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Abstract We consider the micro-aggregation problem

which involves partitioning a set of individual records in a

micro-data file into a number of mutually exclusive and

exhaustive groups. This problem, which seeks for the best

partition of the micro-data file, is known to be NP-hard,

and has been tackled using many heuristic solutions. In this

paper, we would like to demonstrate that in the process of

developing micro-aggregation techniques (MATs), it is

expedient to incorporate information about the dependence

between the random variables in the micro-data file. This

can be achieved by pre-processing the micro-data before

invoking any MAT, in order to extract the useful depen-

dence information from the joint probability distribution of

the variables in the micro-data file, and then accomplishing

the micro-aggregation on the ‘‘maximally independent’’

variables—thus confirming the conjecture [A conjecture,

which was recently proposed by Domingo-Ferrer et al.

(IEEE Trans Knowl Data Eng 14(1):189–201, 2002), was

that the phenomenon of micro-aggregation can be

enhanced by incorporating dependence-based information

between the random variables of the micro-data file by

working with (i.e., selecting) the maximally independent

variables. Domingo-Ferrer et al. have proposed to select

one variable from among the set of highly correlated

variables inferred via the correlation matrix of the micro-

data file. In this paper, we demonstrate that this process can

be automated, and that it is advantageous to select the

‘‘most independent variables’’ by using methods distinct

from those involving the correlation matrix.] of Domingo-

Ferrer et al. Our results, on real life and artificial data sets,

show that including such information will enhance the

process of determining how many variables are to be used,

and which of them should be used in the micro-aggregation

process.
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1 Introduction

Central to the study of secure statistical databases are

a family of algorithms classified in the literature as

being ‘‘micro-aggregation’’ techniques (MATs). Apart from

being fast and efficient, they are also intuitively appealing

because they are akin to the family of clustering methods.

This paper considers how such methods can be enhanced,

both with regard to ‘‘accuracy’’ and efficiency, by learning,

and thereafter incorporating the information that relates to

the dependence between the random variables being ana-

lyzed. In all brevity, we are not aware of any other reported

method which specifically incorporates such dependence-

type information to optimize an MAT, or for that matter, to

optimize a method which controls the information loss (IL)

and the disclosure risk (DR) in secure statistical databases.

A preliminary version of some of the results from this paper appeared

in the Proceedings of ACISP’08, the Thirteenth Australasian

Conference on Information Security and Privacy, in Wollongong,

Australia, in July 2008.
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A lot of attention has recently been dedicated to the

problem of maintaining the confidentiality of statistical

databases through the application of statistical tools, so as

to limit the identification of information on individuals and

enterprises. Statistical disclosure control (SDC) seeks a

balance between the confidentiality and the data utility

criteria. For example, federal agencies and their contractors

who release statistical tables or micro-data files are often

required by law or by established policies to protect the

confidentiality of released information. However, this

restriction should not affect public policy decisions which

are made by accessing only non-confidential summary

statistics [1, 20]. Therefore, optimizing the IL and the DR

so as to reach an equilibrium point between them is not an

easy task1 [1].

The micro-aggregation problem (MAP), as formulated

in [4, 10, 18, 21, 25], can be stated as follows: a micro-data

set U ¼ fU1;U2; . . .;Ung is specified in terms of the n

‘‘micro-records’’, namely the U0i s, each representing a data

vector whose components are d continuous variables. Each

data vector can be viewed as Ui ¼ ½ui1; ui2; . . .; uid�T, where

uij specifies the value of the jth variable in the ith data

vector. Micro-aggregation involves partitioning the n data

vectors into, say m, mutually exclusive and exhaustive

groups so as to obtain a k-partition Pk ¼ fGij1� i�mg,
such that each group, Gi, of size, ni, contains either k data

vectors (fixed-size case) or between k and 2k - 1 data

vectors (data-oriented case).

The optimal k-partition, P
�

k, is defined to be the one that

maximizes the within-group similarity, which is defined as

the sum of squares error, SSE ¼
Pm

i¼1

Pni

j¼1ðXij � �XiÞT

ðXij � �XiÞ. This quantity is computed on the basis of the

Euclidean distance of each data vector Xij to the centroid �Xi

of the group to which it belongs. The information loss is

measured as IL ¼ SSE
SST

, where SST is the squared error that

would result if all records were included in a single group,

and is given as SST ¼
Pm

i¼1

Pni

j¼1ðXij � �XÞTðXij � �XÞ,
where �X ¼ 1

n

Pn
i¼1 Xi. In the literature, the quantity IL is

also conveniently specified as a percentage.

Understanding the presence and structure of dependency

between a set of random variables is a fundamental prob-

lem in the design and analysis of many types of systems

including filtering, pattern recognition, etc. As far as we

know its application in SDC has been minimal. Utilizing

this information is the goal of this paper. Typically, in

modern day systems, the data protector has been able to

choose the technique and set its parameters without a

thorough understanding of the characteristics of the micro-

data file, and the stochastic dependence of the variables.

Although gleaning this information could be particularly

difficult and even time-consuming, our hypothesis is that

this information is central to the micro-data file, especially

when working in a high dimensional space.

Undoubtedly, the IL is minimized when all the variables

are included in the MAT. Otherwise, the result of the multi-

variate MAT depends on the number of variables used in

the micro-aggregation process. However, more recent

research (see for example [10, 13]) have recommended

studying the dependence between the variables themselves.

Indeed, the prior art has been reported that the multivariate

micro-aggregation on un-projected data taking two, three

or four variables offers the best trade-off between the IL

and the DR (i.e., within the limited setting of not incor-

porating the information in all the variables). In other

words, deciding on the number of variables to be taken into

account, and on the identity of the variables to be micro-

aggregated, is far from trivial. Domingo-Ferrer and Torra

[13] have reported that multi-variate micro-aggregation on

unprojected data taking two or three variables at a time

(rather than incorporating the information in all the vari-

ables) offers the best trade-off between IL and DR. The

unanswered question is that of inferring which variables

should be used in this process. Indeed, we believe that a

solution to this puzzle lies in the inter-variable ‘‘depen-

dence’’ information, as confirmed by the works of Nin

et al. [26].

Sanchez et al. [30] have emphasized that the decision

about which variables are to be chosen has to be gleaned

from a priori ‘‘knowledge about the characteristics of each

variable from the experts’’. While this is a feasible

approach, we argue that it is subjective, and that a formal

objective method is desirable. Indeed, what will happen if

the researcher encounters a new project for which there is

no prior knowledge? Or how we will proceed if an expert

for a specific data domain is not available? Our aim is to

minimize the necessity to depend on a human expert, but

rather to have the ability to study and estimate the char-

acteristics of each variable objectively. Thus, we seek a

systematic process by which we can choose the desired

variables automatically and, thereafter, micro-aggregate

the file.

This paper involves MATs, but rather from a perspective

different than the ones that have been considered in the

literature. We propose a scheme by which we can avoid

using the information in all the dimensions (for example, in

computing the distance between 2 records, etc.). Further-

more, neither will we resort to projecting the micro-data

file onto a single axis, nor will we attempt to micro-

aggregate it using any specific sorting method [6–9, 23–25,

29]. The main contribution of this paper is to extract useful

information from the joint probability distribution of the

variables in the file to be micro-aggregated. Then, rather

1 The review presented here has been abridged as per the advice of

the Referees.
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than use all the variables in the micro-data file, we propose

to only process the ‘‘maximally independent’’ variables in

the subsequent multi-variate micro-aggregation. Indeed, we

propose to use such a method as a pre-processing step

before any MAT is invoked, and to test the effect of using

such a dependency analysis on the micro-aggregation

process so as to reduce the computational time, and IL.2

The structure of this paper is as follows: in Sect. 2 we

summarize the background about the most recent MATs

and, in particular, the maximum distance to average vector

(MDAV) scheme. In Sect. 3 the enhanced micro-aggrega-

tion dependence is presented informally and algorithmi-

cally. Then, in Sect. 4, we present the results of

experiments we have carried out for synthetic and real data

sets. The paper finishes in Sect. 5 with some conclusions.

2 Background

In this section, we start with a brief but concise survey3

about the reported MATs. Subsequently, we present a brief

description of the MDAV method, which will be used after

invoking the pre-processing step which specifies the

number and the identity of each variable to be used in the

MDAV micro-aggregation method.

2.1 Micro-aggregation

As mentioned in Sect. 1 the MAP has been tackled using

different techniques. Basically, a MAT relies on a clus-

tering technique and an aggregation technique. MATs were

originally used for numerical data [4, 32], and they can be

further classified as below.

2.1.1 Uni-variate versus multi-variate

The difference between the uni-variate and the multi-var-

iate MATs depends on the number of random variables

used in the micro-aggregation process. Uni-variate MATs

deal with multi-variate data sets by micro-aggregating one

variable at a time [7–9]. Multi-variate MATs either

rank multi-variate data by projecting them onto a single

axis,4 dealing directly with the unprojected data [10, 11,

23], or using various heuristics [10, 14, 21]. More recently,

researchers have advocated the use of Learning Automata

[16] and Neural Networks (see [28] and the references

cited there), but the details of these methods are also

omitted here in the interest of brevity.

2.1.2 Fixed-size versus data-oriented

The difference between the fixed-size and the data-oriented

MATs depends on the number of records in each group.

Fixed-size MATs require all groups to be of size k except

for a single group whose cardinality is greater than k when

the total number of records, n, is not a multiple of k [10, 11,

23, 29]. Data-oriented MATs allow groups to be of size

greater than k and less than 2k - 1 depending on the

structure of the data. These methods [5, 10, 17, 22, 24, 25],

the details of which are omitted in the interest of brevity,

yield more homogenous groups, and thus help to further

minimize the IL.

2.1.3 Optimal versus heuristic

A formal algorithm to find the optimal solution for the

k-partition problem was proposed by Defays and Nanop-

oulos [9]. But, the first reported optimal uni-variate MAT

with a polynomial complexity is given in [18], which

solves the MAP as a shortest path problem on a graph.

Unfortunately, determining the optimal MAP for multi-

variate micro-aggregation is an NP-hard problem [27].

Therefore, researchers seek heuristic MATs that provide a

good solution—close to the optimal.

2.2 Maximum distance average vector

The first algorithm to accomplish micro-aggregation

without projecting the multi-variate data onto a single axis

was proposed in 2002 by Domingo-Ferrer and Mateo-Sanz

[10], and is known as the MDAV. It micro-aggregates the

multi-variate micro-data file based on the concept of the

diameter distance of the data set. In 2005, an enhanced

version of MDAV appeared in [14], and was implemented

as a built-in technique in the l-ARGUS software tool

version 4.0 [19]. The modification is based on utilizing the

centroid concept (instead of the diameter) in the micro-

aggregation. In a nutshell, the process is as follows: First of

all, the algorithm computes the centroid of the data. After

this, a quick search for the most distant record from the

centroid, say Xr, is done. Subsequently, a new search for

2 The reader will observe that all our attention has been on

minimizing the IL. This is because previous researchers in the field

have also advocated such an optimization. To achieve this, as

mentioned earlier, they have proposed using a subset of the variables.

Of course, a more comprehensive study should also involve the DR,

or a combination of the IL and the DR. This certainly leads to many

unsolved problems, and we are very grateful to the anonymous

Referee who suggested this.
3 The bibliography and citations presented in this paper (for this field

and for the areas covered in the next sections) were quite extensive in

the earlier version of the paper. They have been abridged at the

request of the Referees.

4 The multi-variate data is projected onto a single axis by using either

a particular variable, the sum-z-scores or a principle component

analysis prior to micro-aggregation [24, 25].
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the most distant record from the record Xr, say Xs, is

accomplished. The next step consists of creating two

clusters, the first one comprising of Xr and its k - 1 nearest

records, while the second comprises of Xs with its nearest

k - 1 records. At the end of this stage, the two clusters are

micro-aggregated and removed from the original data set.

The latter steps are iteratively repeated until there are no

more records remaining in the original data set. The

advantages of this new modified version of the MDAV are

the increased speed of the micro-aggregation, and the

reduction in the IL.

More recently, the V-MDAV scheme was proposed to

obtain a data-oriented micro-aggregation solution, which

provides variable-sized groups, leading to a higher within-

group homogeneity while maintaining an equivalent com-

putational cost [31].

3 Enhancing micro-aggregation with dependence

It is well-known that the result of the multi-variate MATs

depends on the number and the identity of the variables

used in the micro-aggregation process. Since multi-variate

micro-aggregation using two or three variables at a time

offers the best trade-off between the IL and the DR [13],

the question we intend to resolve involves understanding

why we have to maintain and use vast dimension-depen-

dent resources in the clustering phase in order to compute

the distance between the micro-records. We shall also

study how we can minimize the computation time needed

to evaluate the distance between a single micro-data record

and the mean of the group it belongs to. This computation

involves evaluating

DðX; �XÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xd

i¼1

ðxi � �xiÞ2
v
u
u
t ; ð1Þ

where X and �X are the two multi-variate data vectors (in

particular, note that the second vector is the mean of the

instantiations of X) whose components are {xi} and f�xig,
respectively, and d represents the dimension of the space.

We consider the problem of determining the depen-

dencies between the different variables within a micro-data

file, and then combining the latter with the MAT in such a

way as to reduce the overall required computational time,

and/or reduce the corresponding IL.

The primary goal of any MAT is to reduce the loss in the

data utility by choosing the most suitable sub-set of vari-

ables with size equal to two, three or four [13] prior to

invoking the multi-variate micro-aggregate. Theoretically,

to know the best sub-set of variables that has to be used in

order to obtain the minimum value of the IL, we have to

consider all different possibilities of combinations, namely

the S
C

� �
¼ S!

C!ðS�CÞ! combinations, where S is the number of

variables in the original micro-data file, and C is the

number of chosen variables which are used in projecting

and micro-aggregating the data file.

We propose that the key idea in choosing a sub-set of

the variables by avoiding the combinatorial solution,

should be based on the dependence model of the micro-

data file. If the variables are highly correlated, then using

any one of them will somehow reflect the stochastic nature

of the others. If we, thus, incorporate this logic into our

consideration, we believe that we can reduce the number

of variables which will be used to measure either the

distance between the micro-unit and the mean of the group

it belongs to, or the distance between the micro-units

themselves. For a truly comprehensive comparison, it can

be argued that the distances used to evaluate the IL must

be computed in the given d-dimensional problem space

and not in the space with reduced dimensionality. How-

ever, given the context of the problem and the state-of-the-

art results [10] that have motivated this work (i.e., the

issue of choosing a subset of the variables to obtain almost

the same IL), we believe that it is more meaningful to see

how the IL is effected after the dimensionality is reduced.5

Thus, in turn, since we reduce the dimensionality of the

space to d0\d, the new distance that will thus be com-

puted will be:

D0ðX; �XÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xd0

i¼1

ðxi � �xiÞ2
v
u
u
t where d0\d: ð2Þ

The reader should observe that our goal is quite distinct

from the reported methods of projecting the multi-

dimensional space onto a single axis using a particular

variable, the sum z-scores scheme, or a principal

component analysis. The reduction in the dimensionality

is not done randomly. Rather it is to be done based on a

formal criterion. Our aim is to micro-aggregate the multi-

dimensional vector by maximally using the information in

the ‘‘almost-independent’’ variables, and we plan to do this

by finding the best dependence tree. We believe that we

can achieve this by evaluating the dependence between the

variables in the micro-data file by using either the method

due to Chow and Liu [2] or the method due to Valiveti and

Oommen [33, 34].

We formalize these concepts below. The joint probabil-

ity distribution of the random vector V ¼ ½V1;V2; . . .;Vd�T
in terms of conditional probabilities is given as

5 As mentioned earlier, we agree with the recommendation of the

anonymous Referee, who suggested that a more fair comparison

should involve both the IL and the DR measures.
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PðVÞ ¼ PðV1ÞPðV2jV1ÞPðV3jV1;V2Þ. . .

PðVdjV1;V2; . . .;Vd�1Þ; ð3Þ

where each Vi is a random variable.

It is obvious, from the above expression, that each

variable is conditioned on an increasing number of other

variables. Therefore, estimating the kth term of this equa-

tion requires maintaining the estimates of all the kth order

marginals. Clearly, it is impractical to gather the estimates

for the joint density function PðVÞ for all the different

values which V could assume. We, therefore, simplify the

dependency model by restricting ourselves to the lower-

order marginals, using the approximation which ignores the

conditioning on multiple variables, and retaining only

dependencies on at most a single variable at a time. This

leads us to the following [33]:

PaðVÞ ¼
Yd

i¼1

PrðVijVjðiÞÞ; ð4Þ

where PaðVÞ is the approximated form of PðVÞ, and Vi is

conditioned on Vj(i) for 0 B j(i) \ i.

The dependence of the variables can be represented as a

graph G ¼ ðV;E;WÞ where V ¼ fV1;V2; . . .;Vdg is a

finite set of vertices, which represents the set of random

variables in the micro-data file with d dimensions, E is a

finite set of edges fhVi;Vjig, where hVi;Vji represents an

edge between the vertices Vi and Vj. Finally, W ¼ fwi;jg is

a finite set of weights, where wi,j is the weight assigned to

the edge hVi;Vji in the graph. The values of these weights

can be calculated based on a number of measures, as will

be explained presently.

In G, the edge between any two nodes represents the

fact that these variables are statistically dependent [2]. In

such a case, the weight, wi,j, can be assigned to the edge as

being equal to the expected mutual information measure

(EMIM) metric between them. Generally speaking, the

EMIM metric between two variables, given by I*(Vi, Vj)

for discrete distributions, has the form:

I�ðVi;VjÞ ¼
X

vi;vj

Prðvi; vjÞ log
Prðvi; vjÞ

PrðviÞPrðvjÞ
; ð5Þ

where the summation above is done over all values of vi

and vj which Vi and Vj can assume.

Observe that any edge, say hVi;Vji with the edge weight

I�ðVi;VjÞ represents the fact that Vi is stochastically

dependent on Vj, or that Vj is stochastically dependent on

Vi. Although, in the worst case, any variable pair could be

dependent, the model expressed by Eq. (4) imposes a tree-

like dependence. It is easy to see that this graph includes a

large number of trees (actually, an O(d(d-2)) of such span-

ning trees). Each of these trees represents a unique

approximated form for the density function PðVÞ. Chow

and Liu proved that searching for the best ‘‘dependence

tree’’ is exactly equivalent to searching for the maximum

spanning tree6(MST) of the graph [2]. Further, since the

probabilities that are required for computing the edge

weights are not known a priori, Valiveti and Oommen

showed that this could be achieved by estimating them in a

maximum likelihood (ML) manner [33, 34]. They showed

that the ML estimate for the best dependence tree, can be

obtained by computing the MST of the graph, where the

edge weights are computed using the EMIM of the esti-

mated probabilities, as shown in Fig. 1.

It is worth mentioning that this solution is truly both

elegant and efficient. A rigorous ML solution to obtaining

the best tree would involve computing it from the set of all

possible spanning trees, which (at the enumeration level

itself) is a combinatorially explosive problem. To solve the

ML problem in a formal manner, one has to first obtain the

set of all the graph’s spanning trees, and then determine the

tree which maximizes the likelihood function evaluated in

terms of the dependence described by the tree itself.

Observe that the solution obtained by solving for the MST

is many orders of magnitude less complex. It involves

estimating the probabilities (and not the structure) of the

Binomial (multinomial) distributions using a ML estimate,

and then merely computing the MST. The fact that these

two processes lead to the same estimate (as shown in

Fig. 1) is far from trivial to prove, but is indeed, true.

It should be mentioned here that the weights of the

edges in the graph, G, can be computed using either the

EMIM metric or the v2 metric proposed by Valiveti and

Oommen [33]. The latter, IvðVi;VjÞ, is an alternative

measure that quantifies the dependence information

between pairs of random variables, and is computed by:

IvðVi;VjÞ ¼
X

vi;vj

ðPrðvi; vjÞ � PðviÞPðvjÞÞ2

PðviÞPðvjÞ
: ð6Þ

Iv has the following desirable characteristics relevant to

capturing dependence information:

IvðVi;VjÞ ¼ 0 iff Pðvi; vjÞ ¼ PðviÞPðvjÞ
IvðVi;VjÞ[ 0 otherwise.

�

ð7Þ

It turns out that for binary and normally distributed random

variables, the Iv metric is exactly equivalent to the I* metric

in finding the dependence tree [33, 34]. But, when the

underlying dependence is not actually based on a tree

6 Two generic greedy algorithms can be used to solve the minimum

spanning tree problem, namely, the so-called Kruskal and the so-

called Prim algorithms. Both of them run in time�ðE lg VÞ by using

ordinary binary heaps [3]. Since we are attempting to compute the

MST, it is obvious that we have to order the edges in a decreasing

order (as in Kruskal) or to extract the maximum edges weight (as in

Prim). We have used the Kruskal algorithm in our experiments.
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structure, both of them estimate the best dependence tree

corresponding to their representative measures. Valiveti

and Oommen showed the interesting feature that although

their estimation for the best dependence tree does not

always match, the total weights are almost always

identical.

By way of example, consider a micro-data file which

incorporates six variables (as in Fig. 2) and thousands of

records. Let us assume that we intend to micro-aggregate

this file using any MAT, for example, the MDAV method.

In such a case, the prior art will process all the six variables

to quantify the relevant distances during the clustering

stage. We could choose a sub-set of size three to be used in

the micro-aggregation process. In general, we will have to

go through the 20 different combinations of size three in

order to attain the minimum value of the IL. However, if

we are able to discover any existing inter-variable depen-

dencies, this could render the problem simpler. Let us

assume that we compute the EMIM-based edge weights for

all pairs of nodes, and create the fully connected undirected

graph G, as in Fig. 2. By using the strategy alluded to

above, we obtain a tree as in Fig. 3a, which shows the case

when the MST leads to the ML condition that the variables

B, C, and D depend on the variable A, and that variables

E and F depend on variable D.

Since these dependent variables are maximally corre-

lated to the variable that they depend on, we propose to use

the vertices that have the maximum number of In/Out

edges in the graph to micro-aggregate the micro-file. We

believe that the nodes which possess this property are the

best candidates to reflect the characteristics of the entire

multi-variate data set because they connect to the maxi-

mum number of nodes that statistically depend on it, as

argued in Conjecture 1.

Conjecture 1. Micro-aggregating the micro-data file can

be best achieved if the nodes which possess the maximum

number of In/Out edges in the tree obtained as the MST of

the underlying undirected connected graph G; are used as

the input to solve the MAT.

Rationale for conjecture The existence of an edge

between two nodes in the connected undirected graph

Fig. 1 Equivalent procedures

for finding the maximum

likelihood estimate of the tree-

based dependence from the

samples

Fig. 2 The fully connected undirected graph represents the depen-

dence between six random variables

Fig. 3 An example of a dependence tree used to micro-aggregate the

data file containing six variables

104 Pattern Anal Applic (2013) 16:99–116
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signifies that these two nodes are statistically correlated

to each other, and that a variation of one of these var-

iable is reflected by a corresponding change in the other.

Thus, the variables which are connected to each other

via edges in the skeletal tree represent nodes which are

connected to each other based on the best tree-based

dependence, and in turn, reflect the maximal shared

characteristics within the variables of the micro-data file.

Thus, any node which has a larger number of In/Out

edges is one which connects to a larger number of

nodes, and is thus capable of individually representing

more ‘‘other’’ variables. This implies that the best can-

didates to be used to represent the other variables in the

micro-aggregation are those which have the maximum

number of In/Out edges.

In order to invoke this property, we first rank the nodes

of the graph based on the number of In/Out edges in a

descending order and choose the first d0 variables, where d0

is usually determined by the data protector, and is usually

equal to 3 or 4. Thus, for example, based on the above

discussion, for the data represented by the variables of

Fig. 3, the micro-aggregation process will be invoked by

using two variables instead of using the entire set of six

variables in the micro-data file. Figure 3b shows that the

selected sub-set of the variables is {A, D}, since both of

them connect to three variables while the other variables in

the micro-data file connect to only a single variable. The

process outlined above has been formalized in Algorithm 1

which presents an automated way to select a sub-set of the

variables to be used in the multi-variate micro-aggregation

process.

4 Experimental result

4.1 Data sets

In order to verify the validity of our methodology in pro-

jecting the multi-variate data set into a subset of random

variables to be used in the micro-aggregation process, two

benchmark real-life data sets and three simulated data sets

were used in the testing phase. Table 1 summarizes the

characteristics of each data set by defining its type,

dimensionality and cardinality.

The Tarragona and Census benchmarks are reference

data sets used in previous studies for their special statistical

properties [10, 12]. On the other hand, the simulated data

were generated or tested for various dimensions of random

vectors, as follows: first of all, the number of random

variables was determined. Thereafter, the ‘‘true’’ structure

of the defined dependence tree which imposed the depen-

dence relationships between the variables was selected

subjectively, as shown in Fig. 4. Then the second-order

marginal distributions were randomly generated. The pro-

cedure by which these were generated was as follows: if we

Table 1 The characteristics of various data sets

Name of the data set Type Dimensionality Cardinality

Tarragona Real 13 834

Census Real 13 1,080

Sim_1 Simulated 8 5,000

Sim_2 Simulated 16 10,000

Sim_3 Simulated 22 20,000
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define the entire space of each variable to be between 1 and

1,000, this space is sub-divided into a number of subspaces

with equal width, say 100. That means that we limit our-

selves to be dealing with ten events where each event

represents a sub-interval of width equal to 100 from the

entire domain as follows: fI1 ¼ ½1; 100�; I2 ¼ ½101; 200�;
. . .; I10 ¼ ½901; 1;000�g, thus, effectively simulating a

multinomial distribution. In the latter, each outcome is a

random number belonging to exactly one of the ten sub-

intervals, Ij, with probability, Pj, where j ¼ 1; 2; . . .; 10. If

nj represents the number of occurrences of values belong-

ing to Ij and n represents the number of independent

records, we have

X10

i¼1

ni ¼ n;
X10

i¼1

Pi ¼ 1; ð8Þ

where the probability mass function of the multinomial

distribution is

f ðn1; n2; . . .; n10Þ ¼
n!

n!
1n!

2. . .n!
10

Y10

i¼1

Pni
i : ð9Þ

Observe that prior to assigning the second-order mar-

ginal distributions for the rest of the tree, we had to also

randomly generate ten different probabilities for the most

independent variables (the root variable) when its values

belonged to each of the above defined sub-intervals.

To randomly populate the file, we can now randomly

assign values to the conditional probability from the joint

and marginal distributions as follows: if, as per the

assumed tree-based dependence, variable Vm, depends on

variable Vn, this means we have to define a set of proba-

bilities, {Pnm}, when the value of Vn, say vin, belongs to

any defined sub-interval Ij given that the value of variable

Vm, say vim belongs to any sub-interval Il. Thus,

Pmn ¼ Prðvin 2 Ijjvim 2 IlÞ; ð10Þ

where i represents the index of the record in the micro-data

file and assumes values in f1; 2; . . .; ng. The indices j and l

represent the indices of the sub-interval where the random

variable falls, and which are the result of dividing the entire

domain into ten sub-intervals. Finally, the indices n and m

represent the specific dimensions in the micro-data file, and

are in the range f1; . . .; dg; n 6¼ m.

The above procedure was implemented for all pairwise

combinations of random variables associated with the

micro-data file.

4.2 Results

The experiments conducted fell into four categories, where

in each case7 the value of k was set to 3: in the first set of

experiments the intention was primarily focused on testing

whether the best dependence tree can be learned (or rather,

inferred) from the continuous micro-data file, and if it

sufficiently reflected the dependence model. In the second

set of experiments, the goal was primarily to validate our

strategy for determining the subset of variables (from the

entire set of variables) to micro-aggregate the micro-data

file, and to study its effect on the value of the IL. The third

set of experiments was designed to determine the most

suitable metric to calculate the edge weights of the fully

connected graph so as to minimize the required computa-

tion time and maximize the accuracy of estimating the

dependence model and its effect on the value of the IL.

Finally, since we are working with continuous vectors, the

last set of experiments focused on understanding the effect

of assuming normality (i.e., the relevance of the Central

Limit Theorem [15]) on the data set in calculating the

edges weights.
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Fig. 4 The true structures for the simulated data sets

7 Throughout this section, we have, in the interest of brevity, only

reported the results for the case when k = 3. This is because

researchers who have worked with MATs have advocated setting

k = 3 or 4 independent of the dimension of the multivariate vector.

Observe that once the value of k has been set, the difference between

the IL in the original space and the reduced space is of primary

importance. Our experience is that the respective difference between

the IL (in the original and reduced subspaces) for the cases when

k = 3 and k = 4 is minimal.
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4.2.1 Experiment sets 1

The first set of experiments was done on two types of data

sets: simulated data sets with a known structure of the best

dependence tree which is to be inferred by the learning

algorithm, and the real data sets possessing an unknown

dependence model between the variables. It is worth

mentioning that we could not approximate the dependence

information of the multi-variate data set in its current form

due to the inaccurate estimation for the joint and marginal

probability distributions for continuous variables. This is a

consequence of having a large domain space with only few

records (sometimes only 1 or 2) for each region of the

corresponding random variable. Consequently, most of the

estimated marginal and joint probability values were close

to zero. Clearly, in these cases, the estimated probabilities

will not reflect the actual dependence relationship between

any corresponding variables.

In order to overcome this challenging problem that

prevents us from utilizing the dependence information, we

were forced to reduce the domain space by categorizing the

micro-data file as follows: we first scanned the micro-data

file to specify the domain space of each variable in the file,

and then divided it into a number of sub-intervals sharing

the same width. After that, we achieved a categorization

phase by replacing the values belonging to a certain sub-

interval in each variable by the corresponding category/

code. For example, in the case of the simulated data sets,

all the variables shared the same domain space between 1

and 1,000, which was divided into ten subintervals, as

explained earlier. Consequently, all values belong to the

[1,100] interval were replaced by 1, all values belong to the

[101,200] interval were replaced by 2 and so on. The above

procedure was repeated for all the variables so as to gen-

erate the categorical micro-data file.

From the above discussion, it is clearly shown that

‘‘width’’ parameter plays a predominant role in controlling

the degree of smoothing and estimating the best depen-

dence tree. Our experiments indicated that assigning a

suitable value to the width parameter guaranteed the con-

vergence of the MST to the true underlying (unknown)

structure of the best dependence tree. The most important

point that one has to be aware of in a practical scenario is

that a larger value for the width parameter implies a lower

variance and a higher bias, because we are essentially

assuming a constant value within the sub-interval. Gener-

ally speaking, the value of the width parameter should be

large enough to generate a sufficient number of sub-inter-

vals from the defined domain space to guarantee a satis-

factory level of smoothing. The actual value used is

specified in the respective experimental results.

Consider the tree structure given by Sim_1, Sim_2, and

Sim_3 as given in Fig. 4. Approximating the dependence

information of the simulated data sets based on the struc-

ture of the MST obtained using the EMIM metric

succeeded in locating the real structure when the width

parameter was set to the values 50,100, and 150 for

Sim_1, 70, 100, and 120 for Sim_2, and 90, 100 and 110

for Sim_3. Figure 5 shows the edge weights and the value

of Ix for each simulated data set when the value of width

was equal to 100. Figures 6, 7 and 8 show different snap-

shots of the convergence to the final structure of the

dependence model for various sample sizes for

Sim 1; Sim 2 and Sim_3, respectively, when the value of

the width parameter was set to 100.

Approximating the dependence information for the real

data sets was a little more ‘‘tricky’’, because of the

unknown structure for the best dependence tree. Changing

the value of the width parameter has an effect on the

structure of the best dependence tree to which the algo-

rithm converged. Figures 9 and 10 clearly show different

structures for the best dependence tree by changing the

value of the width for the Tarragona and Census data sets,

respectively.

The final set of experiments involves the so-called

Sibling-related Model. The aim here was to see if the

algorithms possessed the ability to infer the structure of the

dependence model between the random variables if addi-

tional information about the dependency between the

siblings in the tree is available. The results that we have

obtained are quite amazing.

To be more specific, we consider the possibility that

after the structure of the underlying tree is determined, the

probability values between the siblings in the structural

tree are related. For example, thus, if a particular node had

index i and its children were nodes j and k, the probabilities

that could be independently set were:

Pr½xj ¼ 0jxi ¼ 0�

Pr½xj ¼ 0jxi ¼ 1�:

Since the probabilities of the siblings were thus determined,

the values of Pr½xk ¼ 0jxi ¼ 0� and Pr½xk ¼ 0jxi ¼ 1� were

then set to be 1� Pr½xj ¼ 0jxi ¼ 0� and 1� Pr½xj ¼ 0j
xi ¼ 1�, respectively. Further, observe that a result of these

assignments, the probabilities, Pr½xj ¼ 1jxi ¼ 0�;Pr½xj ¼
1jxi ¼ 1�;Pr½xk ¼ 1jxi ¼ 0� and Pr½xk ¼ 1jxi ¼ 1� were

automatically assigned, since the sum of these quantities

and the values of their counterparts, is unity.

The question we were interested in investigating was to

see if our strategy for learning the dependence tree using

the MST on the constructed fully connected graph (where

the edges weights are calculated using the EMIM or the v2

metric) was able to converge to the true (unknown)

dependence tree even if this sibling relationship was not

known. The answer was always in the affirmative.

Pattern Anal Applic (2013) 16:99–116 107

123



By way of example, consider two binomial data sets with

six variables. Both of them share the same dependency

model between the variables, as shown in Fig. 11. The only

difference between these two data sets is that the values of

the probabilities used to generate the random variables in

the true tree structure—which in one case was sibling-

related, and in the other was not sibling-related. Tables 2

and 3 show the values of the random probabilities which

were used in generating each variable in the data set.

Observe that in the first data set these values are related,
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Fig. 5 The best dependence tree for the simulated data sets obtained by using the EMIM metric
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while they are independent in the second data set. Figure 12

show different snapshots of the convergence to the depen-

dence model as the number of samples is increased.

The actual trees learnt for the data sets, as the number of

samples processed increased, are given in Figs. 12 and 13,

respectively (reported at snapshots 50, 150 and 5,000). The

decrease in the EMIM and v2 metrics with time are plotted

in Fig. 14. Observe that the final inferred tree in both cases

is exactly the unknown tree—which, again, was correctly

inferred, and that the values of both the metrics ultimately

converged to the lowest possible values. Thus we conclude

that the relationship between the probabilities of generation

of the sibling random variables, was not able to ‘‘confuse’’

the algorithm in learning the unknown structure.

It should be mentioned, though, that in the cases in

which the sibling probabilities were related, the learning

was faster—which we believe is quite remarkable.

4.2.2 Experiment sets 2

The second set of experiments verified our conjecture that

it was expedient to use the sub-set of the variables obtained

(from the best dependence tree) by projecting the micro-
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Fig. 6 The ‘‘inferred’’ dependence tree for the Sim_1 binary data set

as the number of samples increases. The width parameter was set to

100
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Fig. 7 The ‘‘inferred’’ dependence tree for the Sim_2 binary data set as the number of samples increases. The width parameter was set to 100
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Fig. 8 The ‘‘inferred’’ dependence tree for the Sim_3 binary data set as the number of samples increases. The width parameter was set to 100
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Fig. 9 The best dependence

tree for the Tarragona data set

obtained by using the EMIM

metric with various values of

the width parameter
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data file into three, four or five variables before invoking

the multi-variate micro-aggregation process.

Since an MAT seeks to reduce the loss in the data utility,

it must be pointed out here that the value of the IL depends

on the sub-set of variables used to micro-aggregate the

multi-variate data file. As mentioned earlier, to infer the

best sub-set of variables to be used in the micro-aggrega-

tion, we have to go through all the different projection

possibilities. The results (Table 4) show that the estimation

of the percentage value of the IL for various data sets

obtained by projecting the entire data set into specified

number of variables prior to invoking the MDAV method,

for which the value of k was again set to 3. The value of the

IL was bounded between the minimum value (in the fourth

column) that was obtained by using the variable indices

addressed in the third column, and the maximum value (in

the sixth column) that was obtained by using the indices

addressed in the fifth column. The last column in Table 4
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Fig. 10 The best dependence tree for the Census data set obtained by using the EMIM metric with various values of the width parameter
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Fig. 11 The best dependence

tree for a binomial data sets

with 5,000 records and six

variables

Table 2 The probability values used in generating the corresponding

random variables when the corresponding probabilities for the sibling

nodes in the structural dependence tree are related

Probability Value

Prob(x1 = 0) 0.40

Prob(x1 = 1) 0.60

Prob(x2 = 0|x1 = 0) 0.30

Prob(x2 = 0|x1 = 1) 0.10

Prob(x3 = 0|x1 = 0) 0.70

Prob(x3 = 0|x1 = 1) 0.90

Prob(x4 = 0|x1 = 0) 0.20

Prob(x4 = 0|x1 = 1) 0.60

Prob(x5 = 0|x3 = 0) 0.80

Prob(x5 = 0|x3 = 1) 0.40

Prob(x6 = 0|x3 = 0) 0.15

Prob(x6 = 0|x3 = 1) 0.76

Table 3 The probability values used in generating the corresponding

random variables when the corresponding probabilities for the sibling

nodes in the structural dependence tree are unrelated

Probability Value

Prob(x1 = 0) 0.40

Prob(x1 = 1) 0.60

Prob(x2 = 0|x1 = 0) 0.30

Prob(x2 = 0|x1 = 1) 0.10

Prob(x3 = 0|x1 = 0) 0.60

Prob(x33 = 0|x1 = 1) 0.70

Prob(x4 = 0|x1 = 0) 0.20

Prob(x4 = 0|x1 = 1) 0.60

Prob(x5 = 0|x3 = 0) 0.40

Prob(x5 = 0|x3 = 1) 0.50

Prob(x6 = 0|x3 = 0) 0.15

Prob(x6 = 0|x3 = 1) 0.76
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Fig. 12 The ‘‘inferred’’ dependence tree for the binary data set as the

number of samples increases. In this case, the probabilities between

the sibling random variables are related
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represents the average value of the IL over all the different

combinations of projected variables in the micro-data file.

The most interesting observation was that the minimum

value of the IL obtained by using three, four or five pro-

jected variables in the Tarragona and Census data sets were

exactly the same. This implies using the same ‘‘most

independent variables’’, which in turn, preserve the same

high value for the variance. Therefore, in the case of real-

life data sets, we recommend projecting the entire micro-

data file using three variables, since using a larger number

of variables to project the micro-data file requires more
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Fig. 13 The ‘‘inferred’’ dependence tree for the binary data set as the

number of samples increases. In this case, the probabilities between

the sibling random variables are unrelated

Fig. 14 The convergence of the

corresponding metric for the

Set-Up four data sets by using a
the EMIM metric to calculate

the edges weights. a The

probabilities between the

siblings are related, and b these

probabilities between the

siblings are unrelated

Table 4 The value of the IL obtained by using the MDAV multi-variate MAT after projecting various data sets into the specific number of

variables
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time without leading to significant reduction in the IL

value.

Practically, due to the exponential number of combina-

tions, we could not cover the entire solution space so as to

reach to the best sub-set of the variables to be used in the

micro-aggregation8. As opposed to this, by involving only

the vertices that have the maximum number of I/O edges in

the connected undirected graph to micro-aggregate the

micro-data file, we were able to obtain an acceptable value

of the IL close to its lower bound, and which is always (in

all the cases) superior to the average value. Thus, such an

automated strategy for projecting the multi-variate data sets

will reduce the solution space to be searched which, in turn,

reduces the computation time required to test the candidate

variables, and to choose the best sub-set from them.

Tables 5 and 6 show the percentage value of the IL

obtained by using our strategy in projecting the micro-data

file into sub-sets of sizes 3 and 4, respectively, prior to

invoking the MDAV method (for which the value of k was

again set to 3). When the Census data set was projected

onto a number of variables prior to the micro-aggregation,

the minimum values of the IL were equal to 17.47% when

the width value was equal to 1,000 and the number of

variables was set to 3 or 4, to 16.23% when the width value

was equal to 5,000 and the number of variables was equal

to 3 or 4. The value of the minimum IL was equal to 18.29

and to 17.70% when the width value was equal to 10,000

and the projection was onto three and four variables,

respectively. It is worth mentioning that the values

obtained were quite close to the lower bound of the IL, i.e.,

15.60%, as shown in Table 4, besides being superior to the

average values over all the different combinations (i.e.,

21.20 and 22.03% for 3 and 4 variables, respectively).

Similar results were obtained for the Tarragona data set

when the minimum value of the IL using 3 or 4 variables

was equal to 24.13% by setting the width value to 50,000

or 100,000. But, it was equal to 25.05% when the width

was 150,000. Again, these values were closer to the lower

bound of the IL which was 20.71%, and were superior to

the average value which was close 25.5%. In Tarragona

data set, the minimum values of the IL, when the width

value was set to 50,000, 100,000 and 150,000, were equal

to 24.13, 24.13 and 25.04%, respectively. The values

obtained were quite close to the lower bound of the IL, i.e.,

20.71%, as shown in Table 4, besides being superior to the

average values over all the different combinations (i.e.,

25.16%). Finally, we would like to state that the simulated

data set yielded similar results to those of the real data sets

where the minimum values of the IL were equal to 38.11%

for Sim1, 51.95% for Sim2 and 55.82% for Sim3. These

values were quite close to the lower bound of the IL which

were equal to 37.64% for Sim1, 51.65% for Sim2 and

55.52% for Sim3, respectively.

4.2.3 Experiment sets 3

The third set of experiments compares the EMIM and v2

metrics in calculating the edge weights in the connected

undirected graph. Generally speaking, the v2 is faster in

leading to a convergence to the best dependence tree than

the EMIM metric since it required a smaller number of

observations or records to converge. It is worth mentioning,

though, that both metrics converged to the same true

structure of the dependence model for the simulated data

sets by setting the value of the width parameter to 100. The

scenario is completely different for the real data sets, as

seen in Figs. 15 and 16 which display different structures

Table 5 The value of the IL obtained by using the MDAV multi-

variate MAT after projecting various data sets using three variables by

using the EMIM metric to calculate the edge weights in the connected

undirected graph

8 On our processor, it took up to a few hours or even days depending

on the dimensionality and cardinality of the data set, to exhaustively

search the entire space.
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for the best dependence tree for the Tarragona and Census

data sets, respectively, using various values for the width

parameter, and when k was 3. Table 7 shows the value of

the IL obtained by invoking the MDAV method after

projecting various data sets into three variables by using

the v2 metric to calculate the edges weights in the con-

nected undirected graph. In the simulated sets, the v2

metric led to the same value of the IL which was obtained

by using the EMIM metric because they converged to the

same dependence tree, implying that they used the same set

of variables to micro-aggregate the micro-data file. As

opposed to this, in the real data sets, the v2 converged to a

different ‘‘best’’ dependence tree compared to the one

obtained by using the EMIM metric, thus leading to a

different value of the IL. In general, the value of the IL

obtained by using the v2 metric was lower than the corre-

sponding value obtained by using the EMIM metric for the

Census data sets, but it was higher than the value obtained

by using the EMIM metric in Tarragona data set. Table 7

shows that the values of the IL for the Tarragona data set,

when k was 3, and the width value was set to 50,000,

100,000 and 150,000, were equal to 25.1, 24.8 and 25.7%,

respectively, and for the Census data set the minimum

values of the IL were equal to 17.47% when the width

value was set to 1,000, 16.23% when the width value was

set to 5,000, and to 18.16% when the width value was set to

10,000. In general, the v2-based solution space was supe-

rior to the EMIM-based solution.

4.2.4 Experiment sets 4

The distribution of the average of a set of random variables

tends to be Normal, even when the distribution from which

the individual random variable is computed is decidedly

non-Normal. This is a consequence of the Central Limit

Theorem, which is the foundation for many statistical

procedures, because the distribution of the phenomenon

under study does not necessarily have to be Normal.

Therefore, the last set of experiments assumes the Nor-

mality of the micro-data file to quickly compute the first

and second-order marginals, and to thus lead to the MST

Table 6 The value of the IL obtained by using the MDAV multi-

variate MAT after projecting various data sets using four variables by

using the EMIM metric to calculate the edge weights in the connected

undirected graph
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Fig. 15 The best dependence

tree for the Tarragona data set

obtained by using the v2 metric

with various values of the width

parameter
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for computing the best dependence tree. Subsequently, we

applied our strategy to choose the subset of random vari-

ables to project the file before invoking the MDAV method

(Table 8).

The beauty of estimating the dependence model

assuming normality is that it does not depend on any

parametric value. Therefore, it leads to a unique MST if the

edges weight are unique. Figure 17 shows the best

dependence tree for the simulated and real data sets for

k = 3. It is worth mentioning that using the correlation

between two random variables in calculating the edges

weights of the graph does not lead to convergence to the

‘‘true’’ underlying dependence model in the case of the

simulated data sets. However, generally the overall process

yielded a value of IL close to the minimum value of the IL

1

2 3
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5 68 791 0

1 1 1 2

1 3
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Fig. 16 The best dependence tree for the Census data set obtained by using the v2 metric with various values of the width parameter

Table 7 The value of the IL obtained by using the MDAV multi-

variate MAT after projecting various data sets using three variables by

using the v2 metric to calculate the edge weights in the connected

undirected graph

Table 8 The value of the IL obtained by using the MDAV multi-

variate MAT after projecting various data sets into three variables

assuming normality
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after projecting the entire data set into three variables

although the search space was greater than the search space

that resulted from using the v2 or the EMIM metrics. The

minimum value of the IL was equal to 23.10% for Tar-

ragona data set, 16.34% for Census data set, 37.8% for

Sim1, 51.96% for Sim2, and 55.64% for Sim3.

Finally, we conclude by stating that each method of

calculating the edges weights has its own advantages and

disadvantages. We believe that, in practice, the user is the

only one who is capable of deciding which is the most

suitable metric for the specific data sets. Table 9 summa-

rizes the characteristics of each metric in calculating the

edge weights of the graph.

5 Conclusions

In this paper, we have shown how the information about

the structure of the dependence between the variables in the

micro-data file can be used as a fundamental indicator

before invoking any MAT. By using this information, we

have proposed a new automated scheme as a pre-process-

ing phase to determine the number and the identity of the

variables that are to be used to micro-aggregate the micro-

data file. This is achieved by constructing a connected

undirected graph whose nodes represent the random vari-

ables in the micro-data file, edges represent the statistically

dependencies, and the edges weights are computed either

Table 9 Characteristics of the EMIM, v2 and correlation metrics in calculating the edges weights of the connected undirected graph

EMIM v2 Correlation

Width parameter Sensitive Sensitive Not sensitive

No. of combinations in search space Medium Small Large

Convergence to the best dependence tree structure Converge Converge Does not always converge

Convergence speed Slower than v2 metric Slower than assuming Normality Faster than both metrics
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Fig. 17 The best dependence

tree for the real and simulated

data sets assuming normality
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by using the EMIM, v2 or the correlation values. The

experimental results show that such a methodology

involving projecting the multi-variate data sets reducesthe

solution space, which further directly reduces the compu-

tation time required to search the entire space combinato-

rially. In spite of this, this methodology leads to a solution

whose IL values areclose to the minimum value of the IL

that can be obtained by exhaustively searching over the

entire search space. The use of these methods for other

problems including k-anonymity would be an avenue for

future research.
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