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We discuss the effect of a periodic yield harvesting on a single species population whose dynamics in a fluctuating environment is
described by the logistic differential equation with periodic coefficients. This problem was studied by Brauer and Sánchez (2003)
who attempted the proof of the existence of two positive periodic solutions; the flaw in their argument is corrected. We obtain
estimates for positive attracting and repelling periodic solutions and describe behavior of other solutions. Extinction and blow-up
times are evaluated for solutions with small and large initial data; dependence of the number of periodic solutions on the parameter
𝜎 associated with the intensity of harvesting is explored. As 𝜎 grows, the number of periodic solutions drops from two to zero. We
provide bounds for the bifurcation parameter whose value in practice can be efficiently approximated numerically.

1. Introduction

Environmental conditions like weather or food availabil-
ity change significantly throughout the year and influence
directly the growth of populations. Responding to seasonal
environmental fluctuations, population density can alter
quite fast during relatively brief periods, reflecting changes
in the living conditions that become less favorable or con-
verse. Since in many cases environmental fluctuations have
a clearly pronounced seasonal character, they can be effi-
ciently modeled with the help of nonautonomous differential
equations with periodic coefficients. A striking example of a
positive effect of a periodically fluctuating environment on
the dynamics of a species has been reported by Jillson [1] who
observed that total population numbers in the flour beetle
population in the periodically fluctuating environment were
more than twice those in the constant environment. On the
other hand, Walters and Bandy [2] demonstrated positive
effect of periodic harvesting concluding that periodic harvest
of some big game populations may increase the total yield by

10 to 20 percent with the best interval between harvests in 2
to 4 years.

Although importance of the systematic study of the effect
of environmental changes on the dynamics of populations
has been emphasized in the monographs of MacArtur and
Wilson [3], Nisbet and Gurney [4], Renshaw [5], Thieme
[6], and other authors, many important problems remain
open even for simple cases. As mentioned by Rosenblat [7,
page 23], “seasonal and circadian changes in the surrounding
conditions... can have a significant effect on birth and death
rates, availability of resources, and so on. In spite of this,
the question of the influence of these variations has received
surprisingly little attention, certainly by comparison with
the massive literature devoted to the analysis of systems
in constant environments, and even by comparison with
the studies of ecosystems in randomly fluctuating envi-
ronments.” In the introduction to the special issue of the
journal Theoretical Population Biology “Understanding the
role of environmental variation in population and community
dynamics” (volume 64 (2003), issue 3), its editor Chesson [8]
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stressed that “the dominant focus in theoretical models of
population and community dynamics has not been on how
populations change in response to the physical environment,
but on how populations depend on their own population
densities or the population densities of other organisms.”

In this paper, we investigate the effect of a periodic yield
harvesting on the dynamics of a population in a fluctuating
environment described by

𝑑𝑥 (𝑡)

𝑑𝑡

= 𝑟 (𝑡) 𝑥 (𝑡) (1 −

𝑥 (𝑡)

𝐾 (𝑡)

) , (1)

where the intrinsic growth rate 𝑟 and the carrying capacity
of the environment 𝐾 are positive, continuous functions that
vary periodically with time, 𝑟(𝑡 + 𝑇) = 𝑟(𝑡) and 𝐾(𝑡 + 𝑇) =

𝐾(𝑡), for all 𝑡 ∈ R. Logistic equation (1) is widely used
by ecologists, although its appropriateness as a model has
been questioned, see Gabriel et al. [9]. Equation (1) does
not describe correctly behavior of solutions if the condition
𝑟

def
= (1/𝑇) ∫

𝑇

0
𝑟(𝑡)𝑑𝑡 > 0 fails to hold, see Rogovchenko

and Rogovchenko [10]. Nevertheless, as Gabriel et al. [9, page
147] fairly noticed, “independently of the status that one gives
to this model, it has been and remains a corner-stone of
empirical and theoretical ecology.”

The dynamics of harvested populations in a fluctuating
environment has been addressed by several authors. We
mention papers by Benardete et al. [11], Brauer and Sánchez
[12], and Campbell and Kaplan [13] that stimulated the
interest of the authors to the topic, as well as contributions
by Lazer [14], Lazer and Sánchez [15, 16], and Liu et al. [17].
Contrary to proportional harvesting, the case where both 𝑟

and 𝐾 in (1) are periodic along with the harvesting term 𝐻

has been studied only by Brauer and Sánchez [12].
A bifurcation problem for a differential equation

𝑑𝑥 (𝑡)

𝑑𝑡

= 𝑘𝑥 (𝑡) (1 − 𝑥 (𝑡)) − 𝐻 (1 + sin (2𝜋𝑡)) (2)

has been discussed by Campbell and Kaplan [13] and, in
more detail, by Benardete et al. [11], cf. [16, Example 1,
page 157]. Unfortunately, argument developed by Benardete
et al. [11] uses symmetry of the differential equation (2).
Additional difficulties arise in case of variable coefficients
because, as mentioned by Nkashama [18, page 2], “unlike the
constant-coefficient case, the nonlinearitymight have a string
of non-zero 𝑥-intercepts in time.” Recently, using Crandall-
Rabinowitz saddle-node bifurcation theorem, Liu et al. [17]
established existence of periodic solutions for 𝑑𝑥(𝑡)/𝑑𝑡 =

𝑓(𝑥(𝑡)) − 𝜎ℎ(𝑡). However, neither they provide estimates for
periodic solutions nor describe behavior of other solutions.
As stressed by Padhi et al. [19, page 2617], “it would be
interesting to develop results that identify the exact number
of positive periodic solutions admitted by the considered
model and study their stability nature. Such study becomes
imperative from resource management perspective.”

As Brauer and Sánchez [12, page 243] pointed out, “a gen-
eral theory of the qualitative behavior of periodic population
models, both single species and interacting species, would
have many applications.” In this paper, we obtain estimates

for positive attracting and repelling periodic solutions to (1)
in case of periodic yield harvesting, describe behavior of
other solutions, and derive estimates for extinction and blow-
up times. This information is important for ecologists who
can predict asymptotic behavior of solutions and evaluate
their “life span.” We also perform a detailed bifurcation
analysis providing bounds for the bifurcation parameter 𝜎bif;
these bounds can be tightened numerically. We are not,
however, concerned with optimal harvesting policies; the
reader is referred, for example, to the papers by Braverman
and Mamdani [20], Castilho and Srinivasu [21], Fan and
Wang [22], or Xu et al. [23]. Finally, we note that envi-
ronmental fluctuations may be also modeled by including
deviated arguments in logistic differential equations in a
variety of ways, see, for instance, Gopalsamy [24], Zhang and
Gopalsamy [25], Gopalsamy et al. [26, 27], and the references
cited therein.

Remark 1. For obvious reasons, in population biology, only
solutions that take on positive values should be taken into
consideration. However, for completeness of mathematical
analysis of the problem, we also investigate behavior of
solutions that satisfy negative initial conditions or become
negative at some instant 𝑡

∗
. In the former case, such analysis

is completely irrelevant for applications, whereas in the latter
case the phrase “solutions decay to−∞” should be interpreted
in biological terms as “the population goes extinct”; we
provide useful estimates for extinction times.

2. Periodic Solutions and Harvesting

2.1. Constant Yield Harvesting versus Proportional. We start
by providing an introductory information regarding har-
vesting of a single species. In general case, harvesting of a
population can be modeled by a differential equation

𝑑𝑥 (𝑡)

𝑑𝑡

= 𝑓 (𝑡, 𝑥 (𝑡)) − ℎ (𝑡, 𝑥 (𝑡)) , (3)

where the function 𝑓 describes the growth of unharvested
population and the function ℎ provides a law according
to which members of the population are removed. Two
main harvesting options are described in the literature. A
commonly used and widely studied type of harvesting where
ℎ is a linear function of population size, ℎ(𝑡, 𝑥(𝑡)) = 𝐻

0
𝑥(𝑡),

is known as proportional or constant effort harvesting. It
often arises in mathematical models of fisheries under the
assumption that the catch is proportional to the fishing effort
𝐸, see, for instance, the fundamental monograph of Clark
[28]. The principal assumption that the catch is proportional
to effort appears to be reasonable in many practical situations
yet, it may be questionable for small or exhausted fisheries
where much higher fishing effort should be required.

The type of harvesting where members of the population
are removed at the constant rate per unit time, that is,
ℎ(𝑡, 𝑥(𝑡)) = 𝐻

0
, is called constant rate or constant yield

harvesting. It arises in situations when a certain quota is
specified (fishing or hunting licenses, etc.) and can be also
described as regular harvesting at a stock-independent rate.
It is reasonable to consider the case where 𝐻

0
is a function of
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time, 𝐻
0

= 𝐻
0
(𝑡); it can also be a periodic function. In a pio-

neering paper by Brauer and Sánchez [29], the case of logistic
growth with a constant harvesting rate was considered. Since
then, quite a few papers dealing with the harvesting of single
and competing species have been published. However, as
recently mentioned by the same authors [12, pages 233-234],
“a plausible situation which has received little attention is
when 𝐻(𝑡) is periodic, corresponding to seasonal harvesting
such as seasonal open hunting or fishing seasons or crop
spraying for parasites.”

In addition to theoretical importance of the study under-
taken in this paper, we also stress its practical importance. In
fact, a logistic growth model with periodic harvesting

𝑑𝑥 (𝑡)

𝑑𝑡

= 𝑟 (𝑡) 𝑥 (𝑡) (1 −

𝑥 (𝑡)

𝐾 (𝑡)

) − 𝐻 (𝑡) , (4)

where 𝐻(𝑡) is a certain piecewise constant function with
the period 12 has been used by Laham et al. [30] for
the mathematical analysis of the best harvesting strategy
for tilapia fish farming at selected fish farms in Malaysia.
Furthermore, in the recent report by Keesom et al. [31], a
differential equation similar to (2),

𝑑𝑥 (𝑡)

𝑑𝑡

= 𝑘𝑥 (𝑡) (1 −

𝑥 (𝑡)

𝐶

) − 𝑎 (1 + sin (𝑏𝑡)) , (5)

has been used for determination of an optimal harvesting
frequency of fishing cycles 𝑏 required formaintaining a steady
population of Alaskan salmon. Since both Keesom et al. [31]
and Laham et al. [30] provide only numerical analysis for
the models mentioned above, importance of a comprehen-
sive theoretical analysis for this class of equations becomes
obvious.

In what follows, we employ concepts of lower and upper
fences, also termed lower and upper solutions (subsolutions
and supersolutions). Basic facts regarding fences and funnels
can be found in Hubbard andWest [32, Chapters 1 and 4].We
interpret attractors and repellers using forward and pullback
convergence, seeWiggins [33, page 112] and use the definition
in Berger and Siegmund [34, Definition 3, page 3792], des-
cribed by the authors as a “tailor-made specialization of more
general concepts.”

2.2. Proportional Harvesting. The case of periodic propor-
tional harvesting,

𝑑𝑥 (𝑡)

𝑑𝑡

= 𝑟 (𝑡) 𝑥 (𝑡) (1 −

𝑥 (𝑡)

𝐾 (𝑡)

) − 𝐻 (𝑡) 𝑥 (𝑡) , (6)

where 𝐻 is a continuous positive periodic function has been
studied by Castilho and Srinivasu [21, Proposition 3.2, page
6] and Fan and Wang [22, Theorem 4.1, page 172], cf. also
Hale and Koçak [35, Exercise 4.23 on pages 128-129] and
Sánchez [36, discussion on pages 884-885]. Clearly, (6) can
be recast in the form (1) with a modified intrinsic growth rate
𝑟
1
(𝑡) = 𝑟(𝑡) − 𝐻(𝑡) and carrying capacity 𝐾

1
(𝑡) = (𝐾(𝑡)(𝑟(𝑡) −

𝐻(𝑡)))/𝑟(𝑡). Consequently, an application of results reported
by Coleman et al. [37], Fan and Wang [22, Theorem 2.1,
pages 167-168], or S. P. Rogovchenko and Y. V. Rogovchenko

[10, Theorem 13, page 1176] yields existence of a unique pos-
itive 𝑇-periodic solution 𝑥p(𝑡) to (6) which is asymptotically
stablewith the domain of attraction containing positive initial
data provided that the time average 𝑟

1
of the function 𝑟

1
(𝑡) is

positive, 𝑟
1

> 0.

2.3. Periodic Yield Harvesting. Compared to proportional
harvesting, the case of periodic yield harvesting, (4) received
much less attention. Results where at least one of the three
functions 𝑟, 𝐾, or 𝐻 is constant are known, see, Braverman
and Mamdani [20], Fan and Wang [22], Xu et al. [23]. To the
best of our knowledge, (4) with all three periodic coefficients
has been studied only by Brauer and Sánchez [12].

Contrary to (6), Riccati differential equation (4) does not
have the trivial solution 𝑥triv(𝑡) ≡ 0, unless 𝐻(𝑡) ≡ 0. This
distinguishes dynamics of solutions with small positive initial
data. Although any two solutions of (4) with 0 < 𝑥

1
(𝑡
0
) <

𝑥
2
(𝑡
0
) satisfy 𝑥

1
(𝑡) < 𝑥

2
(𝑡), for all 𝑡 ≥ 𝑡

0
, for any solution

𝑥small(𝑡) of this equation with 0 < 𝑥small(𝑡0) < 𝜀, for a small
𝜀 > 0, there exists a 𝑡ext, termed the “extinction time,” such
that 𝑥small(𝑡ext) = 0 and 𝑥small(𝑡) < 0, for all 𝑡 > 𝑡ext, see
Section 2.5.This cannot happen for (6), forwhich the unstable
solution 𝑥triv(𝑡) acts as a nonporous lower fence.

Sánchez [38, page 959] mentioned that a minormodifica-
tion of the result due to Pliss [39,Theorem 9.6, pages 102-103]
yields existence of atmost two periodic solutions to equations
with the right-hand side quadratic with respect to 𝑥, cf. [40,
Theoremon page 30]. Consequence of the celebratedMassera
Theorem [41], see Brauer and Sánchez [12, Theorem 1, page
234] or Sánchez [40, Theorem on page 34], is often used
for establishing existence of periodic solutions to equations
with a continuous, 𝑇-periodic right-hand side. As Brauer
and Sánchez [12, page 234] pointed out, this 𝑇-periodic
solution is asymptotically stable. Thus, we concentrate our
efforts on establishing bounds for positive periodic solutions
and analyze behavior of other solutions, cf. Rizaner and
Rogovchenko [42].

In the sequel, we use notation 𝑔min = min
0≤𝑡≤𝑇

𝑔(𝑡) and
𝑔max = max

0≤𝑡≤𝑇
𝑔(𝑡) and assume that at least one of the

inequalities 𝑟min ≤ 𝑟max, 𝐾min ≤ 𝐾max, 𝐻min ≤ 𝐻max is
strict. Completing the square on the right-hand side of (4)
as in Brauer and Sánchez [12, Section 4, pages 241-242], one
concludes that the slope 𝑑𝑥(𝑡)/𝑑𝑡 is negative for all 𝑡 ∈ R

provided that

𝛾 (𝑡)

def
= 𝐻 (𝑡) −

𝑟 (𝑡) 𝐾 (𝑡)

4

> 0, (7)

in which case 𝑥(𝑡) → −∞ as 𝑡 → +∞. Thus, (4) has no
periodic solutions and the population goes extinct.

Passing to the case when (7) fails to hold, Brauer and
Sánchez [12, Section 4, pages 241-242] reasoned as follows.
Assuming that the inequality

𝛾 (𝑡) < 0 (8)

holds for all 𝑡 ∈ R, they argued that, for all 𝑡, 𝑥

|
𝑥=0

<

0, 𝑥

|
𝑥=𝐾max

< 0 and 𝑥

|
𝑥=𝐾max/2

> 0. However, one can easily
construct counter examples where the latter inequality does
not hold, although (8) is satisfied. In fact, consider (4) with
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𝑟(𝑡) = 4 + sin(2𝜋𝑡), 𝐾(𝑡) = 5 + 2 sin(2𝜋𝑡) and 𝐻(𝑡) =

3 + sin(2𝜋𝑡). Then, for all 𝑡 ∈ R, 𝛾(𝑡) ≤ −1/4, and (8) is
satisfied, but the derivative of solution of the given differential
equation,

𝑥



𝑥=𝐾max/2

=

7 (4 + sin (2𝜋𝑡))

2

× (1 −

7

2 (5 + 2 sin (2𝜋𝑡))

)

− (3 + sin (2𝜋𝑡)) ,

(9)

changes sign infinitely many times on R.

Theorem 2. Assume that condition

𝐻max <

𝑟min𝐾min
4

(10)

is satisfied. Then (4) has two positive periodic solutions, 𝑥
+
(𝑡)

and 𝑥
−
(𝑡), which are the forward and pullback attractors,

respectively, and, for all 𝑡 ∈ R,

0 < 𝑥
− (𝑡) <

𝐾min
2

< 𝑥
+ (𝑡) < 𝐾max. (11)

Proof. Observe first that [40, Theorem on page 30] yields
that (4) cannot have more than two periodic solutions.
Furthermore, for all 𝑡 ∈ R,

𝑑𝑥 (𝑡)

𝑑𝑡








𝑥(𝑡)=𝐾max

= 𝑟 (𝑡) 𝐾max (1 −

𝐾max
𝐾 (𝑡)

) − 𝐻 (𝑡)

≤ 𝑟 (𝑡) 𝐾max (1 −

𝐾max
𝐾max

) − 𝐻 (𝑡)

= − 𝐻 (𝑡)

< 0.

(12)

On the other hand, by virtue of (10),

𝑑𝑥 (𝑡)

𝑑𝑡








𝑥(𝑡)=𝐾min/2

= 𝑟 (𝑡)

𝐾min
2

(1 −

𝐾min
2𝐾 (𝑡)

) − 𝐻 (𝑡)

≥ 𝑟min
𝐾min

2

(1 −

𝐾min
2𝐾min

) − 𝐻max

=

𝑟min𝐾min
4

− 𝐻max

> 0.

(13)

By [40, Theorem on page 34], there exists a periodic solution
𝑥
+
(𝑡) of (4) satisfying 𝐾min/2 < 𝑥

+
(𝑡) < 𝐾max. Direction

field and uniqueness arguments imply that this solution is
a forward attractor for all solutions of (4) with initial data
satisfying 𝐾min/2 < 𝑥(𝑡

0
) < 𝐾max.

Keeping in mind that a pullback attractor is a forward
repeller, see Rasmussen [43, Remark 3.4, page 272], introduce
a new variable 𝜏 = −𝑡. If 𝑥(𝑡) is a solution to (4), then
�̃�(𝜏) = 𝑥(−𝑡) satisfies

𝑑�̃� (𝜏)

𝑑𝜏

= −𝑟 (𝜏) �̃� (𝜏) (1 −

�̃� (𝜏)

𝐾 (𝜏)

) + 𝐻 (𝜏) . (14)

Note first that, for �̃�(𝜏) = 0, the slope 𝑑�̃�(𝜏)/𝑑𝜏 is positive
for all 𝜏 ∈ R, 𝑑�̃�(𝜏)/𝑑𝜏|

�̃�(𝜏)=0
= 𝐻(𝜏) > 0. Furthermore, by

virtue of (10),

𝑑�̃� (𝜏)

𝑑𝜏








�̃�(𝜏)=𝐾min/2

= − 𝑟 (𝜏)

𝐾min
2

(1 −

𝐾min
2𝐾 (𝜏)

) + 𝐻 (𝜏)

≤ − 𝑟min
𝐾min

2

(1 −

𝐾min
2𝐾min

) + 𝐻max

= 𝐻max −

𝑟min𝐾min
4

< 0.

(15)

Therefore, another application of [40, Theorem on page 34]
yields the existence of a unique forward attractor of (14) as
𝜏 → +∞. Correspondingly, there exists a unique positive
pullback attractor 𝑥

−
(𝑡) satisfying (11).

2.4. Sharper Estimates for Periodic Solutions. Rough prelimi-
nary estimates (11) for the attractor-repeller pair are further
improved in this section. For 𝑖 = 1, 2, let 𝜑

𝑖
and 𝜓

𝑖
be

equilibrium solutions to autonomous differential equations

𝑑𝜑 (𝑡)

𝑑𝑡

= 𝑟min𝜑 (𝑡) (1 −

𝜑 (𝑡)

𝐾min
) − 𝐻max, (16)

𝑑𝜓 (𝑡)

𝑑𝑡

= 𝑟max𝜓 (𝑡) (1 −

𝜓 (𝑡)

𝐾max
) − 𝐻min. (17)

Theorem 3. Assume that (10) holds for all 𝑡 ∈ R. Suppose also
that

2𝐻min
𝐻max

≤

𝑟max
𝑟min

. (18)

Then, for the attractor-repeller pair 𝑥
+
(𝑡), 𝑥

−
(𝑡) inTheorem 2,

one has

0 < 𝜓
1

< 𝑥
− (𝑡) < 𝜑

1
, 𝜑

2
< 𝑥
+ (𝑡) < 𝐾max. (19)

If, in addition,

𝐾max < 2𝐾min, (20)

then

𝜑
2

< 𝑥
+ (𝑡) < 𝜓

2
< 𝐾max. (21)

Proof. By (11), it suffices to consider only the values of 𝑥

between 0 and𝐾max. However, one can completely control the
behavior of the right-hand side of (4) only for 0 ≤ 𝑥 ≤ 𝐾min,
in which case the following estimates hold:

𝑟min𝑥 (𝑡) (1 −

𝑥 (𝑡)

𝐾min
) − 𝐻max

≤ 𝑟 (𝑡) 𝑥 (𝑡) (1 −

𝑥 (𝑡)

𝐾 (𝑡)

) − 𝐻 (𝑡)

≤ 𝑟max𝑥 (𝑡) (1 −

𝑥 (𝑡)

𝐾max
) − 𝐻min.

(22)
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Equilibrium solutions to differential equations (16) and (17)
are given by

𝜑
1,2

=

𝐾min
2

(1 ∓ √1 −

4𝐻max
𝑟min𝐾min

) ,

𝜓
1,2

=

𝐾max
2

(1 ∓ √1 −

4𝐻min
𝑟max𝐾max

) .

(23)

Condition (18) ensures that these four equilibria are ordered
as follows:

𝜓
1

< 𝜑
1

< 𝜑
2

< 𝜓
2
. (24)

Indeed, note first that 𝜑
1

< 𝜑
2

< 𝐾min. Then, by virtue of
𝐻min/(𝑟max𝐾max) ≤ 𝐻min/(𝑟min𝐾min) ≤ 𝐻max/(𝑟min𝐾min) <

1/4, we conclude that 𝜑
2

< 𝜓
2
. To demonstrate that 𝜓

1
< 𝜑
1
,

we keep 𝐻max, 𝐻min, 𝑟max, and 𝑟min fixed and analyze the
behavior of 𝜑

1
(𝐾min) and𝜓

1
(𝐾max) described by the function

𝜒(𝑥) = 𝑥(1 − √1 − ]/𝑥)/2, 𝑥 ≥ ]. One can verify that 𝜒 is
strictly decreasing on [], +∞), attains its maximal value ]/2

at 𝑥 = ], and decays to ]/4 as 𝑥 → +∞. Correspondingly,
𝜑
1
(𝐾min) ∈ (𝐻max/𝑟min, 2𝐻max/𝑟min] and 𝜓

1
(𝐾max) ∈

(𝐻min/𝑟max, 2𝐻min/𝑟max]. Finally, condition (18) guarantees
that max

𝐾max
𝜓
1
(𝐾max) = 2𝐻min/𝑟max < 𝐻max/𝑟min =

inf
𝐾min

𝜑
1
(𝐾min), which completes the proof of (24).

Consider now the functions 𝛼
1
(𝑡) = 𝜑

1
and 𝛽

1
(𝑡) = 𝜓

1
.

One has

𝑓 (𝑡, 𝛼
1 (𝑡)) = 𝑟 (𝑡) 𝜑

1
(1 −

𝜑
1

𝐾 (𝑡)

) − 𝐻 (𝑡)

≥ 𝑟min𝜑
1

(1 −

𝜑
1

𝐾min
) − 𝐻max

= 𝛼


1
(𝑡) ,

𝑓 (𝑡, 𝛽
1 (𝑡)) = 𝑟 (𝑡) 𝜓

1
(1 −

𝜓
1

𝐾 (𝑡)

) − 𝐻 (𝑡)

≤ 𝑟max𝜓1 (1 −

𝜓
1

𝐾max
) − 𝐻min

= 𝛽


1
(𝑡) .

(25)

Hence, 𝛼
1
(𝑡) = 𝜑

1
and 𝛽

1
(𝑡) = 𝜓

1
are lower and upper

fences, whereas the horizontal strip bounded by 𝜑
1
and 𝜓

1

is an antifunnel, and there exists a periodic solution to (4)
located between 𝛼

1
(𝑡) and 𝛽

1
(𝑡). For the repeller 𝑥

−
(𝑡), one

has, for all 𝑡 ∈ R, 𝜓
1

< 𝑥
−
(𝑡) < 𝜑

1
. If (20) is satisfied, one

can show that both estimates for the attractor 𝑥
+
(𝑡) are also

“tightened” to (21). Otherwise, only a lower bound can be
improved, which leads to (19).

Numerical values in the following example, as well as in
the rest of the paper are truncated to four decimal places.

14

12

10

8

6

4

2

0
−4 −2 0 2 4 6

𝑥(𝑡)

𝑡

Figure 1: Tighter estimates for both periodic solutions of (26).

Example 4. Consider a 1-periodic differential equation

𝑑𝑥 (𝑡)

𝑑𝑡

= (5 + sin (2𝜋𝑡)) 𝑥 (𝑡) (1 −

2𝑥 (𝑡)

23 + 5 cos (2𝜋𝑡)

)

−

1

2

(11 − 3 cos (2𝜋𝑡)) .

(26)

In this case,

𝜑
1,2

=

3

2

(3 ∓ √2) , 𝜓
1,2

= 7 (1 ∓

√357

21

) . (27)

Condition (18) is satisfied because 2𝐻min/𝐻max = 2 ⋅ 4/7 ≤

6/4 = 𝑟max/𝑟min. By (19), 7(1 − √357/21) < 𝑥
−
(𝑡) <

3(3 − √2)/2 < 3(3 + √2)/2 < 𝑥
+
(𝑡) < 7(1 + √357/21),

see Figure 1. The improvement achieved in comparison
with rough estimates provided by Theorem 2 is seen as a
light-colored “corridor” separating the funnel and antifunnel
containing two periodic solutions. Corridor’s width is given
by 𝜑
2

− 𝜑
1

= 𝐾min√1 − 4𝐻max/(𝑟min𝐾min); it equals 3√2 for
(26). In addition, one can see two light-colored “corridors”
of the same width 14 − 7(1 + √357/21) = 7(1 − √357/21) =

0.7019 corresponding to improved upper and lower estimates
for 𝑥
+
(𝑡) and 𝑥

−
(𝑡).

Remark 5. Exact solutions 𝜑(𝑡) and 𝜓(𝑡) to (16) and (17) give
tighter estimates for the solution 𝑥(𝑡) of (4) satisfying the
same initial condition, provided that 0 ≤ 𝑥(𝑡

0
) = 𝜑(𝑡

0
) =

𝜓(𝑡
0
) ≤ 𝐾min or (20) holds. With the growth of 𝑡, both 𝜑(𝑡)

and 𝜓(𝑡) approach equilibria quite fast; even for relatively
small values of 𝑡, the difference becomes hardly visible, see
Figure 2. Thus, from the practical point of view, one can
use estimates (19) and (21) excluding a small interval where
solutions of (4) approach periodic ones as 𝑡 → ∓∞.
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Figure 2: Unstable and stable periodic solutions embraced by upper
and lower solutions.

Remark 6. To describe behavior of solutions 𝑥(𝑡) with initial
data satisfying 𝑥(𝑡

0
) < 0 or 𝑥(𝑡

0
) > 𝐾max, one needs estimates

𝑟max𝑥 (𝑡) (1 −

𝑥 (𝑡)

𝐾min
) − 𝐻max

≤ 𝑟 (𝑡) 𝑥 (𝑡) (1 −

𝑥 (𝑡)

𝐾 (𝑡)

) − 𝐻 (𝑡)

≤ 𝑟min𝑥 (𝑡) (1 −

𝑥 (𝑡)

𝐾max
) − 𝐻min

(28)

rather than (22), because the first term on the right-hand
side of (4) takes on negative values. Consequently, a pair of
autonomous differential equations

𝑑𝜂 (𝑡)

𝑑𝑡

= 𝑟max𝜂 (𝑡) (1 −

𝜂 (𝑡)

𝐾min
) − 𝐻max, (29)

𝑑𝜉 (𝑡)

𝑑𝑡

= 𝑟min𝜉 (𝑡) (1 −

𝜉 (𝑡)

𝐾max
) − 𝐻min, (30)

is used instead of (16) and (17).

2.5. Extinction Times. We start with an upper bound for the
extinction time 𝑡ext for solutions with initial data 𝑥(𝑡

0
) ∈

(0, 𝐾min]. By (22), one has to study the behavior of solutions
to differential equation (17). Suppose that

𝐻min > 𝐻crit =

𝑟max𝐾max
4

. (31)

Note that (31) yields (7). Therefore, the slope defined by (17)
is negative and all solutions of (4) decay to −∞. Integrating
(4), one derives the formula for the extinction time,

𝑡
s
ext = 𝑡

0
+ 2𝑟
−1

max(
𝐻min
𝐻crit

− 1)

−1/2

×

{
{

{
{

{

tan−1(𝐻min
𝐻crit

− 1)

−1/2

+ tan−1( 2

𝐾max
(𝜓 (𝑡
0
) −

𝐾max
2

)

× (

𝐻min
𝐻crit

− 1)

−1/2

)

}
}

}
}

}

.

(32)

In particular, if (20) holds, the extinction time for the solution
𝑥
∗
(𝑡) of (4) satisfying 𝑥

∗
(𝑡
0
) = 𝐾max/2 is determined by a

simpler expression,

𝑡
s
ext = 𝑡

0
+ 2𝑟
−1

max(
𝐻min
𝐻crit

− 1)

−1/2

tan−1(𝐻min
𝐻crit

− 1)

−1/2

.

(33)

For solutions with initial data 𝑥(𝑡
0
) > 𝐾max, the situation

is similar. Assume that (31) holds. By virtue of (28), differ-
ential equation (30) is used. Then, 𝐻max ≥ 𝐻min > 𝐻crit =

𝑟max𝐾max/4 ≥ 𝑟min𝐾max/4 = 𝐻
∗
. Integrating (30), letting

𝜉(𝑡) = 0 and solving the resulting equation for 𝑡
l
ext, one has

𝑡
l
ext = 𝑡

0
+ 2𝑟
−1

min(

𝐻min
𝐻
∗

− 1)

−1/2

×

{
{

{
{

{

tan−1(𝐻min
𝐻
∗

− 1)

−1/2

+ tan−1( 2

𝐾max
(𝜉 (𝑡
0
) −

𝐾max
2

)

× (

𝐻min
𝐻
∗

− 1)

−1/2

)

}
}

}
}

}

.

(34)

Example 7. Consider a 1-periodic differential equation

𝑑𝑥 (𝑡)

𝑑𝑡

= exp (

1 + cos (2𝜋𝑡)

2

)

× 𝑥 (𝑡) (1 −

𝑥 (𝑡)

6 + cosh (cos (2𝜋𝑡))

)

− (7 + sinh (sin (2𝜋𝑡))) .

(35)
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Figure 3: The upper solution (blue) and solution (orange) to (35)
satisfying the initial condition 𝑥(0) = 1. An upper bound for the
extinction time for this solution is 𝑡

s
ext = 0.2229.
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Figure 4: The upper solution (blue) and solution (orange) to (35)
satisfying the initial condition 𝑥(0) = 8. An upper bound for the
extinction time for this solution is 𝑡

l
ext = 1.7506.

Condition (31) holds since 5.8248 = 𝐻min > 𝑟max𝐾max/4 =

5.1260. Consequently, all solutions of (35) decay to −∞. By
(32), the extinction time for the solution satisfying 𝑥(0) =

1 < 𝐾min is 𝑡
s
ext = 0.2229, see Figure 3. For a solution of (35)

satisfying 𝑥(0) = 8 > 𝐾max = 6 + cosh 1 = 7.5431, one has
8.1752 = 𝐻max > 𝑟min𝐾max/4 = 1.8857. By (34), an upper
bound for the extinction time is 𝑡

l
ext = 1.7506, see Figure 4.

2.6. Forward and Backward Blow-Up Time. In this section,
we assume that (10) holds for all 𝑡 ∈ R. First, we estimate

0

−20

−40

−60

−80

−100
−1 −0.5 0 0.5 1

𝑥(𝑡)

𝑡

Figure 5: The upper solution (blue), lower (purple), and solution
(orange) to (26), all satisfying the initial condition, 𝑥(0) = 0.5, and
the vertical asymptote for the upper solution.

forward blow-up time for “small” solutions with initial data
𝑥(𝑡
0
) ∈ (0, 𝜓

1
), that is, for solutions located below the repeller

𝑥
−
(𝑡). These solutions decay rapidly to −∞ and have vertical

asymptotes to the right of 𝑡 = 𝑡
0
. Taking into account

estimates (22) that hold for small values of 𝑥(𝑡
0
), we integrate

differential equation (17) from 𝑡
0
to 𝑡 obtaining

𝜓 (𝑡) =

𝜓
1
𝑐
0
𝑒
𝜘(𝑡−𝑡0)

− 𝜓
2

𝑐
0
𝑒
𝜘(𝑡−𝑡0) − 1

, (36)

where 𝑐
0

= (𝜓(𝑡
0
) − 𝜓

2
)/(𝜓(𝑡

0
) − 𝜓

1
), 𝜘 = −𝑟max(𝜓2 −

𝜓
1
)/𝐾max < 0, and equilibrium solutions 𝜓

1
and 𝜓

2
are

defined above. By (36), solutions with small initial data 0 <

𝑥(𝑡
0
) < 𝜓
1
blow up in the future, 𝑥(𝑡) → −∞ as 𝑡 → 𝑡

−

forw;
an estimated value for a forward blow-up time 𝑡forw is given
by

𝑡forw = 𝑡
0

+

𝐾max ln (𝑐
−1

0
)

𝑟max (𝜓
1

− 𝜓
2
)

. (37)

Equation 𝑡 = 𝑡forw defines a vertical asymptote for solutions
to (17); 𝑡forw > 𝑡

0
because, for 𝑥(𝑡

0
) < 𝜓(𝑡

0
) < 𝜓
1
, one always

has 𝑐
−1

0
< 1.

Example 8. To estimate a forward blow-up time for the
solution to (26) satisfying the initial condition 𝑥(0) = 0.5,
note that equilibria of differential equation (17) associated
with (26) are given by (27), 𝑐

0
= 63.4036. By virtue of (37),

an upper bound for a forward blow-up time for the solution
of (26) passing through the point (0, 0.5) is 𝑡forw = 0.7686,
see Figure 5.

To estimate backward blow-up time for solutions to (4)
with “large” initial data 𝑥(𝑡

0
) > 𝐾max located above the attrac-

tor 𝑥
+
(𝑡), we analyze asymptotic behavior of solutions using
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Figure 6: The upper (blue), lower (purple), and solution to (26)
(orange), all satisfying the initial condition 𝑥(0) = 16; a red dashed
vertical asymptote for the upper solution is used for estimating a
backward blow-up time.

inequalities (28) rather than (22). Integrating (30) from 𝑡
0
to

𝑡, one arrives at the formula

𝑡back = 𝑡
0

+

𝐾max ln (𝑐
−1

0
)

𝑟min (𝜉
1

− 𝜉
2
)

, (38)

where 𝑐
0

= (𝜉(𝑡
0
)−𝜉
2
)/(𝜉(𝑡
0
)−𝜉
1
), 𝜘 = −𝑟min(𝜉

2
−𝜉
1
)/𝐾max <

0, 𝜉
1,2

= 𝐾max(1 ∓ √1 − 4𝐻min/(𝑟min𝐾max))/2, and 𝑡back < 𝑡
0

since 𝑐
−1

0
> 1 for “large” initial data. Correspondingly,𝑥(𝑡) →

+∞ as 𝑡 → 𝑡
+

back.

Example 9. To find a backward blow-up time for a solution to
(26) satisfying𝑥(0) = 16 > 𝐾max = 14, note that the equilibria
of (30) are 𝜉

1
= 7(1 − √35/7) = 1.0839 and 𝜉

2
= 7(1 +

√35/7) = 12.9161. Then, 𝑐
0

= 0.2067, and a lower bound for
a backward blow-up time is estimated as 𝑡back = −0.4662, see
Figure 6. For an upper estimate for a backward blow-up time,
note that equilibria for (29) are 𝜂

1
= 9(1−√39/9)/2 = 1.3775

and 𝜂
2

= 9(1 + √39/9)/2 = 7.6225. Then, 𝑐
∗

0
= (𝜂(𝑡

0
) −

𝜂
2
)/(𝜂(𝑡
0
)−𝜂
1
) = 0.5729, and an upper bound for a backward

blow-up time for a solution to (26) with 𝑥(0) = 16 is 𝑡
∗

back =

−0.1337, see Figure 7.

Remark 10. In a similar manner, one can obtain two-sided
estimates for extinction times derived in Section 2.5. Such
estimates are useful for the evaluation of a “life span” of a
given solution.

Remark 11. Nkashama [18,Theorem2.1] established that solu-
tions to

𝑑𝑥 (𝑡)

𝑑𝑡

= 𝑥 (𝑡) [𝑎 (𝑡) − 𝑏 (𝑡) 𝑥 (𝑡)] (39)

50
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35

30
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20
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Figure 7: Red dashed lines represent two-sided estimates for
backward blow-up time for a solution 𝑥(𝑡) (orange) of (26) with
𝑥(0) = 16 squeezed between the upper (blue) and lower (purple)
solutions.

located above the attractor 𝑥
+
(𝑡) and below the repeller 𝑥

−
(𝑡)

blow up to +∞ and −∞, respectively, in finite time backward
and forward. In our case, there exists a positive repeller for (4)
instead of the trivial solution for (39). In addition, there exist
positive solutions with small initial data that decay rapidly to
−∞, but do not have a vertical asymptote.

3. Saddle-Node Bifurcation

Consider now a 𝑇-periodic differential equation

𝑑𝑦 (𝑡)

𝑑𝑡

= 𝑟 (𝑡) 𝑦 (𝑡) (1 −

𝑦 (𝑡)

𝐾 (𝑡)

) − 𝜎𝐻 (𝑡) , (40)

where 𝜎 > 0 is a parameter that characterizes the intensity of
harvesting. An averaged system associated with (40) is

𝑑𝑦 (𝑡)

𝑑𝑡

= 𝑟𝑦 (𝑡) (1 −

𝑦 (𝑡)

𝐾

) − 𝜎𝐻. (41)

The change of variable 𝑥 = 𝑦 − 𝐾/2 reduces (41) to the form

𝑑𝑥 (𝑡)

𝑑𝑡

= 𝑎 − 𝑏𝑥
2

(𝑡) , (42)

where 𝑎 = (𝑟𝐾)/4 − 𝜎𝐻 and 𝑏 = 𝑟/𝐾. Differential equation
(42) with real parameters 𝑎, 𝑏 is the simplest canonical
example of a saddle-node bifurcation with a nonhyperbolic
equilibrium point at the origin. Consequently, one expects
that (40) undergoes a so-called nonautonomous saddle-node
bifurcation.

We know from Section 2.4 that, for 𝑦 ∈ [0, 𝐾min], (22)
holds; for 𝑦 < 0 or 𝑦 > 𝐾max, (28) is satisfied, whereas for
𝑦 ∈ (𝐾min, 𝐾max), the sign of 𝑟(𝑡)𝑦(1 − 𝑦/𝐾(𝑡)) cannot be
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controlled. Let 𝜆(𝑡) = 𝑟(𝑡)𝑦(𝑡)(1 − 𝑦(𝑡)/𝐾(𝑡)). Denote by 𝐼neg
the subset of points 𝑡 ∈ 𝐼

𝑇
= [𝑡
0
, 𝑡
0

+ 𝑇] such that 𝜆(𝑡) < 0 for
𝑡 ∈ 𝐼neg. Then, for 𝑦 ∈ (0, 𝐾max), one has

𝜆 (𝑡) − 𝜎𝐻 (𝑡)

≤

{

{

{

0, if 𝑡 ∈ 𝐼neg,

𝑟max𝑦 (𝑡) (1 −

𝑦 (𝑡)

𝐾max
) − 𝜎𝐻min, if 𝑡 ∈ 𝐼

𝑇
\ 𝐼neg.

(43)

Lemma 12. For

𝜎 > 𝜎
∗

=

𝑟max𝐾max
4𝐻min

, (44)

(40) has no periodic solutions; all solutions diverge to −∞.

Proof. Let 𝑦(𝑡) be an arbitrary solution to (40). Taking into
account that the function 𝑔(𝑦) = 𝑟max𝑦(1 − 𝑦/𝐾max) attains
its maximum value 𝑟max𝐾max/4 at 𝑦 = 𝐾max/2, we have, for
all 𝑡 ∈ [𝑡

0
, 𝑡
0

+ 𝑇],

𝑦 (𝑡
0

+ 𝑇) − 𝑦 (𝑡
0
)

= ∫

𝑡0+𝑇

𝑡0

[𝑟 (𝑡) 𝑦 (𝑡) (1 −

𝑦 (𝑡)

𝐾 (𝑡)

) − 𝜎𝐻 (𝑡)] 𝑑𝑡

≤ ∫

𝐼𝑇\𝐼neg

[𝑟max𝑦 (𝑡) (1 −

𝑦 (𝑡)

𝐾max
) − 𝜎𝐻min] 𝑑𝑡

≤ ∫

𝑡0+𝑇

𝑡0

(

𝑟max𝐾max
4

− 𝜎𝐻min) 𝑑𝑡

= (

𝑟max𝐾max
4

− 𝜎𝐻min) 𝑇.

(45)

If (44) is satisfied, one has 𝑦(𝑡
0
+𝑇) < 𝑦(𝑡

0
), and solution 𝑦(𝑡)

cannot be periodic. Similarly, for any 𝑛 ∈ N, (44) yields

𝑦 (𝑡
0

+ (𝑛 + 1) 𝑇) − 𝑦 (𝑡
0

+ 𝑛𝑇)

≤ (

𝑟max𝐾max
4

− 𝜎𝐻min) 𝑇

< 0.

(46)

Therefore, for any solution 𝑦(𝑡) to (40), one has 𝑦(𝑡) → −∞

as 𝑡 → +∞.

Remark 13. Condition (44) perfectly agrees with the assump-
tion (7) that forces all solutions to decay to −∞.

Theorem 2 assures the existence of the attractor-repeller
pair for (40), for all

𝜎 < 𝜎
∗

=

𝑟min𝐾min
4𝐻max

. (47)

To explore transition from the attractor-repeller pair to
the case with no periodic solutions, we use nullclines and
generalized nullclines.
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𝑡
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Figure 8: Nullclines and constant fences for (48) for 𝜎 = 1.

Example 14. Consider a 1-periodic differential equation

𝑑𝑦 (𝑡)

𝑑𝑡

= (4 + cos (2𝜋𝑡)) 𝑦 (𝑡) (1 −

𝑦 (𝑡)

8 + cos (2𝜋𝑡)

)

− 𝜎 (2 + sin (2𝜋𝑡)) .

(48)

Condition (47) holds for all 𝜎 < 7/4. Equilibria for (16) and
(17) are defined, respectively, by 𝜑

1,2
= 7(1 ∓ √7(7 − 4𝜎)/7)/2

and 𝜓
1,2

= 9(1∓√5(45 − 4𝜎)/15)/2. Taking in (48) 𝜎 = 1, we
obtain bounds for generalized nullclines 𝜁

1
(𝑡) and 𝜁

2
(𝑡), 9(1−

√205/15)/2 < 𝜁
1
(𝑡) < 7(1 − √21/7)/2 < 7(1 + √21/7)/2 <

𝜁
2
(𝑡) < 9(1 + √205/15)/2, see Figure 8.

Increasing the value of parameter 𝜎 beyond 𝜎
∗
, one

observes that, at certain point, nullclines for (40) become
pinched together, cf. Benardete et al. [11] or Campbell and
Kaplan [13]. As the slope takes on negative values in regions
between “trapping regions,” some solutions can escape to
−∞.

Example 15. Consider a 1-periodic differential equation

𝑑𝑦 (𝑡)

𝑑𝑡

= (7 − 3 sin (2𝜋𝑡)) 𝑦 (𝑡) (1 −

𝑦 (𝑡)

10 + 2 sin (2𝜋𝑡)

)

− 3.8 ⋅ (5 + 2 cos (2𝜋𝑡)) .

(49)

Observe that 𝑟min𝐾min/(4𝐻max) = 8/7 < 3.8 = 𝜎. General-
ized nullclines for (49) are shown in Figure 9.

Theorem 16. There exists a bifurcation value 𝜎bif satisfying the
inequality 𝑟min𝐾min/(4𝐻max) ≤ 𝜎bif ≤ 𝑟max𝐾max/(4𝐻min)

such that (40) has (i) no periodic solutions if 𝜎 > 𝜎bif; (ii)
exactly one periodic solution if 𝜎 = 𝜎bif; (iii) two periodic
solutions if 𝜎 < 𝜎bif .
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Figure 9: Pinched together pieces of upper (blue) and lower
(purple) nullclines and one of solutions to (49) escaping the trapping
region for 𝜎 = 3.8.

Proof. Define the Poincaré map ℎ(𝑦
0
, 𝜎) for (40) on (0, 𝑇).

Equation ℎ(𝑦
0
, 𝜎) = 𝑦

0
is quadratic, see, for instance, [11, page

211]. Since the second derivative ℎ
𝑦𝑦

(𝑦
0
, 𝜎) is negative, the

graph of ℎ(𝑦
0
, 𝜎) is concave down. For 𝜎 < 𝑟min𝐾min/4𝐻max,

it crosses the line 𝑔(𝑦
0
) = 𝑦
0
at two points corresponding to

two periodic solutions of (40). On the other hand, the graph
has no intersections with this line for 𝜎 > 𝑟max𝐾max/4𝐻min,
and thus, in this case there are no periodic solutions to (40).
The derivative ℎ

𝜎
(𝑦
0
, 𝜎) is negative. Hence, for each fixed 𝑦

0
,

the function 𝛿(𝜎) = ℎ(𝑦
0
, 𝜎) decreases as 𝜎 increases from

𝑟min𝐾min/4𝐻max to 𝑟max𝐾max/4𝐻min, and there exists a unique
value 𝜎 = 𝜎bif such that the graph of ℎ(𝑦

0
, 𝜎) is tangent to the

line 𝑔(𝑦
0
) = 𝑦
0
.

Remark 17. We stress that Benardete et al. [11, Section 5, pages
212–215] established bounds for the bifurcation parameter
𝜎bif for a much simpler differential equation (2) using
extensively its symmetry about the point (1/4, 1/2), whereas
Theorem 16 requires no symmetry properties of (40) at all.

Example 18. Consider a 1-periodic differential equation

𝑑𝑦 (𝑡)

𝑑𝑡

= (5 + sin (2𝜋𝑡)) 𝑦 (𝑡) (1 −

2𝑦 (𝑡)

23 + 5 cos (2𝜋𝑡)

)

−

𝜎

2

(11 − 3 cos (2𝜋𝑡)) .

(50)

For 𝜎 = 1, (50) turns into (26) for which the attractor-repeller
pair exists, see Example 4. One has 𝑟min𝐾min/(4𝐻max) =

9/7 and 𝑟max𝐾max/(4𝐻min) = 21/4. By Theorem 16, there
exists a bifurcation value 𝜎bif ∈ [9/7, 21/4]. Numerical
experiments can be used to approximate the value of 𝜎bif. In
fact, for 𝜎 = 2.395, (50) has two periodic solutions plotted

10
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4

2
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−10 −5 0 5 10 15

𝑦(𝑡)

𝑡

Figure 10: Several solutions to (50) for 𝜎 = 2.395.
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1

0
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𝑡

Figure 11: Several solutions to (50) for 𝜎 = 2.396.

in Figure 10. On the other hand, for 𝜎 = 2.396, (50) does not
have periodic solutions anymore, see Figure 11. Consequently,
𝜎bif ∈ (2.395, 2.396).

4. Conclusions

Differential equation (4) exhibits quite interesting dynamics.
Existence of the attractor-repeller pair is assured by condition
(10); efficient estimates for periodic solutions are derived in
Section 2.4. In the presence of the positive attractor-repeller
pair, all other solutions to (4) fall into one of the three groups.
Namely, as time 𝑡 advances, (i) solutions with small initial
data 𝑥(𝑡

0
) ∈ (0, 𝑥

−
(𝑡
0
)) move away from 𝑥

−
(𝑡), decay rapidly
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to −∞, and blow up in the future as 𝑡 → 𝑡
−

forw (approach
the repeller as 𝑡 → −∞); (ii) solutions with initial data
𝑥(𝑡
0
) ∈ (𝑥

−
(𝑡
0
), 𝑥
+
(𝑡
0
)) leave the vicinity of the repeller 𝑥

−
(𝑡)

and approach the attractor 𝑥
+
(𝑡) (correspondingly, leave the

vicinity of the attractor 𝑥
+
(𝑡) and approach the repeller 𝑥

−
(𝑡)

as 𝑡 → −∞); these are so-called heteroclinic orbits; (iii)
solutions with initial data 𝑥(𝑡

0
) > 𝑥

+
(𝑡
0
) approach the

attractor 𝑥
+
(𝑡), and blow up back in time as 𝑡 → 𝑡

+

back.
If condition (7) holds, (4) has no periodic solutions. All
solutions decay to −∞; extinction time is estimated for
solutions with small and large initial data.

Qualitative properties of (40) vary with the parameter
𝜎. As 𝜎 increases, the number of periodic solutions changes
from two to zero; differential equation (40) undergoes a
nonautonomous saddle-node bifurcation. Estimates for the
bifurcation parameter 𝜎bif can be significantly tightened by
using numerical methods. Contrary to [11], our bifurcation
analysis does not require symmetry of (40). We conclude
by noting that although all numerical experiments in this
paper were performed using Wolfram Mathematica 7.0, any
computer algebra system can be used instead.
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