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ABSTRACT

This study concentrates on Descartes’ geometry, especially the Descartes’ parabola and
traditional parabola. Who is Descartes? René¢ Descartes (1596-1650) was a 17th century
French philosopher, mathematician and a man of science whose work, La géométrie, includes
his application of algebra to geometry from which we now have Cartesian geometry. His
work had a great influence on both mathematicians and philosophers. In mathematics
Descartes chief contribution was in analytical geometry. Descartes made other known
contributions to mathematics. He was the first to use the first letters of the alphabet to
represent known quantities, and the last letters to represent unknown ones. Descartes also
formulated a rule known as Descartes' rule of signs, for finding the positive and negative roots

of an algebraic equation.

First, this study concentrates on the Descartes’ studies of Pappus’ problem. Also I explicitly
explain how Descartes’ found the traditional parabola and Descartes’ parabola, and how he
used the four and five lines Pappus’ problems.

Secondly, this study concentrates on the Descartes’ “construction” [that means geometrical
solution] of equations by using Descartes’ parabola and the traditional parabola. I clearly
explain Descartes’ construction of third and fourth degree equations by circle and traditional
parabola, and the construction for fifth and sixth degree equations by using circle and

Descartes’ parabola. Finally, I also explain the construction of higher degree equations.

Furthermore I give three numerical examples by solving them with the mathematica program,

which was designed by Stephen Wolfram.
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1. Descartes’ biography

René Descartes

Descartes was born on March 31, 1596 in La Haye, Touraine, France and died at Stockholm
on February 11, 1650. Descartes' parents were Joachim Descartes and Jeanne Brochard. His
mother died the year following his birth. His father was a lawyer and magistrate, which left
little time for raising a family. René and his brother and sister, Pierre and Jeanne, were raised
by their grandmother.

He was educated at the Jesuit college of La Fléche in Anjou. He entered the college at the age
of eight years, just a few months after the opening of the college in January 1604. He stayed
there until 1612, studying classics, logic and traditional Aristotelian philosophy. He also
learnt mathematics from the books of Clavius. The school had made him understand how little
he knew, the only subject which was satisfactory in his eyes was mathematics. Descartes
spent a while in Paris, apparently keeping very much to himself, and then he studied at the
University of Poitiers. From 1620 to 1628 he travelled through Europe, spending time in
Bohemia (1620), Hungary (1621), Germany, Holland and France (1622-23). Descartes
became tired of the continual travelling and decided to settle down in Holland in 1628 and he
began work on his first major treatise on physics, Le Monde, ou Traité de la Lumiére. In
Holland Descartes had a number of scientific friends as well as continued contact with

Mersenne.
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Descartes was pressed by his friends to publish his ideas and, although he was adamant in not
publishing Le Monde, he wrote a treatise on science under the title “’Discours de la methode
pour bien conduire sa raison et chercher la verit¢ dans les sciences’’. The treatise was
published at Leiden in 1637 and Descartes wrote to Mersenne saying (J J O'Connor and E F
Robertson, December 1997, see below web sources): I have tried in my "Dioptrique" and my
"Météores" to show that my Méthode is better than the vulgar, and in my "Géomeétrie" to have
demonstrated it. The work describes what Descartes considers is a more satisfactory means of
acquiring knowledge than that presented by Aristotle's logic. Only mathematics, Descartes
feels, is certain, so all must be based on mathematics. As appendices to the Discours of 1637
Descartes published Optics, Meteorology, and Geometry, a collection of essays. La
Dioptrique is a work on optics and, although Descartes does not cite previous scientists for the
ideas he puts forward, in fact there is little new. However many of Descartes' claims are not
only wrong but could have easily been seen to be wrong if he had done some easy
experiments. Primarily interested in mathematics, he founded ANALYTIC GEOMETRY,
originated the CARTESIAN COORDINATES, and Cartesian curves. Descartes meditations on
first philosophy, was published in 1641. The most comprehensive of his works, Principia
Philosophiae was published in Amsterdam in 1644. In 1649 Queen Christina of Sweden
persuaded Descartes to go to Stockholm and he broke the habit of his lifetime of getting only
up at 11 o'clock. During his lifetime, Descartes was just as famous as an original
mathematician, scientist, and philosopher. Descartes is one of the most important Western

philosophers of the past few centuries.

2. Introduction

In my present study, the “Descartes’ parabola” is in the centre how it is defined and how it
can be constructed and for which purpose it is being used. To answer these questions, I shall
explain the methods of Descartes used to solve geometrical problems. Descartes published his
ideas in 1637 in a treatise called La Géométrie (Geometry).

Descartes’ La Géométrie, book 1 is on “’problems, the construction of which requires only
straight lines and circles’’, Book II is on the ‘’nature of curved lines’’; but Descartes shows
that this book was written as a necessary preparatory work to the third book, and the last,
book III is on “’the construction of solid and super solid problems’’. Descartes La Géométrie
is well known as an important event in the history of mathematics. La Géométrie is a book,

which is difficult to read. Descartes says:
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“But I shall not stop to explain this in more detail, because I should deprive you of
the pleasure of mastering it yourself, as well as of the advantage of training your
mind by working over it, which is in my opinion the principal benefit derived from
this science. Because, I find nothing here so difficult that it cannot be worked out by
any one at all familiar with ordinary geometry and with algebra, who will consider

carefully all that is set forth in this treatise.”” (p.10)

In the centre of this work is “’Descartes’ parabola’’. It is a Pappus five line locus (The word
locus (plural loci) is Latin for "place"), namely a cubic curve which Newton called “trident”
and others (not quite clear who first) the “’Cartesian parabola’’. This curve reappears
frequently in La Géométrie. Boyer (1956) said that ** his triple interest in the curve was
limited to the following three aspects: (1) deriving its equation as that of a Pappus locus; (2)
showing its constructability by kinematic means; (3) using it in turn to construct the roots of
equations of higher degrees’’. In my work, I shall clearly explain how to use this curve in the

geometrical construction of the roots of equations of fifth and sixth degrees.

2.1 A first look at Descartes’ geometry

There have been many studies on Descartes’ Géométrie. We know that Descartes’ geometry
contains his invention of analytic geometry. At a first look at Descartes’ geometry, we may be
surprised about what is not there. We do not see the analytic geometry of the straight line, or
of the circle or of the conic section, we do not see Cartesian coordinates, and we do not see
any curve plotted from its equation. Descartes did not use the term “’analytic geometry’’. The
best source for the actual contents of the Géometrie is the book Géomeétrie itself. In his book,
Descartes does include algebra, theory of equations, classifying curves by degree, point wise

construction of curves, construction of equations (eg: third, fourth, and sixth) etc.
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Solution of problems in Descartes’ *’La géométrie’” (1637)

Geometrical problems
[r

Determinate: Indeterminate:
“’problems’’ proper = finitely curves, e.g. Pappus: infinitely
many lengths, points etc. many points
Geometrical classification: Geometrical classification:
plane, solid, linear plane, solid, linear

Geometry Geometry

Algebra Algebra
Equations in one unknown X, Equations in two unknowns X,y,
Transformations “’Coordinate System’’
Algebraic classification: degree Algebraic classification: degree

N\ /

solution by:

algebraic manipulation (determ. and indeterm. problems)
<« intersection of curves (solving determ. problems by indeterm.
probl.)
— constructing curves from points (solving indeterm. problems by
determ. probl.)
[Reinhard Siegmund-Schultze (2003), p.238]
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2.2 The background of Descartes’ geometry

We first look at some achievements of the ancient Greeks. There are three classical problems
in Greek mathematics which were extremely influential in the development of geometry.
These problems were those of squaring the circle, doubling the cube and trisecting an angle.
During the Greek times doubling of the cube was the most famous, and then in modern times
the problem of squaring the circle became the more famous, especially among amateur
mathematicians. Although it is difficult to provide an accurate date as to when the problem of
trisecting an angle first appeared, we know that Hippocrates, who made the first major
contribution to the problems of squaring a circle and doubling a cube, also studied the
problem of trisecting an angle. The trisecting an angle was known to Hippocrates (J J
O'Connor and E F Robertson, April 1999, see below web sources). I shall explain the
trisecting an angle here because Descartes solved the third degree equations by using
trisection method. It works as follows. Let construct a right triangle AABC with ZCAB ; and
draw a line DN parallel to AB.draw ALN, intersecting BC in L and LN =2MN. then the

required angle is ZBAL.

D C M

=

Figure 1: Trisecting an angle

Let M be the midpoint of LN so that LM = MN = AC. sinceLCN is a right angle,
LM = MN = CM. Hence, by isosceles triangles, ZCAM = LCMA.

Also, ZCMA = ZMCN + ZCNM and LCAM = ZCMA =2/MNC.

But ZBAL = ZMNC [ AB// DN ]. So, 3ZBAL = ZCAB.

Now one of the reasons why the problem of trisecting an angle seems to have attracted less in
the way of reported solutions by the best ancient Greek mathematicians is that the

construction above, although not possible with an unmarked straight edge and compass, is
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nevertheless easy to carry out in practice. Also, they solved a range of locus problems, some
very complicated. To find their solutions, they too had “’methods’’. The construction of two
mean proportionals attracted most imitation in the sixteenth century. J.M.Bos (2001, p.27)
stated that ¢’ there were two related reasons fro this pre-eminence. The first was that the list of
12 different constructions of two mean proportionals that Eutocius had included in his
commentary to Archimedes’ Sphere and Cylinder became available in print, first in works of
Valla and Werner, later in editions of Archimedes’ works. A similar, though smaller set of
constructions of the trisection in Pappus’ Collection became known only much later.
Secondly, mathematicians learned and found that several problems not solvable by straight
lines and circles could be reduced to the problem of two mean proportionals, whereas fewer,
if any, problems were found to be reducible to trisection; so the former problem acquired a
central position among problems beyond the constructional power of straight lines and
circles.”” In early modern geometers more often met solid problems reducible to two mean

proportionals than problems reducible to trisection.

Given a problem, for example, consider the famous problem of doubling the cube. In modern
term, the problem is, to find x such that x° =2a°(givena’). Hippocrates of Chios showed
that this problem could be reduced to the problem of finding two mean proportionals between
aand 2a (J.Grabiner (1995), p.84). Thatis, a:x=x:y=y:2a or a/x=x/y=y/2a

The x,y will be called the two ’mean proportionals’” between a and 2a.
Then, eliminating y , we observe x* = 2a° as required.
If we consider the first two terms,a: x = x: y, we get x° = ay, which represents a parabola.

If we consider the first and last terms, a:x = y:2a, we get xy =2a’, which represents a
hyperbola. Thus the problem of duplicating the cube is reducible to the problem of finding the
intersection of a parabola and a hyperbola. This reduction developed the Greek interest in the
conic section.

Suppose we need to learn how to construct an angle bisector, and how to bisect a line
segment. In figure 2, draw AD bisecting the angle 4. Then the length 4B = length AC and
connect B and C with the line segment BC, see figure 2. Let M be the intersection of the
angle bisector with the line BC. But AB = AC, £BAM =/CAM , and AM = AM , then the
triangle AABM = triangle AACM . Thus M bisect BC .

Now, to construct the angle bisector, constructs 4B = AC, construct the line BC, bisect it

at M , and connect the points 4 and M. AM bisects the angle A4 .
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& A
Figure 2: Bisect an angle and line

The Greek ‘’analysis’® works like this. Descartes did not invent these methods. Descartes
ideas on problem solving, moreover, have other antecedents besides the Greek mathematical
tradition (J.Grabiner (1995), p.85).
Further, in excellent work of Greek mathematics (Euclid, Archimedes and Apollonius), there
were two sorts of geometrical propositions: theorems and problems. Theorems had to be
proved; problems had to be constructed (J.M.Bos, 1984, p332). Descartes extended these
earlier ideas in an unprecedented way.

DESCARTES

Analytic
Geometry
(Vieta & Ghetalds)

/N

Svyncopated symbolic
al_uebfrcfa geometrical

- algebra
(Diophantus) (Clavins, ete.)

VAW

Theoratical Practical
logistics geometry logistical
(Eudoxus, Ptolemy) (Euclid, Apollonius,
Pappus) /
Egyptian Grask Batbyvlonian
influsnce influsnce influsnce

(Aristotles logic)

Figure 3: Ancient mathematical developments (E.G.Forbes, 1977, p.148)
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3. Descartes’ parabola and the traditional parabola

3.1 Descartes and curves

In the beginning section of Book II of his Géométrie, Descartes famously introduces his
criteria for accepting curves into geometry. He claims to borrow a classification proposed by
the ancients. The ancients considered three classes of geometric problems, which they called

plane, solid, and linear.

Geometric problems

et T ‘H.-"
Plane Solid Linear
[problems which require only ~ [which can be solved by [more complex alg. curves]
circles and straight lines for using conic section]

their construction]

N Y N
First degree Second degree High degree

(+ circle which is second degree)

Descartes provided such delimitation in terms of the curves used in the procedures. The
curves that he allowed in geometry are now called ‘’algebraic curves’’, the others
“transcendental”. Descartes used the term of ‘’mechanical curve’’ that cannot be expressed by
an algebraic equation. But Leibniz and others called them “transcendental”. Descartes
distinction between ‘’geometrical’’ and ‘’'mechanical’’ curves provided a great issue in
seventeenth century mathematics.

Bos says:

“Descartes introduced a sharp distinction between admissible and inadmissible
curves. The first he called ‘'geometrical’’ the other “mechanical’’. The
“geometrical’’ curves are what we now call algebraic curves (although Descartes did
not explicitly say as much in the Géométrie, this can be inferred from what he did

state); the “mechanical’’ curves are those which are now termed transcendental

curves’’ (H.J.M. Bos, 1981, p.297)

T.Vigneswaran, Agder University College, Norway.  § Master Thesis: May 2007



Curves

o N

Geometrical Mechanical

[Some sort of instrument has to be used]

Descartes groups “geometrical” curves into distinct classes. For instance, curves of “the first
and simplest class” (ie, the circle, parabola, hyperbola, and ellipse) are described by a first or
second degree polynomial equations and can be pointwise constructed by straight lines and
circles. (cf. Bos 1996, Mahoney 1969) Following the methods delimited by Descartes, only
the so-called “algebraic” curves, those with a corresponding closed polynomial, are to be
included in the sphere of geometry. In contrast, so-called “transcendental” curves are rendered

geometrically unintelligible.

3.2 Pointwise construction of curves

Descartes solved the Pappus problem by constructing arbitrarily many points on the locus. In
the first book of Géométrie he did not say (Pappus problem) whether this pointwise
construction could be considered as a construction of the locus as a curve. Descartes did not
stop after giving the pointwise construction; He also gave the name of the locus curve
(parabola, ellipse, and hyperbola etc.) and giving its basic parameters. However, he returned
to pointwise constructions of curves and wrote that in the second book. In certain cases, the
pointwise construction curves should be accepted in geometry (J.M.Bos, (1981), p.315). 1

shall clearly explain the Pappus problem in my present work below.

3.4 Descartes and parabola

In the geometry of plane curves, the term parabola is often used to denote the curves given by
the general equation a¢”x" = " * ", thus ax = y*is the quadratic or Apollonian parabola;

a’x = y*is the cubic parabola, a’x = )* is the biquadratic parabola; semiparabolas have the

1

general equation ax” ~ ' = )", thus ax® = y’is the semi cubical parabola and ax’ = )" the

semibiquadratic parabola. These curves were investigated by René Descartes, Sir Isaac

Newton, Colin Maclaurin and others (http://www.1911encyclopedia.org/Parabola).The

T.Vigneswaran, Agder University College, Norway. 9 Master Thesis: May 2007



Cartesian parabola is a cubic curve which is also known as the Descartes’ parabola of
Descartes on account of its form. Its equation of the form isy’ —2ay® —a’y+2a’ =axy. 1

shall explain the Descartes’ parabola (cubic curve) and traditional parabola below and also

discuss it how it was constructed by Descartes.

3.5 The Pappus problem

Figure 4: Pappus’ problem

I shall explain the Pappus problem and Descartes’ solution of this problem. Given the straight

lines L;,,i=12,...... ,n in the plane, and angles 6, be fixed angles,d,, i =1.2,............. 7/
denote the distances of the line from an arbitrary point C in the plane to L,. The given line
segment a and K be a given constant ratio (involving the distances d, and depending on the

number of lines L, ). The related ratios (by us written as products) are:
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For three lines: d} =Kd,d,

For four lines: dd,=Kdd,
For five lines: dd,d, =Kad,d,
For six lines: dd,d, =Kd,d.d,

For an even number 2n of lines:

dd,......... d,=Kd, d, .. d,,
n 2n
[14.=K]]4.
=) i=n+1
For an odd number 27 +10of lines:
dd,....... d.=Kad, ,d, ... d, .
0+l 2041

[14. =Ka]]4d,
i=1

i=n+2

I use modern notation for this problem. Descartes did not use indices and stated the
coefficients clearly with respect to a figure. In his formulation Descartes surely meant the
generality that modern notation can express.

Pappus provides the problem for three and four lines as well as its generalization to more
lines. Pappus’ problem was a locus problem (Locus: the set of points satisfying a particular
condition, often forming a curve of some sort.). In each case there are infinitely many points
which satisfy the given condition; these points form a locus in the plane; this locus is
generally a curve. Pappus also says that for three and four lines the locus is a conic section.

Further, for more than four lines nothing is known about the form of the locus.
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3.6 The general solution
At the end of the first book of his Géométrie, Descartes gives the general solution of the
problem (p. 309-314). His idea is given below. He assumed that

dy =y
ie) Descartes singles out L, as the reference line (in our terminology the x-axis of a
coordinate system).
Descartes takes x to be the distance along L, (line) from a fixed point to the intersection of d,
with L, at pointB. He then shows by geometrical arguments that all d,can be expressed
linearly in x and y :

d,=ax+by+c,
The coefficientsa,,b,, and ¢, are constants belonging to the line segments . and the given
angle 6. and also the a,, b,, and ¢, are known. Descartes also remarks that in the exceptional
case when all lines are parallel, x doesn’t occur in the expressions for the d,.
The constancy of the given ratio K can be expressed as an equation:
For an even number 2n of lines:
y(a,x+byy+c,)... (a,x+b,y+c,)=K(a, ,x+b, y+c, ). (a,,x+b,,y+c,,)
ie) li[(al.x+bl.y+cl.) = Kﬁ(al.x+bl.y+ci)

=) i=n+1

For an odd number 2#+1 of lines:
y(a,x+by,y+c,).....(a,,x+b,,y+c,.,)=Ka(a

w2 Xt b, oy +e,)e(ay, X +by, Y +Cy00)

n+l n+l

ie) ﬁ(aix+biy+ci) =Ka 2ln_+[1(aixerierci)
i=l1 i=n+2

Where d, =a,x+b,y+c, =y and a, =c, =0and b, =1.

The degrees of these equations depend on the number of lines. If there are three or four lines
this results in the second degree of these equations. I shall explain this case below ( y* = 4x).
Descartes did not explicitly discuss the degrees of these equations, but he was aware of them.
The interpretation of the original problem would require thed,to remain positive. But
Descartes did not discuss the negative values. Further Descartes discussed only one curve, but
the original interpretation would lead to a locus consisting of two curves. The equation should

be
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For an even number 2n of lines:

=|K

|y||a2x+b2y+cz| ......... ax+by+c, a, ,x+b,,y+c

n+l

y(a,x+b,y+c,)....(a, x+b,,y+c,.)=xtKa(a,,x+b ,y+c,,)..(a) x+b, v+, )

Descartes explained the classification of curves according to the degree of their equations, in

the second book (p.48). He says all geometrical curves have algebraic equations. These

classifications are

First class: The curves with equations of the second degree (the circle, the parabola, the
hyperbola, and the ellipse).

Second class: The curves with equations of the third and fourth degree.

Third class: The curves with equations of the fifth and sixth degree. And so on.

But Descartes said there was an exceptional case when all lines are parallel, namely, he did

explicitly explain the five lines (parallel) problem in his second book (p.83-88). I shall clearly

explain below.

3.7 Pappus problem in four lines

Figure 5: Pappus’ problem in four lines (Géométrie, p.27/31)
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Descartes explained in much more detail the four line Pappus problem in his book II. But he
started to write this problem in book I and continued the work in book II. I will consider the
Descartes solution of the Pappus problem for four given lines here. Descartes talked about the
rectangle of two of the lines as related to the rectangle of the two other lines which of course

has to be understood algebraically as the ** product of distances’’.
For four lines: dd,=Kd,d,

Descartes explained the way of getting the equation of the locus in his book I and II. T have
not changed Descartes’ symbols here. Descartes introduced symbols for the unknowns and the
given parameters in this Pappus problem as given below.

Assume that AB=xand BC =y
But these lines are not parallel. The given lines intersect AB in the points A4,G, E and
intersect BC in the points R, 7, S . We can see this figure above.

Now, we can consider the triangle AABR, where all angles are known. So, the ratios of the
sides are known.

Suppose that 4B = Z then we get, BR = bx [..AB=x]
BR b z

Since CR = y+b—)C when B lies between Cand R
z

[Other cases: CR=y _bx when R lies between BandC, CR=-y +b—)C when Clies
z z

between B and R |

Now, we can consider the triangle A CRD , where all angles are known. So, the ratios of the

sides are known.

Let R =Z then we get, CD =
CD ¢ z

cyz + bex
2

[.CR=y+ b_x]
z
Also, the distance is known from Ato E . That is AE =k .
So,then BE =x+k
[Other cases: BE =-x+k whenBlies betweenAdandE, and BE =x—k whenF lies
between 4 and B |

Again we can consider the triangle A BSE, where all angles are known. So, the ratios of the

sides are known.
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kd + xd

z

So, the ratio is E -z then we get, BS =
BS d

Andalso CS=y+BS [..BC=y]

L CS = vz + kd + xd
- —
[Other cases: CS = Y2Zkd Zxd o Clies between B and C ,andCS = Zyz+kd+xd
z z

when C lies between B and S |
Again we can consider the triangle A FCS', where all angles are known. So, the ratios of the

sides are known.

Hence the ratio isQ ==, Therefore, CF = eCS
e z
...CF:ezy+ek3d+ekx - CS:yz+kd+xd]
z z

And assume AG =/then BG=[—-x

Again we consider the triangle ABGT , the ratio is % =—

This implies, BT = 2+ —/% and cr = 2ZHS= K

z z
z

Also the triangle ACHT , then the ratio is r =— and
CH ¢

Hence, CH = $2 &M =8K . cp &+ /1= Jx,

z z

We know that z was known. Descartes found the line segments CB,CF,CD, and CH . These

are
CB=y
CF — ezy+ek3d + ekx
z
oD = cyz + bex

2
z

cp =8yt 8l-gkx

2
z

Descartes provided this information in his book I and he gave the solution of Pappus four

lines problem. That is, to find all points C in the plane with d,d, = Kd.d,
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Descartes considered the given ratio K to be equal to 1. But he did not write any further
words on this point in his book. So, the product of BC and CF is equal to the product of CD
and CH.

That is, BC.CF = CD.CH

2 2

z z

This implies, y.[
z

ezy+ekd+exd}_[czy+bcx}[gzy+gﬂ—gfx}
= ) .

y’[ez’ —cgz®] = y[cfglz — ekdz*]— xy[edz® + cfgz — begz] + befglx — befgx®

The equation is

= Vlcfalz — ekdz* 1 - xyledz’ + cfgz — begz] + befglx — befax?

[ez —cg]z’
And he assumed thatez > cg, then ez’ —cgz” > 0and its square root is therefore real. Also

cf Igz — ekdz’ 2n _ edz” + cfgz — bcgz

Descartes assumed that 2m = . 5 and - -
ez —cgz z ez’ —cgz
2
Then we get, y° = 2my —ﬁxy i bCfgl}x bcfgx
z ez’ —cgz

The roots of this quadratic equation is

22 _ 2
nx \/mz _ 2mnx L bcfglx — befgx

y=m-—+= 2 3 2
z z z ez’ —cgz

2
2mn+ bcfgl and 21 _ bcfg

3 2 2 3 2
z ez —cgz m z° ez —cgz

Again he assumed that O = —

Then we get the root of this quadratic equation:

nx
y:m——+\/m2 +ox+ Ly
z m

That is, BC = m—ﬂ+\/m2 +Ox+£x2
z m
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I shall explain the conic section (see appendix, p.77) here by above equation. These cases are

If £ x> = 0 then the conic section is a parabola.
m

If £ x> > 0 then the conic section is a hyperbola.
m

If £ x> < 0 then the conic section is an ellipse.
m

I shall continue to explain the case of parabola below. Because this is my present work so I
omit the other cases. Also Descartes explicitly explained the hyperbola and ellipse cases in his

geometry book II.

3.8 Traditional Parabola
I draw this figure but I have no change the Descartes symbols here.

-3

14

Figure 6: Pappus’ problem in four lines: especially for the construction in the case of parabola

NI is the principal axis in the parabola and also / is the focus. Then draw a line /K equal and
parallel to AB, and intersecting at a BC pointK . Also he took a line segment BK =m (for
BC contain+ m, if this were —m then the line /K on the other side of 4B, and if m =0

then we cannot draw /K at all) and /K = AB = x.
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Further, Descartes did not clearly draw a point at / in his figure. But I draw clearly in my

figure above. Then he assumed that E _Z
KL n

Thatis, KL ="x [~ IK =x]
z

Similarly, we know that the ratio — = " this implies /L = Ty
a z

-2 , he took the point K between Land C and if+ L , the point L between K and C,
zZ zZ

and ifzx =0, we can’t draw IL.
z

He considered BC equal to BK — LK + LC on this case.
Thatis, BC =BK - LK + LC

This implies, y=m—£x+LC
z
) n
ie) LC=y—-m+—x
z

Claim: If the conic section is a parabola, the line segment is LC =~/m” + Ox .

I shall explain this below:

If the point Cis on the parabola, its latus rectum is equal to » (In a conic section, the latus
rectum is the chord parallel to the directrix through the focus. In a parabola, the length of the
latus rectum is equal to four times the focal length, i.e. the distance of the focus from the
vertex. That is, "Latus rectum" is a compound of the Latin /atus, meaning 'side,' and rectum,

meaning 'straight') and its parabola axis on the line /L. Its vertex, N , and let IN = 4.

LN = LI+ IN

The condition of parabola LC* = LN.r

- (ﬁx + lj.r [ by(i)]

z

But LC=y—m+ﬁx
z

2
This implies, ( yom+ xj - (ﬁx + /7,).7’ .......................... (if)

z z
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2
If the equation of a parabola, ( y—m+ Exj =m> +O0X v, (7ii)

Hqu(gx+ﬂ}r=m2+0x [ -, by(ii) and (iii) ]

z

Equating the coefficients, we get

2} =0 This implies » = oz
z a
And Ar=m’
PP
Oz
am’

. Oz
and latus rectum is equal to —.
z a

That is, IN =

Hence the equation of the parabolais y = m — i Nm® +Ox .

z

Descartes also explained the plane loci are degenerate cases of solid loci in his book II (If the
line is straight or circular, it’s called a plane locus and if it is a parabola, a hyperbola, or an
ellipse, it’s called a solid locus). Moreover, the different kinds of solid loci represented by the

equation

2
n n
y = +m? i—xi—i\/imz +Oox+ Ly
z X

m
by Rabuel. Descartes omitted the case in that neither x* nor y* but only xy occurs, and the

case in that a constant term occurs (p.79).

2

n . :
If — is not present, there the quantity under are several cases here.
X

(i) If the radical sign is zero or a perfect square, then equation is a straight line.

(i)  If this quantity is not a perfect square and it 2 x> = 0, then the equation is a
m

parabola.
(i)  If this quantity is not a perfect square and it2 x> <0 , then the equation is a circle
m

or an ellipse.

Gv) If2x? >0, then the equation is a hyperbola.
m

T.Vigneswaran, Agder University College, Norway. 19 Master Thesis: May 2007



2
If all the terms of the right hand side is zero exceptn—, then the equation is a hyperbola
X

referred to its asymptotes.

3.9 Numerical example:

1] Suppose all the given quantities expressed numerically, as
EA=3,AG =5
AB = BR,BS = BE,GB = BT and

CD = %CR ,CF =2CS ,CH = %CT and also the angle £Z4BR = 60°

We are referring to Descartes’ picture (see figure 5) and that all quantities where B,C and S

come in are variable.

Then all these quantities must be known if the problem is to be entirely determined.
Now, let AB=x,andCB = y.

Then CR=CB+BR=y+x (AB=BR=x)

But CD=%CR = %(y+x) .............. (1)

And BS =BE =FEA+ AB=3+x
CS=CB+BS=y+x+3

But CF =2CS =2(y+x+3)cceiiiiann.n. (i1)
Then BG = AG—- AB=(5—x) and also GB =BT =(5-x)
CT=CB+BT=y—x+5

So, CHz%CTz%(y—x+5) ............... (iii)

Descartes gives the property of four lines is:

CB.CF =CD.CH (AssumeK =1)
M2y +x+3)] = [%(y n x)][%(y x+9)]

29> +2xy+6y =5y —xy+y> +xy—x° +5x
Y +2xy+y+x° —5x=0;

y2+y(1+2x)+(x2 -5x)=0;
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1 [
So, yz—E—xi Z+6X

Hence BK =m = —%, =1 and O =6. but the line /K on the other side of AB(m = —%)

| 3

N

and /K = AB=x,KL=x, ZIKL=/Z4ABR =60",IL = x, and the quantity represented by z is

I,wegeta=1and r = o= =6 (See figure 6). It follows that the curve NC is a parabola and
a

its latus rectum is equal to 6 .

2] An example treated in modern terms, we consider the parabola y* = 4x in rectangular (x,
y) — coordinates which results from a four lines Pappus problem in the following way:
I consider the four straight lines: y=x,y=—x,x=0and x =4
The angles are 45 degrees for the two first distances, and 90 degrees for the other two
distances on the right hand side of the equation. That the parabola is indeed the solution to the
four lines Pappus problem follows from the equation (ie. K =1)

dd,=dd,

(y=x)(y+x)=x(4-x)
This implies, we get y° = 4x
The example should be supported by a picture of the parabola together with the four lines in

the plane.

V=X

=X

=4

Figure 7: Numerical example for the Pappus’ problem in four lines
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Descartes did not discuss the fact that as a result of this rewriting the d, may have negative

values, whereas the obvious interpretation of the original problem would require thed,to

remain positive. The effect of this is that Descartes found only one curve as locus, while the

original interpretation would lead to a locus consisting of two curves. (H.J.M Bos, 1981,
p-300)
The four line problem (ie. K =1), Descartes worked out
yax+by+c)=(a,x+b,y+c,)a,x+b,y+c;)
And found one conic section as the locus. But if the d, were taken to be positive, the equation
would become (modern term)
|y||(a1x +by+ cl| = |a2x+ b,y + cz||a3x +b,y+ c3|
or yax+by+c)==2(a,x+b,y+c,)a,x+b,y+c;)
That is two conics. We could consider the above example of this case. (k=1)
e 4] = e =yl + 51
or x(x—4)=2(x-y)(x+y)
y* =4x or 2x* —4dx =y’
These are two conics. But2x® —4x = y?, this is a hyperbola.

I plot this hyperbola by using mathematica program (see further details at page 35).

Plot [v2x? —4x, {x,6,6} ];

10

-6 -4 -2 2 4 6

Figure 8: Example for the Pappus’ problem in four lines: hyperbola
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3.10 Pappus five line problem

0 h

\
i

Figure 9: Pappus’ problem in five lines

In the second book (p.84) Descartes showed the solution of a special simple case of the five

line Pappus problem. I would like to consider this problem here.

Method 1:
Let the given lines be AB,IH,ED,GF,andGA respectively. In the situation where

AB,IH,ED,and GF are parallel and equal distance and GA is perpendicular to the other lines.
Let the required point C lies between 4B and DE , the distance CB,CF,CD,CH,and CM

T.Vigneswaran, Agder University College, Norway. 23 Master Thesis: May 2007



are perpendicular to the given lines. We can see the figure (p.82/6) above. Descartes gives the
property of five lines

CF.CD.CH =CB.CM .a
Descartes takes CF = (2a—y),CD =(a—y) andCH =(a+ y) and he gave the equation of
the curve is:

(2a - y)a—y)a+y)=axy

or v =2ay—a’y+2a’ =axy

This is the Cartesian Parabola.
WhereCB =y, CM =xandGE = EA = Al = a. The ruler GL is moving around G .

Method 2: [p.84]

I shall explain Descartes’ second method of the required cubic curve. Descartes consider a
parabola CKN with vertical axis KL to move up and down the straight line AB (That is, the
parabola CKN is moving vertically along its axis AB ) and the principal parameter equal to a
(that 1s, the parameter corresponding to the axis of the given parabola) of the
parabola y*> = ax. The ruler GL is moving around G . Also the straight line GL can intersect
of the lines GF and G/ while L moves along AB . He takes KL equal to a of the vertical
axis of parabola CKN .

We considerCB=MA=y,CM = AB=x,andGA = 2a.

Also we consider the triangles ACMG and ACBL are similar.

cs

So, this implies oM =
CM BL

- Qa-y)_»
X BL

ie) BL=—"2
(2a-y)

But KL = a and this implies

BK = KL — BL
BK g
(2a-y)
2_ —_—
or BK 24 —w-xy
2a-y
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Then BK is a segment of the axis of the parabola y* = ax .

. BK BC . o
Since — =——, a is equal to the principal parameter.
a

This implies, BC* = a.BK

2, 24" —ay—xy)
(2a-y)

2ay° -y’ =2a’ -2a’y —axy

y

Thatis, y° —2ay*> —2a’y +2a’ = axy

The combined motion the points C of intersection of the parabola and the straight line move
over the plane; they trace a new curve CEG ; this curve is the required five line locus. The
point C can be taken on the curve GEC which is a branch of the ** Cartesian parabola’. Nlo
and n/O are intersection of the line GL with the other branch of the original parabola KN .
Descartes also discussed the opposite direction of the parabola.

This curve played an important role in his theory of geometrical construction and this third
degree curve which later known as the name ‘’Cartesian parabola’’. Descartes also did not
explain how he had found the way. Descartes explained how the ‘’Cartesian parabola’’ can be
used for finding the roots of sixth and fifth degree equation in his Géométrie book IlI. He also
discussed how the “’Cartesian parabola’> was traced by the combined motion of a ruler and a
traditional parabola. I shall explain more details in my present chapter below. Descartes
explained in the one particular case (that is, the property of five lines
1s: CF.CD.CH = CB.CM .a) of the Pappus five line problem in his book II. Descartes did not

explain the further choice of five line problem in his Géométrie book II.

If we consider four given parallel lines AB,IH,ED, and GF , and one perpendicular cutting
line G4, Descartes gives the distance property of five lines is

add; =dd,d,
If we can consider the five different distances, so the possible permutation (rearrangement of
distances) is the numbers 1,2,3,4 and 5. Descartes found the cubic curve in the particular case
CF.CD.CH = CB.CM .a (see above). J.M.Bos (2001, p.330) analysed the possible type of the

five line problem and also he divided into two cases.
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These are

ayd, =d d,d, ......... I
add;, =ydd, ......... II

Bos denoted d byy. Descartes case belongs to the case I. (If you want to further
information, see J.M.Bos book on page 330/31).

Descartes then stated that the given lines GF,DE, AB,and HI are parallels non-equidistant
and the line GA4 1s not perpendicular to the others (see below). In this case, he says, the

required point C will not always lie on curve of the same nature and this may even meet be

the case when the given lines are not two parallel.

F E B |
J_'_'_—'_'_'_—'_'_A,—'—’
T
fﬂﬁ_ﬂ_ﬂ_______—
G D A H

Figure 10: Pappus’ problem in five lines: non-equidistant parallel lines and the fifth line is

not perpendicular

3.11 Another five line locus

Descartes explained the “parallelepiped” (that means the product of three distances) of three
lines drawn through the point C for the one cutting line and any two of the parallel lines is
equal to the parallelepiped of two lines drawn through point C to meet the other two parallels
and another given line (). He says that the required point lies on a curve of different nature.
The distance property of five lines is (case II)

add; =yd,d,
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He wrote (p.88):

“In this case the required point lies on a curve of different nature, namely, a curve
such that, all other ordinates to its axis being equal to the ordinates of a conic section,
the segments of the axis between the vertex and the ordinates bear the same ratio to a
certain given line as this line bears to the segments of the axis of the conic section
having equal ordinates. I cannot say that this curve is less simple than the preceding;
which nevertheless I believed should be taken as the first, since its description and

calculation are somehow easier.”’

But Rabuel gave the general equation of this curve: axy —xy> +2a’x =a’y —ay*(p.88)

3.12 Numerical example:

I would like to give a good numerical example (J.M Bos (1981), p.316) for a five line

problem here. If we take the origin in the centre of the figure,

d.d,d,=d,d.a

T
Ll
a [
Ly
X
O
LE
L
J
L

Figure 11: Example for the Pappus’ problem in five lines

Leads to x[ +3—aj[ —3—aj—[ +£j( _ﬁja
T CANEY I CAEY S

or 4xy* —4ay’ —9a’x+a’ =0
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. . . I _ 9
as the equation for the required curve. Taking w = 54 '(y? - 2 a’)

We findw:a=a:(x—a)
If we now take the “’vertex’’ in Descartes text to be the point V(x =a,y =0), and draw the

parabola.
2aw=y> ->a’
!

with w taken along the X -axis from V', then the required curve and the parabola are related
in such a way that for points (x,y) and (z,y) on either curve with equal ordinates y, the
abscissa (x —a) and w (taken from V') satisfy

wia=a:(x—a)
This corresponds to what Descartes says, but the he does not specify that in this case the conic

section is a parabola.

I plot this parabola by using mathematica program (see further details at page 35) and also |

consider the constant value a = 1. That is, w= % y’ —%
Plot[ 32 =, {66}
15+
10
sl
6 4 = 2 5 6

Figure 12: Example for the Pappus’ problem in five lines: parabola
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4. Descartes’ construction of equations by using Descartes’ parabola and the traditional

parabola

The constructions of equations of degree three to six are discussed in the last book of the
Géométrie, and they form the conclusive result of the treatise. I shall discuss these
constructions below. If the degree was one or two, the roots could be constructed by straight
lines and circles. Descartes called these problems “’plane’’. If the degree was three or four, its
roots could not be constructed by circles and straight lines. Descartes found the roots of any
equation of third or fourth degree could be constructed by the intersection of a circle and a
parabola. Also he called the problem ‘’solid’’, because only conics (= “solid curves”) are
involved. Now, I can consider the equation of fifth or sixth degree. If the equation was of
degree five or six Descartes called the problem °’ super solid’’. Descartes gave a new curve
namely the ’Cartesian parabola’’. Descartes showed that this curve was really the solution of
the five line Pappus problem and he provided the equation of the curve, in his second book
[p.83-84]. This curve became later known as the ’Cartesian parabola’’ and other names for

¢

the curve are ’ trident’’ (Newton) and “’parabolic conchoid’’. It is, however, no classical

parabola, but a curve of third degree:
v =2ay* —a’y+2a’ =axy

I shall explain this curve in my chapter below. In the third book Descartes explained how this
curve can be used for finding the roots of fifth and sixth degree equations; he stated there in
more detail how the curve was traced by the motion of a ruler and a parabola [p.220]. This
case 1s complicated but basically correct. In the book III on the last page Descartes showed
the constructing equations of higher degree than six. Descartes did not give any work of this
case. He wrote:

........ but one degree more complex by cutting a circle by a curve but one degree
higher than the parabola, it is only necessary to follow the same general method to

construct all problems, more and more complex, ad infinitum...." " [p.240]

In this present chapter I shall explain how he had constructed 5™ and 6" degree equations by
using Descartes’ “’parabola’’. I shall discuss some examples here, from the third book of
Geomeétrie. Descartes used the different geometrical techniques in this construction of

equations.
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4.1 Descartes’ construction of fourth degree equations by circle and the traditional

parabola

Descartes provided his constructions of equations of third and fourth degree (that means he
found the roots by his geometrical method) in the last book of the geometry. Also he assumed
that the cubic term of the equation was omitted. He wrote the equation as
xt=dapx® *atqxta’r.. (*) [p.195]

Where p,q,and r are positive.

Ifr =0, the fourth degree equation (*) reduces to a cubic equation. In this case of the cubic
equation the intersection at a point A (the vertex point A is on the circle) corresponds to the
root x =0 (we can see below fig. p.206). I shall prove in one example below. We can see

below figures for all cases of fourth degree equations (p.194/7/8).
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Figure 13: The construction of third and fourth degree equations

We can see here how to construct the fourth degree equations by a circle and a parabola. Let
AL be the vertical axis of the parabola and vertex 4 as the highest point on the parabola. We
assume the point A is an origin for the (x,y)- coordinate system along the horizontal direction
GK and the vertical axis of parabola, respectively. I would like to consider the latus rectum a

of this given parabolax”® = ay . Let E be the centre and d the radius of the circle. Assume that

2
the line GK = x then AK = Since, GK 1s the mean proportional between 4K and the latus

a

rectum a of the parabola. Find D on the vertical axis such that AD :%( p+a) and draw

DE = %q perpendicular from D .
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i1 /e
1‘%———-— D
L
F

Figure 14: The construction of fourth degree equations

We have

EG? = EM* + MG*

¥ 1 ) 1
=[——=(p+a)] +(x+—=
[a 2(19 )N +( 261)
x* 2 1
———((p+a)+-—
[a2 » (pta) 2

1
(p> +2ap+a’)+[x* +gx+—q°]
1
a’d’ =x*—a(p+a)x> +a’x> +a’qx+—a’(p° +q°> +2ap+a*)

1 1
x* —apx’ +a2qx+a2[z(p+a)2 +—q>-d*]=0

Descartes constructed the equation of fourth degree as

x*—apx* +algx—a’r=0 or x*=apx’-a‘qx+a’r
_ 1, 2 2l > 1,
Where —ar—[z(p+a) +Zq -d”] or d —[Z(p+a) +Zq +ar]
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Descartes gave on page 203 a proof (unit case) of the radius of the circle FGH .

Assume that AD = %( p+a), DE = %q and AEDA is aright triangle.

AE* = DE* + DA?

1

=Zq2+i(p+a)2 .............. (1)

Then, consider the circle SHR. Assume that A4S =a (we can note that AS is equal to latus
rectuma)and AR =r.

Since AH is the mean proportional between AS and AR .
ie) AH* = AS.AR

Also, since AHAE 1is a right triangle.
EH’® = AE® + HA®

EH’ :%qz +i(p+a)2 +ar (..by (1) and (i1))

ie) d’ =%(p+a)2 +iq2 + ar

If a is used as unit then the equation as

xt=pxt+gx-r=0 or x'=px’—gx+r
Descartes did prove for one of his cases (latus rectum equal tol) distinctions and left the other
cases to the reader. The circle can cut or touch the parabola in maximum four points. I would

like to write the Descartes own words here (p.200).

" Now the circle FG can cut or touch the parabola in 1, 2, 3, or 4 points, and if
perpendiculars are drawn from these points upon the axis they will represent all the

roots of the equation, both true and false’’

The line segments FL,GK ,gk and fl [see figure 13] are the roots of the equation. The

intersection point F on the left of the axis gives the “’true’’ [ie. positive] root; any on the
other side correspond to “’false’” [ie. negative] roots. Descartes observed if the circle and
parabola may not intersect or touch at any point, there is no root but they are all imaginary.

But Descartes stated that If the value ¢ 1is positive then the line segment FL a true root, a

point £ (centre of the circle, see figure 14) on the same side of the axis of the parabola; while
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the others, as the line segment GK , will be false roots. Otherwise, if the value ¢ is negative
then the true roots ( gk and GK ) will be those on the opposite side and the false or negative
roots ( FL) will be those on the same side as E . Descartes here mentioned the negative roots.
Also if the circle did not cut or touch the parabola at any point, then all the roots are
imaginary (p.200).

If the value ¢ is zero (he did not say), the given equation will be reduced to a quadratic
equation.

ie) x* = px’ +r

Let y = x* (say)

Descartes did not comment on this quadratic equation. But he had already explained the
solution of quadratic equations (i) in his first book of Géométrie (p.13).

Ifr = 0, then the fourth degree equation reduced to cubic equation (p.196).

ie) x* =apx® +a’qx or X’ =apx+a’q

And the radius of the circle is equal to d = \/% (p+a) + %qz

But, AE is equal to \/%(p+a)2 +%q2

ie) AE =d
So, the circle passes through at a point 4. The circle intersects the parabola in the points

F,G,g and A4 . The lines segments F'L,GK and gk are the roots of the cubic equation.

I explain in modern terms the solution of the fourth degree equation here.

Assume that GK = x, and AK = y then y = x* because G is on the parabola.

We take the parabola y = x* with vertical axis and latus rectum is equal to 1.

But G is also on the circle and the centre £ of the coordinates are {%q,%( p+ 1)}
1T 1 ’
The equation of the circle is {x — Eq} + [y - E(p + 1)} =d?

X+ yt —qx—(p+1)y+Bq2 +%(p+1)2}=d2
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The circle x> + y> —(p+ 1)y —gx—r =0, where r =d" —[iqz +i(p+l)2}

Then find from the equation as,
X H+xt—(p+Dx* +gx—r=0
ie) x* —px* +qx—r=0
{The circle of the general equation is x*> + y> +2gx+2fy+c =0
But the centre of the coordinates is (— g—f )
The parabola has equation y = x*. Assume the centre E of the circle, its coordinates (a,b) and
its radius isd .
The equation is (x —a)’ +(y —b)’ =d*
x*+y* =2ax-2by+a’+b*-d* =0
Both curves are intersecting. This implies
¥+ xt —2ax-2bx* +a’ +b> -d* =0
x* = (2b—1)x? +2ax+(a’2 ~a’ —bz)
Hence, we take (2b—1)=+p ,2a = +¢ , and (d2 -a’ —b2)= *r
b :%(ip—l),a :%(J_rq), and d* =+r+a’ +b°
This implies, x* = +px”* +gx +r }
This method is easy to understand for people today. Descartes gave only for one of his case

distinctions (namely, + p,—¢,and + r) and left the other cases to the reader.

4.1.1 Numerical example:

Mathematica is a computer program designed by Stephen Wolfram (a former physicist) used
in scientific computing, mathematics, economics, medicine, and many other fields.
Mathematica is a computer program for doing mathematics. It is used for instruction,
research, writing, and others. It is possible for both numeric and symbolic work, it contains
functions which allow a computer to perform a wide range of mathematical calculations from
basic algebra and geometry though the calculus of variations and number theory. More

information is on the site <www.wolfram.com>.

Weaknesses: steep learning curve, an interface that is difficult to use from the command line

and rather complex installation procedures.
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How to use this document:

This document is intended for new users of Mathematica. No earlier math software
experience is assumed, though we do point out differences between the major packages along
the way. I think this operating system is easy to understand for everybody. Since Mathematica
is quite visually oriented, we will be using it on a computer with a windowing system (such as

Windows, Macintosh, or X-windows).

One example, we could do simple arithmetic calculation with Mathematica. If we wanted to
add 2 and 2, we type the input 2 + 2 and hit Return.

In[1]:=2+2

Out[1]=4

We enter information and commands into the notebook window, and the output (if any) is

displayed there

1 Untitled-1 * _ (O] =]
Inf1]:= 2+ 2 j :|

out[il= 4 3

We save our work, choose File->Save As... or File->Save.
Complex numbers in mathematica:

Mathematica uses the letter i to represent the square root of -1.

Type Sqrt[-1] orv/—1 and we will get the answer 1

We can use 1 in expressions: the complex number atbi is represented as a+tbi in
mathematica.
Mathematica uses the function Conjugate to take the complex conjugate of a number. One
example, the conjugate of a complex number is that number with the sign of the imaginary
part reversed

ie) Conjugate (a+bi)=( a-bi)
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Mathematica commands in conjugate:
In[1]:=a=1+21

Conjugate[a]

Then we can > ENTER’’ and we will get the answer
Out[1]=1+2 1

Out[2]=1-2 i

Help system

Mathematica has an excellent help system. To get general help, choose Help->Help Browser.

Browse among the topics listed.

The Mathematica Book: - Mathematica comes with an excellent resource. See also the
Getting Started section, which contains several excellent tutorials (Further information, see

appendix).

I would like to give a numerical example here and I shall construct the fourth degree equation

by intersection of a circle and a parabola. Also I shall use the mathematica program and find

the roots too. The standard form of the fourth degree equation is x* = +px* tgx+r(a=1).

I consider the fourth degree equation: x* = 7x* —2x +8

Where p=7,g=2,r=8and I consider the valuea =1. So, the equation of the parabola is
X =y.

Now I calculate the values: AD :%(p+a) :%7+% =4 and DE :%q :%2 =1

Then I consider the right triangle is AEDA .
AE® = AD* + DE* =16 +1
AE =17
Also, HA = Jr = \/g
Since AHAE 1is a right triangle.
EH? = AE* + HA* =17+8
EH =5
We assume the point 4is an origin for the (X,y)- coordinate system along the horizontal

direction GK and the vertical axis of parabola, respectively.
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LetGK = x, AK = y and the point £ is (-1,4).
Then the equation of the circle is (x +1)* +(y —4)* =5°
ie.x’ +y° +2x-8y-8=0
Now [ want to solve this equation. So, I choose these two curves, circle:
x*+ 7y’ +2x—-8y—8=0and parabola: x* = y
I consider the circle and parabola:

Circle: x* +p” +2x—8y—-8=0 ................. (a) and

Parabola: x> =y ...... (b)

First, I would like to plot the two graphs. So, I use the mathematica program commands given
below.
gl=Graphics|[Circle[ {-1, 4}, 5];
g2=Plot[ x>, {x,-10, 10}, DisplayFunction — Identity];
Show[gl,g2, AspectRatio — Automatic, PlotRange — {-15,15},
Axes — True, DisplayFunction — $DisplayFunction];

I plot the circle and parabola on the same axis.

15

T

10

-15

Figure 15: Numerical example for the construction of fourth degree equation
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The circle x> +y° +2x-8y—8=0 intersects the parabola x* =y at two real points. Now

we solve find the intersection points. We obtain a numerical approximation given below. I use

the mathematica program command also given below.

Nsolve[ y == x* && x* + y* +2x -8y -8 ==0]
{{y—8.61065,x>-2.93439},{y—>7.35066,x>2.71121},{y—>-0.980657+0.222411 i,x->0.111591
+0.996549 1},{y—>-0.980657-0.222411 1,x-0.111591 -0.996549 i}}

Now, I shall construct the fourth degree equation by intersection of a circle
(x> +y* +2x-8y—8=0)and a parabola (x* = y).
We consider the two equations and substitute (b) in (a), we get the fourth degree equation

X+ (x*)? +2x-8(x*)-8=0

¥ +xt+2x-8x*-8=0

ie) x*=7x*—-2x+8, where p=7,g=2,and r =8

Then I shall find the roots of fourth degree equation here. So, I use the mathematica command
and we get the result below. We can see the two real roots in the picture and the two complex
roots found in mathematica here.

Nsolve[ x* —=7x* +2x-8==0]

{{x—>-2.93439}, {x->2.71121}, {x—>0.111591 +0.996549 1}, {x—>0.111591 -0.996549 1}}

Then I would like to plot the fourth degree curve y = x* —7x*> + 2x — 8, which gives the roots
to the equation on the interval —5 < x <5 given below. We can observe the two real roots
and three stationary points (relative maxima or relative minima) in this figure below.

Plot[ x* —7x% +2x =8, {x,-5,5}];

Assume that we want to plot the function y = x* —7x” + 2x — 8 over the range of x values -
5<x <£5.[ie)xmin < x £ xmax |

Plot[ x* —7x*> +2x -8, { x ,-5,5}]; Then we can > ENTER’’ and we get such a plot. This Plot
command can be used to plot virtually any one-dimensional function. Generally, the
command takes: Plot[ function, {range} ]

The range contains three elements. The first, variable x (example) will be plotted on the
horizontal axis, the second element is the lower limit on this variable, and the third element is
upper limit on this variable (ie){x,xmin,xmax}). The Plot command takes the square
brackets, [ ]. Also note { x,-5, 5} specifies a domain interval for x . (Further information, see

appendix)
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Figure 16: Fourth degree curve

4.2 Special cases for the fourth degree equation

Descartes spent much work especially on the trisection method in third degree equations and
he dealt with some examples in his book IIl also. He discussed the two most obvious
examples. These are

e Determining two mean proportionals between two line segments a and g be the way
to the equation x° —a’q =0
e Trisection of an angle to the equation x* = 3x —¢g (NP=g be the chord subtending the

given arc in a circle with radius 1)
He described clearly the outcome of the construction for two cases. I shall explicitly describe

this for third degree equation below.
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4.2.1 Descartes’ construction of third degree equations by circle and the traditional

parabola

First, Descartes explained the problem of finding two mean proportionals between the lines a

and ¢ (p.204). I shall explain the details below.

If we consider the one of the mean proportional be x, then

2

2 3
X X X
a a

3

.. . . X
This implies, we get an equation and g becomes and—.
a

ie) x’ =a’q

Then I shall explain the Descartes geometrical method. But he did not give the proof of this

problem. We can consider the figure below.

)

Figure 17: The construction of a third degree equation (mean proportional method)
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We consider the parabola FAG with its axis AL , and the latus rectum is equal to a.
Let AC is equal to% then CE is perpendicular to AC atC.1e) CE = %q .

Then the circle FA is passing through 4and Eis the centre of the circle. Then draw
FM perpendicular to CE . We take the point A as an origin for the (X,y)- coordinates system

along the horizontal direction FL and the vertical axis of parabola and assume FL = x. From

the nature of the parabola, FL’ = a.AL

2

ie) AL =2
a

Consider the right triangle AAEC,
AE® = AC? +CE’

AE? :%a2+%q2 ................... (1)

And also, EM = EC - MC
=EC-FL [MC=FL]

EM? =(EC-FL)* = (%q—x)z ................... (ii)

FM? =CL* = (AL — AC)?
) 2
ie) FM? = (x——ﬁj ................. (iii)
a 2

Then we consider the right triangle AEFM,

EF? =EM* + FM*

1 P (X a ’
EF*=|—q—x| +|—-=
2 a 2
1 x* 1
EF’ =—q’ —gx+x* +——-x"+-a’
4q 1 a’ 4
But EF = AE [ The radius of the circle]

1 x! 1 1 1
This implies, —¢”> —gx+x’ +——-x"+—a° =—a’ +—q’
pHes, g 4 PE 49 T4 Ty
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Secondly, Descartes explicitly explained that the solution of third degree equations could be
reduced to either finding two mean proportionals or to a trisection method and I shall clearly
explain that how such construction can be found as follows here. He also gives a clear

example in his Géométrie book III. We can consider the figure below [from pages 206/13].

Descartes wrote the third degree equation as

Figure 18: The construction of a third degree equation (trisection method)

Consider the circle of radius NO = a (Say) and centre at O the circular arc NOTP, into three

equal parts (ie. Draw the chord NQ,QOT and TP of the three equal parts of ZNOP). Let

NP = 34 be the chord subtending the given arc and NQ = x be the chord subtending one-
p

third of arc. Drawing QS parallel to 70 , its intersection with NP isS . Let OT cut NPatM .
ZNOQ is measured by arc NQ;

ZQONS' is measured by 1/2 arc QP or arc NQ;
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ZSOR=/ZQO0T is measured by arc QT or NQ;

We can see that the triangles ONQ, NOR and QRS are similar.

An angle Z/NOP trisected, three equal parts
ZOQON=2NQR=Z0QSR =6
The triangle AOQON ,
NO = QO (Radius of circle)
So, the angles ZOQON =Z0NQ =¢
The triangle ANQOR,

NQ = NR and the angle ZNOR=/NRQ=¢

And OS //OT , then
ZSOR=/200T =86
So, consider the triangle AOSR,
ZSOR=0 and ZSRQO=¢
ZOSR=ZQRS =¢
0S =0R

ie.) All triangles AONQ,ANQR and AQRS is isosceles.

It is clear that is NO: NO = NQ : OR = QR : RS

gix=xitx=ly Ly
a a a
We have,
NP =2NR + MR
=2NQ + MR
=2NQ+ MS — RS
=2NQ+QT - RS
=3NQ - RS
3—q=3x—izx3
)% a
q:px—&%x2
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Ifizzl then a’ _P
3a 3

2
3
But a is a radius of the circle. ie) NO = a = P

3

I can write the general equation: x° = px —gq

If the circle of radius a is used as unit circle, then p = 3.

Descartes also explained the different cases of third degree equations. These are

X' =px—q X' =px+q x'=-px+gq
We can observe that he did give the first proof of construction of third degree equation for the
unity case (latus rectum is equal to 1). Also he stated the general cases, but Descartes did not
give a general proof. Descartes omitted the equation x’ = —px — ¢ because he assumed that at

least one solution was positive (J.M.Bos, p.377).

I use the method and modern terms here.

I can consider the general cubic equation x’+ax’ +a,x+a, =0and the
3 2
o a, . a, a, a,
substitution x — (x —?j , this implies (x —?j + al(x —?j +a, (x —?j +a, =0can be
reduced to a form without quadratic term: x° = —px —g

1 1 1
Where p=a,and ¢ :(—2—7af +§a12 -3 a +a3j

Cardano’s rule gives us the root

But Descartes did not comment on this case and rule in his geometry book III. I think modern
mathematics student finds it a little bit difficult to understand because our modern geometry

has quite a different style now. I shall discuss its roots below in my present work.
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Also, the solid problem of third degree could be reduced to (second degree) an equation of the

general form

The quadratic term of the equation has been removed before. Descartes discussed the two
cases of the solution of third degree equation. But he discussed the two inequalities (J.M.Bos,

p.377/8). These are (consider the one case)

1) The square of (%qj is greater than the cubic of (% pj

i1) The square of (% qj is less than the cubic of (% pj

I shall discuss these two cases given below.

o 1 2 3
Casei: —qg° >—
4q 27p

a) Consider the equation as x° = px+g¢

Descartes explained that the algebraic solution of this equation by using Cardano’s formula
for a cubic equation. Cardano published in his great work for the method of solving cubic

equations in 1545. But Cardano attributed the formula to Scipione Ferro. His rule gives us the

3J1 NI \/1 N
29T\ Y 7P T\ Tk

Descartes observed that if the inequality%q2 —i p’> >0 the cubic root x was real. I don’t

root

know why Descartes did not argue the equality case. But I think this was obvious for him. |

can consider this equality. If the equality is %qz = % p° then the solution of this equation is
[
X = 2 3[—

b) Consider the equation as x° = —px + ¢

The solution could be expressed by Cardano’s formula for a cubic equation. The rule invented
Cardano attributes to one by Scipio Ferreus. At present the result is usually called Cardano’s

formula.
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His rule gives us the root

31 + l 2+i 3_3_1 + l 2+i 3
24 4‘] 2717 q q p

I would like to say it in Descartes own words here (p.211).

It is now clear that all problems of which the equations can be reduced to either of
these two forms can be constructed without the use of conic sections except to extract
the cube roots of certain known quantities, which process is equivalent to finding two

mean proportionals between such a quantity and unity.”’

Descartes says nothing else than Cardano’s formula, but unlike Cardano, who was only
interested to find a solution expressed with root signs, Descartes had still to find the
geometrical point, that means the mean proportional. The latter require the use of conics,
while the algebraic manipulation which leads to Cardano’s formula, does not presuppose any

geometrical method at all.

1 1
Caseii: —q° <—p’
41 =77
This is the famous “casus irreducibilis” in which Cardano’s formula did not give solutions

because it involved uninterpretable square roots of negative quantities (J.M.Bos, p.377).
Descartes showed that the solution of equationx’ = px+¢q [x’ = px—gq, x’ =—px+q,...]
could be reduced to a trisection. Thus Descartes reduced the solution of the third degree
problem to one in which two mean proportionals, and one in which the trisection of the angle
had to be found. But these two problems cannot be solved with plane methods. Descartes
remarked that the circle is in its shape too simple to solve the trisection and two mean

proportional problems. So, I would like to write what Descartes says here (p.219).

“In as much as the curvature of a circle depends only upon a simple relation between
the center and all points on the circumference, the circle can only be used to

’

determine a single point between two extremes, ...."
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Also his construction was very clear. We can see this figure below (p.206/13).

Figure 19: Descartes’ trisection method

For example the equation x* = px + ¢, with p,g >0 and

Assume that the condition:

1€) — < —
)4q 57 P

The chord NP is equal to 34 in the circle NOPV . We can observe that the chord NP is less
p

than the diameter of circle NOPV . ie) 3 _, \/Z and divide each of the two arcs NOP and
p 3

NVP into three equal parts. Also Descartes stated that NO and NV are two true roots of the
equation. The positive roots of the trisection are gk and GK (g and G being on the opposite

of the axis from £) and the one negative root is F'L. Moreover, he stated in the smaller root

gk 1is equal to the NQ on the trisecting arc NP and the other root GK is equal to the NV
on the corresponding to trisecting arc NVP, and the negative root FL is equal to NO+ NV .
Although Descartes did not explicitly mention it here, his other case makes clear. But he did

not give a proof. For example, we can observe that the equation x’ = 3x —¢g may be obtained
from the equation x° = 3x + ¢ by transforming the latter into an equation whose roots have the
opposite signs. That is, the roots of equation x’ =3x—g are the false roots of equation

x =3x+ g and vice-versa. Therefore FL = NQ + NP is the true root.
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The editors of Descartes’ geometry quote Rabuel’s proof in a footnote page 208. I explain

Rabuel’s proof here.

-

-
M

~ ™
o i
|'I||'\-

Figure 20: Rabuel’s construction of third degree roots

We can assume AB=p,EB=q,GK =y, gk=z,and FL=x
ThenGM =y+q,gm=z+q,and FN =x—q

I would like to consider the latus rectum 'a' of this given parabola.

2
So, GK =y this implies AK =
a

2
z

gk = z this implies Ak =—
a

2
X

FL = x this implies AL =—
a

2

And simply calculate ME = AB—AK = p 2

a

2

Similarly, mE = p--—
a

2
X

NE=—-p
a

And also, AE’=GE’ = Eg®> = EF’(The square of the radius of given circle)

PP +q =(p—y72]2 +(y+q) =(p—§]2 +(z+q) =(x7:—p]2 +(x—gq)

T.Vigneswaran, Agder University College, Norway. 49 Master Thesis: May 2007



2 4

We take, p2 +c]2 =pz—2py—+y—2+y2 +2yq+q2
a a

2py—2:y—z+y2 +2yq
a a
2apy =y  +a’y+2a’q.................. (D)
And similarly, 2apz =z’ +a’z+2a’q........... (2)and 2apx = x> +a’x-2a’q ....... 3)
M-2) = 2ap(y—z):y3 -z +a2(y—z)
= 2ap= (y2 + yz +22)+ a’ . (4)
Similarly, 2ap = (y2 —yx+ x2)+ a’. ®))

@-(3) = 0= +yz+22)- (1> —yx+x?)
:>(y2+yz+22)=(y2—yx+x2)
= (yz+2%)= -y +x?)
= yz+yx=x> -2z
= Yz+x)=(x+z)x-2)
= (x+zfy-x+z]=0
L X=y+zorx=-z

That is, FL = GK + gk or FL =—-gk

Rabuel did not comment on the second case ( FL = —gk ), but in this case parabola axis AL

will be fall into the diameter MN of the circle. Thatis EB =g = 0.

Further, I explain the third degree equation in modern terms here.

Assume that GK = x, and AK = y then y = x° because G is on the parabola (see figure 18).

We take the parabola y = x* with vertical axis and latus rectum is equal to 1.

But G is also on the circle and the centre E of the coordinates are {%q,%(p + 1)}

2 2

The equation of the circle is [x —%q} + [y —%(p + 1)} —d?
2 2 1, 1 2| 2
Xyt —gr=(pr v+ 2"+ (p 1) | =d
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x>+’ —qx—(p+1)y:0,where [iqz +i(p+1)2}:d2

We take the parabola y=x*and .............................. (1)
Then take the circle x* + y> —(1+p)y+qgx=0............... (2)
Substitute (1) by (2) this implies
x4 xt =1+ p)xP+gx=0
xt—px® +qx=0
x(x> = px+¢q)=0
x=0orx’—px+q=0
X' =px—q
The solution from the simple calculation isx” = px —gq.
Descartes gave only for one of his case distinctions (namely,+ p and—gq ) and left the other

cases to the reader. This example of third degree equation is easy to understand for a modern

student today.

4.2.2 Numerical example:

I would like to give a numerical example here and I shall construct the third degree equation
by intersection of a circle and a parabola. Also I shall use the mathematica program and find
the roots too. The standard form of the third degree equationis x’ =+px+gq (a=1).

I consider the third degree equation: x> = 7x —2

Where p =7,q =2, and I consider the value a = 1.so, the equation of the parabola is x° = y.

Now [ calculate the values:
1 1 1 1 1
AD=—(p+a)==T7+—=4 andDE=—gq=—2=1
2 (p+a) 2 2 2 1 2
Then I consider the right triangle is AEDA .

AE? = AD* + DE* =16 +1

AE =17

That is, the radius of the circle is 4E. We assume the point 4Ais an origin for the (x,y)-
coordinate system along the horizontal direction GK and the vertical axis of parabola,

respectively.
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LetGK = x, AK = yand the point £ is (-1, 4).
Then the equation of the circle is (x +1)* +(y —4)* =17
ie.x’ +y* +2x-8y=0
Now I want to solve this equation. So, I choose these two curves, circle:
x* +y* +2x -8y =0and parabola: x* = y
I consider the circle and parabola:

Circle: x* +y° +2x-8y=0 ................ (a) and

Parabola: x> =y ...... (b)

First, I would like to plot the two graphs. So, I use the mathematica program commands given
below.

gl=Graphics[Circle[{-1, 4}, \/ﬁ];

g2=Plot[ x*, {x, -10, 10}, DisplayFunction — Identity];

Show([gl,g2, AspectRatio — Automatic, PlotRange — {-15,15},

Axes — True, DisplayFunction — $DisplayFunction];
15

10

-10 -5 5 10

-15

Figure 21: Numerical example for the construction of third degree equations (1)
The circle x* + y* +2x—8y =0 intersects the parabola x*> = y at four real points. Now we

solve the intersection points. We obtain a numerical approximation given below. I use the

mathematica program command also given below.
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Nsolve[ y == x> && x> + y> +2x -8y =10]

{{y—>7.71982, x»-2.77846}, {y—6.19656, x—>2.48929}, {y—0.0836184, x—>0.289169},
{y-0., x-0.}}

We can observe the three intersection points in this figure 21. But mathematica gives a result
in four intersection points. This is special case of the fourth degree equation. Because one
point {y—0.0836184, x—>0.289169} is not visible to our eyes. In this case we could check the

mathematica plot on other intervals, if we want to have further information.

So, we could check this mathematica plot commands:
gl=Graphics[Circle[{-1, 4}, \/ﬁ];

g2=Plot[ x>, {x,-0.5, 0.5}, DisplayFunction — Identity];
Show[gl,g2, AspectRatio — Automatic, PlotRange — {-1,1},

Axes — True, DisplayFunction — $DisplayFunction];

0.75
0.5

0.25

0.6 -0.4—072 | 0.2 0.4 0.6

-0.75

-1

Figure 22: Numerical example for the construction of third degree equations (2)

In this graph is clearly identifying the fourth point.
Now, I shall construct the third degree equation by intersection of a circle

(x> +y”> +2x—8y=0)and a parabola (x* = y).
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We consider the two equations and substitute (b) in (a), we get the third degree equation
x4+ (x*)? +2x-8(x*)=0
x4+ xt+2x-8x*=0

x*=7x*=2x or x’ =7x-2
ie) x> =7x—2, where p=7,and g =2

Then I shall find the roots of third degree equation here. So, I use the mathematica command
and we get the result below. We can see the three real roots here.

Nsolve [y=x" —7x+2==0]

{{x—>-2.77846}, {x—>2.48929}, {x—0.289169}}

Then 1 would like to plot this construction of third degree curve y=x’—7x+2 on the

interval —6<x <6 given below. We can observe the three real roots and two stationary

points in this figure 23 below.

Plot[ x* = 7x+2, {x,-6,6}];

Figure 23: Third degree curve
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4.3. The construction of the fifth and sixth degree equations

Descartes reduced the construction of fifth and sixth degree equations to the form:
X = px gxt = s =AU =0 *)  [p.220]
Here p,q,r,s,tand u are positive. The coefficients make sure that all real roots are positive;

the result also agrees with Descartes sign rule (p.160). For this rule Descartes provided no
proof. He may have found it while studying the form of the equations required in his

construction of fifth and sixth degree equations (see more below). Descartes also assumes
1 . ) . . )
thatg > 2 p’. Descartes did not omit the second term of this equation because the equation

depends on his assumption. He did not comment on why he chose this equation. Furthermore,
he avoided the complicated + / - case distinctions for sixth degree equation [(*)]. See the

figure below (p.222/34).

O

!
]

Figure 24: The construction of sixth degree equations
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4.3.1 How the solutions of (*) are constructed:

First a summary of the construction (see also the picture), which will afterwards be explained
in detail:

By the equation (*) a (traditional) parabola with vertex point Dand a fixed point £ on its
principal axis are determined which are assumed to lie in a plane and move (together)
downwards with it such that its principal axis is always overlapping with a given and fixed
straight line BK in another plane underneath it, where the distance between B and K does not
matter. In this lower plane (which can be imagined as a sheet of paper lying below the first
one), in addition to the fixed straight line BK , two points 4 and / are determined by the
coefficients of the equation and by the point B . The connecting straight line between 4 and £
(which can be imagined as a ruler rotating around the fixed point 4) intersects with the

moving parabola at varying points C and thus defines a curve QACN in the lower plane

which we call “Cartesian parabola” and which can be shown to be a third degree algebraic
curve.

Descartes drew only one branch of the curve (Cartesian parabola); the other is not involved in
his construction.

Around point / in the lower plane a circle can be drawn whose radius is also determined by
the coefficients of the equation (*). Now it can be shown (Descartes does not prove it in the
book and leaves it to the reader, but he was doubtless able to do it at least for special cases, as
we will do it below) that the intersection between the circle and the “Cartesian parabola”
gives the roots of the equation (*), which are the rectangular distances of these intersection
points to the given straight line BK , which overlaps during the entire construction with the
principal axis of the original (traditional) parabola.

The construction requires certain auxiliary quantities, in particular a half circle ILP in the
middle of the figure.

Now I describe the construction in detail which one finds on pages 223/24 in La Géométrie.
Note that the choice of the parameters for the parabola and the circle in dependence on the
equation (*) seems at first sight rather unmotivated and is justified only afterwards by
showing that the resulting points of intersection deliver the solutions. I do not know why

Descartes did not say how he found the values of the parameters n, DE,LH, and LP .
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The principal parameter of the traditional parabola, we call », which is determined by the

given equation (*) in the following way:

Now Descartes constructs a point 4 in the lower plane with the rectangular distance gfrom

the straight line BK :
Ap=L
2

Descartes then defines the point £ on the principal axis of the parabola by

_2u

pn

DE

Because 4 and E are now defined there is also the straight line AE defined for any position of

the moving point £ .

Descartes is therefore now able to “construct” the “Cartesian parabola”, by assuming it to be
the collection of all points of intersection between the (rotating) straight lines AE and the
moving (traditional) parabola. These points of intersection result in a curve in the lower plane
which later was called the “Cartesian parabola”, and which is of course in its concrete form

(parameters) depending on the equation (*).

Please note that the Cartesian parabola is not “constructed” in the traditional sense with ruler
and compass (step by step connecting points and drawing circles around points which have
been constructed before) but is the ideal collection of infinitely many constructions,
performed with varying points ( £) which can be arbitrarily chosen on a straight line BK (here
comes the mechanical notion of “movement” in). This is a much looser notion of construction
of a geometrical figure or a curve than the traditional one with ruler and compass. One has
also to remark that already the assumption of the existence of the traditional parabola CDF is
the result of a similar generalized (pointwise) construction. Thus the Cartesian parabola
results from an iterated generalized construction which finds its expression in the fact that it is
a third degree algebraic curve, while the traditional parabola is a second degree algebraic

curve.
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Now the Cartesian parabola being “constructed” Descartes performs some more traditional
constructions of half-circles and circles because he wants to find a curve (circle) to intersect

with the Cartesian parabola which delivers the roots of the original equation (*).

Descartes defines a point L in the lower plane, which lies above the fixed point B in a distance

equal to the length DE in the upper plane, that means

2Ju

pn

BL =DE =

From L he goes in the opposite direction downwards and constructs a point H on the fixed

straight line in the lower plane with the distance

LH =

t
Zn\/;
Then Descartes erects in H the perpendicular to the left and constructs the point / in the

lower plane at the distance

HI:ﬂ where m——+
n’

4\/_

Descartes then joins the fixed points/ andL in the lower plane, divides the connecting
straight line in the middle and constructs the half circle on /L (see figure 24). Descartes
constructs a point P on the periphery of the half circle just constructed in a distance LP from

point L with the following value:

Lpo [Sree
n

Finally, Descartes takes the distance between the constructed points / and P as the radius of
another circle which he draws through P. The circle intersects with the Cartesian parabola in

several points, on the figure called O, N,C and another one above C which does not have a

name in Descartes’ picture.

Descartes now says page 224/405 without proof that the perpendicular distances
CG; NR, and QO of these points of intersection from the straight line BK are the roots of the

equation (*) which he is looking for.
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" This circle will cut or touch the curve ACN in as many points as the equation has

roots; and hence the perpendiculars CG;NR, QO, and so on, dropped from these

points upon BK , will be the required roots. This rule never fails nor does it admit of

any exceptions.’’

In the remaining part of this paragraph I want to show, what is missing in Descartes, namely
that the values of these geometric lengths indeed satisfy the sixth degree equation we were

starting from.

I go partly back to Descartes (p.84) insofar as I denote the perpendicular distances by the

letter x for the unknown.

Furthermore, I shall explain Descartes’ proof of the sixth degree equation here.
We take GC = x
Since, n:GC =GC :GD

2
X

ThenGD = —
n

2Ju x* 2u

andGE =GD - DE = ——
pn n pn

But DE =

Since, AB:BE = GC : GE and AB :%p

This implies, BE = px_ ﬂ
2n  nx

Then we know BL = DE

So, BEzDL:ﬂ—ﬂ
2n  nx

t px\/;

and DL = *———

2n\/; 2n  nx

Therefore, our aim of the calculation is the line segment GH .
So, GH = DH - GD
=(LH+DL)-GD [..DH =LH + DL]

t px \/;} x°

Also, LH =

+___
Zn\/; 2n  nx

GHZ{
n
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1 ix
-x’+—px’ + —u

GH = 2 2\u

nx

Then the square of GH and we get,

Ju

x¢ - px’ +(ip2 —th“ +(2\/;+ P ]x3 +(

t2

4u

\/;sz —Ix+u

) 2Ju
GH~® = PR

Nu  pt

r
Also, again Hl =——+—+
s 2n* 0’ 4n*u

and for brevity

m r {
— where m:—+\/;+ p

n’ 2 4\/;

And the right triangle ALIH ,

11’ = IH? + HI?
m ot
nt  4n’u

And also the right triangle ALIP,

2

IP? = I — LP?
m’ t? S px/;
=_+ —_—
nt  4n*u n? n’

IP = R is the radius of the circle CPN by construction.
Draw CM , where a right angle is ZCM1
Since, MI = IH — MH

=—-X
2
n

2
m-  2mx

2
It results MI* = —

n n

Therefore the right triangle AICM ,

CM? =IC* - MI?
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2
t
—n’x* + 2mx’ —p\/;xz —sx” +4—x2

CM? = — u
n x

Butn® = L +q —%pz , multiplying by x* then we get

Ju

t
nixt = e +qx4 _Zp2x4

Ju

Also,m =L +Ju +-2 d , multiplying by 2x° then we get
2 4u

3

2mx® = rx’ +2\/;x3 + pt X
2u

Then we get,
2
(lpz—q—t]x4+(r+2\/;+ Pt ]x3—p\/;x2—sx2+tx2
Cu? = 4 \/; 2\/; 4u
2.2
n°x
2
(lpz—q—th4+(r+2\/;+ P! jx3+ t——s—p\/; x’
, \4 Ju 2Wu Au
CM~ = —
n°x

But the square of GH is equal to square of CM .
So,

1 t pt
x® - x5+( z—jx4+(2«/u+ Jx +(— «/ujx —iIx+u
p 47 ™ Ju p

2.2
n x

B irrsl

(ipz - —\/%Jx“ +(r+2\/;+

2.2
n x

S RSN (__pfx_tm_

|
(17 mam ool 2o ool

or
x—px® gxt = v sx? —tx+u=0

The line segments CG, NR,QO,..... are the required roots of the equation.
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Descartes explained that in his way he found all roots. All roots of a sixth degree equation
were imaginary, if the circle (CPN ) of radius R was very small and does not intersect the

Cartesian parabola QACN at any point.
Descartes says (p.227):

“The circle IP will in general cut the curve ACN in six different points, so that the equation
can have six distinct roots. But if it cuts it in fewer points, this indicates that some of the roots

are equal or else imaginary’’

If all the roots were positive, only one branch of Cartesian parabola would be really used in
the construction, namely, the branch with the local extreme. Descartes already explained that
in the case of alternating coefficients in the equation the roots are all positive. Also look in
this respect shortly on “Descartes rule of sign”, which is given without proof in La Géométrie

on page 160:

“We can determine also the number of true and false roots that any equation can
have, as follows: An equation can have as many true roots as it contains changes of
sign, from + to - or from - to +; and as many false roots as the number of times two +

signs or two - signs are found in succession.’’ (Géomeétrie, p.160)

This is the well known “Descartes rule of sign”. However, it was known before his time by
Thomas Harriot. Harriot gave it in his ’Artis analyticae praxis’’ in London on 1631. Also the
historian M. Cantor said that Descartes may have learned it from Cardan’s writings. But
Descartes has stated it first it as a general rule (see Cantor, Vol.II (1) p. 496 and 725)

The circle intersects the Cartesian parabola in at maximum of four points; the other two roots
were equal or imaginary. The above statements Descartes did not explicitly argue for other
two roots. Roberval had not accepted the above Descartes statement in 1638. Also, He

criticized the Descartes method for construction of the roots of sixth degree equation.

“Roberval thought that the circle would intersect the positive branch of Cartesian
parabola in at most four points, the other two being provided by the other branch.
Descartes denied this and explained for the example in the figure he had chosen a

case in which two roots were imaginary because otherwise the intersections of the
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circle and the branch of Cartesian parabola would be so oblique as to make the points

of intersection indistinguishable

says J.M Bos (2001) p. 418 in his book.

Normally, this sixth degree equation has six roots but not four. Descartes showed that only
one branch of Cartesian parabola is being used in his figure. Also, in this case showed that the
circle intersects the Cartesian parabola in at maximum four points; the other two roots were
equal or imaginary. A third degree curve usually has an inflection point. This is not a
maximum point. Descartes had chosen a case in which two roots were imaginary. We can see
figure below, curves with inflection points can be imagined to have more than four
intersection points with a circle. But Descartes did not clearly explain these cases.
Furthermore, see above Descartes’ own words (p.227) and Robervals remark. (We can see

this figure 19 on the internet: http://www.2dcurves.com/cubic/cubict.html)

trident of Newton
a=1. b=1, ¢-1 trident of\ Descartes (2=1)

Figure 25: Other branch of the Cartesian parabola

Descartes also discussed an important example of a sixth degree equation, namely, he worked
out to the problem of finding four mean proportionals between the line segments a, anda, .

But this is a fifth degree equation. We can see below how to find the sixth degree equation by

Descartes.

If the line segments a,, x, y,z,s,a, are in continued proportion,

Thatis,aq, :x=x:y=y:z=z:s=s:a,,
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The x, y,z,s will be called the four “’mean proportionals’” between a,anda, .
Algebraically this implies, we get
x*=a,y,y’ =xz,z> =ys and xs = a,a,
ie) x* —a'a, =0
Then the line segment x of fourth mean proportional between two given line segments a,
and a, are known. Descartes used in this method to solve the one example of sixth degree

equation. We can see below.

I describe Descartes’ idea here.
The relate to an equation was x” —a;'a, =0
Descartes changed into the required form of sixth degree equation by multiplying with x and
substitutingx = y —a, .
This implies, x(x* —a;a,) =0
x®—ala,x=0
(y-a)* —ala,(y-a)=0
And we get the sixth degree equation,
Thatis, y° —6a,y’ +15a y* —20a; y* +15a'y* —(6a; +a'a,)y +(a’ +aa,) = 0.

Therefore, we have to take p = 6a, and ¢ =15a;

That is, ¢ —% p® > 0(obvious)
1 . .
And we get, AB = 5 p =3a, and the principal parameter n is

t 1,
n=|-—=+q-—p

Ju 4

6a’ +a’a
n=\/—1 2 +6a]

2
\a, +aa,

2a,+al +
And we get, DE = 2u =4 a; 4 . Then the curve QACN ,
pn n

t _ 6a +ala,

2nvu 2nqJa’ +a,a,

We have, LH = and so on.
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We can draw the perpendiculars CG and NR, and therefore the two roots of the above

equation are CG and NR. The small length, NR we have to takea,, and CG must be y.

Thenx = y —a, = CG — NR, the first of the required mean proportional.

4.3.2 Numerical example:

I would like to give a numerical example for a sixth degree equation here. I shall find this
construction and solution by the mathematica program. Also, I find the roots of sixth degree
equation could be constructed by the intersection of a circle and a Cartesian parabola. I shall

give one example here. I think this example is easy to understand for people today.
The standard form of the sixth degree equation is x°® — px’ + gx* —rx’ + sx* —tx +u = 0.
I consider the sixth degree equation: x° —2x° +3x* —4x’ + x> =2x+1=0... ()

Where p=2,q=3,r=4,s=1,t=2 and u =1 and 4g > p°.

The principal parameter of the traditional parabola, we calln, which is determined by the

given equation (a) in the following way:

! 2
n=_ |—=+q-—p
Ju 4
_ |23 Ly
1 4
=2

So, the equation of the traditional parabola with the shifting point (0,0) assumed in D: This

equation should be x* =2y.

Now Descartes constructs a point 4 in the lower plane with the rectangular distance gfrom

the straight line BK :

AB =-—=1

(RS
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Descartes then defines the point £ on the principal axis of the parabola by

pn  2x2 2

DE

Because 4 and E are now defined there is also the straight line AF defined for any position of

the moving point £ .

LetCG =x,GH = CM = y and I choose H as the fixed point(0,0) of the coordinate system.

First I find the equation of the circle. So, I consider the value of /P.

nt  4n*u n? n’
pt

HI =— where m=—++u +
n’ aJu
4 2%x2

=—++1+

[P:\/§+ 4 1 21 _[1
16 4x4xl 4 4 2

IP = \/g . This is the radius of the circle.

Assume that the point / is (x,,0).

So, the equation of the circle is (x —x,)* +(y —0)* =

Now I calculate the value HI = ﬂz =
n

So, AB=HI =1. Thatis, x, =1.

4
4

.. The point 7 is (1,0).
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Assume that the point Bis (0, y,).

t _2\/5
2nu  pn

Then BH = LH — BL =

2 _2><1_O

1e.BH =

So, y, =0.Thatis, 4B = HI

2x2x1 2x2

In general, 4 and [ are different points but in this particular example the points Band H and

the points / and 4 are coinciding, which makes the example simpler.

Then equation of the circle is (x —x,)* +(y—0)* = %

(x=1*+y?

1
2

So, the equation of the circle is 2x*> +2y* —4x+1=0.

Descartes is therefore now able to “construct” the “Cartesian parabola”, by assuming it to be

the collection of all points of intersection between the (rotating) straight lines AE and the

moving (traditional) parabola. Now I find the equation of the Cartesian parabola.

Also we consider the triangles ACAM and ACGE are similar. We can see page 24/25 (my

previous work).

E
C G

¥

A i B

Figure 26: the construction of the third degree curve
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So, this implies 44— £C
CM  GE

_ 2
l—x:i where AB:landGE:GD—DE:x——zﬁ
y GE n  pn

(1-x)(x* =1) =2xy
— X+ x +x-1=2xy
This is the Cartesian Parabola.

Now I want to solve this equation. So, I choose these
circle: 2x> +2y* —4x+1=0 and Cartesian parabola: 2xy = —x* + x> + x -1
I consider the circle and Cartesian parabola:

Circle: 2x” +2y* —4x+1=0 ................. (1) and

Cartesian parabola: 2xy = —x’ + x> + x —1...(ii)

two curves,

First, I would like to plot the two graphs. So, I use the mathematica program commands given

below.

gl=Graphics[Circle[ {1, 0}, \/g 1;

3 2
g2=Plot[ al +)2C ral , {x,-5,5}, DisplayFunction — Identity];
X

Show([gl,g2, AspectRatio — Automatic, PlotRange — {-10,10},

Axes — True, DisplayFunction — $DisplayFunction];
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Figure 27: Numerical example for the construction of sixth degree equations

The circle 2x* +2y* —4x+1=0 intersects the Cartesian parabola 2xy = —x> + x> +x—1 at
two real points. Now we solve the intersection points. Because of the complicated structure of
the exact solution, we obtain a numerical approximation given below. I use the mathematica

program command also given below.

Nsolve[ y == —~ +; Tl & ot 427 —dx41==0]
X

{{y--0.320488, x>1.63031}, {y—>1.58284 +0.668062 1, x0.269125 +1.44681 i},
{y—1.58284 -0.668062 1, x-50.269125 -1.44681 1}, {y—0.806691 -1.1689 1,
x-0.315154-0.716979 1}, {y—0.806691 +1.1689 i, x-0.315154+0.716979 i},
{y—-0.45857, x50.461749} }

Now, I shall construct the sixth degree equation by intersection of a circle

(2x* +2y* —4x+1=0) and a Cartesian parabola (2xy = —x’ + x> +x—1).

We consider the two equations and substitute (i) in (i1); we get the sixth degree equation

—xX+xt+x-1 ’ 1
x2+( ] —2X+E:0

2x
Axt +[x® =2x° +x* —2x" +4x7 —2x7 +x? = 2x+1]-8x’ +2x* =0

ie) x° —2x° +3x* —4x’ + x> -2x+1=0
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Where p =2,g=3,r=4,s=1,t=2 andu =1. Also, in this case of sixth degree equation
satisfied the Descartes condition for p* < 4q .

Then I shall find the roots of sixth degree equation here. So, I use mathematica command and
we get the result below.

Nsolve[ x® —2x° +3x* —4x” + x> —2x+1==0]

{{x->1.63031}, {x>0.269125 +1.44681 i}, {x—>0.269125 -1.44681 i},
{x—>-0.315154+0.716979 1}, {x—>-0.315154-0.716979 i}, {x—>0.461749}}

Also, we can observe the two real roots and others are imaginary. The real roots are 1.63031
and 0.461749. Because, the Cartesian parabola and a circle are intersect of the two real points
(see figure 28).

We can see the sixth degree graph given below. Also, we can identify the two real roots

1.63031 and 0.461749 here.

Plot[ x® —2x° +3x* —4x’ + x> = 2x+1, {x,-2,2}];

40 r
30 1
20 ¢

10 ¢

2 = T— 2
Figure 28: Sixth degree curve
In this figure 28, we can observe one minimum point on this interval —2 < x < 2. But I shall

change the interval, for example—4 < x <4, that point is not visible to our eyes on this

interval (see appendix, p.83/4).
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5. The construction of higher degree equations

Descartes discusses the construction for higher degree equations at the last page of the book

IIT and he says (p.240):

’.... Furthermore, having constructed all plane problems by the cutting of a circle by a

straight line, and all solid problems by the cutting of a circle by a parabola; and, finally, all

that are but one degree more complex by cutting a circle by a curve but one degree higher

than the parabola, it is only necessary to follow the same general method to construct all

problems, more and more complex, ad infinitum; for in the case of a mathematical

progression, whenever the first two or three terms are given, it is easy to find the rest...."’

Descartes did not give any further details in his book III and also he did not provide any

practical work of this case. It is difficult to understand what Descartes meant by the last line

saying ’ it is easy to find the rest’’ for the generalizing to higher degree equations (p.240).

Also Descartes classified the equations of degree 2n—1 and 2z in his book II (p.56) and he

called this classification the n” class of equations (p.48). I.M Bos (p.372) stated that

Descartes probably envisaged that equations of degrees 2n—1 and 2n should be constructed

by the intersection of a circle and a curve of degreen . That is, all 2n (2 x n) equations can be

solved by intersection of a circle (degree 2) and a curve of degree n . Further, in 1779, Etienne

Bezout proved that the two curves of degree m andn, respectively, intersect in general in

m x n points (J.M.Bos, p.360). That means Descartes’ assumption was partly confirmed by a

proof of Etienne Bezout (1730-1783).

Table 1: Descartes construction of higher degree equations by using lower degree curves

Degree of the Name for the problems | Curve needed to Class of curve

equations construct the equations

1 plane line unclear

2 plane circle and line unclear

3 solid circle and parabola first

4 solid circle and parabola first

5 Super solid circle and Cartesian second
parabola

6 Super solid Circle and Cartesian second
parabola

7,8,0,...... - higher 3,4,5,.....s0 on
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6. Conclusion

Descartes’ Geometry consists of three books. Book I is about geometrical interpretation of the

operations of arithmetic (+,—,x,+, and square root extraction), construction of plane problems,

and the general analysis of Pappus’ problem (deriving from a Pappus equation). Book II is
about a full solution of Pappus’ problem in the three and four lines, and a explanation of two
cases of the problem in five lines, the explanation of the curves which are acceptable or not
acceptable in geometry, the acceptability of pointwise construction of curves, the study of
ovals, and curves on non-plane surfaces.

Book III deals with simplicity of problems, solutions, and curves, and gives Descartes’
standard non-plane constructions. In the second part of book III he gives the standard
constructions for equations of third and fourth degree and for those of fifth and sixth degree.
In the last page of book III he stated that how to extend the general rule of construction to
equations of ever higher degree (J.M.Bos (2001), p.290/91).

Descartes did not find the clear expression for his geometry until the Géométrie of 1637.
According to this vision geometry can and should be structured, and the confusing jumble of
problems, methods and solutions, in which it is impossible to know where the problems end
and the solutions start, can and should be cleared up.

Descartes first studied Pappus’ problem in the late part of 1631 and early part of 1632.
J.M.Bos(2001, p.333) stated that ©* Descartes’ solutions of Pappus’ problem as presented in
the Geometry was impressive indeed and well suited to convince his readers of the power of
his new method and of his own virtuosity in handling it’’. The Descartes’ solution of Pappus’
problem illustrates his strange mixture of clearness and concealment in the geometry. The
Descartes’ Géométrie book was indeed an essay on method; it explained with great clearness
a novel method for finding the solution of geometrical problems.

Descartes proved and commented the constructions of four line loci clearly enough, but he did
not comment how he determined the location and the parameters of the conic sections from
their equation and he only provided the values. He accomplished that his solution of the
general three and four line locus problem had an importance beyond the special sphere of the

Pappus’ problems. He wrote:
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“Since all equations of degree not higher than the second are included in the
discussion just given, not only is the problem of the ancients relating to three or four
lines completely solved, but also the whole problem of what they called the
composition of solid loci, and consequently that of plane loci, since they are included

under solid loci’’ (p. 79).

The tracing procedure of the five line locus by turning a ruler and moving a parabola was
exhibited in detail; the curve played an important role in his theory of geometrical
construction.

Descartes teaches us about “’construction of equations’ in his geometry book and his
contribution to clarifying geometrical constructability was the most influential; almost all
mathematicians after him took over his view as described in the Géométrie. Descartes’
method of geometrical constructions fitted well into his programme of using algebra in
geometry. It is here that the construction of equations has it crucial position in the geometrical
theory, because it forms the bridge between the application of algebra as a tool in geometry,
and the actual geometrical construction (J.M.Bos, 1984, p.338).

Descartes explained how to construct the roots of quadratic equations in his geometry book 1.
In order to move on to higher degrees he had to explain what he meant by constructional
exactness. The general construction for equations of third and fourth degree by means of a
circle and a parabola was beautiful and constituted a marked improvement of the then extant
methods. Descartes’ geometry provided a general construction of the roots of fifth and sixth
degree equations and claimed that this construction, together with the one for third and fourth
degree equations, showed how the technique could be extended to higher degree equations.
Descartes constructed equations of fifth and sixth degrees by circle and Cartesian parabola.
He did not explain why he chose the Cartesian parabola with its particular origin from the
parabola, and so that choice remained unconvincing because of its arbitrariness. He wrote that
*’ it is only necessary to follow the same general method to construct all problems, more and
more complex, ad infinitum’’. It seems likely that Descartes had a general method in his
mind.

J.M.Bos (2001, p.374) formulated the general rule of construction that Descartes presented in
his geometry. He wrote:

“’Construction in geometry should be performed by the intersection of curves. The curves had

to be geometrically acceptable and simplest possible for the problem at hand. Geometrically
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acceptable curves were precisely the algebraic ones; their simplicity was to be determined by

their degrees. With these premises the procedure for constructing problems was:

1. Confronted with a problem, the geometer should first translate it into its algebraic
equivalent, that is, an equation.

2. If the equation involved one unknown only, the problem was a normal construction
problem. In order to get the simplest construction, the geometer should reduce the
equation to an irreducible one.

3. Then he should rewrite it in a certain standard form appropriate to the standard
construction to be used.

4. In the case of equations of degrees six or less, the geometer could use standard
constructions explicitly given by Descartes. These constructions then provided the
geometrical solution of the original problem.

5. In the case of higher-degree equations, the geometer should work out a higher-order
analogue for Descartes’ standard constructions. Descartes claimed that it should not be
difficult to do so.

6. If the equation arrived at in 1 contained two unknowns, the problem was a locus
problem. The geometer could construct points on the locus by choosing an arbitrary
value for one of the unknown and dealing with the resulting equation(in which there
was only one unknown left) according to items 2-5, thus finding the corresponding
value(or values) of the second unknown; the corresponding point (or points) on the

locus could then be constructed.”’

The power of Descartes’ vision has shaped western thought since the seventeenth century, and
Descartes was one of the founders of modern thought. But whatever my understanding of

Descartes the philosopher may be, his importance for mathematics is clear.
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8. Appendix

8.1 Conic section

A conic section (or just conic) is a curve that can be formed by intersecting a cone (more
precisely, a right circular conical surface) with a plane. The conic sections were named and
studied as long ago as 200 BC, when Apollonius of Perga undertook a systematic study of
their properties.

parabola

hyperbola

\
\

R

\

ellipse

8.2 Some information on the mathematica program

Orientation

When you first start Mathematica, you should see a "splash" screen with the Mathematica
logo, version, and license information. When the program loads, you should see several

objects on the screen. We will now describe what they are and what they do.

m You may wish to turn on your speakers (or bring headphones if you are in an STC).
Mathematica uses audio cues to notify the user of errors, finished calculations, etc.
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Notebooks

A notebook is a collection of Mathematica statements, output, and graphics. The concept is
like that of a "document" in a word processor. You enter information and commands into the

notebook window, and the output (if any) is displayed there.

& Untitled-1 * =] E3
In[1]:= 2+ 2 j il

outfi}= 4 ﬂ

If the notebook has been modified since it was last saved, an asterisk (*) will appear in the

title bar. To save your work, choose File->Save As... or File->Save.

If Mathematica is ready for new input, the cursor will flip sideways (see above). Just start

typing to enter information. Try typing this (don't press return yet):

2+2

To tell Mathematica to evaluate this expression, hold down Shift and type Return. Since
Mathematica is also a word processor, it needs to know if you want to evaluate the
expression, or just insert a carriage return-linefeed. This can be quite confusing to the new

user.

‘ System ‘ Evaluate |Linefeed
‘Macintosh ‘Enter or Shift-Return |Return
‘Windows ‘Shift-Enter |Enter

‘X ‘Shift-Return |Return

Next, look at the blue symbols along the right side of the notebook. Each group of statements

enclosed by the triangle-brackets (j) is called a cell. The cell is the smallest unit of work in

Mathematica. A cell may contain input or output, math or comments, text or graphics.

‘% ‘Cells in Mathematica are like execution groups in Maple.
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Palettes

You should see a box with a lot of symbols floating on the right side of your Mathematica

window. This is called a palette. Palettes allow you to easily insert complicated mathematical

notation. For example, to compute the cube root of 34, you could click on theE. Type 34,
which should appear under the root sign. Then click on the small square above the root, and
type 3 in the box. Finally, evaluate the expression. Using the default palette, you can enter
fractions, integrals, summations, matrices, subscripts, and most Greek letters. Of course, there

are many other palettes available - choose File->Palettes to see a list.

Kernels

Mathematica is actually split into two conceptual pieces, the front-end and the kernel. When
you start Mathematica, you are actually only starting the front-end. The front-end handles
input and output to the user, access to the file system, and creates graphics on your screen.
Most users will deal primarily with the front-end. The kernel does nearly all computation
(excluding graphics rendering). When you evaluate any expression, the kernel does the hard
work and sends the results back to the front-end, which then displays it in an attractive format
for the user. Most users will run the front-end and the kernel on the same computer. If your
computer is connected to a network, you can run the kernel on a more powerful machine,
while running the front-end on your favourite computer. To learn how to do this, choose

Kernel->Kernel Configuration Options, click Add, and then click Help.

How to stop a runaway calculation:

e Macintosh - Command-Comma or Control-C
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e Windows and X - Alt-Comma or Control-C

This will bring up a menu that allows you to view the state of the kernel, abort the
calculation, etc.

8.3 Numerical Calculations
Here are some examples.
You could do simple arithmetic with Mathematica. If you wanted to add 1 and 2, you type the
input 1 + 2 and hit Return.
In[1:=1+2
Out[1]=3

Mathematica can compute exact results, unlike the calculator. The ” is the notation in

Mathematica for rising to a power.

In[2]:= 2°64
Out[2]= 18446744073709551616

You can use the function N to get approximate numerical results. This approximation is given
in scientific notation.

In[3]:= 2764 //N
19
Out[3]= 1.84467 10

Some of the common arithmetic operators available in Mathematica are as follows:

A power

+ add

- minus or subtract
* multiply

/ divide

In addition to these Mathematica has a large collection of mathematical functions. Note that
all the arguments for these functions have to supply within the square brackets. Also, the
functions begin always with a capital letter. Here are some of the

functions:

Sqrt[ ] square root
Expl[ ] exponential

T.Vigneswaran, Agder University College, Norway. 80 Master Thesis: May 2007



Log[ ] natural logarithm

Sin[ | sine function ( argument in radians )
ArcSin[ ] inverse sine function

Abs| ] absolute value

Round][ ] closest integer to the argument

FactorInteger[ |  prime factors of the argument

8.4 Using Complex Numbers

Mathematica lets you enter complex numbers by including a constant 'I'. This constant I is

equal to the square root of -1. Complex number operations can be performed by using the

following.
x+1y complex number x + iy
Re[z] real part of z
Im[z] imaginary part of z
Conjugate|z] complex conjugate of z
Abs|[z] absolute value of z or |z
Arg[z] the argument of z

For example,
In[10]:= Sqrt[-4]
Out[10]=21
In[11]:=(1+2D*(1-21)

Ou[11]=5

8.5 Printing graphics

If you want to send graphics to a postscript printer, you can use the PS Print function
available in Mathematica.

In[19]:= Plot3D[Sin[x y],{x,0,3},{y,0,3}]
Out[19]= -SurfaceGraphics-

In[20]:= PSPrint[%]

Out[20]= -SurfaceGraphics-

The print job will be sent to the default printer.
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8.6 Other branch of Cartesian parabola
1. gl=Graphics[Circle[ {0, 9}, 4];
g2=Plot[ x> + x +1+ 1 , {x,-15, 15}, DisplayFunction — Identity];
X

Show[gl,g2, AspectRatio — Automatic, PlotRange — {-15,15},

Axes — True, DisplayFunction — $DisplayFunction];

15

2. gl=Graphics[Circle[ {0, 0}, 5];
g2=Plot[ x* + x+1— 1 , {x,-15, 15}, DisplayFunction — Identity];
X

Show([gl,g2, AspectRatio — Automatic, PlotRange — {-15,15},

Axes — True, DisplayFunction — $DisplayFunction];
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15

-15

8.7 Sixth degree graph: Numerical example

I plot the sixth degree equation graph on other intervals given below.

1. Plot[ x® —2x° +3x* —4x’ + x> —=2x+1, {x,-2.5,2.5}];
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2. Plot[ x® —2x° +3x* —4x° + x> = 2x+1, {x,-3,3}];

350
300 f
250 t
200
150
100

50 f

3. Plot[ x® —2x° +3x* —4x’ + x> = 2x+1, {x,-4,4}];

1750 r
1500 ¢
1250 ¢
1000
750 ¢
500

250

T.Vigneswaran, Agder University College, Norway. 84

Master Thesis: May 2007



