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BOUNDED APPROXIMATION PROPERTIES

VIA INTEGRAL AND NUCLEAR OPERATORS

ÅSVALD LIMA, VEGARD LIMA, AND EVE OJA

(Communicated by Nigel J. Kalton)

Abstract. Let X be a Banach space and let A be a Banach operator ideal.
We say that X has the λ-bounded approximation property for A (λ-BAP for
A) if for every Banach space Y and every operator T ∈ A(X,Y ), there exists
a net (Sα) of finite rank operators on X such that Sα → IX uniformly on
compact subsets of X and

lim sup
α

‖TSα‖A ≤ λ‖T‖A.

We prove that the (classical) λ-BAP is precisely the λ-BAP for the ideal I of
integral operators, or equivalently, for the ideal SI of strictly integral operators.
We also prove that the weak λ-BAP is precisely the λ-BAP for the ideal N of
nuclear operators.

1. Introduction

Let X and Y be Banach spaces. We denote by L(X,Y ) the Banach space of all
bounded linear operators from X to Y , and by F(X,Y ) and W(X,Y ) its subspaces
of finite rank and weakly compact operators. Let IX denote the identity operator
on X. Recall that X is said to have the approximation property (AP) if there exists
a net (Sα) ⊂ F(X,X) such that Sα → IX uniformly on compact subsets of X. If
(Sα) can be chosen with supα ‖Sα‖ ≤ λ for some λ ≥ 1, then X is said to have the
λ-bounded approximation property (λ-BAP).

Recently, the weak bounded approximation property was introduced and studied
in [11]. We say that X has the weak λ-bounded approximation property (weak λ-
BAP) if for every Banach space Y and every operator T ∈ W(X,Y ) there exists
a net (Sα) ⊂ F(X,X) such that Sα → IX uniformly on compact subsets of X
and lim supα ‖TSα‖ ≤ λ‖T‖. Thus the weak BAP can be characterized as the AP
which is bounded for every weakly compact operator. This suggests the following
definition.

Let X be a Banach space and let A = (A, ‖ ‖A) be a Banach operator ideal.
We say that X has the λ-bounded approximation property for A (λ-BAP for A)
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if for every Banach space Y and every operator T ∈ A(X,Y ) there exists a net
(Sα) ⊂ F(X,X) such that Sα → IX uniformly on compact subsets of X and

lim sup
α

‖TSα‖A ≤ λ‖T‖A.

The weak λ-BAP is, by definition, the λ-BAP for the ideal W of weakly compact
operators. In [11] it was proved that the weak λ-BAP is also equivalent to the λ-
BAP for the ideal K of compact operators. It is immediate that the λ-BAP implies
the λ-BAP for every Banach operator ideal A (since ‖TSα‖A ≤ ‖T‖A‖Sα‖), and
it is equivalent to the λ-BAP for the ideal L of all operators.

Since L is the largest of all Banach operator ideals, it is natural to ask whether
there is some kind of smallest Banach operator ideal A for which the BAP for A
would be equivalent to the BAP. Concerning the weak BAP, K is already a quite
“small” Banach operator ideal. But what about the smallest Banach operator ideal
A for which the BAP for A would be equivalent to the weak BAP?

Our main results (see Sections 2 and 3, respectively) are that (1) the BAP is
precisely the BAP for the ideal I of integral operators or, equivalently, for the ideal
SI of strictly integral operators (Pietsch integral, in [5] and [22]); and (2) the weak
BAP is precisely the BAP for the ideal N of nuclear operators. Notice that N is
the smallest of all Banach operator ideals and SI is considered to be the continuous
analogue of N . Moreover, N ⊂ SI ⊂ I, and I is known to be the smallest maximal
Banach operator ideal. We also indicate (see Section 4) a particular role played by
�1 and �∗∗1 in the case of the weak BAP and the BAP, respectively.

To complete the picture, let us recall other types of bounded approximation
properties involving operator ideals which have been studied since the early 1980s
(see, e.g., [14] for references). Let A be an operator ideal. A Banach space X is
said to have the λ-bounded A-approximation property (λ-bounded A-AP) if there
exists a net (Sα) ⊂ A(X,X) with supα ‖Sα‖ ≤ λ such that Sα → IX uniformly
on compact subsets of X. Here the operator norm ‖ ‖ is used for all A, and not
the operator ideal norm ‖ ‖A. Otherwise, the notion would be very restrictive; e.g.,
even �2 would not have the bounded N -AP (see [16, Remark 2.1]). Our notion of
the BAP for A seems to be the first attempt to define an AP related to a Banach
operator ideal A that also depends on the operator ideal norm of A, and not only
on the operator ideal properties of A.

Our notation is standard. A Banach space X will be regarded as a subspace of
its bidual X∗∗ under the canonical embedding jX : X → X∗∗. The closure of a set
A ⊂ X is denoted A. The tensor product X ⊗ Y with a tensor norm α is denoted
by X⊗α Y and its completion by X⊗̂αY . We shall use only the classical projective
tensor norm π = ‖ ‖π and the injective tensor norm ε. Since F(X,Y ) = X∗ ⊗ Y ,
we shall write ‖T‖π for T ∈ F(X,Y ) (‖ ‖π is called the finite nuclear norm in [20]).
Let us recall that for Banach operator ideals A and B the inclusion A ⊂ B means
that A(X,Y ) ⊂ B(X,Y ) and ‖T‖A ≥ ‖T‖B for all Banach spaces X and Y and for
all operators T ∈ A(X,Y ).

We refer to the books by Diestel-Uhl [5] and Ryan [22] for the classical approx-
imation properties, tensor products, and for the common Banach operator ideals
such as N , SI, and I; see also [4] by Diestel, Jarchow, and Tonge, and Pietsch’s
book [20] for operator ideals. Following [4], we use the term strictly integral opera-
tor for Pietsch integral operator in [5] and [22]. And we use Banach operator ideal
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for normed operator ideal in [20], or for Banach ideal in [4] and [22] (note that, in
the Banach spaces context, the term ideal has its own meaning (see Section 4)).

2. The bounded approximation property

via integral operators

We shall establish the following reformulations of the BAP in terms of the bound-
edness for the Banach operator ideals SI and I of strictly integral and integral
operators, respectively.

Theorem 2.1. Let X be a Banach space, and let 1 ≤ λ < ∞. The following
statements are equivalent.

(a) X has the λ-BAP.
(b) X has the λ-BAP for SI.
(c) X has the λ-BAP for I.

We shall need the well-known reformulation of the BAP (cf., e.g., [3, p. 193] or
[22, p. 80]) which is essentially due to Grothendieck [7].

Theorem 2.2 (Grothendieck). Let X be a Banach space, and let 1 ≤ λ < ∞. The
following statements are equivalent.

(a) X has the λ-BAP.
(b) ‖T‖π ≤ λ‖T‖I for all T ∈ F(X,X).

Lemma 2.3. Let X be a Banach space, and let 1 ≤ λ < ∞. If a Banach space Y
has the property that for every T ∈ I(X,Y ∗∗) there exists a net (Sα) ⊂ F(X,X)
such that Sα → IX pointwise and lim supα ‖TSα‖π ≤ λ‖T‖I , then every quotient
space of Y has the same property.

Proof. Denote by q : Y → Z the quotient mapping, and let U ∈ I(X,Z∗∗). We are
going to use well-known facts about tensor products (see, e.g., [5] or [22]). Since
I(X,Z∗∗) = (Z∗⊗̂εX)∗ and Z∗⊗̂εX is a subspace of Y ∗⊗̂εX (under the isometric
embedding q∗ ⊗ IX ; notice that q∗ is an isometric embedding), we may consider a
norm-preserving extension of U . Thus, there exists T ∈ (Y ∗⊗̂εX)∗ = I(X,Y ∗∗),
such that ‖T‖I = ‖U‖I and

(Ux)(z∗) = 〈U, z∗ ⊗ x〉 = 〈T, q∗z∗ ⊗ x〉 = (Tx)(q∗z∗) = (q∗∗Tx)(z∗)

for all x ∈ X and z∗ ∈ Z∗, meaning that U = q∗∗T .
Let S ∈ F(X,X). Then US ∈ F(X,Z∗∗) = X∗ ⊗ Z∗∗ and

‖US‖π = ‖q∗∗TS‖π = ‖(IX∗ ⊗ q∗∗)(TS)‖π ≤ ‖TS‖π.
Now if (Sα) ⊂ F(X,X) is chosen for T , then we also have

lim sup
α

‖USα‖π ≤ lim sup
α

‖TSα‖π ≤ λ‖T‖I = λ‖U‖I

as needed. �

Lemma 2.4. Let X be a Banach space, and let T ∈ F(X,X) = X∗ ⊗ X. Then
there exist A ∈ L(X∗, X∗) with ‖A‖ = 1 and V ∈ F(X,X) such that V ∗ = AT ∗

and

‖T‖π ≤ lim sup
α

‖jXV Sα‖π

for every net (Sα) ⊂ F(X,X) converging pointwise to the identity IX .
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Proof. Let T =
∑m

n=1 x
∗
n⊗xn ∈ X∗⊗X. Using the canonical description (X∗⊗̂πX)∗

= L(X∗, X∗), we find A ∈ L(X∗, X∗) with ‖A‖ = 1 such that

‖T‖π =

m∑

n=1

(Ax∗
n)(xn) = trace(V ),

where

V =

m∑

n=1

Ax∗
n ⊗ xn ∈ F(X,X).

It is easily verified that V ∗ = AT ∗.
Let (Sα) ⊂ F(X,X) be a net such that Sα → IX pointwise. Since X∗⊗̂πX is a

subspace of X∗⊗̂πX
∗∗ (under the canonical inclusion IX∗ ⊗ jX), for all α, we have

‖V Sα‖π = ‖jXV Sα‖π.

Therefore,

‖T‖π =
m∑

n=1

(Ax∗
n)(xn) = lim

α

m∑

n=1

(Ax∗
n)(Sαxn) = lim

α

m∑

n=1

(S∗
αAx∗

n)(xn)

= lim
α

trace(V Sα) ≤ lim sup
α

‖V Sα‖π = lim sup
α

‖jXV Sα‖π

as desired. �

Proof of Theorem 2.1. The implications (a)⇒(b) and (a)⇒(c) are obvious as noted
in the Introduction.

If (b) or (c) holds, then for every �1(Γ)-space and for every T ∈ I(X, �1(Γ)
∗∗) =

SI(X, �1(Γ)
∗∗) there exists a net (Sα) ⊂ F(X,X) such that Sα → IX pointwise

and lim supα ‖TSα‖I ≤ λ‖T‖I . Since TSα ∈ F(X, �1(Γ)
∗∗) = X∗ ⊗ �1(Γ)

∗∗ and
�1(Γ)

∗∗ has the metric AP, it is well known (see, e.g., [22, p. 176]) that

‖TSα‖π = ‖TSα‖N = ‖TSα‖I .

Therefore, recalling that every Banach space is a quotient of some �1(Γ)-space and
applying Lemma 2.3, we may assume that for every U ∈ I(X,X∗∗) there exists
(Sα) as above such that

lim sup
α

‖USα‖π ≤ λ‖U‖I .

Let T ∈ F(X,X). Choose A and V as in Lemma 2.4. Then choose a net
(Sα) ⊂ F(X,X) to be pointwise convergent to IX such that

lim sup
α

‖jXV Sα‖π ≤ λ‖jXV ‖I .

Then, by Lemma 2.4,

‖T‖π ≤ λ‖jXV ‖I = λ‖V ‖I .
On the other hand, since V ∗ = AT ∗,

‖V ‖I = ‖V ∗‖I = ‖AT ∗‖I ≤ ‖T ∗‖I = ‖T‖I .

In conclusion,

‖T‖π ≤ λ‖T‖I ,
which means, according to Theorem 2.2, that X has the λ-BAP. �
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3. The weak bounded approximation property

via nuclear operators

The smallest Banach operator ideal N of nuclear operators is known to be the
discrete analogue of SI (see, e.g., [4, pp. 111–113]). For the weak BAP, N plays
the same role as SI for the BAP.

Theorem 3.1. Let X be a Banach space, and let 1 ≤ λ < ∞. The following
statements are equivalent.

(a) X has the weak λ-BAP.
(b) X has the λ-BAP for N .

The proof of Theorem 3.1 will rely on the following recent reformulation of the
weak BAP (which is to be compared with Theorem 2.2).

Theorem 3.2 (see [19, Theorem 3.6]). Let X be a Banach space, and let 1 ≤ λ <
∞. The following statements are equivalent.

(a) X has the weak λ-BAP.
(b) ‖T‖π ≤ λ‖jXT‖N for all T ∈ F(X,X).

The proof of Theorem 3.1 will also use a reformulation of the weak BAP in
terms of extension operators. Let X be a closed subspace of a Banach space W .
An operator Φ ∈ L(X∗,W ∗) is called an extension operator if (Φx∗)(x) = x∗(x)
for all x∗ ∈ X∗ and all x ∈ X.

Theorem 3.3 (see [12, Propositions 2.1, 2.3, and 2.5] and [19, Corollary 3.18]). Let
X be a Banach space, and let 1 ≤ λ < ∞. The following statements are equivalent.

(a) X has the weak λ-BAP.
(b) There exists an extension operator

Φ ∈ X ⊗X∗w
∗

⊂ L(X∗, X∗∗∗) = (X∗⊗̂πX
∗∗)∗

with ‖Φ‖ ≤ λ.

Proof of Theorem 3.1. (a)⇒ (b). Since the nuclear operators factor through �1
and the dual space of N (X, �1) = X∗⊗̂π�1 (because �1 has the AP) has a simple
description, it is reasonable to establish Theorem 3.1(b) first for Y = �1.

Let Φ be the extension operator from Theorem 3.3, and let (Sν) ⊂ F(X,X) be a
net such that S∗

ν → Φ weak∗ in L(X∗, X∗∗∗) = (X∗⊗̂πX
∗∗)∗. Let T ∈ N (X, �1) =

X∗⊗̂π�1. We may assume without loss of generality that ‖T‖π = 1. We need to
show that for every compact subset K of X and for every ε > 0 the convex subset

C = {TS : S ∈ F(X,X), ‖Sx− x‖ ≤ ε ∀x ∈ K}
of X∗⊗̂π�1 intersects the closed ball B = {u ∈ X∗⊗̂π�1 : ‖u‖π ≤ λ+ε}. If this were
not the case, then there would exist A ∈ L(�1, X∗∗) = (X∗⊗̂π�1)

∗ with ‖A‖ = 1
such that

λ+ ε = sup{Re〈A, u〉 : u ∈ B} ≤ inf{Re〈A, TS〉 : TS ∈ C}
≤ lim

ν
|〈A, TSν〉| = lim

ν
|〈S∗

ν , AT 〉| = |〈Φ, AT 〉| ≤ λ‖AT‖π ≤ λ,

a contradiction (above, AT ∈ X∗⊗̂πX
∗∗ is defined in the usual way: if T =∑

n x∗
n ⊗ un, with x∗

n ∈ X∗, un ∈ �1, then AT =
∑

n x
∗
n ⊗ Aun). This estab-

lishes Theorem 3.1(b) for Y = �1.
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Let now Y be a Banach space, let T ∈ N (X,Y ), and let ε > 0. By [5, p. 170],

there exist R ∈ L(�1, Y ) and T̂ ∈ N (X, �1) with ‖R‖ ≤ 1 and ‖T̂‖N ≤ ‖T‖N + ε/λ

such that T = RT̂ . Let (Sα) ⊂ F(X,X) be a net such that Sα → IX uniformly on

compact sets and lim supα ‖T̂ Sα‖N ≤ λ‖T̂‖N . Then

lim sup
α

‖TSα‖N = lim sup
α

‖RT̂Sα‖N ≤ lim sup
α

‖T̂ Sα‖N < λ‖T‖N + ε.

By letting ε → 0, Theorem 3.1(b) follows.
(b)⇒ (a). Let T ∈ F(X,X). Choose A and V as in Lemma 2.4. Then V ∗ = AT ∗

and

‖T‖π ≤ lim sup
α

‖jXV Sα‖π

for every net (Sα) ⊂ F(X,X) converging pointwise to IX . Since jXV ∈ N (X,X∗∗),
for every ε > 0, we can write

jXV =

∞∑

n=1

x∗
n ⊗ x∗∗

n , x∗
n ∈ X∗, x∗∗

n ∈ X∗∗,

with
∑∞

n=1 ‖x∗
n‖‖x∗∗

n ‖ < ‖jXV ‖N + ε/λ.
Now choose an �1(Γ)-space such that X is its quotient space, and denote q :

�1(Γ) → X the quotient mapping. Since q∗ is an isometric embedding, for all x∗∗
n ,

there exist u∗∗
n ∈ �1(Γ)

∗∗ such that q∗∗u∗∗
n = x∗∗

n and ‖u∗∗
n ‖ = ‖x∗∗

n ‖. Define

U =

∞∑

n=1

x∗
n ⊗ u∗∗

n ∈ N (X, �1(Γ)
∗∗),

and choose a net (Sα) ⊂ F(X,X) converging pointwise to IX such that

lim sup
α

‖USα‖N ≤λ‖U‖N ≤ λ
∞∑

n=1

‖x∗
n‖‖u∗∗

n ‖

=λ
∞∑

n=1

‖x∗
n‖‖x∗∗

n ‖ < λ‖jXV ‖N + ε.

Moreover,

‖jXV ‖N = ‖V ∗‖N = ‖AT ∗‖N ≤ ‖T ∗‖N = ‖jXT‖N .

On the other hand, it can be easily verified that jXV = q∗∗U . Hence, jXV Sα =
q∗∗USα. But USα ∈ N (X, �1(Γ)

∗∗) = X∗⊗̂π�1(Γ)
∗∗ because �1(Γ)

∗∗ has the AP.
Hence, q∗∗USα = (IX∗ ⊗ q∗∗)(USα), where IX∗ ⊗ q∗∗ : X∗⊗̂π�1(Γ)

∗∗ → X∗⊗̂πX
∗∗.

Therefore,

‖jXV Sα‖π = ‖q∗∗USα‖π ≤ ‖USα‖π = ‖USα‖N .

In conclusion,

‖T‖π ≤ lim sup
α

‖jXV Sα‖π ≤ lim sup
α

‖USα‖N < λ‖jXT‖N + ε.

By letting ε → 0, we see that condition (b) of Theorem 3.2 holds. This means that
X has the weak BAP. �

Corollary 3.4 (see [17]). The weak λ-BAP and the λ-BAP are equivalent for a
Banach space X whenever X∗ has the Radon-Nikodým property.
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Proof. It is well known that if X∗ has the Radon-Nikodým property, then SI(X,Y )
= N (X,Y ) (with equality of norms) for all Banach spaces Y . This makes conditions
(b) of Theorems 2.1 and 3.1 identical. So the claim is immediate from the theorems.

�

4. The role of �1

Let X be a Banach space. It is well known that N (X, �1) = I(X, �1) with
equality of norms (since �1 has the Radon-Nikodým property). Therefore, by The-
orem 3.1 and its proof, we immediately get the following reformulation of the weak
BAP.

Proposition 4.1. Let X be a Banach space, and let 1 ≤ λ < ∞. The following
statements are equivalent.

(a) X has the weak λ-BAP.
(b) For every T ∈ I(X, �1) there exists a net (Sα) ⊂ F(X,X) such that Sα →

IX pointwise and lim supα ‖TSα‖I ≤ λ‖T‖I .
We are going to develop further the proof of Theorem 2.1, including the proof of

Lemma 2.4, to show that if �1 is replaced by �∗∗1 in (b) of Proposition 4.1, then this
will be a reformulation of the BAP. Thus, using the space �1, both the weak BAP
and the BAP can be characterized via integral operators in an almost identical way.

Proposition 4.2. Let X be a Banach space, and let 1 ≤ λ < ∞. The following
statements are equivalent.

(a) X has the λ-BAP.
(b) For every T ∈ I(X, �∗∗1 ) there exists a net (Sα) ⊂ F(X,X) such that Sα →

IX pointwise and lim supα ‖TSα‖I ≤ λ‖T‖I .
The proof of Proposition 4.2 relies on the following reformulation of the BAP

in terms of separable ideals. According to the terminology of [6], let us say that a
closed subspace Z of X is an ideal whenever there exists an extension operator Φ ∈
L(Z∗, X∗) with ‖Φ‖ = 1 (i.e., Φ is a norm-preserving or Hahn-Banach extension
operator).

Proposition 4.3. Let X be a Banach space, and let 1 ≤ λ < ∞. The following
statements are equivalent.

(a) X has the λ-BAP.
(b) ‖T‖π ≤ λ‖T‖I(Z,Z) for every separable ideal Z in X and every T ∈F(Z,Z).
(c) ‖S‖π ≤ λ‖S‖I(Z,X) for every separable ideal Z in X and every S∈F(Z,X).

Proof. By Grothendieck’s classics (see, e.g., [3, p. 193] or [22, p. 80]), (a)⇒ (c)
holds for every Banach space Z (not just for ideals).

(c)⇒ (b). Let j : Z → X denote the identity embedding. Since Z is an ideal in
X, Z∗⊗̂πZ is a closed subspace of Z∗⊗̂πX (under the natural inclusion IZ∗ ⊗ j :
Z∗⊗̂πZ → Z∗⊗̂πX) (see [21] or [15, Theorem 3.4], where the converse is also
proven). Hence, for all T ∈ F(Z,Z),

‖T‖π = ‖jT‖π ≤ λ‖jT‖I ≤ λ‖T‖I .
(b)⇒ (a). From [8] or [23] we know that every separable subspace is contained

in a separable ideal. Therefore, by Theorem 2.2, every separable subspace of X is
contained in a separable closed subspace Y of X having the λ-BAP. By a result due
to Johnson [9] (see, e.g., [2, Theorem 9.7]), this means that X has the λ-BAP. �
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Proof of Proposition 4.2. (a)⇒ (b) is obvious as noted already in the Introduction.
(b)⇒ (a). Let Z be a separable ideal in X. Then Z is a quotient of �1 (as all

separable Banach spaces are). As in the beginning of the proof of Theorem 2.1,
applying Lemma 2.3, we get from (b) that for every U ∈ I(X,Z∗∗) there exists a
net (Sα) ⊂ F(X,X) such that Sα → IX pointwise and

lim sup
α

‖USα‖π ≤ λ‖U‖I .

Let Φ ∈ L(Z∗, X∗) be a norm-preserving extension operator. Consider

T =
m∑

n=1

z∗n ⊗ zn ∈ F(Z,Z) = Z∗ ⊗ Z.

As in the proof of Lemma 2.4, we find A ∈ L(Z∗, Z∗) with ‖A‖ = 1 such that

‖T‖π =
m∑

n=1

(Az∗n)(zn) =
n∑

n=1

(ΦAz∗n)(zn) = trace(V ),

where

V =
m∑

n=1

ΦAz∗n ⊗ zn ∈ F(X,Z).

It is easily verified that V ∗ = ΦAT ∗.
For jZV ∈ I(X,Z∗∗), choose a net (Sα) ⊂ F(X,X) converging pointwise to IX

such that
lim sup

α
‖jZV Sα‖π ≤ λ‖jZV ‖I .

But
‖jZV ‖I = ‖V ∗‖I = ‖ΦAT ∗‖I ≤ ‖T ∗‖I = ‖T‖I .

On the other hand, similar to the proof of Lemma 2.4,

‖T‖π = lim
α

trace(V Sαj) ≤ lim sup
α

‖V Sαj‖π,

where j : Z → X is the identity embedding. Since V Sαj = (j∗ ⊗ IZ)(V Sα) (with
respect to j∗ ⊗ IZ : X∗ ⊗ Z → Z∗ ⊗ Z) and X∗ ⊗π Z is a subspace of X∗ ⊗π Z∗∗,
we have

‖V Sαj‖π ≤ ‖V Sα‖π = ‖jZV Sα‖π.
In conclusion,

‖T‖π ≤ λ‖T‖I ,
which means, according to Proposition 4.3, that X has the λ-BAP. �

For a Banach operator ideal A, let us denote by A∗ the dual operator ideal
of A. Its components are A∗(X,Y ) = {T ∈ L(X,Y ) : T ∗ ∈ A(Y ∗, X∗)} with
‖T‖A∗ = ‖T ∗‖A. (The notation A∗ means adjoint ideal in [4] and [20], where the
dual operator ideal is denoted by Ad and Adual, respectively.)

Let P denote the ideal of absolutely summing operators (1-summing in [4]). It
is known that P∗ = D∞, the ideal of ∞-dominated operators (see, e.g., [20, 17.4]).
It follows that the BAP is also the same as the BAP for D∞.

Corollary 4.4. Let X be a Banach space, and let 1 ≤ λ < ∞. The following
statements are equivalent.

(a) X has the λ-BAP.
(b) X has the λ-BAP for D∞.
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Proof. By Proposition 4.2, we only need to verify that I(X, �∗∗1 ) = D∞(X, �∗∗1 )
with the equality of norms. It is well known that I ⊂ P and, therefore, I =
I∗ ⊂ P∗ = D∞. Hence, I(X, �∗∗1 ) ⊂ D∞(X, �∗∗1 ) and ‖T‖D∞ ≤ ‖T‖I for all
T ∈ I(X, �∗∗1 ). On the other hand, let T ∈ P∗(X, �∗∗1 ), i.e., T ∗ ∈ P(�∗∗∞, X∗).
It is known that P(�∞, X∗) = I(�∞, X∗) with equal norms (see, e.g., [4, p. 99]).
Therefore, T ∗|�∞ ∈ I(�∞, X∗) and T = (T ∗|�∞)∗|X ∈ I(X, �∗∗1 ). Moreover,

‖T‖I ≤ ‖(T ∗|�∞)∗‖I = ‖T ∗|�∞‖I = ‖T ∗|�∞‖P ≤ ‖T ∗‖P = ‖T‖D∞

as needed. �

Let us conclude with the remark that in the metric case (i.e., when λ = 1), we
have alternative proofs of Theorems 2.1 and 3.1 and of Proposition 4.2, which rely
on results from [1], [13], [10], such as, for instance, X has the metric AP if and
only if F(Y,X) is an ideal in L(Y,X) for every separable Banach space Y (see [13,
Theorem 1.1]).

5. Open problems

The inclusion A ⊂ B for Banach operator ideals A and B (recalled in the Intro-
duction) provides a partial ordering on the class of all Banach operator ideals with
N as the smallest and L as the largest elements. Through the notion of the BAP
for A, every Banach operator ideal A yields some kind of AP. In particular, let us
say that A yields the BAP if the λ-BAP coincides with the λ-BAP for A; and it
is similar in the case of the weak BAP. With the ample choice of different Banach
operator ideals, many obvious natural questions arise. For instance, we know that
W yields the weak BAP.

Problem 5.1. Are there larger Banach operator ideals than W yielding the weak
BAP? Or is W a maximal element here?

To be more specific, one may ask the following.

Problem 5.2. Does the ideal RN of Radon-Nikodým operators (see, e.g., [20,
p. 337]) yield the weak BAP? Does RN ∗ yield the weak BAP?

If RN ∗ yielded the weak BAP, then one would immediately have the known
result (see Corollary 3.4) that the weak BAP and the BAP are equivalent for X
whenever X∗ has the Radon-Nikodým property.

Recall thatW , RN , and (hence also)RN ∗ are so-called classical Banach operator
ideals (in the terminology of [4]) or closed operator ideals (in the terminology of
[20]). That is, their operator ideal norm is the usual operator norm. Since W yields
the weak BAP and L yields the BAP, one may ask as follows.

Problem 5.3. Is there the largest of the classical Banach operator ideals yielding
the weak BAP? Is there the smallest of the classical Banach operator ideals yielding
the BAP?

We know that N ⊂ I ⊂ W ⊂ L. We also know that N yields the weak BAP, I
yields the BAP, W yields again the weak BAP, and L yields again the BAP. But
what is happening between I and W? There are, for instance, P and P∗ = D∞
between them. We saw that P∗ yields the BAP.

Problem 5.4. Does P yield the BAP?
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We conclude with a less obvious question.

Problem 5.5. Let A be an arbitrary Banach operator ideal. Could the λ-BAP for
A of a Banach space X be defined equivalently by the following (at least formally)
weaker condition: For every Banach space Y and for every operator T ∈ A(X,Y )
there exists a net (Tα) ⊂ F(X,Y ) such that Tα → T pointwise and

lim sup
α

‖Tα‖A ≤ λ‖T‖A?

The answer is obviously “yes” if A = L, and also if A = W (see [18, Theo-
rem 3.6]).

Finally, let the authors admit that the original objective of their work was to
approach the famous long-standing open problem (see, e.g., [2, Problem 3.8]).
Is the AP of X∗ always the metric AP (i.e., the 1-BAP)? This problem was refor-
mulated in different ways using the weak BAP in [11].
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