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We propose a wideband multiple-input multiple-output (MIMO) car-to-car (C2C) channel model based on the geometrical street
scattering model. Starting from the geometrical model, a MIMO reference channel model is derived under the assumption of
single-bounce scattering in line-of-sight (LOS) and non-LOS (NLOS) propagation environments. The proposed channel model
assumes an infinite number of scatterers, which are uniformly distributed in two rectangular areas located on both sides of the
street. Analytical solutions are presented for the space-time-frequency cross-correlation function (STF-CCF), the two-dimensional
(2D) space CCF, the time-frequency CCF (TF-CCF), the temporal autocorrelation function (ACF), and the frequency correlation
function (FCF). An efficient sum-of-cisoids (SOCs) channel simulator is derived from the reference model. It is shown that the
temporal ACF and the FCF of the SOC channel simulator fit very well to the corresponding correlation functions of the reference
model. To validate the proposed channel model, the mean Doppler shift and the Doppler spread of the reference model have
been matched to real-world measurement data. The comparison results demonstrate an excellent agreement between theory and
measurements, which confirms the validity of the derived reference model. The proposed geometry-based channel simulator allows
us to study the effect of nearby street scatterers on the performance of C2C communication systems.

1. Introduction

C2C communications is an emerging technology, which
receives considerable attention due to new traffic telematic
applications that improve the efficiency of traffic flow and
reduce the number of road accidents [1]. The development of
C2C communication technologies is supported in Europe by
respected organizations, such as the European Road Trans-
port Telematics Implementation Coordinating Organization
(ERTICO) [2] and the C2C Communication Consortium
(C2C-CC) [3]. In this context, a large number of research
projects focussing on C2C communications are currently
being carried out throughout the world.

In C2C communication systems, the underlying radio
channel differs from traditional fixed-to-mobile and mobile-
to-fixed channels in the way that both the transmitter and the
receiver are in motion. In this connection, robust and reliable
traffic telematic systems have to be developed and tested,
which calls for new channel models for C2C communication
systems. Furthermore, MIMO communication systems can

also be of great interest for C2C communications due to their
higher throughput [4]. In this regard, several MIMO mobile-
to-mobile (M2M) channel models have been developed and
analyzed under different scattering conditions induced by,
for example, the two-ring model [5], the elliptical model
[6], the T-junction model [7], and the geometrical street
model [8, 9]. A 2D reference model for narrowband single-
input single-output (SISO) M2M Rayleigh fading channels
has been proposed by Akki and Haber in [10, 11]. Simulation
models for SISO M2M channels have been reported in [12,
13]. In [5, 14, 15], the 2D reference and simulation models
have been presented for narrowband MIMO M2M channels.
The proposed model in [15] combines the two-ring model
and the elliptical model, where a combination of single- and
double-bounce scattering in LOS propagation environments
is assumed.

All aforementioned channel models are narrowband
M2M channel models. In contrast with narrowband chan-
nels, a channel is called a wideband channel or frequency-
selective channel if the signal bandwidth significantly exceeds
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the coherence bandwidth of the channel. Owing to increasing
demands for high data rate wideband communication
systems employing MIMO technologies, such as MIMO
orthogonal frequency division multiplexing (OFDM) sys-
tems, it is of crucial importance to have accurate and
realistic wideband MIMO M2M channel models. According
to IEEE 802.11p [16], the dedicated frequency bands for
short-range communications [17] will be between 5770 MHz
and 5925 MHz depending on the region. The range 5795–
5815 MHz will be devoted to Europe, while 5850–5925 MHz
and 5770–5850 MHz will be assigned to North America and
Japan, respectively. Consequently, a large number of C2C
channel measurements have been carried out at different
frequency bands, for example, at 2.4 GHz [18], 3.5 GHz
[19], 5 GHz [20, 21], 5.2 GHz [22], and 5.9 GHz [23]. Real-
world measurement campaigns for wideband C2C channels
can be found in [24–27]. In the literature, there exist
several papers [28–30] with the focus on the modeling
of wideband MIMO M2M channels. A reference model
derived from the geometrical T-junction scattering model
has been proposed in [7] for wideband MIMO vehicle-to-
vehicle (V2V) fading channels. In [29], a three-dimensional
(3D) model for a wideband MIMO M2M channel has been
studied. Its corresponding first- and second-order statistics
have been investigated and validated on the basis of real-
world measurement data. In the same paper, it has been
shown that 3D scattering scenarios are more realistic than 2D
scattering scenarios. However, 2D scattering models are more
complexity efficient, and they provide a good approximation
to 3D scattering models [31]. For those reasons, we propose
in our paper a 2D street scattering model.

In the literature, numerous fundamental channel models
with different scatterer distributions, such as the uniform,
Gaussian, Laplacian, and von Mises distribution, have been
proposed to characterize the angle-of-departure (AOD) and
the angle-of-arrival (AOA) statistics. In [32], the author
studied the effect of Gaussian distributed scatterers on the
channel characteristics in a circular scattering region around
a mobile station. The spatial and temporal properties of the
first arrival path in multipath environments have also been
analyzed in [32]. The authors of [9] assume rectangular
scattering areas on both sides of the street, in which an
infinite number of scatterers are uniformly distributed. It has
been observed that the shape of the Doppler power spectral
density (PSD) resembles a Gaussian function if the width of
the scattering area is very large.

In contrast to our previous work in [9], where the focus
was on the derivation of a reference channel model for
narrowband SISO C2C channels, we design in this paper a
wideband MIMO C2C channel model by starting from the
same geometrical street scattering model. We focus on the
statistical characterization of a wideband reference channel
model assuming that an infinite number of scatterers are
uniformly distributed within two rectangular areas. The
radio propagation phenomena in street environments are
modelled by a wide-sense stationary uncorrelated scattering
process, where in addition a LOS component is taken into
account. The reference model has been derived from the
geometrical street scattering model assuming that the AOD

and the AOA are dependent due to single-bounce scattering.
To account for the nature of C2C channels, we take the
mobility of both the transmitter and the receiver for granted.

In our model, we consider a 2D street scattering environ-
ment to reduce the computational cost by still guaranteeing
a good match between the reference model and measured
channels. A typical propagation scenario for the proposed
model is illustrated in Figure 1, where the buildings and the
trees are considered as scattering objects. Such a typical dense
urban environment scenario allows us to assume that the
local scatterers are uniformly distributed in a specific area.
An analytical expression will be derived for the STF-CCF
from which the 2D space CCF, the TF-CCF, the temporal
ACF, and the FCF can be obtained directly. To validate the
proposed reference model, the mean Doppler shift and the
Doppler spread of the reference model have been matched
to the corresponding quantities of the measured channel
described in [25] for different propagation environments,
such as urban, rural, and highway areas. Furthermore, we
have derived an SOC channel simulator from the reference
model. It is shown that the designed channel simulator
matches the underlying reference model with respect to the
temporal ACF and the FCF.

The rest of this paper is organized as follows. Section 2
describes the geometrical street scattering model. In
Section 3, the reference channel model is derived from the
geometrical street model. Section 4 analyzes the correlation
properties of the reference model, such as the STF-CCF,
the 2D space CCF, the TF-CCF, the temporal ACF, and the
FCF. The computation of the measurement-based model
parameters and the characteristic quantities describing the
Doppler effect are discussed in Section 5. Section 6 describes
briefly the simulation model derived from the reference
model. The illustration of some numerical results found for
the correlation functions of the reference model and the
corresponding simulation model is the topic of Section 7.
Finally, Section 8 draws the conclusion of the paper.

2. The Geometrical Street Scattering Model

This section briefly describes the geometrical street scattering
model for wideband MIMO C2C channels. The proposed
geometrical model describes the scattering environment in
an urban area, where the scatterers are located in two
rectangular areas on both sides of the street as illustrated in
Figure 2. We consider rectangular grids formed by rows and
columns, where the length and the width of the rectangular
grids are denoted by LA = A1 + A2 and Bi (i = 1, 2),
respectively. The scatterer located in the mth column of
the nth row is denoted by S(mn) (m = 1, 2, . . . ,M, n =
1, 2, . . . ,N). It is assumed that the local scatterers S(mn) are
uniformly distributed in the rectangles. The symbols MST
and MSR in Figure 2 stand for the mobile transmitter and
the mobile receiver, respectively. The symbol D represents
the scalar projection of the distance between the transmitter
and the receiver onto the x-axis. The transmitter (receiver) is
located at a distance yT1 (yR1 ) from the left-hand side of the
street and at a distance yT2 (yR2 ) from the right-hand side of
the street. Both the transmitter and the receiver are in motion
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MSR

MST

Figure 1: A typical propagation scenario along a straight street in urban areas.

and equipped with MT transmitter antenna elements and MR

receiver antenna elements, respectively. The antenna element
spacings at the transmitter and the receiver are denoted by δT
and δR, respectively. The symbols α(mn)

T and α(mn)
R denote the

AOD and the AOA, respectively. The angle γT(γR) describes
the tilt angle of the transmitter (receiver) antenna array.
Moreover, it is assumed that the transmitter (receiver) moves
with speed vT (vR) in the direction determined by the angle
of motion ϕT

v (ϕR
v ).

3. The Reference Model

3.1. Derivation of the Reference Model. In this section, we
derive the reference model for the MIMO C2C channel under
the assumption of LOS and NLOS propagation conditions.
From Figure 2, we realize that the (mn)th homogeneous

plane wave emitted from the lth antenna element A(l)
T (l =

1, 2, . . . ,MT) of the transmitter travels over the local scatterer
S(mn) before impinging on the kth antenna element A(k)

R (k =
1, 2, . . . ,MR) of the receiver. The reference model is based on
the assumption that the number of local scatterers within
both rectangular areas is infinite, that is, M,N → ∞. The
temporal, spatial, and frequency characteristics of the refer-
ence model are determined by the MR × MT channel matrix
H( f ′, t) = [Hkl( f ′, t)]MR×MT

, where Hkl( f ′, t) denotes the
time-variant transfer function (TVTF) of the channel for the
link between the lth transmitter antenna element A(l)

T and the
kth receiver antenna element A(k)

R . The TVTF Hkl( f ′, t) can
be expressed as a superposition of the diffuse component and
the LOS component as follows:

Hkl
(
f ′, t

) = HDIF
kl

(
f ′, t

)
+ HLOS

kl

(
f ′, t

)
, (1)

where HDIF
kl ( f ′, t) and HLOS

kl ( f ′, t) represent the diffuse and
the LOS components of the channel, respectively.

Note that the single-bounce scattering components bear
more energy than the double-bounce scattering components.
Hence, in our analysis, we model the diffuse component
HDIF

kl ( f ′, t) by only taking into account the single-bounce

scattering effects, which is in accordance with the assump-
tions made in [28, 33]. From the geometrical street scattering
model shown in Figure 2, we can derive the TVTF of the
diffuse component, which results in the following expression:

HDIF
kl

(
f ′, t

) = lim
M,N→∞

1
√

(cR + 1)MN

M,N∑

m,n=1

al,mnbk,mncmn

· e j[θmn+2π( f (mn)
T + f (mn)

R )t−2π f ′τ′(mn)
kl ],

(2)

where

al,mn = e jπ(δT /λ)(MT−2l+1) cos(α(mn)
T −γT ), (3)

bk,mn = e jπ(δR/λ)(MR−2k+1) cos(α(mn)
R −γR), (4)

cmn = e− j(2π/λ)(yT1 / sin(α(mn)
T )+yR1 / sin(α(mn)

R )), (5)

f (mn)
T = fTmax cos

(
α(mn)
T − ϕT

v

)
, (6)

f (mn)
R = fRmax cos

(
α(mn)
R − ϕR

v

)
, (7)

τ′kl
(mn) = 1

c0

[
D(l,mn)

T + D(mn,k)
R

]
. (8)

In (6) and (7), the symbols fTmax = vT/λ and fRmax =
vR/λ denote the maximum Doppler frequencies associ-
ated with the movement of the transmitter and the
receiver, respectively, and λ is the wavelength. The symbol
cR in (2) represents the Rice factor, which is defined
as the ratio of the power of the LOS component to
the power of the diffuse component, that is, cR =
E{|HLOS

kl ( f ′, t)|2}/E{|HDIF
kl ( f ′, t)|2}. The phases θmn in (2)

denote the phase shift introduced by the scatterer S(mn). It
is assumed that the phases θmn are independent, identically
distributed (i.i.d.) random variables, which are uniformly

distributed over the interval [0, 2π). The symbols τ′kl
(mn) and

c0 represent the propagation delays of the diffuse component

and the speed of light, respectively. In (8), the quantity D(l,mn)
T
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Figure 2: The geometrical street scattering model with local scatterers uniformly distributed in two rectangular areas on both sides of the
street.

stands for the distance from the lth transmitter antenna
element A(l)

T to the scatterer S(mn), whereas D(mn,k)
R is the

distance between the scatterer S(mn) and the kth receiver
antenna element A(k)

R . It is assumed that (MT − 1)δT �
min{yT1, yT2} and (MR − 1)δR � min{yR1, yR2}. These
assumptions, together with the approximation

√
1 + x ≈

1 + x/2 (x � 1), allow us to approximate the two distances

D(l,mn)
T and D(mn,k)

R as follows:

D(l,mn)
T ≈ D(mn)

T

− (MT − 2l + 1)
(
δT
2

)
cos
(
α(mn)
T − γT

)
,

(9)

D(mn,k)
R ≈ D(mn)

R − (MR − 2k + 1)
(
δR
2

)
cos
(
α(mn)
R − γR

)
,

(10)

where D(mn)
T and D(mn)

R are given by D(mn)
T = yT1 / sin(α(mn)

T )

and D(mn)
R = yR1 / sin(α(mn)

R ), respectively.
It is noteworthy that one can also find articles [11, 34],

in which only double-bounce scattering is assumed for M2M
communications. However, by following a similar approach
as in [15], one can easily extend our analysis on the basis
of single-bounce scattering to the case of double-bounce

scattering, and thus also to a combination of single- and
double-bounce scattering.

The TVTF of the LOS component is given by

HLOS
kl

(
f ′, t

) =
√

cR
(cR + 1)

e j[2π( f (0)
T + f (0)

R )t−(2π/λ)Dkl−2π f ′τ′kl
(0)],

(11)

where

f (0)
T = fTmax cos

(
α(0)
T − ϕT

v

)
, (12)

f (0)
R = fRmax cos

(
α(0)
R − ϕR

v

)
, (13)

Dkl = D0 − (MT − 2l + 1)
δR
2

cos
(
γT
)

+ (MR − 2k + 1)
δR
2

cos
(
γR
)
,

(14)

D0 =
√
D2 +

(
yT1 − yR1

)2
. (15)

In (11), f (0)
T and f (0)

R denote the Doppler shifts of the
LOS component caused by the movement of the transmitter

and the receiver, respectively. The symbols α(0)
T and α(0)

R
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in (12) and (13) represent the AOD and the AOA of
the LOS component, respectively. Finally, τ′kl

(0) denotes the
propagation delay of the LOS component. The delay of the

LOS component is defined by τ′kl
(0) = Dkl/c0 with Dkl being

the length of the direct path from the lth transmitter antenna

element A(l)
T to the kth receiver antenna element A(k)

R . The
symbol D0 in (14) denotes the Euclidean distance between
the transmitter and the receiver. According to [35], the LOS
component HLOS

kl ( f ′, t) is assumed to be a deterministic pro-
cess, while the diffuse component HDIF

kl ( f ′, t) is a stochastic
process.

3.2. Derivation of the AOD and the AOA. The position of all
local scatterers S(mn) is described by the Cartesian coordinates
(xm, yn). In the reference model, the coordinates xm and yn
are independent random variables, which are determined
by the distribution of the local scatterers. With reference
to Figure 2, we take into account that due to single-bounce

scattering, the AOD α(mn)
T and the AOA α(mn)

R are dependent.
By using the trigonometric identities, we can express the

AOD α(mn)
T and the AOA α(mn)

R in terms of the coordinates
(xm, yn) of the local scatterers S(mn) as follows:

α(mn)
T

(
xm, yn

)

=
{
g
(
xm, yn

)
, if yn ∈ Ji, xm ∈ [0,A2]

(−1)i+1π + g
(
xm, yn

)
, if yn ∈ Ji, xm ∈ [−A1, 0]

(16)

α(mn)
R

(
xm, yn

)

=
{
f
(
xm, yn

)
, if yn ∈ Ji, xm ∈ [D,A2]

(−1)i+1π + f
(
xm, yn

)
, if yn ∈ Ji, xm ∈ [−A1,D]

(17)

for i = 1, 2, where J1 = [yT1 , yT1 +B1], J2 = [−yT2−B2,−yT2 ],
and

g
(
xm, yn

) = arctan
yn
xm

f
(
xm, yn

) = arctan
yn − yT1 + yR1

xm −D
.

(18)

4. Correlation Properties of
the Reference Model

In this section, we derive a general analytical solution for the
STF-CCF, from which other correlation functions, such as
the 2D space CCF, the TF-CCF, the temporal ACF, and the
FCF can easily be derived.

4.1. Derivation of the STF-CCF. According to [10], the STF-

CCF of the links A(l)
T − A(k)

R and A(l′)
T − A(k′)

R is defined as the

correlation between the channel transfer functions Hkl( f ′, t)
and Hk′l′( f ′, t), that is,

ρkl,k′l′(δT , δR, ν′, τ) = E
{
H∗

kl

(
f ′, t

)
Hk′l′

(
f ′ + ν′, t + τ

)}

= ρDIF
kl,k′l′(δT , δR, ν′, τ)

+ ρLOS
kl,k′l′(δT , δR, ν′, τ),

(19)

where (∗) denotes the complex conjugate operator and E{·}
stands for the expectation operator that applies to all random
variables: the phases {θmn} and the coordinates (xm, yn)
of the scatterers S(mn). The first term ρDIF

kl,k′l′(δT , δR, τ, ν′)
represents the STF-CCF of the diffuse component. This
correlation function can be expressed, after substituting (2)
in (19), by

ρDIF
kl,k′l′(δT , δR, ν′, τ)

= lim
M,N→∞

1
(cR + 1)MN

×
M,N∑

m,n=1

E
{
c(mn)
ll′ d(mn)

kk′ e j2π[( f (mn)
T + f (mn)

R )τ−ν′τ′kl
(mn)]
}

,

(20)

where

c(mn)
ll′ = e j2π(δT /λ)(l−l′) cos(α(mn)

T −γT ),

d(mn)
kk′ = e j2π(δR/λ)(k−k′) cos(α(mn)

R −γR).
(21)

The quantities f (mn)
T , f (mn)

R , and τ′kl
(mn) are given by (6), (7),

and (8), respectively. We recall that the AOD α(mn)
T and the

AOA α(mn)
R can be expressed in terms of the random variables

xm and yn according to (16) and (17), respectively.
In Section 2, it has been mentioned that all scatterers

are uniformly distributed in the two rectangular areas on
both sides of the street, as illustrated in Figure 2. Hence, the
random variables xm and yn are also uniformly distributed
over the rectangular areas. If the number of scatterers tends
to infinity, that is, M,N → ∞, then the discrete random
variables xm and yn become continuous random variables
denoted by x and y, respectively. Thus, the probability
density functions (PDFs) px(x) and py(y) of x and y,
respectively, are given by

px(x) = 1
LA

, if x ∈ [−A1,A2],

py
(
y
) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
2B1

, if y ∈ [yT1 ,B1 + yT1

]

1
2B2

, if y ∈ [−B2 − yT2 ,−yT2

]
,

(22)

where LA = A1 + A2. Assuming that the random variables
x and y are independent, the joint PDF pxy(x, y) of the
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random variables x and y can be expressed as a product of
the marginal PDFs px(x) and py(y), that is,

pxy
(
x, y

)

= px(x) · py
(
y
)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
2LAB1

, if x ∈ [−A1,A2], y ∈ [yT1 ,B1 + yT1

]

1
2LAB2

, if x ∈ [−A1,A2], y ∈ [−B2 − yT2 ,−yT2

]
.

(23)

The infinitesimal power of the diffuse component cor-
responding to the differential axes dx and dy is propor-
tional to pxy(x, y)dxdy. As M,N → ∞, this infinitesimal
contribution must be equal to 1/MN = pxy(x, y)dxdy.
Consequently, it follows from (20) that the STF-CCF of the
diffuse component can be expressed as

ρDIF
kl,k′l′(δT , δR, ν′, τ)

= 1
2LAB1(cR + 1)

∫ yT1 +B1

yT1

∫ A2

−A1

cDIF
ll′
(
δT , x, y

)
dDIF
kk′
(
δR, x, y

)

× ej2π[( fT (x,y)+ fR(x,y))τ−ν′τ′kl(x,y)]dxdy

+
1

2LAB2(cR + 1)

×
∫ −yT2

−B2−yT2

∫ A2

−A1

cDIF
ll′
(
δT , x, y

)
dDIF
kk′
(
δR, x, y

)

× e j2π[( fT (x,y)+ fR(x,y))τ−ν′τ′kl(x,y)]dxdy,
(24)

where

cDIF
ll′
(
δT , x, y

) = e j2π(δT /λ)(l−l′) cos(αT (x,y)−γT ),

dDIF
kk′
(
δR, x, y

) = e j2π(δR/λ)(k−k′) cos(αR(x,y)−γR),

fT
(
x, y

) = fTmax cos
(
αT
(
x, y

)− ϕT
v

)
,

fR
(
x, y

) = fRmax cos
(
αR
(
x, y

)− ϕR
v

)
,

τ′kl
(
x, y

) = 1
c0

[
D(l)

T

(
x, y

)
+ D(k)

R

(
x, y

)]
.

(25)

Using the functions in (9) and (10), the distances D(l)
T (x, y)

and D(k)
R (x, y) can be expressed as

D(l)
T

(
x, y

) ≈ yT1

sin
(
αT
(
x, y

))

− (MT − 2l + 1)
(
δT
2

)
cos
(
αT
(
x, y

)− γT
)
,

D(k)
R

(
x, y

) ≈ yR1

sin
(
αR
(
x, y

))

− (MR − 2k + 1)
(
δR
2

)
cos
(
αR
(
x, y

)− γR
)
.

(26)

In (19), the quantity ρLOS
kl,k′l′(δT , δR, τ, ν′), which represents the

STF-CCF of the LOS component, can be written as

ρLOS
kl,k′l′(δT , δR, ν′, τ) = cR

(cR + 1)
c(0)
ll′ (δT)

× d(0)
kk′(δR)e j2π[( f (0)

T + f (0)
R )τ−ν′τ′kl

(0)],

(27)

where

c(0)
ll′ (δT) = e j2π(δT /λ)(l−l′) cos(γT ), (28)

d(0)
kk′(δR) = e− j2π(δR/λ)(k−k′) cos(γR). (29)

The Doppler shifts f (0)
T and f (0)

R are given by (12) and (13),
respectively.

4.2. Derivation of the 2D Space CCF. The 2D space
CCF ρkl,k′l′(δT , δR) is defined as ρkl,k′l′(δT , δR) =
E{H∗

kl( f
′, t)Hk′l′( f ′, t)}, which is equal to the STF-CCF

ρkl,k′l′(δT , δR, ν′, τ) in (19) by setting ν′ and τ to zero, that is,

ρkl,k′l′(δT , δR) = ρkl,k′l′(δT , δR, 0, 0)

= 1
2LAB1(cR + 1)

∫ yT1 +B1

yT1

×
∫ A2

−A1

cDIF
ll′
(
δT , x, y

)
dDIF
kk′
(
δR, x, y

)
dxdy

+
1

2LAB2(cR + 1)

∫ −yT2

−B2−yT2

×
∫ A2

−A1

cDIF
ll′
(
δT , x, y

)
dDIF
kk′
(
δR, x, y

)
dxdy

+
cR

(cR + 1)
c(0)
ll′ (δT)d(0)

kk′(δR).

(30)

4.3. Derivation of the TF-CCF. The TF-CCF of the trans-

mission link from A(l)
T (l = 1, 2, . . . ,MT) to A(k)

R (k =
1, 2, . . . ,MR) is defined by rkl(ν′, τ) := E{H∗

kl( f
′, t)Hkl( f ′ +

ν′, t+τ)} [36]. The TF-CCF can be obtained directly from the
STF-CCF [see (19)] by setting the antenna element spacings
δT and δR to zero, that is,

rkl(ν′, τ) = ρDIF
kl,k′l′(0, 0, ν′, τ) + ρLOS

kl,k′l′(0, 0, ν′, τ)

= 1
2LAB1(cR + 1)

∫ yT1 +B1

yT1

×
∫ A2

−A1

e j2π[( fT (x,y)+ fR(x,y))τ−ν′τ′kl(x,y)]dxdy

+
1

2LAB2(cR + 1)

∫ −yT2

−B2−yT2

×
∫ A2

−A1

e j2π[( fT (x,y)+ fR(x,y))τ−ν′τ′kl(x,y)]dxdy

+
cR

(cR + 1)
e j2π( f (0)

T + f (0)
R )τe− j2πν′τ′kl

(0)

.

(31)
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4.4. Derivation of the Temporal ACF and the Doppler PSD.

The temporal ACF of the transmission link from A(l)
T (l =

1, 2, . . . ,MT) to A(k)
R (k = 1, 2, . . . ,MR) is defined by rkl(τ) :=

E{H∗
kl( f

′, t)Hkl( f ′, t+ τ)} [36, Page 376]. The temporal ACF
can be obtained directly from the TF-CCF (see (31)) by
setting at ν′ to zero, that is, rkl(τ) = rkl(τ, 0), which gives

rkl(τ) = 1
2LAB1(cR + 1)

∫ yT1 +B1

yT1

×
∫ A2

−A1

e j2π[ fT (x,y)+ fR(x,y)]τdxdy

+
1

2LAB2(cR + 1)

∫ −yT2

−B2−yT2

×
∫ A2

−A1

e j2π[ fT (x,y)+ fR(x,y)]τdxdy

+
cR

(cR + 1)
e j2π( f (0)

T + f (0)
R )τ .

(32)

Notice that the expression in (32) reveals that the ACF rkl(τ)
is independent of k and l.

Computing the Fourier transform of the temporal ACF
rkl(τ) results in the Doppler PSD Skl( f ), that is,

Skl
(
f
) =

∫∞

−∞
rkl(τ)e− j2π f τdτ. (33)

The two most important statistical quantities character-
izing the Doppler PSD Skl( f ) are the average Doppler shift

B(1)
kl and the Doppler spread B(2)

kl [35]. The average Doppler

shift B(1)
kl is defined as the first moment of Skl( f ), which can

be expressed as follows:

B(1)
kl =

∫∞
−∞ f Skl

(
f
)
df

∫∞
−∞ Skl

(
f
)
df

. (34)

The Doppler spread B(2)
kl is defined as the square root of

the second central moment of Skl( f ), which can be written
as

B(2)
kl =

√√
√
√
√

∫∞
−∞
(
f − B(1)

kl

)2
Skl
(
f
)
df

∫∞
−∞ Skl

(
f
)
df

. (35)

4.5. Derivation of the FCF. The frequency characteristics of
the reference model are described by the FCF rkl(ν′). The FCF

rkl(ν′) of the transmission link from A(l)
T to A(k)

R is defined by
rkl(ν′) := E{H∗

kl( f
′, t)Hkl( f ′ + ν′, t)} for all l = 1, 2, . . . ,MT

and k = 1, 2, . . . ,MR. This function can be obtained directly

from the TF-CCF [see (31)] by setting τ to zero, that is,
rkl(ν′) = rkl(0, ν′), which results in

rkl(ν′) = 1
2LAB1(cR + 1)

∫ yT1 +B1

yT1

∫ A2

−A1

e− j2πν′τ′kl(x,y)dxdy

+
1

2LAB2(cR + 1)

∫ −yT2

−B2−yT2

∫ A2

−A1

e− j2πν′τ′kl(x,y)dxdy

+
cR

(cR + 1)
e− j2πν′τ′kl

(0)

.

(36)

In contrast to the temporal ACF rkl(τ), the FCF rkl(ν′)
depends on k and l.

5. Measurement-Based Computation of
the Model Parameters

The objective of this section is to determine the set of model
parameters P = {A1,A2,B1,B2, yT1 , yT2 , yR1 , yR2 ,D, fTmax ,
fRmax , cR} describing the reference model in such a way that

the average Doppler shift B(1)
kl and the Doppler spread B(2)

kl
of the reference model match the corresponding quantities

(B�(1)
kl and B�(2)

kl ) of the measured channel reported in [25].
To determine the set of model parameters P , we minimize
the following error:

Emin =W1EB(1)
kl

+ W2EB(2)
kl

, (37)

where W1 and W2 denote the weighting factors. The symbols
EB(1)

kl
and EB(2)

kl
in (37) stand for the absolute errors of

the average Doppler shift and Doppler spread, respectively,
which are defined as

EB(1)
kl
= arg min

P

∣
∣∣B�(1)

kl − B(1)
kl

∣
∣∣, (38)

EB(2)
kl
= arg min

P

∣∣
∣B�(2)

kl − B(2)
kl

∣∣
∣. (39)

In (38) and (39), the notation arg minx f (x) stands for
the argument of the minimum, which is the set of points
of the given argument for which f (x) reaches its minimum
value. At the beginning of the optimization procedure, the
weighting factors W1 and W2 are selected arbitrarily, but
such that they satisfy the equality W1 + W2 = 1. If the
error EB(i)

kl
(i = 1, 2) in (37) is large, then we reduce

the corresponding weighting factor Wi and vice versa. We
continue the optimization procedure until the result in (37)
reaches an error floor, meaning that the average Doppler shift
and the Doppler spread of the reference model best match the
measured average Doppler shift and the measured Doppler
spread, respectively.

For the measured channels in [25], the resulting opti-
mized model parameters and the corresponding average
Doppler shift and Doppler spread are listed in Table 1.
The results found for the reference model demonstrate an
excellent fitting to real-world measured channels for rural,
urban, and highway propagation areas, which validates the
usefulness of the proposed reference model. It is worth
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Table 1: Measurement-based parameters of the geometrical street scattering model and the resulting average Doppler shift and the Doppler
spread.

Model parameters
Propagation environment

Urban LOS Urban NLOS Rural LOS Highway LOS Highway NLOS

A1(A2) (m) 546.28 (1249) 537.03 (908.3) 546.52 (1236) 547.69 (1207) 546.88 (1193)

B1(B2) (m) 198.96 (198.77) 76.46 (1.1113) 20.89 (18.25) 199.8 (200) 0.01 (0.01)

fTmax ( fRmax ) (Hz) 223.55 (219.77) 262.1 (209.97) 463.72 (491.65) 511.68 (442.62) 491.67 (481.97)

yT1(yT2) (m) 10.42 (7) 2.12 (1.18) 15.28 (4.63) 17.62 (19.78) 1.3 (1.3)

yR1(yR2) (m) 19.82 (6.6) 20 (7.06) 14.57 (9.4) 19.63 (25) 20 (9.4)

D (m) 238.6 236.7 186.77 896.7 749.6

cR 0.485 0 0.27 0.4 0

Measured

average Doppler −20 103 201 209 −176

shift B�(1)
kl (Hz) [25]

Theoretical

average Doppler −20 102.67 200.55 208.8 −110

shift B(1)
kl (Hz)

Measured

Doppler 341 298 782 761 978

spread B�(2)
kl (Hz) [25]

Theoretical

Doppler 341 298 782.03 760.88 941

spread B(2)
kl (Hz)

mentioning that the computed average Doppler shift B(1)
kl =

−110 Hz and the Doppler spread B(2)
kl = 941 Hz do not

closely agree with the measured channel (B�(1)
kl = −176 Hz

and B�(2)
kl = 978 Hz) in case of the highway NLOS scenario.

For this scenario, a close agreement can be found for
sufficiently small values of cR /= 0.

6. The Simulation Model

The reference model described above is a theoretical model,
which is based on the assumption that the number of
scatterers (M,N) is infinite. Owing to an infinite realization
complexity, the reference model is non-realizable. However,
the reference model can serve as a ground for the derivation
of stochastic and deterministic simulation models. According
to the generalized principle of deterministic channel mod-
eling [35, Sec. 8.1], a stochastic simulation model can be
derived from the reference model introduced in (1) by using
only a finite number of scatterers. In the literature, several
different models exist that allow for a proper simulation
of mobile channels. The SOC model is an appropriate
simulation model for mobile radio channels under non-
isotropic scattering conditions. A detailed description and
the design of SOC models can be found in [37, 38],
respectively. In [38], several parametrization techniques for
SOC models have been discussed and analyzed. Here, we use
the Lp-norm method (LPNM), which is a high-performance
parameter computation method for the design of SOC
channel simulators.

7. Numerical Results

This section illustrates the analytical results given by (30),
(31), (32), and (36). The correctness of the analytical
results will be verified by simulations. The performance of
the channel simulator has been assessed by comparing its
temporal ACF and the FCF to the corresponding system
functions of the reference model (see (32) and (36)).

As an example for our geometrical street scattering
model, we consider rectangular scattering areas on both sides
of the street with a length of LA = A1 + A2, where A1 =
50 m and A2 = 450 m, and a width of B1 = B2 = 100 m.
With reference to Figure 2, the position of the transmitter
and the receiver are defined by the distances D = 400 m,
yT1 = yR2 = 20 m, and yT2 = yR1 = 10 m. For the reference
model, all theoretical results have been obtained by choosing
the following parameters: γT = 90◦, γR = 90◦, ϕT

v = 0◦,
ϕR
v = 180◦, and fTmax = fRmax = 91 Hz. The Rice factor cR was

chosen from the set {0, 0.5, 1}. The scatterers are uniformly
distributed over the considered rectangular areas. The Lp-
norm method has been applied to optimize the simulation
model parameters by using a finite number of scatterers
(cisoids). For the simulation model, we use M×N = 50 × 25
scatterers (cisoids) within the rectangle on the left-hand side
as well as on the right-hand side.

In Figure 3, the absolute value of the 2D space CCF
|ρ11,22(δT , δR)| of the reference model is presented for the
NLOS propagation scenario (cR = 0). The results have been
obtained by using (30). From Figure 3, we can observe that
the 2D space CCF decreases as the antenna element spacings



Modelling and Simulation in Engineering 9

0.8

0.6

0.4

0.2

0
0

0

1

1

12
2

3

3

A1 = 50 m
A2 = 450 m
B1 = B2 = 100 m
D = 400 m
yT1 = yR2 = 20 m
yT2 = yR1 = 10 m

cR = 0

δR/λ
δT /λ

2D
 s

pa
ce

 C
C

F,
|ρ 1

1,
22

(δ
T

,δ
R

)|

Figure 3: Absolute value of the 2D space CCF |ρ11,22(δT , δR)| of the
reference model for a NLOS propagation scenario (cR = 0).
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Figure 4: Absolute value of the 2D space CCF |ρ11,22(δT , δR)| of the
reference model for a LOS propagation scenario (cR = 1).

increase. For comparison reasons, the absolute value of the
2D space CCF |ρ11,22(δT , δR)| is depicted in Figure 4 for a
LOS propagation scenario (cR = 1). From Figure 4, one
can see that the channel transfer functions Hkl( f ′, t) and
Hk′l′( f ′, t) are highly correlated over a large range of antenna
element spacings δT and δR. This can be concluded from
the fact that even for large antenna element spacings, for
example, δT = δR = 3λ, the absolute value of the 2D
space CCF |ρ11,22(δT , δR)| equals approximately one half of
its maximum value. Comparing Figures 3 and 4 shows that
by increasing the Rice factor cR, the 2D space CCF also
increases.

Figures 5 and 6 illustrate the TF-CCFs of the refer-
ence model under NLOS and LOS propagation conditions,
respectively. From Figure 5, we can observe that the TF-CCF
decreases as the time and frequency lags increase in NLOS
propagation environments. A comparison of Figures 5 and
6 shows that the absolute value of the TF-CCF under LOS
conditions is in general higher than under NLOS.

Figure 7 depicts the absolute value of the temporal ACF
|rkl(τ)| according to (32) if both the transmitter and the
receiver are moving towards each other. A good match
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Figure 5: Absolute value of the TF-CCF |r11(ν′, τ)| of the reference
model for a NLOS propagation scenario (cR = 0).
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Figure 6: Absolute value of the TF-CCF |r11(ν′, τ)| of the reference
model for a LOS propagation scenario (cR = 1).

between the temporal ACF of the reference model and that of
the simulation model can be observed in Figure 7. This figure
demonstrates also that the experimental simulation results
of the temporal ACF match very well with the theoretical
results.

Finally, Figure 8 illustrates the absolute value of the FCF
|rkl(ν′)| for different Rice factors cR = {0, 0.5, 1} if both the
transmitter and the receiver are moving towards each other.
A close agreement between the reference model and the
simulation model can be seen in Figure 8 for all chosen Rice
factors. One can realize that the experimental simulation
results of the FCF match very well with the theoretical results.

8. Conclusion

In this paper, a reference model for a wideband MIMO
C2C channel has been derived by starting from the geomet-
rical street scattering model. Taking both LOS and NLOS
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propagation conditions into account, we have analyzed the
2D space CCF and the TF-CCF of the reference model. To
find a proper simulation model, the SOC principle has been
applied. It has been shown that the SOC channel simulator
approximates the reference model with high accuracy with
respect to the temporal ACF and the FCF. An excellent
fitting of the average Doppler shift and the Doppler spread
of the reference model to the corresponding quantities
of measured channels has validated the usefulness of the

proposed reference model. Further extensions of the pro-
posed wideband MIMO C2C channel model incorporating
the nonstationarity properties of real-world C2C channels
are planned for future work.
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[13] C. S. Patel, G. L. Stüber, and T. G. Pratt, “Simulation of
Rayleigh-faded mobile-to-mobile communication channels,”
IEEE Transactions on Communications, vol. 53, no. 11, pp.
1876–1884, 2005.
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