

Interdisciplinary school project using Nintendo Wii controller
for measuring car speed

Nils Kristian Hansen and James Robert Mitchell
University of Agder, P.O. Box 422, 4604 Kristiansand, Norway
E-mails: nils.k.hansen@uia.no james.r.mitchell@uia.no

Abstract
This work examines the feasibility of employing a Nintendo Wii game controller for measuring car
speed in an interdisciplinary school project. It discusses the physical characteristics of the controller
and of vehicle headlights. It suggests how an experiment may be linked to topics in mathematics,
statistics, physics and computer science. An algorithm for calculating speed from repeated recordings
of car headlights is provided. Finally the results of repeated experiments with an approaching car are
provided.

mailto:nils.k.hansen@uia.no
mailto:james.r.mitchell@uia.no

Introduction
During the last four years several articles have been published on the subject of using a Nintendo Wii
remote controller (Wiimote) for physics experiments, making use of its built in accelerometers and IR
camera. Vannoni and Straulino [1] use it for analysing pendulum motion. Ochoa, Rooney and Somers
[2] employ it in investigating harmonic motion on a string. Wheeler [3] recapitulates these
experiments and expands them by presenting tailor made software and introducing experiments using
multiple Wiimotes and the Wii Balance Board.

These articles all aim mainly at demonstrating how Wiimotes can replace commercial data loggers,
and use a black box approach to the software. This work however, demonstrates how a Wiimote can
be used to perform an outdoor experiment not achievable by commercial data loggers. It uses a white
box approach to the software, facilitating an interdisciplinary student project, joining topics from
physics, mathematics and computer science.

It is based on the fact that ordinary tungsten car headlights emit near-IR, thus ought to be detectible
by the Wiimote IR camera. When the distance between the headlights of private cars is known, as well
as the focal length of the Wiimote camera, the distance of a car can be calculated using similar
triangles. By repeated measurements, the average speed of an approaching car can be determined and
displayed.

IR-sources, types of IR, elementary remote sensing and more generally radio wave communication,
such as the Wiimote Bluetooth communication, are topics that may be linked to this experiment.
Programming skills may be challenged through developing the GlovePIE script, where the use of a
finite state machine is recommended. Application of mathematics is required in calculating distance by
Pythagoras and similar triangles, and computing average speed from recorded distances. A lesson may
also be complemented through production of charts of statistical data, and the working limitations of
the equipment open for discussion in project work.

Wiimote characteristics
A Wiimote is a video game control device, communicating with the gaming console by Bluetooth.

Its characteristics are not published by the manufacturer, but Vannoni and Straulino [1] states that it
has a three-axes accelerometer, measuring along three perpendicular axes over a range of ± 3g with 10
% sensitivity, and that it has a 1024 x 768 pixel camera with an IR filter in front, tracking up to 4 IR
sources.

A test with commercially available IR diodes with frequencies of 850 nm, 880 nm, 940 nm and 950
nm respectively demonstrated the Wiimote camera to be most sensitive to 940 nm.

A test with a 940 nm IR diode powered by 50 mA at a distance of 1 metre yielded a sensitivity
angle of 42° horizontally and 30° vertically.

The average of 10 readings at distances from 16 to 43 cm using two IR diodes with an internal
distance of 9.6 cm indicated the focal length of the camera to be 1328 +/-5 pixels.

Interdisciplinary project using Wiimote

A Wiimote with top lid removed is shown in figure 1.

Figure 1 Wiimote with top lid removed.

Vehicle characteristics
A sample of 50 random private cars showed the average distance between the headlight bulbs to be
110 cm, with a relative standard deviation of 9 %.

Software
The Wiimote reports the position of IR-sources in its internal 1024 x 768 pixel grid. To convert the
position of car headlights into the distance of an approaching car, a software interface is needed. Karl
Kenner [4] provides GlovePIE [5], a programmable input emulator with an interface as shown in
figure 2.

Figure 2 GlovePIE interface.

GlovePIE scripts execute in infinite loops.
GlovePIE employs a proprietary script language, but accepts a variety of well-known programming

syntaxes [6]. This work uses Java syntax.
GlovePIE specific codes employed in this work are:

• var. Variable prefix. Prefix is separated from variable by a dot.
• timeStamp. System clock. Unit is seconds with two decimals followed by the text

"Seconds". This text may be removed by dividing by one second. (1s)

Interdisciplinary project using Wiimote

• wiimote.dotNvis, 𝑁 ∈ {1,2,3,4}. True if at least 𝑁 IR-sources are detected.
• wiimote.dotNX, 𝑁 ∈ {1,2,3,4}. X-coordinate of IR-source 𝑁. Unit is pixels.
• wiimote.dotNY, 𝑁 ∈ {1,2,3,4}. Y-coordinate of IR-source 𝑁. Unit is pixels.
• debug =. Outputs what follows the equal sign to a small window in the GlovePIE interface.
• starting. Built-in variable. true in first loop, false otherwise.

Calculating distance and speed
The mathematics of calculating the distance to a pair of IR sources is simple, making use of
Pythagoras and similar triangles.

In GlovePIE the position of two IR sources is made available as two coordinate pairs. Denoting
them (𝑥1,𝑦1) and (𝑥2,𝑦2), their relative distance in pixels, 𝑎, may be calculated by Pythagoras:

𝑎 = �(𝑥2 − 𝑥1) 2 + (𝑦2 − 𝑦1) 2

Knowing 𝑎, as well as the focal length of the Wiimote, 𝑏, and the real world distance between the IR
sources, 𝑐, the range between the IR sources and the Wiimote, d, may be calculated by similar
triangles:

𝑑
𝑏

=
𝑐
𝑎
⇒ 𝑑 =

𝑏𝑐
𝑎

This is illustrated in figure 3. The units of 𝑎 and 𝑏 are pixels. For 𝑐 and 𝑑 this work uses metres.

Figure 3 Calculating distance using similar triangles.

With b set to the Wiimote focal length of 1328 pixels and c to the average distance between car lights
to 1.1 metres, the resulting equation is:

𝑑 =
1328 𝑝𝑥 ∙ 1.1 𝑚

𝑎 𝑝𝑥
≈

1461
𝑎

𝑚

Instant speed is calculated as distance covered divided by time elapsed between two readings:

Interdisciplinary project using Wiimote

𝑠𝑛 =
𝑑𝑛−1 − 𝑑𝑛
𝑡𝑛 − 𝑡𝑛−1

Average speed is calculated by averaging all samples of instant speed:

𝑠̅ =
∑𝑠𝑛
𝑛

Average speed calculation algorithm
During algorithm design it had to be taken into consideration that

• GlovePIE provides no array structures, thus storing speed samples and performing
calculations and corrections at the end would be impractical. All calculations would have to be
performed on the fly.

• If track of headlights was lost, the algorithm should reset.
• Headlights detected too close to yield sufficient speed samples should be ignored.
• The algorithm should be easy for students to understand and modify.

Initial experiments showed that headlight tracking was stable between 37 and 6 metres. Thus, allowing
a margin of error, the algorithm was designed to start sampling when first reading was in the range of
35 and 25 metres and end with first reading below 8 metres. The algorithm is a finite state machine
with three states, execution starting in state waiting:

State waiting:
If two IR-sources detected and distance is 25𝑚 < 𝑑 < 35𝑚 :

Sample initial time 𝑡0 and distance 𝑑0.
Set initial accumulated speed to 𝑐0 = 0.
Switch to state sampling.

Else:
Do nothing.

State sampling:
If two IR-sources detected and distance is 6𝑚 < 𝑑 < 35𝑚:

Sample time 𝑡𝑛 and distance 𝑑𝑛.
Calculate instant speed 𝑠𝑛 = 𝑑𝑛−1−𝑑𝑛

𝑡𝑛−𝑡𝑛−1
.

Calculate accumulated speed, 𝑐𝑛 = 𝑐𝑛−1 + 𝑠𝑛.
If distance 𝑑 < 8𝑚.

Calculate average speed 𝑠 = 𝑐𝑛
𝑛

.
Switch to state displaying.

Else:
Do nothing.

State displaying:
Display average speed, 𝑠, in unit desired, e.g. 𝑠 ∙ 3.6 𝑘𝑚 ℎ−1

The corresponding GlovePIE script code can be found in appendix A. It also includes a timer forcing a
switch back to state waiting, thus resetting the system:

• After 150 loops in state displaying
• After 30 loops in state sampling without a proper reading.

Practical considerations and limitations
Initial experiments showed that on clear days, ubiquitous solar reflections throw the IR-camera
severely off, thus experiments can only be carried out on overcast days or after sunset. Also fog
reduced the headlight detection range.

Another problem is that some headlights employ xenon bulbs instead of tungsten, and are
undetected by the Wiimote far IR camera. Also headlight reflectors reflect a broad beam of light
forward, which may incur a somewhat unpredictable intensity profile relative to viewing angle. The

Interdisciplinary project using Wiimote

Wiimote software may therefore vary the detected position of the headlight centre point according to
the precise vehicle direction. Although a possible source of noise, this should average out over
continuous measurements of vehicle speed.

Vehicles with deviating distance between the headlights will yield incorrect readings. This will be a
major problem with buses, lorries and vans, and readings on these should be ignored.

Further concerns are the quantized nature of pixels at the limit of resolution and the timestamp of
the software. Subsequent readings may be associated with the same pixel pair, yielding a speed of
zero. Time lapse between timestamps in the software alternates between 30 ms and 40 ms.

However recordings of an approaching car showed that though instant speed samples were erratic,
the average quickly stabilized and the relative standard deviation dropped and stayed below 10 %.

The system refuses to report speeds above approximately 60 km h-1. It may however be possible to
remedy this by modifications to the software.

Practical experiment
An experiment was carried out by installing the Wiimote on a tripod at the roadside and driving by 6
times at 20, 30, 40 and 50 km h-1 respectively and recording the reported speed. The headlight
separation for this vehicle was 1,0 m. Weather conditions were full daylight but overcast. The results
are shown in table 1.

Speedometer 20 30 40 50
Average of 6 Wii readings 18 28 37 47
Relative standard deviation of Wii readings 4 % 4 % 4 % 5 %

Table 1: Correspondence between speedometer and Wii at different speeds (km h-1).

Please note that this is not intended as a precise assessment of the precision of the Wee recordings,
there are several error sources. Although the test car was driven as close to constant speed as possible,
the lag in speedometer reaction and driving accuracy may account for some of the relative standard
deviation. Neither is it given that the speedometer reading is the true speed of the vehicle.

However the results may be interpreted as an indication of what may be expected in a school
project.

Conclusions and further work
This work demonstrates that it is technically feasible to employ a Wiimote for estimating the speed of
cars based on IR-radiation from the headlights, within certain working limitations. Even though
precision is limited, an experiment shows promising results.

The equipment is furthermore cheap, robust, portable and easy to use, and the software required
can be developed by students.

Further work is left to anyone who wants to pick up on the white box approach of this work.

References
[1] Vannoni M and Straulino S 2007 Low-cost accelerometers for physics experiments European

Journal of Physics 28 781-7
[2] Ochoa R, Rooney F G and Somers W J 2011 Using the Wiimote in Introductory Physics

Experiments Physics Teacher 49 16-18
[3] Wheeler M D 2011 Physics experiments with Nintendo Wii controllers Physics Education 46 57-

63
[4] http://glovepie.org/glovepie.php
[5] http://glovepie.org/lpghjkwer.php
[6] http://glovepie.org/w/index.php?title=Preliminary_Documentation

http://glovepie.org/glovepie.php
http://glovepie.org/lpghjkwer.php
http://glovepie.org/w/index.php?title=Preliminary_Documentation

Interdisciplinary project using Wiimote

Appendix A, GlovePIE script code
if(starting){
 var.state = "waiting"; // Initial state
}
// Code common to two states
if(var.state == "waiting" || var.state == "sampling"){
 // If two IR sources are detected
 if(wiimote.dot1vis && wiimote.dot2vis){
 // Use Pythagoras to calculate distance between IR-sources
 var.x_dist = wiimote.dot2X - wiimote.dot1X;
 var.y_dist = wiimote.dot2Y - wiimote.dot1Y;
 var.a = sqrt(sqr(var.x_dist) + sqr(var.y_dist));

 // Use similar triangles to calculate distance to IR-sources
 var.d = 1461 / var.a;
 } else {
 var.d = -1; // No distance available
 }
}
// Act as proper in current state
if(var.state == "waiting"){
 debug = "Waiting ...";
 var.loops = 0;
 // If distance in "first detect" range, set initial values
 if(25 < var.d && var.d < 35){
 var.count = 0;
 var.tOld = timeStamp / 1s;
 var.dOld = var.d;
 var.accSpeed = 0;
 var.state = "sampling";
 }
}
if(var.state == "sampling"){
 debug = "Sampling ...";
 if(6 < var.d && var.d < 35){ // If distance in range, calculate instant speed
 var.loops = 0;
 var.count++;
 var.tNew = timeStamp / 1s;
 var.dNew = var.d;
 var.iSpeed = (var.dOld - var.dNew) / (var.tNew - var.tOld);
 var.accSpeed += var.iSpeed;
 var.tOld = var.tNew;
 var.dOld = var.dNew;
 if(var.d < 8){ // If distance in stop range, calculate avg. speed
 var.avgSpeed = var.accSpeed / var.count;
 var.state = "displaying";
 }
 } else {
 var.loops++; // Count of loops without proper sample
 if(var.loops >= 30){ // No sample for 30 loops, so car is probably lost
 var.state = "waiting";
 }
 }
}
if(var.state == "displaying"){

Interdisciplinary project using Wiimote

 debug = "Speed: " + round(var.avgSpeed * 3.6) + " km h-1";
 var.loops++ // Count of loops while displaying
 if(var.loops >= 150){ // Speed displayed long enough
 var.state = "waiting";
 }
}

	Interdisciplinary school project using Nintendo Wii controller for measuring car speed
	Nils Kristian Hansen and James Robert Mitchell
	if(starting){

