8))

p|h|(x) =

∫ ∞

0
xJ0(xζ)

(
L∏

l=1

J0(|cl|ζ)
)

ζdζ. (3.60)The 
orrelation properties of the synthesized TVFR h[m,n] are des
ribed bythe temporal-frequen
y 
orrelation matrix R whi
h is de�ned as (
f. (3.9))
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R = E

{
v[m,n]vH [m,n]

}
=

















r[0, 0] · · · r[−κmax, 0] · · · r[0,−ιmax] · · · r[−κmax,−ιmax]... . . . ... . . . ... . . . ...
r[κmax, 0] · · · r[0, 0] · · · r[κmax,−ιmax] · · · r[0,−ιmax]... . . . ... . . . ... . . . ...
r[0, ιmax] · · · r[−κmax, ιmax] · · · r[0, 0] · · · r[−κmax, 0]... . . . ... . . . ... . . . ...

r[κmax, ιmax] · · · r[0, ιmax] · · · r[κmax, 0] · · · r[0, 0]















(3.61)where the ve
tor v[m,n] is de�ned by v[m,n] = [h[m,n] . . . h[m−κmax, n] . . . h[m,n−

ιmax] . . . h[m − κmax, n − ιmax]]
T . By using (3.59), the 
orrelation matrix R 
anbe written as
R =

L∑

l=1

c2lRtl ⊗Rf ′

l
(3.62)where the matri
es Rtl and Rf ′

l
have been de�ned in (3.12) and (3.13), respe
-tively. Note that the positive semi-de�nite matrix R is Hermitian and blo
k-Toeplitz.3.8.2 Parameter Computation MethodThe set of parameters P of the 
hannel simulation model de�ned in (3.59) isdetermined a

ording to the following 
riterion

P̂ = min
P

∥
∥
∥
ˆ̃
R−∑L

l=1 c
2
lRtl ⊗Rf ′

l

∥
∥
∥
F

(3.63)where ˆ̃
R is the estimated 
orrelation matrix de�ned similarly to (3.61). Theelements of the estimated matrix ˆ̃

R are obtained as
ˆ̃r[κ, ι] =

1

(M − |κ|)(N − |ι|)

M−1−|κ|
∑

m=0

N−1−|ι|
∑

n=0

h̃[m,n]h̃H [m+ κ, n + ι]. (3.64)The minimization of the Frobenius norm in (3.63) is a

omplished by using amodi�
ation of the iterative algorithm proposed in Subse
tion 3.4.2. In parti
ular,the matrix library X (see Subse
tion 3.4.2) 
onsists of the matri
es Xk = Rtk ⊗
Rf ′

k
. Ea
h member Xk of the matrix library is 
onstru
ted by substituting the
hannel simulator parameters fdk and τ ′k into (3.12) and (3.13), respe
tively. Theonly required modi�
ation of the pro
edure des
ribed by the expressions (3.33)�(3.43) in Subse
tion 3.4.2, is that Equation (3.42) is to be omitted.



Chapter 3 67The performan
e of the modi�ed parameter 
omputation method is demon-strated with examples in the next subse
tion.3.8.3 Appli
ations to Real-World Measurement DataThe parameter 
omputation method developed in Subse
tion 3.8.2 has been ap-plied to the measured TVFRs of the real-world 
hannels (see Appendix A). Sin
eSISO wideband 
hannels are 
onsidered in this se
tion, only data obtained froma single pair of transmitting-re
eiving antennas have been used to determine theparameters of the 
hannel simulators. The results illustrating the performan
e ofthe designed 
hannel simulators are presented below.The normalized residual approximation error norm ‖ ˆ̃RresL‖F /‖
ˆ̃
R‖F versus thenumber of 
omponents L in (3.59) is shown for the designed 
hannel simulators inFigs. 3.26�3.29. The dashed line in the �gures signi�es the 5% normalized errornorm. Clearly, the resulting normalized error norm for all four 
hannel simulatorsis below this value. For 
omparison reasons, Figs. 3.26�3.29 also demonstrate the
orresponding normalized residual approximation error norms for the trun
ateddis
rete KLEs 
al
ulated a

ording to (3.47).
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(b)Figure 3.26: The normalized residual approximation error norm versus the num-ber of 
omponents L for (a) the SISO wideband 
hannel simulatorand (b) the trun
ated dis
rete KLE (mi
ro 
ell site � regular streetgeometry).The estimated TACFs ˆ̃rt[ι] and FACFs ˆ̃rf ′ [κ] of the four real-world 
hannelsand the TACFs rt[ι] and FACFs rf ′ [κ] of the 
orresponding 
hannel simulators aredepi
ted in Figs. 3.30�3.33. As 
an be seen from the �gures, noti
eable dis
repan-
ies exist between the TACFs ˆ̃rt[ι] and rt[ι] at ι = 0 as well as between the FACFs
ˆ̃rf ′ [κ] and rf ′ [κ] at κ = 0 
orresponding to the regular street and the passagewaypropagation s
enarios (
f. the results presented in Figs. 3.3, 3.7, 3.11, 3.15).
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(b)Figure 3.27: The normalized residual approximation error norm versus the num-ber of 
omponents L for (a) the SISO wideband 
hannel simulatorand (b) the trun
ated dis
rete KLE (mi
ro 
ell site � open marketpla
e).
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(b)Figure 3.28: The normalized residual approximation error norm versus the num-ber of 
omponents L for (a) the SISO wideband 
hannel simulatorand (b) the trun
ated dis
rete KLE (mi
ro/pi
o 
ell site � passage-way).Figures 3.34�3.37 depi
t the envelope PDFs 
al
ulated by using (3.60) in 
aseof the 
omplex weighting 
oe�
ients Ul having the 
onstant magnitudes Ξl = 1,
l = 1, . . . , L (see Subse
tion 3.2.1). As expe
ted, the envelope PDFs 
al
ulatedby using (3.60) mat
h the Rayleigh PDFs. Figs. 3.34�3.37 also demonstrate theempiri
al envelope PDFs p|h̃|(x) of the real-world 
hannels.



Chapter 3 69

5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of components, L

N
or

m
al

iz
ed

re
si

d
u
al

er
ro

r
n
or

m

(a) 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of components, L

N
or

m
al

iz
ed

re
si

d
u
al

er
ro

r
n
or

m
(b)Figure 3.29: The normalized residual approximation error norm versus the num-ber of 
omponents L for (a) the SISO wideband 
hannel simulatorand (b) the trun
ated dis
rete KLE (indoor 
ell site).
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hannel andthe SISO wideband 
hannel simulator (mi
ro 
ell site � regularstreet geometry).
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(b)Figure 3.31: (a) The TACFs and (b) the FACFs of the real-world 
hannel andthe SISO wideband 
hannel simulator (mi
ro 
ell site � open mar-ket pla
e).
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(b)Figure 3.32: (a) The TACFs and (b) the FACFs of the real-world 
hannel andthe SISO wideband 
hannel simulator (mi
ro/pi
o 
ell site � pas-sageway).
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(b)Figure 3.33: (a) The TACFs and (b) the FACFs of the real-world 
hannel andthe SISO wideband 
hannel simulator (indoor 
ell site).
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Figure 3.34: The envelope PDF p|h|(x) of the SISO wideband 
hannel simulatorand the empiri
al PDF p|h̃|(x) of the real-world 
hannel (mi
ro 
ellsite � regular street geometry).
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Figure 3.35: The envelope PDF p|h|(x) of the SISO wideband 
hannel simulatorand the empiri
al PDF p|h̃|(x) of the real-world 
hannel (mi
ro 
ellsite � open market pla
e).
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Figure 3.36: The envelope PDF p|h|(x) of the SISO wideband 
hannel simula-tor and the empiri
al PDF p|h̃|(x) of the real-world 
hannel (mi-
ro/pi
o 
ell site � passageway).
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Figure 3.37: The envelope PDF p|h|(x) of the SISO wideband 
hannel simulatorand the empiri
al PDF p|h̃|(x) of the real-world 
hannel (indoor 
ellsite).3.9 Chapter SummaryIn this 
hapter, we have presented a method for designing measurement-basedsto
hasti
 
hannel simulators for wireless time-variant 
ommuni
ation 
hannels.The method is grounded on �tting the 
orrelation properties of a 
hannel sim-ulation model to the 
orresponding 
orrelation properties of a prototype real-world 
hannel. Depending on whether a 
hannel simulator is to be designed for aMIMO/SISO or narrowband/wideband radio 
hannel, a 
ombination of the tem-poral, frequen
y, and spatial 
orrelation properties is taken into 
onsideration. Itshould be mentioned that the separability of the 
orrelation properties in time,frequen
y, and spa
e is not presumed.The parameters of 
hannel simulators are determined by using an iterativealgorithm developed in this 
hapter. As it has been demonstrated by variousexamples, the proposed algorithm is able to produ
e a

eptable results for wire-less 
hannels in di�erent propagation environments. Additionally, the algorithmexhibits resistan
e to the white `measurement' noise 
omponent possibly presentin the estimated 
orrelation matrix of a real-world 
hannel. However, a seriousdrawba
k of the proposed parameter 
omputation algorithm is its rather high
omputational 
omplexity, espe
ially for the 
ase of MIMO wideband 
hannels.In the next 
hapter, we will 
onsider a di�erent approa
h to the develop-ment of measurement-based 
hannel simulation models for time-variant wireless
ommuni
ation 
hannels.
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Chapter 4Two-Dimensional AutoregressiveModel for MIMO WidebandMobile Radio Channels
4.1 Introdu
tionIn the previous 
hapter, we have 
onsidered a method for designing sto
hasti
simulation models for wireless 
hannels, whi
h is based on approximating the
orrelation properties of a real-world 
hannel. It has been demonstrated thatthe method provides a 
lose �tting between the spa
e-time-frequen
y 
orrelationmatrix R (3.11) of the simulation model (3.7) and the estimated spa
e-time-frequen
y 
orrelation matrix R̃ of a physi
al 
hannel (see Subse
tion 3.4.1).Due to the `quasi-stationary' behavior of real-world 
hannels [10℄, the num-ber of samples of the measured TVFR, whi
h are available for estimating thespa
e-time-frequen
y 
orrelation matrix R̃, is always 
on�ned. It means that inall pra
ti
al situations, the 
orrelation properties of a real-world 
hannel 
an bereliably estimated only in a �nite range of the time shifts ι and the frequen
yshifts κ, i.e., |ι| ≤ ιmax and |κ| ≤ κmax. Under these 
ir
umstan
es, it is thenreasonable to question if a 
hannel simulator developed by using the method ofChapter 3 is adequate in representing the important spe
tral 
hara
teristi
s ofa real-world 
hannel, su
h as the delay and the Doppler spe
trum spreads. Theanswer to this question depends on several fa
tors, whi
h vary from one parti
ulars
enario to another. For example, a 
hannel simulator developed by approximat-ing the spa
e-time-frequen
y 
orrelation matrix R̃ 
an be adequate if the temporaland the frequen
y 
orrelation fun
tions of a prototyping physi
al 
hannel de
aysu�
iently fast w.r.t. time shift ι and frequen
y shift κ, respe
tively. However,if this assumption is not valid, other methods for designing 
hannel simulationmodels, whi
h, perhaps, do not require estimation of the 
orrelation properties of75



76 Chapter 4a real-world 
hannel from the measurement data, might be preferable.In this 
hapter, we des
ribe the multi
hannel 2D AR model for MIMO wide-band mobile wireless 
hannels [63℄. In this model, radio 
hannels between ea
h ofthe transmitting and the re
eiving antennas are represented by 2D rational trans-fer fun
tions. Our interest in the multi
hannel 2D AR model is motivated bythe high level of �exibility intrinsi
 to the AR models, whi
h has been extensivelyused in spe
trum estimation and system identi�
ation, see, e.g. [34,64,65℄ and themultiple referen
es therein. It is also important to emphasize that the multi
han-nel 2D AR model does not presume separability of the 
orrelation properties of aradio 
hannel in time, frequen
y, and spa
e. Some of the previous works relatedto the AR modeling and simulation of wireless 
ommuni
ation 
hannels 
an befound, for example, in [66�68℄. Spe
tral estimation for multiple 2D signals usingthe multi
hannel 2D AR model is dis
ussed in [69℄.As it is shown in the following, the parameters of the multi
hannel 2D ARmodel 
an be estimated from the real-world measurement data by using the well-known Yule-Walker algorithm or, alternatively, by employing the predi
tion errorminimization (PEM) algorithm. None of these methods, however, guarantees thestability of the resulting multi
hannel 2D AR model. Therefore, spe
ial attentionis paid to the problem of the model stability, whi
h arises when the multi
hannel2D AR model is used for synthesizing the TVFRs of wireless 
hannels.The utility of the multi
hannel 2D AR model is veri�ed by designing 
hannelsimulators based on the TVFRs of the real-world 
hannels.This 
hapter is organized as follows. In Se
tion 4.2, we des
ribe the multi-
hannel 2D AR model. The model parameter estimation methods are presentedin Se
tion 4.3. In Se
tion 4.4, we 
onsider the stability of the multi
hannel 2D ARmodel. The method for synthesizing the TVFR of a 
hannel in the delay-Dopplerdomain is presented in Se
tion 4.5. The performan
e of the multi
hannel 2D ARmodel has been assessed based on the simulated MIMO 
hannels as des
ribed inSe
tion 4.6. The multi
hannel 2D AR models developed based on the measuredTVFRs of the physi
al radio 
hannels are presented in Se
tion 4.7. Finally, the
on
luding remarks are given in Se
tion 4.8.4.2 The Multi
hannel 2D Autoregressive ModelWe 
onsider a MIMO wideband wireless 
hannel, whi
h 
ontains NT antennasat the transmitter side and NR antennas at the re
eiver side. Let the matri
es
H[m,n], m = 0, . . . ,M−1 and n = 0, . . . , N−1, be the 
hannel TVFRs generatedat dis
rete frequen
ies f ′m = −B/2 +m△f ′ ∈ [−B/2, B/2] and at dis
rete timeinstan
es tn = n△t ∈ [0, T ], n = 0, . . . , N − 1. As in the previous 
hapters, wedenote the frequen
y bandwidth and the observation time interval as B and T ,
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tively. As before, the matri
es
H[m,n] =






H11[m,n] . . . H1NR
[m,n]... . . . ...

HNT 1[m,n] . . . HNTNR
[m,n]




 (4.1)
an be equivalently represented in the ve
torized form as

h[m,n] = vec(H[m,n]) =









H11[m,n]

H21[m,n]...
HNTNR

[m,n]









(4.2)where h[m,n] = [h1[m,n], h2[m,n], . . . , hNTNR
[m,n]]T and hi[m,n],

i = 1, . . . , NTNR, is the TVFR of the i-th sub
hannel.The TVFR hi[m,n] of ea
h sub
hannel is a 
omplex zero mean 2D WSSrandom pro
ess (random �eld). Furthermore, the TVFR h[m,n] 
orresponds tothe multi
hannel 2D AR pro
ess of the form
h[m,n] = −

∑∑

[i1,i2]∈S
[i1,i2] 6=[0,0]

AT [i1, i2]h[m− i1, n− i2] + u[m,n] (4.3)where A[i1, i2] are 
omplex matrix 
oe�
ients of dimensions NTNR × NTNR.The ve
tor sequen
e u[m,n] is a 
omplex multi
hannel 2D white noise with the
ross-
orrelation matrix Ru[k, l] de�ned as
Ru[k, l] = E{u[m,n]uH [m+ k, n+ l]} = Puδ[k, l] (4.4)where δ[k, l] is the 2D Dira
 delta fun
tion and Pu denotes the noise delay-DopplerPSD matrix1, whi
h is 
onstant.We assume that the 
hannel model (4.3) is re
ursively 
omputable (
ausal)[70℄. The two most 
ommonly used support regions S that guarantee the re
ur-sive 
omputability of the TVFR h[m,n] are the �nite nonsymmetri
 half-plane(NSHP) and the �nite quarter plane (QP) supports [64℄. In the following, wefo
us our attention on the multi
hannel 2D AR models (4.3) with the �nite QPsupport region SQP de�ned as

SQP = {[i1, i2] : 0 ≤ i1 ≤ p1, 0 ≤ i2 ≤ p2}. (4.5)1The diagonal elements of the delay-Doppler PSD matrix are the delay-Doppler spe
tra ofthe individual sub-
hannels hi[m,n] (4.2) at the 
ertain delay and Doppler frequen
y. Theo�-diagonal elements 
orrespond to the samples of the 
ross-sub
hannel delay-Doppler spe
tra.
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Sample to be computed 

1i

2iFigure 4.1: The support region SQP for a multi
hannel 2D AR(1,2) model.where (p1,p2) is the order of the multi
hannel 2D ARmodel, hen
eforth designatedAR(p1,p2). As an illustrative example, the support region SQP for a multi
hannel2D AR(1,2) model is shown in Fig. 4.1.Using the relationship between the input PSD and the output PSD of a linearshift-invariant (LSI) multi
hannel 2D �lter (see, e.g., [34,69℄), we de�ne the delay-Doppler PSD Ph(τ
′, fd) of the multi
hannel 2D AR model as
Ph(τ

′, fd) = H(τ ′, fd)PuHH(τ ′, fd)△f ′△t (4.6)where
H(τ ′, fd) =

(

I+

p1∑

i1=0

p2∑

i2=0

[i1,i2] 6=[0,0]

A[i1, i2]e
−j2π(τ ′i1△f ′+fdi2△t)

)−1 (4.7)and τ ′ and fd are the propagation delay and the Doppler frequen
y, respe
tively.The matrix I is the identity matrix.4.3 Estimation of the Model ParametersSuppose that the sampled TVFR H̃[m,n] of a real-world MIMO 
hannel, obtainedfrom a 
hannel sounder during a measurement 
ampaign, is a multi
hannel 2DAR pro
ess.Assume that the order (p1,p2) of the multi
hannel 2D AR(p1,p2) model (4.3)has been determined (see Subse
tion 4.7.1). The parameters of the model, i.e.,the matrix 
oe�
ients A[i1, i2] and the noise PSD matrix Pu, are to be estimatedfrom the measured TVFR h̃[m,n], whi
h is a ve
torized representation of thesampled TVFR H̃[m,n] de�ned similar to (4.2).
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














R̃h[0, 0] · · · R̃h[−p1, 0] · · · R̃h[0,−p2] · · · R̃h[−p1,−p2]... . . . ... . . . ... . . . ...
R̃h[p1, 0] · · · R̃h[0, 0] · · · R̃h[p1,−p2] · · · R̃h[0,−p2]... . . . ... . . . ... . . . ...
R̃h[0, p2] · · · R̃h[−p1, p2] · · · R̃h[0, 0] · · · R̃h[−p1, 0]... . . . ... . . . ... . . . ...
R̃h[p1, p2] · · · R̃h[0, p2] · · · R̃h[p1, 0] · · · R̃h[0, 0]
















︸ ︷︷ ︸

R̃h

×

×
















I...
AT [p1, 0]...
AT [0, p2]...
AT [p1, p2]
















=
















Pu...
0...
0...
0
















(4.9)
4.3.1 Yule-Walker Normal EquationsThe 
ross-
orrelation matrix R̃h[κ, ι] of the TVFR h̃[m,n] 
an be de�ned asfollows

R̃h[κ, ι] = E{h̃[m,n]h̃H [m+ κ, n+ ι]}. (4.8)Substituting (4.3), (4.4) into (4.8) and noting that the multi
hannel 2D AR(p1,p2)model (4.3) is 
asual we obtain a system of the Yule-Walker normal equations(4.9). The matrix 
oe�
ients A[i1, i2] and the noise delay-Doppler PSD matrix
Pu that solve the normal equations (4.9) 
an be e�
iently determined by themethod des
ribed, e.g., in [71℄.In pra
ti
e, the matrix R̃h in (4.9) has to be estimated from the �nite-sampleve
tor sequen
e h̃[m,n] implying the latter is ergodi
. The suitable estimator ofthe matrix R̃h is given by

ˆ̃
Rh =

1

NM

M−1∑

m=0

N−1∑

n=0

ṽ[m,n]ṽH [m,n] (4.10)
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ṽ[m,n] =

















h̃[m,n]...
h̃[m− p1, n]...
h̃[m,n− p2]...

h̃[m− p1, n− p2]

















. (4.11)
Note that the 
omponents of the ve
tor ṽ[m,n] in (4.11) with the negative indi
eshave to be set to zero, i.e., h̃[m− p1, n− p2] = 0 for m < p1 and/or n < p2.The matrix ˆ̃

Rh (4.10) is Hermitian and positive semide�nite. In general, thematrix 
oe�
ients A[i1, i2] and the noise delay-Doppler PSD matrix Pu 
annotbe determined uniquely even if all the eigenvalues of the matrix ˆ̃
Rh are greaterthan zero. The reason is that the number of the unknown 
omplex parametersin (4.9) is equal to (p1p2 + p1 + p2)N

2
TN

2
R and is greater than the number of theknown independent 
omplex elements of the matrix ˆ̃

Rh, whi
h is (2p1p2 + p1 +

p2 + 1)NTNR (see also [65℄).4.3.2 Predi
tion Error MinimizationThe PEM method is based on the strong relationship existing between the ARmodeling and the linear predi
tion problem [65℄.The linear forward predi
tor of h̃[m,n] is de�ned as
ˆ̃
h[m,n] = −

∑∑

[i1,i2]∈SQP

[i1,i2] 6=[0,0]

AT [i1, i2]h̃[m− i1, n− i2] (4.12)with the predi
tion error given by
ẽ[m,n] = h̃[m,n]− ˆ̃

h[m,n]. (4.13)Consequently, the predi
tion error power matrix 
an be written as
Σ̃ = E{ẽ[m,n]ẽH [m,n]}. (4.14)For the �nite-sample ve
tor sequen
e h̃[m,n] the estimator of the matrix Σ̃takes the form

ˆ̃
Σ =

1

(M − p1)(N − p2)
(Z̃+ ỸX)H(Z̃+ ỸX) (4.15)



Chapter 4 81where the matri
es Z̃, Ỹ, and X are de�ned below
Z̃ =









h̃T [M − 1, N − 1]

h̃T [M − 2, N − 1]...
h̃T [p1, p2]









(4.16)
Ỹ =









h̃T [M − 2, N − 1] · · · h̃T [M − p1 − 1, N − p2 − 1]

h̃T [M − 3, N − 1] · · · h̃T [M − p1 − 2, N − p2 − 1]... . . . ...
h̃T [p1 − 1, p2] · · · h̃T [0, 0]









(4.17)
X =









AT [1, 0]

AT [2, 0]...
AT [p1, p2]









. (4.18)The matrix 
oe�
ients A[i1, i2] of the multi
hannel 2D AR(p1,p2) model 
anbe estimated by minimizing the sum of the estimated predi
tion error powers, i.e.,
{

Â[i1, i2]
}

[i1,i2]∈SQP ,
[i1,i2] 6=[0,0]

= min
{A[i1,i2]}

{

trace
(
ˆ̃
Σ
)}

. (4.19)This is a linear least-squares estimation problem. The estimate of the matrix
X (4.18) that minimizes (4.19) 
an be written as

X̂ = −Ỹ†Z̃ (4.20)where Ỹ† is the Moore-Penrose pseudoinverse of the matrix Ỹ [58℄.The estimated noise delay-Doppler PSD matrix P̂u is equal to the residualpredi
tion error power matrix ˆ̃
Σmin, obtained by substituting the solution X̂(4.20) into (4.15).



82 Chapter 44.4 Model StabilityThe 
hannel model (4.3) is stable when the following 
ondition is ful�lled [64℄
det







I+

p1∑

i1=0

p2∑

i2=0
[i1,i2] 6=[0,0]

A[i1, i2]z
i1
1 z

i2
2








6= 0, (4.21)for all {(z1, z2) : |z1| ≤ 1, |z2| ≤ 1}where z1 and z2 are 
omplex variables.Both, the Yule-Walker and the PEM methods, des
ribed in Se
tion 4.3, donot guarantee the stability of the resulting multi
hannel 2D AR(p1,p2) model.Additionally, the stability test (4.22) is almost useless in pra
ti
e due to theheavy 
omputational load.4.4.1 State-Spa
e Representation of the Multi
hannel 2D ARModelIn the past years, a number of stability tests has been proposed for 2D re
ursive�lters in state-spa
e form [72, 73℄. An attra
tive feature of the state-spa
e repre-sentation is that it 
an be extended to multi
hannel 2D re
ursive �lters, i.e., tothe multi
hannel 2D AR(p1,p2) model (4.3).In this se
tion, we 
onsider the 2D state-spa
e model representation developedby Roesser [74℄. The Roesser's state-spa
e model 
an be formulated as follows [70℄
[

xh[m+ 1, n]

xv[m,n+ 1]

]

=

[

A11 A12

A21 A22

][

xh[m,n]

xv[m,n]

]

+

[

B1

B2

]

u[m,n]

h[m,n] =
[

C1 C2

]
[

xh[m,n]

xv[m,n]

]

+Du[m,n] (4.22)where xh and xv are the model state variable ve
tors. The model input u[m,n]and the model output h[m,n] in (4.22) are the same pro
esses u[m,n] and h[m,n]as in (4.3).The two possible 
andidates for the model stability test of the Roesser's state-spa
e model are presented below [73℄.The Roesser's state-spa
e model (4.22) is bounded input bounded output(BIBO) stable if
{

A11 is stable
A22 +A21(z1I−A11)

−1A12, |z1| = 1 is stable (4.23)



Chapter 4 83where a square matrix, e.g., A11, is stable if the maximum magnitude of itseigenvalues is less than 1. The se
ond possible group of stability 
riteria is de�nedas {

‖A11‖2 < 1

‖A22‖2 + ‖A21‖2(1− ‖A11‖2)−1‖A12‖2 < 1
(4.24)where ‖ · ‖2 is equal to the largest singular value of the matrix.The 
riteria in (4.23) are su�
ient and ne
essary 
onditions for the BIBOstability of the model (4.22). On the other hand, the 
riteria in (4.24) are su�
ientbut not ne
essary [73℄. The experimental results show that the BIBO stability
onditions (4.23) are more suitable for the stabilization pro
edure presented below,in spite of the obvious 
omputational advantages asso
iated with the stability testimplemented a

ording to the 
riteria in (4.24).To be able to apply the stability test (4.23), the multi
hannel 2D AR(p1,p2)model (4.3) has to be 
onverted to the Roesser's state-spa
e representation (4.22).The 
onversion between the model representations 
an be done in at least twoways. As an example, the two possible realizations of a simple multi
hannel 2DAR(1,1) model are presented in Fig. 4.2. The shift operators are indi
ated in the�owgraphs as z−1

1 and z−1
2 . The state variables in xh and xv are assigned to theoutputs of the shift operators. The matrix 
oe�
ients A[i1, i2], i1, i2 = {0, 1},are shown in Fig. 4.2 along the appropriate bran
hes.
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− � (b)Figure 4.2: Two possible �owgraphs representing the multi
hannel 2D AR(1,1)model.Considering the 
omputational load required to test the stability of the model,it is desirable to minimize the number of state variables, i.e., the number of theshift operators in a �owgraph. For example, the minimal state-spa
e realizationof the model (4.22) 
orresponding to the multi
hannel 2D AR(1,1) model is shownin Fig. 4.2 (b).



84 Chapter 44.4.2 Stabilization Pro
edureIn this subse
tion, we des
ribe a pro
edure that 
an be applied to resolve thepossible instability of the multi
hannel 2D AR(p1,p2) model (4.3).Step 1. Estimate the matrix 
oe�
ients Â(0)[i1, i2] and the noise delay-Doppler PSD matrix P̂
(0)
u either by solving the Yule-Walker normal equationsof Subse
tion 4.3.1 or by minimizing the sum of the estimated predi
tion errorpowers in (4.19) (see Subse
tion 4.3.2).Step 2. Cal
ulate the matri
es A11, A12, A21, and A22 of the Roesser'sstate-spa
e representation (4.22). If the BIBO stability 
onditions in (4.23) aresatis�ed, skip the next steps.Step 3. Formulate the minimization problem (4.19) under 
onstrains (4.23) asa multi-obje
tive optimization problem that 
an be solved by the goal-attainmentmethod [75℄, i.e.,

min
γ∈R

γ (4.25)subje
t to
trace

(
ˆ̃
Σ
)

− w1γ ≤ trace
(

P̂
(0)
uu

)

ρ(A11)− w2γ ≤ 1

ρ(A22 +A21(z1I−A11)
−1A12)− w3γ ≤ 1, |z1| = 1where ρ(·) denotes the spe
tral radius of a square matrix [58℄, {w1, w2, w3} arethe weighting 
oe�
ients that signify the relative trade-o� between the obje
tives,and γ is a s
alar parameter (see, e.g, [75, 76℄). Note that the matri
es Σ̂, A11,

A12, A21, and A22 in (4.25) are fun
tions of the matrix 
oe�
ients A[i1, i2],
[i1, i2] ∈ SQP , [i1, i2] 6= [0, 0]. The solution to the multi-obje
tive minimizationproblem formulated in (4.25) 
an be found by applying the fgoalattain fun
tionimplemented in MATLAB. The estimates Â(0)[i1, i2] obtained at Step 1 
an beused as the initial parameter values.Step 4. The matrix 
oe�
ients Â[i1, i2] obtained in Step 3 are substitutedinto (4.19) to get the estimate of the matrix X̂. Finally, the estimate of the noisedelay-Doppler PSD matrix P̂u is equal to the residual predi
tion error powermatrix ˆ̃

Σmin 
al
ulated by substituting the matrix X̂ into (4.15) (see Se
tion 4.3).A note regarding Step 2 and Step 3 of the algorithm des
ribed above is re-quired. For the se
ond stability 
riterion in (4.23) the largest magnitude eigen-value of the 
orresponding matrix has to be 
al
ulated at the in�nite number ofpoints z1 along the unit 
ir
le, |z1| = 1. The 
ondu
ted simulations suggest that alimited number of points z1 is su�
ient to 
he
k the stability of the multi
hannel2D AR(p1,p2) model.
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y Responsein the Delay-Doppler DomainChannel simulators based on the 2D AR(p1,p2) model represented in the form of(4.3) or in the state-spa
e form (4.22) allow re
ursive 
omputation of the TVFR
h[m,n]. Although 
omputationally e�
ient, the model representations (4.3) and(4.22) require stability of the multi
hannel 2D AR(p1,p2) model. If the multi-
hannel 2D AR(p1,p2) model is unstable, the stabilization pro
edure presentedin Subse
tion 4.4.2 
an be applied. However, the 
omputational load asso
iatedwith Step 3 of the stabilization algorithm qui
kly in
reases as the order (p1,p2) ofthe model grows.On the other hand, the la
k of guaranteed stability of the multi
hannel 2DAR(p1,p2) is not a serious drawba
k for estimating the delay-Doppler PSDPh(τ

′, fd)of a radio 
hannel (see, e.g., the dis
ussions in [65, Chapter 3℄ and [64, Chapter15℄). This observation underlies the method for generating the TVFR h[m,n] inthe delay-Doppler domain presented below.Let a 
omplex zero-mean multi
hannel 2D white noise w[m,n], with the 
on-stant delay-Doppler PSD Pw(τ
′, fd) = I, be an input to the LSI shaping �lterrepresented by its delay-Doppler transfer fun
tion Ψ(τ ′, fd), whi
h is a matrix ofdimensions NTNR ×NTNR at every propagation delay τ ′ and Doppler frequen
y

fd. The delay-Doppler PSD Py(τ
′, fd) of the signal y[m,n] at the output of the�lter is given by (
f. (4.6))

Py(τ
′, fd) = Ψ(τ ′, fd)PwΨ

H(τ ′, fd) = Ψ(τ ′, fd)Ψ
H(τ ′, fd). (4.26)Assuming that Ψ(τ ′, fd) = P

1/2
h (τ ′, fd), where the square root of the delay-Doppler PSD matrix Ph(τ

′, fd) (4.6) is obtained by applying the singular valuede
omposition2 (SVD) [58℄, the delay-Doppler PSD of the signal at the output ofthe �lter Py(τ
′, fd) (4.26) is equal to Ph(τ

′, fd).A pra
ti
al approa
h to generating the TVFR h[m,n] of a wireless 
hannel isby implementing the shaping �lter in the delay-Doppler domain as follows
h[m,n] =

M−1∑

k=0

N/2
∑

l=−N/2

[
1

M△f ′N△tPh

(
k

M△f ′ ,
l

N△t

)]1/2

× W

(
k

M△f ′ ,
l

N△t

)

ej2π(
km
M

+ ln
N
) (4.27)where the dis
rete Fourier transform (DFT) W (

k
M△f ′ ,

l
N△t

) of the noise signal2Re
all that the delay-Doppler PSD matrix Ph(τ
′, fd) (4.6) is Hermitian.
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w[m,n] at the dis
rete delays k

M△f ′ , k = 0, . . . ,M−1, and at the dis
rete Dopplerfrequen
ies l
N△t , l = −N/2, . . . , N/2, is given by

W

(
k

M△f ′ ,
l

N△t

)

=
1√
MN

M−1∑

m=0

N−1∑

n=0

w[m,n]e−j2π(km
M

+ ln
N
). (4.28)By 
onstru
tion, the TVFR h[m,n] in (4.27) is a 
omplex multi
hannel 2Drandom pro
ess with the delay-Doppler PSD approximating the desired Ph(τ

′, fd)given by (4.6). Note that the TVFR h[m,n] generated a

ording to (4.27) is peri-odi
 w.r.t. frequen
y f ′ and time t with the periodsM△f ′ and N△t, respe
tively.The agreement between the delay-Doppler PSD of the random pro
ess h[m,n](4.27) and the desired delay-Doppler PSD Ph(τ
′, fd) 
an be improved by substi-tuting W

(
k

M△f ′ ,
l

N△t

)

= ejθ[k,l] into (4.27) instead of (4.28). The ve
tors θ[k, l],
k = 0, . . . ,M − 1 and l = −N/2, . . . , N/2, 
onsist of realizations of the i.i.d.random variables, ea
h having the uniform distribution on the interval [0, 2π). If
M and N are su�
iently large, then the distribution of the TVFR h[m,n] ap-proa
hes the 
omplex Gaussian multivariate distribution due to the 
entral limittheorem (CLT) [28℄.In pra
ti
e, the delay-Doppler PSD Ph(τ

′, fd) is unknown. Therefore, anestimate P̂h(τ
′, fd), obtained by substituting the estimated matrix 
oe�
ients

{

Â[i1, i2]
}

[i1,i2]∈SQP ,
[i1,i2] 6=[0,0]

and the noise delay-Doppler PSD P̂u (see Se
tion 4.3) into(4.6), is used in lieu of the delay-Doppler PSD Ph(τ
′, fd) in (4.27).4.6 Simulation ResultsIn this se
tion, we present two examples that illustrate the performan
e of themulti
hannel 2D AR models employed as 
hannel simulators. In ea
h of the ex-amples, the role of the measured 2 × 2 MIMO 
hannel is played by a 
hannelsimulator with known parameter values, in the following referred to as the pro-totype model. The task is to estimate the parameters of the multi
hannel 2DAR(p1,p2) model (4.3), the target model, from the TVFR h̃[m,n] synthesized byusing the prototype model.In the �rst example, the prototype model is the multi
hannel 2D AR(2,2)model. The parameters of the target multi
hannel 2D AR(2,2) model, i.e., thematrix 
oe�
ients A[i1, i2] and the noise delay-Doppler PSD matrix Pu, havebeen estimated from a training TVFR sequen
e h̃[m,n], 1 ≤ m ≤ 193, 1 ≤

n ≤ 100, by employing the PEM and the YW methods (see Se
tion 4.3). TheBIBO stability test (4.23) shows that both target multi
hannel 2D AR(2,2) modelsresulting from applying the PEM and the YW parameter estimation methods arestable.



Chapter 4 87To evaluate the performan
e of the target multi
hannel 2D AR(2,2) models,the test TVFRs h[m,n] have been generated using the resulting target models.Another test TVFR h̃[m,n], of the same length as h[m,n], has been obtainedusing the prototype model. The TCCFs r̂ti1,i2 [ι], i1, i2 = 1, . . . , NTNR, and theFCCFs r̂f ′

i1,i2
[κ], of the target multi
hannel 2D AR(2,2) models are estimated fromthe test TVFRs h[m,n]. Similarly, the TCCFs ˆ̃rti1,i2 [ι] and the FCCFs ˆ̃rf ′

i1,i2
[κ] ofthe prototype model are estimated from the test TVFR h̃[m,n]. Some estimatedTCCFs and FCCFs of the target models and of the prototype model are shown inFig. 4.3.As 
an be seen in Fig. 4.3, the sele
ted TCCFs and the FCCFs of the targetmulti
hannel 2D AR(2,2) models approximate well their respe
tive 
ounterpartsof the prototype model. Similar results are observed for other estimated temporaland frequen
y 
ross-
orrelation fun
tions. Additionally, the results presented forthe target model obtained by applying the PEM parameter estimation methodare very 
lose to those 
orresponding to the target model obtained by using theYW algorithm.The prototype model in the se
ond example, is a 
hannel simulator based onthe double-dire
tional 
hannel model [5℄. In the double-dire
tional model the wire-less propagation 
hannel is represented by a set of L 
omplex exponents (multipath
omponents). Ea
h of these 
omplex exponents is 
hara
terized by the 
omplexamplitude, Doppler frequen
y, propagation delay, dire
tion-of-arrival, dire
tion-of-departure, and, possibly, polarization matrix. In our double-dire
tional model,the transmitter is stationary and the re
eiver is moving. The transmitter andthe re
eiver are equipped with linear antenna arrays. Ea
h of the antenna arrays
onsists of two (NT = NR = 2) omnidire
tional single-polarization antenna ele-ments separated by a half wavelength distan
e. The radio waves propagate in theazimuthal plane. Several other parameters are spe
i�ed below:

• Number of multipath 
omponents: L = 530;
• Time interval between snapshots: △t = 10 ms;
• Signal 
arrier frequen
y: f ′c = 5.2 GHz;
• Interval between frequen
ies: △f ′ = 3.125 · 105 Hz;
• Frequen
y bandwidth: B = 60 MHz;
• Measurement noise SNR: 20 dB.The multipath 
omponents of the prototype model in the delay-Doppler planeare shown in Fig. 4.4. Note that this example represents an extreme 
ase in asense that the delay-Doppler PSD of the TVFR synthesized using the prototype
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(f)Figure 4.3: The TCCFs and FCCFs of the prototype multi
hannel 2D AR(2,2)model and of the target multi
hannel 2D AR(2,2) model (example1).



Chapter 4 89model is dis
rete, while the target multi
hannel 2D AR(p1,p2) model implies a
ontinuous delay-Doppler PSD.
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Figure 4.4: The multipath 
omponents (example 2).Again, as in the �rst example, the training TVFR h̃[m,n], 1 ≤ m ≤ 193, 1 ≤
n ≤ 100, has been generated using the prototype model and supplied to thePEM to estimate the parameters A[i1, i2] and Pu of the target multi
hannel 2DAR(p1,p2) model. In this 
ase, the parameters of the multi
hannel 2D AR(1,1),AR(3,3), AR(5,5), and AR(10,10) models have been estimated. All of the targetmodels have been stabilized using the pro
edure des
ribed in Subse
tion 4.4.2.The TCCFs r̂ti1,i2 [ι], i1, i2 = 1, . . . , NTNR, of the resulting target modelsand the TCCFs ˆ̃rti1,i2 [ι] of the prototype model have been estimated from thegenerated test sequen
es h[m,n] and h̃[m,n], respe
tively. Similarly, the FCCFs
r̂f ′

i1,i2

[κ] of the resulting target models and the FCCFs ˆ̃rf ′

i1,i2

[κ] of the originalmodel have been estimated from the 
orresponding test sequen
es. In Fig. 4.5,we demonstrate the estimated TCCFs and FCCFs for several sub
hannels of theresulting (stabilized) target models and of the prototype model. The TCCFsand FCCFs of the target models rather poorly approximate the 
orresponding
orrelation fun
tions of the prototype model as 
ompared to the results presentedin Fig. 4.3.
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Chapter 4 91The e�e
t of applying the stabilization pro
edure to the target multi
hannel2D AR(10,10) model 
an be observed in Fig. 4.6 where we depi
t the delay-Doppler PSD (for the �rst sub
hannel) before and after stabilization. The delay-Doppler PSDs of the target models have been 
al
ulated using (4.6). Note thepresen
e of multiple spurious peaks in the delay-Doppler PSD, whi
h are parti
-ularly noti
eable in Fig. 4.6 (b).
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(b)Figure 4.6: The delay-Doppler PSD of the target multi
hannel 2D AR(10,10)model (a) before stabilization and (b) after stabilization (example2).
4.7 Appli
ation to Measurement DataIn this se
tion, we develop several multi
hannel 2D AR(p1,p2) models based onreal-world measurement data. The des
ription of the measurement sites and themeasurement equipment 
an be found in Appendix A.The parameters of all multi
hannel 2D AR(p1,p2) models presented below havebeen estimated from the measurement data by using the PEM algorithm des
ribedin Subse
tion 4.3.2. Empiri
ally, it has been observed that the PEM algorithm ispreferable for estimating the parameters of the multi
hannel 2D AR(p1,p2) modelsas 
ompared to the YW method (see Subse
tion 4.3.1). As this observation is ina agreement with the results available in the literature for the 
ase of 1D ARmodels (see, e.g., [64℄), we do not provide the details related to the performan
eof the multi
hannel 2D AR(p1,p2) models developed by using the YW parameterestimation method.



92 Chapter 44.7.1 Model Order Sele
tionThe development of the multi
hannel 2D AR(p1,p2) model starts with sele
tingan appropriate order (p1,p2) of the model. A number of methods for model ordersele
tion has been proposed in the literature (see, e.g., [34, 36, 77, 78℄). In thiswork, we use the well-known 
ross-validation method [36, 77℄. This 
hoi
e ismotivated by the fa
t that the 
ross-validation method does not rely on any apriory information or analyti
al analysis of the measurement data.For 
omparison reasons, we also assess the order of the multi
hannel 2DAR(p1,p2) model by using the following rule. A realization of the 
hannel TVFR
h[m,n] is generated by using a 
andidate multi
hannel 2D AR(p1,p2) model.The parameters P̂u and Â[i1, i2], 0 ≤ i1 ≤ p1, 0 ≤ i2 ≤ p2, of the 
andidatemodel are estimated from the measured TVFR h̃[m,n] of a real-world 
hannelby employing the PEM algorithm. The 
orrelation matrix R̂, estimated from thesynthesized TVFR h[m,n] as des
ribed in Subse
tion 3.4.1, is 
ompared to the
orrelation matrix ˆ̃

R estimated similarly from the measured TVFR h̃[m,n]. The
omparison is done in terms of the normalized approximation error norm de�nedas ‖ ˆ̃R − R̂‖F /‖ ˆ̃R‖F . Finally, a 
andidate model, whi
h provides the smallestnormalized error norm, is 
hosen. In the following, this rule will be referred toas the 
orrelation matrix �tting (CMF) rule. Note that the CMF rule representsan intuitive way of 
hoosing the order of the multi
hannel 2D AR(p1,p2) model,a

ording to the problem formulation given in Se
tion 3.3.It should be mentioned that in all examples presented below, we have 
onsid-ered the 
andidate multi
hannel 2D AR(p1,p2) models in the range 1 ≤ p1 ≤ 15,
1 ≤ p2 ≤ 6.4.7.2 Mi
ro Cell Site � Regular Street GeometryFor the measured TVFR of the 
hannel 
onsidered in this subse
tion, the 
ross-validation method and the CMF rule yield as the best 
andidate, respe
tively, themulti
hannel 2D AR(6,1) and AR(9,5) models. The stability test (4.23) showsthat the multi
hannel 2D AR(9,5) model is unstable. Hen
e, the four-step pro
e-dure des
ribed in Subse
tion 4.4.2 has been applied to stabilize the model.In Fig. 4.7, several estimated TCCFs ˆ̃rti1,i2 [ι] and FCCFs ˆ̃rf ′

i1,i2

[κ], extra
tedfrom the 
orrelation matrix ˆ̃
R of the measured 
hannel (see Subse
tion 3.4.1),are presented. In the same �gure, we also show the 
orresponding estimatesof the TCCFs r̂ti1,i2 [ι] and the FCCFs r̂f ′

i1,i2
[κ], i1, i2 = 1, . . . , NTNR, for themulti
hannel 2D AR(6,1) and AR(9,5) models. Note that the approximate 95%
on�den
e intervals depi
ted in Fig. 4.7 are related to the TCCFs ˆ̃rti1,i2 [ι] andFCCFs ˆ̃rf ′

i1,i2
[κ] estimated from the real-world measurement data. The resultspresented in Fig. 4.7 
an be 
ompared to the results in Fig. 3.3.
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(f)Figure 4.7: Examples of the estimated TCCFs and FCCFs of the physi
al 
han-nel and the 
orresponding TCCFs and FCCFs of the multi
hannel2D AR(p1,p2) models (mi
ro 
ell site � regular street geometry).



94 Chapter 4It follows from Fig. 4.7 that the multi
hannel 2D AR(9,5) model better ap-proximates the temporal 
orrelation 
hara
teristi
s of the real-world prototype
hannel than the 2D AR(6,1) model.The estimated delay-Doppler PSDs P̂h(τ
′, fd) of the 2D AR(6,1) and the 2DAR(9,5) models are depi
ted in Fig. 4.8.
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(b)Figure 4.8: The delay-Doppler PSD P̂h(τ
′, fd) of the (a) 2D AR(6,1) model;(b) 2D AR(9,5) (mi
ro 
ell site � regular street geometry).The estimated Doppler PSDs P̂hfd

(fd) of the multi
hannel 2D AR(6,1) andAR(9,5) models are shown in Fig. 4.9 together with the Doppler PSD ˆ̃Phfd
(fd)estimated from the measured TVFR h̃1,1[m,n]. The estimate of the DopplerPSD ˆ̃Phfd

(fd) has been obtained by using the averaged periodogram method (see,e.g., [64℄). To redu
e the bias in the estimated Doppler PSD, we have tapered themeasured TVFR h̃1,1[m,n] in the time domain with the Hanning window [79℄.Similarly, the estimated delay PSDs P̂hτ ′
(τ ′) of the multi
hannel 2D AR(6,1) andAR(9,5) models as well as the delay PSD ˆ̃Phτ ′

(τ ′) estimated from the measuredTVFR h̃1,1[m,n] are presented in Fig. 4.10. Sin
e the varian
es of the estimatedDoppler PSD ˆ̃Phfd
(fd) and the delay PSD ˆ̃Phτ ′

(τ ′) are rather small, the 
orre-sponding 
on�den
e intervals are not shown in Figs. 4.9 and 4.10.From Fig. 4.9, it appears that the order of the AR(6,1) model w.r.t. time isunderestimated, whi
h results in the oversmoothed Doppler PSD. As the mainreason for an underestimated order of the multi
hannel 2D AR model sele
ted bythe 
ross-validation method (see Subse
tion 4.7.1), we 
onsider a small number
N of the available 
hannel TVFR snapshots (N < 20 for the examples presentedin this and the following two subse
tions).It is of interest to analyze the results presented in Fig. 4.9 in terms of the �rsttwo spe
tral moments, i.e., the estimated average Doppler shift and the estimatedDoppler spread. The estimated average Doppler shift ˆ̃µfd and the estimated
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(b)Figure 4.9: The Doppler PSDs for the multi
hannel 2D AR(p1,p2) models andthe measured 
hannel (mi
ro 
ell site � regular street geometry).
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(b)Figure 4.10: The delay PSDs for the multi
hannel 2D AR(p1,p2) models andthe measured 
hannel (mi
ro 
ell site � regular street geometry).Doppler spread ˆ̃σfd of a measured 
hannel are de�ned, respe
tively, as
ˆ̃µfd =

∫ fdmax

−fdmax
fd

ˆ̃Pfd(fd)dfd
∫ fdmax

−fdmax

ˆ̃Pfd(fd)dfd
(4.29)and

ˆ̃σfd =

√
√
√
√
√

∫ fdmax

−fdmax
f2d

ˆ̃Pfd(fd)dfd
∫ fdmax

−fdmax

ˆ̃Pfd(fd)dfd
− (ˆ̃µfd)

2. (4.30)where fdmax
is given by fdmax

= 1/(2△t) and △t denotes the interval betweenthe 
hannel snapshots. Of 
ause in pra
ti
e, the integrals in (4.29),(4.30) have



96 Chapter 4to be approximated with the �nite sums. The average Doppler shift µ̂fd and theDoppler spread σ̂fd of the estimated Doppler PSD P̂hfd
(fd) of the multi
hannel2D AR(p1,p2) model are de�ned in a similar way.By analogy, the results presented in Fig. 4.10 
an be analyzed in terms ofthe estimated average delay shift and the estimated delay spread. The estimatedaverage delay shift ˆ̃µτ ′ and the estimated delay spread ˆ̃στ ′ of a measured real-world
hannel are given by

ˆ̃µτ ′ =

∫ τ ′ub
τ ′lb τ ′ ˆ̃Pτ ′(τ

′)dτ ′

∫ τ ′ub
τ ′lb ˆ̃Pτ ′(τ ′)dτ ′

(4.31)and
ˆ̃στ ′ =

√
√
√
√
√

∫ τ ′ub
τ ′lb τ ′2 ˆ̃Pτ ′(τ ′)dτ ′

∫ τ ′ub
−τ ′lb ˆ̃Pτ ′(τ ′)dτ ′

− (ˆ̃µτ ′)2 (4.32)respe
tively. The average delay shift µ̂τ ′ and the delay spread σ̂τ ′ of the estimateddelay PSD ˆ̃Phτ ′
(τ ′) of the multi
hannel 2D AR(p1,p2) model are de�ned similarly.The limits of the integrals τ ′lb and τ ′ub in (4.31),(4.32) 
orrespond to the −20 dBnoise threshold as referred to the maximum of the estimated delay PSD ˆ̃Phτ ′

(τ ′)[2℄. The integrals in (4.31),(4.32) are approximated with the �nite sums.The estimated spe
tral moments of the multi
hannel 2D AR(6,1) and AR(9,5)models as well as the spe
tral moments obtained from the estimated single-dimensional PSDs ˆ̃Phfd
(fd) and ˆ̃Phτ ′

(τ ′) of the measured 
hannel are 
olle
tedin Table 4.1. Additionally, we have also in
luded in Table 4.1 the results obtainedfor the 
hannel simulator based on the model (3.7), whi
h has been developedin Subse
tion 3.6.1 by using the design method of Subse
tion 3.4.2. The 
on�-den
e intervals for the spe
tral moments estimated from the measurement dataare spe
i�ed in bra
kets.Table 4.1: Spe
tral moments (mi
ro 
ell site � regular street geometry).Measured 2D AR(6,1) 2D AR(9,5) Channel
hannel simulator (3.7)Doppler shift, 0.51 0.95 0.85 0.66
µfd (Hz) [0.47, 0.54]Squared Doppler 14.72 15.52 14.76 14.55spread, σ2

fd
(Hz2) [14.58, 14.85]Delay shift, 2.709 2.708 2.714 2.705

µτ ′ (µs) [2.707, 2.710]Squared delay 0.0037 0.0027 0.0029 0.0022spread, σ2
τ ′ (µs2) [0.0035, 0.0039]The (squared) Doppler and delay spreads represent the main interest for us.As it follows from Table 4.1, the squared delay and Doppler spreads of the multi-
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hannel 2D AR(9,5) model are somewhat 
loser, as 
ompared to other 
onsidered
hannel simulators, to the squared delay and Doppler spreads of the measured
hannel.Note that the spe
i�ed 
on�den
e intervals for the estimated spe
tral mo-ments of the measured 
hannel, although useful for indi
ating the variability ofthe 
orresponding parameters, are not su�
ient for determining if the di�eren
esbetween the spe
tral moments of the 
hannel simulation models and the spe
tralmoments of the measured 
hannel are signi�
ant. For example, the estimatedsquared delay spread is equal to 0.0042 µs2 or 0.0035 µs2 when the Bla
kman orHamming window [79℄, respe
tively, is used for estimating the delay spe
tral mo-ments from the measurement data. Both these values are outside the 
on�den
einterval [0.0035, 0.0039] µs given in Table 4.1.In Fig. 4.11, the CDFs of the instantaneous 
hannel 
apa
ity (mutual informa-tion) C[n] (3.48) of the measured 
hannel and of the 
hannels generated by usingthe multi
hannel 2D AR(6,1) and 2D AR(9,5) models3 are presented. Clearly, the
apa
ity CDFs of the multi
hannel 2D AR models are slightly biased towards thehigher 
apa
ity values. The estimated mean µC values and standard deviations
σC of the 
apa
ity for the multi
hannel 2D AR(6,1) model, 2D AR(6,1) model,and the measured 
hannel are given in Table 4.2.Table 4.2: Estimated mean and standard deviation of the 
apa
ity (mi
ro 
ellsite � regular street geometry).Measured 2D AR(6,1) 2D AR(9,5)
hannelMean, µC (bps/Hz) 7.25 7.58 7.7Standard deviation, σC (bps/Hz) 0.81 0.8 0.82The 
apa
ity CDFs in Fig. 4.11 
an be 
ompared to the 
apa
ity CDF for the
hannel simulator (3.7) demonstrated in Fig. 3.5

3In the following, we refer to the instantaneous 
apa
ity of 
hannels synthesized by a multi-
hannel 2D AR(p1,p2) model simply as the 
apa
ity of the multi
hannel 2D AR(p1,p2) model.
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(b)Figure 4.11: Capa
ity CDFs of the multi
hannel 2D AR(p1,p2) models and ofthe measured 
hannel for an SNR ρ = 20 dB (mi
ro 
ell site �regular street geometry).4.7.3 Mi
ro Cell Site � Open Market Pla
eThe results of applying the 
ross-validation method and the CMF rule (see Subse
-tion 4.7.1) suggest that the multi
hannel 2D AR(6,1) model (the 
ross-validationmethod) and the AR(6,2) model (the CMF rule) are the best 
andidates. Thestability test (4.23) demonstrates that both the multi
hannel 2D AR(6,1) andAR(6,2) models are BIBO stable.Examples of the estimated TCCFs r̂ti1,i2 [ι] and FCCFs r̂f ′

i1,i2

[κ] of the multi-
hannel 2D AR(6,1) and AR(6,2) models are depi
ted in Fig 4.12 together withtheir respe
tive 
ounterparts ˆ̃rti1,i2 [ι] and ˆ̃rf ′

i1,i2
[κ] of the measured 
hannel. As
an be seen from the graphs presented in Fig 4.12, some improvement in theapproximation of the TCCFs ˆ̃rti1,i2 [ι] 
an be observed for the multi
hannel 2DAR(6,2) model 
ompared to the AR(6,1) model, although, at the expense of wors-ening the agreement between the estimated FCCFs. Figure 4.12 
an be 
omparedwith the 
orresponding results presented in Figure 3.7.The estimated delay-Doppler PSDs P̂h(τ

′, fd) of the 2D AR(6,1) and 2DAR(6,2) models are depi
ted in Fig 4.13. The spe
tral 
hara
teristi
s of the mul-ti
hannel 2D AR(6,1) and 2D AR(6,2) models are further 
ompared in Figs. 4.14and 4.15, where the estimated Doppler and delay PSDs are shown, respe
tively.
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(f)Figure 4.12: Examples of the estimated TCCFs and FCCFs of the physi
al 
han-nel and the 
orresponding TCCFs and FCCFs of the multi
hannel2D AR(p1,p2) models (mi
ro 
ell site � open market pla
e).
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(b)Figure 4.13: The delay-Doppler PSD P̂h(τ
′, fd) of the (a) 2D AR(6,1) modeland (b) 2D AR(6,2) (mi
ro 
ell site � open market pla
e).
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(b)Figure 4.14: The Doppler PSDs for the multi
hannel 2D AR(p1,p2) models andthe measured 
hannel (mi
ro 
ell site � open market pla
e).As in the previous subse
tion, we have 
olle
ted the estimated �rst and se
-ond order spe
tral moments for the measured 
hannel and the 2D AR modelsin Table 4.3. As it 
an be seen from Table 4.3, the squared Doppler spread ofthe 
hannel simulator based on the model (3.7), whi
h has been developed inSubse
tion 3.6.2, is a bit 
loser to the squared Doppler spread of the measured
hannel as 
ompared to the results provided by the multi
hannel 2D AR models.However, the squared delay spread of the multi
hannel 2D AR models is 
loser tothe squared delay spread of the estimated delay PSD ˆ̃Phτ ′
(τ ′). Consistent withFigs. 4.14 and 4.15, the di�eren
es between the estimated spe
tral moments ofthe multi
hannel 2D AR(6,1) and 2D AR(6,2) models are rather small.The CDFs of the instantaneous 
hannel 
apa
ity C[n] (3.48) of the measured
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(b)Figure 4.15: The delay PSDs for the multi
hannel 2D AR(p1,p2) models andthe measured 
hannel (mi
ro 
ell site � open market pla
e).Table 4.3: Spe
tral moments (mi
ro 
ell site � open market pla
e).Measured 2D AR(6,1) 2D AR(6,2) Channel
hannel simulator (3.7)Doppler shift, 1.106 −0.11 0.19 0.02
µfd (Hz) [1.05, 1.16]Squared Doppler 24.5 21.7 22.47 23.87spread, σ2

fd
(Hz2) [24.36, 24.64]Delay shift, 0.71 0.707 0.68 0.704

µτ ′ (µs) [0.706, 0.722]Squared delay 0.053 0.051 0.054 0.048spread, σ2
τ ′ (µs2) [0.051, 0.055]
hannel and of the multi
hannel 2D AR(6,1) and 2D AR(6,2) models are demon-strated in Fig. 4.16. Clearly, the CDF 
urves are in good agreement. The meanvalues µC and the standard deviations σC of the 
apa
ity for the multi
hannel2D AR models and the measured 
hannel are presented in Table 4.4.Table 4.4: Estimated mean and standard deviation of the 
apa
ity (mi
ro 
ellsite � open market pla
e).Measured 2D AR(6,1) 2D AR(9,5)
hannelMean, µC (bps/Hz) 8.63 8.73 8.75Standard deviation, σC (bps/Hz) 1.32 1 1.03The 
apa
ity CDFs of the multi
hannel 2D AR(6,1) and 2D AR(6,2) modelsin Fig. 4.16 
an be 
ompared with the 
apa
ity CDF of the 
hannel simulatorbased on the model (3.7) presented in Fig. 3.9.
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(b)Figure 4.16: Capa
ity CDFs for the multi
hannel 2D AR(p1,p2) models and themeasured 
hannel for an SNR ρ = 20 dB (mi
ro 
ell site � openmarket pla
e).4.7.4 Mi
ro/Pi
o Cell Site � PassagewayAs before, we start with sele
ting an appropriate order of the multi
hannel 2DAR(p1,p2) model. Again, for this purpose we employ two approa
hes: the 
ross-validation method and the CMF rule des
ribed in Subse
tion 4.7.1. The twomethods yield two di�erent best 
andidate models, whi
h are the multi
hannel 2DAR(5,1) model (a

ording to the 
ross-validation method) and the multi
hannel2D AR(10,4) model (the CNF rule). Both these models are BIBO stable a

ordingto the results obtained by using the stability test (4.23).In Fig. 4.17, the examples of the TCCFs ˆ̃rti1,i2 [ι] and FCCFs ˆ̃rf ′

i1,i2
[κ], esti-mated from the measured TVFR of the real-world 
hannel, are depi
ted togetherwith the estimated TCCFs r̂ti1,i2 [ι] and FCCFs r̂f ′

i1,i2
[κ] of the multi
hannel 2DAR(5,1) and AR(10,4) models. The estimated TCCFs r̂ti1,i2 [ι] of the multi
hannel2D AR(5,1) model de
ay faster than the 
orresponding estimated TCCFs ˆ̃rti1,i2 [ι]of the measured 
hannel and the estimated TCCFs r̂ti1,i2 [ι] of the multi
hannel2D AR(10,4) model.
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(f)Figure 4.17: Examples of the estimated TCCFs and FCCFs of the physi
al 
han-nel and the 
orresponding TCCFs and FCCFs of the multi
hannel2D AR(p1,p2) models (mi
ro/pi
o 
ell site � passageway).



104 Chapter 4As it 
an also be seen from Fig. 4.17, in
reasing the order of the model from(5,1) to (10,4) does not remove the dis
repan
y between the estimated FCCFs
ˆ̃rf ′

i1,i2

[κ] of the measured 
hannel and the estimated FCCFs r̂f ′

i1,i2

[κ] of the mul-ti
hannel 2D AR models. The estimated TCCFs r̂ti1,i2 [ι] and FCCFs r̂f ′

i1,i2
[κ] ofthe multi
hannel 2D AR(5,1) and AR(10,4) models presented in Fig. 4.17 
an be
ompared to the 
orresponding 
orrelation fun
tions in Fig. 3.11.The estimated 2D delay-Doppler PSDs P̂h(τ

′, fd) of the 2D AR(5,1) and2D AR(10,4) models are depi
ted in Fig 4.18. Correspondingly, the estimatedDoppler PSDs P̂hfd
(fd) and the delay PSDs P̂hτ ′

(τ ′) of the multi
hannel 2DAR models are shown together with the Doppler PSD ˆ̃Phfd
(fd) and the delayPSD ˆ̃Phτ ′

(τ ′) of the measured 
hannel, estimated from the TVFR h̃1,1[m,n], inFigs. 4.19 and 4.20, respe
tively. Clearly, the order of the multi
hannel 2DAR(5,1) model is underestimated w.r.t. time (see the 
omment in Subse
tion 4.7.2regarding the results presented in Fig. 4.9).
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(b)Figure 4.18: The delay-Doppler PSD P̂h(τ
′, fd) of the (a) 2D AR(5,1) modeland (b) 2D AR(10,4) (mi
ro/pi
o 
ell site � passageway).We further analyze the results depi
ted in Figs. 4.19 and 4.20 in terms ofthe �rst and se
ond order spe
tral moments presented in Table 4.5. Clearly, theestimated spe
tral moments of the multi
hannel 2D AR(10,4) model are 
loser tothe 
orresponding spe
tral moments of the measured 
hannel, 
ompared to thespe
tral moments obtained for the 2D AR(5,1) model and the 
hannel simulatorbased on the model (3.7). As in the previous subse
tions, the squared delay spreadof the 
hannel simulation model (3.7) is smaller than the analogues 
hara
teristi
of the measured 
hannel and the multi
hannel 2D AR models. Also note thatin spite of the poor agreement between the Doppler PSD P̂hfd

(fd) of the 2DAR(5,1) model and the estimated Doppler PSD ˆ̃Phfd
(fd) of the measured 
hannelin Fig. 4.19, the Doppler spe
trum moments of the AR(5,1) model are rather 
lose
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(b)Figure 4.19: The Doppler PSDs for the multi
hannel 2D AR(p1,p2) models andthe measured 
hannel (mi
ro/pi
o 
ell site � passageway).
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(b)Figure 4.20: The delay PSDs for the multi
hannel 2D AR(p1,p2) models andthe measured 
hannel (mi
ro/pi
o 
ell site � passageway).to the estimated average Doppler shift and the Doppler spread of the measured
hannel.The CDFs of the instantaneous 
hannel 
apa
ity (3.48) of the multi
hannel2D AR(5,1) and 2D AR(10,4) models as well as the instantaneous 
apa
ity CDFof the measured 
hannel are shown in Fig. 4.21. The results presented in Fig. 4.21are 
omparable to those obtained for the 
hannel simulator developed in Subse
-tion 3.6.3 and depi
ted in Fig. 3.13. The estimated mean values and the standarddeviations of the 
apa
ity for the 2D AR(5,1), 2D AR(10,4), and the measured
hannel are shown in Table 4.6.



106 Chapter 4Table 4.5: Spe
tral moments (mi
ro/pi
o 
ell site � passageway).Measured 2D AR(5,1) 2D AR(10,4) Channel
hannel simulator (3.7)Doppler shift, −0.275 −0.47 −0.29 −0.63
µfd (Hz) [−0.315,−0.24]Squared Doppler 16 16.82 15.8 15.23spread, σ2

fd
(Hz2) [15.88, 16.15]Delay shift, 2.57 2.56 2.55 2.55

µτ ′ (µs) [2.564, 2.57]Squared delay 0.022 0.019 0.018 0.013spread, σ2
τ ′ (µs2) [0.021, 0.023]Table 4.6: Estimated mean and standard deviation of the 
apa
ity (mi
ro/pi
o
ell site � passageway). Measured 2D AR(6,1) 2D AR(9,5)
hannelMean, µC (bps/Hz) 8.45 8.7 8.7Standard deviation, σC (bps/Hz) 1.16 0.825 0.79
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(b)Figure 4.21: Capa
ity CDFs of the multi
hannel 2D AR(p1,p2) models and themeasured 
hannel for an SNR ρ = 20 dB (mi
ro/pi
o 
ell site �passageway).4.7.5 Indoor Cell SiteFor the real-world 
hannel 
onsidered in this subse
tion, the multi
hannel 2DAR(5,3) and the 2D AR(15,3) models have been 
hosen based on the resultsprovided by the 
ross-validation method and the CMF rule (Subse
tion 4.7.1),respe
tively. Both models are BIBO stable a

ording to the stability test (4.23).In Fig. 4.22, several TCCFs ˆ̃rti1,i2 [ι] and FCCFs ˆ̃rf ′

i1,i2

[κ], estimated from themeasurement data, as well as the 
orresponding estimated TCCFs r̂ti1,i2 [ι] and
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(f)Figure 4.22: Examples of the estimated TCCFs and FCCFs of the physi
al 
han-nel and the 
orresponding TCCFs and FCCFs of the multi
hannel2D AR(p1,p2) models (indoor 
ell site).



108 Chapter 4the FCCFs r̂f ′

i1,i2

[κ] of the multi
hannel 2D AR(5,3) and 2D AR(15,3) modelsare depi
ted. It 
an be observed that while the in
rease in the model order from(5,3) to (15,3) improves the agreement between the FCCFs ˆ̃rf ′

i1,i2

[κ] and r̂f ′

i1,i2

[κ],it worsens the �tting between the estimated TCCFs of the multi
hannel 2D ARmodels and the estimated TCCFs of the measured 
hannel. The results presentedin Fig. 4.22 
an be 
ompared to the results shown in Fig. 3.15The estimated 2D delay-Doppler PSDs P̂h(τ
′, fd) of the 2D AR(5,3) and 2DAR(15,3) models are demonstrated in Fig 4.23. The estimated single-dimensionalDoppler PSDs and the delay PSDs are shown in Figs. 4.19 and 4.20, respe
tively,for the multi
hannel 2D AR(5,3) and AR(15,3) models as well as the 
orrespond-ing single-dimensional PSDs estimated from the measured TVFR.
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(a) (b)Figure 4.23: The delay-Doppler PSD P̂h(τ
′, fd) of the (a) 2D AR(5,1) model;(b) 2D AR(10,4) (indoor 
ell site).
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(b)Figure 4.24: The Doppler PSDs for the multi
hannel 2D AR(p1,p2) models andthe measured 
hannel (indoor 
ell site).
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(b)Figure 4.25: The delay PSDs for the multi
hannel 2D AR(p1,p2) models andthe measured 
hannel (indoor 
ell site).The estimated �rst and se
ond order spe
tral moments for the measured 
han-nel and the multi
hannel 2D AR models are presented in Table 4.7. As in theprevious subse
tions, in Table 4.7 we in
lude the spe
tral moments 
al
ulatedfor the 
hannel simulator based on the model (3.7) developed in Subse
tion 3.6.4based on the same measured TVFR. It appears that the in
rease in the order ofthe multi
hannel 2D AR model from (5,3) to (15,3) does not signi�
antly in�u-en
e the values of the estimated spe
trum moments. Again, the 
al
ulated delayspread of the 
hannel simulator (3.7) is smaller 
ompared to the delay spread es-timated from the measurement data and to the delay spread of the multi
hannel2D AR models. Table 4.7: Spe
tral moments (indoor 
ell site).Measured 2D AR(5,3) 2D AR(15,3) Channel
hannel simulator (3.7)Doppler shift, −1.23 −0.88 −0.845 −1.4
µfd (Hz) [−1.27,−1.2]Squared Doppler 13.5 13.4 14.2 12.12spread, σ2

fd
(Hz2) [13.33, 13.66]Delay shift, 2.394 2.394 2.392 2.383

µτ ′ (µs) [2.391, 2.396]Squared delay 0.097 0.083 0.086 0.057spread, σ2
τ ′ (µs2) [0.094, 0.1]In Fig. 4.26, the instantaneous 
hannel 
apa
ity CDFs (3.48) of the multi
han-nel 2D AR(5,3) and AR(15,3) models are shown together with the instantaneous
apa
ity CDF of the measured 
hannel. As it 
an be seen from Fig. 4.26, theinstantaneous 
hannel 
apa
ity CDFs of the 2D AR(5,3) and AR(15,3) modelsare 
lose to the instantaneous 
hannel 
apa
ity CDF of the measured 
hannel.



110 Chapter 4The graphs presented in Fig. 4.26 
an be 
ompared to the 
apa
ity CDF of the
hannel simulator based on the model (3.7) depi
ted in Fig. 3.17. The estimatedmean values and the standard deviations of the 
apa
ity for the 2D AR(5,3), 2DAR(15,3), and the measured 
hannel are presented in Table 4.8.Table 4.8: Estimated mean and standard deviation of the 
apa
ity (indoor 
ellsite). Measured 2D AR(6,1) 2D AR(9,5)
hannelMean, µC (bps/Hz) 8.17 8.15 8.14Standard deviation, σC (bps/Hz) 0.83 1 0.85
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(b)Figure 4.26: Capa
ity CDFs of the multi
hannel 2D AR(p1,p2) models and themeasured 
hannel for the SNR ρ = 20 dB (indoor 
ell site).



Chapter 4 1114.8 Con
luding RemarksIn this 
hapter, we have des
ribed the use of the multi
hannel 2D AR model forsimulating MIMO wideband mobile radio 
hannels. The parameters of the mul-ti
hannel 2D AR model are estimated from the measured TVFR of a real-worldprototype 
hannel. The estimates of the multi
hannel 2D AR model parameters
an be obtained by solving the set of Yule-Walker normal equations or, alterna-tively, by employing the PEM method.One of the main problems asso
iated with the multi
hannel 2D AR model is apossible instability of a resulting 
hannel simulator. The stabilization pro
edureproposed in this 
hapter 
an be used to stabilize the multi
hannel 2D AR model.However, due to the large number of the model parameters, the stabilizationpro
edure might be time 
onsuming even for the multi
hannel 2D AR models ofa moderate order, say p1 > 5, p2 > 5 for 2× 2 MIMO systems.If the multi
hannel 2D AR model is to be used for generating realizationsof the 
hannel TVFR, whi
h do not ex
eed the duration of several transmittedsymbols, then the method of synthesizing the TVFR in the delay-Doppler domain
an be employed. This method is based on the observation that the la
k of theguaranteed stability of the multi
hannel 2D AR model is not a serious drawba
kfor estimating the delay-Doppler PSD of a wireless 
hannel. Thus, a spe
trumshaping �lter 
an be 
reated and applied to an input white noise in the delay-Doppler domain.In this 
hapter, we have 
onsidered the important 
hara
teristi
s of severalmulti
hannel 2D AR models developed based on the TVFRs of the real-world
hannels measured in di�erent propagation environments. The results presentedin this 
hapter 
an be 
ompared to the performan
e results for the sto
hasti

hannel simulators designed in Chapter 3. Below is a summary of the key ob-servations related to the development and performan
e of multi
hannel 2D ARmodels:
• The multi
hannel 2D AR model is generally less e�
ient in synthesizingrealizations of the TVFR of a wireless MIMO 
hannel than the 
hannelsimulation model (3.7) des
ribed in Chapter 3. This is due to the fa
tthat a relatively large amount of data has to be stored in the memory for
al
ulating the samples of the 
hannel TVFR. This is true for multi
hannel2D AR models represented in the form of (4.3) or (4.22) as well as in theform of the spe
trum shaping �lter (4.27).
• Estimating the parameters of the multi
hannel 2D AR(p1,p2) model 
an be
hara
terized as a moderate 
omplexity 
omputational problem. For exam-ple, the 
omputational 
ost of estimating the model parameters by usingthe PEM method des
ribed in Subse
tion 4.3.2 
an roughly be estimated as
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O
{
(M − p1)(N − p2)N

2
TN

2
R

[
(p1p2 + p1 + p2)

2 + (p1p2 + p1 + p2) + 1)
]}.

• It has been observed that the multi
hannel 2D AR model even of a relativelylow order, whi
h provides only a very smooth estimate of the delay-DopplerPSD of a real-world prototype 
hannel, is often su�
ient for adequate rep-resentation of the important statisti
s of the prototype 
hannel.



Chapter 5Velo
ity Estimation in WidebandMobile Stations Equipped WithMultiple Antennas
5.1 Introdu
tionDuring the last two de
ades, a number of publi
ations has been devoted to theproblem of estimating the MS velo
ity from the re
eived signal in 
ellular net-works. Su
h interest is due to the fa
t that signi�
ant improvements in the perfor-man
e of wireless 
ommuni
ation systems are possible if the MS speed is known.For example, the knowledge of the MS velo
ity allows to minimize the numberof handovers in multilayer 
ellular networks. Furthermore, the information aboutthe MS speed 
an be used to tune up di�erent adaptive signal pro
essing algo-rithms implemented in the trans
eivers.Several methods for estimating the MS velo
ity 
an be found in the litera-ture, see e.g., [80�87℄. The performan
e evaluation of some of the estimationalgorithms, as well as their 
omparison, are presented in [88, Chapter 5℄ and alsoin [89℄. A

ording to the theoreti
al and simulation-based analysis provided inthe referen
es, the main fa
tors that 
ause degradation in the performan
e ofthe available velo
ity estimators are the additive noise, presen
e of shadowing,and the nonisotropi
 s
attering environment. An additional fa
tor, whi
h is oftenomitted from the 
onsideration, is the limited time interval over whi
h the 
hannelstatisti
s have to be estimated.Although the existing velo
ity estimators 
an be employed without any 
hangesin wideband MIMO systems, it is of interest to investigate how additional degreesof freedom, e.g., signal bandwidth and multiple antennas at a MS, 
an be uti-lized to improve the a

ura
y of the velo
ity estimation for di�erent propagations
enarios. The results of the investigations might be useful in the 
ontext of113



114 Chapter 5developing the newly emerged Ultra Mobile Broadband (UMB) [90℄ and mobileWiMAX [91℄ te
hnologies. It is worth mentioning that the problem of improvingthe robustness of MS velo
ity estimators by taking advantage of a wide bandwidthand antenna arrays (at the BS), has been re
ently analyzed in [92℄.In this 
hapter, we des
ribe an MS velo
ity estimation method designed forwideband MIMO 
ommuni
ation systems [93℄. In our method, the speed of theMS is estimated using the well-known relationship between the DOAs and theDoppler shifts that 
hara
terizes the multipath signal 
omponents. A

ordingto [4, Chapter 7℄, the distribution of the DOAs is a fun
tion of delays. Theassumption that we make regarding the propagation environment is that the mul-tipath 
omponents arriving at the MS from a 
ertain bounded interval of DOAs
an be uniquely identi�ed with a 
ertain range of propagation delays. This as-sumption allows us to simplify the otherwise 
ompli
ated parameter estimationalgorithms that 
an be applied to simultaneously estimate the DOAs and the 
or-responding Doppler frequen
ies of the multipath 
omponents. The performan
eof the proposed MS velo
ity estimator has been evaluated on simulated 
hannelTVFRs. The presented results demonstrate that the suggested velo
ity estimationalgorithm is less sensitive to noise and nonisotropi
 s
attering 
ompared to severalother known methods. It is also shown how the performan
e of the proposed MSspeed estimator is a�e
ted by the available signal bandwidth.The rest of the 
hapter is organized as follows. In Se
tion 5.2, we des
ribethe model of the 
hannel TVFR. The MS velo
ity estimation method is presentedin Se
tion 5.3. Se
tion 5.4 provides the results of the performan
e evaluation.Con
luding remarks are given in Se
tion 5.5.5.2 The Time-Variant Frequen
y Response of the Chan-nelIn this se
tion, we establish the model for the TVFR of a mobile MIMO radiopropagation 
hannel. In MIMO systems, the MS and the BS are equipped withantenna arrays 
onsisting of NMS and NBS elements, respe
tively. For simpli
ityreasons and without loss of generality, we let NBS = 1.It is assumed that the TVFR ve
tor H(f ′, t) = [H1(f
′, t), . . . ,HNMS

(f ′, t)]Tof the mobile radio 
hannel 
onsists of a �nite number L of multipath 
omponents(
f. (3.7)), i.e.,
H(f ′, t) =

L∑

n=1

g(φl)cle
j(2πfdl t−2πf ′τ ′

l
+θl) (5.1)where f ′ and t denote the frequen
y and time variables, respe
tively, and Hi(f

′, t),
i = 1, . . . , NMS , is the TVFR of the i-th sub
hannel. Ea
h of the L multipath
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omponents is 
hara
terized by the path gain cl, Doppler frequen
y fdl , propaga-tion delay τ ′l , phase shift θl, and the DOA φl. Here, we impli
itly assume thatthe planar ele
tromagneti
 waves propagate horizontally.The steering ve
tor g(φ) in (5.1) is de�ned as [94℄
g(φ) = [g1(φ)e

−jk0〈k,r1〉, . . . , gNMS
(φ)e−jk0〈k,rNMS

〉]T (5.2)where the ve
tor ri, i = 1, . . . , NMS , spe
i�es the lo
ation of the i-th MS antennaarray element with respe
t to a 
hosen referen
e point; k is a unit ve
tor pointingin the dire
tion of the wave propagation; k0 is the free-spa
e wavenumber, relatedto the wavelength λ by k0 = 2π/λ. The radiation pattern of the i-th antenna arrayelement is given by gi(φ), i = 1, . . . , NMS . If the MS is equipped with a uniformlinear array (ULA), we presume that the radiation pattern of the MS antennaarray is e�e
tively restri
ted to the range of φ ∈ [−π/2, π/2] (see, e.g., [65℄),where the DOA φ is measured w.r.t. the normal to the linear antenna array.In pra
ti
e, the TVFRH(f ′, t) has to be estimated, e.g., using pilot tones as inorthogonal frequen
y division multiplexing (OFDM) 
ommuni
ation systems [4℄.The errors in the estimated TVFR Ĥ(f ′, t) are represented by a 
omplex spa-tially un
orrelated (independent) additive white Gaussian noise (AWGN) ve
tor
w(f ′, t), i.e.,

Ĥ(f ′, t) = H(f ′, t) +w(f ′, t) (5.3)where ea
h 
omponent of the ve
tor w(f ′, t) = [w1(f
′, t), . . . , wNMS

(f ′, t)]T haszero-mean and varian
e 2σ2w. Similar to the previous 
hapters, we assume thatthe TVFR H(f ′, t) is estimated at dis
rete frequen
ies f ′m = −B/2 + m△f ′ ∈
[−B/2, B/2], m = 0, . . . ,M − 1, and at dis
rete time instan
es tn = n△t ∈ [0, T ],
n = 0, . . . , N − 1, where B and T denote the frequen
y bandwidth and thetime observation interval, respe
tively. The frequen
y sampling interval △f ′ andthe time sampling interval △t are 
onstants. The time sampling interval △t issupposed to be less than 1/(2fdmax

) with the maximum Doppler frequen
y de�nedas fdmax
= v/λc, where v is the speed of the MS and λc = c/fc

1 with c denotingthe speed of light.5.3 Velo
ity Estimation AlgorithmIn this se
tion, we des
ribe the algorithm proposed for estimating the MS velo
-ity. The basi
 idea behind the algorithm 
omes from the well-known relationshipbetween the Doppler frequen
y fdl and the DOA φl of the l-th multipath 
ompo-nent in (5.1). Under the 
ondition that the Doppler e�e
t is 
aused only by the1In a typi
al wideband 
ommuni
ation system, the inequality B/fc ≪ 1 still holds, where fcis the 
enter frequen
y of the modulated bandpass signal.



116 Chapter 5MS movement, this relationship 
an be expressed as
fdl =

v

λc
cos(φl − αv) (5.4)where v is the MS velo
ity and αv designates the dire
tion of the MS movement.5.3.1 Least-Squares Velo
ity EstimatorSuppose that estimates of the DOAs {φ̂k} and the Doppler frequen
ies {f̂dk}of K ≤ L multipath 
omponents in (5.1) are available. The least-squares (LS)estimator of the MS velo
ity v and the dire
tion of the MS movement αv 
an beexpressed as

{v̂, α̂v} = arg min
{v,αv}

{
K∑

k=1

(f̂dk −
v

λc
cos(φ̂k − αv))

2

}

. (5.5)Using the identity
v

λc
cos(φ̂k − αv) =

v

λc
[cos(φ̂k) cos(αv) + sin(φ̂k) sin(αv)] (5.6)we 
an de�ne the system of linear equations
Ab = fd (5.7)where

A =






cos(φ̂1) sin(φ̂1)... ...
cos(φ̂K) sin(φ̂K)




 , (5.8)

b ≡
[

b1
b2

]

=

[

v/λc cos(αv)

v/λc sin(αv)

]

, (5.9)and
fd = [f̂d1 , . . . , f̂dK ]

T . (5.10)The LS solution of (5.7) is given by2
b̂ = (ATA)−1AT fd. (5.11)Thus, the LS estimate of the MS velo
ity that solves the minimization problem2Sin
e un
ertainties due to the estimation errors are present in both the matrix A in (5.9)and the ve
tor fd in (5.11), it makes sense to �nd the total least-squares (TLS) [95℄ solution forthe ve
tor b.
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an be written as
v̂ = λc

√

b̂21 + b̂22 (5.12a)
α̂v = arctan

(

b̂2

b̂1

)

. (5.12b)5.3.2 Estimation of the Dire
tion-of-Arrivals and the DopplerFrequen
iesHypotheti
ally, it seems to be an attra
tive approa
h to sele
t the multipath 
om-ponents in (5.1) 
lustered around a known DOA φ̃k by using, e.g., beamformingte
hniques [96℄. Then, assuming the sele
ted multipath 
omponents have approx-imately the same Doppler frequen
y, it is relatively easy to obtain the estimate
f̂dk . In pra
ti
e, however, the small aperture (see, e.g., [94℄) of an antenna arrayat the MS makes it impossible to 
onstru
t a spatial �lter (beamformer) withgood sele
tivity properties3 in the angular domain. On the other hand, in wide-band 
ommuni
ation systems, the `aperture' in the frequen
y domain, determinedby the signal bandwidth B, is relatively large. Thus, the multipath 
omponentsin (5.1) with the propagation delays 
lustered around a known delay τ̃ ′k 
an besele
ted. Furthermore, we assume that the Doppler spe
trum of the multipath
omponents 
lustered in the delay domain around τ̃ ′k possesses a global maximum,whi
h 
an be asso
iated with a 
ertain Doppler frequen
y fdk .The above-mentioned 
onsiderations have led to the following algorithm forestimating the DOAs {φk} and the Doppler frequen
ies {fdk}, k = 1, . . . ,K.Step 1. Sele
t the multipath 
omponents with the propagation delays, whi
hare 
lose to a spe
i�ed delay τ̃ ′k 
hosen as des
ribed below. For this purpose,pass the estimated TVFR Ĥi[m,n] = Ĥi[m△f ′, n△t], i = 1, . . . , NMS , of the i-thsub
hannel through a delay bandpass �lter with the transfer fun
tion 
entered at
τ̃ ′k. The �ltering operation 
an be implemented in the form of a dis
rete Fouriertransform (DFT) as

yi[n; τ̃
′
k] =

1

M

M−1∑

m=0

Ĥi[m,n]e
−j2πτ̃ ′

k
△f ′m (5.13)where yi[n; τ̃ ′k] denotes the sampled signal at the output of the bandpass �lter.Step 2. Estimate the DOA φk. Assuming the antenna array 
alibrationdata as well as the lo
ations of the antenna elements w.r.t. the referen
e point isavailable at the MS, the DOA φk 
an be estimated using the beamforming method3By the sele
tivity properties, we understand the width of the main lobe and the level of theside lobes of the �lter transfer fun
tion.
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φ̂k = argmax

φk







gH(φk)
(

1
N

∑N−1
n=0 y[n; τ̃ ′k]y

H [n; τ̃ ′k]
)

g(φk)

gH(φk)g(φk)






(5.14)where y[k; τ̃ ′k] = [y1[n; τ̃

′
k], . . . , yNMS

[n; τ̃ ′k]]
T , g(φ) is de�ned in (5.2).Step 3. Estimate the Doppler frequen
y fdk by allo
ating a maximum of theperiodogram, i.e.,̂

fdk = argmax
fdk







1

N

∣
∣
∣
∣
∣

N−1∑

n=0

z[n; τ̃ ′k, φ̂k]e
j2πfdk△t n

∣
∣
∣
∣
∣

2





(5.15)where the sampled fun
tion z[n; τ̃ ′k, φ̂k] is given by

z[n; τ̃ ′k, φ̂k] = gH(φ̂k)y[n; τ̃
′
k]. (5.16)The Steps 1�3 presented above are illustrated with a signal �ow diagram inFig. 5.1.
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Figure 5.1: Signal �ow diagram for estimating the DOAs and the Doppler fre-quen
ies.Note that the 
hoi
e of the delay bandpass �lter used in Step 1 was mainlygoverned by the simpli
ity of implementation. For example, the DFT in Step 1
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an be readily 
omputed using the fast Fourier transform (FFT). It might bepossible, however, to improve the 
hara
teristi
s of the �lter, e.g., by using datawindowing [65, 79℄.Based on the 
ondu
ted simulations, we suggest to use as {τ̃ ′k} the lo
ationsof the K highest peaks in the impulse response of the �rst sub
hannel obtainedby taking the FFT of Ĥ1[m,n] w.r.t. the frequen
y index m.On obtaining the estimates {φ̂k, f̂dk}, k = 1, . . . ,K, the MS velo
ity is deter-mined as des
ribed in Subse
tion 5.3.1.5.4 Simulation ResultsIn this se
tion, we present the results of the performan
e evaluation for the MSvelo
ity estimation algorithm des
ribed in the previous se
tion.The performan
e of the proposed MS velo
ity estimator has been assessedon a number of TVFRs H(f ′, t) generated using a simple geometri
al model. Inthis model, the distan
e D between the BS and the MS is assumed to be 750 m.The MS is equipped with a ULA 
onsisting of two (NMS = 2) omnidire
tionalantenna elements separated by a half wavelength distan
e. The signal frequen
yband is 
entered at f ′c = 2 GHz. The normal to the MS antenna array points to-wards the BS. The s
atterers are uniformly distributed in the region between theBS and the MS. The dimensions of the region are determined by the maximumallowed propagation delay τ ′max = 1/△f ′. Thus, the DOAs {φl} of the multi-path 
omponents [see (5.1)℄ lie in the range [−π/2, π/2] and, therefore, 
an beunambiguously estimated. The path gains {cl} are realizations of i.i.d. randomvariables, ea
h having a uniform distribution in the interval [0, 1]. The path gainsare �rst normalized, so that ∑L
l=1 c

2
l = 1, then ea
h of them is multiplied by theexponential fa
tor exp[log(0.1)(τ ′l − τ ′min)/(τ

′
max − τ ′min)], where τ ′min = D/c. The
hosen multipli
ation fa
tor represents the exponential de
ay normally observedin the measured 
hannel power-delay pro�le (PDP) [97℄. The dire
tion of theMS movement αv is an out
ome of a random number generator having a uniformdistribution in the interval [0, 2π). The other parameters are spe
i�ed as below:

• Number of multipath 
omponents: L = 230;
• Time interval between snapshots: △t = 1 ms;
• Number of snapshots: N = 100;
• Interval between frequen
ies: △f ′ = 3.125 · 105 Hz.Note that the propagation delay τ ′l of the l-th multipath 
omponent is a fun
-tion of the DOA φl in the synthesized TVFR of the 
hannel. An example of thesimulated multipath 
omponents in the delay-DOA plane is depi
ted in Fig. 5.2.
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Figure 5.2: Example of the simulated multipath 
omponents in the delay-DOAplane.
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Figure 5.3: Normalized bias as a fun
tion of the MS velo
ity and the SNR (B= 20 MHz).The performan
e of the MS velo
ity estimator is evaluated in terms of thenormalized biasE{(v̂−v)/v} and the mean-squared relative error (MSRE) E{[(v̂−
v)/v]2} of the estimates. These two 
hara
teristi
s are shown in Figs. 5.3 and 5.4,respe
tively, for di�erent values of the SNR. It 
an be observed that the normalizedbias and the MSRE are almost independent of the a
tual MS speed. As expe
ted,with in
reasing SNR, the velo
ity estimates be
ome less biased and have smallerMSRE.
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Figure 5.4: Mean-squared relative error as a fun
tion of the MS velo
ity andthe SNR (B = 20 MHz).Figures 5.5 and 5.6 demonstrate the degree to whi
h the performan
e of theproposed velo
ity estimation algorithm depends on the available signal bandwidth
B. It 
an be seen that for B ≥ 15 MHz the normalized bias and the MSRE donot 
hange signi�
antly. A somewhat greater MSRE in the velo
ity estimates isobserved for B = 5 MHz.
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Figure 5.5: Normalized bias as a fun
tion of the MS velo
ity and the bandwidth(SNR = 10 dB).
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Figure 5.6: Mean-squared relative error as a fun
tion of the MS velo
ity andthe bandwidth (SNR = 10 dB).



Chapter 5 123We have also 
ompared the performan
e of the proposed MS velo
ity esti-mation algorithm with several existing methods, namely: the instantaneous fre-quen
y (IF) method [85℄, the level-
rossing rate (LCR) method [80℄, the zero-
rossing rate (ZCR) method [80℄, and the 
ovarian
e-based (COV) estimationmethod [81℄4. All of these methods assume isotropi
 s
attering. To satisfy this as-sumption, the performan
es of the velo
ity estimators have been 
ompared basedon the TVFRs, generated using the geometri
al one-ring simulation model [35℄.In this model, the s
atterers are lo
ated on a ring. The DOAs {φn} are realiza-tions of i.i.d. random variables, ea
h having a uniform distribution in the interval
[−π, π]. All path gains {cn} are equal to 1/

√
N . To avoid the ambiguity in theestimation of the DOAs {φn}, three neighboring elements of an 8-element omni-dire
tional uniform 
ir
ular array (UCA) are used as the MS antenna. The othersimulation model parameters are un
hanged 
ompared to the 
hannel simulatordes
ribed above. The Ri
ian K-fa
tor, whi
h is zero in this propagation s
enario,is assumed known in the IF velo
ity estimation method.The normalized bias and the MSRE of the velo
ity estimates obtained usingthe aforementioned estimation methods are depi
ted in Figs. 5.7 and 5.8, respe
-tively. The performan
e results for the IF, LCR, ZCR, and COV methods arein agreement with the similar results presented in [88, Chapter 5℄. It 
an be ob-served that the proposed velo
ity estimation method demonstrates smaller biasand smaller MSRE in the broad range of the 
onsidered MS speeds.
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Figure 5.7: Normalized bias as a fun
tion of the MS velo
ity (SNR = 10 dB, B= 10 MHz).4The 
hannel statisti
s required for the velo
ity estimation by using the IF, LCR, ZCR, andCOV methods have been averaged over M frequen
ies and NMS sub
hannels.
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Figure 5.8: Mean-squared relative error as a fun
tion of the MS velo
ity (SNR= 10 dB, B = 10 MHz).5.5 Con
luding RemarksIn this 
hapter, we have 
onsidered a method for the velo
ity estimation in MSsequipped with multiple antennas and operating over wideband 
ommuni
ation
hannels. The velo
ity is estimated by employing the well-known relationshipsbetween the DOAs, the MS speed, and the Doppler frequen
ies of the multipath
omponents representing the TVFR of the 
hannel. The method is based on theassumption that the Doppler spe
trum of the multipath 
omponents 
lustered inthe delay domain possesses a global maximum, whi
h 
an be asso
iated with a
ertain Doppler frequen
y.Using 
omputer simulations, the performan
e of the proposed MS velo
ityestimation method has been evaluated for di�erent SNRs and di�erent signalbandwidths. It has been demonstrated that the new estimation algorithm isnot restri
ted to isotropi
 s
attering s
enarios. The proposed velo
ity estimatorappears to be more robust to noise 
ompared to several other existing MS speedestimation methods.



Chapter 6Summary of Contributions andOutlook
6.1 ContributionsIn this thesis, we have fo
used on the methods for designing measurement-basedsimulation models for wireless 
ommuni
ation 
hannels. Below is the summary ofthe 
ontributions:

• A stationarity test has been proposed for real-world wireless 
ommuni
ation
hannels. The test has been extended to validate the stationarity of MIMOwireless 
hannels.
• The stationarity of the TVFRs of wireless 
ommuni
ation 
hannels mea-sured in di�erent propagation environments has been analyzed. We havefound that the length of the 
hannel stationarity intervals de
reases as thenumber of antennas at the transmitter and the re
eiver in
reases.
• We have proposed a method for designing measurement-based sto
hasti

hannel simulation models for time-variant wideband MIMO wireless 
han-nels. The method has also been adapted for designing measurement-basedsto
hasti
 
hannel simulators for wideband SISO and narrowband MIMOwireless 
hannels.
• Experimental investigations based on simulations and measurement data
orresponding to various propagation environments have shown that theproposed method 
an be used for 
reating simulators for wireless 
ommuni-
ation 
hannels. Additionally, it has been demonstrated that the method isrobust against white noise present in the measurement data.
• We have proposed the multi
hannel 2D AR model for simulating MIMOwideband mobile radio 
hannels. The parameters of the multi
hannel 2D125



126 Chapter 6AR model are estimated from the measured TVFR of a real-world 
hannel.We have investigated the problem of a possible instability of the resultingmulti
hannel 2D AR 
hannel model. A model stabilization pro
edure hasbeen proposed to stabilize the multi
hannel 2D AR model. Also, we have
onsidered synthesizing the TVFRs of MIMO wideband mobile radio 
han-nels in the delay-Doppler domain. This 
hannel simulation method 
an beused even in the 
ase of unstable multi
hannel 2D AR models.
• We have analyzed the problem of estimating the velo
ity in wideband MSsequipped with multiple antennas. Using a developed velo
ity estimationalgorithm, it has been demonstrated that the MS velo
ity estimations 
anbe signi�
antly improved as 
ompared to the results provided by severalexisting methods.6.2 OutlookThe results of the basi
 performan
e analysis for the stationarity test developedin Chapters 2 have been presented. However, a more detailed study of the testbehavior under various 
onditions is required. The purpose of this study is toinvestigate the dependen
e between the level of 
on�den
e for an out
ome of thestationarity test and the data sample size, i.e., the available signal bandwidth.The part, whi
h has not been 
overed in this dissertation, is the analysis ofe�e
ts the errors in representing the 
orrelation properties in time, frequen
y, andspa
e produ
e on the performan
e of wireless re
eivers. Potentially, su
h analysisopens possibilities for optimizing the 
hoi
e of the parameters in the algorithmpresented in Chapters 3 and also for redu
ing the 
omputational load asso
iatedwith determining the parameters of the simulation model (3.7).The methods for designing measurement-based 
hannel simulators des
ribedin Chapters 3 and 4 allow synthesizing realizations of the 
hannel TVFR withthe 
orrelation properties approximating those of a prototype real-world 
hannel.Presuming that the �rst-order PDF of the TVFR of the prototype real-world 
han-nel 
an be approximated by the 
omplex Gaussian PDF, the 
hannel simulatordeveloped by using one of the methods presented in this thesis allows an adequateanalysis of the performan
e of wireless 
ommuni
ation systems. The justi�
ationfor the assumed Gaussianity of real-world radio 
hannels, in
luding empiri
al re-sults obtained during multiple measurement 
ampaigns, 
an be found in manyreferen
es. However, it has also been reported in the literature that the estimateddistribution of the TVFR of measured 
hannels 
an signi�
antly deviate from the
omplex Gaussian PDF. In [14℄ and [15℄, it is mentioned that a general approa
h tosimulating stationary random pro
esses with spe
i�ed 
orrelation properties andarbitrary �rst-order PDFs is based on a non-linear memoryless transformation of



Chapter 6 127Gaussian random pro
esses. A possible appli
ation of this approa
h to the devel-opment of 
hannel simulators for wireless 
ommuni
ation 
hannels 
onstitutes aninteresting resear
h topi
.In the sto
hasti
 
hannel simulation model presented in Chapter 3, the spa
e-time-frequen
y 
orrelation matrix R of the model is represented as a sum of theKroneker produ
ts of the matri
es Rtl , Rf ′

l
, and Rgl de�ned in (3.12), (3.13),(3.14), respe
tively. The 
orrelation matri
es Rgl , l = 1, . . . , L, 
an be furtherparameterized in terms of the DOAs and DODs. Su
h parametrization 
an redu
ethe total number of the 
hannel simulation model parameters. To investigatethis possibility, the measurement data have to be supplemented with a

urate
alibration data for the transmitter and re
eiver equipment used in a measurement
ampaign.The methods for designing measurement-based simulation models presented inthis thesis are appropriate for generating wireless 
hannels that satisfy the wide-sense stationarity assumption in the delay-Doppler domain. However, as it hasbeen mentioned above, for real-world 
hannels this assumption 
an be a

eptedonly on limited intervals of time. Therefore, further resear
h is ne
essary for de-veloping measurement-based 
hannel simulation models 
apable of reprodu
ingthe quasi-stationary (nonstationary) behavior of physi
al radio 
ommuni
ation
hannels. This subje
t is parti
ularly important for the mobile-to-mobile 
ommu-ni
ations, where very short intervals of 
hannel stationarity 
an be expe
ted.
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Appendix AMeasurement Equipment andPropagation S
enariosThe 
ontent of this appendix is a 
ompilation of the relevant details, whi
h havebeen found in the two te
hni
al reports provided by Telenor R&D together withthe measurement data.A.1 Measurement EquipmentThe measurement 
ampaign was 
ondu
ted by Telenor R&D in Oslo, Norway, inJuly 2003. The measurements were performed using a wideband 
hannel sounderwith syn
hronized multiplexing of the transmitter and re
eiver antennas. The
hannel sounder was manufa
tured by SINTEF Tele
om and Informati
s, Trond-heim, Norway, on assignment from Telenor R&D. Both the transmitter and there
eiver were equipped with eight element uniform linear arrays 
onsisting of ver-ti
ally polarized re
tangular pat
h antennas with an inter-element spa
ing of one-half wavelength. A linear frequen
y 
hirp signal was used for 
hannel sounding.The blo
k diagrams of the 
hannel sounder transmitter and re
eiver are shown inFigs. A.1 and A.2, respe
tively.The transmitter was mounted on a mobile trolley at the height of 1.5 m aboveground. The re
eiver antenna was stationary and mounted on a 1.7 m high tripodmast. In addition, the following parameters des
ribing the set up are listed below.
• Carrier frequen
y: f ′c = 5.255 GHz;
• Bandwidth: B = 100 MHz;
• Interval between the frequen
ies: △f ′ = 1.957 · 105 Hz;
• Time between 
hannel snapshots: △t = 0.07 s;
• Impulse response length: 5.12 µs.129
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 Figure A.1: Channel sounder transmitter.

 Figure A.2: Channel sounder re
eiver.



Appendix A 131A.2 Propagation S
enariosA.2.1 Mi
ro Cell Site - Regular Street GeometryThis site is a part of Oslo downtown with a regular street grid. The building massis homogenous and materials used are mostly bri
k and 
on
rete. The buildingheight varies between 20 � 30 m. In Fig. A.3, the position of the re
eiving antennais shown.The measurement route is shown on the map in Fig. A.4. The photo of themeasurement route is depi
ted in Fig. A.5.

Figure A.3: Position of the re
eiving antenna (mi
ro 
ell site � regular streetgeometry).
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Figure A.4: Map of the measurement route (mi
ro 
ell site � regular street ge-ometry).

Figure A.5: Photo of the measurement route (mi
ro 
ell site � regular streetgeometry).
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ro Cell Site - Open Market Pla
eThe se
ond measurement site is a market square partly �lled with market stalls.The surrounding buildings are of variable size and height. The size of the squareis about 100 × 100m2. One side of the square is approximately 5 m above theother. The re
eiving antenna was pla
ed at the elevated side of the square. Theposition of the re
eiving antenna is marked with a red 
ir
le in Fig. A.6. Themeasurement route is shown in Fig. A.7.

Figure A.6: Position of the re
eiving antenna (mi
ro 
ell site - open marketpla
e).

Figure A.7: Map of the measurement route (mi
ro 
ell site � open market pla
e).



134 Appendix AA.2.3 Mi
ro/Pi
o Cell Site - PassagewayAt the south-east side of the market square, des
ribed in the previous subse
tion,a pedestrian passageway leads through a building to the next street. The routeis shown on the map in Fig. A.8. This site was 
hosen for testing the so-
alled`key-hole' e�e
t.The interior of the passageway is presented in Fig. A.9.

Figure A.8: Map of the measurement route (mi
ro/pi
o 
ell site - passageway).

Figure A.9: Photo of the measurement route (mi
ro/pi
o 
ell site - passageway).



Appendix A 135A.2.4 Indoor Cell SiteThe indoor measurements were performed in the Telenor headquarters building.This is a modern o�
e building with open indoor areas. The building materialsused are mostly glass and steel with wood 
overed 
omputer �oors or stone tiles.Very few 
ubi
le o�
es are used. The working zones are with a high degree ofopenness. The building has an irregular stru
ture.The interior of the working zone at Telenor headquarters is shown in Fig. A.10.The map of the measurement route and the photo of the route are shown inFigs. A.11 and A.12, respe
tively.

Figure A.10: Working zone interior (indoor 
ell site).

Figure A.11: Map of the measurement route (indoor 
ell site).
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Figure A.12: Photo of the measurement route (indoor 
ell site).
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