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ABSTRACT 

 

This study concentrates on Descartes’ geometry, especially the Descartes’ parabola and 

traditional parabola. Who is Descartes? René Descartes (1596-1650) was a 17th century 

French philosopher, mathematician and a man of science whose work, La géométrie, includes 

his application of algebra to geometry from which we now have Cartesian geometry. His 

work had a great influence on both mathematicians and philosophers. In mathematics 

Descartes chief contribution was in analytical geometry. Descartes made other known 

contributions to mathematics. He was the first to use the first letters of the alphabet to 

represent known quantities, and the last letters to represent unknown ones. Descartes also 

formulated a rule known as Descartes' rule of signs, for finding the positive and negative roots 

of an algebraic equation.  

 
First, this study concentrates on the Descartes’ studies of Pappus’ problem. Also I explicitly 

explain how Descartes’ found the traditional parabola and Descartes’ parabola, and how he 

used the four and five lines Pappus’ problems.  

Secondly, this study concentrates on the Descartes’ “construction” [that means geometrical 

solution] of equations by using Descartes’ parabola and the traditional parabola. I clearly 

explain Descartes’ construction of third and fourth degree equations by circle and traditional 

parabola, and the construction for fifth and sixth degree equations by using circle and 

Descartes’ parabola. Finally, I also explain the construction of higher degree equations. 

 
Furthermore I give three numerical examples by solving them with the mathematica program, 

which was designed by Stephen Wolfram.  
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1. Descartes’ biography  

 

 

René Descartes 

                                   

     
 

    

Descartes was born on March 31, 1596 in La Haye, Touraine, France and died at Stockholm 

on February 11, 1650. Descartes' parents were Joachim Descartes and Jeanne Brochard. His 

mother died the year following his birth. His father was a lawyer and magistrate, which left 

little time for raising a family. René and his brother and sister, Pierre and Jeanne, were raised 

by their grandmother. 

He was educated at the Jesuit college of La Flèche in Anjou. He entered the college at the age 

of eight years, just a few months after the opening of the college in January 1604. He stayed 

there until 1612, studying classics, logic and traditional Aristotelian philosophy. He also 

learnt mathematics from the books of Clavius. The school had made him understand how little 

he knew, the only subject which was satisfactory in his eyes was mathematics. Descartes 

spent a while in Paris, apparently keeping very much to himself, and then he studied at the 

University of Poitiers. From 1620 to 1628 he travelled through Europe, spending time in 

Bohemia (1620), Hungary (1621), Germany, Holland and France (1622-23). Descartes 

became tired of the continual travelling and decided to settle down in Holland in 1628 and he 

began work on his first major treatise on physics, Le Monde, ou Traité de la Lumière. In 

Holland Descartes had a number of scientific friends as well as continued contact with 

Mersenne.  
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Descartes was pressed by his friends to publish his ideas and, although he was adamant in not 

publishing Le Monde, he wrote a treatise on science under the title ‘’Discours de la methode 

pour bien conduire sa raison et chercher la verité dans les sciences’’. The treatise was 

published at Leiden in 1637 and Descartes wrote to Mersenne saying (J J O'Connor and E F 

Robertson, December 1997, see below web sources): I have tried in my "Dioptrique" and my 

"Météores" to show that my Méthode is better than the vulgar, and in my "Géométrie" to have 

demonstrated it. The work describes what Descartes considers is a more satisfactory means of 

acquiring knowledge than that presented by Aristotle's logic. Only mathematics, Descartes 

feels, is certain, so all must be based on mathematics. As appendices to the Discours of 1637 

Descartes published Optics, Meteorology, and Geometry, a collection of essays. La 

Dioptrique is a work on optics and, although Descartes does not cite previous scientists for the 

ideas he puts forward, in fact there is little new. However many of Descartes' claims are not 

only wrong but could have easily been seen to be wrong if he had done some easy 

experiments. Primarily interested in mathematics, he founded ANALYTIC GEOMETRY, 

originated the CARTESIAN COORDINATES, and Cartesian curves. Descartes meditations on 

first philosophy, was published in 1641. The most comprehensive of his works, Principia 

Philosophiae was published in Amsterdam in 1644. In 1649 Queen Christina of Sweden 

persuaded Descartes to go to Stockholm and he broke the habit of his lifetime of getting only 

up at 11 o'clock. During his lifetime, Descartes was just as famous as an original 

mathematician, scientist, and philosopher. Descartes is one of the most important Western 

philosophers of the past few centuries.   

 

2. Introduction 

 

In my present study, the “Descartes’ parabola” is in the centre how it is defined and how it 

can be constructed and for which purpose it is being used. To answer these questions, I shall 

explain the methods of Descartes used to solve geometrical problems. Descartes published his 

ideas in 1637 in a treatise called La Géométrie (Geometry).  

Descartes’ La Géométrie, book I is on ‘’problems, the construction of which requires only 

straight lines and circles’’, Book II is on the ‘’nature of curved lines’’; but Descartes shows 

that this book was written as a necessary preparatory work to the third book, and the last, 

book III is on ‘’the construction of solid and super solid problems’’. Descartes La Géométrie 

is well known as an important event in the history of mathematics. La Géométrie is a book, 

which is difficult to read. Descartes says: 
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‘’But I shall not stop to explain this in more detail, because I should deprive   you of 

the pleasure of mastering it yourself, as well as of the advantage of training your 

mind by working over it, which is in my opinion the principal benefit derived from 

this science. Because, I find nothing here so difficult that it cannot be worked out by 

any one at all familiar with ordinary geometry and with algebra, who will consider 

carefully all that is set forth in this treatise.’’ (p.10) 

In the centre of this work is ‘’Descartes’ parabola’’. It is a Pappus five line locus (The word 

locus (plural loci) is Latin for "place"), namely a cubic curve which Newton called “trident” 

and others (not quite clear who first) the ‘’Cartesian parabola’’. This curve reappears 

frequently in La Géométrie. Boyer (1956) said that ‘’ his triple interest in the curve was 

limited to the following three aspects: (1) deriving its equation as that of a Pappus locus; (2) 

showing its constructability by kinematic means; (3) using it in turn to construct the roots of 

equations of higher degrees’’. In my work, I shall clearly explain how to use this curve in the 

geometrical construction of the roots of equations of fifth and sixth degrees.  

 

2.1 A first look at Descartes’ geometry 
 
There have been many studies on Descartes’ Géométrie. We know that Descartes’ geometry 

contains his invention of analytic geometry. At a first look at Descartes’ geometry, we may be 

surprised about what is not there. We do not see the analytic geometry of the straight line, or 

of the circle or of the conic section, we do not see Cartesian coordinates, and we do not see 

any curve plotted from its equation. Descartes did not use the term ‘’analytic geometry’’. The 

best source for the actual contents of the Géométrie is the book Géométrie itself. In his book, 

Descartes does include algebra, theory of equations, classifying curves by degree, point wise 

construction of curves, construction of equations (eg: third, fourth, and sixth) etc.  
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Solution of problems in Descartes’  ‘’La géométrie’’ (1637)  
 

Geometrical problems 

 

             
Determinate:      Indeterminate: 
‘’problems’’ proper = finitely   curves, e.g. Pappus: infinitely 
many lengths, points etc.    many points 

                    

Geometrical classification:    Geometrical classification: 
plane, solid, linear     plane, solid, linear 

                 

    

                    
Equations in one unknown x,   Equations in two unknowns x,y, 
Transformations     ‘’Coordinate System’’ 

                    
Algebraic classification: degree   Algebraic classification: degree 
 

                          
   solution by: 
         
       algebraic manipulation (determ. and indeterm. problems) 

←   intersection of curves (solving determ. problems by indeterm.  
       probl.) 

→   constructing curves from points (solving indeterm. problems by  
       determ. probl.) 

     [Reinhard Siegmund-Schultze (2003), p.238] 
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2.2 The background of Descartes’ geometry 

We first look at some achievements of the ancient Greeks. There are three classical problems 

in Greek mathematics which were extremely influential in the development of geometry. 

These problems were those of squaring the circle, doubling the cube and trisecting an angle. 

During the Greek times doubling of the cube was the most famous, and then in modern times 

the problem of squaring the circle became the more famous, especially among amateur 

mathematicians. Although it is difficult to provide an accurate date as to when the problem of 

trisecting an angle first appeared, we know that Hippocrates, who made the first major 

contribution to the problems of squaring a circle and doubling a cube, also studied the 

problem of trisecting an angle. The trisecting an angle was known to Hippocrates (J J 

O'Connor and E F Robertson, April 1999, see below web sources). I shall explain the 

trisecting an angle here because Descartes solved the third degree equations by using 

trisection method. It works as follows. Let construct a right triangle ABC∆  with CAB∠ ; and 

draw a line DN  parallel to .AB draw ,ALN intersecting BC  in L  and .2MNLN =  then the 

required angle is .BAL∠  

    

     Figure 1: Trisecting an angle  

LetM be the midpoint of LN  so that .ACMNLM ==  since LCN  is a right angle, 

.CMMNLM ==  Hence, by isosceles triangles, .CMACAM ∠=∠  

Also, CNMMCNCMA ∠+∠=∠  and .2 MNCCMACAM ∠=∠=∠  

But MNCBAL ∠=∠ [ DNAB // ]. So, .3 CABBAL ∠=∠  

Now one of the reasons why the problem of trisecting an angle seems to have attracted less in 

the way of reported solutions by the best ancient Greek mathematicians is that the 

construction above, although not possible with an unmarked straight edge and compass, is 



  

T.Vigneswaran, Agder University College, Norway.  Master Thesis: May 2007 

 

6 

nevertheless easy to carry out in practice.  Also, they solved a range of locus problems, some 

very complicated. To find their solutions, they too had ‘’methods’’. The construction of two 

mean proportionals attracted most imitation in the sixteenth century. J.M.Bos (2001, p.27) 

stated that ‘’ there were two related reasons fro this pre-eminence. The first was that the list of 

12 different constructions of two mean proportionals that Eutocius had included in his 

commentary to Archimedes’ Sphere and Cylinder became available in print, first in works of 

Valla and Werner, later in editions of Archimedes’ works. A similar, though smaller set of 

constructions of the trisection in Pappus’ Collection became known only much later. 

Secondly, mathematicians learned and found that several problems not solvable by straight 

lines and circles could be reduced to the problem of two mean proportionals, whereas fewer, 

if any, problems were found to be reducible to trisection; so the former problem acquired a 

central position among problems beyond the constructional power of straight lines and 

circles.’’ In early modern geometers more often met solid problems reducible to two mean 

proportionals than problems reducible to trisection. 

Given a problem, for example, consider the famous problem of doubling the cube. In modern 

term, the problem is, to find x  such that 33 2ax = (given 3a ). Hippocrates of Chios showed 

that this problem could be reduced to the problem of finding two mean proportionals between 

a and a2  (J.Grabiner (1995), p.84). That is, ayyxxa 2::: ==   or  ayyxxa 2/// ==  

The yx,  will be called the two ‘’mean proportionals’’ between a and a2 .  

Then, eliminating y , we observe 33 2ax =  as required.  

If we consider the first two terms, yxxa :: = , we get ,2 ayx =  which represents a parabola. 

If we consider the first and last terms, ,2:: ayxa =  we get ,2 2axy =  which represents a 

hyperbola. Thus the problem of duplicating the cube is reducible to the problem of finding the 

intersection of a parabola and a hyperbola. This reduction developed the Greek interest in the 

conic section. 

Suppose we need to learn how to construct an angle bisector, and how to bisect a line 

segment. In figure 2, draw AD  bisecting the angle A . Then the length AB = length AC  and 

connect B  and C  with the line segment BC , see figure 2. Let M  be the intersection of the 

angle bisector with the lineBC . But ACAB = , BAM∠ = CAM∠ , and AMAM = , then the 

triangle ABM∆  ≡  triangle ACM∆ . Thus M bisect BC .  

Now, to construct the angle bisector, constructs ACAB = , construct the line BC , bisect it 

atM , and connect the points A  and .M AM bisects the angle A .  
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Figure 2: Bisect an angle and line   

 

The Greek ‘’analysis’’ works like this. Descartes did not invent these methods. Descartes 

ideas on problem solving, moreover, have other antecedents besides the Greek mathematical 

tradition (J.Grabiner (1995), p.85).  

Further, in excellent work of Greek mathematics (Euclid, Archimedes and Apollonius), there 

were two sorts of geometrical propositions: theorems and problems. Theorems had to be 

proved; problems had to be constructed (J.M.Bos, 1984, p332). Descartes extended these 

earlier ideas in an unprecedented way.  

 
   Figure 3: Ancient mathematical developments (E.G.Forbes, 1977, p.148)   
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3. Descartes’ parabola and the traditional parabola 

 

 

3.1 Descartes and curves 

 

In the beginning section of Book II of his Géométrie, Descartes famously introduces his 

criteria for accepting curves into geometry. He claims to borrow a classification proposed by 

the ancients. The ancients considered three classes of geometric problems, which they called 

plane, solid, and linear. 

 

Geometric problems 

 

       Plane             Solid              Linear 
[problems which require only      [which can be solved by                  [more complex alg. curves] 
circles and straight lines for         using conic section]                                          

their construction]           

                               

First degree                                          Second degree                                               High degree     

(+ circle which is second degree)         
 
 
Descartes provided such delimitation in terms of the curves used in the procedures. The 

curves that he allowed in geometry are now called ‘’algebraic curves’’, the others 

“transcendental”. Descartes used the term of ‘’mechanical curve’’ that cannot be expressed by 

an algebraic equation. But Leibniz and others called them “transcendental”. Descartes 

distinction between ‘’geometrical’’ and ‘’mechanical’’ curves provided a great issue in 

seventeenth century mathematics.  

Bos says: 

 

‘’Descartes introduced a sharp distinction between admissible and inadmissible 

curves. The first he called ‘’geometrical’’ the other ‘’mechanical’’. The 

‘’geometrical’’ curves are what we now call algebraic curves (although Descartes did 

not explicitly say as much in the Géométrie, this can be inferred from what he did 

state); the ‘’mechanical’’ curves are those which are now termed transcendental 

curves’’ (H.J.M. Bos, 1981, p.297) 
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Curves 

 

       Geometrical         Mechanical 

              [Some sort of instrument has to be used] 

 

 

Descartes groups “geometrical” curves into distinct classes.  For instance, curves of “the first 

and simplest class” (ie, the circle, parabola, hyperbola, and ellipse) are described by a first or 

second degree polynomial equations and can be pointwise constructed by straight lines and 

circles.  (cf. Bos 1996, Mahoney 1969)  Following the methods delimited by Descartes, only 

the so-called “algebraic” curves, those with a corresponding closed polynomial, are to be 

included in the sphere of geometry. In contrast, so-called “transcendental” curves are rendered 

geometrically unintelligible.   

 

3.2 Pointwise construction of curves 

 

Descartes solved the Pappus problem by constructing arbitrarily many points on the locus. In 

the first book of Géométrie he did not say (Pappus problem) whether this pointwise 

construction could be considered as a construction of the locus as a curve. Descartes did not 

stop after giving the pointwise construction; He also gave the name of the locus curve 

(parabola, ellipse, and hyperbola etc.) and giving its basic parameters. However, he returned 

to pointwise constructions of curves and wrote that in the second book. In certain cases, the 

pointwise construction curves should be accepted in geometry (J.M.Bos, (1981), p.315). I 

shall clearly explain the Pappus problem in my present work below. 

 

3.4 Descartes and parabola 

 

In the geometry of plane curves, the term parabola is often used to denote the curves given by 

the general equation amxn = ym + n, thus 2yax = is the quadratic or Apollonian parabola; 

32 yxa = is the cubic parabola, a3
x = y4 is the biquadratic parabola; semiparabolas have the 

general equation axn − 1 = yn, thus 32 yax = is the semi cubical parabola and ax3 = y4 the 

semibiquadratic parabola. These curves were investigated by René Descartes, Sir Isaac 

Newton, Colin Maclaurin and others (http://www.1911encyclopedia.org/Parabola).The 
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Cartesian parabola is a cubic curve which is also known as the Descartes’ parabola of 

Descartes on account of its form. Its equation of the form is axyayaayy =+−− 3223 22 . I 

shall explain the Descartes’ parabola (cubic curve) and traditional parabola below and also 

discuss it how it was constructed by Descartes.  

 

3.5 The Pappus problem   

 

 

 

 

Figure 4: Pappus’ problem   

 

I shall explain the Pappus problem and Descartes’ solution of this problem. Given the straight 

lines niLi ,,.........2,1, =  in the plane, and angles iθ  be fixed angles, id , ni ....,,.........2,1=  

denote the distances of the line from an arbitrary point C  in the plane to iL . The given line 

segment a  and K  be a given constant ratio (involving the distances id  and depending on the 

number of lines iL ). The related ratios (by us written as products) are: 
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For three lines:  32

2

1 dKdd =  

For four lines:   4321 dKddd =  

For five lines:   54321 dKadddd =  

For six lines:   654321 ddKdddd =  

- - 

- - 

- - 

- - 

- - 

- - 

For an even number  n2  of lines: 

    nnnn ddKdddd 22121 .............................. ++=  

    ∏
=

n

i

id
1

= ∏
+=

n

ni

idK
2

1

  

For an odd number 12 +n of lines: 

    1232121 ............................. ++++ = nnnn ddKadddd  

    ∏
+

=

1

1

n

i

id = ∏
+

+=

12

2

n

ni

idKa  

 

I use modern notation for this problem. Descartes did not use indices and stated the 

coefficients clearly with respect to a figure. In his formulation Descartes surely meant the 

generality that modern notation can express. 

Pappus provides the problem for three and four lines as well as its generalization to more 

lines. Pappus’ problem was a locus problem (Locus: the set of points satisfying a particular 

condition, often forming a curve of some sort.). In each case there are infinitely many points 

which satisfy the given condition; these points form a locus in the plane; this locus is 

generally a curve. Pappus also says that for three and four lines the locus is a conic section. 

Further, for more than four lines nothing is known about the form of the locus. 
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3.6 The general solution 

At the end of the first book of his Géométrie, Descartes gives the general solution of the 

problem (p. 309-314). His idea is given below. He assumed that 

   yd =1  

ie) Descartes singles out 1L  as the reference line (in our terminology the x-axis of a 

coordinate system). 

Descartes takes x  to be the distance along 1L (line) from a fixed point to the intersection of 1d  

with 1L  at point B . He then shows by geometrical arguments that all id can be expressed 

linearly in x  and y :      

   iiii cybxad ++=   

The coefficients ia , ib , and ic  are constants belonging to the line segments iL and the given 

angle iθ  and also the ia , ib , and ic  are known. Descartes also remarks that in the exceptional 

case when all lines are parallel, x  doesn’t occur in the expressions for the .id   

The constancy of the given ratioK  can be expressed as an equation: 

For an even number  n2  of lines: 

)().........()().........( 222111222 nnnnnnnnn cybxacybxaKcybxacybxay ++++=++++ +++  

ie) )()(
2

11

ii

n

ni

ii

n

i

ii cybxaKcybxa ++=++ ∏∏
+==

 

For an odd number  12 +n  of lines: 

))......(()).......(( 121212222111222 +++++++++ ++++=++++ nnnnnnnnn cybxacybxaKacybxacybxay

 

ie) )()(
12

2

1

1

ii

n

ni

ii

n

i

ii cybxaKacybxa ++=++ ∏∏
+

+=

+

=

 

Where ycybxad =++= 1111  and 011 == ca and .11 =b   

The degrees of these equations depend on the number of lines. If there are three or four lines 

this results in the second degree of these equations. I shall explain this case below ( xy 42 = ). 

Descartes did not explicitly discuss the degrees of these equations, but he was aware of them. 

The interpretation of the original problem would require the id to remain positive. But 

Descartes did not discuss the negative values. Further Descartes discussed only one curve, but 

the original interpretation would lead to a locus consisting of two curves. The equation should 

be 
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For an even number n2  of lines: 

nnnnnnnnn cybxacybxaKcybxacybxay 222111222 .................. ++++=++++ +++  

or )().........()().........( 222111222 nnnnnnnnn cybxacybxaKcybxacybxay ++++±=++++ +++  

Similarly, for an even number  12 +n  of lines: 

)).....(())......(( 121212222111222 +++++++++ ++++±=++++ nnnnnnnnn cybxacybxaKacybxacybxay

 
Descartes explained the classification of curves according to the degree of their equations, in 

the second book (p.48). He says all geometrical curves have algebraic equations. These 

classifications are 

First class: The curves with equations of the second degree (the circle, the parabola, the 

hyperbola, and the ellipse).  

Second class: The curves with equations of the third and fourth degree. 

Third class: The curves with equations of the fifth and sixth degree. And so on. 

But Descartes said there was an exceptional case when all lines are parallel, namely, he did 

explicitly explain the five lines (parallel) problem in his second book (p.83-88). I shall clearly 

explain below.   

 

3.7 Pappus problem in four lines  

 

Figure 5: Pappus’ problem in four lines (Géométrie, p.27/31)  
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Descartes explained in much more detail the four line Pappus problem in his book II. But he 

started to write this problem in book I and continued the work in book II. I will consider the 

Descartes solution of the Pappus problem for four given lines here. Descartes talked about the 

rectangle of two of the lines as related to the rectangle of the two other lines which of course 

has to be understood algebraically as the ‘’ product of distances’’. 

 

For four lines:       4321 dKddd =     

 

Descartes explained the way of getting the equation of the locus in his book I and II. I have 

not changed Descartes’ symbols here. Descartes introduced symbols for the unknowns and the 

given parameters in this Pappus problem as given below.  

Assume that xAB = and yBC =   

But these lines are not parallel. The given lines intersect AB  in the points EGA ,, and 

intersect BC in the points STR ,, . We can see this figure above.  

Now, we can consider the triangle ABR∆ , where all angles are known. So, the ratios of the 

sides are known. 

Suppose that 
b

z

BR

AB
=  then we get,

z

bx
BR =  [ xAB =∴ ] 

Since 
z

bx
yCR +=  when B lies between C and R  

[Other cases: 
z

bx
yCR −=  when R lies between B andC , 

z

bx
yCR +−=  when C lies 

between B and R ]  

Now, we can consider the triangle∆ CRD , where all angles are known. So, the ratios of the 

sides are known. 

Let 
c

z

CD

CR
=  then we get, 

2z

bcxcyz
CD

+
=       [∴

z

bx
yCR += ] 

Also, the distance is known from A toE . That is kAE = . 

So, then kxBE +=  

[Other cases: kxBE +−=  when B lies between A andE , and kxBE −= when E lies 

between A and B ] 

Again we can consider the triangle∆ BSE , where all angles are known. So, the ratios of the 

sides are known. 
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So, the ratio is 
d

z

BS

BE
= then we get, 

z

xdkd
BS

+
=  

And also BSyCS +=     [∴ yBC = ] 

   ∴
z

xdkdyz
CS

++
=  

[Other cases: 
z

xdkdyz
CS

−−
=  whenC lies between B andC , and

z

xdkdyz
CS

++−
=  

whenC lies between B and S ] 

Again we can consider the triangle∆ FCS , where all angles are known. So, the ratios of the 

sides are known. 

Hence the ratio is
e

z

CF

CS
= . Therefore, 

z

CSe
CF

.
=  

     
3z

ekxekdezy
CF

++
=∴      [∴

z

xdkdyz
CS

++
= ]  

And assume lAG = then xlBG −=  

Again we consider the triangle BGT∆ , the ratio is 
f

z

BT

BG
=  

This implies, 
z

fxfl
BT

−
=  and 

z

fxflzy
CT

−+
=  

Also the triangle CHT∆ , then the ratio is 
g

z

CH

CT
=  and 

Hence, 
2z

gfxgflgzy
CH

−+
=      [∴

z

fxflzy
CT

−+
= ] 

We know that z  was known. Descartes found the line segments ,,, CDCFCB andCH . These 

are 

       yCB =   

       
3z

ekxekdezy
CF

++
=   

        
2z

bcxcyz
CD

+
=  

         
2z

gfxgflgzy
CH

−+
=  

Descartes provided this information in his book I and he gave the solution of Pappus four 

lines problem. That is, to find all points C  in the plane with  4321 dKddd =  
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Descartes considered the given ratio K  to be equal to 1. But he did not write any further 

words on this point in his book. So, the product of BC and CF  is equal to the product of CD  

and .CH   

That is, CHCDCFBC .. =  

 

This implies, 




 −+





 +
=




 ++
222

..
z

gfxgflgzy

z

bcxczy

z

exdekdezy
y   

 

  222232 ][][][ bcfgxbcfglxbcgzcfgzedzxyekdzcfglzycgzezy −+−+−−=−  

 

The equation is  

  
2

222
2

][

][][

zcgez

bcfgxbcfglxbcgzcfgzedzxyekdzcfglzy
y

−

−+−+−−
=  

And he assumed that cgez > , then 023 >− cgzez and its square root is therefore real. Also 

Descartes assumed that 
23

2lg
2

cgzez

ekdzzcf
m

−

−
=  and 

23

22

cgzez

bcgzcfgzedz

z

n

−

−+
=  

Then we get, 
23

2
2 2

2
cgzez

bcfgxbcfglx
xy

z

n
myy

−

−
+−=  

The roots of this quadratic equation is 

  
23

2

2

22
2 2

cgzez

bcfgxbcfglx

z

xn

z

mnx
m

z

nx
my

−

−
++−+−=  

 

Again he assumed that 
23

2

cgzez

bcfgl

z

mn
O

−
+−=  and 

232

2

cgzez

bcfg

z

n

m

p

−
−=  

Then we get the root of this quadratic equation: 

 

  22 x
m

p
Oxm

z

nx
my +++−=  

 

That is, 22 x
m

p
Oxm

z

nx
mBC +++−=  
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I shall explain the conic section (see appendix, p.77) here by above equation. These cases are 

If 02 =x
m

p
then the conic section is a parabola. 

If 02 >x
m

p
then the conic section is a hyperbola. 

If 02 <x
m

p
then the conic section is an ellipse.  

I shall continue to explain the case of parabola below. Because this is my present work so I 

omit the other cases. Also Descartes explicitly explained the hyperbola and ellipse cases in his 

geometry book II.  

 

3.8 Traditional Parabola 

I draw this figure but I have no change the Descartes symbols here.  

                  

 
Figure 6: Pappus’ problem in four lines: especially for the construction in the case of parabola   

 

NI is the principal axis in the parabola and also I is the focus. Then draw a line IK  equal and 

parallel to AB , and intersecting at a BC  pointK . Also he took a line segment mBK =  (for 

BC  contain m+ , if this were m−  then the line IK  on the other side of AB , and if 0=m  

then we cannot draw IK at all) and .xABIK ==  
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Further, Descartes did not clearly draw a point at I  in his figure. But I draw clearly in my 

figure above. Then he assumed that 
n

z

KL

IK
=  

That is, x
z

n
KL =     [ ]xIK =∴  

Similarly, we know that the ratio 
a

n

IL

KL
=   this implies x

z

a
IL = .  

If x
z

n
− , he took the point K  between L and C  and if x

z

n
+  , the point L between K  andC , 

and if 0=x
z

n
, we can’t draw .IL  

He considered BC equal to LCLKBK +−  on this case. 

That is, LCLKBKBC +−=   

This implies, LCx
z

n
my +−=  

  ie) x
z

n
myLC +−=  

Claim: If the conic section is a parabola, the line segment is OxmLC += 2 . 

I shall explain this below: 

If the point C is on the parabola, its latus rectum is equal to r  (In a conic section, the latus 

rectum is the chord parallel to the directrix through the focus. In a parabola, the length of the 

latus rectum is equal to four times the focal length, i.e. the distance of the focus from the 

vertex. That is, "Latus rectum" is a compound of the Latin latus, meaning 'side,' and rectum, 

meaning 'straight') and its parabola axis on the line .IL  Its vertex, N , and let λ=IN . 

 

  INLILN +=  

        λ+= x
z

a
..................... )(i  

The condition of parabola rLNLC .2 =  

        rx
z

a
.







 += λ  [ )(iby∴ ] 

But x
z

n
myLC +−=  

This implies, )......(.....................

2

iirx
z

a
x
z

n
my 







 +=






 +− λ  
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If the equation of a parabola, Oxmx
z

n
my +=







 +− 2

2

.................. )(iii  

Hence, Oxmrx
z

a
+=







 + 2.λ    [ )(iiby∴ and )(iii ] 

Equating the coefficients, we get 

  Or
z

a
=  This implies 

a

Oz
r =  

And   2mr =λ  

          
Oz

am 2

=∴λ  

 That is, 
Oz

am
IN

2

=  and latus rectum is equal to .
a

Oz
 

Hence the equation of the parabola is Oxm
z

nx
my ++−= 2 . 

 

Descartes also explained the plane loci are degenerate cases of solid loci in his book II (If the 

line is straight or circular, it’s called a plane locus and if it is a parabola, a hyperbola, or an 

ellipse, it’s called a solid locus). Moreover, the different kinds of solid loci represented by the 

equation  

   22
2

2 x
m

p
Oxm

x

n
x
z

n
my ±±±±±±±=  

by Rabuel. Descartes omitted the case in that neither 2x  nor 2y  but only xy  occurs, and the 

case in that a constant term occurs (p.79).  

If 
x

n 2

 is not present, there the quantity under are several cases here.  

(i) If the radical sign is zero or a perfect square, then equation is a straight line.  

(ii) If this quantity is not a perfect square and if 02 =x
m

p
, then the equation is a 

parabola. 

(iii) If this quantity is not a perfect square and if 02 <x
m

p
, then the equation is a circle 

or an ellipse.  

(iv) If 02 >x
m

p
, then the equation is a hyperbola. 
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If all the terms of the right hand side is zero except
x

n 2

, then the equation is a hyperbola 

referred to its asymptotes.  

 

 

3.9 Numerical example: 

 

1] Suppose all the given quantities expressed numerically, as 

   5,3 == AGEA  

    BTGBBEBSBRAB === ,,  and 

   CRCD
2

3
= , CSCF 2= , CTCH

3

2
=  and also the angle =∠ABR o60  

We are referring to Descartes’ picture (see figure 5) and that all quantities where CB, and S  

come in are variable.  

Then all these quantities must be known if the problem is to be entirely determined.  

Now, let xAB = , and yCB = .  

Then xyBRCBCR +=+=  ( xBRAB == ) 

 But CRCD
2

3
=  = )(

2

3
xy + …………..(i)     

And xABEABEBS +=+== 3  

        3++=+= xyBSCBCS  

 But )3(22 ++== xyCSCF …………….(ii) 

Then )5( xABAGBG −=−=  and also )5( xBTGB −==   

         5+−=+= xyBTCBCT  

So, )5(
3

2

3

2
+−== xyCTCH  ……………(iii) 

Descartes gives the property of four lines is:  

   CHCDCFCB .. =  (Assume 1=K ) 

   )]5(
3

2
)][(

2

3
[)]3(2[ +−+=++ xyxyxyy  

   xxxyyxyyyxyy 55622 222 +−++−=++  

        052 22 =−+++ xxyxyy ; 

   0)5()21( 22 =−+++ xxxyy ; 
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       So,  xxy 6
4

1

2

1
+±−−=  

Hence
2

1
−== mBK , 1=

z

n
 and .6=O  but the line IK  on the other side of AB (

2

1
−=m ) 

and xABIK == , xKL = , o60=∠=∠ ABRIKL , xIL = , and the quantity represented by z is 

1, we get 1=a and 6==
a

Oz
r  (See figure 6). It follows that the curve NC  is a parabola and 

its latus rectum is equal to 6 . 

 

2] An example treated in modern terms, we consider the parabola xy 42 =  in rectangular (x, 

y) – coordinates which results from a four lines Pappus problem in the following way: 

I consider the four straight lines: 0,, =−== xxyxy and 4=x   

The angles are 45 degrees for the two first distances, and 90 degrees for the other two 

distances on the right hand side of the equation. That the parabola is indeed the solution to the 

four lines Pappus problem follows from the equation (ie. 1=K ) 

  4321 dddd =  

    )4())(( xxxyxy −=+−  

This implies, we get xy 42 =  

The example should be supported by a picture of the parabola together with the four lines in 

the plane.   

 

Figure 7: Numerical example for the Pappus’ problem in four lines  
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Descartes did not discuss the fact that as a result of this rewriting the id  may have negative 

values, whereas the obvious interpretation of the original problem would require the id to 

remain positive. The effect of this is that Descartes found only one curve as locus, while the 

original interpretation would lead to a locus consisting of two curves. (H.J.M Bos, 1981, 

p.300) 

The four line problem (ie. 1=K ), Descartes worked out  

   ))(()( 333222111 cybxacybxacybxay ++++=++  

And found one conic section as the locus. But if the id were taken to be positive, the equation 

would become (modern term)    

   333222111( cybxacybxacybxay ++++=++  

or   ))(()( 333222111 cybxacybxacybxay ++++±=++  

That is two conics. We could consider the above example of this case. (k=1) 

   yxyxxx +−=− 4  

or   ))(()4( yxyxxx +−±=−    

   xy 42 =  or  22 42 yxx =−   

These are two conics. But 22 42 yxx =− , this is a hyperbola. 

I plot this hyperbola by using mathematica program (see further details at page 35). 

Plot [ xx 42 2 − , { }6,6,−x ]; 

 

   -6 -4 -2 2 4 6

2

4

6

8

10

 

    Figure 8: Example for the Pappus’ problem in four lines: hyperbola  
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3.10 Pappus five line problem  

 

 

 

               Figure 9: Pappus’ problem in five lines  

 

In the second book (p.84) Descartes showed the solution of a special simple case of the five 

line Pappus problem. I would like to consider this problem here. 

 

Method 1: 

Let the given lines be ,,,, GFEDIHAB andGA  respectively. In the situation where 

,,, EDIHAB andGF are parallel and equal distance andGA  is perpendicular to the other lines. 

Let the required point C  lies between AB  andDE , the distance ,,,, CHCDCFCB and CM  
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are perpendicular to the given lines. We can see the figure (p.82/6) above. Descartes gives the 

property of five lines     

    aCMCBCHCDCF .... =  

Descartes takes )2( yaCF −= , )( yaCD −=  and )( yaCH +=  and he gave the equation of 

the curve is: 

    axyyayaya =+−− ))()(2(   

   or axyayaayy =+−− 323 22  

This is the Cartesian Parabola. 

Where yCB = , xCM = and aAIEAGE === . The ruler GL  is moving aroundG .  

 

Method 2: [p.84]  

I shall explain Descartes’ second method of the required cubic curve. Descartes consider a 

parabola CKN with vertical axis KL  to move up and down the straight line AB (That is, the 

parabola CKN  is moving vertically along its axis AB ) and the principal parameter equal to a  

(that is, the parameter corresponding to the axis of the given parabola) of the 

parabola axy =2 . The ruler GL  is moving aroundG . Also the straight line GL  can intersect 

of the lines GF  and GI  while L moves along AB . He takes KL  equal to a  of the vertical 

axis of parabolaCKN .   

We consider yMACB == , xABCM == , and aGA 2= .  

Also we consider the triangles CMG∆  and CBL∆ are similar. 

So, this implies 
BL

CB

CM

GM
=  

           ⇒  
BL

y

x

ya
=

− )2(
 

            ie) 
)2( ya

xy
BL

−
=  

 

But aKL =  and this implies 

   BLKLBK −=  

   
)2( ya

xy
aBK

−
−=  

      or   
ya

xyaya
BK

−
−−

=
2

2 2
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Then BK is a segment of the axis of the parabola axy =2 . 

Since  
a

BC

BC

BK
=  , a  is equal to the principal parameter.  

This implies, BKaBC .2 =  

 
)2(

)2(
.

2
2

ya

xyaya
ay

−
−−

=  

  axyyaayay −−=− 2332 222  

That is, axyayaayy =+−− 3223 222    

 

The combined motion the pointsC of intersection of the parabola and the straight line move 

over the plane; they trace a new curveCEG ; this curve is the required five line locus. The 

point C  can be taken on the curve GEC  which is a branch of the ‘’ Cartesian parabola’’. NIo  

and nIO are intersection of the lineGL  with the other branch of the original parabolaKN . 

Descartes also discussed the opposite direction of the parabola.   

This curve played an important role in his theory of geometrical construction and this third 

degree curve which later known as the name ‘’Cartesian parabola’’. Descartes also did not 

explain how he had found the way. Descartes explained how the ‘’Cartesian parabola’’ can be 

used for finding the roots of sixth and fifth degree equation in his Géométrie book III. He also 

discussed how the ‘’Cartesian parabola’’ was traced by the combined motion of a ruler and a 

traditional parabola. I shall explain more details in my present chapter below. Descartes 

explained in the one particular case (that is, the property of five lines 

is: aCMCBCHCDCF .... = ) of the Pappus five line problem in his book II. Descartes did not 

explain the further choice of five line problem in his Géométrie book II.  

 

If we consider four given parallel lines ,,, EDIHAB  andGF , and one perpendicular cutting 

lineGA , Descartes gives the distance property of five lines is 

   nmkji ddddad =   

If we can consider the five different distances, so the possible permutation (rearrangement of 

distances) is the numbers 1,2,3,4 and 5. Descartes found the cubic curve in the particular case 

aCMCBCHCDCF .... =  (see above). J.M.Bos (2001, p.330) analysed the possible type of the 

five line problem and also he divided into two cases.  
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These are 

  mkji dddayd =   ………I 

mkji dyddad =  ………II  

Bos denoted 5d  by y . Descartes case belongs to the case I. (If you want to further 

information, see J.M.Bos book on page 330/31). 

Descartes then stated that the given lines ,,, ABDEGF andHI  are parallels non-equidistant 

and the line GA  is not perpendicular to the others (see below). In this case, he says, the 

required point C  will not always lie on curve of the same nature and this may even meet be 

the case when the given lines are not two parallel.  

 

   F       E             B        I 

   

   G        D     A        H   

Figure 10: Pappus’ problem in five lines: non-equidistant parallel lines and the fifth line is 

not perpendicular 

 

3.11 Another five line locus 

Descartes explained the “parallelepiped” (that means the product of three distances) of three 

lines drawn through the point C  for the one cutting line and any two of the parallel lines is 

equal to the parallelepiped of two lines drawn through point C  to meet the other two parallels 

and another given line ( )a . He says that the required point lies on a curve of different nature.  

The distance property of five lines is (case II)  

   mkji dyddad =  
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He wrote (p.88):  

 

‘’In this case the required point lies on a curve of different nature, namely, a curve 

such that, all other ordinates to its axis being equal to the ordinates of a conic section, 

the segments of the axis between the vertex and the ordinates bear the same ratio to a 

certain given line as this line bears to the segments of the axis of the conic section 

having equal ordinates. I cannot say that this curve is less simple than the preceding; 

which nevertheless I believed should be taken as the first, since its description and 

calculation are somehow easier.’’  

 

But Rabuel gave the general equation of this curve: 2222 2 ayyaxaxyaxy −=+− (p.88)   

 

 

3.12 Numerical example:  

 

I would like to give a good numerical example (J.M Bos (1981), p.316) for a five line 

problem here. If we take the origin in the centre of the figure, 

     addddd .... 54321 =  

 

  

                  Figure 11: Example for the Pappus’ problem in five lines 
 

 

 

Leads to a
a

y
a

y
a

y
a

yx 






 −






 +=






 −






 +
222

3

2

3
 

 or 0944 3222 =+−− axaayxy  
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as the equation for the required curve.  Taking )
4

9
(

2

1 221 ayaw −= −  

We find )(:: axaaw −=  

If we now take the ‘’vertex’’ in Descartes text to be the point )0,( == yaxV , and draw the 

parabola.        

22

4

9
2 ayaw −=   

with w  taken along the X -axis from V , then the required curve and the parabola are related 

in such a way that for points ),( yx  and ),( yz  on either curve with equal ordinates y , the 

abscissa )( ax −  and w  ( taken from V ) satisfy 

   )(:: axaaw −=  

This corresponds to what Descartes says, but the he does not specify that in this case the conic 

section is a parabola.  

I plot this parabola by using mathematica program (see further details at page 35) and also I 

consider the constant value .1=a  That is, =w
8

9

2

1 2 −y  

Plot [
8

9

2

1 2 −y , { }6,6,−y ]; 

   -6 -4 -2 2 4 6

5

10

15

 
 

    Figure 12: Example for the Pappus’ problem in five lines: parabola 
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4. Descartes’ construction of equations by using Descartes’ parabola and the traditional 

parabola 

 

The constructions of equations of degree three to six are discussed in the last book of the 

Géométrie, and they form the conclusive result of the treatise. I shall discuss these 

constructions below. If the degree was one or two, the roots could be constructed by straight 

lines and circles. Descartes called these problems ‘’plane’’. If the degree was three or four, its 

roots could not be constructed by circles and straight lines. Descartes found the roots of any 

equation of third or fourth degree could be constructed by the intersection of a circle and a 

parabola. Also he called the problem ‘’solid’’, because only conics (= “solid curves”) are 

involved. Now, I can consider the equation of fifth or sixth degree. If the equation was of 

degree five or six Descartes called the problem ‘’ super solid’’.  Descartes gave a new curve 

namely the ‘’Cartesian parabola’’. Descartes showed that this curve was really the solution of 

the five line Pappus problem and he provided the equation of the curve, in his second book 

[p.83-84]. This curve became later known as the ‘’Cartesian parabola’’ and other names for 

the curve are ‘’ trident’’ (Newton) and ‘’parabolic conchoid’’. It is, however, no classical 

parabola, but a curve of third degree:  

        axyayaayy =+−− 3223 22  

I shall explain this curve in my chapter below. In the third book Descartes explained how this 

curve can be used for finding the roots of fifth and sixth degree equations; he stated there in 

more detail how the curve was traced by the motion of a ruler and a parabola [p.220]. This 

case is complicated but basically correct. In the book III on the last page Descartes showed 

the constructing equations of higher degree than six. Descartes did not give any work of this 

case. He wrote: 

‘’……..but one degree more complex by cutting a circle by a curve but one degree 

higher than the parabola, it is only necessary to follow the same general method to 

construct all problems, more and more complex, ad infinitum….’’ [p.240] 

 

In this present chapter I shall explain how he had constructed 5th and 6th degree equations by 

using Descartes’ ‘’parabola’’. I shall discuss some examples here, from the third book of 

Géométrie. Descartes used the different geometrical techniques in this construction of 

equations.  
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4.1 Descartes’ construction of fourth degree equations by circle and the traditional 

parabola  

 

Descartes provided his constructions of equations of third and fourth degree (that means he 

found the roots by his geometrical method) in the last book of the geometry. Also he assumed 

that the cubic term of the equation was omitted. He wrote the equation as 

   raqxaapxx 3224 ±±±= ……………………..(*)       [p.195] 

Where ,,qp and r are positive. 

If 0=r , the fourth degree equation (*) reduces to a cubic equation. In this case of the cubic 

equation the intersection at a point A (the vertex point A is on the circle) corresponds to the 

root 0=x  (we can see below fig. p.206). I shall prove in one example below. We can see 

below figures for all cases of fourth degree equations (p.194/7/8).  

   

 

   



  

T.Vigneswaran, Agder University College, Norway.  Master Thesis: May 2007 

 

31 

       

 

Figure 13: The construction of third and fourth degree equations 

 

We can see here how to construct the fourth degree equations by a circle and a parabola. Let 

AL  be the vertical axis of the parabola and vertex A  as the highest point on the parabola. We 

assume the point A  is an origin for the (x,y)- coordinate system along the horizontal direction 

GK and the vertical axis of parabola, respectively. I would like to consider the latus rectum a  

of this given parabola ayx =2 . Let E  be the centre and d the radius of the circle. Assume that 

the line xGK =  then
a

x
AK

2

= . Since,GK  is the mean proportional between AK and the latus 

rectum a  of the parabola. FindD on the vertical axis such that )(
2

1
apAD +=  and draw 

qDE
2

1
=  perpendicular fromD .  
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        Figure 14: The construction of fourth degree equations   

 

We have   

222 MGEMEG +=                                                                                                       

           22
2

)
2

1
()](

2

1
[ qxap
a

x
+++−=  

                                 = 2222
2

2

4

4

1
[)2(

4

1
)([ qqxxaappap

a

x

a

x
+++++++− ]                                                                                                  

            )2(
4

1
)( 42222222422 aapqpaqxaxaxapaxda +++++++−=  

             0]
4

1
)(

4

1
[ 2222224 =−++++− dqapaqxaapxx  

 

Descartes constructed the equation of fourth degree as 

   03224 =−+− raqxaapxx      or     raqxaapxx 3224 +−=   

Where   ]
4

1
)(

4

1
[ 222 dqapar −++=−      or    ]

4

1
)(

4

1
[ 222 arqapd +++=   
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Descartes gave on page 203 a proof (unit case) of the radius of the circle FGH .  

Assume that )(
2

1
apAD += , qDE

2

1
=  and EDA∆  is a right triangle. 

  222 DADEAE +=  

          22 )(
4

1

4

1
apq ++= ………….. (i) 

Then, consider the circle SHR . Assume that aAS =  (we can note that AS is equal to latus 

rectum a ) and rAR = . 

Since AH is the mean proportional between AS  and AR . 

ie) ARASAH .2 =  

      ar=  ………………..(ii) 

Also, since HAE∆  is a right triangle. 

  222 HAAEEH +=  

  arapqEH +++= 222 )(
4

1

4

1
 (∴by (i) and (ii)) 

ie)  arqapd +++= 222

4

1
)(

4

1
  

If a  is used as unit then the equation as 

   024 =−+− rqxpxx      or    rqxpxx +−= 24    

Descartes did prove for one of his cases (latus rectum equal to1) distinctions and left the other 

cases to the reader. The circle can cut or touch the parabola in maximum four points. I would 

like to write the Descartes own words here (p.200).  

 

‘’ Now the circle FG can cut or touch the parabola in 1, 2, 3, or 4 points; and if   

perpendiculars are drawn from these points upon the axis they will represent all the 

roots of the equation, both true and false’’ 

 

The line segments FL ,GK , gk  and fl  [see figure 13] are the roots of the equation. The 

intersection point F on the left of the axis gives the ‘’true’’ [ie. positive] root; any on the 

other side correspond to ‘’false’’ [ie. negative] roots. Descartes observed if the circle and 

parabola may not intersect or touch at any point, there is no root but they are all imaginary.  

But Descartes stated that If the value q  is positive then the line segment FL  a true root, a 

point E  (centre of the circle, see figure 14) on the same side of the axis of the parabola; while 
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the others, as the line segmentGK , will be false roots. Otherwise, if the value q  is negative 

then the true roots ( gk andGK ) will be those on the opposite side and the false or negative 

roots (FL ) will be those on the same side as E . Descartes here mentioned the negative roots. 

Also if the circle did not cut or touch the parabola at any point, then all the roots are 

imaginary (p.200).  

If the value q  is zero (he did not say), the given equation will be reduced to a quadratic 

equation.  

 ie) rpxx += 24   

Let 2xy =  (say) 

               rpyy +=2 ………………… (i) 

Descartes did not comment on this quadratic equation. But he had already explained the 

solution of quadratic equations (i) in his first book of Géométrie (p.13).  

If 0=r , then the fourth degree equation reduced to cubic equation (p.196). 

  ie) qxaapxx 224 +=      or   qaapxx 23 +=  

And the radius of the circle is equal to 22

4

1
)(

2

1
qapd ++=   

But, AE  is equal to 22

4

1
)(

2

1
qap ++  

 ie) AE  = d  

So, the circle passes through at a point A . The circle intersects the parabola in the points 

gGF ,,  and A . The lines segments GKFL,  and gk  are the roots of the cubic equation. 

 

I explain in modern terms the solution of the fourth degree equation here.  

Assume that xGK = , and yAK =  then 2xy =  because G  is on the parabola. 

We take the parabola 2xy =  with vertical axis and latus rectum is equal to 1. 

 But G  is also on the circle and the centre E  of the coordinates are ( )






 +1

2

1
,

2

1
pq  

The equation of the circle is ( ) 2

22

1
2

1

2

1
dpyqx =




 +−+




 −   

     ( ) ( ) 22222 1
4

1

4

1
1 dpqypqxyx =




 ++++−−+   
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The circle 0)1(22 =−−+−+ rqxypyx , where ( ) 




 ++−= 222 1
4

1

4

1
pqdr   

 Then find from the equation as,  

0)1( 242 =−++−+ rqxxpxx  

    ie) 024 =−+− rqxpxx     

{The circle of the general equation is 02222 =++++ cfygxyx  

But the centre of the coordinates is ( )fg −− ,  

The parabola has equation 2xy = . Assume the centre E of the circle, its coordinates ( )ba,   and 

its radius is d . 

The equation is ( ) ( ) 222
dbyax =−+−  

      022 22222 =−++−−+ dbabyaxyx         

Both curves are intersecting. This implies 

    022 222242 =−++−−+ dbabxaxxx  

      ( ) ( )22224 212 badaxxbx −−++−=   

Hence, we take ( ) pb ±=−12 , qa ±=2 , and ( ) rbad ±=−− 222  

            ( ) ( ),
2

1
,1

2

1
qapb ±=−±=  and 222 bard ++±=    

This implies, rqxpxx ±±±= 24 } 

This method is easy to understand for people today. Descartes gave only for one of his case 

distinctions (namely, ,, qp −+ and r+ ) and left the other cases to the reader.  

 

4.1.1 Numerical example:  

Mathematica is a computer program designed by Stephen Wolfram (a former physicist) used 

in scientific computing, mathematics, economics, medicine, and many other fields. 

Mathematica is a computer program for doing mathematics. It is used for instruction, 

research, writing, and others. It is possible for both numeric and symbolic work, it contains 

functions which allow a computer to perform a wide range of mathematical calculations from 

basic algebra and geometry though the calculus of variations and number theory. More 

information is on the site <www.wolfram.com>. 

Weaknesses: steep learning curve, an interface that is difficult to use from the command line 

and rather complex installation procedures.  
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How to use this document: 

This document is intended for new users of Mathematica. No earlier math software 

experience is assumed, though we do point out differences between the major packages along 

the way. I think this operating system is easy to understand for everybody. Since Mathematica 

is quite visually oriented, we will be using it on a computer with a windowing system (such as 

Windows, Macintosh, or X-windows).  

 

One example, we could do simple arithmetic calculation with Mathematica. If we wanted to 

add 2 and 2, we type the input 2 + 2 and hit Return. 

 
 In[1]:= 2 + 2 
 
 Out[1]= 4 
 

We enter information and commands into the notebook window, and the output (if any) is 

displayed there 

            

We save our work, choose File->Save As... or File->Save.  

Complex numbers in mathematica: 

Mathematica uses the letter � to represent the square root of -1.  

Type Sqrt[-1] or 1−  and we will get the answer �   

We can use � in expressions: the complex number a+bi is represented as a+b � in 

mathematica. 

Mathematica uses the function Conjugate to take the complex conjugate of a number. One 

example, the conjugate of a complex number is that number with the sign of the imaginary 

part reversed   

 ie)  Conjugate (a+b �)=( a-b �)  
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Mathematica commands in conjugate: 

In[1]:=a=1+2I 

Conjugate[a] 

Then we can ‘’ ENTER’’ and we will get the answer  

Out[1]= 1+2 � 

Out[2]= 1-2 � 

Help system 

Mathematica has an excellent help system. To get general help, choose Help->Help Browser. 

Browse among the topics listed.  

The Mathematica Book: - Mathematica comes with an excellent resource. See also the 

Getting Started section, which contains several excellent tutorials (Further information, see 

appendix).  

I would like to give a numerical example here and I shall construct the fourth degree equation 

by intersection of a circle and a parabola. Also I shall use the mathematica program and find 

the roots too. The standard form of the fourth degree equation is rqxpxx ±±±= 24 ( 1=a ).  

I consider the fourth degree equation: 827 24 +−= xxx  

Where 8,2,7 === rqp and I consider the value 1=a . So, the equation of the parabola is 

.2 yx =  

Now I calculate the values: 4
2

1
7

2

1
)(

2

1
=+=+= apAD  and 12

2

1

2

1
=== qDE  

Then I consider the right triangle is EDA∆ . 

116222 +=+= DEADAE   

17=AE  

Also, 8== rHA   

Since HAE∆  is a right triangle. 

  817222 +=+= HAAEEH  

  5=EH  

We assume the point A is an origin for the (x,y)- coordinate system along the horizontal 

direction GK  and the vertical axis of parabola, respectively.    
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Let xGK = , yAK = and the point E  is (-1,4).    

Then the equation of the circle is 222 5)4()1( =−++ yx  

        ie. 088222 =−−++ yxyx  

Now I want to solve this equation. So, I choose these two curves, circle: 

088222 =−−++ yxyx and parabola: yx =2  

I consider the circle and parabola: 

Circle: 088222 =−−++ yxyx  ……………..(a) and  

Parabola: yx =2 ……(b)  

First, I would like to plot the two graphs. So, I use the mathematica program commands given 

below. 

g1=Graphics[Circle[{-1, 4}, 5]; 

g2=Plot[ 2x , { x , -10, 10}, DisplayFunction→ Identity]; 

Show[g1,g2, AspectRatio→Automatic, PlotRange→{-15,15}, 

 Axes→True, DisplayFunction→$DisplayFunction];   

I plot the circle and parabola on the same axis. 

 

   

-10 -5 5 10

-15

-10

-5

5

10

15

  

    Figure 15: Numerical example for the construction of fourth degree equation 
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The circle 088222 =−−++ yxyx  intersects the parabola yx =2  at two real points. Now 

we solve find the intersection points. We obtain a numerical approximation given below. I use 

the mathematica program command also given below.  

Nsolve[ 2xy == && 088222 ==−−++ yxyx ] 

{{y→8.61065,x→-2.93439},{y→7.35066,x→2.71121},{y→-0.980657+0.222411 �,x→0.111591 

+0.996549 �},{y→-0.980657-0.222411 �,x→0.111591 -0.996549 �}}  

Now, I shall construct the fourth degree equation by intersection of a circle 

( 088222 =−−++ yxyx ) and a parabola ( yx =2 ). 

We consider the two equations and substitute (b) in (a), we get the fourth degree equation 

08)(82)( 2222 =−−++ xxxx  

  0882 242 =−−++ xxxx   

       ie) ,827 24 +−= xxx  where ,2,7 == qp and 8=r  

 

Then I shall find the roots of fourth degree equation here. So, I use the mathematica command 

and we get the result below. We can see the two real roots in the picture and the two complex 

roots found in mathematica here.  

Nsolve[ 0827 24 ==−+− xxx ] 

{{x→-2.93439}, {x→2.71121}, {x→0.111591 +0.996549 �}, {x→0.111591 -0.996549 �}}  

Then I would like to plot the fourth degree curve 827 24 −+−= xxxy , which gives the roots 

to the equation on the interval ≤− 5 x 5≤  given below. We can observe the two real roots 

and three stationary points (relative maxima or relative minima) in this figure below. 

Plot[ ,827 24 −+− xxx { x ,-5,5}];  

Assume that we want to plot the function 827 24 −+−= xxxy over the range of x  values -

5≤ x ≤5. [ie) maxmin xxx ≤≤ ] 

Plot[ ,827 24 −+− xxx { x ,-5,5}]; Then we can ‘’ ENTER’’ and we get such a plot. This Plot 

command can be used to plot virtually any one-dimensional function. Generally, the 

command takes: Plot[ function, {range} ] 

The range contains three elements. The first, variable x  (example) will be plotted on the 

horizontal axis, the second element is the lower limit on this variable, and the third element is 

upper limit on this variable (ie) max}min,,{ xxx ). The Plot command takes the square 

brackets, [    ]. Also note { x ,-5, 5} specifies a domain interval for x . (Further information, see 

appendix) 
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     Figure 16: Fourth degree curve  

 

 

4.2 Special cases for the fourth degree equation 

 

Descartes spent much work especially on the trisection method in third degree equations and 

he dealt with some examples in his book III also. He discussed the two most obvious 

examples. These are  

• Determining two mean proportionals between two line segments a  and q  be the way 

to the equation 023 =− qax  

• Trisection of an angle to the equation qxx −= 33 (NP= q  be the chord subtending the 

given arc in a circle with radius 1) 

He described clearly the outcome of the construction for two cases. I shall explicitly describe 

this for third degree equation below.  
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4.2.1 Descartes’ construction of third degree equations by circle and the traditional 

parabola 

 

First, Descartes explained the problem of finding two mean proportionals between the lines a  

and q (p.204). I shall explain the details below. 

If we consider the one of the mean proportional be x , then 

  
2

322

:::
a

x

a

x

a

x
xxa ==  

This implies, we get an equation and q  becomes and
2

3

a

x
. 

  ie) qax 23 =  

 

Then I shall explain the Descartes geometrical method. But he did not give the proof of this 

problem. We can consider the figure below. 

 

 

               

 

  Figure 17: The construction of a third degree equation (mean proportional method) 
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We consider the parabola FAG  with its axis AL , and the latus rectum is equal to .a  

Let AC  is equal to
2

a
 then CE  is perpendicular to AC  atC . ie) qCE

2

1
= .  

Then the circle FA  is passing through A and E is the centre of the circle. Then draw 

FM perpendicular toCE . We take the point A as an origin for the (x,y)- coordinates system 

along the horizontal direction FL  and the vertical axis of parabola and assume xFL = . From 

the nature of the parabola, ALaFL .2 =  

       ie) 
a

x
AL

2

=  

Consider the right triangle ,AEC∆   

    222 CEACAE +=  

    222

4

1

4

1
qaAE += ................... (i) 

And also, MCECEM −=  

    FLEC −=    [ FLMC = ] 

     222 )
2

1
()( xqFLECEM −=−=  ................... (ii) 

     222 )( ACALCLFM −==  

 ie)

2
2

2

2 







−=
a

a

x
FM .................(iii) 

Then we consider the right triangle ,EFM∆  

  222 FMEMEF +=  

   

2
22

2

22

1








−+







 −=
a

a

x
xqEF  

   22

2

4
222

4

1

4

1
ax

a

x
xqxqEF +−++−=  

But  AEEF =  [QThe radius of the circle] 

This implies,  =+−++− 22

2

4
22

4

1

4

1
ax

a

x
xqxq 22

4

1

4

1
qa +   

                  ⇒ 0
2

4

=− qx
a

x
                                          

      ie) qax 23 = .  
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Secondly, Descartes explicitly explained that the solution of third degree equations could be 

reduced to either finding two mean proportionals or to a trisection method and I shall clearly 

explain that how such construction can be found as follows here. He also gives a clear 

example in his Géométrie book III. We can consider the figure below [from pages 206/13]. 

Descartes wrote the third degree equation as 

 

   qaapxx 23 ±±=  …………………(**) [p.195]   

  

   Figure 18: The construction of a third degree equation (trisection method) 

 

Consider the circle of radius aNO =  (Say) and centre at O  the circular arc NQTP , into three 

equal parts (ie. Draw the chord QTNQ, andTP of the three equal parts of NOP∠ ). Let 

p

q
NP

3
=  be the chord subtending the given arc and xNQ =  be the chord subtending one-

third of arc. Drawing QS  parallel toTO , its intersection with NP  is S . Let OT  cut NP atM .  

NOQ∠  is measured by arc NQ ; 

QNS∠  is measured by 1/2 arc QP  or arc NQ ; 
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SQR∠ = QOT∠  is measured by arc QT or NQ ; 

We can see that the triangles NQRONQ,  and QRS  are similar.  

An angle NOP∠  trisected, three equal parts  

OQN∠ = NQR∠ = QSR∠  =θ  

The triangle OQN∆ ,  

        QONO = (Radius of circle) 

  So, the angles OQN∠ = ONQ∠  =φ  

The triangle NQR∆ , 

        NRNQ =  and the angle NQR∠ = NRQ∠ =φ  

And QS  //OT , then 

   SQR∠ = QOT∠ =θ  

So, consider the triangle QSR∆ , 

   SQR∠ =θ  and SRQ∠ =φ  

   QSR∠ = QRS∠ =φ  

        QRQS =  

ie.) All triangles NQRONQ ∆∆ ,  and QRS∆ is isosceles.   

It is clear that is RSQRQRNQNQNO ::: ==  

  3

2

22 1
:

11
:: x

a
x

a
x

a
xxa ==  

We have, 

MRNRNP += 2  

           MRNQ += 2  

                   RSMSNQ −+= 2  

                   RSQTNQ −+= 2  

                   RSNQ −= 3  

             3

2

1
3

3
x

a
x

p

q
−=  

               2

23
x

a

p
pxq −=  
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If 1
3 2

=
a

p
   then 

3

2 p
a =  

       
3

p
a =  

But a  is a radius of the circle. ie)
3

p
aNO ==  

I can write the general equation: qpxx −=3    

If the circle of radius a  is used as unit circle, then .3=p  

 
Descartes also explained the different cases of third degree equations. These are 

  qpxx −=3               qpxx +=3            qpxx +−=3  

We can observe that he did give the first proof of construction of third degree equation for the 

unity case (latus rectum is equal to 1). Also he stated the general cases, but Descartes did not 

give a general proof. Descartes omitted the equation qpxx −−=3  because he assumed that at 

least one solution was positive (J.M.Bos, p.377).  

I use the method and modern terms here. 

I can consider the general cubic equation 032

2

1

3 =+++ axaxax and the 

substitution 







−→

3

1axx , this implies 0
333

3
1

2

2

1
1

3

1 =+







−+








−+








− a

a
xa

a
xa

a
x can be 

reduced to a form without quadratic term: qpxx −−=3  

Where 2ap = and 






 +−+−= 321

2

1

3

1
3

1

9

1

27

1
aaaaaq  

Cardano’s rule gives us the root  

  

3 323 32

27

1

4

1

2

1

27

1

4

1

2

1
pqqpqqx −−−+−+−=  

 

But Descartes did not comment on this case and rule in his geometry book III. I think modern 

mathematics student finds it a little bit difficult to understand because our modern geometry 

has quite a different style now. I shall discuss its roots below in my present work. 
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Also, the solid problem of third degree could be reduced to (second degree) an equation of the 

general form 

  qpxx ±±=3  …………..(***) 

The quadratic term of the equation has been removed before. Descartes discussed the two 

cases of the solution of third degree equation. But he discussed the two inequalities (J.M.Bos, 

p.377/8). These are (consider the one case) 

i) The square of 







q

2

1
is greater than the cubic of 








p

3

1
  

ii) The square of 







q

2

1
is less than the cubic of 








p

3

1
 

I shall discuss these two cases given below.  

 

Case i: 
32

27

1

4

1
pq >   

a) Consider the equation as qpxx +=3  

Descartes explained that the algebraic solution of this equation by using Cardano’s formula 

for a cubic equation. Cardano published in his great work for the method of solving cubic 

equations in 1545. But Cardano attributed the formula to Scipione Ferro. His rule gives us the 

root 

  3 323 32

27

1

4

1

2

1

27

1

4

1

2

1
pqqpqq −−+−+  

Descartes observed that if the inequality 0
4

1

4

1 32 >− pq  the cubic root x  was real. I don’t 

know why Descartes did not argue the equality case. But I think this was obvious for him. I 

can consider this equality. If the equality is 32

27

1

4

1
pq =  then the solution of this equation is  

    







= 3

2

1
2 qx  

 

b) Consider the equation as qpxx +−=3  

The solution could be expressed by Cardano’s formula for a cubic equation. The rule invented 

Cardano attributes to one by Scipio Ferreus. At present the result is usually called Cardano’s 

formula.  
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His rule gives us the root 

 

   3 323 32

27

1

4

1

2

1

27

1

4

1

2

1
pqqpqq ++−−++  

 

I would like to say it in Descartes own words here (p.211). 

 

‘’ It is now clear that all problems of which the equations can be reduced to either of 

these two forms can be constructed without the use of conic sections except to extract 

the cube roots of certain known quantities, which process is equivalent to finding two 

mean proportionals between such a quantity and  unity.’’ 

 

Descartes says nothing else than Cardano’s formula, but unlike Cardano, who was only 

interested to find a solution expressed with root signs, Descartes had still to find the 

geometrical point, that means the mean proportional. The latter require the use of conics, 

while the algebraic manipulation which leads to Cardano’s formula, does not presuppose any 

geometrical method at all. 

 

Case ii: 32

27

1

4

1
pq <   

This is the famous “casus irreducibilis” in which Cardano’s formula did not give solutions 

because it involved uninterpretable square roots of negative quantities (J.M.Bos, p.377). 

Descartes showed that the solution of equation qpxx +=3  [ ,3 qpxx −= ,...3 qpxx +−= ] 

could be reduced to a trisection. Thus Descartes reduced the solution of the third degree 

problem to one in which two mean proportionals, and one in which the trisection of the angle 

had to be found. But these two problems cannot be solved with plane methods. Descartes 

remarked that the circle is in its shape too simple to solve the trisection and two mean 

proportional problems. So, I would like to write what Descartes says here (p.219). 

 

‘’In as much as the curvature of a circle depends only upon a simple relation between 

the center and all points on the circumference, the circle can only be used to 

determine a single point between two extremes, ....’’  
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   Also his construction was very clear. We can see this figure below (p.206/13). 

 

                 Figure 19: Descartes’ trisection method  

 

For example the equation qpxx +=3 , with 0, >qp  and    

Assume that the condition: 

ie) 32

27

1

4

1
pq <  

The chord NP  is equal to 
p

q3  in the circle NQPV . We can observe that the chord NP  is less 

than the diameter of circleNQPV . ie) 
3

2
3 p

p

q
<  and divide each of the two arcs NQP  and 

NVP  into three equal parts. Also Descartes stated that NQ and NV are two true roots of the 

equation. The positive roots of the trisection are gk  and GK  ( g andG being on the opposite 

of the axis from E ) and the one negative root is FL . Moreover, he stated in the smaller root 

gk  is equal to the NQ  on the trisecting arc NP  and the other root GK  is equal to the NV  

on the corresponding to trisecting arc NVP , and the negative root FL  is equal to NVNQ + . 

Although Descartes did not explicitly mention it here, his other case makes clear. But he did 

not give a proof. For example, we can observe that the equation qxx −= 33  may be obtained 

from the equation qxx += 33 by transforming the latter into an equation whose roots have the 

opposite signs. That is, the roots of equation qxx −= 33 are the false roots of equation 

qxx += 33 and vice-versa. Therefore NPNQFL +=  is the true root. 
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The editors of Descartes’ geometry quote Rabuel’s proof in a footnote page 208. I explain 

Rabuel’s proof here. 

    

  Figure 20: Rabuel’s construction of third degree roots  

 

We can assume pAB = , qEB = , yGK = , zgk = , and xFL =  

Then qyGM += , qzgm += , and qxFN −=  

I would like to consider the latus rectum ''a  of this given parabola. 

So, yGK =  this implies 
a

y
AK

2

=  

       zgk =   this implies 
a

z
Ak

2

=  

        xFL =  this implies 
a

x
AL

2

=  

And simply calculate 
a

y
pAKABME

2

−=−=  

       Similarly,  
a

z
pmE

2

−=  

     p
a

x
NE −=

2

 

And also, 2222 EFEgGEAE === (The square of the radius of given circle) 

( ) ( ) ( )2

2
2

2

2
2

2

2
2

22 qxp
a

x
qz

a

z
pqy

a

y
pqp −+








−=++








−=++








−=+        
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We take, 22

2

42
222 22 qyqy

a

y

a

y
ppqp ++++−=+  

      yqy
a

y

a

y
p 22 2

2

42

++=     

      qayayapy 223 22 ++= ……………… (1) 

And similarly,    qazazapz 223 22 ++= ………..(2) and qaxaxapx 223 22 −+=  …….(3) 

        (1) - (2) ⇒  ( ) ( )zyazyzyap −+−=− 2332  

  ⇒   ( ) 2222 azyzyap +++= …………. (4) 

Similarly, ( ) 2222 axyxyap ++−= ……………(5) 

(4) – (5) ⇒  ( ) ( )22220 xyxyzyzy +−−++=  

    ⇒ ( ) ( )2222 xyxyzyzy +−=++  

    ⇒ ( ) ( )22 xyxzyz +−=+  

   ⇒ 22 zxyxyz −=+  

   ⇒  ( ) ( )( )zxzxxzy −+=+  

   ⇒ ( )[ ] 0=+−+ zxyzx  

∴ zyx +=  or zx −=  

That is, gkGKFL +=  or gkFL −=  

 

Rabuel did not comment on the second case ( gkFL −= ), but in this case parabola axis AL  

will be fall into the diameter MN  of the circle. That is .0== qEB   

 

Further, I explain the third degree equation in modern terms here.  

Assume that xGK = , and yAK =  then 2xy =  because G  is on the parabola (see figure 18).  

We take the parabola 2xy =  with vertical axis and latus rectum is equal to 1.  

But G  is also on the circle and the centre E  of the coordinates are ( )






 +1

2

1
,

2

1
pq .  

The equation of the circle is ( ) 2

22

1
2

1

2

1
dpyqx =




 +−+




 −   

  

 ( ) ( ) 22222 1
4

1

4

1
1 dpqypqxyx =




 ++++−−+   
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( ) 0122 =+−−+ ypqxyx , where ( ) 222 1
4

1

4

1
dpq =




 ++  

We take the parabola 2xy = and ………………………… (1)  

Then take the circle 0)1(22 =++−+ qxypyx …………... (2) 

Substitute (1) by (2) this implies 

     0)1( 242 =++−+ qxxpxx  

      024 =+− qxpxx  

      0)( 3 =+− qpxxx  

                0=x  or 03 =+− qpxx  

      qpxx −=3   

The solution from the simple calculation is qpxx −=3 . 

Descartes gave only for one of his case distinctions (namely, p+  and q− ) and left the other 

cases to the reader. This example of third degree equation is easy to understand for a modern 

student today. 

 

4.2.2 Numerical example: 

 

I would like to give a numerical example here and I shall construct the third degree equation 

by intersection of a circle and a parabola. Also I shall use the mathematica program and find 

the roots too.  The standard form of the third degree equation is qpxx ±±=3  ( 1=a ).  

I consider the third degree equation: 273 −= xx  

Where ,2,7 == qp and I consider the value .1=a so, the equation of the parabola is .2 yx =  

Now I calculate the values: 

    4
2

1
7

2

1
)(

2

1
=+=+= apAD  and 12

2

1

2

1
=== qDE  

Then I consider the right triangle is EDA∆ . 

116222 +=+= DEADAE   

17=AE  

That is, the radius of the circle is AE . We assume the point A is an origin for the (x,y)- 

coordinate system along the horizontal direction GK  and the vertical axis of parabola, 

respectively.    
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Let xGK = , yAK = and the pointE  is (-1, 4).    

Then the equation of the circle is 17)4()1( 22 =−++ yx  

        ie. 08222 =−++ yxyx  

Now I want to solve this equation. So, I choose these two curves, circle: 

08222 =−++ yxyx and parabola: yx =2  

I consider the circle and parabola: 

Circle: 08222 =−++ yxyx  …………….(a) and  

Parabola: yx =2 …… (b)  

First, I would like to plot the two graphs. So, I use the mathematica program commands given 

below. 

g1=Graphics[Circle[{-1, 4}, 17 ]; 

g2=Plot[ 2x , { x , -10, 10}, DisplayFunction→ Identity]; 

Show[g1,g2, AspectRatio→Automatic, PlotRange→{-15,15}, 

 Axes→True, DisplayFunction→$DisplayFunction];   

    

-10 -5 5 10

-15

-10

-5

5

10

15

 

Figure 21: Numerical example for the construction of third degree equations (1)    

The circle 08222 =−++ yxyx  intersects the parabola yx =2  at four real points. Now we 

solve the intersection points. We obtain a numerical approximation given below. I use the 

mathematica program command also given below.  
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Nsolve[ 2xy == && 08222 ==−++ yxyx ]  

{{y→7.71982, x→-2.77846}, {y→6.19656, x→2.48929}, {y→0.0836184, x→0.289169}, 

{y→0., x→0.}} 
 
We can observe the three intersection points in this figure 21. But mathematica gives a result 

in four intersection points. This is special case of the fourth degree equation. Because one 

point {y→0.0836184, x→0.289169} is not visible to our eyes. In this case we could check the 

mathematica plot on other intervals, if we want to have further information. 

 

So, we could check this mathematica plot commands:  

g1=Graphics[Circle[{-1, 4}, 17 ]; 

g2=Plot[ 2x , { x , -0.5, 0.5}, DisplayFunction→ Identity]; 

Show[g1,g2, AspectRatio→Automatic, PlotRange→{-1,1}, 

 Axes→True, DisplayFunction→$DisplayFunction];   

 

    

-0.6 -0.4 -0.2 0.2 0.4 0.6

-1

-0.75

-0.5

-0.25

0.25

0.5

0.75

1

 

Figure 22: Numerical example for the construction of third degree equations (2)    

 

In this graph is clearly identifying the fourth point. 

Now, I shall construct the third degree equation by intersection of a circle 

( 08222 =−++ yxyx ) and a parabola ( yx =2 ). 
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We consider the two equations and substitute (b) in (a), we get the third degree equation 

  0)(82)( 2222 =−++ xxxx  

  082 242 =−++ xxxx  

xxx 27 24 −=   or 273 −= xx  

                  ie) ,273 −= xx  where ,7=p and 2=q  

   

Then I shall find the roots of third degree equation here. So, I use the mathematica command 

and we get the result below. We can see the three real roots here.  

Nsolve [y = 0273 ==+− xx ] 

{{x→-2.77846}, {x→2.48929}, {x→0.289169}}  

 

Then I would like to plot this construction of third degree curve 273 +−= xxy  on the 

interval 66 ≤≤− x  given below. We can observe the three real roots and two stationary 

points in this figure 23 below. 

Plot[ ,273 +− xx { x ,-6,6}]; 

-6 -4 -2 2 4 6

-20

-10

10

20

30

 

 

    Figure 23: Third degree curve  
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4.3. The construction of the fifth and sixth degree equations 

 

Descartes reduced the construction of fifth and sixth degree equations to the form: 

 023456 =+−+−+− utxsxrxqxpxx .............................. (*)      [p.220] 

Here tsrqp ,,,, and u  are positive. The coefficients make sure that all real roots are positive; 

the result also agrees with Descartes sign rule (p.160). For this rule Descartes provided no 

proof. He may have found it while studying the form of the equations required in his 

construction of fifth and sixth degree equations (see more below). Descartes also assumes 

that 2

4

1
pq > . Descartes did not omit the second term of this equation because the equation 

depends on his assumption. He did not comment on why he chose this equation. Furthermore, 

he avoided the complicated + / - case distinctions for sixth degree equation [(*)]. See the 

figure below (p.222/34).  

   

                Figure 24: The construction of sixth degree equations  
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4.3.1 How the solutions of (*) are constructed:  

 

First a summary of the construction (see also the picture), which will afterwards be explained 

in detail: 

By the equation (*) a (traditional) parabola with vertex pointD and a fixed pointE on its 

principal axis are determined which are assumed to lie in a plane and move (together) 

downwards with it such that its principal axis is always overlapping with a given and fixed 

straight lineBK in another plane underneath it, where the distance between B andK does not 

matter. In this lower plane (which can be imagined as a sheet of paper lying below the first 

one), in addition to the fixed straight lineBK , two points A and I are determined by the 

coefficients of the equation and by the pointB . The connecting straight line between A andE  

(which can be imagined as a ruler rotating around the fixed point A ) intersects with the 

moving parabola at varying pointsC and thus defines a curve QACN  in the lower plane 

which we call “Cartesian parabola” and which can be shown to be a third degree algebraic 

curve.  

Descartes drew only one branch of the curve (Cartesian parabola); the other is not involved in 

his construction. 

Around point I  in the lower plane a circle can be drawn whose radius is also determined by 

the coefficients of the equation (*). Now it can be shown (Descartes does not prove it in the 

book and leaves it to the reader, but he was doubtless able to do it at least for special cases, as 

we will do it below) that the intersection between the circle and the “Cartesian parabola” 

gives the roots of the equation (*), which are the rectangular distances of these intersection 

points to the given straight lineBK , which overlaps during the entire construction with the 

principal axis of the original (traditional) parabola. 

The construction requires certain auxiliary quantities, in particular a half circle ILP  in the 

middle of the figure. 

Now I describe the construction in detail which one finds on pages 223/24 in La Géométrie. 

Note that the choice of the parameters for the parabola and the circle in dependence on the 

equation (*) seems at first sight rather unmotivated and is justified only afterwards by 

showing that the resulting points of intersection deliver the solutions. I do not know why 

Descartes did not say how he found the values of the parameters n, ,,LHDE  and LP .  
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The principal parameter of the traditional parabola, we call n , which is determined by the 

given equation (*) in the following way: 

    n = 2

4

1
pq

u

t
−+             

Now Descartes constructs a point A in the lower plane with the rectangular distance 
2

p
from 

the straight line BK : 

 
2

p
AB =  

Descartes then defines the pointE on the principal axis of the parabola by  

   
pn

u
DE

2
=  

Because A and E are now defined there is also the straight line AE defined for any position of 

the moving pointE .  

Descartes is therefore now able to “construct” the “Cartesian parabola”, by assuming it to be 

the collection of all points of intersection between the (rotating) straight lines AE and the 

moving (traditional) parabola. These points of intersection result in a curve in the lower plane 

which later was called the “Cartesian parabola”, and which is of course in its concrete form 

(parameters) depending on the equation (*). 

Please note that the Cartesian parabola is not “constructed” in the traditional sense with ruler 

and compass (step by step connecting points and drawing circles around points which have 

been constructed before) but is the ideal collection of infinitely many constructions, 

performed with varying points (E ) which can be arbitrarily chosen on a straight line BK (here 

comes the mechanical notion of “movement” in). This is a much looser notion of construction 

of a geometrical figure or a curve than the traditional one with ruler and compass. One has 

also to remark that already the assumption of the existence of the traditional parabolaCDF is 

the result of a similar generalized (pointwise) construction. Thus the Cartesian parabola 

results from an iterated generalized construction which finds its expression in the fact that it is 

a third degree algebraic curve, while the traditional parabola is a second degree algebraic 

curve. 
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Now the Cartesian parabola being “constructed” Descartes performs some more traditional 

constructions of half-circles and circles because he wants to find a curve (circle) to intersect 

with the Cartesian parabola which delivers the roots of the original equation (*). 

Descartes defines a point L in the lower plane, which lies above the fixed pointB in a distance 

equal to the lengthDE  in the upper plane, that means  

 
pn

u
DEBL

2
==  

From L  he goes in the opposite direction downwards and constructs a pointH on the fixed 

straight line in the lower plane with the distance 

 
un

t
LH

2
=  

Then Descartes erects inH the perpendicular to the left and constructs the point I  in the 

lower plane at the distance 

2n

m
HI =  where 

u

pt
u

r
m

42
++=  

Descartes then joins the fixed points I and L  in the lower plane, divides the connecting 

straight line in the middle and constructs the half circle on IL  (see figure 24). Descartes 

constructs a point P on the periphery of the half circle just constructed in a distance LP  from 

point L  with the following value: 

 
2n

ups
LP

+
=       

Finally, Descartes takes the distance between the constructed points I and P as the radius of 

another circle which he draws through P. The circle intersects with the Cartesian parabola in 

several points, on the figure called CNQ ,, and another one above Cwhich does not have a 

name in Descartes’ picture.  

Descartes now says page 224/405 without proof that the perpendicular distances 

,;NRCG andQO of these points of intersection from the straight lineBK are the roots of the 

equation (*) which he is looking for.  
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‘’ This circle will cut or touch the curve ACN in as many points as the equation has 

roots; and hence the perpendiculars ,;NRCG QO , and so on, dropped from these 

points upon BK , will be the required roots. This rule never fails nor does it admit of 

any exceptions.’’  

In the remaining part of this paragraph I want to show, what is missing in Descartes, namely 

that the values of these geometric lengths indeed satisfy the sixth degree equation we were 

starting from. 

I go partly back to Descartes (p.84) insofar as I denote the perpendicular distances by the 

letter x  for the unknown.  

Furthermore, I shall explain Descartes’ proof of the sixth degree equation here.  

We take xGC =   

Since, GDGCGCn :: =   

Then
n

x
GD

2

=    

But
pn

u
DE

2
=  and

pn

u

n

x
DEGDGE

22

−=−=  

Since, GEGCBEAB :: = and pAB
2

1
=  

This implies,
nx

u

n

px
BE −=

2
  

Then we know DEBL =  

So, 
nx

u

n

px
DLBE −==

2
 

Also,
un

t
LH

2
=  and

nx

u

n

px
DL −=

2
  

Therefore, our aim of the calculation is the line segmentGH .  

So, GDDHGH −=   

   GDDLLH −+= )(   ][ DLLHDH +=∴  

       GH =
n

x

nx

u

n

px

un

t 2

22
−








−+  
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nx

u
u

tx
pxx

GH

−++−
= 22

1 23

 

 

Then the square of GH and we get, 

   
22

2
2

34256

2
42

2
4

1

xn

utxxup
u

t
x

u

pt
ux

u

t
ppxx

GH

+−







−+








++








−+−

=   

Also, again
un

pt

n

u

n

r
HI

222
42

++=  and for brevity 

     = 
2n

m
  where 

u

pt
u

r
m

42
++=  

And the right triangle LIH∆ , 

 222 HLIHIL +=   

        =
un

t

n

m
2

2

4

2

4
+  

And also the right triangle LIP∆ , 

 222 LPILIP −=   

     =
222

2

4

2

4 n

up

n

s

un

t

n

m
−−+  

RIP = is the radius of the circle CPN  by construction. 

DrawCM , where a right angle is CMI∠  

Since, MHIHMI −=  

       = x
n

m
−

2
 

It results 2

24

2
2 2

x
n

mx

n

m
MI +−=  

Therefore the right triangle ICM∆ , 

 222 MIICCM −=  

           = 2

2222

2 2

4
x

n

mx

n

up

n

s

un

t
−+−−  
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22

2
2

22342

2 4
2

xn

x
u

t
sxxupmxxn

CM

+−−+−
=  

But 22

4

1
pq

u

t
n −+= , multiplying by 4x  then we get 

   424442

4

1
xpqxx

u

t
xn −+=  

Also,
u

pt
u

r
m

42
++= , multiplying by 32x  then we get  

   3333

2
22 x

u

pt
xurxmx ++=  

Then we get,  
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2
2

22342

2 42
2

4

1

xn

x
u

t
sxxupx

u

pt
urx

u

t
qp

CM
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






+++








−−

=  

        
22

2
2

342

2
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2
4

1

xn

xups
u

t
x

u

pt
urx

u

t
qp

CM








−−+








+++








−−

=   

But the square of GH is equal to square ofCM .  

So, 

22

2
2

34256

42
2

4

1
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utxxup
u

t
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u

pt
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u

t
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






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






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






−+−

=
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u
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t
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






−−+








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






−−

, 

⇒ utxxup
u

t
x

u

pt
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u

t
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






−+








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






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2
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1
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2
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2

4

1
xups

u
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x
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






−−+








+++








−− , 

or 

  023456 =+−+−+− utxsxrxqxpxx  

The line segments ,.....,, QONRCG  are the required roots of the equation. 
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Descartes explained that in his way he found all roots. All roots of a sixth degree equation 

were imaginary, if the circle (CPN ) of radius R  was very small and does not intersect the 

Cartesian parabola QACN  at any point.  

Descartes says (p.227): 

 

‘’The circle IP will in general cut the curve ACN in six different points, so that the equation 

can have six distinct roots. But if it cuts it in fewer points, this indicates that some of the roots 

are equal or else imaginary’’   

 

If all the roots were positive, only one branch of Cartesian parabola would be really used in 

the construction, namely, the branch with the local extreme. Descartes already explained that 

in the case of alternating coefficients in the equation the roots are all positive. Also look in 

this respect shortly on “Descartes rule of sign”, which is given without proof in La Géométrie 

on page 160: 

 

 ‘’We can determine also the number of true and false roots that any equation can 

have, as follows: An equation can have as many true roots as it contains changes of 

sign, from + to - or from - to +; and as many false roots as the number of times two + 

signs or two - signs are found in succession.’’ (Géométrie, p.160) 

 

This is the well known “Descartes rule of sign”. However, it was known before his time by 

Thomas Harriot. Harriot gave it in his ‘’Artis analyticae praxis’’ in London on 1631. Also the 

historian M. Cantor said that Descartes may have learned it from Cardan’s writings. But 

Descartes has stated it first it as a general rule (see Cantor, Vol.II (1) p. 496 and 725)  

The circle intersects the Cartesian parabola in at maximum of four points; the other two roots 

were equal or imaginary. The above statements Descartes did not explicitly argue for other 

two roots. Roberval had not accepted the above Descartes statement in 1638. Also, He 

criticized the Descartes method for construction of the roots of sixth degree equation. 

 

‘’Roberval thought that the circle would intersect the positive branch of Cartesian 

parabola in at most four points, the other two being provided by the other branch. 

Descartes denied this and explained for the example in the figure he had chosen a 

case in which two roots were imaginary because otherwise the intersections of the 
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circle and the branch of Cartesian parabola would be so oblique as to make the points 

of intersection indistinguishable’’, 

 

says J.M Bos (2001) p. 418 in his book.  

 

Normally, this sixth degree equation has six roots but not four. Descartes showed that only 

one branch of Cartesian parabola is being used in his figure. Also, in this case showed that the 

circle intersects the Cartesian parabola in at maximum four points; the other two roots were 

equal or imaginary. A third degree curve usually has an inflection point. This is not a 

maximum point. Descartes had chosen a case in which two roots were imaginary. We can see 

figure below, curves with inflection points can be imagined to have more than four 

intersection points with a circle. But Descartes did not clearly explain these cases. 

Furthermore, see above Descartes’ own words (p.227) and Robervals remark. (We can see 

this figure 19 on the internet: http://www.2dcurves.com/cubic/cubict.html) 

 

 

 

 

 

 

 

Figure 25: Other branch of the Cartesian parabola     

Descartes also discussed an important example of a sixth degree equation, namely, he worked 

out to the problem of finding four mean proportionals between the line segments 1a  and 2a . 

But this is a fifth degree equation. We can see below how to find the sixth degree equation by 

Descartes. 

If the line segments 21 ,,,,, aszyxa  are in continued proportion, 

That is, 21 ::::: asszzyyxxa ==== ,   
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The szyx ,,,  will be called the four ‘’mean proportionals’’ between 1a and 2a . 

Algebraically this implies, we get  

     yax 1

2 = , xzy =2 , ysz =2  and 21aaxs =   

                   ie) 02

4

1

5 =− aax   

Then the line segment x  of fourth mean proportional between two given line segments 1a  

and 2a are known. Descartes used in this method to solve the one example of sixth degree 

equation. We can see below.  

I describe Descartes’ idea here. 

The relate to an equation was 02

4

1

5 =− aax  

Descartes changed into the required form of sixth degree equation by multiplying with x  and 

substituting 1ayx −= . 

This implies, 0)( 2

4

1

5 =− aaxx  

02

4

1

6 =− xaax  

  0)()( 2

4

1

6 =−−− ayaaay  

And we get the sixth degree equation, 

That is, .0)()6(1520156 2

5

1

6

12

4

1

5

1

24

1

33

1

42

1

5

1

6 =+++−+−+− aaayaaayayayayay  

Therefore, we have to take 16ap =  and 2

115aq =  

That is, 0
4

1 2 >− pq (obvious)  

And we get, 13
2

1
apAB ==  and the principal parameter n  is 

n = 2

4

1
pq

u

t
−+  

     n = 2

1

21

2

1

2

2

1

3

1 6
6

a
aaa

aaa
+

+

+
 

And we get,
pn

u
DE

2
=  =

n

aaaa

3

2 21

2

11 +
.  Then the curveQACN ,  

We have,
un

t
LH

2
=  =

21

2

1

2

2

1

3

1

2

6

aaan

aaa

+

+
 and so on. 
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We can draw the perpendicularsCG and NR , and therefore the two roots of the above 

equation are CG  and NR . The small length, NR  we have to take 1a , andCG  must be .y  

Then NRCGayx −=−= 1 , the first of the required mean proportional. 

4.3.2 Numerical example:  

I would like to give a numerical example for a sixth degree equation here. I shall find this 

construction and solution by the mathematica program. Also, I find the roots of sixth degree 

equation could be constructed by the intersection of a circle and a Cartesian parabola. I shall 

give one example here. I think this example is easy to understand for people today.  

The standard form of the sixth degree equation is .023456 =+−+−+− utxsxrxqxpxx  

I consider the sixth degree equation: 012432 23456 =+−+−+− xxxxxx ... (a)  

Where 2,1,4,3,2 ===== tsrqp  and 1=u  and .4 2pq >    

 

The principal parameter of the traditional parabola, we call n , which is determined by the 

given equation (a) in the following way: 

    n = 2

4

1
pq

u

t
−+    

        = 22
4

1
3

1

2
−+  

         =2 

So, the equation of the traditional parabola with the shifting point (0,0) assumed in D: This 

equation should be .22 yx =   

Now Descartes constructs a point A in the lower plane with the rectangular distance 
2

p
from 

the straight line BK : 

 
2

p
AB = =1 
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Descartes then defines the pointE on the principal axis of the parabola by  

   
pn

u
DE

2
= =

22

12

×
×

=
2

1
  

Because A and E are now defined there is also the straight line AE defined for any position of 

the moving pointE .   

Let xCG = , yCMGH ==  and I chooseH as the fixed point )0,0( of the coordinate system.  

 

First I find the equation of the circle. So, I consider the value of .IP  

 

So,
222

2

4

2

4 n

up

n

s

un

t

n

m
IP −−+=    and  

2n

m
HI =   where 

u

pt
u

r
m

42
++=  

           
14

22
1

2

4

×

×
++=  

           =4 

 

2

1

4

12

4

1

144

4

16

16
=

×
−−

××
+=IP  

 

2

1
=IP . This is the radius of the circle. 

Assume that the point I  is ).0,( 1x   

So, the equation of the circle is 
2

1
)0()( 22

1 =−+− yxx   

Now I calculate the value 1
4

4
2

===
n

m
HI  

So, 1== HIAB . That is, .11 =x  

∴The point I  is ).0,1(  
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Assume that the point B is ).,0( 1y  

Then 
pn

u

un

t
BLLHBH

2

2
−=−=  

  ie. 0
22

12

122

2
=

×
×

−
××

=BH  

So, .01 =y That is, HIAB =   

In general, A and I are different points but in this particular example the points B and H  and 

the points I  and A  are coinciding, which makes the example simpler. 

Then equation of the circle is 
2

1
)0()( 22

1 =−+− yxx  

          
2

1
)1( 22 =+− yx  

So, the equation of the circle is .01422 22 =+−+ xyx  

Descartes is therefore now able to “construct” the “Cartesian parabola”, by assuming it to be 

the collection of all points of intersection between the (rotating) straight lines AE and the 

moving (traditional) parabola. Now I find the equation of the Cartesian parabola. 

Also we consider the triangles CAM∆  and CGE∆ are similar. We can see page 24/25 (my 

previous work). 

    

Figure 26: the construction of the third degree curve 
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So, this implies 
GE

CG

CM

AM
=   

       
GE

x

y

x
=

−1
  where 1=AB and

pn

u

n

x
DEGDGE

22

−=−=  

                  
2

1

2

2

−=
x

GE     

    

2

1

2

1
2

−

=
−

x

x

y

x
  

      xyxx 2)1)(1( 2 =−−  

     xyxxx 2123 =−++−  

 This is the Cartesian Parabola. 

Now I want to solve this equation. So, I choose these two curves, 

circle: 01422 22 =+−+ xyx  and Cartesian parabola: 12 23 −++−= xxxxy  

I consider the circle and Cartesian parabola: 

Circle: 01422 22 =+−+ xyx  ……………..(i) and  

Cartesian parabola: 12 23 −++−= xxxxy …(ii)  

First, I would like to plot the two graphs. So, I use the mathematica program commands given 

below. 

g1=Graphics[Circle[{1, 0}, 
2

1
]; 

g2=Plot[
x

xxx

2

123 −++−
, { x , -5, 5}, DisplayFunction→ Identity]; 

Show[g1,g2, AspectRatio→Automatic, PlotRange→{-10,10}, 

 Axes→True, DisplayFunction→$DisplayFunction];   
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-2-1 1 2 3

-10

-7.5

-5

-2.5

2.5

5

7.5

10

 

Figure 27: Numerical example for the construction of sixth degree equations  

 

The circle 01422 22 =+−+ xyx  intersects the Cartesian parabola 12 23 −++−= xxxxy  at 

two real points. Now we solve the intersection points. Because of the complicated structure of 

the exact solution, we obtain a numerical approximation given below. I use the mathematica 

program command also given below.  

 

Nsolve[
x

xxx
y

2

123 −++−
== && 01422 22 ==+−+ xyx ]  

{{y→-0.320488, x→1.63031}, {y→1.58284 +0.668062 �, x→0.269125 +1.44681 �}, 

{y→1.58284 -0.668062 �, x→0.269125 -1.44681 �}, {y→0.806691 -1.1689 �, 

x→-0.315154-0.716979 �}, {y→0.806691 +1.1689 �, x→-0.315154+0.716979 �}, 

{y→-0.45857, x→0.461749}} 

Now, I shall construct the sixth degree equation by intersection of a circle 

( 01422 22 =+−+ xyx ) and a Cartesian parabola ( 12 23 −++−= xxxxy ).  

We consider the two equations and substitute (i) in (ii); we get the sixth degree equation 

 0
2

1
2

2

1
2

23
2 =+−







 −++−
+ x

x

xxx
x  

          028]122422[4 2322344564 =+−+−+−+−+−+ xxxxxxxxxxx  

     ie) 012432 23456 =+−+−+− xxxxxx   
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Where 2,1,4,3,2 ===== tsrqp  and 1=u . Also, in this case of sixth degree equation 

satisfied the Descartes condition for qp 42 < .   

Then I shall find the roots of sixth degree equation here. So, I use mathematica command and 

we get the result below.  

Nsolve[ 012432 23456 ==+−+−+− xxxxxx ] 

{{x→1.63031}, {x→0.269125 +1.44681 �}, {x→0.269125 -1.44681 �}, 

{x→-0.315154+0.716979 �}, {x→-0.315154-0.716979 �}, {x→0.461749}} 

Also, we can observe the two real roots and others are imaginary. The real roots are 1.63031 

and 0.461749. Because, the Cartesian parabola and a circle are intersect of the two real points 

(see figure 28).  

We can see the sixth degree graph given below. Also, we can identify the two real roots 

1.63031 and 0.461749 here.  

Plot[ ,12432 23456 +−+−+− xxxxxx { x ,-2,2}];  

 

  -2 -1 1 2

10

20

30

40

 

Figure 28: Sixth degree curve   

 

In this figure 28, we can observe one minimum point on this interval 22 ≤≤− x . But I shall 

change the interval, for example 44 ≤≤− x , that point is not visible to our eyes on this 

interval (see appendix, p.83/4).  
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5. The construction of higher degree equations 

 

Descartes discusses the construction for higher degree equations at the last page of the book 

III and he says (p.240): 

‘’…. Furthermore, having constructed all plane problems by the cutting of a circle by a 

straight line, and all solid problems by the cutting of a circle by a parabola; and, finally, all 

that are but one degree more complex by cutting a circle by a curve but one degree higher 

than the parabola, it is only necessary  to follow the same general method to construct all 

problems, more and more complex, ad infinitum; for in the case of a mathematical 

progression, whenever the first two or three terms are given, it is easy to find the rest….’’ 

 

Descartes did not give any further details in his book III and also he did not provide any 

practical work of this case. It is difficult to understand what Descartes meant by the last line 

saying ‘’ it is easy to find the rest’’ for the generalizing to higher degree equations (p.240).    

Also Descartes classified the equations of degree 12 −n  and n2  in his book II (p.56) and he 

called this classification the thn  class of equations (p.48). J.M Bos (p.372) stated that 

Descartes probably envisaged that equations of degrees 12 −n  and n2  should be constructed 

by the intersection of a circle and a curve of degreen . That is, all n2  ( n×2 ) equations can be 

solved by intersection of a circle (degree 2) and a curve of degree n . Further, in 1779, Etienne 

Bezout proved that the two curves of degree m and n , respectively, intersect in general in 

nm× points (J.M.Bos, p.360). That means Descartes’ assumption was partly confirmed by a 

proof of Etienne Bezout (1730-1783). 

 

Table 1: Descartes construction of higher degree equations by using lower degree curves 

Degree of the 

equations 

Name for the problems Curve needed to 

construct the equations 

Class of curve 

1 plane line unclear 

2 plane circle and line unclear 

3 solid circle and parabola first 

4 solid circle and parabola first 

5 Super solid circle and Cartesian 

parabola 

second 

6 Super solid Circle and Cartesian 

parabola 

second 

7, 8, 9,…… - higher 3, 4, 5,…..so on 
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6. Conclusion  

 

Descartes’ Geometry consists of three books. Book I is about geometrical interpretation of the 

operations of arithmetic ( ,,,, ÷×−+ and square root extraction), construction of plane problems, 

and the general analysis of Pappus’ problem (deriving from a Pappus equation). Book II is 

about a full solution of Pappus’ problem in the three and four lines, and a explanation of two 

cases of the problem in five lines, the explanation of the curves which are acceptable or not 

acceptable in geometry, the acceptability of pointwise construction of curves, the study of 

ovals, and curves on non-plane surfaces.  

Book III deals with simplicity of problems, solutions, and curves, and gives Descartes’ 

standard non-plane constructions. In the second part of book III he gives the standard 

constructions for equations of third and fourth degree and for those of fifth and sixth degree. 

In the last page of book III he stated that how to extend the general rule of construction to 

equations of ever higher degree (J.M.Bos (2001), p.290/91). 

Descartes did not find the clear expression for his geometry until the Géométrie of 1637. 

According to this vision geometry can and should be structured, and the confusing jumble of 

problems, methods and solutions, in which it is impossible to know where the problems end 

and the solutions start, can and should be cleared up. 

Descartes first studied Pappus’ problem in the late part of 1631 and early part of 1632. 

J.M.Bos(2001, p.333) stated that ‘’ Descartes’ solutions of Pappus’ problem as presented in 

the Geometry was impressive indeed and well suited to convince his readers of the power of 

his new method and of his own virtuosity in handling it’’.  The Descartes’ solution of Pappus’ 

problem illustrates his strange mixture of clearness and concealment in the geometry. The 

Descartes’ Géométrie book was indeed an essay on method; it explained with great clearness 

a novel method for finding the solution of geometrical problems.   

Descartes proved and commented the constructions of four line loci clearly enough, but he did 

not comment how he determined the location and the parameters of the conic sections from 

their equation and he only provided the values. He accomplished that his solution of the 

general three and four line locus problem had an importance beyond the special sphere of the 

Pappus’ problems. He wrote: 

 

 

 

 



  

T.Vigneswaran, Agder University College, Norway.  Master Thesis: May 2007 

 

73 

 

‘’Since all equations of degree not higher than the second are included in the 

discussion just given, not only is the problem of the ancients relating to three or four 

lines completely solved, but also the whole problem of what they called the 

composition of solid loci, and consequently that of plane loci, since they are included 

under solid loci’’ (p. 79). 

 
The tracing procedure of the five line locus by turning a ruler and moving a parabola was 

exhibited in detail; the curve played an important role in his theory of geometrical 

construction.  

Descartes teaches us about ‘’construction of equations’’ in his geometry book and his 

contribution to clarifying geometrical constructability was the most influential; almost all 

mathematicians after him took over his view as described in the Géométrie. Descartes’ 

method of geometrical constructions fitted well into his programme of using algebra in 

geometry. It is here that the construction of equations has it crucial position in the geometrical 

theory, because it forms the bridge between the application of algebra as a tool in geometry, 

and the actual geometrical construction (J.M.Bos, 1984, p.338).   

Descartes explained how to construct the roots of quadratic equations in his geometry book I. 

In order to move on to higher degrees he had to explain what he meant by constructional 

exactness. The general construction for equations of third and fourth degree by means of a 

circle and a parabola was beautiful and constituted a marked improvement of the then extant 

methods.  Descartes’ geometry provided a general construction of the roots of fifth and sixth 

degree equations and claimed that this construction, together with the one for third and fourth 

degree equations, showed how the technique could be extended to higher degree equations. 

Descartes constructed equations of fifth and sixth degrees by circle and Cartesian parabola. 

He did not explain why he chose the Cartesian parabola with its particular origin from the 

parabola, and so that choice remained unconvincing because of its arbitrariness. He wrote that 

‘’ it is only necessary to follow the same general method to construct all problems, more and 

more complex, ad infinitum’’. It seems likely that Descartes had a general method in his 

mind.  

J.M.Bos (2001, p.374) formulated the general rule of construction that Descartes presented in 

his geometry. He wrote: 

‘’Construction in geometry should be performed by the intersection of curves. The curves had 

to be geometrically acceptable and simplest possible for the problem at hand. Geometrically 
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acceptable curves were precisely the algebraic ones; their simplicity was to be determined by 

their degrees. With these premises the procedure for constructing problems was: 

 
1. Confronted with a problem, the geometer should first translate it into its algebraic 

equivalent, that is, an equation. 

2. If the equation involved one unknown only, the problem was a normal construction 

problem. In order to get the simplest construction, the geometer should reduce the 

equation to an irreducible one.  

3. Then he should rewrite it in a certain standard form appropriate to the standard 

construction to be used. 

4. In the case of equations of degrees six or less, the geometer could use standard 

constructions explicitly given by Descartes. These constructions then provided the 

geometrical solution of the original problem. 

5. In the case of higher-degree equations, the geometer should work out a higher-order 

analogue for Descartes’ standard constructions. Descartes claimed that it should not be 

difficult to do so. 

6. If the equation arrived at in 1 contained two unknowns, the problem was a locus 

problem. The geometer could construct points on the locus by choosing an arbitrary 

value for one of the unknown and dealing with the resulting equation(in which there 

was only one unknown left) according to items 2-5, thus finding the corresponding 

value(or values) of the second unknown; the corresponding point (or points) on the 

locus could then be constructed.’’        

 
The power of Descartes’ vision has shaped western thought since the seventeenth century, and 

Descartes was one of the founders of modern thought. But whatever my understanding of 

Descartes the philosopher may be, his importance for mathematics is clear.    
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8. Appendix 

8.1 Conic section 

 

A conic section (or just conic) is a curve that can be formed by intersecting a cone (more 

precisely, a right circular conical surface) with a plane. The conic sections were named and 

studied as long ago as 200 BC, when Apollonius of Perga undertook a systematic study of 

their properties. 

 

 

   

8.2 Some information on the mathematica program 

 Orientation  

When you first start Mathematica, you should see a "splash" screen with the Mathematica 

logo, version, and license information. When the program loads, you should see several 

objects on the screen. We will now describe what they are and what they do. 

 
You may wish to turn on your speakers (or bring headphones if you are in an STC). 
Mathematica uses audio cues to notify the user of errors, finished calculations, etc. 
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Notebooks 

A notebook is a collection of Mathematica statements, output, and graphics. The concept is 

like that of a "document" in a word processor. You enter information and commands into the 

notebook window, and the output (if any) is displayed there.  

 

If the notebook has been modified since it was last saved, an asterisk (*) will appear in the 

title bar. To save your work, choose File->Save As... or File->Save.  

If Mathematica is ready for new input, the cursor will flip sideways (see above). Just start 

typing to enter information. Try typing this (don't press return yet): 

2 + 2 

To tell Mathematica to evaluate this expression, hold down Shift and type Return. Since 

Mathematica is also a word processor, it needs to know if you want to evaluate the 

expression, or just insert a carriage return-linefeed. This can be quite confusing to the new 

user. 

System Evaluate Linefeed 

Macintosh Enter or Shift-Return Return 

Windows Shift-Enter Enter 

X Shift-Return Return 

Next, look at the blue symbols along the right side of the notebook. Each group of statements 

enclosed by the triangle-brackets ( ) is called a cell. The cell is the smallest unit of work in 

Mathematica. A cell may contain input or output, math or comments, text or graphics.  

 
Cells in Mathematica are like execution groups in Maple. 
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Palettes 

You should see a box with a lot of symbols floating on the right side of your Mathematica 

window. This is called a palette. Palettes allow you to easily insert complicated mathematical 

notation. For example, to compute the cube root of 34, you could click on the . Type 34, 

which should appear under the root sign. Then click on the small square above the root, and 

type 3 in the box. Finally, evaluate the expression. Using the default palette, you can enter 

fractions, integrals, summations, matrices, subscripts, and most Greek letters. Of course, there 

are many other palettes available - choose File->Palettes to see a list.  

 

 

 

 

 

 

 

 

Kernels 

Mathematica is actually split into two conceptual pieces, the front-end and the kernel. When 

you start Mathematica, you are actually only starting the front-end. The front-end handles 

input and output to the user, access to the file system, and creates graphics on your screen. 

Most users will deal primarily with the front-end. The kernel does nearly all computation 

(excluding graphics rendering). When you evaluate any expression, the kernel does the hard 

work and sends the results back to the front-end, which then displays it in an attractive format 

for the user. Most users will run the front-end and the kernel on the same computer. If your 

computer is connected to a network, you can run the kernel on a more powerful machine, 

while running the front-end on your favourite computer. To learn how to do this, choose 

Kernel->Kernel Configuration Options, click Add, and then click Help. 

 

How to stop a runaway calculation: 

• Macintosh - Command-Comma or Control-C  
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• Windows and X - Alt-Comma or Control-C  

This will bring up a menu that allows you to view the state of the kernel, abort the 
calculation, etc. 

 

 

8.3 Numerical Calculations 

 
Here are some examples. 
 
You could do simple arithmetic with Mathematica. If you wanted to add 1 and 2, you type the 

input 1 + 2 and hit Return. 

 
 In[1]:= 1 + 2 
 
 Out[1]= 3 
 
Mathematica can compute exact results, unlike the calculator. The ^ is the notation in 

Mathematica for rising to a power. 

 
 In[2]:= 2^64 
 
 Out[2]= 18446744073709551616 
 
You can use the function N to get approximate numerical results. This approximation is given 

in scientific notation. 

 In[3]:=  2^64 //N 
                   19 
 Out[3]= 1.84467 10 
 
Some of the common arithmetic operators available in Mathematica are as follows: 
 
 ^ power 
 + add 
 - minus or subtract 
 * multiply 
 / divide 
 
In addition to these Mathematica has a large collection of mathematical functions. Note that 

all the arguments for these functions have to supply within the square brackets. Also, the 

functions begin always with a capital letter. Here are some of the 

functions:  

 Sqrt[ ]  square root 
 Exp[ ]  exponential 
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 Log[ ]  natural logarithm 
 Sin[ ]  sine function ( argument in radians ) 
  
 ArcSin[ ]  inverse sine function 
 Abs[ ]  absolute value 
 Round[ ]  closest integer to the argument 
 FactorInteger[ ] prime factors of the argument 

 

 

8.4 Using Complex Numbers  
 
Mathematica lets you enter complex numbers by including a constant 'I'. This constant I is 

equal to the square root of -1. Complex number operations can be performed by using the 

following. 

 
 x + I y  complex number x + iy 
 Re[z]  real part of z 
 Im[z]  imaginary part of z 
 Conjugate[z] complex conjugate of z 
 Abs[z]  absolute value of z or |z| 
 Arg[z]  the argument of z 
 
For example, 
 
 In[10]:= Sqrt[-4] 
 
 Out[10]= 2 I 
 
 In[11]:= (1 + 2 I)*(1 - 2 I) 
 
 Out[11]= 5 

 

 

8.5 Printing graphics  
 
If you want to send graphics to a postscript printer, you can use the PS Print function 

available in Mathematica. 

 In[19]:= Plot3D[Sin[x y],{x,0,3},{y,0,3}] 
 
 Out[19]= -SurfaceGraphics- 
 
 In[20]:= PSPrint[%] 
 
 Out[20]= -SurfaceGraphics- 
 
The print job will be sent to the default printer. 
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8.6 Other branch of Cartesian parabola 

1. g1=Graphics[Circle[{0, 9}, 4]; 

   g2=Plot[
x

xx
1

12 +++ , { x , -15, 15}, DisplayFunction→ Identity]; 

    Show[g1,g2, AspectRatio→Automatic, PlotRange→{-15,15}, 

 Axes→True, DisplayFunction→$DisplayFunction];   
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2. g1=Graphics[Circle[{0, 0}, 5]; 

    g2=Plot[
x

xx
1

12 −++ , { x , -15, 15}, DisplayFunction→ Identity]; 

    Show[g1,g2, AspectRatio→Automatic, PlotRange→{-15,15}, 

 Axes→True, DisplayFunction→$DisplayFunction];   
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8.7 Sixth degree graph: Numerical example  

I plot the sixth degree equation graph on other intervals given below. 

1. Plot[ ,12432 23456 +−+−+− xxxxxx { x ,-2.5,2.5}]; 
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2. Plot[ ,12432 23456 +−+−+− xxxxxx { x ,-3,3}]; 
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3. Plot[ ,12432 23456 +−+−+− xxxxxx { x ,-4,4}];  
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