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Abstract. An emergency requiring evacuation is a chaotic event filled
with uncertainties both for the people affected and rescuers. The evacuees
are often left to themselves for navigation to the escape area. The chaotic
situation increases when a predefined escape route is blocked by a hazard,
and there is a need to re-think which escape route is safest.

This paper addresses automatically finding the safest escape route in
emergency situations in large buildings or ships with imperfect knowledge
of the hazards. The proposed solution, based on Ant Colony Optimisa-
tion, suggests a near optimal escape plan for every affected person —
considering both dynamic spread of hazards and congestion avoidance.

The solution can be used both on an individual bases, such as from a
personal smart phone of one of the evacuees, or from a remote location
by emergency personnel trying to assist large groups.

1 Introduction

Evacuation planning is challenging due to the chaotic and un-organised situation
occurring in a crisis situation. Unfortunately, decision makers often have an in-
complete picture of hazards and potential escape routes. The situation is further
complicated by the fact that people affected are often left alone without any
contact with rescue personnel. Further, the chaotic nature of crises situations
causes the best escape route to quickly change as hazards such as fires quickly
develop.

There is no doubt that decision making in crises situations needs to be made in
a timely manner to minimize the potential danger. However, it is difficult people
affected to determine what are the best decisions in an evacuation situation. In
fact, in most situations the evacuees are not aware of which path to follow for an
escape because they either received insufficient information from the rescuers or
are unfamiliar with both the architecture and of where the hazards are located.
Similarly, the emergency personnel often do not have an overview of where people
are located nor which rooms are affected by hazards. This makes evacuation
planning particularly difficult [1] [2].

This paper is part of a larger project working on using smart phone tech-
nologies in emergency situations. In this project, the smart phones are used
to communicate to and from people affected by crises situations. This enables
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rescue personnel to get an overview of people escaping and how people move
and communication on how to best escape can be given to the people escaping.
In addition, the sensor information available in smart phones will communicate
presence of hazards using the camera, position using GPS, gyroscope etc. This
provides a threat map which is support both for rescue personnel and to auto-
matically determine the best escape routes [3].

The project has three main steps:

1. Collect information.
2. Calculate escape plan.
3. Communicate the plan to the people affected

1.1 Collect Information

Initially in a crisis situation, it is essential to get an overview of the people
affected and the hazards present.

The aim is that prior to a crisis situation, for example when people are embark
on a cruise ship, they will have the option to download a mobile application
for their phone. This application will in a crisis situation utilize the available
sensors and communicate it to a central location. This way, the system, including
emergency personnel, will be aware of locations of people, whether people are
moving, the brightness in each room (indicating hazards such as fire or smoke).

1.2 Determine Plan

Computer and mathematical models have shown to be valuable for escape plan-
ning with large complex building with many people [4] [5] [6] [7] [8], but is mainly
assuming a static representation of hazards. In contrast, our system will, based
on available information, calculate the best escape plan and guide each affected
person away from any potential hazard, as well as distributing the people to the
most suited escape areas even when the hazards change.

1.3 Communicate Plan

When an adaptive plan is available, it should be communicated to the affected
people, which can be done in two main ways. The primary method is for emer-
gency personnel to actively communicate the plan to the affected people through
any available means, such as loud speakers and communication directly to each
affected person via the smart phone applications. Failing this, the smart phone
applications can automatically present the plan using simple visual and verbal
steps such as “turn around”, “go left” and safely guide people to an escape area.

Unfortunately, even in situations where an optimal escape plan exists and
every person affected are aware of the plan, the human mind is so perplexed
that not all follow the plan [9]. Most significantly, in a crisis situation factors
such as panic spread, people pushing, jamming up and overlooking alternative
exits prevent a crowd from following an optimal plan [10] [11]. Therefore, it
is important that information about both hazards and people are continuously
updated to always provide the best plan.
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2 Problem Formulation

Escape planning from a complex building or a large ship can be regarded as a
combinatorial optimization problem. In line with common practice [6], we treat
the escape as a bidirectional planar graph G(V,E). Each possible location i is
connected with a vertex vi ∈ V , and each potential flow from vertex vi to vj is
represented by an edge ei,j ∈ E.

In addition we define a function h(vi) representing the hazard for vi, so that
the function h(vi) returns probability values representing the likelihood of haz-
ards.

The escape area is a vertex vt ∈ V (sink), and the people are located in any
vertex vs ∈ V (any vertex is a source). Further, all search spaces from vs to vt
is defined as S.

The aim of the application is to find a search space s∗ ∈ S so that f(s∗) ≤
f(s)∀s ∈ S, where f(s) = 1 −ΠVi∈s(1 − h(vi)). I.e. minimizing the probability
that a person encounters a hazard in at least one of the vertexes in the chosen
search space.

2.1 Hazards

The hazard functions are populated by both known observations and based on
indications and estimations. If a hazard h(vi) = 1, it means that there is a known
hazard and vertex vi is unsafe, and all evacuees should be routed away from the
corresponding room. Similarly, h(vi) = 0 means that vi is a known safe vertex.
All other hazards are estimated based on known observations.

Definition of the hazard function is not part of this paper. This paper treats
the hazard function as an unknown stochastic function returning a probability
of a hazard in the room.

3 Ant Colony Optimisation (ACO)

Problem solving approaches inspired by nature and animals, so called swarm
intelligence, have received a lot of attention due to their simplicity and adapt-
ability. Ant Colony Optmisation (ACO) is one of the most popular swarm in-
telligence algorithms due to its general purpose optimization technique. ACO
consists of artificial ants operating in a constructed graph. The ants release
pheromones in favorable paths which subsequent ant members follow. This way,
the colony of ants will walk more towards favorable paths and in consequence
iteratively build the most favorable solution.[12].

ACO was first used to find shortest path from a source to a sink in a bidirec-
tional graph. It has later increased in popularity due to its low complexity and
its ability to work in dynamic environments. The flexibility of ACO is apparent
as it has successfully been applied in a wide variety of problems such as finding
solutions for NP hard problems [13], rule based classification [14], and is shown to
be particularly useful for routing in real time industrial and telecommunication
applications.
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Finding the shortest path in a graph G(V,E) using ACO in its simplest form
works as follows. Artificial ants move from vertex to vertex. When an ant finds
a route s from the source vs to the sink vt, the ant releases pheromones τi,j
corresponding all edges ei,j ∈ s. The pheromones for all ants m is defined as

τi,j ← (1− p)τi,j +

m∑

k=1

Δτki,j (1)

The function is for ant k is defined as

Δτki,j =

{
Q/|s| if ei,j ∈ s

0 otherwise
(2)

where Q is a constant.
The aim of each ant is to walk from vs to vt forming the path s. This is

achieved by the following rule. When ant k is in vertex i it chooses to go to
vertex j with the probability pki,j defined as

pki,j =

⎧
⎪⎪⎨

⎪⎪⎩

ταi,jη
β
i,j∑

ei,l
ταi,jη

β
i,j

if ei,j ∈ N(sp)

0 otherwise

(3)

where sp is the partial solution of s, and N(sp) are the possible vertexes to visit
given sp. ηi,j is the inverse heuristic estimate of the distance between node i and
j, and α and β are numbers between 0 and 1 to give the relevant importance
between pheromones and the heuristics function.

In its simplest form, the β = 1 and α = 1 so that the ants only consider the
pheromones — and the heuristic function is ignored, giving:

pki,j =

⎧
⎨

⎩

τi,j∑
ei,l

τi,j
if ei,j ∈ N(sp)

0 otherwise

(4)

In layman terms, the amount of pheromone released represent quality of the so-
lution. This is achieved by each ant releasing a constant amount of pheromones.
Consequently, the shorter the path found, the more pheromone per edge is re-
leased. Further, each ant is guided by a stochastic mechanism biased by the
released pheromones. Thus, the ants walk randomly with a preference towards
pheromones. In this way, the ants incrementally build up promising search space
with means that a route s converges towards the shortest route from vs to vt,
s∗.

ACO has also successfully been applied for many network applications [15] [16]
[17]. It has been empirically shown to have favourable results compared to other
routing protocols with respect to short path routing and reduced load balancing.
Therefore it seems particularly promising for the finding escape routes.
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4 Solution

This section presents the ACO algorithms for finding escape routes in three
distinct realistic environments. First, the algorithms interact with a static en-
vironment where the hazard functions remain unchanged, yet unknown. This
resembles classical optimisation problems where the aim is to find a search space
s∗ so that f(s∗) ≤ f(s)∀s ∈ S.

Subsequently, the problem is extended to interact with dynamic environ-
ments so that the probability of a hazard in vi, h(vi), is no longer fixed but
changes regularly according to some unknown stochastic function. This shows
how well ACO works when environments change, such as fire spreading.

Last, ACO deals with the situation of control flow; each edge has a capacity
c(ei,j). This is a realistic environment where the doors between rooms have
a limited capacity, which changes the problem dramatically as it is no longer
sufficient to find an optimal solution for one person, but there is a need to
consider the system as a whole.

This section presents empirical evidence for ACO working in all the above
mentioned environments. In these experiments, all graphs are bidirectional, pla-
nar and connected — in line with common practice [6]. Without loss of generality,
all experiments are carried out on randomly generated graphs of 1000 vertexes,
and 5000 randomly distributed edges, of which 1000 edges are used to make sure
the graph is connected.

All experiments are an average of 1000 runs.

4.1 Static Environments

ACO has been used for static routing in many situations before. In these exper-
iments ACO is used in its simplest form, as described in section 3, with a slight
adjustment. The constant Q is replaced with a function of s:

Q(s) = 1−Πvi∈s(1− h(vi)) (5)

I.e. Q(s) represent the inverse hazard probability. The consequence of this is
that safe paths are given large amounts of pheromones, and unsafe paths low
amount. The pheromone updates are therefore as

Δτki,j =

{
Q(s)/|s| if ei,j ∈ s

0 otherwise
(6)

In the static environment h(vi) is defined as a random number between 1 or 0,
and remain unchanged for each experiment.

Figure 1a and 1b show the behaviour of ACO static environments. Figure 1b
shows the behaviour were there in addition to the normal setup the graph is
manipulated so that there exists an s so that f(s) = 0 — meaning that there
always exists a safe path. The optimal solution is calculated using Djikstra’s
algorithm [18] by considering h(vi) as basis the cost function for edged e∗,i.
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(a) h(vi) random to 1 or 0
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(b) h(vi) random to 1 or 0, forcing that
there is an s so that f(s) = 0

Fig. 1. Experiment results in static environments of randomly generated large graph
comparing ACO to random and optimal. Hazards probabilities are randomly dis-
tributed as 0 or 1.

Figure 1b show the same experiment but with adjustments of hazard proba-
bilities so that there is an s so that f(s) = 0 — meaning that there always exists
a safe path.

Both experiments show that ACO is able to find the near optimal solution
with very few iterations.

4.2 Dynamic Environments

ACO has also been used for dynamic environments in many situations [19] [20]
[21]. This is achieved by letting, for each time step, the pheromones evaporate
with a defined probability, typically between 0.01 and 0.20 [12]. The evaporation
probability is balance between convergence accuracy and adaptability. I.e. you
choose to what extent the ants should work towards a more optimal solution
or should be able to adapt to potential other solutions. [21] showed that ACO
based routing works well in situations with significant dynamics and continuously
broken and newly established connections, which resembles finding an escape
route when hazards change.

More specifically, ACO has been used for dynamic environments to detect
weakness in networks [22]. This is done by utilizing a mechanism so that problems
are reported on a black board. Ants which found a solution to a problem report
this on a black board, and update pheromone value on the black board with
an inverse probability of how it is solved. This way, collectively, more ants will
walk towards problems which have not been solved and thus putting more effort
on the unsolved vulnerabilities. Hence, dynamically weaknesses in networks are
iteratively solved.
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Figure 2a and 2b show ACO in dynamic environments where the h(vi) hazards
are updated every 200th iteration with the following rule:

h(vi) = 1− h(vi)∀vi ∈ V (7)

Thus, for every 200th iteration the environment is exactly opposite which in turn
means that, if an algorithm has learnt an optimal route, the route changes to as
far away from optimal as possible. The results show in figure 2a that when the
evaporation rate is set to 0, the ACO learns an optimal solution which becomes
outdated when h(vi) changes, and it is not able to adapt to the new optimal
solution. Further, every time the hazard probabilities changes the algorithm is
further away from the solution. On the other hand, figure 2b shows that when
the evaporation rate is set to 0.2, the algorithm is able to quickly adapt to new
environments — and is thus able to interact well with dynamic environments.
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(b) Evaporation rate set to 0.2

Fig. 2. Experiment results in dynamic environments. Hazard probabilities, h(vi),
change for every 200th iteration.

4.3 Control Flow

The above situations only consider escapes where there are unlimited capacities
— which is not a realistic situation.

While most existing work focus on computer model based escapes focus in
finding the shortest safe path for each person [23] [24], this section innovatively
extends the ACO to also consider control flow, and in this way avoid congestion
of people. Thus an edge can at a certain time step either be full or have room
for more people. We achieve this by letting the available capacity of an edge ei,j
be defined by c(ei,j). Any edge with c(ei,j) = 1 cannot be used and is equal to a
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Fig. 3. Experiment results comparing ACO capacity randomly distributed

non existing edge. The aim is therefore to find a set of search paths so that the
combined hazard probabilities is minimized:

Minimize
∑

s∈s

f(s)

Subject to
∑

ei,j∈s

c(ei,j)
(8)

ACO has been used in similar situations previously. [25] and [26] used ACO
for a best planning, by letting the edged play an active role in the amount of
pheromones available. After the artificial ants reach their destination, each edge
multiplies the amount of pheromones with the used capacity. This way, the ants
have two mechanisms to guide them: (1) The quality level of the path as noted
by the amount of pheromones released by previous ants, and (2) the available
capacity. [25] showed empirically that in most situation the ACO reached the
same path as a brute force approach.

In line with state-of-the-art, we update the function Δτki,j from equation 2 as
following.

Δτki,j =

⎧
⎪⎨

⎪⎩

Q

|s|
c(ei,j)

max(c(ei,j))
if ei,i ∈ s

0 otherwise

(9)

where c(ei,j) is the used capacity of edge ei,j and max(c(ei,j)) is the total capacity
available at ei,j.

Figure 3a and 3b show the behavior of ACO in the environment which includes
control flow. The experiments show that ACO considering capacity has a better
over all performance than ACO without capacity consideration. It is noteworthy
that Djikstra, which is identical to the algorithm used in previous experiments,
does not perform well because it is not able to plan ahead, and is therefore not
able to handle control flow well. In fact, both ACO approaches outperform the
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much more costly brute force. Lastly, figure 3b shows the accumulated survival
rate for each algorithm. This can be read as: How many people will survive if
all followed the suggested plan perfectly.

5 Conclusion

This paper presents an application using ACO for finding safe escape routes in
emergency situations. ACO is used in three main environments. Firstly, ACO
operates in a stationary environment where it quickly reaches a near optimal
solution. Secondly, this paper empirically shows that ACO is able to cope with
dynamic situations were hazards rapidly change. Lastly, ACO is extended to
handle vertex capacity. This enables ACO to find escape routes for groups of
people. The application is an essential part of a tool mapping threats and plan-
ning escape routes.

For our further work, we plan to investigate ACO in more realistic scenarios,
including which setup of ACO works best — such as pheromone distribution
and evaporation probabilities. In this paper we assume that all participants can
report their location. In practice, only some escapees will be able to provide this
— rendering the problem more difficult. We have also assumed that all evacuees
will follow a suggested plan. In a real evacuation situation, most people will
escape in groups together with their family and friends. Further, when panic
spreads people will be less likely to follow plans, which will affect overall results.

We also plan to examine how well ACO works compared to traditional control
flow optimisation algorithms, and develop a smart phone application which can
be used for safe escape planning.
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